# Owner(s): ["module: dynamo"] import copy import os import shutil import unittest from unittest.mock import patch import torch import torch._dynamo import torch._dynamo.test_case import torch._functorch._aot_autograd from torch._dynamo import config as dynamo_config from torch._dynamo.utils import counters from torch._functorch import config as functorch_config from torch._functorch._aot_autograd.autograd_cache import ( AOTAutogradCache, autograd_cache_key, BypassAOTAutogradCache, sanitize_gm_for_cache, ) from torch._functorch._aot_autograd.schemas import AOTConfig from torch._guards import TracingContext from torch._inductor import config as inductor_config from torch._inductor.runtime.runtime_utils import cache_dir from torch._inductor.runtime.triton_compat import tl, triton from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import fresh_cache from torch._subclasses import FakeTensorMode from torch.compiler._cache import CacheArtifactManager from torch.fx.experimental.symbolic_shapes import ShapeEnv from torch.testing._internal.common_cuda import SM80OrLater, TEST_MULTIGPU from torch.testing._internal.common_device_type import largeTensorTest from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, skipIfWindows, ) from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_GPU, requires_triton from torch.testing._internal.triton_utils import requires_cuda_and_triton from torch.testing._internal.two_tensor import TwoTensor def saved_tensors_hooks_to_gm( pack_fn, unpack_fn, pack_cache_hash=None, unpack_cache_hash=None, symbolic_tracing=True, inp_fn=None, ): if symbolic_tracing: pack_gm = torch.fx.symbolic_trace(pack_fn) unpack_gm = torch.fx.symbolic_trace(unpack_fn) else: from functorch import make_fx if inp_fn: inp = inp_fn() else: inp = torch.randn(2, 3) torch._dynamo.mark_dynamic(inp, 0) torch._dynamo.mark_dynamic(inp, 1) pack_out = pack_fn(inp) pack_gm = make_fx(pack_fn)(inp) unpack_gm = make_fx(unpack_fn)(pack_out) def set_manual_hash(g, manual_hash): for node in g.nodes: if node.meta and node.meta.get("is_wrapped", False): node.meta["user_cache_hash"] = manual_hash if pack_cache_hash: set_manual_hash(pack_gm.graph, pack_cache_hash) if unpack_cache_hash: set_manual_hash(unpack_gm.graph, unpack_cache_hash) return pack_gm, unpack_gm def amax_to_scale( amax: torch.Tensor, float8_dtype: torch.dtype, round_scales_to_power_of_2: bool = False, ): amax = amax.to(torch.float64) res = torch.finfo(float8_dtype).max / torch.clamp(amax, min=1e-12) res = res.to(torch.float32) return res # Must be at module level to use fx.wrap @torch.fx.wrap def _pack_fp8_with_scale_wrap(x): if not x.dtype.is_floating_point: return x amax = torch.max(torch.abs(x)) scale = amax_to_scale(amax, torch.float8_e5m2) x_scaled = x.to(torch.float32) * scale x_fp8 = x_scaled.to(torch.float8_e5m2) return x.dtype, scale, x_fp8 @torch.fx.wrap def _unpack_fp8_with_scale_wrap(x): if isinstance(x, torch.Tensor): return x dtype, scale, x_fp8 = x y = x_fp8.to(torch.float32) / scale return y.to(dtype) @instantiate_parametrized_tests class AOTAutogradCacheTests(InductorTestCase): def setUp(self): """ Reset all counters and caches before each unit test """ super().setUp() counters.clear() self._clear_all_caches() def _clear_all_caches(self): """ Clear every cache, including AOTAutogradCache and FXCache """ torch._inductor.codecache.FxGraphCache.clear() AOTAutogradCache.clear() CacheArtifactManager.clear() self._clear_dynamo_and_codecache() def _clear_dynamo_and_codecache(self): """ Clear unrelated caches, like dynamo and PyCodeCache """ torch._dynamo.reset() torch._inductor.codecache.PyCodeCache.cache_clear(purge=True) @requires_triton() @functorch_config.patch({"enable_autograd_cache": True}) @inductor_config.patch( { "fx_graph_cache": True, "fx_graph_remote_cache": False, "autotune_local_cache": True, } ) @parametrize("device", (GPU_TYPE, "cpu")) @parametrize("dtype", (torch.float32, torch.bfloat16)) @parametrize("dynamic", (False, True)) def test_cache_hot_load(self, device, dtype, dynamic): """ Verify that we can populate and hot load functions from the cache. """ if device == GPU_TYPE and not HAS_GPU: raise unittest.SkipTest(f"requires {GPU_TYPE}") if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: raise unittest.SkipTest("requires SM80 or later") def fn(x, y): return x.sin() @ y a = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True) b = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True) # Record artifacts with fresh_cache(): compiled_fn = torch.compile(fn, dynamic=dynamic) # A first call should miss in the cache. eager_result = fn(a, b) compiled_result = compiled_fn(a, b) compiled_result.sum().backward() if hasattr(a, "_dynamo_weak_dynamic_indices"): del a._dynamo_weak_dynamic_indices self.assertEqual(eager_result, compiled_result) if functorch_config.bundled_autograd_cache: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) else: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 2) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) artifacts = torch.compiler.save_cache_artifacts() self.assertIsNotNone(artifacts) artifact_bytes, cache_info = artifacts autotune_expect = 2 if device == GPU_TYPE else 0 if functorch_config.bundled_autograd_cache: self.assertEqual(len(cache_info.inductor_artifacts), 0) else: self.assertEqual(len(cache_info.inductor_artifacts), 2) self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect) self.assertEqual(len(cache_info.aot_autograd_artifacts), 1) self.assertEqual(len(cache_info.pgo_artifacts), 0) self._clear_all_caches() # Clean triton kernels shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True) # We did not load anything so dont hit yet with fresh_cache(): eager_result = fn(a, b) compiled_result = compiled_fn(a, b) self.assertEqual(eager_result, compiled_result) compiled_result.sum().backward() if hasattr(a, "_dynamo_weak_dynamic_indices"): del a._dynamo_weak_dynamic_indices if functorch_config.bundled_autograd_cache: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) else: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 4) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) self._clear_all_caches() # Clean triton kernels shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True) # Hot load and hit with fresh_cache(): cache_info = torch.compiler.load_cache_artifacts(artifact_bytes) if functorch_config.bundled_autograd_cache: self.assertEqual(len(cache_info.inductor_artifacts), 0) else: self.assertEqual(len(cache_info.inductor_artifacts), 2) self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect) self.assertEqual(len(cache_info.aot_autograd_artifacts), 1) self.assertEqual(len(cache_info.pgo_artifacts), 0) eager_result = fn(a, b) compiled_result = compiled_fn(a, b) compiled_result.sum().backward() if hasattr(a, "_dynamo_weak_dynamic_indices"): del a._dynamo_weak_dynamic_indices self.assertEqual(eager_result, compiled_result) if functorch_config.bundled_autograd_cache: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) else: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 4) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 2) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_basic(self): """ Verify the interactions between FXGraphCache and AOTAutogradCache. """ def fn(x, y): return (x * 2, y @ y) a = torch.rand(25) b = torch.rand(5, 5) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # A second call should hit. (First reset so in-memory guards # don't prevent compilation). self._clear_dynamo_and_codecache() self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_vmap(self): """ make """ def fn(x, y): f = lambda x, y: (x * y + 1).sum(dim=0) # noqa: E731 vmapped = torch.vmap(f)(x, y) return vmapped.sum(dim=0) x = torch.randn(25, requires_grad=True) y = torch.randn(25, requires_grad=True) x2 = x.detach().clone().requires_grad_(True) y2 = y.detach().clone().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. self.assertEqual(fn(x, y), compiled_fn(x2, y2)) fn(x, y).sum().backward() compiled_fn(x2, y2).sum().backward() self.assertEqual(x.grad, x2.grad) self.assertEqual(y.grad, y2.grad) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Reset all tensors x = torch.randn(25, requires_grad=True) y = torch.randn(25, requires_grad=True) x2 = x.detach().clone().requires_grad_(True) y2 = y.detach().clone().requires_grad_(True) # A second call should hit. (First reset so in-memory guards # don't prevent compilation). self._clear_dynamo_and_codecache() self.assertEqual(fn(x, y), compiled_fn(x2, y2)) fn(x, y).sum().backward() compiled_fn(x2, y2).sum().backward() self.assertEqual(x.grad, x2.grad) self.assertEqual(y.grad, y2.grad) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_multi_graph_specialization(self): """ Verify multi graph specializations all cache hit """ def fn(x): return x * 5 a = torch.randn(5) a8 = torch.randn(8) a16 = torch.randn(16) torch._dynamo.mark_dynamic( a, 0, specialize_on=[ lambda x: x == 8, lambda x: x == 16, ], ) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. compiled_fn(a) compiled_fn(a8) compiled_fn(a16) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3) self._clear_dynamo_and_codecache() # A second call should hit on all 3 graphs compiled_fn(a) compiled_fn(a8) compiled_fn(a16) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 3) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_symbol_specialization(self): """ Verify the symbol specializations don't cause cache miss. """ def fn(x, y, z): return (torch.randn(5) + x + y, z * torch.randn(1)) a = torch.rand(5) torch._dynamo.maybe_mark_dynamic(a, 0) b = torch.rand(5) c = torch.randn(6) torch._dynamo.maybe_mark_dynamic(c, 0) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. compiled_fn(a, b, c) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # A second call should hit even if a new dimension is marked as dynamic # that is later specialized as part of tracing. a = torch.rand(5) torch._dynamo.maybe_mark_dynamic(a, 0) b = torch.rand(5) torch._dynamo.maybe_mark_dynamic(b, 0) c = torch.randn(6) torch._dynamo.maybe_mark_dynamic(c, 0) self._clear_dynamo_and_codecache() compiled_fn(a, b, c) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @functorch_config.patch({"enable_autograd_cache": True}) def test_aot_runtime_trace_joint(self): @torch.compile(backend="inductor") def f(x): tmp = x.sin() s0 = tmp.shape[0] return tmp.expand(s0, s0) x_a = torch.randn(4, requires_grad=True) x = TwoTensor(x_a, x_a.clone()) out = f(x) out.sum().backward() self._clear_dynamo_and_codecache() out = f(x) out.sum().backward() @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @skipIfWindows( msg="Known issue: Window can't delete loaded modules, so we can't clear module cache." ) def test_clear_fx_graph_cache(self): """ Verify the interactions between FXGraphCache and AOTAutogradCache. """ def fn(x, y): return (x * 2, y @ y) a = torch.rand(25) b = torch.rand(5, 5) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear FX graph cache: second call should also be a miss self._clear_dynamo_and_codecache() torch._inductor.codecache.FxGraphCache.clear() self.assertEqual(fn(a, b), compiled_fn(a, b)) if functorch_config.bundled_autograd_cache: # Bundled AutogradCache doesn't care if FxGraphCache is cleared self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) else: self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) # We save again into the cache self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"strict_autograd_cache": True}) @unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable") @requires_triton() def test_non_bundled_to_bundled_config_change(self): if functorch_config.bundled_autograd_cache: raise unittest.SkipTest("BundledAutogradCache is already enabled") def fn(x, y): return (x * 2, y @ y) a = torch.rand(25, device=GPU_TYPE) b = torch.rand(5, 5, device=GPU_TYPE) compiled_fn = torch.compile(fn, backend="inductor") self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Now turn on bundled autograd cache, see that we successfully save again with functorch_config.patch({"bundled_autograd_cache": True}): torch._dynamo.reset() self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch( {"enable_autograd_cache": True, "view_replay_for_aliased_outputs": True} ) def test_view_replay(self): def fn(a): tmp = a.detach() a.mul_(2) return a, tmp with torch.autograd._force_original_view_tracking(True): compiled_fn = torch.compile(fn) def run_and_check(miss, hit, bypass): self._clear_dynamo_and_codecache() inp = torch.rand(2, 3) compiled_inp = inp.clone().detach() with torch.autograd._force_original_view_tracking(True): out = fn(inp) compiled_out = compiled_fn(compiled_inp) self.assertEqual(out, compiled_out) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], miss) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], hit) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], bypass) run_and_check(miss=1, hit=0, bypass=0) run_and_check(miss=1, hit=1, bypass=0) run_and_check(miss=1, hit=2, bypass=0) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch( {"enable_autograd_cache": True, "strict_autograd_cache": True} ) def test_invoke_subgraph(self): from torch._higher_order_ops.invoke_subgraph import mark_compile_region @mark_compile_region def gn(x, y): return x + y @torch.compile def fn(x, y): return gn(x, y) + gn(x, y) a = torch.randn(25) b = torch.randn(25) fn(a, b) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch( {"enable_autograd_cache": True, "strict_autograd_cache": True} ) @parametrize("fn_select", ("tag_activation_checkpoint", "allow_in_graph")) def test_unsafe_mark_cacheable(self, fn_select): if fn_select == "tag_activation_checkpoint": from torch.utils.checkpoint import checkpoint def gn(x, y, z=None): a = torch.matmul(x, y) if z is not None: return torch.matmul(a, z) return a @torch.compile def fn(x, y, z): return torch.cos(checkpoint(gn, x, y, use_reentrant=False, z=z)) fn_name = "torch.ops.higher_order.tag_activation_checkpoint" else: assert fn_select == "allow_in_graph" @torch._dynamo.allow_in_graph class AllowInGraphFunc(torch.autograd.Function): @staticmethod def forward(_, x): torch._dynamo.graph_break() return x.sin() @torch.compile def fn(x, y, z): return AllowInGraphFunc.apply(x) fn_name = "torch._dynamo.variables.misc.trampoline_autograd_apply" x = torch.randn(4, 4) y = torch.randn(4, 4) z = torch.randn(4, 4) args = (x, y, z) with self.assertRaisesRegex( torch._dynamo.exc.BackendCompilerFailed, r".*BypassAOTAutogradCache: Unsupported call_function target .*", ): fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) self._clear_dynamo_and_codecache() if fn_select == "allow_in_graph": # TODO: Fix allow in graph raise unittest.SkipTest( "Allow in graph produces an unserializable cache artifact" ) with inductor_config.patch( "unsafe_marked_cacheable_functions", {fn_name: "key1"} ): fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) self._clear_dynamo_and_codecache() fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) self._clear_dynamo_and_codecache() with inductor_config.patch( "unsafe_marked_cacheable_functions", {fn_name: "key2"} ): fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) self._clear_dynamo_and_codecache() fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) # On second try with same key, it should hit once more with inductor_config.patch( "unsafe_marked_cacheable_functions", {fn_name: "key1"} ): self._clear_dynamo_and_codecache() fn(*args) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 3) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) def test_fx_graph_cache_off(self): """ Should not use cache if FXGraphCache is not enabled """ def fn(x, y): return (x * 2, y @ y) a = torch.rand(25) b = torch.rand(5, 5) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) # Clear FX graph cache: second call should also be a miss self._clear_dynamo_and_codecache() self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_bypass"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch( {"enable_autograd_cache": True, "strict_autograd_cache": True} ) @dynamo_config.patch("compiled_autograd", True) def test_compiled_autograd_bypass(self): # Need to make the compiled autograd graph serializable def fn(a, b): out = a.cos() + b loss = out.sum() ga, gb = torch.autograd.grad(loss, inputs=[a, b]) a = torch.randn(25, requires_grad=True) b = torch.randn(25, requires_grad=True) compiled_fn = torch.compile(fn, backend="inductor") with self.assertRaisesRegex( torch._dynamo.exc.BackendCompilerFailed, "BypassAOTAutogradCache: Unsupported call_function target torch._dynamo.compiled_autograd.ops.validate_outputs", ): compiled_fn(a, b) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @dynamo_config.patch("compiled_autograd", True) def test_inference_graph_cache_hit_with_compiled_autograd_enabled(self): def fn(a, b): out = a.cos() + b return out.sum() a = torch.randn(25) b = torch.randn(25) compiled_fn = torch.compile(fn, backend="inductor") self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear dynamo and run again. Should be a cache hit. counters.clear() self._clear_dynamo_and_codecache() self.assertEqual(fn(a, b), compiled_fn(a, b)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True}) def test_custom_autograd_function_miss(self): class MyAutogradFunction(torch.autograd.Function): @staticmethod def forward(ctx, x): y = x.sin() ctx.save_for_backward(y) ctx.foo = x.cos() return y @staticmethod def backward(ctx, grad_output): result = ctx.saved_tensors[0] return grad_output * result + ctx.foo * grad_output def fn(a): return MyAutogradFunction.apply(a) a = torch.randn(5, device="cuda", requires_grad=True) a2 = a.clone().detach_().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) result.sum().backward() self.assertEqual(fn(a), result) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) class MyAutogradFunction(torch.autograd.Function): # noqa: F811 # Change the function slightly @staticmethod def forward(ctx, x): y = x.cos() ctx.save_for_backward(y) ctx.foo = x.sin() return y @staticmethod def backward(ctx, grad_output): result = ctx.saved_tensors[0] return grad_output * result + ctx.foo * grad_output # Clear dynamo and run again. Should be a cache miss. counters.clear() self._clear_dynamo_and_codecache() result = compiled_fn(a2) self.assertEqual(fn(a2), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True}) def test_custom_autograd_function(self): class MyAutogradFunction(torch.autograd.Function): @staticmethod def forward(ctx, x): y = x.sin() ctx.save_for_backward(y) ctx.foo = x.cos() return y @staticmethod def backward(ctx, grad_output): result = ctx.saved_tensors[0] return grad_output * result + ctx.foo * grad_output def fn(a): return MyAutogradFunction.apply(a) a = torch.randn(5, device="cuda", requires_grad=True) a2 = a.clone().detach_().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) result.sum().backward() self.assertEqual(fn(a), result) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear dynamo and run again. Should be a cache hit. counters.clear() self._clear_dynamo_and_codecache() result = compiled_fn(a2) self.assertEqual(fn(a2), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True}) def test_custom_autograd_function_with_custom_triton_kernel(self): @triton.jit def my_jit(x): arg_0 = tl.load(x) tl.store(x, arg_0 + 1) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) return y class MyAutogradFunction(torch.autograd.Function): @staticmethod def forward(ctx, x): y = torch.ops.test.my_triton_op(x) ctx.save_for_backward(y) ctx.foo = x.cos() return y @staticmethod def backward(ctx, grad_output): result = ctx.saved_tensors[0] return grad_output * result + ctx.foo * grad_output def fn(a): return MyAutogradFunction.apply(a) a = torch.randn(5, device=GPU_TYPE, requires_grad=True) a2 = a.clone().detach_().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) self.assertEqual(fn(a), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear dynamo and run again. Should be a cache hit. counters.clear() self._clear_dynamo_and_codecache() result = compiled_fn(a2) self.assertEqual(fn(a2), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"autograd_cache_allow_custom_autograd_functions": True}) def test_custom_autograd_function_with_custom_triton_kernel_cache_invalidation( self, ): @triton.jit def my_jit(x): arg_0 = tl.load(x) tl.store(x, arg_0 + 1) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) return y class MyAutogradFunction(torch.autograd.Function): @staticmethod def forward(ctx, x): y = torch.ops.test.my_triton_op(x) ctx.save_for_backward(y) ctx.foo = x.cos() return y @staticmethod def backward(ctx, grad_output): result = ctx.saved_tensors[0] return grad_output * result + ctx.foo * grad_output def fn(a): return MyAutogradFunction.apply(a) a = torch.randn(5, device=GPU_TYPE, requires_grad=True) a2 = a.clone().detach_().requires_grad_(True) a3 = a.clone().detach_().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) self.assertEqual(fn(a), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear dynamo and run again. Should be a cache hit. counters.clear() self._clear_dynamo_and_codecache() result = compiled_fn(a2) self.assertEqual(fn(a2), result) result.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) # Now modify the source code of my_jit by redefining it @triton.jit def my_jit(x): # noqa: F811 arg_0 = tl.load(x) tl.store(x, arg_0 + 2) # Changed from +1 to +2 @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811 y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) return y # Clear dynamo and run again. Should be a cache miss due to modified source code. counters.clear() self._clear_dynamo_and_codecache() compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a3) # Assert that after changing the source code, the cache no longer hits self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(fn(a3), result) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_triton_op_cache_invalidation(self): from torch._library import capture_triton @triton.jit def my_jit(x): # noqa: F811 arg_0 = tl.load(x) tl.store(x, arg_0 + 1) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811 y = x.clone().detach_().requires_grad_(True) capture_triton(my_jit)[1,](y) return y def fn(a): return torch.ops.test.my_triton_op(a) a = torch.randn(5, device=GPU_TYPE) a2 = a.clone().detach_() compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) self.assertEqual(fn(a), result) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self._clear_dynamo_and_codecache() # Redefine the triton op @triton.jit def my_jit(x): # noqa: F811 arg_0 = tl.load(x) tl.store(x, arg_0 + 2) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811 y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) return y compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a2) # Second run should still miss self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) self.assertEqual(fn(a2), result) @requires_cuda_and_triton @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @unittest.expectedFailure # Currently ops that call other ops does not properly invalidate cache def test_triton_op_cache_multiple_ops_invalidation(self): @triton.jit def my_jit(x): arg_0 = tl.load(x) tl.store(x, arg_0 + 1) @triton.jit def my_jit2(x): arg_0 = tl.load(x) tl.store(x, arg_0 + 1) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) torch._library.capture_triton(my_jit2)[1,](y) return y @torch._library.triton_op("test::my_triton_op2", mutates_args=()) def my_triton_op2(x: torch.Tensor) -> torch.Tensor: y = x.clone().detach_().requires_grad_(True) torch.ops.test.my_triton_op(y) return y def fn(a): return torch.ops.test.my_triton_op2(a) a = torch.randn(5, device=GPU_TYPE) a2 = a.clone().detach_() compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a) self.assertEqual(fn(a), result) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self._clear_dynamo_and_codecache() # Redefine the triton op @triton.jit def my_jit(x): # noqa: F811 arg_0 = tl.load(x) tl.store(x, arg_0 + 2) @torch._library.triton_op("test::my_triton_op", mutates_args=()) def my_triton_op(x: torch.Tensor) -> torch.Tensor: # noqa: F811 y = x.clone().detach_().requires_grad_(True) torch._library.capture_triton(my_jit)[1,](y) torch._library.capture_triton(my_jit2)[1,](y) return y @torch._library.triton_op("test::my_triton_op2", mutates_args=()) def my_triton_op2(x: torch.Tensor) -> torch.Tensor: # noqa: F811 y = x.clone().detach_().requires_grad_(True) torch.ops.test.my_triton_op(y) return y compiled_fn = torch.compile(fn, backend="inductor") result = compiled_fn(a2) # Second run should still miss self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) self.assertEqual(fn(a2), result) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch({"fx_graph_cache": True}) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"strict_autograd_cache": True}) def test_autograd_lazy_backward(self): """ Lazily compile the backward, and lazily save to cache """ def fn(a, b): return a.cos() + b a = torch.randn(25, requires_grad=True) b = torch.randn(25, requires_grad=True) a2 = a.detach().clone().requires_grad_(True) b2 = b.detach().clone().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") self.assertEqual(fn(a, b), compiled_fn(a2, b2)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) # Clear dynamo and run again. Should be a cache miss still, because backward hasn't run self._clear_dynamo_and_codecache() self.assertEqual(fn(a, b), compiled_fn(a2, b2)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 0) # Now let's run the backward fn(a, b).sum().backward() compiled_fn(a2, b2).sum().backward() self.assertEqual(a.grad, a2.grad) self.assertEqual(b.grad, b2.grad) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Clear dynamo and rerun everything, now there should be a cache hit self._clear_dynamo_and_codecache() a = torch.randn(25, requires_grad=True) b = torch.randn(25, requires_grad=True) a2 = a.detach().clone().requires_grad_(True) b2 = b.detach().clone().requires_grad_(True) self.assertEqual(fn(a, b), compiled_fn(a2, b2)) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) fn(a, b).sum().backward() compiled_fn(a2, b2).sum().backward() self.assertEqual(a.grad, a2.grad) self.assertEqual(b.grad, b2.grad) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch({"fx_graph_cache": True}) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"strict_autograd_cache": True}) def test_autograd_no_dynamo_trace_backward(self): """ Test that dynamo does not trace into the backward compiled function, even on cache hit. """ torch._dynamo.eval_frame.clear_dynamo_tls() @torch.compile def fn(x): # Calls x.sum().backward() during forward execution of fn (x_grad,) = torch.autograd.grad(x.sum(), x) return x_grad a = torch.randn(10, 10, requires_grad=True, device="cpu") result = fn(a) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) # Backward of `sum` will run during execution of graph break self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) traced_frame_infos = copy.deepcopy( torch._dynamo.eval_frame.dynamo_tls.traced_frame_infos ) torch._dynamo.reset() torch._dynamo.eval_frame.clear_dynamo_tls() result2 = fn(a) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) new_traced_frame_infos = torch._dynamo.eval_frame.dynamo_tls.traced_frame_infos self.assertEqual(result, result2) # Dynamo should trace exactly the same frames on cache hit self.assertEqual(traced_frame_infos, new_traced_frame_infos) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_autograd_function(self): """ Tests autograd cache hits """ def fn(a, b): return a.sin() + b a = torch.randn(25, requires_grad=True) b = torch.randn(25, requires_grad=True) a2 = a.detach().clone().requires_grad_(True) b2 = b.detach().clone().requires_grad_(True) compiled_fn = torch.compile(fn, backend="inductor") # A first call should miss in the cache. self.assertEqual(fn(a, b), compiled_fn(a2, b2)) fn(a, b).sum().backward() compiled_fn(a2, b2).sum().backward() self.assertEqual(a.grad, a2.grad) self.assertEqual(b.grad, b2.grad) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) # Reset all tensors a = torch.randn(25, requires_grad=True) b = torch.randn(25, requires_grad=True) a2 = a.detach().clone().requires_grad_(True) b2 = b.detach().clone().requires_grad_(True) # A second call should hit. (First reset so in-memory guards # don't prevent compilation). self._clear_dynamo_and_codecache() self.assertEqual(fn(a, b), compiled_fn(a2, b2)) fn(a, b).sum().backward() compiled_fn(a2, b2).sum().backward() self.assertEqual(a.grad, a2.grad) self.assertEqual(b.grad, b2.grad) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @largeTensorTest("64GB", device=GPU_TYPE) @parametrize("device", (GPU_TYPE,)) @parametrize("dtype", (torch.float16, torch.bfloat16)) @inductor_config.patch("fx_graph_cache", True) @inductor_config.patch("fx_graph_remote_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) def test_autograd_guard_single_entry(self, device, dtype): """ Test caching the same graph, but under conditions that introduce guards for tensor sizes < int32. See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds. This test in particular tests the behavior of a single entry cache. If we ever make AOTAutogradCache support multiple entries under the same key, this test should be updated. """ if device == GPU_TYPE and not HAS_GPU: raise unittest.SkipTest(f"requires {GPU_TYPE}") if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: raise unittest.SkipTest("requires CUDA SM80 or later") def fn(x, y): return (x + x, y + y) def expect_miss(compiled_fn, a, b): self._clear_dynamo_and_codecache() counters.clear() res = compiled_fn(a, b) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual( counters["aot_autograd"]["autograd_cache_guard_miss"], 0, ) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) return res def expect_hit(compiled_fn, a, b): self._clear_dynamo_and_codecache() counters.clear() res = compiled_fn(a, b) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual( counters["aot_autograd"]["autograd_cache_guard_miss"], 0, ) self.assertEqual( counters["aot_autograd"]["autograd_cache_hit"], 1, ) return res def expect_guard_miss(compiled_fn, a, b): self._clear_dynamo_and_codecache() counters.clear() res = compiled_fn(a, b) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual( counters["aot_autograd"]["autograd_cache_guard_miss"], 1, ) self.assertEqual( counters["aot_autograd"]["autograd_cache_hit"], 0, ) return res compiled_fn = torch.compile(fn, dynamic=True) a_shape = (5, 6) b_shape = (7, 8) a = torch.rand(a_shape, device=device, dtype=dtype) b = torch.rand(b_shape, device=device, dtype=dtype) res1 = expect_miss(compiled_fn, a, b) # Same shape, should cache hit a2 = a.detach().clone() b2 = b.detach().clone() res2 = expect_hit(compiled_fn, a2, b2) self.assertEqual(res1, res2) # By changing the shape greatly, despite the same exact input # graph, inductor should report a guard miss, leading # to a cache miss on our end. a_shape = (5, 6) b_shape = (47000, 47001) a3 = torch.rand(a_shape, device=device, dtype=dtype) b3 = torch.rand(b_shape, device=device, dtype=dtype) expect_guard_miss(compiled_fn, a3, b3) # Wobble the shape a bit, but not enough # to trigger a guard miss (since 6, 7 is still less than int32) # Should result in a cache hit a_shape = (6, 7) b_shape = (47000, 47001) a4 = torch.rand(a_shape, device=device, dtype=dtype) b4 = torch.rand(b_shape, device=device, dtype=dtype) expect_hit(compiled_fn, a4, b4) # Change the shape back to the original, # FXGraphCache should hit because it stores # multiple entries a_shape = (5, 6) b_shape = (7, 8) a5 = torch.rand(a_shape, device=device, dtype=dtype) b5 = torch.rand(b_shape, device=device, dtype=dtype) expect_hit(compiled_fn, a5, b5) @largeTensorTest("64GB", device=GPU_TYPE) @parametrize("device", (GPU_TYPE,)) @parametrize("dtype", (torch.float16, torch.bfloat16)) @parametrize("requires_grad", (True, False)) @inductor_config.patch("fx_graph_cache", True) @inductor_config.patch("fx_graph_remote_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) def test_autograd_inductor_guards(self, device, dtype, requires_grad): """ Test caching the same graph, but under conditions that introduce guards for tensor sizes < int32. See test_codecache::TestFxGraphCache::test_cache_load_with_guards_int32_bounds. """ if device == GPU_TYPE and not HAS_GPU: raise unittest.SkipTest(f"requires {GPU_TYPE}") if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: raise unittest.SkipTest("requires CUDA SM80 or later") def fn(x, y): return (x + x, y + y) compiled_fn = torch.compile(fn, dynamic=True) # Iterate over different shapes, varying whether the total # size is below or above int32. For each combination, we expect # different guards around whether the symbolic sizes do or do # not exceed int32. shapes = ( ((5, 6), (7, 8)), ((5, 6), (47000, 47001)), ((47000, 47001), (5, 6)), ) expected_hits = expected_misses = expected_saves = 0 expected_guard_misses = 0 for a_shape, b_shape in shapes: a = torch.rand( a_shape, device=device, dtype=dtype, requires_grad=requires_grad ) b = torch.rand( b_shape, device=device, dtype=dtype, requires_grad=requires_grad ) # AVOID a dynamo reset here. We expect guards to have been # added that will be violated with the new shape. We should # see a recompilation (along with a cache miss). res1 = compiled_fn(a, b) # A first call should miss in the cache. expected_misses += 1 # noqa: SIM113 self.assertEqual( counters["aot_autograd"]["autograd_cache_miss"], expected_misses ) self.assertEqual( counters["aot_autograd"]["autograd_cache_guard_miss"], expected_guard_misses, ) self.assertEqual( counters["aot_autograd"]["autograd_cache_hit"], expected_hits ) # Because dynamic shapes are enabled, we expect backwards to be compiled ahead of time # So we should see a cache save here expected_saves += 1 # noqa: SIM113 self.assertEqual( counters["aot_autograd"]["autograd_cache_saved"], expected_saves ) if requires_grad: res1[0].sum().backward() # No extra saves self.assertEqual( counters["aot_autograd"]["autograd_cache_saved"], expected_saves ) a2 = a.detach().clone().requires_grad_(requires_grad) b2 = b.detach().clone().requires_grad_(requires_grad) # A second call should hit. (First reset so in-memory guards # don't prevent compilation). # Now clear dynamo and we should see a cache hit # This should populate guards to dynamo's cache, so that a subsequent run with a different # shape will still trigger a second call to autograd_cache. self._clear_dynamo_and_codecache() res2 = compiled_fn(a2, b2) expected_hits += 1 # noqa: SIM113 self.assertEqual( counters["aot_autograd"]["autograd_cache_miss"], expected_misses ) self.assertEqual( counters["aot_autograd"]["autograd_cache_guard_miss"], expected_guard_misses, ) # First compile is a regular cache miss, subsequent are guard misses expected_guard_misses += 1 # noqa: SIM113 self.assertEqual( counters["aot_autograd"]["autograd_cache_hit"], expected_hits ) self.assertEqual( counters["aot_autograd"]["autograd_cache_saved"], expected_saves ) self.assertEqual(res1, res2) if requires_grad: res2[0].sum().backward() self.assertEqual(a.grad, a2.grad) @inductor_config.patch("fx_graph_cache", True) @inductor_config.patch("fx_graph_remote_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) def test_nn_module_with_params_global_constant(self): class MyMod(torch.nn.Module): CONSTANT = torch.tensor([[2, 2], [2, 2]]) def __init__(self) -> None: super().__init__() self.param = torch.nn.Parameter(torch.randn([2, 2])) def forward(self, x): return x.sin() + self.param + MyMod.CONSTANT with torch.no_grad(): compiled_fn = torch.compile(MyMod(), backend="inductor", fullgraph=True) res1 = compiled_fn(torch.ones([2, 2])) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self._clear_dynamo_and_codecache() res2 = compiled_fn(torch.ones([2, 2])) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self.assertEqual(res1, res2) # Edit the "constant". We'll get a cache hit, # but it should result in a different result when run # because MyMod.CONSTANT is an input to the graph MyMod.CONSTANT = torch.tensor([[3, 3], [3, 3]]) self._clear_dynamo_and_codecache() res3 = compiled_fn(torch.ones([2, 2])) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self.assertNotEqual(res1, res3) self.assertEqual(res1, res3.sub(torch.ones(2, 2))) @inductor_config.patch("fx_graph_cache", True) @inductor_config.patch("fx_graph_remote_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") def test_constant_tensor_device_guards(self): """ Usually, when there are example inputs, the device index of the inputs is sufficient to make sure we don't cache hit with the results from different cuda devices. When the input has no arguments, we still need to have the cuda device index in the cache key. """ @torch.compile def f(): y = torch.tensor([5], device="cuda") return (y,) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) result = f() self.assertEqual(result[0].device, torch.device("cuda:0")) self._clear_dynamo_and_codecache() with torch.cuda._DeviceGuard(1): torch.cuda.set_device(1) result = f() self.assertEqual(result[0].device, torch.device("cuda:1")) @requires_cuda_and_triton @inductor_config.patch("fx_graph_cache", True) @inductor_config.patch("fx_graph_remote_cache", False) @functorch_config.patch({"enable_autograd_cache": True}) def test_multiple_compile_triton_kernels(self): """ When we cache hit on AOTAutogradCache, we need to still clear CompiledTritonKernels after compiling the kernel. """ from torch._inductor.async_compile import CompiledTritonKernels @torch.compile def f(x, y): return x.sin() + y x = torch.randn(10, device="cuda") y = torch.randn(10, device="cuda") with torch.no_grad(): result = f(x, y) self.assertEqual(result, x.sin() + y) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(len(CompiledTritonKernels._cache), 0) self._clear_dynamo_and_codecache() with torch.no_grad(): result = f(x, y) self.assertEqual(result, x.sin() + y) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(len(CompiledTritonKernels._cache), 0) @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"strict_autograd_cache": True}) def test_dynamic_shapes_different_sizes(self): # The forward and backward function have different symint inputs, # but the same underlying symbols def fn(x, y): z = x * y return (torch.cat((x, x), dim=0), z) (x1, y1) = torch.randn(5, requires_grad=True), torch.randn(5) compiled_fn = torch.compile(fn, backend="inductor", dynamic=True) x_compiled, _ = compiled_fn(x1, y1) x_compiled.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self._clear_dynamo_and_codecache() # Run a second time and see it cache hit instead of erroring (x2, y2) = torch.randn(5, requires_grad=True), torch.randn(5) x_compiled, _ = compiled_fn(x2, y2) x_compiled.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) @unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable") @unittest.skipIf(not SM80OrLater, "bfloat16, float8") @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) @functorch_config.patch({"activation_memory_budget": 1.0}) @functorch_config.patch({"activation_memory_budget_runtime_estimator": "testing"}) @functorch_config.patch({"saved_tensors_hooks_filtering_mode": "all"}) def test_saved_tensors_hooks_autograd_cache(self): ctx = torch.autograd.graph.saved_tensors_hooks device = torch.device("cuda:0") def pack_cpu(x): return x.to(device="cpu") def unpack_cpu(x): return x.to(device=device) def pack_cpu2(x): return x.to(device="cpu") def unpack_cpu2(x): return x.to(device=device) def pack_mul2(x): return x * 2 def unpack_mul2(x): return x / 2 # Can not use custom AutogradFunction here, # Cache bypasses AutogradFunction Ctx usage. # Can not save in ctx non floating point dtypes. # For non-symbolic tracing all dtypes and devices and burned in the graph. def fn(x): x = x + 1 x = x.sin().cos() x = x.relu() x = x.exp() x = 2 * x return x backend = "inductor" def inp_fn(): x = torch.ones(2, 3, device=device, requires_grad=True) torch._dynamo.mark_dynamic(x, 0) torch._dynamo.mark_dynamic(x, 1) return x x = inp_fn() fn_compiled = torch.compile(fn, backend=backend, fullgraph=True) y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) with ctx( *saved_tensors_hooks_to_gm( pack_cpu, unpack_cpu, symbolic_tracing=False, inp_fn=inp_fn, pack_cache_hash="cpu_offload", unpack_cache_hash="cpu_offload", ) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) with ctx( *saved_tensors_hooks_to_gm( pack_cpu2, unpack_cpu2, symbolic_tracing=False, inp_fn=inp_fn, pack_cache_hash="cpu_offload", unpack_cache_hash="cpu_offload", ) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) with ctx( *saved_tensors_hooks_to_gm(pack_mul2, unpack_mul2, symbolic_tracing=False) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 3) @unittest.skipIf(not torch.cuda.is_available(), "CUDA is unavailable") @unittest.skipIf(not SM80OrLater, "bfloat16, float8") @inductor_config.patch("fx_graph_remote_cache", False) @inductor_config.patch("fx_graph_cache", True) @functorch_config.patch({"enable_autograd_cache": True}) def test_saved_tensors_hooks_autograd_cache_symbolic(self): def pack_fp8_with_scale(x): return _pack_fp8_with_scale_wrap(x) def unpack_fp8_with_scale(packed): return _unpack_fp8_with_scale_wrap(packed) ctx = torch.autograd.graph.saved_tensors_hooks def fn(x): x = x + 1 # Relu saves bitmask in AutogradContext x = x.relu() x = x.relu() return x device = torch.device("cuda:0") backend = "inductor" def inp_fn(): x = torch.ones(2, 3, device=device, requires_grad=True) torch._dynamo.mark_dynamic(x, 0) torch._dynamo.mark_dynamic(x, 1) return x x = inp_fn() fn_compiled = torch.compile(fn, backend=backend, fullgraph=True) y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) with ctx( *saved_tensors_hooks_to_gm( pack_fp8_with_scale, unpack_fp8_with_scale, "fp8_with_scale_dtype_floating_point", "fp8_with_scale_dtype_floating_point", ) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) with ctx( *saved_tensors_hooks_to_gm( pack_fp8_with_scale, unpack_fp8_with_scale, "fp8_with_scale_dtype_floating_point", "fp8_with_scale_dtype_floating_point", ) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 2) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 2) with ctx( *saved_tensors_hooks_to_gm( pack_fp8_with_scale, unpack_fp8_with_scale, "fp8_with_scale_dtype_floating_point_MISS", "fp8_with_scale_dtype_floating_point_MISS", ) ): x = inp_fn() y = fn_compiled(x) y.sum().backward() self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 3) @functorch_config.patch({"enable_autograd_cache": True}) @inductor_config.patch( { "fx_graph_cache": True, "fx_graph_remote_cache": False, "autotune_local_cache": True, } ) def test_cache_lazy_backward_for_compiled_autograd(self): device = "cpu" dtype = torch.float32 dynamic = True """ Verify that we can populate and hot load functions from the cache. """ if device == GPU_TYPE and not HAS_GPU: raise unittest.SkipTest(f"requires {GPU_TYPE}") if device == "cuda" and dtype == torch.bfloat16 and not SM80OrLater: raise unittest.SkipTest("requires SM80 or later") def fn(x, y): return x.sin() @ y a = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True) b = torch.rand(100, 100, dtype=dtype, device=device, requires_grad=True) # Record artifacts with fresh_cache(): compiled_fn = torch.compile(fn, dynamic=dynamic) # A first call should miss in the cache. eager_result = fn(a, b) expected_grads = torch.autograd.grad(eager_result.sum(), inputs=(a, b)) compiled_result = compiled_fn(a, b) with torch._dynamo.compiled_autograd._enable( torch.compile(dynamic=dynamic) ): actual_grads = torch.autograd.grad(compiled_result.sum(), inputs=(a, b)) if hasattr(a, "_dynamo_weak_dynamic_indices"): del a._dynamo_weak_dynamic_indices self.assertEqual(eager_result, compiled_result) self.assertEqual(expected_grads[0], actual_grads[0]) self.assertEqual(expected_grads[1], actual_grads[1]) if functorch_config.bundled_autograd_cache: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) else: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 3) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) self.assertEqual(counters["inductor"]["fxgraph_lookup_write_file"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1) self.assertEqual(counters["compiled_autograd"]["captures"], 1) artifacts = torch.compiler.save_cache_artifacts() self.assertIsNotNone(artifacts) artifact_bytes, cache_info = artifacts autotune_expect = 2 if device == GPU_TYPE else 0 if functorch_config.bundled_autograd_cache: self.assertEqual(len(cache_info.inductor_artifacts), 0) else: self.assertEqual(len(cache_info.inductor_artifacts), 3) self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect) self.assertEqual(len(cache_info.aot_autograd_artifacts), 1) self.assertEqual(len(cache_info.pgo_artifacts), 0) self._clear_all_caches() # Clean triton kernels shutil.rmtree(os.path.join(cache_dir(), "triton"), ignore_errors=True) # Hot load and hit, should not recompile with fresh_cache(): cache_info = torch.compiler.load_cache_artifacts(artifact_bytes) if functorch_config.bundled_autograd_cache: self.assertEqual(len(cache_info.inductor_artifacts), 0) else: self.assertEqual(len(cache_info.inductor_artifacts), 3) self.assertEqual(len(cache_info.autotune_artifacts), autotune_expect) self.assertEqual(len(cache_info.aot_autograd_artifacts), 1) self.assertEqual(len(cache_info.pgo_artifacts), 0) for i in range(3): counters.clear() eager_result = fn(a, b) expected_grads = torch.autograd.grad(eager_result.sum(), inputs=(a, b)) compiled_result = compiled_fn(a, b) with torch._dynamo.compiled_autograd._enable( torch.compile(dynamic=dynamic) ): actual_grads = torch.autograd.grad( compiled_result.sum(), inputs=(a, b) ) if hasattr(a, "_dynamo_weak_dynamic_indices"): del a._dynamo_weak_dynamic_indices self.assertEqual(eager_result, compiled_result) self.assertEqual(expected_grads[0], actual_grads[0]) self.assertEqual(expected_grads[1], actual_grads[1]) if i == 0: # initial compile if functorch_config.bundled_autograd_cache: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 0) else: self.assertEqual(counters["inductor"]["fxgraph_cache_miss"], 0) self.assertEqual(counters["inductor"]["fxgraph_cache_hit"], 3) self.assertEqual( counters["inductor"]["fxgraph_lookup_write_file"], 3 ) self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 0) self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1) self.assertEqual( counters["aot_autograd"]["autograd_cache_saved"], 0 ) self.assertEqual(counters["compiled_autograd"]["captures"], 1) else: # no recompiles self.assertFalse(counters) @functorch_config.patch({"bundled_autograd_cache": True}) class AOTAutogradCacheBundledTests(AOTAutogradCacheTests): pass @inductor_config.patch("fx_graph_cache", True) class AOTAutogradCachePicklerTests(torch._dynamo.test_case.TestCase): @property def device_type(self) -> str: return "cuda" if torch.cuda.is_available() else "cpu" def default_config(self): return AOTConfig( fw_compiler=None, bw_compiler=None, inference_compiler=None, partition_fn=None, decompositions={}, num_params_buffers=0, aot_id=0, keep_inference_input_mutations=False, dynamic_shapes=True, aot_autograd_arg_pos_to_source=None, is_export=False, no_tangents=False, enable_log=False, precompile_backend_id=None, ) def _get_dynamo_output(self, fn, *args, **kwargs): # Reset dynamo between runs torch._dynamo.reset() fx_graph = None example_inputs = None def compiler(gm, inputs, **kwargs): nonlocal fx_graph nonlocal example_inputs fx_graph = gm example_inputs = inputs return gm g = torch.compile(fn, backend=compiler, fullgraph=True) result = g(*args, **kwargs) return (result, fx_graph, example_inputs) def gen_cache_key(self, f, config, inputs=None): if inputs is None: inputs = [torch.ones(3)] _, fx_g, example_inputs = self._get_dynamo_output(f, *inputs) shape_env = ShapeEnv() ctx = TracingContext(FakeTensorMode(shape_env=shape_env)) # Needs a shape env for FxGraphCache.check_can_cache to pass. # Not needed for actual key calculation. with torch._guards.tracing(ctx): with sanitize_gm_for_cache(fx_g): return autograd_cache_key(fx_g, example_inputs, config, {}) def test_basic_hash_key(self): def fn(x): return x.sin().cos() config = self.default_config() # Check hash is stable on multiple runs c1 = self.gen_cache_key(fn, config) c2 = self.gen_cache_key(fn, config) self.assertEqual(c1, c2) def test_identical_graphs_and_configs(self): def fn(x): return x.sin().cos() def fn2(x): # noqa: F841 y = x.sin() z = y.cos() return z # Make the id different, but otherwise identical config = self.default_config() config2 = self.default_config() config2.aot_id = 1 c1 = self.gen_cache_key(fn, config) c2 = self.gen_cache_key(fn, config2) self.assertEqual(c1, c2) def test_different_graphs(self): def fn(x): return x.cos().sin() def fn2(x): return x.sin().cos() config = self.default_config() c1 = self.gen_cache_key(fn, config) c2 = self.gen_cache_key(fn2, config) self.assertNotEqual(c1, c2) def test_different_configs(self): def fn(x): return x.cos().sin() config = self.default_config() config2 = self.default_config() config2.dynamic_shapes = False c1 = self.gen_cache_key(fn, config) c2 = self.gen_cache_key(fn, config2) self.assertNotEqual(c1, c2) def test_different_inputs(self): def fn(x): return x.cos().sin() config = self.default_config() c1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3)]) c2 = self.gen_cache_key(fn, config, inputs=[torch.ones(2)]) self.assertNotEqual(c1, c2) def test_different_global_configs(self): def fn(x): return x.cos().sin() config = self.default_config() c1 = self.gen_cache_key(fn, config) c2 = self.gen_cache_key(fn, config) self.assertEqual(c1, c2) c1 = self.gen_cache_key(fn, config) # Change functorch config with functorch_config.patch( {"debug_assert": not functorch_config.debug_assert} ): c2 = self.gen_cache_key(fn, config) self.assertNotEqual(c1, c2) c1 = self.gen_cache_key(fn, config) # Change inductor config with inductor_config.patch({"debug": not inductor_config.debug}): c2 = self.gen_cache_key(fn, config) self.assertNotEqual(c1, c2) c1 = self.gen_cache_key(fn, config) # Change torch grad enabled with torch.no_grad(): c2 = self.gen_cache_key(fn, config) self.assertNotEqual(c1, c2) def test_incompatible_function(self): @torch._dynamo.allow_in_graph class AllowInGraphFunc(torch.autograd.Function): @staticmethod def forward(_, x): torch._dynamo.graph_break() return x.sin() def fn(x): return AllowInGraphFunc.apply(x) config = self.default_config() self.assertRaises( BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config) ) def test_private_namespace(self): # TODO: anyone who monkeypatches a **public** function into torch namespace with @allow_in_graph # could still break our sanity check and cache something bad. But that's an edge case we'll take the risk on. # Monkeypatch some random private function into torch, see that it fails @torch._dynamo.allow_in_graph def my_private_fun(x): return x.sin() with patch("torch._my_priv", new=my_private_fun, create=True): def fn(x): return torch._my_priv(x) config = self.default_config() self.assertRaises( BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config) ) @torch._inductor.config.patch({"freezing": True}) def test_freezing(self): def fn(x): return x.cos().sin() config = self.default_config() self.assertRaises( BypassAOTAutogradCache, lambda: self.gen_cache_key(fn, config) ) def test_private_builtin(self): # _foreach_add is a private torch function, but # it's also a builtin_function_or_method, so it should be allowed to be cached # since dynamo allows it in the graph def fn(x, b): y = (x, x) return torch._foreach_add(y, b) config = self.default_config() r1 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 1]) r2 = self.gen_cache_key(fn, config, inputs=[torch.ones(3), 2]) self.assertNotEqual(r1, r2) def test_nn_module_with_params(self): class MyMod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.seq = torch.nn.Parameter(torch.ones((3, 3))) def forward(self, x): return self.seq + x config = self.default_config() # Different inputs and parameters, but all the same size c1 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))]) c2 = self.gen_cache_key(MyMod(), config, inputs=[torch.ones((3, 3))]) self.assertEqual(c1, c2) def test_normal_torch_function(self): @torch._dynamo.allow_in_graph def fn(x): y = torch.sin(x) z = torch.cos(x) w = y + z w.abs() return w config = self.default_config() self.gen_cache_key(fn, config) def test_safe_torchfunction(self): def fn(x): a = x.size() b = torch.Size([3, 3]) c = a == b x = torch.sym_int(9) y = torch.sym_float(x) z = torch.sym_int(torch.sym_sqrt(y)) result = torch.sym_sum([x, y, z]) return (c, result) config = self.default_config() self.gen_cache_key(fn, config, inputs=[torch.ones((3, 3))]) def test_sanitize_gm_for_cache(self): def fn(x): y = torch.sin(x) z = torch.cos(x) w = y + z w.abs() return w _, fx_g, example_inputs = self._get_dynamo_output(fn, torch.ones(3)) ctx = TracingContext(FakeTensorMode(shape_env=ShapeEnv())) with torch._guards.tracing(ctx): fx_g.meta = {"foo": "bar"} fx_g.compile_subgraph_reason = "Blah" config = self.default_config() with sanitize_gm_for_cache(fx_g): c1 = autograd_cache_key(fx_g, example_inputs, config, {}) c3 = autograd_cache_key(fx_g, example_inputs, config, {}) fx_g.meta = {"foo": "baz"} fx_g.compile_subgraph_reason = None with sanitize_gm_for_cache(fx_g): c2 = autograd_cache_key(fx_g, example_inputs, config, {}) c4 = autograd_cache_key(fx_g, example_inputs, config, {}) self.assertEqual(c1, c2) self.assertNotEqual(c3, c4) if __name__ == "__main__": from torch._dynamo.test_case import run_tests run_tests()