# mypy: allow-untyped-defs import logging import math from dataclasses import dataclass from functools import lru_cache from typing import Optional import torch import torch.distributed._functional_collectives as funcol import torch.distributed.tensor._dtensor_spec as dtensor_spec from torch._C._distributed_c10d import _resolve_process_group from torch._logging import warning_once from torch.distributed._local_tensor import local_tensor_mode from torch.distributed.device_mesh import _mesh_resources, DeviceMesh from torch.distributed.distributed_c10d import ( _get_group_size_by_name, broadcast, get_group_rank, get_rank, ProcessGroup, scatter, Work, ) logger = logging.getLogger(__name__) @torch.library.register_fake("_dtensor::shard_dim_alltoall") def _shard_dim_alltoall_meta(input, gather_dim, shard_dim, group_name): group_size = _get_group_size_by_name(group_name) stacked_list = [torch.empty_like(input) for _ in range(group_size)] group = _resolve_process_group(group_name) group_rank = get_group_rank(group, get_rank()) return ( torch.cat(stacked_list, dim=gather_dim) .chunk(group_size, dim=shard_dim)[group_rank] .contiguous() ) def shard_dim_alltoall(input, gather_dim, shard_dim, mesh, mesh_dim): if mesh.device_type == "cpu" and local_tensor_mode() is None: # Gloo does not support alltoall, so falling back to allgather + chunk warning_once( logger, "CPU process group does not support alltoall yet, falling back with allgather + chunk!", ) out = funcol.all_gather_tensor(input, gather_dim, (mesh, mesh_dim)) if isinstance(out, funcol.AsyncCollectiveTensor): # stick to the same behavior for the alltoall case, remove this once we enable alltoall async out = out.wait() out = torch.chunk(out, mesh.size(mesh_dim), dim=shard_dim)[ mesh.get_local_rank(mesh_dim) ] return out.contiguous() group_name = funcol._resolve_group_name((mesh, mesh_dim)) # TODO: enable async op for shard_dim_alltoall return torch.ops._dtensor.shard_dim_alltoall( input, gather_dim, shard_dim, group_name ) def mesh_scatter( output: torch.Tensor, scatter_list: list[torch.Tensor], mesh: DeviceMesh, mesh_dim: int = 0, async_op: bool = False, *, group_src: int = 0, ) -> Optional[Work]: """ scatter a list of tensors to a device mesh dimension. We by default use the first rank of the mesh dimension as the source of truth, i.e for a 2d mesh [[0, 1], [2, 3]], if we scatter on mesh_dim = 1, we will scatter the tensor list on rank 0 to rank 0/1, and tensor list on rank 2 to rank 2/3. Args: output (torch.Tensor): the tensor to receive the scattered list. scatter_list (List[torch.Tensor]): the tensor list to be scattered. mesh_dim (int, optional): indicate which mesh dimension we want to scatter on, we by default choose the first rank on the mesh dimension as source of truth. Keyword args: group_src (int, optional): the group rank of the source data for the logical/global tensor, on the specific mesh dimension. By default, we use ``group_rank=0`` on each DeviceMesh dimension as the source data to preserve the single-device semantic. If passing ``None`` explicitly, this method simply uses its local data with no communication. Returns: A :class:`Work` object """ # TODO: Ideally we should use the meta tensor way # (to register a meta kernel for the collective op) # so that it would avoid the communication. Need to # remove the check below once that is done. if output.is_meta: return None dim_group = mesh.get_group(mesh_dim) assert isinstance(dim_group, ProcessGroup) if group_src == get_rank(dim_group): fut = scatter( output, scatter_list=scatter_list, group=dim_group, async_op=async_op, group_src=group_src, ) else: fut = scatter( output, scatter_list=None, group=dim_group, async_op=async_op, group_src=group_src, ) return fut def mesh_broadcast( tensor: torch.Tensor, mesh: DeviceMesh, mesh_dim: int = 0, async_op: bool = False, *, group_src: int = 0, ) -> Optional[Work]: """ broadcast the tensor to a device mesh dimension. We by default use the first rank of the mesh dimension as the source of truth, i.e for a 2d mesh [[0, 1], [2, 3]], if we broadcast on mesh_dim = 1, we will broadcast the tensor on rank 0 to rank 0/1, and tensor on rank 2 to rank 2/3. Args: tensor (torch.Tensor): tensor to broadcast. mesh_dim (int, optional): indicate which mesh dimension we want to scatter on, we by default choose the first rank on the mesh dimension as source of truth. Keyword args: group_src (int, optional): the group rank of the source data for the logical/global tensor, on the specific mesh dimension. By default, we use ``group_rank=0`` on each DeviceMesh dimension as the source data to preserve the single-device semantic. If passing ``None`` explicitly, this method simply uses its local data with no communication. Returns: A :class:`Work` object """ # TODO: Ideally we should use the meta tensor way # (to register a meta kernel for the collective op) # so that it would avoid the communication. Need to # remove the check below once that is done. if tensor.is_meta: return None dim_group = mesh.get_group(mesh_dim) assert isinstance(dim_group, ProcessGroup) return broadcast(tensor, group=dim_group, async_op=async_op, group_src=group_src) def pad_tensor(tensor: torch.Tensor, pad_dim: int, pad_size: int) -> torch.Tensor: if pad_size == 0: return tensor pad = [0, 0] * (tensor.ndim - pad_dim) pad[-1] = pad_size return torch.nn.functional.pad(tensor, pad) def unpad_tensor(tensor: torch.Tensor, pad_dim: int, pad_size: int) -> torch.Tensor: if pad_size == 0: return tensor return tensor.narrow( pad_dim, start=0, length=tensor.size(pad_dim) - pad_size, ) def fill_empty_tensor_to_shards( shards: list[torch.Tensor], shard_dim: int, num_empty_tensors: int ) -> list[torch.Tensor]: if num_empty_tensors == 0: return shards tensor_size = list(shards[0].size()) tensor_size[shard_dim] = 0 tensor = shards[0].new_zeros(tensor_size) shards.extend(tensor for _ in range(num_empty_tensors)) return shards def check_tensor_meta( local_tensor, check_shape_stride=False ) -> Optional["dtensor_spec.TensorMeta"]: local_metadata = { "dtype": local_tensor.dtype, "requires_grad": local_tensor.requires_grad, } if check_shape_stride: local_metadata.update( {"shape": local_tensor.shape, "stride": local_tensor.stride()} ) gathered_metadata = [None for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather_object(gathered_metadata, local_metadata) # Check if metadata is consistent across ranks if not all(meta == local_metadata for meta in gathered_metadata): raise ValueError( "Inconsistent tensor metadata (including shape and stride) across ranks." ) return None def spec_to_bytes(spec: "dtensor_spec.DTensorSpec") -> int: assert spec.tensor_meta is not None, "spec should have tensor meta defined!" return spec.tensor_meta.dtype.itemsize * math.prod(spec.shape) @dataclass class MeshTopoInfo: """ Mesh information for collective cost estimation """ mesh: DeviceMesh mesh_dim_devices: list[int] mesh_dim_bandwidth: list[float] mesh_dim_latency: list[float] @staticmethod @lru_cache(None) def build_from_mesh(mesh: DeviceMesh) -> "MeshTopoInfo": # Generate mesh topology info for intra-host/inter-host communication pattern # Note that we made bunch of assumptions for simplicity: # 1. we assume the mesh is homogeneous, and it's gpu/nccl model # 2. we assume gpu arch is Ampere or Hopper # 3. we assume collectives are all ring base algo for now num_devices_per_host = _mesh_resources.num_devices_per_host(mesh.device_type) # the base bw number (intra-node), GB/s base_bw = 87.7 mesh_dim_bandwidth = [base_bw] * mesh.ndim # the latency in terms of us (intra-node, nv-link) mesh_dim_latency = [0.6] * mesh.ndim mesh_dim_devices = [1] * mesh.ndim total_num_devices = 1 for mesh_dim in reversed(range(mesh.ndim)): num_devices = mesh.size(mesh_dim) mesh_dim_devices[mesh_dim] = num_devices total_num_devices *= num_devices if total_num_devices > num_devices_per_host: # magic number for inter-host communication bandwidth/latency factor # This number assumes latest GPU arch, i.e. Ampere or Hopper # TODO: see if we need to tweak this or offer a way for user # to specify the bandwidths/latency mesh_dim_bandwidth[mesh_dim] *= 0.22 # set to ethernet latency for inter-host mesh_dim_latency[mesh_dim] = 2.7 return MeshTopoInfo( mesh, mesh_dim_devices, mesh_dim_bandwidth, mesh_dim_latency ) def allgather_cost(bytes_gb: float, mesh_topo: MeshTopoInfo, mesh_dim: int) -> float: num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim] mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim] num_hops = num_devices_on_mesh_dim - 1 # base latency + comm latency latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim] # us bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth # s return latency + bw * 1e6 # rescale to us def allreduce_cost(bytes_gb: float, mesh_topo: MeshTopoInfo, mesh_dim: int) -> float: num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim] mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim] # allreduce have almost 2x comm bytes compare to allgather/reduce_scatter num_hops = 2 * (num_devices_on_mesh_dim - 1) latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim] bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth return latency + bw * 1e6 def reduce_scatter_cost( bytes_gb: float, mesh_topo: MeshTopoInfo, mesh_dim: int, ) -> float: num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[mesh_dim] mesh_dim_bandwidth = mesh_topo.mesh_dim_bandwidth[mesh_dim] num_hops = num_devices_on_mesh_dim - 1 # base latency + comm latency latency = 6.6 + num_hops * mesh_topo.mesh_dim_latency[mesh_dim] bw = (bytes_gb * num_hops / num_devices_on_mesh_dim) / mesh_dim_bandwidth return latency + bw * 1e6 def redistribute_cost( current_spec: "dtensor_spec.DTensorSpec", target_spec: "dtensor_spec.DTensorSpec", ) -> float: """ This function returns the cost of redistribute from current to target DTensorSpec. NOTE: 1. Only consider communication cost here, since computation costs for redistribute are quite trivial (i.e. we only need to narrow or simple division) 2. Only consider redistribute cost on same mesh, cross mesh communication cost is not quite needed for operator strategy estimation/selection. """ if current_spec.mesh != target_spec.mesh: # make infinite cost if meshes are not same # TODO: see if we want to support this once there's cross mesh communication return float("inf") if current_spec.is_replicated(): # short-cut: # comm cost is 0 if current spec is already full replication return 0.0 mesh_topo = MeshTopoInfo.build_from_mesh(current_spec.mesh) cost = 0.0 comm_bytes_gb = ( spec_to_bytes(current_spec) / current_spec.num_shards / 1024 / 1024 / 1024 ) # Transformation that considered for redistribute cost: # 1. allgather 2. alltoall # 3. allreduce 4. reduce_scatter for i, (current, target) in enumerate( zip(current_spec.placements, target_spec.placements) ): if current == target: continue num_devices_on_mesh_dim = mesh_topo.mesh_dim_devices[i] if current.is_shard() and target.is_replicate(): # allgather gives larger comm bytes comm_bytes_gb *= num_devices_on_mesh_dim # add up allgather comm cost cost += allgather_cost(comm_bytes_gb, mesh_topo, i) elif current.is_shard() and target.is_shard(): # should be alltoall comm, since we haven't implement it yet, add penalty # to favor allgather instead cost += allgather_cost(comm_bytes_gb, mesh_topo, i) + 1.0 elif current.is_partial() and target.is_replicate(): # add up allreduce comm cost cost += allreduce_cost(comm_bytes_gb, mesh_topo, i) elif current.is_partial() and target.is_shard(): # add up reduce_scatter comm cost cost += reduce_scatter_cost(comm_bytes_gb, mesh_topo, i) # after reduce_scatter the comm bytes for further collectives halved. comm_bytes_gb /= num_devices_on_mesh_dim elif current.is_shard() and target.is_partial(): # ban shard -> partial as it does not make sense to perform # this redistribute return float("inf") return cost