# Owner(s): ["module: __torch_dispatch__"] import tempfile import torch from copy import deepcopy from torch.library import Library from torch.cuda.jiterator import _create_jit_fn import unittest from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, IS_WINDOWS from torch.utils._mode_utils import no_dispatch, find_outermost_mode, all_same_mode, all_same_mode_scope from torch.testing._internal.logging_tensor import LoggingTensor, LoggingTensorReentrant, LoggingTensorMode, \ log_input, capture_logs, capture_logs_with_logging_tensor_mode from torch.utils._pytree import tree_map from torch.utils._python_dispatch import enable_torch_dispatch_mode, push_torch_dispatch_mode, TorchDispatchMode import logging from functools import partial class TestPythonRegistration(TestCase): def test_override_aten_ops_with_multiple_libraries(self) -> None: x = torch.tensor([1, 2]) my_lib1 = Library("aten", "IMPL") my_lib2 = Library("aten", "IMPL") # Example 1 def my_neg(*args, **kwargs): return args[0]._neg_view() # Now we are secretly making the operator a view op so autograd needs to know how # to handle it my_lib1.impl('neg', my_neg, "AutogradCPU") self.assertTrue(torch.neg(x).is_neg()) # RuntimeError: impl("aten::neg", ...): # Explicitly provided namespace (aten) in operator name does not match ... with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"): my_lib3 = Library("foo", "DEF") my_lib3.define("neg(Tensor self) -> Tensor") my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU") del my_lib3 # Example 2 def my_mul(*args, **kwargs): return torch.zeros_like(args[0]) # torch.ops.aten.mul.Tensor my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor") y = torch._efficientzerotensor(2) self.assertFalse(torch.mul(x, y)._is_zerotensor()) # Assert that a user can't override the behavior of a (ns, op, dispatch_key) # combination if someone overrided the behavior for the same before them with self.assertRaisesRegex(RuntimeError, 'already a kernel registered from python'): my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor") del my_lib1 # Validate that lib2 is not affected by removing lib1 self.assertFalse(torch.mul(x, y)._is_zerotensor()) del my_lib2 # Validate that the old behavior is restored for neg and mul self.assertFalse(torch.neg(x).is_neg()) self.assertTrue(torch.mul(x, y)._is_zerotensor()) def test_error_if_fn_not_callable(self): with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"): my_lib = Library("aten", "IMPL") my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU") def test_override_cpu_sum(self) -> None: # Example 1 run = [False] def my_sum(*args, **kwargs): run[0] = True return args[0] my_lib1 = Library("aten", "IMPL") my_lib1.impl('aten::sum', my_sum, "CPU") x = torch.tensor([1, 2]) self.assertEqual(torch.sum(x), x) self.assertTrue(run[0]) del my_lib1 # Validate that the old behavior is restored for sum self.assertEqual(torch.sum(x), torch.tensor(3)) def test_override_cuda_with_jiterator(self) -> None: def override_where_cuda() -> None: # Example 1: Invert the behavior of where's condition input not_where_code_string = ''' template T inverted_where(bool cond, T a, T b){ return !cond ? a : b; } ''' jitted_where = _create_jit_fn(not_where_code_string) CALLED = [False] def inverted_where(*args, **kwargs): CALLED[0] = True return jitted_where(*args, **kwargs) # overriding where's cuda kernel with Jiterator generated kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::where.self', inverted_where, "CUDA") device = 'cuda' cond = torch.tensor([True, True, False], device=device, dtype=torch.bool) x = torch.tensor([1, 2, 3], device=device) y = torch.tensor([-1, -2, -3], device=device) self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3])) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3])) def override_gelu_cuda() -> None: # Example 2: Use relu to approximate gelu for faster compute fastest_gelu_code_string = ''' template T fast_gelu(T a){ return a > 0 ? a : 0; } ''' jitted_gelu = _create_jit_fn(fastest_gelu_code_string) CALLED = [False] def fast_gelu(*args, **kwargs): CALLED[0] = True return jitted_gelu(*args, **kwargs) # overriding gelu's cuda kernel with Jiterator generated relu kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::gelu', fast_gelu, "CUDA") x = torch.rand([3, 3], device='cuda', dtype=torch.float) self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) def override_exp_cuda() -> None: # Example 3: Preventing exp from exploding for float16 clipped_exp_code_string = ''' template T clipped_exp(T a){ return a > T(10.0) ? T(22026.4657948) : exp(a); } ''' jitted_exp = _create_jit_fn(clipped_exp_code_string) CALLED = [False] def clipped_exp(*args, **kwargs): CALLED[0] = True return jitted_exp(*args, **kwargs) # overriding exp's cuda kernel with clipped_exp kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::exp', clipped_exp, "CUDA") x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16) self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16)) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16)) def override_add_cuda() -> None: # Example 4: simulate a hardware bug, where the adder is always off by 1 buggy_add_code_string = ''' template T buggy_add(T a, T b){ return a + b + T(1); } ''' jitted_add = _create_jit_fn(buggy_add_code_string) CALLED = [False] def buggy_add(*args, **kwargs): CALLED[0] = True return jitted_add(*args, **kwargs) my_lib = Library("aten", "IMPL") my_lib.impl('aten::add.Tensor', buggy_add, "CUDA") x_cpu = torch.rand([3, 3], device='cpu') y_cpu = torch.rand([3], device='cpu') x_cuda = x_cpu.cuda() y_cuda = y_cpu.cuda() self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu) if torch.cuda.is_available() and not TEST_WITH_ROCM: override_where_cuda() override_gelu_cuda() override_exp_cuda() override_add_cuda() def test_extend_library_with_dispatch_key_arg(self): def my_sum(*args, **kwargs): return args[0] my_lib1 = Library("aten", "IMPL", dispatch_key="CPU") # RuntimeError: Explicitly provided dispatch key (Conjugate) is # inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"): my_lib1.impl('sum', my_sum, "Conjugate") my_lib1.impl('aten::sum', my_sum) x = torch.tensor([1, 2]) self.assertEqual(torch.sum(x), x) del my_lib1 def test_create_new_library(self) -> None: my_lib1 = Library("foo", "DEF") my_lib1.define("sum(Tensor self) -> Tensor") # Example 1 @torch.library.impl(my_lib1, "sum", "CPU") def my_sum(*args, **kwargs): return args[0] x = torch.tensor([1, 2]) self.assertEqual(torch.ops.foo.sum(x), x) my_lib2 = Library("foo", "IMPL") # Example 2 @torch.library.impl(my_lib2, torch.ops.foo.sum.default, "ZeroTensor") def my_sum_zt(*args, **kwargs): if args[0]._is_zerotensor(): return torch._efficientzerotensor(args[0].shape) else: return args[0] y = torch._efficientzerotensor(3) self.assertTrue(torch.ops.foo.sum(y)._is_zerotensor()) self.assertEqual(torch.ops.foo.sum(x), x) del my_lib2 del my_lib1 @unittest.skipIf(IS_WINDOWS, "Skipped under Windows") def test_alias_analysis(self): def test_helper(alias_analysis=""): my_lib1 = Library("foo", "DEF") called = [0] @torch.library.define(my_lib1, "_op() -> None", alias_analysis=alias_analysis) def _op(*args, **kwargs): called[0] += 1 @torch.jit.script def _test(): torch.ops.foo._op() assert "foo::_op" in str(_test.graph) with self.assertRaises(AssertionError): test_helper("") # alias_analysis="FROM_SCHEMA" test_helper("CONSERVATIVE") class TestPythonDispatch(TestCase): def test_basic(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) log_input("x", x) y = x * x saved_x = y.grad_fn._saved_self grad_y = LoggingTensor(torch.tensor([1.0])) log_input("grad_y", grad_y) g, = torch.autograd.grad((y,), (x,), (grad_y,)) self.assertEqual(g.elem, torch.tensor([6.0])) with torch.no_grad(): self.assertEqual(saved_x, x) self.assertEqual(saved_x._version, x._version) x.add_(2) self.assertEqual(saved_x, x) # TODO: figure out why broken # self.assertEqual(saved_x._version, x._version) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten.mul.Tensor($0, $0) $2 = input('grad_y') $3 = torch._ops.aten.mul.Tensor($2, $0) $4 = torch._ops.aten.mul.Tensor($2, $0) $5 = torch._ops.aten.add.Tensor($4, $3)''') def test_out(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) y = LoggingTensor(torch.zeros(1)) log_input("x", x) log_input("y", y) torch.abs(x, out=y) self.assertEqual(y.elem, torch.ones(1)) # TODO: arguably this shouldn't pass and we should complain # that out isn't a kwarg self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('y') $2 = torch._ops.aten.abs.out($0, out=$1)''') def test_kwarg_only(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) y = LoggingTensor(torch.ones(1, 1)) z = LoggingTensor(torch.ones(1)) log_input("x", x) log_input("y", y) log_input("z", z) torch.addmv(x, y, z) torch.addmv(x, y, z, beta=1) torch.addmv(x, y, z, beta=2) torch.addmv(x, y, z, alpha=2) torch.addmv(x, y, z, beta=2, alpha=2) # The expectation is that beta/alpha don't show up when they're # defaulted. This is even if the user explicitly specified it. self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('y') $2 = input('z') $3 = torch._ops.aten.addmv.default($0, $1, $2) $4 = torch._ops.aten.addmv.default($0, $1, $2) $5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2) $6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2) $7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''') def test_kwarg_only_and_positional_default(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) y = LoggingTensor(torch.ones(1)) log_input("x", x) log_input("y", y) torch.ops.aten.kl_div(x, y) torch.ops.aten.kl_div(x, y, 2) torch.ops.aten.kl_div(x, y, log_target=True) torch.ops.aten.kl_div(x, y, 2, log_target=True) # What we are testing here is that we omit reduction # if it is defaulted, even if a kwarg is set self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('y') $2 = torch._ops.aten.kl_div.default($0, $1) $3 = torch._ops.aten.kl_div.default($0, $1, 2) $4 = torch._ops.aten.kl_div.default($0, $1, log_target=True) $5 = torch._ops.aten.kl_div.default($0, $1, 2, log_target=True)''') def test_produce_real_type(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(2, 2)) log_input("x", x) x.to(dtype=torch.double) # non-optional dtype torch.cumprod(x, 0, dtype=torch.double) # optional dtype x[:, 1].contiguous(memory_format=torch.contiguous_format) # optional memory format # There doesn't appear to be any layout signatures which are # triggerable using tensor subclasses (need to use a mode) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten._to_copy.default($0, dtype=torch.float64) $2 = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64) $3 = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807) $4 = torch._ops.aten.select.int($3, 1, 1) $5 = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)''') def test_list_ret(self) -> None: # test all sequence types are permissible returns for list_type in (list, tuple): class A(torch._C._TensorBase): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): if func.overloadpacket == torch.ops.aten.split: with no_dispatch(): return list_type(torch.split(*args)) else: raise AssertionError(f"unrecognized func: {func}") self.assertEqual( torch.split(A(torch.tensor([0, 1])), 2), torch.split(torch.tensor([0, 1]), 2) ) def test_invalid_ret(self) -> None: # test invalid return gets reasonable error message class A(torch._C._TensorBase): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return "arf" # Wobbles depending on NDEBUG mode of pybind11 self.assertRaisesRegex( RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(), ) self.assertRaisesRegexp( RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(), ) def test_detach_appears_twice_when_called_once(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) log_input("x", x) x.detach() # FIXME: We actually want this to emit a single detach. However, # it currently emits two, for reasons unclear to us. Leaving # this test here to make sure we don't regress even further (it # would be bad if calling .detach() once emits 3+ detaches). self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten.detach.default($0) $2 = torch._ops.aten.detach.default($1)''') def test_metadata_change_not_allowed(self) -> None: x = LoggingTensor(torch.ones(1)) y = x.data self.assertIsInstance(y, LoggingTensor) self.assertRaises(RuntimeError, lambda: y.resize_(4)) def test_storage(self) -> None: # For now, just make sure it doesn't crash. Ideally, we should # return some virtual storage that is safe to work with x = LoggingTensor(torch.ones(1)) self.assertRaises(RuntimeError, lambda: x.storage()) def test_make_wrapper_subclass_noalloc(self) -> None: # This is ludicrously big (8TB) and this should pass because wrapper # subclasses don't allocate torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,)) def test_version(self) -> None: x = LoggingTensor(torch.ones(1)) prev_vc = x._version x.detach().add_(2) cur_vc = x._version self.assertNotEqual(prev_vc, cur_vc) x.data.add_(2) self.assertEqual(cur_vc, x._version) def test_subclass_priority(self) -> None: class ErrorA(RuntimeError): pass class ErrorB(RuntimeError): pass # The big tests for code coverage are test_precedence_semantics in # test_overrides.py; this is just to make sure it is wired up at all # correctly for __torch_dispatch__ class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorA class B(A): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorB self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1)))) def test_format(self) -> None: x = LoggingTensor(torch.ones(1)) s1 = str(x) s2 = repr(x) s3 = f"{x}" self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""") self.assertEqual(s1, s2) self.assertEqual(s1, s3) def test_custom_autograd(self) -> None: escape = [None] class Square(torch.autograd.Function): @staticmethod def forward(ctx, x): y = x ** 2 ctx.save_for_backward(x) return y @staticmethod def backward(ctx, grad_output): assert isinstance(grad_output, LoggingTensor) x, = ctx.saved_tensors assert isinstance(x, LoggingTensor) escape[0] = x return grad_output * 2 * x with capture_logs() as logs: x = LoggingTensor(torch.ones(1), requires_grad=True) log_input("x", x) x.grad = LoggingTensor(torch.zeros(1)) log_input("x.grad", x.grad) y = Square.apply(x) grad_output = LoggingTensor(torch.ones(1)) log_input("grad_output", grad_output) y.backward(grad_output) with torch.no_grad(): self.assertEqual(escape[0], x) self.assertEqual(escape[0]._version, x._version) # TODO: figure out why x.requires_grad = False doesn't # trigger an error for LoggingTensor x.add_(2) self.assertEqual(escape[0], x) # TODO: figure out why this is broken # self.assertEqual(escape[0]._version, x._version) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('x.grad') $2 = torch._ops.aten.pow.Tensor_Scalar($0, 2) $3 = input('grad_output') $4 = torch._ops.aten.mul.Tensor($3, 2) $5 = torch._ops.aten.mul.Tensor($4, $0) $6 = torch._ops.aten.add_.Tensor($1, $5)''') def test_subclass_creation(self): # Make sure these statements runs without error # In particular checking that when internal detach returns # subclasses, these are cleanly overwritten. class Foo(torch.Tensor): pass err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor" with self.assertRaisesRegex(RuntimeError, err_msg): a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2))) with self.assertRaisesRegex(RuntimeError, err_msg): b = LoggingTensor(torch.rand(2)).as_subclass(Foo) with self.assertRaisesRegex(RuntimeError, err_msg): Foo(LoggingTensor(torch.rand(2))) with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"): torch.Tensor._make_wrapper_subclass(Foo, (2, 2)) def test_new_ones(self) -> None: class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return MyTensor(3) self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor) def test_like(self) -> None: class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return MyTensor(3) for f in ["empty", "ones", "rand", "randn", "zeros"]: f_name = f + "_like" self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor) self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor) self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor) def test_make_wrapper_subclass_propagates_metadata(self) -> None: class WrapperTensor(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad, strides=elem.stride(), storage_offset=elem.storage_offset()) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise RuntimeError("NYI") # non-contiguous strides, non-zero storage offset x = torch.randn(4, 6).t().diagonal(offset=2) y = WrapperTensor(x) self.assertEqual(y.size(), x.size()) self.assertEqual(y.stride(), x.stride()) self.assertEqual(y.storage_offset(), x.storage_offset()) def test_wrapper_subclass_serializes(self) -> None: with tempfile.TemporaryFile() as f: x = LoggingTensor(torch.randn(3)) torch.save(x, f) f.seek(0) x_loaded = torch.load(f) self.assertTrue(type(x_loaded) is type(x)) self.assertEqual(x.elem, x_loaded.elem) self.assertFalse(x is x_loaded) def test_deepcopy_wrapper_subclass(self) -> None: x = LoggingTensor(torch.randn(3)) x_copy = deepcopy(x) self.assertTrue(type(x_copy) is type(x)) self.assertEqual(x.elem, x_copy.elem) self.assertFalse(x is x_copy) def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None: class MyWrapperTensor(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad, strides=elem.stride(), storage_offset=elem.storage_offset()) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): if func.overloadpacket.__name__ == "clone": # Return a plain tensor from clone(). return args[0].elem.clone() raise RuntimeError("NYI") # NB: The default Tensor.__torch_function__ implementation called for deepcopy # disables __torch_function__ by the time we get to clone(), so there is no need to # explicitly disable __torch_function__ for this subclass. x = MyWrapperTensor(torch.randn(3)) with self.assertRaisesRegex(RuntimeError, "for which cloning returns another instance of the same subclass"): x_copy = deepcopy(x) def test_deepcopy_non_wrapper_subclass(self) -> None: # Ensure correct error is thrown for common error cases. class SubTensorError1(torch.Tensor): # Default implementation of new_empty() returns a plain tensor. pass class SubTensorError2(torch.Tensor): # new_empty() incorrectly returns a different type (i.e. a plain tensor). def new_empty(self, shape): return torch.Tensor(shape) for error_cls in [SubTensorError1, SubTensorError2]: x = error_cls(3) with self.assertRaisesRegex(RuntimeError, "for which that function returns another instance of the same subclass"): x_copy = deepcopy(x) # Ensure a correctly implemented new_empty() causes deepcopy() to work. class SubTensorSuccess(torch.Tensor): def new_empty(self, shape): return type(self)(shape) x = SubTensorSuccess(3) x_copy = deepcopy(x) self.assertIs(type(x_copy), type(x)) def test_index_put_where_only_index_is_subclass(self) -> None: called_funcs = [] class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad ) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called_funcs.append(func) return MyTensor(torch.tensor(3)) x = torch.randn(3, 3) idxs = (MyTensor(torch.tensor(0)),) v = torch.randn(1) res = x.index_put_(idxs, v) self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default]) def test_enable_torch_dispatch_mode_error(self) -> None: z = LoggingTensor(torch.empty([])) with self.assertRaisesRegex(ValueError, "expected to get TorchDispatchMode, Tensor-like class, or None"): with enable_torch_dispatch_mode(z): pass def test_enable_torch_dispatch_mode_basic(self) -> None: with capture_logs(is_mode=True) as logs: with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): torch.empty([]) self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)""") def test_enable_torch_dispatch_mode_unrelated_tensors(self) -> None: x = torch.randn([]) y = torch.randn([]) with capture_logs(is_mode=True) as logs: with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): x + y self.assertExpectedInline('\n'.join(logs), """\ $2 = torch._ops.aten.add.Tensor($0, $1)""") def test_nested_push_logging_tensor_mode(self): x = torch.randn([]) y = torch.randn([]) with capture_logs(is_mode=True) as logs: with push_torch_dispatch_mode(LoggingTensorMode): with push_torch_dispatch_mode(LoggingTensorMode): torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False) $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2) $3 = torch._ops.aten.add.Tensor($1, $2)""") def test_capture_logs_with_torch_dispatch_mode(self): x = torch.randn([]) y = torch.randn([]) with capture_logs_with_logging_tensor_mode() as logs: torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2)""") x = torch.randn([]) y = torch.randn([]) with capture_logs_with_logging_tensor_mode() as logs1: with capture_logs_with_logging_tensor_mode() as logs2: torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs2), """\ $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False) $0 = torch._ops.aten.empty.memory_format([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2) $3 = torch._ops.aten.add.Tensor($1, $2)""") self.assertEqual(logs1, logs2) def test_enable_torch_dispatch_mode_subclass_priority(self) -> None: class ErrorA(RuntimeError): pass class ErrorB(RuntimeError): pass class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorA class B(A): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorB a = A(torch.empty(1)) b = B(torch.empty(1)) with self.assertRaises(ErrorA): a + a with self.assertRaises(ErrorB): a + b # B has precedence over A due to the subclass relationship yet # modes take precedence over arguments with self.assertRaises(ErrorA): with enable_torch_dispatch_mode(A): b + b with self.assertRaises(ErrorB): with enable_torch_dispatch_mode(B): a + a with self.assertRaises(ErrorB): with enable_torch_dispatch_mode(B): a + b def test_enable_torch_dispatch_mode_respects_no_dispatch(self) -> None: with capture_logs(is_mode=True) as logs1: with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): torch.ones([2, 3]) with no_dispatch(): torch.ones([2, 3]) with capture_logs(is_mode=True) as logs2: with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): torch.ones([2, 3]) self.assertEqual(logs1, logs2) def test_enable_torch_dispatch_mode_instance(self) -> None: class TestMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} return func(*args, **kwargs) x = TestMode() y = torch.tensor([2.]) with enable_torch_dispatch_mode(x): y + y def test_nested_enable_torch_dispatch_mode(self) -> None: class A(LoggingTensorMode): pass with self.assertRaisesRegex(ValueError, "there is already an active mode"): with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): with enable_torch_dispatch_mode(A(inner=None)): pass # For nesting to be a noop, they need to be the same instance with self.assertRaisesRegex(ValueError, "there is already an active mode"): with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): with enable_torch_dispatch_mode(LoggingTensorMode(inner=None)): pass def test_nesting_with_same_enable_torch_dispatch_mode(self) -> None: # "nested" enable_torch_dispatch_modes are allowed if they're the same mode (same instance). # It's the equivalent of a noop, so it will only write once to the log x = torch.tensor([3.]) mode = LoggingTensorMode(inner=None) with capture_logs(is_mode=True) as logs: log_input("x", x) with enable_torch_dispatch_mode(mode): with enable_torch_dispatch_mode(mode): x + x self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten.add.Tensor($0, $0)''') def test_enable_torch_dispatch_mode_ignore_preexisting(self): class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise AssertionError x = torch.tensor([3.]) with capture_logs(is_mode=True) as logs: with enable_torch_dispatch_mode(A(inner=None)): with enable_torch_dispatch_mode(LoggingTensorMode(inner=None), ignore_preexisting=True): x + x self.assertExpectedInline('\n'.join(logs), """\ $1 = torch._ops.aten.add.Tensor($0, $0)""") def test_enable_torch_dispatch_mode_replace(self): class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise AssertionError x = torch.tensor([3.]) outer_mode = A(inner=None) with capture_logs(is_mode=True) as logs: with enable_torch_dispatch_mode(outer_mode): with enable_torch_dispatch_mode(LoggingTensorMode(inner=None), replace=outer_mode): x + x self.assertExpectedInline('\n'.join(logs), """\ $1 = torch._ops.aten.add.Tensor($0, $0)""") def test_exception_handling(self): class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): if func.__name__ == 'randn.default': raise RuntimeError() return cls(torch.zeros(())) with enable_torch_dispatch_mode(A): try: torch.randn(()) except RuntimeError: pass self.assertTrue(isinstance(torch.zeros(()), A)) def test_push_torch_dispatch_mode(self) -> None: class ErrorA(RuntimeError): def __init__(self, msg=None): return super().__init__(msg) class A(TorchDispatchMode): def __init__(self, msg=None): self.msg = msg def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA(self.msg) x = torch.randn(3) with self.assertRaises(ErrorA): with push_torch_dispatch_mode(A): torch.add(x, x) with self.assertRaisesRegex(ErrorA, r"partial constructor"): with push_torch_dispatch_mode(partial(A, "partial constructor")): x + x def test_torch_dispatch_mode_stack(self) -> None: logs = [] class Logger(TorchDispatchMode): def __init__(self, name): self.name = name def __torch_dispatch__(self, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} logs.append(self.name) return func(*args, **kwargs) x = torch.randn(1) with Logger.push("A"): with Logger.push("B"): x + x self.assertEqual(logs, ["B", "A"]) def test_push_mode_instance_errors(self): class A(TorchDispatchMode): pass with self.assertRaisesRegex(ValueError, 'instance of TorchDispatchMode'): with push_torch_dispatch_mode(A()): pass def test_push_mode_returns_unrelated(self): with self.assertRaisesRegex(ValueError, 'return a TorchDispatchMode'): with push_torch_dispatch_mode(lambda *, inner: None): pass def test_ctor_no_inner(self): class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): return torch.zeros([]) with enable_torch_dispatch_mode(A()): x = torch.randn((3, 4)) self.assertEqual(x, torch.zeros([])) def test_with_mode(self): class ErrorA(RuntimeError): pass class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA() with self.assertRaises(ErrorA): with A(): torch.empty([]) def test_with_mode_created_separately(self): class ErrorA(RuntimeError): pass class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA() x = A() with self.assertRaises(ErrorA): with x: torch.empty([]) def test_with_nested_modes(self): class ErrorA(RuntimeError): def __init__(self, msg): return super().__init__(msg) class A(TorchDispatchMode): def __init__(self, msg): self.msg = msg def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA(self.msg) with self.assertRaisesRegex(ErrorA, "layer2"): with A("layer1"): with A("layer2"): torch.empty([]) def test_ctor_in_with_modes(self): class ModeTensor(torch.Tensor): def __new__(cls, elem, mode): r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad) r.elem = elem r.mode = mode return r def __torch_dispatch(self, func, types, args=(), kwargs=None): with self.mode: return func(*args, **kwargs) class Mode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): def unwrap(e): if isinstance(e, ModeTensor): return e.elem else: return e def wrap(t): if isinstance(t, torch.Tensor): return ModeTensor(t, self) else: return t return wrap(func(*tuple(unwrap(a) for a in args), **kwargs)) x = torch.tensor(4.) with Mode(): y = x + x z = y + y self.assertIsInstance(y, ModeTensor) self.assertIsInstance(z, ModeTensor) def test_error_using_same_mode(self): class A(TorchDispatchMode): pass x = A() with x: with self.assertRaisesRegex(RuntimeError, "has already been used as a mode. Please use a fresh version"): with x: pass def test_error_using_class_method_on_mode(self): class A(TorchDispatchMode): @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return func(args, kwargs) x = torch.tensor(5.) with self.assertRaisesRegex(RuntimeError, "should be a normal method not a class method"): with A(): x + x def test_error_with_ancestor(self): x = LoggingTensorMode() with x: pass with self.assertRaisesRegex(RuntimeError, "has already been used as a mode. Please use a fresh version"): with x: pass def test_restore_errors(self): with self.assertRaisesRegex(RuntimeError, "does not have any ancestors. Use the standard version instead"): with LoggingTensorMode().restore(): pass x = LoggingTensorMode() with LoggingTensorMode(): with x: pass with LoggingTensorMode(): # a different mode instance than the one above with self.assertRaisesRegex(RuntimeError, "the current mode is not its ancestor"): with x.restore(): pass def test_restore_ancestor_mode(self): x = LoggingTensorMode() y = LoggingTensorMode() with x: with y: pass z = LoggingTensorMode() with y.restore(): with z: pass with x.restore(): with z.restore(): pass def test_find_outermost_mode(self): self.assertIsNone(find_outermost_mode([None, None])) x = LoggingTensorMode() y = LoggingTensorMode() with x: with y: pass self.assertEqual(find_outermost_mode([x, y]), y) z = LoggingTensorMode() with y.restore(): with z: pass self.assertEqual(find_outermost_mode([z, x]), z) i = LoggingTensorMode() with self.assertRaisesRegex(RuntimeError, "doesn't have ancestors set so the ordering with other modes"): find_outermost_mode([i, x, y, z]) k = LoggingTensorMode() with k: pass with self.assertRaisesRegex(RuntimeError, "don't come from the same scope"): find_outermost_mode([k, x, y, z]) def test_all_same_mode(self): x = LoggingTensorMode() y = LoggingTensorMode() self.assertTrue(all_same_mode([x, x, x])) self.assertFalse(all_same_mode([x, None])) self.assertFalse(all_same_mode([x, y])) def test_all_same_mode_scope(self): x = LoggingTensorMode() y = LoggingTensorMode() z = LoggingTensorMode() with x: with y: pass with x.restore(): with z: pass i = LoggingTensorMode() self.assertTrue(all_same_mode_scope([x, y], y)) self.assertTrue(all_same_mode_scope([x, z], z)) self.assertFalse(all_same_mode_scope([x, y, z], y)) self.assertFalse(all_same_mode_scope([x, y, z], z)) self.assertFalse(all_same_mode_scope([x, y, i], y)) no_ancestor = LoggingTensorMode() self.assertFalse(all_same_mode_scope([x, y, z], no_ancestor)) def test_tolist_numpy_with_torch_dispatch_mode(self) -> None: x = LoggingTensor(torch.tensor([2.0, 3.0])) with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): x.tolist() with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): x.numpy() with self.assertRaises(AssertionError): self.assertEqual(x, None) def test_enable_torch_dispatch_mode_subclass_autograd_device_check(self) -> None: class NonWrapperSubclass(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): # Wrong device here! r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad) # ...the real tensor is held as an element on the tensor. r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e): return e.elem if isinstance(e, NonWrapperSubclass) else e def wrap(e): return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs) return rs x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True)) y = torch.randn(2, requires_grad=True) z = x * y self.assertIsInstance(z, NonWrapperSubclass) z.sum().backward(torch.tensor(1)) self.assertEqual(x.grad, y) self.assertEqual(y.grad, x) def test_none_wrapping(self): # A Tensor subclass that returns None when doing add # See LoggingTensor above for more details on the subclass class SubclassWithNone(torch.Tensor): @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad ) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e): return e.elem if isinstance(e, SubclassWithNone) else e def wrap(e): return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) if func.overloadpacket.__name__ == "add": return None else: return rs x = SubclassWithNone(torch.rand(2)) # Make sure both run without error self.assertIsInstance(x * 2, SubclassWithNone) self.assertIsNone(x + 2) x.requires_grad_() out = x.acos().sum() # The backward of acos does add then rsqrt so here we make sure that the # undefined Tensor generated by the user code is nicely handled. # If acos formula changes in the future, this can be replaced by any other # function that does add then something in the backward in a composite way with self.assertRaisesRegex(RuntimeError, "but got None"): out.backward() def test_storage_can_be_converted_to_python_object(self): s = torch.Storage() z = LoggingTensor(torch.empty([])) z.set_(s) def test_autograd_in_attr(self): # We want the wrapped Tensor to require gradients! true_t = torch.rand(2, requires_grad=True) t = LoggingTensorReentrant(true_t) out = t + 2 self.assertFalse(out.requires_grad) self.assertIsNone(out.grad_fn) self.assertTrue(out.elem.requires_grad) self.assertIsNotNone(out.elem.grad_fn) with self.assertRaisesRegex(RuntimeError, "does not require grad"): out.sum().backward() out.elem.sum().backward() self.assertIsNone(t.grad) self.assertIsNotNone(t.elem.grad) def test_dispatch_super_call(self): called = [] class SubTensor(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) return super().__torch_dispatch__(func, types, args, kwargs) x = torch.randn(2) y = torch.randn(2) self.assertEqual(SubTensor(x) + SubTensor(y), x + y) self.assertEqual(called, [torch.ops.aten.add.Tensor]) def test_dispatch_super_call_list_arg(self): called = [] class SubTensorWithListArg(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) return super().__torch_dispatch__(func, types, list(args), kwargs) x = torch.randn(2) self.assertEqual(SubTensorWithListArg(x).neg(), x.neg()) self.assertEqual(called, [torch.ops.aten.neg.default]) def test_dispatch_super_dont_autograd(self): called = [] class SubTensor(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) # This argument still requires grad because it was passed # through directly... self.assertTrue(args[0].requires_grad) r = super().__torch_dispatch__(func, types, args, kwargs) # But the output better not require grad, because that means # you did autograd again in torch dispatch (oops) self.assertFalse(r.requires_grad) return r x = SubTensor(torch.randn(2, requires_grad=True)) x.neg() self.assertEqual(called, [torch.ops.aten.neg.default]) def test_set_data(self): called = 0 class SubTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): nonlocal called called += 1 return super().__torch_dispatch__(func, types, args, kwargs) x = SubTensor(torch.empty(2)) x.data self.assertEqual(called, 1) x.data = torch.empty(2) self.assertEqual(called, 1) x.data self.assertEqual(called, 2) self.assertIs(type(x), SubTensor) x.set_(torch.empty(2)) self.assertEqual(called, 3) x.data self.assertEqual(called, 4) self.assertIs(type(x), SubTensor) def test_construct_int_tensor(self): class SubTensor(torch.Tensor): pass # should not fail SubTensor(torch.zeros(2, dtype=torch.int)) def test_multiple_ops_subclass(self): # This is a Direct Subclass, don't do that! class MySubclass(torch.Tensor): @staticmethod def __new__(cls, elem): r = torch.Tensor._make_subclass(cls, elem) return r __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): with no_dispatch(): return func(*args, **kwargs) x = MySubclass(torch.rand(2, 2, dtype=torch.complex64)) y = x.conj() # Details of the bug that this tests for: # Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU} # There are a few calls to the dispatcher that are going to happen here: # - call_exp: User calling exp on y # - PythonTLSSnapshot: records the TLS on entry and redispatch # - AutogradCPU: no input requires grad, so does nothing and redispatch # - Conjugate: no special implementation for exp: use the fallback that # first clone the Tensor (to materialize the conj) then redispatch # - call_clone: conjugate fallback calling clone on y # - PythonTLSSnapshot: records the TLS on entry and redispatch # - (AutogradCPU: skipped as autograd added itself to the exclude set above) # - Conjugate: special implementation for clone: just skip this key # - Python: Reset the TLS based on the snapshot above and call the user implementation (this # actually calls into the dispatcher again but since we disable both our keys # before, not detailed here) # - exit Python: restore the TLS and exit # - exit Conjugate: nothing was inplace so just exit # - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty # - Python: Reset the TLS again based on the snapshot. <- this used to fail # - More steps.... y.exp() @staticmethod def subclass_helper(cls, data, use_wrapper_subclass, **kwargs): if use_wrapper_subclass: kwargs["device"] = data.device kwargs["dtype"] = data.dtype kwargs["layout"] = data.layout kwargs["requires_grad"] = True return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs) # type: ignore[attr-defined] else: return torch.Tensor._make_subclass(cls, data, True, **kwargs) def test_is_contiguous_slow_path(self): data = torch.randn(3, 3) contiguous_data = data.clone() not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2)) for use_wrapper_subclass in [True, False]: class ExampleTensor1(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class ExampleTensor2(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.is_contiguous: return contiguous_data.is_contiguous() return NotImplemented class ExampleTensor3(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.is_contiguous: return not_contiguous_data.is_contiguous() return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.is_contiguous'" e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.is_contiguous() with self.assertRaisesRegex(TypeError, err_msg): e.contiguous() e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.is_contiguous(), True) e.contiguous() # this will just return the original TensorImpl since is_contiguous = True err_msg = "no implementation found for" e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.is_contiguous(), False) with self.assertRaisesRegex(TypeError, err_msg): e.contiguous() def test_device_slowpath(self): for use_wrapper_subclass in [True]: class ExampleTensor1(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class ExampleTensor2(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.device: return torch.device('meta') return NotImplemented class ExampleTensor3(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.device: return torch.device('meta') return NotImplemented err_msg = "no implementation found for 'torch.ops.prim.device'" with self.assertRaisesRegex(TypeError, err_msg): e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) e.device() ten = torch.rand([1]) e = ExampleTensor2(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) self.assertEqual(e.device.type, 'meta') self.assertEqual(ten.type_as(e).device.type, 'meta') e = ExampleTensor3(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) self.assertEqual(e.device.type, 'meta') self.assertEqual(ten.type_as(e).device.type, 'meta') def test_dim_slowpath(self): data = torch.randn(3, 3) for use_wrapper_subclass in [True, False]: class DimNotImplementedTensor(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class DimImplementedTensor(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.dim'" e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.dim() t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(t.dim(), 2) def test_maybe_tuple_bug(self): class T(torch.Tensor): @classmethod def __torch_function__(cls, *args, **kwargs): pass a = torch.rand(3) a[[T(), T()]] def test_standard_is_not_subclass(self): # https://github.com/pytorch/pytorch/issues/79079 self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0))) def test_strides_slow_path(self): for use_wrapper_subclass in [True, False]: class StridesNotImplemented(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class StridesCustomReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func == torch.ops.aten.stride: return (4, 2) return NotImplemented class StridesDefaultReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func == torch.ops.aten.stride: return None return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.stride'" e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.stride() e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.stride(), (4, 2)) e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass) self.assertEqual(e.stride(), (2, 1)) if __name__ == '__main__': run_tests()