# Owner(s): ["module: tests"] import torch import numpy as np from itertools import product, combinations, permutations, chain from functools import partial import random import warnings from torch._six import nan from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, torch_to_numpy_dtype_dict) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyCPU, onlyCUDA, dtypes, onlyNativeDeviceTypes, dtypesIfCUDA, largeTensorTest) from torch.testing._internal.common_dtype import all_types_and_complex_and, all_types, all_types_and # TODO: replace with make_tensor def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float('nan') x[torch.randn(*shape) > 0.5] = float('inf') x[torch.randn(*shape) > 0.5] = float('-inf') elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex('nan') x[torch.randn(*shape) > 0.5] = complex('inf') x[torch.randn(*shape) > 0.5] = complex('-inf') elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x class TestShapeOps(TestCase): # TODO: update to work on CUDA, too @onlyCPU def test_unbind(self, device): x = torch.rand(2, 3, 4, 5) for dim in range(4): res = torch.unbind(x, dim) res2 = x.unbind(dim) self.assertEqual(x.size(dim), len(res)) self.assertEqual(x.size(dim), len(res2)) for i in range(dim): self.assertEqual(x.select(dim, i), res[i]) self.assertEqual(x.select(dim, i), res2[i]) # TODO: update to work on CUDA, too? @onlyCPU def test_tolist(self, device): list0D = [] tensor0D = torch.tensor(list0D) self.assertEqual(tensor0D.tolist(), list0D) table1D = [1., 2., 3.] tensor1D = torch.tensor(table1D) storage = torch.Storage(table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) self.assertEqual(tensor1D.tolist(), table1D) self.assertEqual(storage.tolist(), table1D) table2D = [[1, 2], [3, 4]] tensor2D = torch.tensor(table2D) self.assertEqual(tensor2D.tolist(), table2D) tensor3D = torch.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensorNonContig = tensor3D.select(1, 1) self.assertFalse(tensorNonContig.is_contiguous()) self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]]) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim_invalid(self, device, dtype): shape = self._rand_shape(4, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, False) for fn in [torch.movedim, torch.moveaxis]: # Invalid `source` and `destination` dimension with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 5, 0) with self.assertRaisesRegex(IndexError, "Dimension out of range"): fn(x, 0, 5) # Mismatch in size of `source` and `destination` with self.assertRaisesRegex(RuntimeError, "movedim: Invalid source or destination dims:"): fn(x, (1, 0), (0, )) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"): fn(x, (0, 0), (0, 1)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `source`"): fn(x, (0, 1, 0), (0, 1, 2)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"): fn(x, (0, 1), (1, 1)) with self.assertRaisesRegex(RuntimeError, "movedim: repeated dim in `destination`"): fn(x, (0, 1, 2), (1, 0, 1)) @dtypes(torch.int64, torch.float, torch.complex128) def test_movedim(self, device, dtype): for fn in [torch.moveaxis, torch.movedim]: for nd in range(5): shape = self._rand_shape(nd, min_size=5, max_size=10) x = _generate_input(shape, dtype, device, with_extremal=False) for random_negative in [True, False]: for src_dim, dst_dim in permutations(range(nd), r=2): random_prob = random.random() if random_negative and random_prob > 0.66: src_dim = src_dim - nd elif random_negative and random_prob > 0.33: dst_dim = dst_dim - nd elif random_negative: src_dim = src_dim - nd dst_dim = dst_dim - nd # Integer `source` and `destination` torch_fn = partial(fn, source=src_dim, destination=dst_dim) np_fn = partial(np.moveaxis, source=src_dim, destination=dst_dim) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) if nd == 0: continue def make_index_negative(sequence, idx): sequence = list(sequence) sequence[random_idx] = sequence[random_idx] - nd return tuple(src_sequence) for src_sequence in permutations(range(nd), r=random.randint(1, nd)): # Sequence `source` and `destination` dst_sequence = tuple(random.sample(range(nd), len(src_sequence))) # Randomly change a dim to a negative dim representation of itself. random_prob = random.random() if random_negative and random_prob > 0.66: random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) elif random_negative and random_prob > 0.33: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) elif random_negative: random_idx = random.randint(0, len(src_sequence) - 1) dst_sequence = make_index_negative(dst_sequence, random_idx) random_idx = random.randint(0, len(src_sequence) - 1) src_sequence = make_index_negative(src_sequence, random_idx) torch_fn = partial(fn, source=src_sequence, destination=dst_sequence) np_fn = partial(np.moveaxis, source=src_sequence, destination=dst_sequence) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) # Move dim to same position x = torch.randn(2, 3, 5, 7, 11) torch_fn = partial(fn, source=(0, 1), destination=(0, 1)) np_fn = partial(np.moveaxis, source=(0, 1), destination=(0, 1)) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) torch_fn = partial(fn, source=1, destination=1) np_fn = partial(np.moveaxis, source=1, destination=1) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) # Empty Sequence torch_fn = partial(fn, source=(), destination=()) np_fn = partial(np.moveaxis, source=(), destination=()) self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None) @dtypes(torch.float, torch.bool) def test_diag(self, device, dtype): if dtype is torch.bool: x = torch.rand(100, 100, device=device) >= 0.5 else: x = torch.rand(100, 100, dtype=dtype, device=device) res1 = torch.diag(x) res2 = torch.tensor((), dtype=dtype, device=device) torch.diag(x, out=res2) self.assertEqual(res1, res2) def test_diagonal(self, device): x = torch.randn((100, 100), device=device) result = torch.diagonal(x) expected = torch.diag(x) self.assertEqual(result, expected) x = torch.randn((100, 100), device=device) result = torch.diagonal(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) @onlyCPU @dtypes(torch.float) def test_diagonal_multidim(self, device, dtype): x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device) xn = x.numpy() for args in [(2, 2, 3), (2,), (-2, 1, 2), (0, -2, -1)]: result = torch.diagonal(x, *args) expected = xn.diagonal(*args) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) # test non-continguous xp = x.permute(1, 2, 3, 0) result = torch.diagonal(xp, 0, -2, -1) expected = xp.numpy().diagonal(0, -2, -1) self.assertEqual(expected.shape, result.shape) self.assertEqual(expected, result) @onlyNativeDeviceTypes @dtypes(*all_types()) @dtypesIfCUDA(*all_types_and(torch.half)) def test_trace(self, device, dtype): def test(shape): tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9) expected_dtype = tensor.sum().dtype expected_dtype = torch_to_numpy_dtype_dict[expected_dtype] result = np.trace(tensor.cpu().numpy(), dtype=expected_dtype) expected = torch.tensor(result, device=device) self.assertEqual(tensor.trace(), expected) shapes = ( [10, 1], [1, 10], [100, 100], [20, 100], [100, 20], ) for shape in shapes: test(shape) def generate_clamp_baseline(self, device, dtype, *, min_vals, max_vals, with_nans): """ Creates a random tensor for a given device and dtype, and computes the expected clamped values given the min_vals and/or max_vals. If with_nans is provided, then some values are randomly set to nan. """ X = torch.rand(100, device=device).mul(50).add(-25) # uniform in [-25, 25] X = X.to(dtype) if with_nans: mask = torch.randint(0, 2, X.shape, dtype=torch.bool, device=device) X[mask] = nan if isinstance(min_vals, torch.Tensor): min_vals = min_vals.cpu().numpy() if isinstance(max_vals, torch.Tensor): max_vals = max_vals.cpu().numpy() # Use NumPy implementation as reference X_clamped = torch.tensor(np.clip(X.cpu().numpy(), a_min=min_vals, a_max=max_vals), device=device) return X, X_clamped # Tests clamp and its alias, clip @dtypes(torch.int64, torch.float32) def test_clamp(self, device, dtype): op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline(device, dtype, min_vals=min_val, max_vals=max_val, with_nans=False) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, Y_actual) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min=min_val, max=max_val, out=Y_out) self.assertEqual(Y_expected, Y_out) def test_clamp_propagates_nans(self, device): op_list = (torch.clamp, torch.Tensor.clamp, torch.Tensor.clamp_, torch.clip, torch.Tensor.clip, torch.Tensor.clip_) # min/max argument product args = product((-10, None), (10, None)) for op in op_list: for min_val, max_val in args: if min_val is None and max_val is None: continue X, Y_expected = self.generate_clamp_baseline(device, torch.float, min_vals=min_val, max_vals=max_val, with_nans=True) Y_expected = torch.isnan(Y_expected) # Test op X1 = X.clone() # So that the in-place ops do not change X Y_actual = op(X1, min_val, max_val) self.assertEqual(Y_expected, torch.isnan(Y_actual)) # Test op-out behavior (out does not exist for method versions) if op in (torch.clamp, torch.clip): Y_out = torch.empty_like(X) op(X, min_val, max_val, out=Y_out) self.assertEqual(Y_expected, torch.isnan(Y_out)) def test_clamp_raises_arg_errors(self, device): X = torch.randn(100, dtype=torch.float, device=device) error_msg = 'At least one of \'min\' or \'max\' must not be None' with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp() with self.assertRaisesRegex(RuntimeError, error_msg): X.clamp_() with self.assertRaisesRegex(RuntimeError, error_msg): torch.clamp(X) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip(self, device, dtype): make_from_data = partial(torch.tensor, device=device, dtype=dtype) make_from_size = partial(make_tensor, device=device, dtype=dtype) def test_flip_impl(input_t, dims, output_t): def all_t(): yield input_t, output_t if dtype is torch.float: # We generate quantized versions as well for qdtype in (torch.quint8, torch.qint8, torch.qint32): qinput_t = torch.quantize_per_tensor(input_t, 0.1, 5, qdtype) qoutput_t = torch.quantize_per_tensor(output_t, 0.1, 5, qdtype) yield qinput_t, qoutput_t for in_t, out_t in all_t(): self.assertEqual(in_t.flip(dims), out_t) n = in_t.ndim if not isinstance(dims, tuple): # Wrap dim self.assertEqual(in_t.flip(-n + dims), out_t) else: # Permute dimensions for p_dims in permutations(dims): self.assertEqual(in_t.flip(p_dims), out_t) if len(p_dims) > 0: # Wrap 1st dim self.assertEqual(in_t.flip((-n + p_dims[0],) + p_dims[1:]), out_t) def gen_data(): # Basic tests data = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2) nonctg = make_from_size((2, 2, 2), noncontiguous=True).copy_(data) dims_result = ((0, make_from_data([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2)), (1, make_from_data([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2)), (2, make_from_data([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2)), ((0, 1), make_from_data([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2)), ((0, 1, 2), make_from_data([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2))) for in_tensor, (dims, out_tensor) in product((data, nonctg), dims_result): yield in_tensor, dims, out_tensor # Expanded in_t = make_from_data([1, 2, 3]).view(3, 1).expand(3, 2) dims = 0 out_t = make_from_data([3, 3, 2, 2, 1, 1]).view(3, 2) yield in_t, dims, out_t # Noop on expanded dimension yield in_t, 1, in_t # Transposed in_t = make_from_data([1, 2, 3, 4, 5, 6, 7, 8]).view(2, 2, 2).transpose(0, 1) dims = (0, 1, 2) out_t = make_from_data([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2) yield in_t, dims, out_t # Rectangular case in_t = make_from_data([1, 2, 3, 4, 5, 6]).view(2, 3) dims = 0 out_t = make_from_data([[4, 5, 6], [1, 2, 3]]) yield in_t, dims, out_t dims = 1 out_t = make_from_data([[3, 2, 1], [6, 5, 4]]) yield in_t, dims, out_t # Noops (edge cases) # Size 0 in_t = make_from_data(()) yield in_t, 0, in_t yield in_t, (), in_t # dims = () in_t = make_from_size((3, 2, 1)) yield in_t, (), in_t # Zero elements, non-zero size in_t = make_from_size((3, 0, 2)) for i in range(in_t.ndim): yield in_t, i, in_t # Size 1 in_t = make_from_size(()) yield in_t, 0, in_t in_t = make_from_size((1,)) yield in_t, 0, in_t for in_tensor, dims, out_tensor in gen_data(): test_flip_impl(in_tensor, dims, out_tensor) # test for shape size = [2, 3, 4] data = make_from_size(size) possible_dims = range(len(size)) test_dims = chain(combinations(possible_dims, 1), combinations(possible_dims, 2)) for dims in test_dims: self.assertEqual(size, list(data.flip(dims).size())) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_errors(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) data = make_arg((2, 2, 2)) # not allow flip on the same dim more than once self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1)) # not allow empty list as input self.assertRaises(TypeError, lambda: data.flip()) # not allow dim > max dim self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3)) self.assertRaises(IndexError, lambda: data.flip(3)) def _rand_shape(self, dim, min_size, max_size): return tuple(torch.randint(min_size, max_size + 1, (dim,))) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_flip_numpy(self, device, dtype): make_arg = partial(make_tensor, dtype=dtype, device=device) for ndim in [3, 4]: shape = self._rand_shape(ndim, 5, 10) data = make_arg(shape) # Axis to sample for given shape. for i in range(1, ndim + 1): # Check all combinations of `i` axis. for flip_dim in combinations(range(ndim), i): torch_fn = partial(torch.flip, dims=flip_dim) np_fn = partial(np.flip, axis=flip_dim) self.compare_with_numpy(torch_fn, np_fn, data) @onlyCUDA # CPU is too slow @largeTensorTest('17GB') # 4 tensors of 4GB (in, out) x (torch, numpy) + 1GB @largeTensorTest("81GB", "cpu") # even for CUDA test, sufficient system memory is required def test_flip_large_tensor(self, device): t_in = torch.empty(2**32 + 1, dtype=torch.uint8).random_() torch_fn = partial(torch.flip, dims=(0,)) np_fn = partial(np.flip, axis=0) self.compare_with_numpy(torch_fn, np_fn, t_in) del t_in def _test_fliplr_flipud(self, torch_fn, np_fn, min_dim, max_dim, device, dtype): for dim in range(min_dim, max_dim + 1): shape = self._rand_shape(dim, 5, 10) # Randomly scale the input if dtype.is_floating_point or dtype.is_complex: data = torch.randn(*shape, device=device, dtype=dtype) else: data = torch.randint(0, 10, shape, device=device, dtype=dtype) self.compare_with_numpy(torch_fn, np_fn, data) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr(self, device, dtype): self._test_fliplr_flipud(torch.fliplr, np.fliplr, 2, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_fliplr_invalid(self, device, dtype): x = torch.randn(42).to(dtype) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(x) with self.assertRaisesRegex(RuntimeError, "Input must be >= 2-d."): torch.fliplr(torch.tensor(42, device=device, dtype=dtype)) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud(self, device, dtype): self._test_fliplr_flipud(torch.flipud, np.flipud, 1, 4, device, dtype) @dtypes(torch.int64, torch.double, torch.cdouble) def test_flipud_invalid(self, device, dtype): with self.assertRaisesRegex(RuntimeError, "Input must be >= 1-d."): torch.flipud(torch.tensor(42, device=device, dtype=dtype)) def test_rot90(self, device): data = torch.arange(1, 5, device=device).view(2, 2) self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1])) self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1])) self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1])) self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1])) # test for default args k=1, dims=[0, 1] self.assertEqual(data.rot90(), data.rot90(1, [0, 1])) # test for reversed order of dims self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0])) # test for modulo of k self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1])) self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1])) self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1])) # test for dims out-of-range error self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2])) # test tensor with more than 2D data = torch.arange(1, 9, device=device).view(2, 2, 2) self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2])) self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2])) # test for errors self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2])) self.assertRaises(RuntimeError, lambda: data.rot90(1, [0])) @dtypes(torch.cfloat, torch.cdouble) def test_complex_rot90(self, device, dtype): shape = self._rand_shape(random.randint(2, 4), 5, 10) for rot_times in range(4): data = torch.randn(*shape, device=device, dtype=dtype) torch_fn = partial(torch.rot90, k=rot_times, dims=[0, 1]) np_fn = partial(np.rot90, k=rot_times, axes=[0, 1]) self.compare_with_numpy(torch_fn, np_fn, data) # TODO: update once warning flag is available to always trigger ONCE warnings # Ensures nonzero does not throw a warning, even when the as_tuple argument # is not provided def test_nonzero_no_warning(self, device): t = torch.randn((2, 2), device=device) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") torch.nonzero(t) t.nonzero() self.assertEqual(len(w), 0) @dtypes(*all_types_and(torch.half, torch.bool, torch.bfloat16)) def test_nonzero(self, device, dtype): shapes = [ torch.Size((12,)), torch.Size((12, 1)), torch.Size((1, 12)), torch.Size((6, 2)), torch.Size((3, 2, 2)), torch.Size((5, 5, 5)), ] def gen_nontrivial_input(shape, dtype, device): if dtype != torch.bfloat16: return torch.randint(2, shape, device=device, dtype=dtype) else: # windows does not work for bfloat16 randing return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype) for shape in shapes: tensor = gen_nontrivial_input(shape, dtype, device) dst1 = torch.nonzero(tensor, as_tuple=False) dst2 = tensor.nonzero(as_tuple=False) dst3 = torch.empty([], dtype=torch.long, device=device) torch.nonzero(tensor, out=dst3) if self.device_type != 'xla': # xla does not raise runtime error self.assertRaisesRegex( RuntimeError, "scalar type Long", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.float, device=device)) ) if self.device_type == 'cuda': self.assertRaisesRegex( RuntimeError, "on the same device", lambda: torch.nonzero(tensor, out=torch.empty([], dtype=torch.long)) ) np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) tup1 = torch.nonzero(tensor, as_tuple=True) tup2 = tensor.nonzero(as_tuple=True) tup1 = torch.stack(tup1).t().cpu() tup2 = torch.stack(tup2).t().cpu() self.assertEqual(tup1, np_result, atol=0, rtol=0) self.assertEqual(tup2, np_result, atol=0, rtol=0) def test_nonzero_astuple_out(self, device): t = torch.randn((3, 3, 3), device=device) out = torch.empty_like(t, dtype=torch.long) with self.assertRaises(RuntimeError): torch.nonzero(t, as_tuple=True, out=out) self.assertEqual(torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out)) # Verifies that JIT script cannot handle the as_tuple kwarg # See Issue https://github.com/pytorch/pytorch/issues/45499. def _foo(t): tuple_result = torch.nonzero(t, as_tuple=True) nontuple_result = torch.nonzero(t, as_tuple=False) out = torch.empty_like(nontuple_result) torch.nonzero(t, as_tuple=False, out=out) return tuple_result, nontuple_result, out with self.assertRaises(RuntimeError): scripted_foo = torch.jit.script(_foo) # Verifies that JIT tracing works fine traced_foo = torch.jit.trace(_foo, t) traced_tuple, traced_nontuple, traced_out = traced_foo(t) expected_tuple = torch.nonzero(t, as_tuple=True) expected_nontuple = torch.nonzero(t) self.assertEqual(traced_tuple, expected_tuple) self.assertEqual(traced_nontuple, expected_nontuple) self.assertEqual(traced_out, expected_nontuple) @onlyNativeDeviceTypes def test_nonzero_discontiguous(self, device): shape = (4, 4) tensor = torch.randint(2, shape, device=device) tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_(tensor) dst1 = tensor.nonzero(as_tuple=False) dst2 = tensor_nc.nonzero(as_tuple=False) self.assertEqual(dst1, dst2, atol=0, rtol=0) dst3 = torch.empty_like(dst1) data_ptr = dst3.data_ptr() # expect dst3 storage to be reused torch.nonzero(tensor, out=dst3) self.assertEqual(data_ptr, dst3.data_ptr()) self.assertEqual(dst1, dst3, atol=0, rtol=0) # discontiguous out dst4 = torch.empty(dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device)[:, ::2] data_ptr = dst4.data_ptr() strides = dst4.stride() torch.nonzero(tensor, out=dst4) self.assertEqual(data_ptr, dst4.data_ptr()) self.assertEqual(dst1, dst4, atol=0, rtol=0) self.assertEqual(strides, dst4.stride()) def test_nonzero_non_diff(self, device): x = torch.randn(10, requires_grad=True) nz = x.nonzero() self.assertFalse(nz.requires_grad) instantiate_device_type_tests(TestShapeOps, globals()) if __name__ == '__main__': run_tests()