import os import unittest import torch.testing._internal.common_utils as common from torch.testing._internal.common_utils import IS_WINDOWS from torch.testing._internal.common_cuda import TEST_CUDA import torch import torch.backends.cudnn import torch.utils.cpp_extension import pytest # TODO: Rewrite these tests so that they can be collected via pytest without # using run_test.py try: cpp_extension = pytest.importorskip("torch_test_cpp_extension.cpp") msnpu_extension = pytest.importorskip("torch_test_cpp_extension.msnpu") rng_extension = pytest.importorskip("torch_test_cpp_extension.rng") except ImportError as e: raise RuntimeError( "test_cpp_extensions_aot.py cannot be invoked directly. Run " "`python run_test.py -i test_cpp_extensions_aot_ninja` instead." ) from e class TestCppExtensionAOT(common.TestCase): """Tests ahead-of-time cpp extensions NOTE: run_test.py's test_cpp_extensions_aot_ninja target also runs this test case, but with ninja enabled. If you are debugging a test failure here from the CI, check the logs for which target (test_cpp_extensions_aot_no_ninja vs test_cpp_extensions_aot_ninja) failed. """ def test_extension_function(self): x = torch.randn(4, 4) y = torch.randn(4, 4) z = cpp_extension.sigmoid_add(x, y) self.assertEqual(z, x.sigmoid() + y.sigmoid()) def test_extension_module(self): mm = cpp_extension.MatrixMultiplier(4, 8) weights = torch.rand(8, 4, dtype=torch.double) expected = mm.get().mm(weights) result = mm.forward(weights) self.assertEqual(expected, result) def test_backward(self): mm = cpp_extension.MatrixMultiplier(4, 8) weights = torch.rand(8, 4, dtype=torch.double, requires_grad=True) result = mm.forward(weights) result.sum().backward() tensor = mm.get() expected_weights_grad = tensor.t().mm(torch.ones([4, 4], dtype=torch.double)) self.assertEqual(weights.grad, expected_weights_grad) expected_tensor_grad = torch.ones([4, 4], dtype=torch.double).mm(weights.t()) self.assertEqual(tensor.grad, expected_tensor_grad) @unittest.skipIf(not TEST_CUDA, "CUDA not found") def test_cuda_extension(self): import torch_test_cpp_extension.cuda as cuda_extension x = torch.zeros(100, device="cuda", dtype=torch.float32) y = torch.zeros(100, device="cuda", dtype=torch.float32) z = cuda_extension.sigmoid_add(x, y).cpu() # 2 * sigmoid(0) = 2 * 0.5 = 1 self.assertEqual(z, torch.ones_like(z)) @unittest.skipIf(IS_WINDOWS, "Not available on Windows") def test_no_python_abi_suffix_sets_the_correct_library_name(self): # For this test, run_test.py will call `python setup.py install` in the # cpp_extensions/no_python_abi_suffix_test folder, where the # `BuildExtension` class has a `no_python_abi_suffix` option set to # `True`. This *should* mean that on Python 3, the produced shared # library does not have an ABI suffix like # "cpython-37m-x86_64-linux-gnu" before the library suffix, e.g. "so". root = os.path.join("cpp_extensions", "no_python_abi_suffix_test", "build") matches = [f for _, _, fs in os.walk(root) for f in fs if f.endswith("so")] self.assertEqual(len(matches), 1, msg=str(matches)) self.assertEqual(matches[0], "no_python_abi_suffix_test.so", msg=str(matches)) def test_optional(self): has_value = cpp_extension.function_taking_optional(torch.ones(5)) self.assertTrue(has_value) has_value = cpp_extension.function_taking_optional(None) self.assertFalse(has_value) class TestMSNPUTensor(common.TestCase): def test_unregistered(self): a = torch.arange(0, 10, device='cpu') with self.assertRaisesRegex(RuntimeError, "Could not run"): b = torch.arange(0, 10, device='msnpu') def test_zeros(self): a = torch.empty(5, 5, device='cpu') self.assertEqual(a.device, torch.device('cpu')) b = torch.empty(5, 5, device='msnpu') self.assertEqual(b.device, torch.device('msnpu', 0)) self.assertEqual(msnpu_extension.get_test_int(), 0) self.assertEqual(torch.get_default_dtype(), b.dtype) c = torch.empty((5, 5), dtype=torch.int64, device='msnpu') self.assertEqual(msnpu_extension.get_test_int(), 0) self.assertEqual(torch.int64, c.dtype) def test_add(self): a = torch.empty(5, 5, device='msnpu', requires_grad=True) self.assertEqual(msnpu_extension.get_test_int(), 0) b = torch.empty(5, 5, device='msnpu') self.assertEqual(msnpu_extension.get_test_int(), 0) c = a + b self.assertEqual(msnpu_extension.get_test_int(), 1) def test_conv_backend_override(self): # To simplify tests, we use 4d input here to avoid doing view4d( which # needs more overrides) in _convolution. input = torch.empty(2, 4, 10, 2, device='msnpu', requires_grad=True) weight = torch.empty(6, 4, 2, 2, device='msnpu', requires_grad=True) bias = torch.empty(6, device='msnpu') # Make sure forward is overriden out = torch.nn.functional.conv1d(input, weight, bias, 2, 0, 1, 1) self.assertEqual(msnpu_extension.get_test_int(), 2) self.assertEqual(out.shape[0], input.shape[0]) self.assertEqual(out.shape[1], weight.shape[0]) # Make sure backward is overriden # Double backward is dispatched to _convolution_double_backward. # It is not tested here as it involves more computation/overrides. grad = torch.autograd.grad(out, input, out, create_graph=True) self.assertEqual(msnpu_extension.get_test_int(), 3) self.assertEqual(grad[0].shape, input.shape) class TestRNGExtension(common.TestCase): def setUp(self): super(TestRNGExtension, self).setUp() def test_rng(self): fourty_two = torch.full((10,), 42, dtype=torch.int64) t = torch.empty(10, dtype=torch.int64).random_() self.assertNotEqual(t, fourty_two) gen = torch.Generator(device='cpu') t = torch.empty(10, dtype=torch.int64).random_(generator=gen) self.assertNotEqual(t, fourty_two) self.assertEqual(rng_extension.getInstanceCount(), 0) gen = rng_extension.createTestCPUGenerator(42) self.assertEqual(rng_extension.getInstanceCount(), 1) copy = gen self.assertEqual(rng_extension.getInstanceCount(), 1) self.assertEqual(gen, copy) copy2 = rng_extension.identity(copy) self.assertEqual(rng_extension.getInstanceCount(), 1) self.assertEqual(gen, copy2) t = torch.empty(10, dtype=torch.int64).random_(generator=gen) self.assertEqual(rng_extension.getInstanceCount(), 1) self.assertEqual(t, fourty_two) del gen self.assertEqual(rng_extension.getInstanceCount(), 1) del copy self.assertEqual(rng_extension.getInstanceCount(), 1) del copy2 self.assertEqual(rng_extension.getInstanceCount(), 0) @unittest.skipIf(not TEST_CUDA, "CUDA not found") @unittest.skipIf(IS_WINDOWS, "MSVC have bug compiling this") class TestTorchLibrary(common.TestCase): def test_torch_library(self): import torch_test_cpp_extension.torch_library # noqa: F401 def f(a: bool, b: bool): return torch.ops.torch_library.logical_and(a, b) self.assertTrue(f(True, True)) self.assertFalse(f(True, False)) self.assertFalse(f(False, True)) self.assertFalse(f(False, False)) s = torch.jit.script(f) self.assertTrue(s(True, True)) self.assertFalse(s(True, False)) self.assertFalse(s(False, True)) self.assertFalse(s(False, False)) self.assertIn('torch_library::logical_and', str(s.graph)) if __name__ == "__main__": common.run_tests()