## @package onnx # Module caffe2.python.onnx.backend_rep_cpp from onnx.backend.base import BackendRep, namedtupledict # This is a wrapper around C++ Caffe2BackendRep, # mainly to handle the different input and output types for convenience of Python class Caffe2CppRep(BackendRep): def __init__(self, cpp_rep): super(Caffe2CppRep, self).__init__() self.__core = cpp_rep self.__external_outputs = cpp_rep.external_outputs() self.__external_inputs = cpp_rep.external_inputs() self.__uninitialized_inputs = cpp_rep.uninitialized_inputs() def init_net(self): return self.__core.init_net() def pred_net(self): return self.__core.pred_net() def external_outputs(self): return self.__core.external_outputs() def external_inputs(self): return self.__core.external_inputs() def run(self, inputs): output_values = None if isinstance(inputs, dict): output_values = self.__core.run(inputs) elif isinstance(inputs, list) or isinstance(inputs, tuple): if len(inputs) != len(self.__uninitialized_inputs): raise RuntimeError('Expected {} values for uninitialized ' 'graph inputs ({}), but got {}.'.format( len(self.__uninitialized_inputs), ', '.join(self.__uninitialized_inputs), len(inputs))) input_map = {} for k, v in zip(self.__uninitialized_inputs, inputs): input_map[k] = v output_values = self.__core.run(input_map) else: # single input output_values = self.__core.run([inputs]) return namedtupledict('Outputs', self.__external_outputs)(*output_values)