import functools import threading import time from abc import ABC, abstractmethod from metrics.MetricsLogger import MetricsLogger from utils import sparse_rpc_format_to_tensor, sparse_tensor_to_rpc_format import torch import torch.distributed.rpc as rpc class ParameterServerBase(ABC): PARAMETER_SERVER_BATCH_METRIC = "parameter_server_batch_metric" PARAMETER_SERVER_STRAGGLER_METRIC = "parameter_server_straggler_metric" PARAM_INDEX_STRAGGLER = "param_index_straggler" PARAM_INDEX_BATCH = "param_index_batch" def __init__(self, rank): r""" Inits ParameterServerBase class. Args: rank (int): worker rank """ self.__metrics_logger = MetricsLogger(rank) @abstractmethod def process_gradient(self): r""" A method to be implemented by child class that will process a gradient received by a server. """ return @staticmethod @abstractmethod def average_gradient(): r""" A method to be implemented by child class that will average gradients. """ return @staticmethod @abstractmethod def reset_state(): r""" A method to be implemented by child class that will reset the server state. """ return def record_start(self, type, key, name, cuda=True): r""" A method that records the start event for a metric. Args: type (str): group id for metric key (str): unique id for metric within a group name (str): description of the metric cuda (bool): indicator to determine if this is a CUDA metric """ self.__metrics_logger.record_start(type, key, name, cuda) def record_end(self, type, key): r""" A method that records the end event for a metric Args: type (str): group id for metric key (str): unique id for metric within a group """ self.__metrics_logger.record_end(type, key) def record_straggler_start(self, key, cuda=True): r""" A helper method that records a straggler metric for the given key. A user should call this when the first gradient for the param location is received. Args: key (str): unique id for metric within a group cuda (bool): indicator to determine if this is a CUDA metric """ self.__metrics_logger.record_start( self.PARAMETER_SERVER_STRAGGLER_METRIC, key, self.PARAM_INDEX_STRAGGLER, cuda, ) def record_straggler_end(self, key): r""" A helper method that records a straggler metric for the given key. A user should call this when the last gradient for the param location is received. Args: key (str): unique id for metric within a group """ self.__metrics_logger.record_end(self.PARAMETER_SERVER_STRAGGLER_METRIC, key) def record_batch_start(self, key, cuda=True): r""" A helper method that records a batch metric for the given key. A user should call this when the first gradient for the param location is received. Args: key (str): unique id for metric within a group cuda (bool): indicator to determine if this is a CUDA metric """ self.__metrics_logger.record_start( self.PARAMETER_SERVER_BATCH_METRIC, key, self.PARAM_INDEX_BATCH, cuda ) def record_batch_end(self, key): r""" A helper method that records a batch metric for the given key. A user should call this when all futures for a param location have had their result set. Args: key (str): unique id for metric within a group """ self.__metrics_logger.record_end(self.PARAMETER_SERVER_BATCH_METRIC, key) @staticmethod def record_method(name, type="method_metric", cuda=True): r""" A decorator that records a metric for the decorated method. Args: name (str): description of the metric type (str): group id for metric cuda (bool): indicator to determine if this is a CUDA metric """ def decorator(function): @functools.wraps(function) def wrapper(self, *args): key = time.time() self.__metrics_logger.record_start(type, key, name, cuda) result = function(self, *args) self.__metrics_logger.record_end(type, key) return result return wrapper return decorator @staticmethod def get_metrics(server_rref): r""" A staticmethod that returns metrics captured by the __metrics_logger. Args: server_rref (RRef): remote reference to the server """ self = server_rref.local_value() return self.__metrics_logger.get_processed_metrics() def clear_metrics(self): r""" A method that clears __metrics_logger recorded metrics. """ return self.__metrics_logger.clear_metrics() class AverageParameterServer(ParameterServerBase): def __init__(self, rank, trainer_count, use_cuda_rpc): r""" A parameter server that averages the gradients from trainers for each training iteration step. Gradients are added as they are received from trainers. When all gradients have been received, the sum is divided by the number of trainers. Args: rank (int): worker rank trainer_count (int): count of trainers sending gradients to the server use_cuda_rpc (bool): indicator for CUDA RPC """ super().__init__(rank) self.lock = threading.Lock() self.rank = rank self.trainer_count = trainer_count self.use_cuda_rpc = use_cuda_rpc self.batch_number = 0 self.futures = {} self.gradient_dict = {} @staticmethod def reset_state(server_rref): r""" A method that clears the state of the server. Args: server_rref (RRef): remote reference to the server """ self = server_rref.local_value() self.batch_number = 0 self.futures.clear() self.gradient_dict.clear() self.clear_metrics() def param_key(self, param_loc): r""" A method that returns an encoded key that represents the current batch and param location. Args: param_loc (int): bucket location sent by the trainer containing the gradient """ return f"{self.batch_number},{param_loc}" def clear_batch_state(self): r""" Clears the current server batch state. """ self.futures.clear() self.gradient_dict.clear() def process_gradient(self, gradient, param_loc): r""" Stores the gradient if param_loc is not in gradient_dict. Adds the gradient to param_loc if it is in gradient_dict. Args: gradient (torch.Tensor): tensor sent from trainer param_loc (int): bucket location sent by the trainer containing the gradient """ if param_loc not in self.gradient_dict: self.record_straggler_start(self.param_key(param_loc)) self.record_batch_start(self.param_key(param_loc)) self.gradient_dict[param_loc] = gradient else: self.gradient_dict[param_loc] += gradient @ParameterServerBase.record_method(name="average computation") def average(self, param_loc): r""" Obtains the tensor at the param_loc in the gradient_dict and then divides by number of trainers. Args: param_loc (int): bucket location sent by the trainer containing the gradient """ param_loc_avg = self.gradient_dict[param_loc] param_loc_avg / (1.0 * self.trainer_count) return param_loc_avg @staticmethod @rpc.functions.async_execution def average_gradient(server_rref, received_batch_number, param_loc, gradient): r""" An asynchronous function that will average gradients sent from trainers. Args: server_rref (RRef): remote reference to the server received_batch_number (int): batch number sent by the trainer param_loc (int): bucket location sent by the trainer containing the gradient gradient (torch.Tensor or list): tensor sent by the trainer """ self = server_rref.local_value() if type(gradient) is list: gradient = sparse_rpc_format_to_tensor(gradient) gradient = gradient.cuda(self.rank) fut = torch.futures.Future() with self.lock: if self.batch_number < received_batch_number: self.batch_number = received_batch_number self.clear_batch_state() self.process_gradient(gradient, param_loc) if param_loc not in self.futures: self.futures[param_loc] = [] self.futures[param_loc].append(fut) if len(self.futures[param_loc]) == self.trainer_count: self.record_straggler_end(self.param_key(param_loc)) param_loc_avg = self.average(param_loc) if not self.use_cuda_rpc: param_loc_avg = param_loc_avg.cpu() if param_loc_avg.is_sparse: param_loc_avg = sparse_tensor_to_rpc_format(param_loc_avg) for cur_fut in self.futures[param_loc]: cur_fut.set_result(param_loc_avg) self.record_batch_end(self.param_key(param_loc)) return fut class AverageBatchParameterServer(AverageParameterServer): def __init__(self, rank, trainer_count, use_cuda_rpc): r""" A parameter server that averages the gradients from trainers for each training iteration step. Gradients are stored and averaged when a gradient has been received from each trainer for a param location. Args: rank (int): worker rank trainer_count (int): count of trainers sending gradients to the server use_cuda_rpc (bool): indicator for CUDA RPC """ super().__init__(rank, trainer_count, use_cuda_rpc) def process_gradient(self, gradient, param_loc): r""" Adds the gradient to param_loc bucket stored in the gradient_dict. Args: gradient (torch.Tensor): tensor sent from trainer param_loc (int): bucket location sent by the trainer containing the gradient """ if param_loc not in self.gradient_dict: self.record_straggler_start(self.param_key(param_loc)) self.record_batch_start(self.param_key(param_loc)) self.gradient_dict[param_loc] = [] self.gradient_dict[param_loc].append(gradient) @ParameterServerBase.record_method(name="average computation") def average(self, param_loc): r""" Sums the gradients at the param_loc then divides by the number of trainers. Args: param_loc (int): bucket location sent by the trainer containing the gradient """ param_loc_avg = self.gradient_dict[param_loc][0] for gradient in self.gradient_dict[param_loc][1:]: param_loc_avg += gradient param_loc_avg / (1.0 * self.trainer_count) return param_loc_avg