import torch from torch.fx import GraphModule # type: ignore from torch.fx import symbolic_trace # type: ignore from torch.fx.symbolic_trace import Tracer # type: ignore from .custom_module_class_mappings import ( register_observed_custom_module_mapping, register_quantized_custom_module_mapping, ) from .fx import Fuser # noqa: F401 from .fx import Quantizer # noqa: F401 from .fx.utils import graph_pretty_str # noqa: F401 def _check_is_graph_module(model): if not isinstance(model, GraphModule): raise ValueError( 'input model must be a GraphModule, ' + 'Got type:' + str(type(model)) + ' Please make ' + 'sure to follow the tutorials.') def _register_custom_module_class(custom_module_config): for custom, observed, quantized in custom_module_config: register_observed_custom_module_mapping(custom, observed) register_quantized_custom_module_mapping(custom, quantized) def _fuse_fx(graph_module, inplace=False): r""" Internal helper function to fuse modules in preparation for quantization Args: graph_module: GraphModule object from symbolic tracing (torch.fx.symbolic_trace) """ _check_is_graph_module(graph_module) fuser = Fuser() return fuser.fuse(graph_module, inplace) class CustomTracer(Tracer): def __init__(self, standalone_modules, custom_module_classes): super().__init__() self.standalone_modules = standalone_modules self.custom_module_classes = custom_module_classes def is_leaf_module(self, m, module_qualified_name): return (m.__module__.startswith('torch.nn') and not isinstance(m, torch.nn.Sequential)) or \ module_qualified_name in self.standalone_modules or \ type(m) in self.custom_module_classes def _prepare_fx(model, qconfig_dict, inplace, prepare_custom_config_dict=None, is_standalone_module=False): r""" Internal helper function for prepare_fx Args: `model`, `qconfig_dict`, `inplace` `prepare_custom_config_dict`: see docs for :func:`~torch.quantization.prepare_fx` `is_standalone_module`: a boolean flag indicates whether we are quantizing a standalone module or not, a standalone module is a submodule of the parent module that is not inlined in the forward graph of the parent module, the way we quantize standalone module is described in: :func:`~torch.quantization._prepare_standalone_module_fx` """ if prepare_custom_config_dict is None: prepare_custom_config_dict = {} # symbolically trace the model if is_standalone_module: # standlone module is traced before quantizing standalone modules graph_module = symbolic_trace(model) else: standalone_modules = prepare_custom_config_dict.get('standalone_module_name', []) custom_module_config = qconfig_dict.get('custom_module_class', []) custom_module_classes = [config[0] for config in custom_module_config] # TODO: currently we are registering classes globally, # we want to make custom module class mapping local _register_custom_module_class(custom_module_config) # skipping tracing standalone modules when tracing top level module tracer = CustomTracer(standalone_modules, custom_module_classes) graph_module = GraphModule(model, tracer.trace(model)) graph_module = _fuse_fx(graph_module, inplace) quantizer = Quantizer() return quantizer.prepare( graph_module, qconfig_dict, inplace=True, prepare_custom_config_dict=prepare_custom_config_dict, is_standalone_module=is_standalone_module) def _prepare_standalone_module_fx(model, qconfig_dict, inplace=False, prepare_custom_config_dict=None): r""" [Internal use only] Prepare a standalone module, so that it can be used when quantizing the parent module. standalone_module means it a submodule that is not inlined in parent module, and will be quantized separately as one unit. input of the module is quantized in parent module, output of the module is quantized in the standalone module. Extra attributes in output GraphModule while preparing a standalone module: _standalone_module_observed_input_idxs(List[Int]): a list of indexs for the graph inputs that needs to be observed in parent module _output_is_observed(Bool): a boolean variable indicate whether the output of the custom module is observed or not """ torch._C._log_api_usage_once("quantization_api.quantize_fx._prepare_standalone_module_fx") return _prepare_fx(model, qconfig_dict, inplace, prepare_custom_config_dict, is_standalone_module=True) def fuse_fx(model, inplace=False): r""" Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode. Fusion rules are defined in torch.quantization.fx.fusion_pattern.py Args: `model`: a torch.nn.Module model `inplace`: flag for whether we fuse modules inplace or out of place Example: ```python from torch.quantization import fuse_fx m = Model().eval() m = fuse_fx(m) ``` """ torch._C._log_api_usage_once("quantization_api.quantize_fx.fuse_fx") assert not model.training, 'fuse_fx only works on models in eval mode' graph_module = torch.fx.symbolic_trace(model) return _fuse_fx(graph_module, inplace) def prepare_fx(model, qconfig_dict, inplace=False, prepare_custom_config_dict=None): r""" Prepare a model for post training static quantization Args: `model`: torch.nn.Module model, must be in eval mode `qconfig_dict`: qconfig_dict is a dictionary with the following configurations: qconfig_dict = { # optional, global config "": qconfig?, # optional, used for module and function types # could also be split into module_types and function_types if we prefer "object_type": [ (torch.nn.Conv2d, qconfig?), (torch.nn.functional.add, qconfig?), ..., ], # optional, used for module names "module_name": [ ("foo.bar", qconfig?) ..., ], # optional, matched in order, first match takes precedence "module_name_regex": [ ("foo.*bar.*conv[0-9]+", qconfig?) ..., ], # priority (in increasing order): global, object_type, module_name_regex, module_name # qconfig == None means fusion and quantization should be skipped for anything # matching the rule # optional: specify the custom module class and provide the corresponding # observed and quantized custom module classes "custom_module_class": [ (CustomModuleClass, ObservedCustomModuleClass, QuantizedCustomModuleClass) ] } `inplace`: flag for carry out model transformations in-place, the original module is mutated `prepare_custom_config_dict`: customization configuration dictionary for quantization tool: prepare_custom_config_dict = { # optional: specify the path for standalone modules # These modules are symbolically traced and quantized as one unit "standalone_module_name": [ "submodule.standalone" ] } Return: A GraphModule with observer (configured by qconfig_dict), ready for calibration Example: ```python import torch from torch.quantization import get_default_qconfig from torch.quantization import prepare_fx float_model.eval() graph_module = torch.fx.symbolic_trace(float_model) qconfig = get_default_qconfig('fbgemm') def calibrate(model, data_loader): model.eval() with torch.no_grad(): for image, target in data_loader: model(image) qconfig_dict = {"": qconfig} prepared_model = prepare_fx(graph_module, qconfig_dict) # Run calibration calibrate(prepared_model, sample_inference_data) ``` """ torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_fx") assert not model.training, 'prepare_fx only works for models in' + \ 'eval mode' return _prepare_fx(model, qconfig_dict, inplace, prepare_custom_config_dict) def prepare_qat_fx(model, qconfig_dict, inplace=False, prepare_custom_config_dict=None): r""" Prepare a model for quantization aware training Args: `model`: torch.nn.Module model, must be in train mode `qconfig_dict`: see :func:`~torch.quantization.prepare_fx` `inplace`: flag for carry out model transformations in-place, the original module is mutated `prepare_custom_config_dict`: see :func:`~torch.quantization.prepare_fx` Return: A GraphModule with fake quant modules (configured by qconfig_dict), ready for quantization aware training Example: ```python import torch from torch.quantization import get_default_qat_qconfig from torch.quantization import prepare_fx qconfig = get_default_qat_qconfig('fbgemm') def train_loop(model, train_data): model.train() for image, target in data_loader: ... float_model.train() qconfig_dict = {"": qconfig} prepared_model = prepare_fx(float_model, qconfig_dict) # Run calibration train_loop(prepared_model, train_loop) ``` """ torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_qat_fx") assert model.training, 'prepare_qat_fx only works for models in ' + \ 'train mode' return _prepare_fx(model, qconfig_dict, inplace, prepare_custom_config_dict) def _convert_fx(graph_module, inplace, debug, convert_custom_config_dict=None, is_standalone_module=False): """ `is_standalone_module`: see docs in :func:`~torch.quantization.prepare_standalone_module_fx` """ _check_is_graph_module(graph_module) quantizer = Quantizer() return quantizer.convert(graph_module, inplace, debug, convert_custom_config_dict, is_standalone_module) def convert_fx(graph_module, inplace=False, debug=False, convert_custom_config_dict=None): r""" Convert a calibrated or trained model to a quantized model Args: `graph_module`: A prepared and calibrated/trained model (GraphModule) `inplace`: flag for carry out model transformations in-place, the original module is mutated `debug`: flag for producing a debug friendly model (preserve weight attribute) `convert_custom_config_dict`: dictionary for custom configurations for convert function: convert_custom_config_dict = { } Return: A quantized model (GraphModule) Example: ```python # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training quantized_model = convert_fx(prepared_model) ``` """ torch._C._log_api_usage_once("quantization_api.quantize_fx.convert_fx") return _convert_fx(graph_module, inplace, debug, convert_custom_config_dict) def _convert_standalone_module_fx(graph_module, inplace=False, debug=False, convert_custom_config_dict=None): r""" [Internal use only] Convert a model produced by :func:`~torch.quantization.prepare_standalone_module_fx` and convert it to a quantized model The inputs will be quantized by parent module, checks `_standalone_module_observed_input_idxs` of input model and will treat these inputs as quantized also will not dequantize the final output Return: A quantized standalone module which accepts quantized input(if needed) and produces quantized output (if needed). """ torch._C._log_api_usage_once("quantization_api.quantize_fx._convert_standalone_module_fx") return _convert_fx(graph_module, inplace, debug, convert_custom_config_dict, is_standalone_module=True)