# mypy: allow-untyped-defs import contextlib import dataclasses import functools import inspect import itertools import json import logging import math import operator import os import re import sys import textwrap import time from collections.abc import Sequence from concurrent.futures import as_completed, ThreadPoolExecutor from io import StringIO from types import ModuleType from typing import Any, Callable, NamedTuple, Optional, TYPE_CHECKING, Union from typing_extensions import Self from unittest.mock import patch import sympy import torch import torch._inductor.async_compile # noqa: F401 required to warm up AsyncCompile pools from torch._dynamo.device_interface import get_interface_for_device from torch._dynamo.testing import rand_strided from torch._dynamo.utils import counters, dynamo_timed, identity, preserve_rng_state from torch._inductor.utils import clear_on_fresh_cache from torch.utils._filelock import FileLock from torch.utils._ordered_set import OrderedSet from ..utils._sympy.functions import CeilDiv from . import config, ir from .autotune_process import ( TensorMeta, TritonBenchmarkRequest, TritonCPUBenchmarkRequest, TritonGPUBenchmarkRequest, ) from .codecache import code_hash, PersistentCache, PyCodeCache from .codegen.common import ( CSEVariable, IndentedBuffer, KernelTemplate, OpOverrides, WorkspaceArg, WorkspaceZeroMode, ) from .codegen.simd_kernel_features import SIMDKernelFeatures from .codegen.subgraph import SubgraphChoiceCaller from .codegen.triton import ( gen_common_triton_imports, texpr, TritonKernel, TritonScheduling, ) from .codegen.triton_utils import config_of, equal_1_arg_indices, signature_to_meta from .codegen.wrapper import pexpr from .exc import CUDACompileError from .fx_utils import count_flops_fx from .ir import ChoiceCaller, PrimitiveInfoType from .ops_handler import StoreMode from .runtime.benchmarking import benchmarker from .runtime.hints import DeviceProperties from .runtime.triton_compat import HAS_WARP_SPEC from .runtime.triton_heuristics import FixedGrid from .utils import ( ceildiv, do_bench_using_profiling, FakeIndentedBuffer, get_dtype_size, is_gpu, Placeholder, restore_stdout_stderr, sympy_dot, sympy_index_symbol, sympy_product, triton_type, triton_type_to_torch, unique, ) from .virtualized import V log = logging.getLogger(__name__) # correctness checks struggle with fp16/tf32 VERIFY: dict[str, Any] = {} PRINT_AUTOTUNE = True DEBUG = False if TYPE_CHECKING: import concurrent from torch._inductor.codegen.simd import IterationRangesRoot class KernelNamespace: pass # these objects are imported from the generated wrapper code extern_kernels = KernelNamespace() @dataclasses.dataclass class BenchmarkTensors: """Represents a set of inputs and outputs for autotuning with a template""" input_tensors: list[torch.Tensor] output_tensor: Optional[torch.Tensor] def unpack(self): return self.input_tensors, self.output_tensor @dataclasses.dataclass class AutotuneArgs: """During autotuning, we need to pass the same inputs to all choices. Note: Since we typically have a mix of external choices and triton choices, we create two lists of inputs for the same underlying buffers: - External inputs (for aten kernels): Include offset for sliced tensors - Triton inputs: Use base pointer for sliced tensors, without offset """ triton: BenchmarkTensors extern: BenchmarkTensors expected: Optional[torch.Tensor] = None def get_benchmark_tensors(self, extern=False) -> BenchmarkTensors: """Returns the inputs and output tensors for a given choice.""" bench_tensors = self.extern if extern else self.triton return bench_tensors @classmethod def from_choice_args( cls, example_inputs: list[torch.Tensor], example_inputs_extern: list[torch.Tensor], out: torch.Tensor, out_extern: torch.Tensor, expected: Optional[torch.Tensor] = None, ) -> Self: """Factory method to create AutotuneInputs from separate inputs/outputs""" return cls( triton=BenchmarkTensors(example_inputs, out), extern=BenchmarkTensors(example_inputs_extern, out_extern), expected=expected, ) def verify(self, **kwargs): """Verify the correctness of the benchmarking results""" torch.testing.assert_close(self.extern.output_tensor, self.expected, **kwargs) class PartialRender: """ Some parts of a template need to be generated at the end, but inserted into the template at the start. This allows doing a bunch of replacements after the initial render. """ def __init__(self, code, replacement_hooks) -> None: super().__init__() self.code = code self.replacement_hooks = replacement_hooks def finalize_hook(self, hook_key: str, strict=True) -> None: if hook_key not in self.replacement_hooks: if strict: raise RuntimeError( f"{hook_key} not registered in self.replacement_hooks" ) else: return assert self.replacement_hooks[hook_key] is not None, ( "hook_key can only be called once" ) self.code = self.code.replace(hook_key, self.replacement_hooks[hook_key]()) self.replacement_hooks[hook_key] = None def finalize_all(self) -> str: for key, fn in self.replacement_hooks.items(): self.code = self.code.replace(key, fn()) return self.code # This is used to store info needed for lowering each subgraph in triton # templates @dataclasses.dataclass() class SubgraphInfo: body: IndentedBuffer template_mask: Optional[str] = None template_out: Optional[str] = None compute: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) indexing_code: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) loads: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) stores: IndentedBuffer = dataclasses.field(default_factory=IndentedBuffer) ops_handler: Optional[V.WrapperHandler] = None # type: ignore[name-defined] # only copied over if not None range_trees: Optional[list["IterationRangesRoot"]] = None numels = None # type: ignore[var-annotated] def __post_init__(self): self.only_copy_if_non_none_fields = ("range_trees", "numels") def to_dict(self): return { field.name: getattr(self, field.name) for field in dataclasses.fields(self) } class ModificationWrapper(V.WrapperHandler): # type: ignore[name-defined] """Handles placeholder substitutions during subgraph processing.""" def __init__( self, kernel, subgraph_number: int, fixed_inputs: dict[str, Any], mask: Optional[str], ): super().__init__(V.ops) self.name = f"PlaceholderSubstitution_{subgraph_number}" self.kernel = kernel self.fixed_inputs = fixed_inputs self.mask = mask def load(self, name: str, index: sympy.Expr): """Handle loading from tensor or fixed input.""" if name not in self.fixed_inputs: index_str = self._process_indexing(index) var = self._add_kernel_input(name) var_dtype = V.graph.get_buffer(name).dtype line = f"tl.load({var} + {index_str})" if ( var_dtype in (torch.float16, torch.bfloat16) and config.triton.codegen_upcast_to_fp32 ): line += ".to(tl.float32)" var_dtype = torch.float32 out = self.kernel.cse.generate(self.kernel.compute, line, dtype=var_dtype) return out return self.kernel.cse.generate( self.kernel.compute, f"({self.fixed_inputs[name]})", dtype=torch.float32 ) def indirect_indexing(self, index_var: str, size, check, wrap_neg=True): """Convert index variable to symbolic form.""" return sympy_index_symbol(str(index_var)) def store( self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None ) -> str: """Currently only supports stores for atomic adds coming from scatter nodes This is used by flex_attention's backwards grad for captured buffers, see zeros_and_scatter lowering """ assert self.mask is not None, ( "Mask is required for inner stores in modifications" ) assert mode == "atomic_add", "Only atomic_add is supported for inner stores" buf_name = self._add_kernel_input(name) index_str = self._process_indexing(index) index_str = f"tl.broadcast_to({index_str}, {value}.shape)" store = f"tl.atomic_add({buf_name} + {index_str}, {value}, {self.mask}, sem='relaxed')" return store def _add_kernel_input(self, name: str): """Add name as input to kernel and return input ref.""" return self.kernel.args.input(name) def _process_indexing(self, index): """Process and rename indexing, adding symbols as kernel inputs.""" return self.kernel.kexpr(self.kernel.rename_indexing(index)) # Function name, followed by args and kwargs. RecordedEventsType = list[tuple[str, list[Any], dict[str, Any]]] class TritonTemplateKernel(TritonKernel): def __init__( self, kernel_name, input_nodes, output_node, defines, num_stages, num_warps, grid_fn, meta, call_sizes, num_consumer_groups=0, num_buffers_warp_spec=0, use_jit=False, prefix_args=0, suffix_args=0, epilogue_fn=identity, subgraphs: Optional[list[ir.ComputedBuffer]] = None, workspace_arg: Optional[WorkspaceArg] = None, prologue_loads_all_inputs=False, ) -> None: numel = sympy_product(output_node.get_size()) super().__init__( { "x": numel, "r0_": sympy.S.One, }, features=SIMDKernelFeatures([], numel), ) self.input_nodes = input_nodes self.output_node = output_node self.named_input_nodes = {} # type: ignore[var-annotated] self.defines = defines self.kernel_name = kernel_name self.use_jit = use_jit self.num_stages = num_stages self.num_warps = num_warps self.num_consumer_groups = num_consumer_groups self.num_buffers_warp_spec = num_buffers_warp_spec self.grid_fn = grid_fn self.meta = meta self.call_sizes = call_sizes # for templates with fixed epilogues self.prefix_args = prefix_args self.suffix_args = suffix_args self.epilogue_fn = epilogue_fn self.render_hooks = {} # type: ignore[var-annotated] self.triton_meta: Optional[dict[str, object]] = None # For Templated Attention this can be a list of ir.Subgraph self.subgraphs: Optional[list[ir.ComputedBuffer]] = subgraphs # Some templates use extra global memory as a workspace self.workspace_arg = workspace_arg if workspace_arg is not None: self.args.workspace_args.append(workspace_arg) # The following attributes (body, template_mask, output_val) are all # used for triton kernel codegen. # They are swapped onto the TritonTemplateKernel object by # `set_subgraph_body` self.subgraph_bodies: dict[str, SubgraphInfo] = {} # input buffers which we are allowed to prologue fuse into self.prologue_supported_inputs: OrderedSet[str] = OrderedSet() # input buffers which we are fusing into self.prologue_fused_inputs: OrderedSet[str] = OrderedSet() # input buffers which we are fusing into, which preserve a zero mask self.prologue_fused_inputs_preserve_zero: OrderedSet[str] = OrderedSet() # The following attributes are all used for triton kernel codegen. # They are swapped onto the TritonTemplateKernel object by # `set_subgraph_body` # NB: the names here must match the fields in SubgraphInfo self.body: IndentedBuffer = FakeIndentedBuffer() self.compute: IndentedBuffer = FakeIndentedBuffer() self.indexing_code: IndentedBuffer = FakeIndentedBuffer() self.loads: IndentedBuffer = FakeIndentedBuffer() self.stores: IndentedBuffer = FakeIndentedBuffer() self.template_mask: Optional[str] = None self.template_out: Optional[str] = None self.ops_handler: Optional[V.WrapperHandler] = None # type: ignore[name-defined] # When caching is enabled, the generated code is not dependent on the input nodes names, or # symbolic sizes names. # However, some of the variables returned by generate_and_load that are computed during the # triton template expansions (code generation) are dependent on those. # In order to cache the code generation and avoid redoing it for similar inputs that varies only by # input names or symbol names, we do a record and replay method. # During template expansions we record all function calls that change input_dependent_preserved_state # and replay them on a cache hit to regenerate them. self.cached_replay_events: Optional[RecordedEventsType] = None # Update each time an input is marked frozen, used to replay the freezing of inputs on a cache hit. self.frozen_layouts_cnt = 0 # When prologue_loads_all_inputs is true, prologue_supported_inputs is populated during def_kernel # by adding all inputs. self.prologue_loads_all_inputs = prologue_loads_all_inputs def input_dependent_preserved_state(self) -> str: # Not adding self.args.output_buffers on purpose. But we do not need to reproduce it on a cache hit. # (never accessed). return repr( [ self.args.input_buffers, self.args.sizevars, self.args.workspace_args, self.prologue_supported_inputs, self.frozen_layouts_cnt, ] ) def record_input_dependent_tracked_event(self) -> Callable[..., Any]: def decorator(fn) -> Callable[..., Any]: def wrapper(*args, **kwargs) -> Any: pre_state = self.input_dependent_preserved_state() result = fn(*args, **kwargs) post_state = self.input_dependent_preserved_state() if pre_state != post_state: assert self.cached_replay_events is not None self.cached_replay_events.append((fn.__name__, [*args], {**kwargs})) return result return wrapper return decorator def replay_cached_events(self, events: RecordedEventsType) -> None: for f, args, kwargs in events: getattr(self, f)(*args, **kwargs) @contextlib.contextmanager def set_subgraph_body(self, body_name: str): assert all( hasattr(self, field.name) for field in dataclasses.fields(SubgraphInfo) ) old_state = { key.name: getattr(self, key.name) for key in dataclasses.fields(SubgraphInfo) } assert body_name in self.subgraph_bodies, body_name subgraph = self.subgraph_bodies[body_name] for key, value in subgraph.to_dict().items(): if value is None and key in subgraph.only_copy_if_non_none_fields: continue setattr(self, key, value) context = ( contextlib.nullcontext if not self.ops_handler else lambda: V.set_ops_handler(self.ops_handler(V.get_ops_handler())) ) with context(): # type: ignore[operator] yield self.subgraph_bodies[body_name] = SubgraphInfo( **{ key.name: getattr(self, key.name) for key in dataclasses.fields(SubgraphInfo) } ) for key, value in old_state.items(): setattr(self, key, value) @contextlib.contextmanager def create_subgraph_body(self, body_name: str): assert body_name not in self.subgraph_bodies self.subgraph_bodies[body_name] = SubgraphInfo( IndentedBuffer(), None, None, ) with self.set_subgraph_body(body_name): yield def need_numel_args(self): return False def estimate_kernel_num_bytes(self): """ Estimate the total number of bytes this kernel takes. For in/out nodes, sizes are counted twice: once for reading and once for writing. """ ninplace_args = len(unique(self.args.inplace_buffers.values())) num_bytes = [] for i, inp in enumerate(itertools.chain(self.input_nodes, (self.output_node,))): size = V.graph.sizevars.size_hints(inp.get_size(), fallback=0) numel = functools.reduce(operator.mul, size, 1) dtype_size = get_dtype_size(inp.get_dtype()) num_bytes.append(numel * dtype_size * (1 + int(i < ninplace_args))) return sum(num_bytes) def estimate_flops(self) -> int: for node in self.input_nodes: for fx_node in node._current_origins: f = count_flops_fx(fx_node) if f is not None: return V.graph.sizevars.size_hint(f, fallback=0) return 0 def jit_lines(self): if self.use_jit: return "@triton.jit" argdefs, _, signature, _ = self.args.python_argdefs() triton_meta: dict[str, Any] = { "signature": signature_to_meta( signature, size_dtype=self.index_dtype, argdefs=argdefs, is_template=True, ), "device": DeviceProperties.create(self.output_node.get_device()), "constants": {}, } triton_meta["configs"] = [config_of(signature)] for arg_num in equal_1_arg_indices(signature): # type: ignore[index] triton_meta["constants"][signature[arg_num].name] = 1 # type: ignore[index,union-attr] matrix_instr_nonkdim = self.meta.get("matrix_instr_nonkdim", None) waves_per_eu = self.meta.get("waves_per_eu", None) kpack = self.meta.get("kpack", None) if matrix_instr_nonkdim: triton_meta["matrix_instr_nonkdim"] = matrix_instr_nonkdim if waves_per_eu: triton_meta["waves_per_eu"] = waves_per_eu if kpack: triton_meta["kpack"] = kpack self.triton_meta = triton_meta inductor_meta = { "kernel_name": str(Placeholder.DESCRIPTIVE_NAME), **TritonKernel.inductor_meta_common(), **FixedGrid.setup_grid_as_args(), } if config.profile_bandwidth or config.benchmark_kernel: num_gb = self.estimate_kernel_num_bytes() / 1e9 inductor_meta["kernel_num_gb"] = num_gb if config.benchmark_kernel: flops = self.estimate_flops() inductor_meta["kernel_flop"] = flops template_args = f""" num_stages={self.num_stages}, num_warps={self.num_warps}, triton_meta={triton_meta!r}, inductor_meta={inductor_meta!r}, """ if HAS_WARP_SPEC: template_args += f""" num_consumer_groups={self.num_consumer_groups}, num_buffers_warp_spec={self.num_buffers_warp_spec}, """ return f""" @triton_heuristics.template( {template_args} ) @triton.jit """ def gen_argdefs(self): def hook(): # python_argdefs() cannot be run until after the rest of the template lazily adds more args arg_defs, *_ = self.args.python_argdefs() return f"{', '.join(x.full_name() for x in arg_defs)}" self.render_hooks[""] = hook return "" def gen_defines(self): return self.defines def def_kernel(self, *argnames): """ Hook called from template code to generate function def and needed args. """ assert all(isinstance(x, str) for x in argnames) renames = IndentedBuffer(initial_indent=1) named_args = self.input_nodes[ self.prefix_args : len(self.input_nodes) - self.suffix_args ] assert len(argnames) == len(named_args), ( len(argnames), len(named_args), self.prefix_args, len(self.input_nodes), ) for input_node in self.input_nodes[: self.prefix_args]: # get args in correct order self.args.input(input_node.get_name()) for name, input_node in zip(argnames, named_args): arg_name = f"arg_{name}" self.named_input_nodes[name] = input_node if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue self.args.input_buffers[input_node.get_name()] = arg_name # The args may be duplicated, so renaming must be after args are de-duplicated. for name in argnames: input_node = self.named_input_nodes[name] if self.prologue_loads_all_inputs: self.prologue_supported_inputs.add(input_node.get_name()) if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue arg_name = self.args.input_buffers[input_node.get_name()] if input_node.get_layout().offset == 0: renames.writeline(f"{name} = {arg_name}") else: offset = texpr(self.rename_indexing(input_node.get_layout().offset)) renames.writeline(f"{name} = {arg_name} + {offset}") for input_node in self.input_nodes[len(self.input_nodes) - self.suffix_args :]: # get args in correct order if input_node.get_name() in V.graph.removed_buffers: continue if input_node.get_name() in self.prologue_fused_inputs: continue self.args.input(input_node.get_name()) def hook(): # python_argdefs() cannot be run until after the rest of the template lazily adds more args arg_defs, *_ = self.args.python_argdefs() code = IndentedBuffer() code.splice(gen_common_triton_imports()) code.splice(self.jit_lines()) code.writeline( f"def {self.kernel_name}({', '.join(x.full_name() for x in arg_defs)}):" ) with code.indent(): code.splice(self.defines) code.splice(renames.getvalue()) return code.getvalue() assert "" not in self.render_hooks self.render_hooks[""] = hook return "" def size(self, name: str, index: int): """ Hook called from template code to get the size of an arg. Will add needed args to pass it in if it is dynamic. """ assert isinstance(index, int) if name is None: val = self.output_node.get_size()[index] else: assert isinstance(name, str) val = self.named_input_nodes[name].get_size()[index] return texpr(self.rename_indexing(val)) def stride(self, name, index=None): """ Hook called from template code to get the stride of an arg. Will add needed args to pass it in if it is dynamic. """ if name is None: val = self.output_node.get_stride() else: assert isinstance(name, str) val = self.named_input_nodes[name].get_stride() if isinstance(index, int): return texpr(self.rename_indexing(val[index])) return ", ".join([texpr(self.rename_indexing(i)) for i in val]) def _get_subgraph(self, subgraph_number: int): assert isinstance(subgraph_number, int) assert isinstance(self.subgraphs, list) assert subgraph_number < len(self.subgraphs), ( f"Invalid subgraph number provided to create_modification, {subgraph_number} must be < {len(self.subgraphs)}" ) assert self.body.getvalue() == "", ( "Body should be clear before adding a modification" ) return self.subgraphs[subgraph_number] def _handle_scatter_graph(self, scatter_graph): """Handle processing for a single scatter graph. Args: scatter_graph: The scatter graph to process """ assert isinstance(scatter_graph, ir.ComputedBuffer), ( f"scatter_graph must be an instance of ComputeBuffer but got {type(scatter_graph)}" ) def contiguous_strides(x): # We always create a fresh contiguous grad for scattering into return sum( x_i * stride for x_i, stride in zip(x, scatter_graph.get_stride()) ) return scatter_graph.data.store_output( # type: ignore[attr-defined] scatter_graph.name, contiguous_strides, [] ) def modification( self, subgraph_number: int, output_name: Optional[str], mask: Optional[str] = None, **fixed_inputs, ) -> str: """This creates a modification function for a subgraph. To use this inside a template, the first argument should specify which subgraph to codegen for Args: subgraph_number (int): The index of the subgraph in self.subgraphs output_name (Optional[str]): The name of the output variable to store the result in mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask will be applied to the store. """ num = 0 out = None scatters = [] while f"mod_{subgraph_number}_{num}" in self.subgraph_bodies: num += 1 with self.create_subgraph_body(f"mod_{subgraph_number}_{num}"): subgraph = self._get_subgraph(subgraph_number) modification_handler = ModificationWrapper( self, subgraph_number, fixed_inputs, mask ) with V.set_ops_handler(modification_handler): assert isinstance(subgraph, (ir.ComputedBuffer, list)), ( f"Expected the subgraph to be a ComputedBuffer or a List[ComputedBuffer], got {type(subgraph)}" ) # Handle scatter stores if isinstance(subgraph, list): for scatter_graph in subgraph: scatters.append(self._handle_scatter_graph(scatter_graph)) elif isinstance(subgraph.data, ir.InputBuffer): out = subgraph.data.make_loader()(()) else: out = subgraph.data.inner_fn(()) self.codegen_body() if output_name is not None: assert isinstance(output_name, str) assert out is not None self.body.writeline(f"{output_name} = {out.value}") else: assert out is None for scatter in scatters: self.body.writeline(str(scatter)) body_val = self.body.getvalue() self.cse.invalidate(OrderedSet()) return body_val def load_input( self, input_name: str, output_name: str, indices: Union[list[Any], tuple[Any]], mask: Optional[str] = None, other: Optional[Union[float, int]] = 0.0, indent_width: int = 4, ): """Loads an input and applies any necessary preprocessing or masking. Args: input_name (str): The name of the input to load. indices (Union[List, Tuple]): The index for each dimension of the input. val (str): The name of the variable to store the loaded value. mask (Optional[str]): An optional mask to use for the load operation. other (Optional[Union[float, int]]): The value to use for masked elements. Default is 0.0. indent_width (int): The number of spaces to use for indentation. """ input_node = self.named_input_nodes[input_name] if not self.prologue_loads_all_inputs: self.prologue_supported_inputs.add(input_node.get_name()) tilings = (sympy_product(input_node.get_size()), sympy.Integer(1)) groups = { "x": tilings[0], "r0_": tilings[1], } range_trees = self.construct_range_trees( pid_cache=None, inside_reduction=False, is_reduction=False, numels=groups, no_x_dim=False, ) load_code = None with self.create_subgraph_body(f""): assert isinstance(indices, (list, tuple)) assert isinstance(output_name, str) assert isinstance(mask, (str, type(None))) self.range_trees = range_trees self.numels = {k: V.graph.sizevars.simplify(v) for k, v in groups.items()} indices = list(map(OpOverrides.paren, indices)) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] lengths = [V.graph.sizevars.simplify(s) for s in input_node.get_size()] assert len(indices) == len(lengths) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] assert len(indices) == len(lengths) # glue to make generated code use same indexing from template # TODO (from reviewers as well) # in codegen_template, # prologue_node.codegen(kernel.split_and_set_ranges(prologue_node.get_ranges())) # the ranges need to reflect the group of the prologue input or it will error # not sure if there is any difference between original range_tree_entry in # and new one from correct lengths/groups... both actually seem to work for name, range_tree_entry in zip( indices, self.range_trees[0].construct_entries(lengths) ): range_tree_entry.set_name(name) contiguous_index = sympy_dot( ir.FlexibleLayout.contiguous_strides(lengths), index_symbols ) contiguous_index = self.rename_indexing(contiguous_index) self.body.writeline("xindex = " + texpr(contiguous_index)) xindex_range_root = self.range_trees[0].lookup( sympy.Integer(1), sympy_product(lengths) ) xindex_range_root.set_name("xindex") # Note - ["None" override_mask] # MM Templates work by taking out of bounds index values and wrapping them around to 0 # so that no mask is required on the load: offs_a_m = `rm % M` # We should to override the mask to be "None" instead of inheriting the mask that would # have been loaded otherwise. # We are using "None" for clarity in output code, but # we could alternatively emit `xmask = tl.full([xindex.shape], True, tl.int1)` self.template_mask = mask if mask is not None else "None" self.template_out = "xindex" self.template_indices = indices self.named_input_nodes[input_name].data.freeze_layout() self.cse.invalidate(OrderedSet()) template_mask = self.template_mask class StoreOutputSubstitution(V.WrapperHandler): # type: ignore[name-defined] name = "StoreOutputSubstitution" def store( self, name: str, index: sympy.Expr, value: "CSEVariable", mode: "StoreMode" = None, ): V.kernel.store_buffer_names.add(name) V.kernel.cse.store_cache[name] = value if name in V.kernel.prologue_fused_inputs: # We load masked out values with 0, then apply a prologue. # The masked out values may not necessariliy be 0 any more # so we need to reapply the mask. value_dtype = value.dtype value_str = str(value) if template_mask != "None" and ( name not in V.kernel.prologue_fused_inputs_preserve_zero or other != 0 ): value_str = ( f"tl.where({template_mask}, {value_str}, {other})" ) if value_dtype != V.graph.get_buffer(name).dtype: value_str = f"{value_str}.to({triton_type(V.graph.get_buffer(name).dtype)})" # TODO: we should have intermediary var shapes V.kernel.compute.writeline( f"{output_name} = {value_str}.broadcast_to(xindex.shape)" ) self.ops_handler = StoreOutputSubstitution input_node = self.named_input_nodes[input_name] output_index = input_node.make_indexer()(index_symbols) # in def_kernel above we define the inputs with the storage offset adjusted # creating the load in input_node.make_indexer() will also adjust by storage offset # so subtract here to not double increment if not V.graph.sizevars.statically_known_equals( input_node.layout.offset, 0 ): output_index = output_index - self.rename_indexing( input_node.get_layout().offset ) output_index = self.rename_indexing(output_index) if output_index == contiguous_index: output_index_str = "xindex" else: out_indexing = self.indexing( output_index, copy_shape=self.template_out, override_mask=self.template_mask, ) from .codegen.triton import IndexingOptions assert isinstance(out_indexing, IndexingOptions) output_index_str = ( f"({out_indexing.index_str}).broadcast_to(xindex.shape)" ) # Generate load code load_code = f"{output_name} = tl.load({input_name} + ({output_index_str})" if mask: load_code += f", mask={mask}, other={other})" else: load_code += ")" hook_key = f"" def hook(): with self.set_subgraph_body(hook_key): self.cse.invalidate(OrderedSet()) self.codegen_body() self.cse.invalidate(OrderedSet()) if input_node.get_name() not in self.prologue_fused_inputs: assert load_code is not None self.body.writeline(load_code) return textwrap.indent(self.body.getvalue(), " " * indent_width).strip() assert hook_key not in self.render_hooks self.render_hooks[hook_key] = hook return hook_key def store_output( self, indices: Union[list[Any], tuple[Any]], val: str, mask: Optional[str] = None, indent_width: int = 4, ): """Stores the final output and appends any epilogue fusions if the buffer hasn't been optimized away. Args: indices (Union[List, Tuple]): The index for each dimension of the output. The dot product of these indices and output strides must match `val`. val (str): The value to store. mask (Optional[str]): An optional mask to use for the store operation. If provided, this mask will be applied to the store. indent_width (int): The number of spaces to use for indentation. This is used when the call to store_output is indented in the kernel definition. """ with self.create_subgraph_body(""): assert isinstance(indices, (list, tuple)) assert isinstance(val, str) assert isinstance(mask, (str, type(None))) assert self.template_mask is None indices = list(map(OpOverrides.paren, indices)) index_symbols = [sympy.Symbol(x, integer=True) for x in indices] lengths = [ V.graph.sizevars.simplify(s) for s in self.output_node.get_size() ] assert len(indices) == len(lengths) # glue to make generated code use same indexing from template for name, range_tree_entry in zip( indices, self.range_trees[0].construct_entries(lengths) ): range_tree_entry.set_name(name) contiguous_index = sympy_dot( ir.FlexibleLayout.contiguous_strides(lengths), index_symbols ) contiguous_index = self.rename_indexing(contiguous_index) self.body.writeline("xindex = " + texpr(contiguous_index)) self.range_trees[0].lookup(sympy.S.One, sympy_product(lengths)).set_name( "xindex" ) self.template_mask = mask self.template_out = val self.template_indices = indices output_index = self.output_node.get_layout().make_indexer()(index_symbols) output_index = self.rename_indexing(output_index) if output_index == contiguous_index: output_index = sympy.Symbol("xindex", integer=True) acc_dtype = ( triton_type_to_torch(self.meta["ACC_TYPE"]) if "ACC_TYPE" in self.meta else torch.float32 ) epilogue_args = [V.kernel.cse.namedvar(val, dtype=acc_dtype)] for input_node in itertools.chain( self.input_nodes[: self.prefix_args], self.input_nodes[len(self.input_nodes) - self.suffix_args :], ): input_node.freeze_layout() epilogue_args.append(input_node.make_loader()(index_symbols)) # We update frozen_layouts_cnt in order to replay this function on a cache hit. self.frozen_layouts_cnt += 1 V.ops.store( self.output_node.get_name(), output_index, self.epilogue_fn(*epilogue_args), ) self.codegen_body() def hook(): # more stuff might have been added since the codegen_body above self.codegen_body() self.cse.invalidate(OrderedSet()) return textwrap.indent(self.body.getvalue(), " " * indent_width).strip() assert "" not in self.render_hooks self.render_hooks[""] = hook return "" def render(self, template, kwargs, record_input_dependent_tracked_event=False): if record_input_dependent_tracked_event: self.cached_replay_events = [] template_env = { fn.__name__: self.record_input_dependent_tracked_event()(fn) if record_input_dependent_tracked_event else fn for fn in [ self.def_kernel, self.size, self.stride, self.store_output, self.load_input, self.make_load, self.modification, self.gen_argdefs, self.gen_defines, ] } return PartialRender( template.render(**template_env, **kwargs), self.render_hooks, ) def make_load(self, name, indices, mask): """ Optional helper called from template code to generate the code needed to load from an tensor. """ assert isinstance(indices, (list, tuple)) assert isinstance(name, str) assert isinstance(mask, str) stride = self.named_input_nodes[name].get_stride() indices = list(map(OpOverrides.paren, indices)) assert len(indices) == len(stride) index = " + ".join( f"{texpr(self.rename_indexing(s))} * {i}" for s, i in zip(stride, indices) ) return f"tl.load({name} + ({index}), {mask}, other=0.0)" def indexing( self, index: sympy.Expr, *, dense_indexing=False, copy_shape=None, override_mask=None, block_ptr=False, ): """ Override the default indexing to use our custom mask and force dense indexing. """ return super().indexing( index, dense_indexing=False, # We pass template_out as the shape to broadcast the indexing to as # the mask might be broadcast to the output shape copy_shape=self.template_out, override_mask=self.template_mask, block_ptr=block_ptr, ) def codegen_range_tree(self): pass # ignore default codegen def call_kernel(self, name: str, node: Optional[ir.IRNode] = None): wrapper = V.graph.wrapper_code _, call_args, _, arg_types = self.args.python_argdefs() grid_args = () if isinstance(self.grid_fn, SymbolicGridFn): grid_args = self.grid_fn.sympy_call(*self.call_sizes, self.meta) elif all(isinstance(x, (int, sympy.Integer)) for x in self.call_sizes): grid_args = self.grid_fn(*map(int, self.call_sizes), self.meta) else: assert not V.graph.cpp_wrapper, "cpp_wrapper requires SymbolicGridFn" wrapper.add_import_once(f"import {self.grid_fn.__module__}") meta = wrapper.add_meta_once(self.meta) fn_name = f"{self.grid_fn.__module__}.{self.grid_fn.__name__}" call_args.append( f"*{fn_name}({', '.join(map(pexpr, self.call_sizes))}, {meta})" ) arg_types.append(None) assert len(grid_args) in (0, 3), "grid_fn should return 3 values" call_args.extend(grid_args) arg_types.extend(map(type, grid_args)) if self.workspace_arg is not None: wrapper.generate_workspace_allocation(self.workspace_arg) wrapper.generate_kernel_call( name, call_args, arg_types=arg_types, triton_meta=self.triton_meta, triton=True, ) if self.workspace_arg is not None: wrapper.generate_workspace_deallocation(self.workspace_arg) def kernel_benchmark_extra_args(self) -> list[str]: return [ str(x) for x in self.grid_fn( *V.graph.sizevars.size_hints(self.call_sizes), self.meta ) ] @functools.cache def _jinja2_env(): try: import jinja2 return jinja2.Environment( undefined=jinja2.StrictUndefined, ) except ImportError: return None class GenerateAndLoadResult(NamedTuple): """ Return type of TritonTemplate.generate_and_load. """ mod: ModuleType extra: str input_call_args: tuple[str, ...] prologue_supported_inputs: OrderedSet[str] kernel_args_sizevars_keys: tuple[sympy.Expr] kernel_options: dict[str, Any] class GeneratedCodeCacheEntry(NamedTuple): code: str extra: str events: list[Any] class GeneratedCodeCache: """ Cache for generated code. The cache key is a string representation of the input nodes, number of stages, number of warps, and call sizes. The cache value is a tuple of the generated code, extra code, and events. """ def __init__(self, *args, **kwargs): self._cache: dict[str, GeneratedCodeCacheEntry] = {} def cache_clear(self) -> None: self._cache.clear() def __repr__(self): return repr(self._cache) def make_key( self, input_nodes: tuple[ir.IRNode], num_stages: int, num_warps: int, call_sizes: Sequence[sympy.core.symbol.Symbol], prefix_args: int, suffix_args: int, epilogue_fn: Optional[Callable[..., Any]], epilogue_fn_hash: Optional[str], subgraphs: Optional[list[ir.Buffer]], # has to be none to cache workspace_arg: Optional[WorkspaceArg], # has to be none to cache layout: ir.Layout, num_consumer_groups: int, num_buffers_warp_spec: int, kwargs: dict[str, Any], ) -> Optional[str]: def layout_key(layout: ir.Layout) -> str: assert not isinstance(layout, ir.FlexibleLayout) return repr( [ layout.size, layout.stride, layout.dtype, layout.device, layout.offset, ] ) def has_flexible_layout() -> bool: if isinstance(layout, ir.FlexibleLayout): return True for input in input_nodes: if isinstance(input.get_layout(), ir.FlexibleLayout): return True return False if epilogue_fn is identity: assert epilogue_fn_hash is None epilogue_fn_hash = "identity" # we do not cache under those conditions right now. if ( has_flexible_layout() or subgraphs is not None or workspace_arg is not None or epilogue_fn_hash is None ): return None return repr( { "input_nodes": [ layout_key(input.get_layout()) for input in input_nodes ], "num_stages": num_stages, "num_warps": num_warps, "prefix_args": prefix_args, "suffix_args": suffix_args, "call_sizes": call_sizes, "layout": layout_key(layout), "num_consumer_groups": num_consumer_groups, "num_buffers_warp_spec": num_buffers_warp_spec, "epilogue_fn_hash": epilogue_fn_hash, "kwargs": kwargs, } ) def get_entry(self, cache_key: Optional[str]) -> Optional[GeneratedCodeCacheEntry]: if cache_key is None: return None entry = self._cache.get(cache_key, None) if entry is None: torch._dynamo.utils.counters["inductor"]["generated_module_cache_miss"] += 1 else: torch._dynamo.utils.counters["inductor"]["generated_module_cache_hit"] += 1 return entry def put_entry( self, cache_key: Optional[str], code: str, extra: str, events: list[Any], ) -> None: if cache_key is None: return entry = GeneratedCodeCacheEntry(code, extra, events) self._cache.update({cache_key: entry}) class TritonTemplate(KernelTemplate): """ A Triton template is a template that can be used to generate a Triton kernel. """ # Allow subclasses to override the kernel type kernel_type: type[Any] = TritonTemplateKernel index_counter = itertools.count() all_templates: dict[str, "TritonTemplate"] = {} def __init__( self, name: str, grid: Any, source: str, debug=False, cache_codegen_enabled_for_template=False, prologue_loads_all_inputs=False, ) -> None: super().__init__(name) self.grid = grid self.template = self._template_from_string(source) assert name not in self.all_templates, "duplicate template name" TritonTemplate.all_templates[name] = self self.debug = debug self._cache_codegen_enabled_for_template = cache_codegen_enabled_for_template self._generated_code_cache: GeneratedCodeCache = GeneratedCodeCache() clear_on_fresh_cache(self._generated_code_cache) # When prologue_loads_all_inputs is true, prologue_supported_inputs is populated during def_kernel # by adding all inputs. self.prologue_loads_all_inputs = prologue_loads_all_inputs # When this flag is on, we ensure that the cached results and the generated result if cache # was not used are the same. test_cache = False def maybe_append_choice( self, choices: list[Any], **kwargs: Any ) -> Optional[NotImplementedError]: """ Maybe generates a new ChoiceCaller and appends it into existing choices. Returns None if success, otherwise returns the error. choices: A list of ChoiceCallers. kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller. """ try: choices.append(self.generate(generate_with_caching=True, **kwargs)) return None except NotImplementedError as e: log.info( "Cannot Append Choice: %s. KernelTemplate type is %s", e, type(self), stack_info=log.getEffectiveLevel() < logging.INFO, ) return e # NOTE: MAKE SURE THAT ANY ARGUMENT ADDED TO THIS FUNCTION IS PROPERLY HANDLED IN _generated_code_cache.make_key. def generate_and_load( self, input_nodes: tuple[ir.IRNode], num_stages: int, num_warps: int, call_sizes: Sequence[sympy.core.symbol.Symbol], prefix_args: int, suffix_args: int, epilogue_fn: Optional[Callable[..., Any]], epilogue_fn_hash: Optional[str], subgraphs: Optional[list[ir.Buffer]], workspace_arg: Optional[WorkspaceArg], num_consumer_groups: int, num_buffers_warp_spec: int, layout: ir.Layout, kwargs: dict[str, Any], generate_with_caching, ) -> Optional[GenerateAndLoadResult]: """Generate the python code and load it into the current process""" caching_enabled = ( generate_with_caching and torch._inductor.config.enable_caching_generated_triton_templates ) cache_key = None if caching_enabled: cache_key = self._generated_code_cache.make_key( input_nodes, num_stages, num_warps, call_sizes, prefix_args, suffix_args, epilogue_fn, epilogue_fn_hash, subgraphs, workspace_arg, layout, num_consumer_groups, num_buffers_warp_spec, kwargs, ) assert self.template, "requires jinja2" defines = StringIO() for name, val in kwargs.items(): defines.write(f"{name} : tl.constexpr = {val}\n") defines = defines.getvalue() fake_out = ir.Buffer(name="buf_out", layout=layout) kernel_name = f"triton_{self.name}" numel = sympy_product(layout.size) buffers = itertools.chain(input_nodes, (fake_out,)) if not TritonScheduling.can_use_32bit_indexing(numel, buffers): raise NotImplementedError( "64-bit indexing is not yet implemented for triton templates" ) kernel_options = { "input_nodes": input_nodes, "defines": defines, "num_stages": num_stages, "num_warps": num_warps, "grid_fn": self.grid, "meta": kwargs, "call_sizes": call_sizes, "prefix_args": prefix_args, "suffix_args": suffix_args, "epilogue_fn": epilogue_fn, "subgraphs": subgraphs, "prologue_loads_all_inputs": self.prologue_loads_all_inputs, } if HAS_WARP_SPEC: kernel_options.update( { "num_consumer_groups": num_consumer_groups, "num_buffers_warp_spec": num_buffers_warp_spec, } ) def make_kernel(): return self.kernel_type( kernel_name=kernel_name, output_node=fake_out, workspace_arg=workspace_arg, use_jit=False, **kernel_options, ) def generate_code(kernel) -> Optional[tuple[str, str]]: def make_extra() -> str: extra_parts = [ f"{kwarg}={repr(kwargs[kwarg])}" for kwarg in sorted(kwargs.keys()) ] extra_parts.extend( [ f"num_stages={num_stages}", f"num_warps={num_warps}", ] ) if HAS_WARP_SPEC: extra_parts.extend( [ f"num_consumer_groups={num_consumer_groups}", f"num_buffers_warp_spec={num_buffers_warp_spec}", ] ) extra = "-".join(extra_parts) + "-" return extra try: template = kernel.render(self.template, kwargs, caching_enabled) with kernel.set_subgraph_body(""): code = template.finalize_all() except ZeroDivisionError: # TODO(nmacchioni): fix sympy division by zero return None if self.debug: print("Generated Code:\n", code) extra = make_extra() return code, extra def maybe_test_cache(code: str, extra: str, kernel): if self.test_cache or self.debug: with ( patch.object(V.graph, "get_dtype", self._fake_get_dtype(fake_out)), V.graph.set_current_device(layout.device), make_kernel() as kernel_test, ): result2 = generate_code(kernel_test) assert result2 is not None code_test, extra_test = result2 assert ( code == code_test and extra == extra_test and kernel.args.input_buffers == kernel_test.args.input_buffers and kernel.prologue_supported_inputs == kernel_test.prologue_supported_inputs and kernel.args.sizevars == kernel_test.args.sizevars ), "Generated code cache results in wrong output" # Generate code, extra. code: Optional[str] = None extra: Optional[str] = None with ( patch.object(V.graph, "get_dtype", self._fake_get_dtype(fake_out)), V.graph.set_current_device(layout.device), make_kernel() as kernel, ): cache_entry = self._generated_code_cache.get_entry(cache_key) cache_hit = False if cache_entry is not None: code, extra, events = cache_entry kernel.replay_cached_events(events) cache_hit = True else: result = generate_code(kernel) if result is None: # happens at ZeroDivisionError: return None code, extra = result self._generated_code_cache.put_entry( cache_key, code, extra, kernel.cached_replay_events ) assert code is not None and extra is not None mod = PyCodeCache.load(code, extra) input_call_args = tuple(kernel.args.input_buffers.keys()) prologue_supported_inputs = kernel.prologue_supported_inputs.copy() kernel_args_sizevars_keys = tuple(kernel.args.sizevars.keys()) if cache_hit: maybe_test_cache(code, extra, kernel) return GenerateAndLoadResult( mod, extra, input_call_args, prologue_supported_inputs, kernel_args_sizevars_keys, kernel_options, ) def generate( # type: ignore[override] self, input_nodes: tuple[ir.IRNode], layout: ir.Layout, num_stages: int, num_warps: int, num_consumer_groups: int = 0, num_buffers_warp_spec: int = 0, prefix_args: int = 0, suffix_args: int = 0, epilogue_fn: Optional[Callable[..., Any]] = identity, epilogue_fn_hash: Optional[str] = None, subgraphs: Optional[list[ir.Buffer]] = None, mutated_inputs: Optional[list[ir.IRNode]] = None, call_sizes: Optional[Sequence[sympy.core.symbol.Symbol]] = None, workspace_arg: Optional[WorkspaceArg] = None, generate_with_caching=False, **kwargs, ): """This function generates a TritonTemplateCaller Args: input_nodes: List of input nodes layout: Output layout num_stages: Number of stages for triton launch num_warps: Number of warps for triton launch prefix_args: Number of input nodes to be passed as arguments suffix_args: Number of input nodes to be passed as arguments epilogue_fn: Optional epilogue function to be called on the output subgraphs: Optional subgraphs to be passed as arguments, these will be inlined into the triton template string mutated_inputs: Optional list of input nodes that are mutated by the kernel, this is helpful if you need to return multiple outputs. You can pass them as inputs and mark them as being mutated by the kernel. """ # HACK: Triton currently breaks if TF32 floats are requested, but the CUDA # capability doesn't support them. This is a bug in Triton, but for now we'll # patch around it here. See https://github.com/triton-lang/triton/issues/3011 # for one example issue with this problem. if torch.cuda.is_available() and not torch.cuda.is_tf32_supported(): kwargs["ALLOW_TF32"] = "False" if call_sizes is None: call_sizes = layout.size result = self.generate_and_load( input_nodes, num_stages, num_warps, call_sizes, prefix_args, suffix_args, epilogue_fn, epilogue_fn_hash, subgraphs, workspace_arg, num_consumer_groups, num_buffers_warp_spec, layout, kwargs, generate_with_caching and self._cache_codegen_enabled_for_template, ) # May happen as result of dev by 0. if result is None: return None # We expect the input_buffer order to be [*input_nodes, *captured_buffers] expected_input_args = tuple(unique(x.get_name() for x in input_nodes)) assert ( result.input_call_args[: len(expected_input_args)] == expected_input_args ), ( result.input_call_args, expected_input_args, ) full_input_nodes = tuple( [V.graph.get_buffer(k) for k in result.input_call_args] ) extra_args = V.graph.sizevars.size_hints( map(sympy.expand, result.kernel_args_sizevars_keys), fallback=config.unbacked_symint_fallback, ) kernel_hash_name = f"triton_{self.name}_{next(self.index_counter)}" workspace_args = [] if workspace_arg is not None: # Create workspace tensor workspace_size = workspace_arg.count workspace_tensor = torch.empty_strided( (workspace_size,), (1,), dtype=torch.uint8, device=layout.device.type, ) # Handle zero initialization if needed if workspace_arg.zero_mode != WorkspaceZeroMode.UNINITIALIZED: workspace_tensor.zero_() workspace_args.append(workspace_tensor) options = result.kernel_options def make_kernel_render(out_node): assert result is not None kernel = self.kernel_type( kernel_name=str(Placeholder.KERNEL_NAME), output_node=out_node, workspace_arg=workspace_arg, use_jit=False, **options, ) render = functools.partial( kernel.render, self.template, kwargs, ) return kernel, render # create the BenchmarkRequest assert result.mod.__file__ is not None grid = self.grid( *V.graph.sizevars.size_hints( call_sizes, fallback=config.unbacked_symint_fallback, ), kwargs, ) bmreq_cls: type[TritonBenchmarkRequest] if layout.device.type == "cpu": bmreq_cls = TritonCPUBenchmarkRequest else: bmreq_cls = TritonGPUBenchmarkRequest bmreq = bmreq_cls( module_path=result.mod.__file__, module_cache_key=result.mod.key, kernel_name=f"triton_{self.name}", extra_args=[*extra_args, *workspace_args, *grid], num_stages=num_stages, num_warps=num_warps, num_consumer_groups=num_consumer_groups, num_buffers_warp_spec=num_buffers_warp_spec, matrix_instr_nonkdim=kwargs.get("matrix_instr_nonkdim", 0), waves_per_eu=kwargs.get("waves_per_eu", 0), kpack=kwargs.get("kpack", 2), input_tensor_meta=TensorMeta.from_irnodes(full_input_nodes), # type: ignore[arg-type] output_tensor_meta=TensorMeta.from_irnodes(layout), ) return TritonTemplateCaller( kernel_hash_name, full_input_nodes, layout, make_kernel_render, result.extra.strip("-").replace("-", ", "), bmreq, log_info={ "tile_shape": str( ( kwargs.get("BLOCK_M", -1), kwargs.get("BLOCK_K", -1), kwargs.get("BLOCK_N", -1), ) ), "num_stages": num_stages, "num_warps": num_warps, "GROUP_M": kwargs.get("GROUP_M", -1), "allow_tf32": str(kwargs.get("ALLOW_TF32", None)), "acc_type": str(kwargs.get("ACC_TYPE", None)), "matrix_instr_nonkdim": kwargs.get("matrix_instr_nonkdim", 0), "waves_per_eu": kwargs.get("waves_per_eu", 0), "kpack": kwargs.get("kpack", 2), }, mutated_inputs=mutated_inputs, workspace_arg=workspace_arg, allowed_prologue_inps=result.prologue_supported_inputs, ) class ExternKernelChoice: def __init__( self, kernel, cpp_kernel=None, *, name=None, has_out_variant=True, op_overload=None, use_fallback_kernel=False, kernel_creator=None, ) -> None: super().__init__() name = name or kernel.__name__ assert callable(kernel) assert not hasattr(extern_kernels, name), f"duplicate extern kernel: {name}" self.name = name self.cpp_kernel_name = cpp_kernel self.has_out_variant = has_out_variant setattr(extern_kernels, name, kernel) self.op_overload = op_overload self.use_fallback_kernel = use_fallback_kernel self.kernel_creator = kernel_creator def to_callable(self): return getattr(extern_kernels, self.name) def call_name(self): return f"extern_kernels.{self.name}" @functools.cache # noqa: B019 def hash_key(self): fn = self.to_callable() parts = [ self.name, getattr(fn, "__name__", ""), getattr(fn, "__module__", ""), ] try: parts.append(inspect.getsource(fn)) except Exception: pass return code_hash("-".join(parts)) def bind( self, input_nodes, layout, ordered_kwargs_for_cpp_kernel=(), **kwargs, ): self.ordered_kwargs_for_cpp_kernel = ordered_kwargs_for_cpp_kernel return ExternKernelCaller( self, input_nodes, layout, kwargs, has_out_variant=self.has_out_variant ) class TritonTemplateCaller(ir.TritonTemplateCallerBase): def __init__( self, name, input_nodes, layout, make_kernel_render, description, bmreq, log_info: Optional[ dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]] ] = None, mutated_inputs=None, workspace_arg: Optional[WorkspaceArg] = None, allowed_prologue_inps: Optional[OrderedSet[str]] = None, ) -> None: super().__init__(name, input_nodes, layout, description) self.make_kernel_render = make_kernel_render self.bmreq: TritonBenchmarkRequest = bmreq if log_info is None: log_info = {} self.log_info: dict[str, Any] = log_info self.log_info.update( { "backend": "Triton", "num_stages": self.bmreq.num_stages, "num_warps": self.bmreq.num_warps, } ) self.mutated_inputs = mutated_inputs self.workspace_arg = workspace_arg self.allowed_prologue_inps = ( allowed_prologue_inps if allowed_prologue_inps is not None else OrderedSet() ) def benchmark(self, *args, out): assert self.bmreq is not None if config.profile_bandwidth_with_do_bench_using_profiling: algo = self.bmreq.make_run_fn(*args, out=out) return do_bench_using_profiling(algo) return self.bmreq.benchmark(*args, out=out) def precompile(self): assert self.bmreq is not None self.bmreq.precompile() def __str__(self) -> str: return f"TritonTemplateCaller({self.bmreq.module_path}, {self.description})" def call_name(self): return f"template_kernels.{self.name}" def hash_key(self): return "-".join( [ self.name.rsplit("_", 1)[0], self.bmreq.module_cache_key, ] ) def output_node(self): return ir.TensorBox.create( ir.TritonTemplateBuffer( layout=self.layout, inputs=self.input_nodes, make_kernel_render=self.make_kernel_render, mutated_inputs=self.mutated_inputs, allowed_prologue_inps=self.allowed_prologue_inps, ) ) def info_dict(self) -> dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]]: """Information returned here is logged to the autotune log file when that is enabled.""" return self.log_info def get_make_kernel_render(self): return self.make_kernel_render def autoheuristic_id(self): type_name = "triton" info = self.info_dict() # TODO(AlnisM): Does tile_shape always exist? tile = info["tile_shape"] tile_vals = eval(tile) # type: ignore[arg-type] BLOCK_M = tile_vals[0] BLOCK_K = tile_vals[1] BLOCK_N = tile_vals[2] num_stages = info["num_stages"] num_warps = info["num_warps"] return f"type={type_name}_BLOCK-M={BLOCK_M}_BLOCK-K={BLOCK_K}_BLOCK-N={BLOCK_N}_numstages={num_stages}_numwarps={num_warps}" class ExternKernelCaller(ChoiceCaller): def __init__( self, choice: ExternKernelChoice, input_nodes, layout, kwargs=None, *, has_out_variant=True, ) -> None: super().__init__(choice.name, input_nodes, layout, description="") self.choice = choice self.kwargs = kwargs or {} self.has_out_variant = has_out_variant def __str__(self) -> str: return f"ExternKernelCaller({self.choice.call_name()})" def benchmark(self, *args, out): if out.numel() == 0: # no need to run the kerrnel of do benchmarking return 0.0 if self.has_out_variant: return super().benchmark(*args, out=out) else: algo = self.to_callable() out_new = algo(*args) torch._C._dynamo.guards.assert_size_stride( out_new, tuple(out.size()), tuple(out.stride()) ) out.copy_(out_new) # for correctness checking if config.profile_bandwidth_with_do_bench_using_profiling: return do_bench_using_profiling(lambda: algo(*args)) return benchmarker.benchmark(algo, args, {}) def to_callable(self): fn = self.choice.to_callable() if self.kwargs: return functools.partial(fn, **self.kwargs) return fn def hash_key(self): return "-".join( [ self.choice.name, *[ f"{kwarg}={repr(self.kwargs[kwarg])}" for kwarg in sorted(self.kwargs.keys()) ], self.choice.hash_key(), ] ) def output_node(self): if self.choice.use_fallback_kernel: assert self.choice.op_overload is not None, ( "Please provide an op_overload to use ir.FallbackKernel" ) inner: ir.IRNode = ir.FallbackKernel.create( self.choice.op_overload, *self.input_nodes, **self.kwargs ) elif self.choice.kernel_creator is not None: inner = self.choice.kernel_creator(*self.input_nodes, **self.kwargs) else: cls = ir.ExternKernelOut if self.has_out_variant else ir.ExternKernelAlloc inner = cls( layout=self.layout, inputs=self.input_nodes, python_kernel_name=self.choice.call_name(), cpp_kernel_name=self.choice.cpp_kernel_name, ordered_kwargs_for_cpp_kernel=self.choice.ordered_kwargs_for_cpp_kernel, op_overload=self.choice.op_overload, kwargs=self.kwargs, ) return ir.TensorBox.create(inner) def info_dict(self) -> dict[str, Union[PrimitiveInfoType, list[PrimitiveInfoType]]]: """Information returned here is logged to the autotune log file when that is enabled.""" return { "backend": "extern", "kernel_call_name": self.choice.call_name(), } def autoheuristic_id(self): return f"extern_{self.choice.name}" @functools.cache def get_mm_log_filename() -> Optional[str]: mm_file_name = os.environ.get("TORCHINDUCTOR_MM_LOGGING_FILE", None) if not mm_file_name: return None if "json" not in mm_file_name: mm_file_name = f"{mm_file_name}.json" return mm_file_name def append_to_log(filename, data): lock_file = filename.replace(".json", ".lock") lock = FileLock(lock_file) with lock: try: with open(filename) as f: log_data = json.load(f) except (FileNotFoundError, json.JSONDecodeError): log_data = [] log_data.append(data) with open(filename, "w") as f: json.dump(log_data, f, indent=4) class DataProcessorChoiceCallerWrapper: def __init__(self, wrapped, preprocessor, postprocessor) -> None: self._wrapped = wrapped if preprocessor is not None: self._preprocessor = preprocessor else: self._preprocessor = lambda x, y: (x, y) if postprocessor is not None: self._postprocessor = postprocessor else: self._postprocessor = lambda x: x def __getattr__(self, name): return getattr(self._wrapped, name) def benchmark(self, *args, out) -> float: new_args, new_out = self._preprocessor(args, out) result = self._wrapped.benchmark(*new_args, out=new_out) new_out = self._postprocessor(new_out) if out is not new_out: out.copy_(new_out) return result def output_node(self) -> ir.TensorBox: result = self._wrapped.output_node() return self._postprocessor(result) def __repr__(self) -> str: return f"DataProcessorChoiceCallerWrapper({self._wrapped})" class DataProcessorTemplateWrapper: """ A wrapper class for a kernel template. This class together with `DataProcessorChoiceCallerWrapper` provides a convenient way to preprocess and postprocess data before and after using the wrapped template. A typical usage is to reorder or filter the input nodes in order to match the expected input of other kernel choices like a ATen kernel. A more complicated usage is to prepack the weights. See the example from :mod:`cpp_gemm_template` for more details. """ def __init__( self, wrapped_template_cls, preprocessor, postprocessor, **kwargs, ) -> None: if preprocessor is not None: self._preprocessor = preprocessor else: self._preprocessor = lambda x, y: (x, y) if postprocessor is not None: self._postprocessor = postprocessor else: self._postprocessor = lambda x: x assert "input_nodes" in kwargs assert "layout" in kwargs kwargs["input_nodes"], kwargs["layout"] = preprocessor( kwargs["input_nodes"], kwargs["layout"] ) self._wrapped = wrapped_template_cls(**kwargs) def __getattr__(self, name): return getattr(self._wrapped, name) def maybe_append_choice(self, choices, **kwargs): return type(self._wrapped).maybe_append_choice(self, choices, **kwargs) def generate(self, **kwargs): choice_caller = self._wrapped.generate(**kwargs) return DataProcessorChoiceCallerWrapper( choice_caller, self._preprocessor, self._postprocessor ) def __repr__(self) -> str: return f"DataProcessorTemplateWrapper({self._wrapped})" class ErrorFromChoice(RuntimeError): def __init__(self, msg, choice: ChoiceCaller, inputs_str) -> None: msg += f"\nFrom choice {choice}\n{inputs_str}" super().__init__(msg) self.choice = choice class NoValidChoicesError(RuntimeError): pass @functools.cache def get_num_workers() -> int: if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ: return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"]) cpu_count = ( len(os.sched_getaffinity(0)) if hasattr(os, "sched_getaffinity") else os.cpu_count() ) assert cpu_count # Divide the number of CPUs by the number of GPUs for distributed workloads if ( config.is_fbcode() and torch.cuda.is_available() and torch.cuda.device_count() > 0 ): cpu_count = cpu_count // torch.cuda.device_count() return cpu_count def create_inputs_key(input_nodes) -> str: return repr([AlgorithmSelectorCache.key_of(x) for x in input_nodes]) def create_precompile_key( name: str, inputs_key: str, choices: list[ChoiceCaller] ) -> str: return ":".join( [ name, inputs_key, torch.get_float32_matmul_precision(), ] + [choice.kernel_hash_key() for choice in choices] ) # Args to FeedbackFunctions # timings: mapping from choices to the benchmark time # name: name of the op # input_nodes: list of input ir.py Nodes # choices: list of choices # profiled time: Callable that returns a dict mapping from choices to the profiled time FeedbackFunction = Callable[ [ dict[ChoiceCaller, float], str, list[Any], list[ChoiceCaller], Callable[[], dict[ChoiceCaller, float]], ], None, ] # Args to PreprocessingFunctions # choices: list of ChoiceCaller objects to preprocess # Returns: modified list of ChoiceCaller objects PreprocessingFunction = Callable[[list[ChoiceCaller]], list[ChoiceCaller]] def filter_choices_by_name_regex(choices: list[ChoiceCaller]) -> list[ChoiceCaller]: """Filter choices based on autotune_choice_name_regex config.""" if config.test_configs.autotune_choice_name_regex is not None: return [ c for c in choices if re.search( config.test_configs.autotune_choice_name_regex, c.name, ) ] return choices def filter_choices_by_desc_regex(choices: list[ChoiceCaller]) -> list[ChoiceCaller]: """Filter choices based on autotune_choice_desc_regex config.""" if config.test_configs.autotune_choice_desc_regex is not None: return [ c for c in choices if re.search( config.test_configs.autotune_choice_desc_regex, c.description, ) ] return choices class AlgorithmSelectorCache(PersistentCache): """ A persistent cache for algorithm selection results used in autotuning of GEMMs and convolutions. This classes includes precompilation and benchmarking of the kernels. The cache is keyed by input characteristics (sizes, strides, dtypes, etc.) but doesn't depend on the output layout. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) # the autotuning will get occur in the scheduler, so there is # no guarantee that the first lowering for a given key will also be the # first to benchmark it. share a single precompilation function for all lowerings # of a particular key self.precompile_cache: dict[str, Callable[[], None]] = {} # cache for prescreening results to ensure deterministic candidate selection self.prescreening_cache: dict[str, OrderedSet[str]] = {} # list of callbacks that are called after benchmarking self.feedback_saver_fns: list[FeedbackFunction] = [] # list of callbacks that are called to preprocess choices self.preprocessing_fns: list[PreprocessingFunction] = [] self._register_default_preprocessing_fns() # registers `self.cache_clear(...)` to be called when a fresh Inductor cache is requested clear_on_fresh_cache(self) def _register_default_preprocessing_fns(self): """Register default preprocessing functions.""" # Note: broken out into its own function so that we can avoid clearing # them (i.e. so we can restore them after clearing user provided ones) self.add_preprocessing_fn(filter_choices_by_name_regex) self.add_preprocessing_fn(filter_choices_by_desc_regex) def cache_clear(self) -> None: self.precompile_cache.clear() self.prescreening_cache.clear() def __call__( self, name, choices: list[ChoiceCaller], input_nodes, layout, # optional dict mapping arg indices to the functions # generating a torch.Tensor for that input from the # corresponding ir.Buffer. if passed for a given # arg, the function will be called instead of # generating a random torch.Tensor for benchmarking. input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]] = None, precompilation_timeout_seconds: int = 60 * 60, return_multi_template=False, ): from .codegen.cuda.cuda_kernel import CUDATemplateCaller # Run preprocessing functions on choices for preprocessing_fn in self.preprocessing_fns: choices = preprocessing_fn(choices) # Templates selected with input_gen_fns require specific input data to avoid IMA # Passing custom input gen fns to benchmark_fusion NYI, so skip deferred template selection # TODO(jgong5): support multi-template on CPU if input_gen_fns is not None or layout.device.type == "cpu": return_multi_template = False # TODO - assert that we have not mutating kernels here if mm_file_name := get_mm_log_filename(): M, K = input_nodes[-2].get_size()[:2] N = input_nodes[-1].get_size()[-1] append_to_log(mm_file_name, {"invoke": str((M, K, N))}) if len(choices) == 0: backend_config = ( "max_autotune_gemm_backends" if name != "convolution" else "max_autotune_conv_backends" ) raise NoValidChoicesError( f"No choices to select, please consider adding ATEN into {backend_config} " "config (defined in torch/_inductor/config.py) to allow at least one choice. " ) log.debug("Max autotune selects from %s choices.", str(len(choices))) if len(choices) == 1: if not isinstance(choices[0], CUDATemplateCaller): # CUDATemplateCaller still needs to go through autotuning process to retrieve workspace size. return choices[0].output_node() inputs_key = create_inputs_key(input_nodes) # TODO(nmacchioni): remove this hacky way to tell if we ran benchmarking has_autotuned = False def benchmark(choices): nonlocal has_autotuned # TODO(nmacchioni): remove this hacky way to tell if we ran benchmarking has_autotuned = True counters["inductor"]["select_algorithm_autotune"] += 1 # TODO(nmacchioni): remove this layer of abstraction # construct `benchmark_fn` which should pick between in-process and sub-process autotuning benchmark_fn = self.make_benchmark_fn( choices, input_nodes, layout, input_gen_fns ) # `benchmark_fn(choices)` will execute each choice, and return a dict[choice, timing] which # maps each choice to its runtime, calculated by the specified benchmarker, in milliseconds return benchmark_fn(choices) def autotune(choices): log.debug("Starting autotuning") with dynamo_timed( f"{name}_template_autotuning", log_pt2_compile_event=True, dynamo_compile_column_us="compile_time_autotune_time_us", metadata={ "autotune_strides": ", ".join( [str(n.get_stride()) for n in input_nodes] ), "autotune_dtypes": ", ".join( [str(n.get_dtype()) for n in input_nodes] ), "autotune_shape": ", ".join( ["x".join(map(str, n.get_size())) for n in input_nodes] ), "autotune_offset": ", ".join( [str(n.get_layout().offset) for n in input_nodes] ), }, ): return benchmark(choices) if config.autotune_in_subproc: # Initialize the suprocess pool so it will warmup early. torch._inductor.autotune_process.get_tuning_process_pool() def do_autotuning(choices, precompile_fn): precompile_start_ts = time.time() with dynamo_timed( f"{name}_template_precompiling", log_pt2_compile_event=True, dynamo_compile_column_us="compile_time_autotune_time_us", ): precompile_fn() precompile_elapse = time.time() - precompile_start_ts log.debug("Precompilation elapsed time: %.02fs", precompile_elapse) candidates = self.prescreen_choices( choices, name, inputs_key, self.prescreening_cache ) prescreening_elapse: Optional[float] = None if candidates: prescreening_start_ts = time.time() timings = self.lookup( candidates, name, inputs_key, autotune, ) choices = self.prune_choices_postscreen( choices, timings, name, inputs_key, self.prescreening_cache ) prescreening_elapse = time.time() - prescreening_start_ts log.debug("Prescreening elapsed time: %.02fs", prescreening_elapse) autotune_start_ts = time.time() timings = self.lookup( choices, name, inputs_key, autotune, ) autotune_elapse = time.time() - autotune_start_ts log.debug("Autotuning elapsed time: %.02fs", autotune_elapse) if timings and all( not math.isfinite(timing) for timing in timings.values() ): raise NoValidChoicesError if ( has_autotuned or log.getEffectiveLevel() == logging.DEBUG or config.trace.log_autotuning_results ): self.log_results( name, input_nodes, timings, autotune_elapse, precompile_elapse, prescreening_elapse, ) def profiler_bench_function(): # we're not running through the normal caching autotuner method here because we want to avoid returning # the cached value. # Avoid benchmarking in a separate process because it's not easy to signal to the TuningProcess that we # should use the profiler. with config.patch( profile_bandwidth_with_do_bench_using_profiling=True, autotune_in_subproc=False, ): return benchmark(choices) for feedback_fn in self.feedback_saver_fns: # re-benchmarking the same choices with profiler is a bit expensive, so pass it in as a thunk. feedback_fn( timings, name, input_nodes, choices, profiler_bench_function, ) return timings precompile_fn = self.make_precompile_fn( choices, name, inputs_key, precompilation_timeout_seconds=precompilation_timeout_seconds, ) if return_multi_template and (config.max_autotune or config.max_autotune_gemm): def get_timings(): timings = do_autotuning(choices, precompile_fn) min_extern_choice = float("inf") for choice, timing in timings.items(): if isinstance(choice, ExternKernelCaller): min_extern_choice = min(min_extern_choice, timing) timings = { choice: time for choice, time in timings.items() if ( time <= min_extern_choice or not isinstance(choice, ExternKernelCaller) ) } return timings # We take the union of allowed prologue inputs from all choices, # and, within benchmark fusion, don't allow prologue fusion for # choices which don't support the whole union. allowed_prologue_inps: OrderedSet[str] = OrderedSet() for c in choices: if isinstance(c, TritonTemplateCaller): allowed_prologue_inps |= c.allowed_prologue_inps return torch._inductor.ir.TensorBox.create( torch._inductor.ir.MultiTemplateBuffer( layout, input_nodes, get_timings, choices, allowed_prologue_inps, ) ) timings = do_autotuning(choices, precompile_fn) # if timings is empty, we really have no choice but to return a semi-random # choice. returning the first `ExternKernelCaller` is probably the safest bet # in this case, since it will generally be the ATen kernel. if there are no # `ExternKernelCaller`s to return, then returning the 0th kernel is our next # best option (ideally we'd fail whenever there is no ATen kernel to fallback # to, but that's not trivial to figure out) if timings == {}: for choice in choices: if isinstance(choice, ExternKernelCaller): node = choice.output_node() log.debug( "Autotuning returned empty timings, falling back to first `ExternKernelCaller`: %s", node, ) return node node = choices[0].output_node() log.debug( "Autotuning returned empty timings, falling back to first choice: %s", node, ) return node # if we got any timings at all, pick the best of those choice = min(timings, key=timings.__getitem__) node = choice.output_node() log.debug("Autotuning selected choice: %s", node) return node def make_precompile_fn( self, choices, name: str, inputs_key: str, precompilation_timeout_seconds: Optional[int] = 60 * 60, ) -> Callable[[], None]: """ Returns a function that precompiles the given choices. """ log.debug("Starting precompilation") def no_op(*args, **kwargs): return if ( precompilation_timeout_seconds is None or precompilation_timeout_seconds <= 0 ): log.debug("Precompilation timeout is None or <= 0, returning no_op") return no_op num_workers = min(get_num_workers(), len(choices)) if num_workers <= 0: return no_op # https://github.com/python/cpython/issues/106905 if ( sys.version_info.major == 3 and sys.version_info.minor == 11 and sys.version_info.micro <= 8 ): return no_op # check local and global cache before precompiling timings = self.lookup( choices, name, inputs_key, benchmark=None, ) if timings and len(timings) == len(choices): # compilation in precompile stage is much cheaper than that in # autotuning stage log.debug("Found all %d timings in cache, returning no_op", len(timings)) return no_op precompile_key = create_precompile_key(name, inputs_key, choices) if precompile_func := self.precompile_cache.get(precompile_key): log.debug("Precompile function found in cache, returning it") return precompile_func log.info( "Multithreaded precompilation for %d choices using %d worker threads", len(choices), num_workers, ) # In rare circumstances, because python threads inherit global state, # thread pool executor can race and leave stdout/stderr in a state # different than the original values. we explicitly restore the state # here to avoid this issue. def precompile_with_captured_stdout(choice) -> tuple[None, int]: log.debug("Precompiling choice with captured stdout: %s", choice) start_ns = time.time_ns() with restore_stdout_stderr(): choice.precompile() elapsed_ns = time.time_ns() - start_ns # Return tuple as triton async compile (_worker_compile_triton) # returns tuple[CachingAutotuner, int] return None, elapsed_ns // 1000 def on_complete(future): if not future.exception(): _, precompile_elapsed_us = future.result() elapsed_seconds = precompile_elapsed_us / 1e6 elapsed_times[future] = elapsed_seconds log.debug( "Precompilation complete for future: %s, elapsed time: %.02fs", future, elapsed_seconds, ) executor = ThreadPoolExecutor(max_workers=num_workers) async_compile = torch._inductor.async_compile.AsyncCompile() futures: dict[concurrent.futures.Future[Any], ChoiceCaller] = {} elapsed_times: dict[concurrent.futures.Future[Any], float] = {} # Some choices only differ in runtime arguments, so we # skip a choice if it has the same hash as a previously seen choice seen_choices: OrderedSet[str] = OrderedSet() for c in choices: # Skip choices which we have already issued a precompile if c.kernel_hash_key() in seen_choices: log.debug("Skipping already seen choice: %s", c) continue else: seen_choices.add(c.kernel_hash_key()) if hasattr(c, "precompile"): triton_cuda_choice = isinstance(c, TritonTemplateCaller) and isinstance( c.bmreq, TritonGPUBenchmarkRequest ) if triton_cuda_choice and async_compile.use_process_pool(): with open(c.bmreq.module_path) as file: source_code = file.read() future = async_compile.triton( kernel_name=c.bmreq.kernel_name, source_code=source_code ).future log.debug("Submitted triton async compile for choice: %s", c) else: future = executor.submit(precompile_with_captured_stdout, c) log.debug("Submitted precompile for choice: %s", c) future.add_done_callback(on_complete) futures[future] = c @functools.cache @restore_stdout_stderr() def wait_on_futures(): log.debug("Waiting on futures") counters["inductor"]["select_algorithm_precompile"] += 1 for future in as_completed( futures, timeout=precompilation_timeout_seconds, ): if e := future.exception(): from torch._inductor.codegen.cuda.cuda_kernel import ( CUDATemplateCaller, ) if isinstance(e, CUDACompileError) and isinstance( futures[future], CUDATemplateCaller ): log.debug( "Exception %s for benchmark choice %s", e, futures[future], exc_info=True, ) else: log.error( "Exception %s for benchmark choice %s", e, futures[future] ) else: counters["inductor"]["select_algorithm_num_precompiles"] += 1 log.info( "Precompiling benchmark choice %s took %.02fs", futures.get(future), elapsed_times.get(future), ) executor.shutdown(wait=True) self.precompile_cache[precompile_key] = wait_on_futures return wait_on_futures @classmethod def get_inputs( cls, choices: Sequence[ChoiceCaller], input_nodes: list[ir.IRNode], layout: ir.Layout, input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]], ) -> AutotuneArgs: """ Factory method to create AutotuneArgs from a list of ChoiceCallers. """ if input_gen_fns is None: input_gen_fns = {} # de-duplicate args unique_example_inputs = { x.get_name(): input_gen_fns.get(i, cls.benchmark_example_value)(x) for i, x in enumerate(input_nodes) } example_inputs = list(unique_example_inputs.values()) example_inputs_extern = [ ( unique_example_inputs[input_node.get_name()] if unique_example_inputs[input_node.get_name()].is_mkldnn else torch.as_strided( unique_example_inputs[input_node.get_name()], V.graph.sizevars.size_hints( input_node.get_size(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hints( input_node.get_stride(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hint( input_node.get_layout().offset, fallback=config.unbacked_symint_fallback, ), ) ) for input_node in input_nodes ] out = cls.benchmark_example_value(layout) out_extern = torch.as_strided( out, out.size(), out.stride(), V.graph.sizevars.size_hint(layout.offset) ) expected = None if VERIFY: choices[0].benchmark(*example_inputs_extern, out=out_extern) expected = out_extern.clone() return AutotuneArgs.from_choice_args( example_inputs, example_inputs_extern, out, out_extern, expected, ) @classmethod def benchmark_choice( cls, choice: ChoiceCaller, autotune_args: AutotuneArgs ) -> float: is_extern = isinstance(choice, (ExternKernelCaller, SubgraphChoiceCaller)) benchmark_tensors = autotune_args.get_benchmark_tensors(is_extern) inputs, output = benchmark_tensors.unpack() output.zero_() result = choice.benchmark(*inputs, out=output) device_type = next( (tensor.device.type for tensor in inputs if is_gpu(tensor.device.type)), "cuda", ) device_interface = get_interface_for_device(device_type) if device_interface.is_available(): device_interface.synchronize() # shake out any CUDA errors if VERIFY and autotune_args.expected is not None: autotune_args.verify(**VERIFY) return result @classmethod def benchmark_choices( cls, choices: Sequence[ChoiceCaller], autotune_args: AutotuneArgs, ) -> dict[ChoiceCaller, float]: timings = {} for choice in choices: try: timing = cls.benchmark_choice(choice, autotune_args) except CUDACompileError as e: from torch._inductor.codegen.cuda.cuda_kernel import CUDATemplateCaller if not isinstance(choice, CUDATemplateCaller): log.error( "CUDA compilation error during autotuning: \n%s. \nIgnoring this choice.", e, ) timing = float("inf") except NotImplementedError as e: log.warning("Not yet implemented: %s", e) timing = float("inf") except RuntimeError as e: from torch._inductor.codegen.cuda.cuda_kernel import CUDATemplateCaller msg = str(e) if "invalid argument" in msg: msg += "\n\nThis may mean this GPU is too small for max_autotune mode.\n\n" else: if "illegal memory access" in msg: msg += "\n\nEither error in template or triton bug.\n" if isinstance(choice, CUDATemplateCaller): log.debug( "Runtime error during autotuning: \n%s. \nIgnoring this choice.", msg, exc_info=True, ) else: log.error( "Runtime error during autotuning: \n%s. \nIgnoring this choice.", msg, ) timing = float("inf") except AssertionError as e: raise AssertionError( # noqa: B904 f"Incorrect result from choice {choice}\n\n{e}" ) except Exception as e: try: from triton.runtime.autotuner import OutOfResources if isinstance(e, OutOfResources): log.warning(e) timing = float("inf") else: raise e except ImportError: raise e from None timings[choice] = timing return timings @classmethod def benchmark_in_current_process( cls, choices: Sequence[ChoiceCaller], input_nodes: list[ir.IRNode], layout: ir.Layout, input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]], ) -> dict[ChoiceCaller, float]: inputs = cls.get_inputs(choices, input_nodes, layout, input_gen_fns) return cls.benchmark_choices(choices, inputs) @classmethod def benchmark_in_sub_process( cls, choices: Sequence[ChoiceCaller], input_nodes: list[ir.IRNode], layout: ir.Layout, input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]], ): from . import autotune_process # only benchmark triton kernel in sub process for now. # ATen/Extern kernel are still benchmarked in the current process. extern = [c for c in choices if isinstance(c, ExternKernelCaller)] triton = [c for c in choices if not isinstance(c, ExternKernelCaller)] timings = cls.benchmark_in_current_process( extern, input_nodes, layout, input_gen_fns ) timings.update(autotune_process.benchmark_in_sub_process(triton)) # type: ignore[arg-type] return timings @classmethod def make_benchmark_fn( cls, choices: Sequence[ChoiceCaller], input_nodes: list[ir.IRNode], layout: ir.Layout, input_gen_fns: Optional[dict[int, Callable[[ir.Buffer], torch.Tensor]]], ): if DEBUG: print(f"{len(choices)} tuning requests:") if config.autotune_in_subproc: return functools.partial( cls.benchmark_in_sub_process, input_nodes=input_nodes, layout=layout, input_gen_fns=input_gen_fns, ) else: return functools.partial( cls.benchmark_in_current_process, input_nodes=input_nodes, layout=layout, input_gen_fns=input_gen_fns, ) @staticmethod def prescreen_choices( choices: list[ChoiceCaller], name: str, inputs_key: str, prescreen_cache: dict[str, OrderedSet[str]], ) -> list[ChoiceCaller]: """ Figure out what choices need to be prescreened before autotuning with runtime params. Prescreening is a process of reducing the number of autotuning for choices with runtime params via a two stage autotuning process. First, we fix a set of runtime params (here we use swizzle=2) and run autotuning to get a set of candidates. Then, we run autotuning again with the candidates and the full set of runtime params. Since have the concept of runtime params, we need to differentiate between choice's hash_key and choice's kernel_hash_key. The former includes information like runtime params, while the latter does not. prescreen_cache, if exists, stores the set of hash_key that should win the prescreening. Right now, only CUTLASS choices have runtime params. """ # Create a cache key for prescreening results prescreen_key = f"{name}:{inputs_key}" # Check if we have cached prescreening results (prescreen_winners) if prescreen_key in prescreen_cache: prescreen_winners = [ choice for choice in choices if choice.hash_key() in prescreen_cache[prescreen_key] ] return prescreen_winners # prescreen cutlass from .codegen.cuda.cuda_kernel import CUDATemplateCaller candidates = [] if ( config.cuda.cutlass_prescreening and len(config.cuda.cutlass_max_profiling_swizzle_options) > 1 ): candidates.extend( [ c for c in choices if isinstance(c, CUDATemplateCaller) # hardcoded to only look at swizzle=2 if c.info_dict().get("swizzle") == "2" ] ) # skip prescreening if the number of candidates is too small if len(candidates) < 10: return [] return candidates # type: ignore[return-value] @staticmethod def prune_choices_postscreen( choices: list[ChoiceCaller], candidate_timings: dict[ChoiceCaller, float], name: str, inputs_key: str, prescreen_cache: dict[str, OrderedSet[str]], ) -> list[ChoiceCaller]: """ Prune the choices after prescreening. """ from .codegen.cuda.cuda_kernel import CUDATemplateCaller prescreen_key = f"{name}:{inputs_key}" # Check if we have cached postscreen results if prescreen_key in prescreen_cache: # candidate_timings are from choices that have won prescreening already winner_kernel_hashes = [ candidate.kernel_hash_key() for candidate in candidate_timings ] pruned_choices = [ choice for choice in choices if not isinstance(choice, CUDATemplateCaller) or choice.kernel_hash_key() in winner_kernel_hashes ] return pruned_choices log.debug("Before pruning using prescreening timings, %d choices", len(choices)) sorted_candidates = sorted( candidate_timings.keys(), key=lambda choice: candidate_timings[choice] ) # Print prescreening timings if ( candidate_timings and PRINT_AUTOTUNE and config.autotune_num_choices_displayed != 0 ): n = config.autotune_num_choices_displayed top_k = sorted_candidates[:n] best = top_k[0] best_time = candidate_timings[best] lines = ["PRESCREENING CANDIDATE TIMINGS"] for choice in top_k: result = candidate_timings[choice] if result: lines.append( f" {choice.name} {result:.4f} ms {best_time / result:.1%} {choice.description}" ) else: lines.append( f" {choice.name} {result:.4f} ms " ) log.info("\n".join(lines)) num_to_keep = max(int(math.sqrt(len(choices)) / 4), 8) # prune choices based on prescreening timings candidates_to_prune = OrderedSet( candidate.kernel_hash_key() for candidate in sorted_candidates[num_to_keep:] ) winner_hashes: OrderedSet[str] = OrderedSet() for candidate in sorted_candidates[:num_to_keep]: if candidate_timings[candidate] == float("inf"): candidates_to_prune.add(candidate.kernel_hash_key()) else: winner_hashes.add(candidate.hash_key()) if isinstance(candidate, CUDATemplateCaller): candidate.bmreq.ensure_dll_loaded() pruned_choices = [ choice for choice in choices if choice.kernel_hash_key() not in candidates_to_prune # type: ignore[attr-defined] ] # Cache the hash_key of winners of prescreening prescreen_cache[prescreen_key] = winner_hashes log.debug( "After pruning using prescreening timings, %d choices", len(pruned_choices) ) return pruned_choices @staticmethod def log_results( name: str, input_nodes: list[ir.IRNode], timings: dict[ChoiceCaller, float], elapse: float, precompile_elapse: float, prescreening_elapse: Optional[float] = None, ): V.debug.log_autotuning_results( name, input_nodes, timings, elapse, precompile_elapse ) if not (config.max_autotune or config.max_autotune_gemm) or not PRINT_AUTOTUNE: return sizes = ", ".join( [ "x".join( map( str, V.graph.sizevars.size_hints( n.get_size(), fallback=config.unbacked_symint_fallback, # type: ignore[arg-type] ), ) ) for n in input_nodes ] ) strides = ", ".join([str(n.get_stride()) for n in input_nodes]) dtypes = ", ".join([str(n.get_dtype()) for n in input_nodes]) if config.autotune_num_choices_displayed == 0: return # when autotune_num_choices_displayed is None, [:None] means all n = config.autotune_num_choices_displayed top_k = sorted(timings, key=timings.__getitem__)[:n] best = top_k[0] def get_choice_info(choice): if isinstance(choice, torch._inductor.select_algorithm.ExternKernelCaller): return {"type": "cublas", "time": timings[choice]} assert isinstance( choice, torch._inductor.select_algorithm.TritonTemplateCaller ) info = choice.info_dict() tile = info["tile_shape"] tile_vals = eval(tile) # type: ignore[arg-type] BLOCK_M = tile_vals[0] BLOCK_K = tile_vals[1] BLOCK_N = tile_vals[2] return { "type": "triton", "time": timings[choice], "BLOCK_M": BLOCK_M, "BLOCK_K": BLOCK_K, "BLOCK_N": BLOCK_N, "num_stages": info["num_stages"], "num_warps": info["num_warps"], } mm_filename = get_mm_log_filename() if mm_filename and "mm" in name: M, K = input_nodes[-2].get_size()[:2] N = input_nodes[-1].get_size()[-1] out_dict = { str((M, K, N)): [get_choice_info(choice) for choice in timings.keys()] } append_to_log(mm_filename, out_dict) best_time = timings[best] sys.stderr.write(f"AUTOTUNE {name}({sizes})\n") sys.stderr.write(f"strides: {strides}\n") sys.stderr.write(f"dtypes: {dtypes}\n") for choice in top_k: result = timings[choice] if result: kernel_description = choice.description sys.stderr.write( f" {choice.name} {result:.4f} ms {best_time / result:.1%} {kernel_description}\n" ) else: sys.stderr.write( f" {choice.name} {result:.4f} ms \n" ) autotune_type_str = ( "SubProcess" if config.autotune_in_subproc else "SingleProcess" ) prescreening_msg = ( f" and {prescreening_elapse:.4f} seconds prescreening" if prescreening_elapse is not None else "" ) sys.stderr.write( f"{autotune_type_str} AUTOTUNE benchmarking takes {elapse:.4f} seconds and {precompile_elapse:.4f}" f" seconds precompiling for {len(timings)} choices" + prescreening_msg + "\n" ) @staticmethod def benchmark_example_value(node): """ Convert an ir.Buffer into a concrete torch.Tensor we can use for benchmarking. """ if isinstance(node, ir.Layout): node = ir.Buffer(name="fake", layout=node) # triton templates want the base tensor. if isinstance(node, ir.BaseView): node = node.unwrap_view() # Inplace padding may reinterpret a tensor to a larger tensor if the # stride is large enough. The V.graph.get_allocation_size takes this into account. # So we need call as_strided in the end to 'view' the tensor with the correct # sizes/strides return AlgorithmSelectorCache.generate_example_value( V.graph.sizevars.size_hints( node.get_size(), fallback=config.unbacked_symint_fallback, ), V.graph.sizevars.size_hints( node.get_stride(), fallback=config.unbacked_symint_fallback, ), node.get_device(), node.get_dtype(), node.layout.offset, V.graph.sizevars.size_hints( V.graph.get_allocation_size(node), fallback=config.unbacked_symint_fallback, ), ) @staticmethod def generate_example_value( size, stride, device, dtype, extra_size, allocation_size=None ): # preserve rng states to avoid the rand_strided call below changes # the rng states for the real model code. with preserve_rng_state(): if allocation_size is None or allocation_size == size: return rand_strided( size, stride, device=device, dtype=dtype, extra_size=extra_size, ) else: return rand_strided( allocation_size, stride, device=device, dtype=dtype, extra_size=extra_size, ).as_strided(size, stride) @staticmethod def key_of(node): """ Extract the pieces of an ir.Buffer that we should invalidate cached autotuning results on. """ sizevars = V.graph.sizevars return ( node.get_device().type, str(node.get_dtype()), *sizevars.size_hints( node.get_size(), fallback=config.unbacked_symint_fallback, ), *sizevars.size_hints( node.get_stride(), fallback=config.unbacked_symint_fallback, ), sizevars.size_hint( node.get_layout().offset, fallback=config.unbacked_symint_fallback, ), ) def add_feedback_saver(self, fn: FeedbackFunction): self.feedback_saver_fns.append(fn) def add_preprocessing_fn(self, fn: PreprocessingFunction): self.preprocessing_fns.append(fn) def clear_preprocessing_fns(self, clear_defaults: bool = False): """Clear preprocessing functions. Args: clear_defaults: If True, clears all functions including defaults. If False, clears only user-added functions and re-registers defaults. """ self.preprocessing_fns.clear() if not clear_defaults: self._register_default_preprocessing_fns() _ALGORITHM_SELECTOR_CACHE: Optional[AlgorithmSelectorCache] = None def get_algorithm_selector_cache() -> AlgorithmSelectorCache: """Get the global algorithm selector cache, creating it if it doesn't exist.""" global _ALGORITHM_SELECTOR_CACHE if _ALGORITHM_SELECTOR_CACHE is None: _ALGORITHM_SELECTOR_CACHE = AlgorithmSelectorCache() return _ALGORITHM_SELECTOR_CACHE def autotune_select_algorithm(*args, **kwargs): cache = get_algorithm_selector_cache() if "return_multi_template" not in kwargs: kwargs["return_multi_template"] = ( torch._inductor.config.benchmark_epilogue_fusion ) if "precompilation_timeout_seconds" not in kwargs: kwargs["precompilation_timeout_seconds"] = config.precompilation_timeout_seconds return cache(*args, **kwargs) def add_feedback_saver( fn: FeedbackFunction, ): cache = get_algorithm_selector_cache() cache.add_feedback_saver(fn) def add_preprocessing_fn( fn: PreprocessingFunction, ): """Add a preprocessing function to be applied to choices before autotuning. Preprocessing functions are called sequentially in the order they were registered, with each function receiving the output of the previous one. They can filter, reorder, transform, or modify the list of choices in any way. Args: fn: A function that takes a list of ChoiceCaller objects and returns a modified list of ChoiceCaller objects. Example: def my_filter(choices): # Filter out choices with certain names return [c for c in choices if 'slow' not in c.name.lower()] add_preprocessing_fn(my_filter) """ cache = get_algorithm_selector_cache() cache.add_preprocessing_fn(fn) def clear_preprocessing_fns(clear_defaults: bool = False): """Clear preprocessing functions at module level. Args: clear_defaults: If True, clears all functions including defaults. If False, clears only user-added functions and re-registers defaults. """ cache = get_algorithm_selector_cache() cache.clear_preprocessing_fns(clear_defaults) def realize_inputs(*args): if len(args) == 1: return ir.ExternKernel.require_stride1(ir.ExternKernel.realize_input(args[0])) return [realize_inputs(x) for x in args] class SymbolicGridFn: """ Wrapper around a grid function that allows either int or sympy inputs. @SymbolicGridFn def grid(x, meta, *, cdiv): return cdiv(x, meta["BLOCK_X"]) """ def __init__(self, fn: Callable[..., tuple[Any, Any, Any]]): self.fn = fn self.kwargs_int = {} self.kwargs_sym = {} params = inspect.signature(fn).parameters for name, fn_sym, fn_int in [ ("cdiv", CeilDiv, ceildiv), ("min", sympy.Min, min), ("max", sympy.Max, max), ]: if name in params: self.kwargs_int[name] = fn_int self.kwargs_sym[name] = fn_sym def __call__(self, *args, **kwargs) -> tuple[int, int, int]: return self.fn(*args, **kwargs, **self.kwargs_int) def sympy_call(self, *args, **kwargs): return self.fn(*args, **kwargs, **self.kwargs_sym) # ensure lowering is imported so that `extern_kernels.*` is populated from . import lowering # noqa: F401