# mypy: allow-untyped-defs from __future__ import annotations import collections import contextlib import dataclasses import functools import itertools import logging import math import operator from typing import ( Any, Callable, Counter, Dict, Iterable, List, no_type_check, Optional, Sequence, Tuple, Type, Union, ) import sympy import torch import torch._logging from torch.utils._ordered_set import OrderedSet from torch.utils._sympy.functions import FloorDiv, Identity, ModularIndexing from torch.utils._sympy.symbol import ( free_symbol_is_type, prefix_str, symbol_is_type, SymT, ) from ..._dynamo.utils import counters from .. import config, ir, scheduler from ..codecache import code_hash from ..dependencies import MemoryDep, StarDep, WeakDep from ..ir import IRNode, TritonTemplateBuffer from ..optimize_indexing import indexing_dtype_strength_reduction from ..runtime.runtime_utils import green_text, yellow_text from ..scheduler import BaseSchedulerNode, BaseScheduling, WhyNoFuse from ..utils import ( cache_on_self, expr_fits_within_32bit, get_dtype_size, IndentedBuffer, Placeholder, sympy_index_symbol, sympy_product, sympy_subs, unique, ) from ..virtualized import ops, OpsWrapper, V from .common import CSEVariable, index_prevent_reordering, Kernel, PythonPrinter from .multi_kernel import MultiKernel from .simd_kernel_features import ( DisableReduction, EnableReduction, NodeScheduleMarker, SIMDKernelFeatures, ) log = logging.getLogger(__name__) perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints") schedule_log = torch._logging.getArtifactLogger(__name__, "schedule") fusion_log = torch._logging.getArtifactLogger(__name__, "fusion") pexpr = PythonPrinter().doprint @dataclasses.dataclass class IterationRanges: """ Each range tree represents multiple sets of iteration indexing in a single tiled dimension in the output kernel. If you have two loops ranges one (4, 3, 2) and another (4, 6), then the range tree will be: 4 (i0) 3 (i1) 6 (i3) 2 (i2) Where i0 is shared between both loops, but then the split into different indexing vars. All loop ranges must iterate over the same number of elements. """ def __init__( self, name: str, var_list: List[sympy.Symbol], var_ranges: Dict[sympy.Symbol, sympy.Expr], numel: sympy.Expr, prefix: str, *, kernel: SIMDKernel, divisor=sympy.S.One, length=sympy.S.One, root: IterationRangesRoot, ) -> None: super().__init__() self.name = name self.var_list = var_list self.var_ranges = var_ranges self.numel = numel self.prefix = prefix self.divisor = divisor self.length = length self.kernel = kernel self.root = root def symbol(self): return sympy_index_symbol(self.name) @property @cache_on_self @no_type_check def symt(self) -> SymT: prefix_to_symt = {prefix: symt for symt, prefix in prefix_str.items()} return prefix_to_symt[self.prefix] class IterationRangesRoot(IterationRanges): def __init__( self, name: str, numel: sympy.Expr, # TODO: this is probably SymTy.INDEX and SymTy.RINDEX prefix: str, index: int, kernel: SIMDKernel, pid_cache=None, *, is_loop: bool, tensor_dim: Optional[int], grid_dim: Optional[int], has_zdim: bool, ) -> None: if pid_cache is None: pid_cache = {} super().__init__( name=name, var_list=[], var_ranges={}, numel=numel, prefix=prefix, kernel=kernel, root=self, ) self.index = index # Store all the nodes in one flat list self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {} # This is for re-ordering program ID in triton mm template # pid_cache["tl.program_id(0)"] = pid_m self.pid_cache: Dict[str, str] = pid_cache # True if the dimension is implemented as a single program looping over # the full dimension (currently only used for non-persistent reduction) assert not is_loop or (prefix == "r" and grid_dim is None) self.is_loop = is_loop # Index of corresponding dimension on triton tensors self.tensor_dim = tensor_dim # Index of corresponding dimension in the triton grid self.grid_dim = grid_dim self.has_zdim = has_zdim def __repr__(self) -> str: return f"IterationRangesRoot({self.name!r}, {self.numel}, ...)" def cache_clear(self): for node in self.nodes.values(): node.cache_clear() def index_sym(self): return sympy_index_symbol(f"{self.prefix}index") def lookup(self, divisor, length): """ Lookup a given RangeTreeEntry, creating it if needed """ if V.graph.sizevars.statically_known_equals(divisor * length, self.numel): expr = FloorDiv(self.index_sym(), divisor) else: expr = ModularIndexing(self.index_sym(), divisor, length) if expr not in self.nodes: node = IterationRangesEntry( f"{self.prefix}{next(V.kernel.iter_vars_count)}", divisor, length, expr, self, ) V.kernel.range_tree_nodes[node.symbol()] = node self.var_list.append(node.symbol()) self.var_ranges[node.symbol()] = length self.nodes[expr] = node return self.nodes[expr] def construct_entries(self, lengths: List[sympy.Expr]): divisor = sympy.S.One itervars = [] for length in reversed(lengths): itervars.append(self.lookup(divisor, length)) divisor = divisor * length return list(reversed(itervars)) def construct(self, lengths: List[sympy.Expr]): return [e.symbol() for e in self.construct_entries(lengths)] def vars_and_sizes(self, index: sympy.Expr): """Figure out vars from this tree used in index""" nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols] nodes = [n for n in nodes if n and n.prefix == self.prefix] nodes.sort( key=lambda x: V.graph.sizevars.size_hint( x.divisor, fallback=config.unbacked_symint_fallback ) ) divisor = sympy.S.One index_vars = [] sizes = [] def add(node): nonlocal divisor index_vars.append(node.symbol()) sizes.append(node.length) divisor = divisor * node.length for node in nodes: if not V.graph.sizevars.statically_known_equals(node.divisor, divisor): # fill in unused index var add(self.lookup(divisor, FloorDiv(node.divisor, divisor))) divisor = node.divisor add(node) if not V.graph.sizevars.statically_known_equals(self.numel, divisor): # fill in unused index var add(self.lookup(divisor, FloorDiv(self.numel, divisor))) return list(reversed(index_vars)), list(reversed(sizes)) class IterationRangesEntry(IterationRanges): def __init__( self, name: str, divisor: sympy.Expr, length: sympy.Expr, expr: sympy.Expr, parent: IterationRanges, ) -> None: super().__init__( name=name, numel=parent.numel / length, var_list=parent.var_list, var_ranges=parent.var_ranges, prefix=parent.prefix, divisor=divisor, length=length, kernel=parent.kernel, root=parent.root, ) self.parent = parent self.codegen = functools.lru_cache(None)(self._codegen) self.expr = expr def __repr__(self) -> str: return f"IterationRangesEntry({self.name}, {self.divisor}, {self.length}, {self.expr}, {self.var_ranges})" def set_name(self, name): self.codegen = lambda: name # type: ignore[assignment] self.codegen.cache_clear = lambda: None # type: ignore[method-assign] self.name = name def cache_clear(self): self.codegen.cache_clear() def _codegen(self): V.kernel.codegen_iteration_ranges_entry(self) return self.name def precomputed_args(self): # for dynamic shapes, find parts of indexing expressions that have to be precomputed precomputed_args: List[sympy.Expr] = [] if isinstance(self.expr, sympy.Symbol): return precomputed_args assert isinstance(self.expr, (FloorDiv, ModularIndexing)), type(self.expr) for arg in self.expr.args[1:]: if not isinstance(arg, (sympy.Integer, sympy.Symbol)): symbols = arg.free_symbols if len(symbols) > 0 and all( symbol_is_type(s, SymT.SIZE) for s in symbols ): precomputed_args.append(arg) return precomputed_args def __hash__(self): return hash(self.name) def __eq__(self, other): return self.name == other.name def constant_repr(value): if value == float("inf"): return 'float("inf")' elif value == float("-inf"): return 'float("-inf")' elif math.isnan(value): return 'float("nan")' return repr(value) class SIMDKernel(Kernel): """ Common base class for Triton/Halide codegen which both use flattened indexing rather than loop nests. """ sexpr = pexpr kexpr: Callable[[sympy.Expr], str] allow_block_ptr = False kernel_name: str def __init__( self, *groups, features: SIMDKernelFeatures, pid_cache=None, override_persistent_reduction=None, override_cooperative_reduction=None, ) -> None: if pid_cache is None: pid_cache = {} super().__init__() self.features = features self.mutations = features.get_mutations() self.body = IndentedBuffer() self.indexing_code = IndentedBuffer() self.numels = [V.graph.sizevars.simplify(s) for s in groups] self.range_trees: List[IterationRangesRoot] = [] self.range_tree_nodes: Dict[sympy.Symbol, IterationRangesEntry] = {} self.iter_vars_count = itertools.count() self.inside_reduction = self.numels[-1] != 1 self.cooperative_reduction: bool = ( override_cooperative_reduction if override_cooperative_reduction is not None else self.should_use_cooperative_reduction() ) self.persistent_reduction: bool = ( override_persistent_reduction if override_persistent_reduction is not None else self.should_use_persistent_reduction() ) self.no_x_dim = self.want_no_x_dim() self.code_hash: Optional[str] = None # define this in a closure to make cache local to object @functools.lru_cache(None) def simplify_indexing(index: sympy.Expr): index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges()) for tree in self.range_trees: index = self.combine_contiguous_dims(index, tree) return self.combine_modular_indexing_pairs(index) self.simplify_indexing = simplify_indexing self.initialize_range_tree(pid_cache) def dtype_to_str(self, dtype: torch.dtype) -> str: raise NotImplementedError @property def index_dtype(self) -> str: return self.dtype_to_str(self.features.select_index_dtype()) def want_no_x_dim(self): return False def initialize_range_tree(self, pid_cache): no_r_dim = not self.inside_reduction or self.numels[-1] == 1 prefixes = "zyxr" active_prefixes = prefixes[-len(self.numels) :] grid_dims = "xyz" if self.no_x_dim: tensor_dims = "r" elif no_r_dim: tensor_dims = "xyz" else: tensor_dims = "xyzr" tensor_dims = "".join(p for p in tensor_dims if p in active_prefixes) for i, prefix in enumerate(active_prefixes): is_reduction = prefix == "r" tensor_dim = tensor_dims.find(prefix) if prefix in tensor_dims else None grid_dim = None if is_reduction else grid_dims.find(prefix) index = i if grid_dim is None else grid_dim self.range_trees.append( IterationRangesRoot( f"{prefix}index", self.numels[i], prefix, index, self, pid_cache=pid_cache, is_loop=is_reduction and not self.persistent_reduction, tensor_dim=tensor_dim, grid_dim=grid_dim, has_zdim="z" in active_prefixes, ) ) def finalize_indexing(self, indices: Sequence[sympy.Expr]): """ Hook called right before codegen with every index that will be used in the fused kernel. """ def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable): prior = self.inside_reduction self.inside_reduction = False try: return self.store(name, index, value) finally: self.inside_reduction = prior def should_use_cooperative_reduction(self) -> bool: return False # defined in subclass def should_use_persistent_reduction(self) -> bool: return False # defined in subclass def var_ranges(self): return dict( itertools.chain.from_iterable( tree.var_ranges.items() for tree in self.range_trees ) ) def triton_tensor_ndim(self): return sum(int(tree.tensor_dim is not None) for tree in self.range_trees) def indexing_size_str(self, i): sizes = ["None"] * self.triton_tensor_ndim() sizes[i] = ":" return f"[{', '.join(sizes)}]" def dense_size_list(self) -> List[str]: sizes = ["1"] * self.triton_tensor_ndim() for tree in self.range_trees: if tree.tensor_dim is None: continue if tree.prefix != "r" or self.inside_reduction: sizes[tree.tensor_dim] = f"{tree.prefix.upper()}BLOCK" return sizes def dense_size_str(self): sizes = self.dense_size_list() return f"[{', '.join(sizes)}]" def combine_modular_indexing_pairs(self, index): if not isinstance(index, ModularIndexing): return index x = index.args[0] if (tree_node := self.range_tree_nodes.get(x)) is None: return index new_index = sympy_subs(index, {x: tree_node.expr}) new_index = V.graph.sizevars.combine_modular_indexing_pairs(new_index) # the index now contains xindex/etc, which is nonstandard, fix it up return sympy_subs( new_index, { tree_node.root.index_sym(): tree_node.root.lookup( sympy.S.One, tree_node.root.numel ).symbol() }, ) def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot): if expand_res := V.graph.sizevars.expand_floor_div(index): new_index, denominator = expand_res # type: ignore[misc] return FloorDiv(self._combine_contiguous_dims(new_index, tree), denominator) else: return self._combine_contiguous_dims(index, tree) def _combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot): """ More aggressive simplification to merge contiguous dims """ if isinstance(index, (sympy.Integer, sympy.Symbol)): return index index_vars, sizes = tree.vars_and_sizes(index) if len(sizes) <= 1: return index new_sizes, reindex, prune = V.graph.sizevars._simplify_loops( index_vars, sizes, index_prevent_reordering([index], index_vars, sizes) ) if new_sizes == sizes: return index new_index_vars = tree.construct(new_sizes) new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars)))) return new_index def disable_reduction(self): should_flush = self.range_trees[-1].is_loop or self.cooperative_reduction @contextlib.contextmanager def ctx(): if self.numels[-1] == 1: assert not self.inside_reduction yield return if should_flush: # calling codegen_body() will flush all the pending buffers # and write out a reduction loop self.codegen_body() self.inside_reduction = False try: yield if should_flush: # flush out any code before opening the next loop self.codegen_body() finally: self.inside_reduction = True return ctx() def set_ranges(self, *lengths): assert len(lengths) == len(self.range_trees) return [ ranges.construct(length) for length, ranges in zip(lengths, self.range_trees) ] @staticmethod def _split_iteration_ranges( groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]] ): sv = V.graph.sizevars new_ranges: List[List[sympy.Expr]] = [[] for _ in groups] remaining = [sv.simplify(g) for g in groups] var_count = itertools.count() def add_range(i, expr): expr = sv.simplify(expr) if not sv.statically_known_multiple_of(remaining[i], expr): raise CantSplit # guard on the last item out remaining[i] = FloorDiv(remaining[i], expr) new_ranges[i].append(expr) return next(var_count) def make_combined(size, idx1, idx2): def getter(flat_vars): return size * flat_vars[idx1] + flat_vars[idx2] return getter return_getters_groups = [] current_group = 0 for length_group in lengths: return_getters = [] for size in length_group: if sv.statically_known_equals(size, 1): # type: ignore[arg-type] return_getters.append(lambda _: sympy.S.Zero) continue while current_group < len(remaining) and sv.statically_known_equals( remaining[current_group], 1 # type: ignore[arg-type] ): # scroll to next group with remaining elements current_group += 1 if current_group + 1 < len(remaining) and sv.statically_known_gt( size, remaining[current_group] ): # need to break size in two if not sv.statically_known_multiple_of( size, remaining[current_group] ): raise CantSplit size1 = remaining[current_group] size2 = FloorDiv(size, remaining[current_group]) return_getters.append( make_combined( size2, add_range(current_group, size1), add_range(current_group + 1, size2), ) ) else: return_getters.append( operator.itemgetter(add_range(current_group, size)) ) return_getters_groups.append(return_getters) assert all( V.graph.sizevars.size_hint(s) == 1 for s in remaining ), f"failed to set ranges {remaining} {lengths}" return new_ranges, return_getters_groups @classmethod def is_compatible( cls, groups: Iterable[sympy.Expr], lengths: Sequence[Sequence[sympy.Expr]] ): try: cls._split_iteration_ranges(groups, lengths) return True except CantSplit: return False def split_and_set_ranges(self, lengths: List[List[sympy.Expr]]): """ We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1). To do this we need to split up the iteration space of i0 into something like: for i1 in s0: for i2 in s1: i0 = i1*s1 + i2 .... This function matches and resplits lengths to the groups of this kernel to enable tiled + non-tiled fusions. """ groups = [rt.numel for rt in self.range_trees] if not self.inside_reduction: groups[-1] = sympy.S.One if len(lengths) == len(self.range_trees) and all( V.graph.sizevars.simplify(sympy_product(x) - g) == 0 for x, g in zip(lengths, groups) ): return self.set_ranges(*lengths) new_ranges, return_getters_groups = self._split_iteration_ranges( groups, lengths ) itervars = list(itertools.chain.from_iterable(self.set_ranges(*new_ranges))) return [[fn(itervars) for fn in fns] for fns in return_getters_groups] def is_indirect_indexing(self, index: sympy.Expr): # tmpX means indirect indexing return free_symbol_is_type(index, SymT.TMP) def is_broadcasted(self, index: sympy.Expr): # Note. This may not be correct when there is indirect indexing if self.is_indirect_indexing(index): return False index_numels = [1] * len(self.numels) for symbol in index.free_symbols: if symbol not in self.range_tree_nodes: # Non-iterated variables, e.g. strides continue entry = self.range_tree_nodes[symbol] # type: ignore[index] assert isinstance(entry.parent, IterationRangesRoot) index_numels[entry.parent.index] *= entry.length # If the index variables only iterate over a subset of the kernel # numels, then it must be broadcasted. simplify = V.graph.sizevars.simplify return any( simplify(idx_range) != simplify(iter_range) # type: ignore[arg-type] for idx_range, iter_range in zip(index_numels, self.numels) ) def index_to_str(self, index: sympy.Expr) -> str: """ Convert an index expr to a string that can be used in output code. e.g. a sympy expression "s2" may actually appear as "ks1" in the generated kernel. Index expressions often need to be passed in as arguments to the triton kernel. Rename_indexing and codegen_indexing keep track of the needed indices and add new parameters to the function signature. """ if isinstance(index, list): return f"[{', '.join(map(self.index_to_str, index))}]" return self.kexpr(self.rename_indexing(index)) # type: ignore[call-arg] def prepare_indexing( self, index: sympy.Expr, ): index = self.simplify_indexing(index) index = sympy_subs(index, V.graph.sizevars.precomputed_replacements) # if simple replacements didn't get rid of floor/ceil, try full subs if len(index.atoms(sympy.floor)) or len(index.atoms(sympy.ceiling)): index = index.subs(V.graph.sizevars.precomputed_replacements) # last resort, if no range vars are in the expr, hoist it # TODO instead of trying to blindly find complicated exprs, we should hoist the # inputs/outputs sizes and strides, but at the time indexing is generated # kernel inputs and outputs are not set yet, we'd need a deeper refactor # to do it this way if len(index.atoms(sympy.ceiling)): for a in index.atoms(sympy.ceiling): # for nested exprs, atoms yields top level first (?) # so if everything goes fine, lower level replacements will come up empty symbols = a.free_symbols if len(symbols) > 0 and all( symbol_is_type(s, (SymT.SIZE, SymT.PRECOMPUTED_SIZE)) for s in symbols ): replacements = {a: V.graph.sizevars.lookup_precomputed_size(a)} index = sympy_subs(index, replacements) simp_index = self.simplify_indexing(index) # Now that we are done simplifying we can unwrap Identity so that downstream handling # for its contained expression will work. previously, tl.full wrapping of sympy.Integer # would not occur simp_index = ( simp_index if not isinstance(simp_index, Identity) else simp_index.args[0] ) return self.codegen_indexing(simp_index) def active_range_trees(self, reorder=False): trees = [ t for t in self.range_trees if t.prefix != "r" or self.inside_reduction ] if reorder and len(trees) > 1: count = sum(t.prefix in "xyz" for t in trees) assert "".join(t.prefix for t in trees[:count]) == "zyx"[-count:], [ t.prefix for t in trees[:count] ] trees[:count] = reversed(trees[:count]) return trees def codegen_indexing(self, expr: sympy.Expr): expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges()) for sym in sorted(expr.free_symbols, key=str): if sym in self.range_tree_nodes: # if indexing expression is complicated, we precompute it on the host side # and send the result as a kernel argument replacements = {} for ps in self.range_tree_nodes[sym].precomputed_args(): # type: ignore[index] replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps) if len(replacements) > 0: self.range_tree_nodes[sym].expr = sympy_subs( # type: ignore[index] self.range_tree_nodes[sym].expr, replacements # type: ignore[index] ) self.range_tree_nodes[sym].codegen() # type: ignore[index] return expr def codegen_nan_check(self) -> None: raise NotImplementedError("NYI: codegen_nan_check") def call_kernel(self, name: str, node: Optional[IRNode] = None) -> None: raise NotImplementedError("NYI: call_kernel") @contextlib.contextmanager def mask_loads(self, mask, value): """Context manager to add an additional mask to tl.load/store""" prior = self._load_mask prior_val = self._load_other if prior: mask = ops.logical_and(mask, prior) mask = OpsWrapper._unwrap(mask) self._load_mask = mask self._load_other = value try: # TODO(jansel): do we need a reshape here? yield mask finally: self._load_mask = prior self._load_other = prior_val def get_strides_of_load(self, index: sympy.Expr): """ This gets the stride of the index for each of the tiling variables (technically, it does it at index 0) For example, if xindex = x0 + 512*x1 + 1024*r0 x0 = (xindex//512) x1 = (xindex % 512) r0 = rindex // 1024 this function would return {xindex: 512, rindex: 1024} """ index_to_tile_indexes = {k: v.expr for k, v in self.range_tree_nodes.items()} index_in_tile_vars = sympy_subs(index, index_to_tile_indexes) # type: ignore[arg-type] strides = {} for range_tree in self.range_trees: s = sympy_index_symbol(range_tree.name) strides[s] = sympy_subs(index_in_tile_vars, {s: 1}) - sympy_subs( index_in_tile_vars, {s: 0} ) return strides @staticmethod def _map_tuple_or_scalar(fn, value): if isinstance(value, tuple): return tuple(map(fn, value)) return fn(value) def estimate_kernel_num_bytes(self): """ Try the best to estimate the total size (in bytes) of the kernel's inputs and outputs, which is used for estimating the memory throughput of this kernel. This information is used for checking how far we are from the peak memory bandwidth. It's important that we want to avoid overestimating the sizes of the inputs and outputs, because it can wrongfully give us a very large memory traffic value, which may be even larger than the theoretical bandwidth and thus become very misleading. This is particularly problematic for cases where we slice some inputs. In those cases, we should only count the size of the "slices" instead of the original inputs, because only the slices contribute to the real memory traffic. """ nbytes = [] ninplace_args = len(unique(self.args.inplace_buffers.values())) _, call_args, _, _ = self.args.python_argdefs() buf_accesses = self.features.buf_accesses() # For pointwise and reduction kernels, this is the upper-bound numels # for the output buffer. # FIXME: This is not exactly right for cases like below: # def foo(tensor0, tensor1): # x0 = narrow(tensor0) # return cat(x0, tensor1) # For this example, we will end up overestimate the size for the # slice s0. Potentially, we could have precise inputs information # if we maintained the original inputs of the Pointwise kernel created # for the "cat". However, I think it might be a bit overwhelming that # we add such complexity only for handling some particular cases for # benchmarking. out_numel = V.graph.sizevars.size_hint(sympy_product(self.numels)) for i, arg in enumerate(call_args): # "buf" may be narrowed. In this case, the number of memory accesses # should be estimated based on the reinterpreted layout. # On the other hand, buf may be broadcasted. In this case, # counting the size of the underline storage would give us # a better estimation in terms of memory accesses. if arg not in buf_accesses: nbytes.append(0) continue arg_numel = V.graph.get_numel(arg) buf_size = V.graph.sizevars.size_hint(arg_numel) if buf_size > out_numel: # This arg points to a buf that has been sliced. # We need to count each individual slice to have # a better estimation. indices: OrderedSet[Any] = OrderedSet() no_index_dep_count = 0 for dep in buf_accesses[arg]: if isinstance(dep, (StarDep, WeakDep)): indices.add(f"no_index_dep_{no_index_dep_count}") no_index_dep_count += 1 else: indices.add(dep.index) numel = len(indices) * out_numel else: numel = buf_size dtype = V.graph.get_dtype(arg) dtype_size = get_dtype_size(dtype) nbytes.append(numel * dtype_size * (1 + int(i < ninplace_args))) return sum(nbytes) def warn_mix_layout(self, kernel_name): """ Print message if the kernel have mixed layout inputs. Only care about 4D tensor for now. """ if ( len(self.args.input_buffers) == 1 and len(self.args.output_buffers) == 1 and len(self.args.inplace_buffers) == 0 ): # even if input buffer and output buffer have different layout, # this can be a layout conversion kernel. No need to warn for # the mix layouts. return argdefs, call_args, signature, _ = self.args.python_argdefs() uniform_stride_order = None for arg_name in call_args: buf = V.graph.try_get_buffer(arg_name) if buf and len(buf.layout.size) == 4: # ignore the tensor if only 1 dimension is non-zero if len([x for x in buf.layout.size if x == 1]) == 3: continue stride_order = ir.get_stride_order(buf.layout.stride) if uniform_stride_order is None: uniform_stride_order = stride_order elif uniform_stride_order != stride_order: msg = yellow_text( f"Expected stride order {uniform_stride_order}, but found stride order" + f" {stride_order} for kernel {kernel_name}" ) log.warning(msg) stride_order_list = [ ir.get_stride_order(V.graph.get_buffer(name).layout.stride) if V.graph.try_get_buffer(name) else None for name in call_args ] size_list = [ V.graph.get_buffer(name).layout.size if V.graph.try_get_buffer(name) else None for name in call_args ] source_list = [ "GraphInput" if name in V.graph.graph_inputs else "IntermediateBuffer" if name in V.graph.name_to_buffer else None for name in call_args ] msg = yellow_text( f" param names {argdefs}\n buf names {call_args}\n strides {stride_order_list}" + f"\n sizes {size_list}\n sources {source_list}\n" ) log.warning(msg) return msg = green_text( f"All the inputs for the triton kernel {kernel_name} have uniform layout" ) log.warning(msg) def welford_reduce_fallback(self, dtype, value): sum_ = ops.reduction(dtype, dtype, "sum", value) self.inside_reduction = False rnumel = ops.index_expr(self.numels[-1], dtype) mean = ops.truediv(sum_, rnumel) self.inside_reduction = True dx = ops.sub(value, mean) dx2 = ops.mul(dx, dx) m2 = ops.reduction(dtype, dtype, "sum", dx2) return OpsWrapper._unwrap((mean, m2, rnumel)) def codegen_kernel(self): raise NotImplementedError def codegen_body(self): pass def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry): pass class SIMDScheduling(BaseScheduling): kernel_type = SIMDKernel # override in subclass def __init__(self, scheduler) -> None: super().__init__() self.scheduler = scheduler def group_fn(self, sizes): return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes) def can_fuse(self, node1, node2): """ Hook called by Scheduler to determine if the Triton backend can fuse node1 and node2. These nodes might already be FusedSchedulerNodes. """ if isinstance(node1, scheduler.ForeachKernelSchedulerNode) or isinstance( node2, scheduler.ForeachKernelSchedulerNode ): return scheduler.ForeachKernelSchedulerNode.can_fuse(node1, node2) _, (numel1, rnumel1) = node1.group _, (numel2, rnumel2) = node2.group why = WhyNoFuse(node1, node2) if node1.is_split_scan() and not node2.is_split_scan(): if node2.is_reduction(): why("Split scan cannot fuse with reductions") elif node2.is_split_scan() and not node1.is_split_scan(): if node1.is_reduction(): why("Split scan cannot fuse with reductions") if node1.is_reduction() and node2.is_reduction(): reduction_can_fuse = numel1 == numel2 and rnumel1 == rnumel2 if not reduction_can_fuse: why( "numel/rnumel mismatch (reduce) (%s, %s), (%s, %s)", numel1, numel2, rnumel1, rnumel2, ) return reduction_can_fuse if not node1.is_reduction() and not node2.is_reduction(): if not (numel1 == numel2 and rnumel1 == rnumel2): why( "numel/rnumel mismatch (non-reduce) (%s, %s), (%s, %s)", numel1, numel2, rnumel1, rnumel2, ) return False if node1.is_template(): # Only allow fusion for TritonTemplates for now. # Fusion for CUDATemplates are not supported. is_triton_template = isinstance(node1.node, TritonTemplateBuffer) if not is_triton_template: why("node1 is not TritonTemplateBuffer") return is_triton_template # check for a bad combined tiling tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1) tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1) tiling3 = self.select_tiling( node1.get_nodes() + node2.get_nodes(), numel1, rnumel1 ) if config.triton.tiling_prevents_pointwise_fusion: cond = True if len(tiling1) > 2: if len(tiling2) > 2: cond = tiling1 == tiling2 == tiling3 else: cond = tiling1 == tiling3 elif len(tiling2) > 2: cond = tiling2 == tiling3 if not cond: why( "tiling mismatch (%s, %s, %s)", tiling1, tiling2, tiling3, ) return False return True if not node1.is_reduction() and node2.is_reduction(): assert rnumel1 == 1 and rnumel2 != 1 if numel1 == numel2 * rnumel2: if not all( SIMDKernel.is_compatible((numel2, rnumel2), n.get_ranges()) for n in node1.get_nodes() ): why("nodes numel/rnumel incompatibility") return False if ( config.triton.tiling_prevents_reduction_fusion and not node1.is_template() ): is_reduction_tiling_valid = self.select_tiling( node1.get_nodes(), numel1 ) in ( (numel1, 1), (numel2, rnumel2, 1), ) if not is_reduction_tiling_valid: why("invalid tiling for reduction") return is_reduction_tiling_valid return True if numel1 != numel2: why("nodes numel incompatibility") return numel1 == numel2 assert node1.is_reduction() and not node2.is_reduction() # swap args to hit the case above return self.can_fuse_horizontal(node2, node1) can_fuse_vertical = can_fuse can_fuse_horizontal = can_fuse def generate_node_schedule(self, nodes, numel, rnumel): node_schedule: List[Any] = [] done: OrderedSet[scheduler.BaseSchedulerNode] = OrderedSet() # Writes with a reduced shape, meaning they are only present once the # reduction loop has ended not_ready_yet_nodes: OrderedSet[str] = OrderedSet() current_loop_buffer_usage: OrderedSet[str] = OrderedSet() maybe_split_index: Optional[int] = None def fits_in_main_body(n): _, (node_numel, node_rnumel) = n.group return (node_numel == numel and node_rnumel == rnumel) or ( node_numel == numel * rnumel and node_rnumel == 1 ) def fits_outside_reduction(n): _, (node_numel, node_rnumel) = n.group return node_numel == numel and node_rnumel == 1 and rnumel != 1 def expect_improved_memory_usage(n): for read in n.read_writes.reads: if read.name in current_loop_buffer_usage: return True return False def schedule_node_in_loop(n): done.add(n) node_schedule.append(n) current_loop_buffer_usage.update([x.name for x in n.read_writes.reads]) # A scan is modelled as a reduction in the scheduler but has a # full sized output that can be used inside the loop body if ( n.is_reduction() and isinstance(n, scheduler.SchedulerNode) and isinstance(n.node, ir.ComputedBuffer) and not isinstance(n.node.data, ir.Scan) ): not_ready_yet_nodes.add(n.get_name()) else: # this node is available within the loop current_loop_buffer_usage.update([x.name for x in n.read_writes.writes]) @contextlib.contextmanager def end_current_reduction_loop(): nonlocal maybe_split_index if node_schedule and node_schedule[-1] is EnableReduction: node_schedule.pop() else: node_schedule.append(DisableReduction) if maybe_split_index: node_schedule.insert(maybe_split_index, DisableReduction) node_schedule.insert(maybe_split_index + 1, EnableReduction) maybe_split_index = None yield node_schedule.append(EnableReduction) not_ready_yet_nodes.clear() current_loop_buffer_usage.clear() def requires_closing_previous_reduction(node, node_schedule): if rnumel == 1: return False if not not_ready_yet_nodes & node.ancestors: return False assert node_schedule and not isinstance( node_schedule[-1], (EnableReduction, DisableReduction) ) return bool(not_ready_yet_nodes) for index, node in enumerate(nodes): if node in done: continue done.add(node) if fits_in_main_body(node): if requires_closing_previous_reduction(node, node_schedule): with end_current_reduction_loop(): pass # need to start a new reduction loop if current_loop_buffer_usage and not expect_improved_memory_usage(node): # If we don't improve memory usage, then it is better to split into two loops maybe_split_index = maybe_split_index or len(node_schedule) else: # Memory usage got improved, cancel the loop split maybe_split_index = None schedule_node_in_loop(node) elif fits_outside_reduction(node): with end_current_reduction_loop(): node_schedule.append(node) else: raise NotImplementedError( f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}" ) return node_schedule def codegen_node( self, node: Union[scheduler.FusedSchedulerNode, scheduler.SchedulerNode] ): """ Given a set of pre-fused nodes, generate a Triton kernel. """ nodes: List[scheduler.SchedulerNode] = node.get_nodes() # type: ignore[assignment] _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group node_schedule = self.generate_node_schedule(nodes, numel, rnumel) schedule_log.debug("Schedule:\n %s", node_schedule) return self.codegen_node_schedule( SIMDKernelFeatures(node_schedule, numel, rnumel) ) @staticmethod def can_use_32bit_indexing( numel: sympy.Expr, buffers: Iterable[Union[ir.Buffer, ir.TensorBox]] ) -> bool: int_max = torch.iinfo(torch.int32).max if not expr_fits_within_32bit(numel): return False # Any use of a MultiOutputLayout will create a buffer with a # Layout whose sizes are accounted for buf_sizes = [ buf.get_layout().storage_size() for buf in buffers if not isinstance(buf.get_layout(), ir.MultiOutputLayout) ] if not all(expr_fits_within_32bit(size) for size in buf_sizes): return False # Only install guards for 32-bit indexing as there is no correctness # issue with using 64-bit for everything V.graph.sizevars.guard_leq(numel, int_max) # type: ignore[arg-type] for size in buf_sizes: V.graph.sizevars.guard_leq(size, int_max) # type: ignore[arg-type] return True def codegen_node_schedule(self, kernel_features: SIMDKernelFeatures): from torch._inductor.codegen.triton_split_scan import TritonSplitScanKernel node_schedule = kernel_features.node_schedule tiled_groups = self.select_tiling( node_schedule, kernel_features.numel, kernel_features.reduction_numel ) is_scan = kernel_features.contains_op("scan") is_split_scan = is_scan and any( node.is_split_scan() for node in kernel_features.scheduler_nodes() ) kernel_type: Type[SIMDKernel] = self.kernel_type if is_split_scan and issubclass(TritonSplitScanKernel, kernel_type): kernel_type = TritonSplitScanKernel kernel_args = tiled_groups kernel_kwargs: Dict[str, Any] = {"features": kernel_features} if is_scan: # TODO(jansel): scan does not yet work with cooperative reductions kernel_kwargs["override_cooperative_reduction"] = False # ops.sort only works with persistent reduction, and is not bandwidth bound anyway # so taking the hit of non-coalesced loads is okay if kernel_features.contains_op("sort"): kernel_kwargs["override_persistent_reduction"] = True kernel = kernel_type( *kernel_args, **kernel_kwargs, ) kernels = self.add_multi_kernel_choices( kernel, kernel_args, kernel_kwargs, node_schedule ) for kernel in kernels: self.codegen_node_schedule_with_kernel(node_schedule, kernel) MultiKernel.merge_workspaces_inplace(kernels) for kernel in kernels: with V.set_kernel_handler(kernel): src_code = kernel.codegen_kernel() kernel_name = self.define_kernel(src_code, node_schedule, kernel) log.debug("Generating kernel code with kernel_name: %s", kernel_name) kernel.kernel_name = kernel_name kernel.code_hash = code_hash(src_code) del kernel final_kernel: Union[SIMDKernel, MultiKernel] if len(kernels) > 1: final_kernel = MultiKernel(kernels) else: (final_kernel,) = kernels with V.set_kernel_handler(final_kernel): for node in kernel_features.scheduler_nodes(): node.mark_run() self.codegen_comment(node_schedule) final_kernel.call_kernel(final_kernel.kernel_name) if config.nan_asserts: final_kernel.codegen_nan_check() if config.warn_mix_layout: final_kernel.warn_mix_layout(kernels[0].kernel_name) V.graph.removed_buffers |= final_kernel.removed_buffers V.graph.inplaced_to_remove |= final_kernel.inplaced_to_remove if ( V.graph.wrapper_code.supports_intermediate_hooks and config.generate_intermediate_hooks ): # Not every node in the schedule will actually be live on output; # we can't check dead buffers. live_outs = kernels[0].args.live_output_buffers() for node in kernel_features.scheduler_nodes(): name = node.get_name() if name not in live_outs: continue assert node.node is not None origin_node = node.node.get_origin_node() if origin_node is not None: counters["inductor"]["intermediate_hooks"] += 1 V.graph.wrapper_code.writeline( f"run_intermediate_hooks({origin_node.name!r}, {name})" ) self.scheduler.free_buffers() def add_multi_kernel_choices( self, kernel, kernel_args, kernel_kwargs, node_schedule ) -> List[SIMDKernel]: return [kernel] def codegen_node_schedule_with_kernel(self, node_schedule, kernel): with kernel: stack = contextlib.ExitStack() all_indexing = {} # First pass to collect indexing and decide inplace updates for node in node_schedule: if node is DisableReduction: stack.enter_context(kernel.disable_reduction()) elif node is EnableReduction: stack.close() else: node.decide_inplace_update() index_vars = kernel.split_and_set_ranges(node.get_ranges()) all_indexing.update( dict.fromkeys( node._body.indexing_from_args(index_vars).values() ) ) kernel.finalize_indexing(all_indexing.keys()) # Second pass to do codegen for i, node in enumerate(node_schedule): if node is DisableReduction: stack.enter_context(kernel.disable_reduction()) elif node is EnableReduction: stack.close() else: # TODO - use split ranges ? indexing_dtype_strength_reduction(node._body) index_vars = kernel.split_and_set_ranges(node.get_ranges()) node.codegen(index_vars) def codegen_template( self, template_node, epilogue_nodes, only_gen_src_code=False ) -> Optional[str]: """ Codegen a triton template If `only_gen_src_code` the src code will be returned instead of codegen'd into the wrapper """ _, (numel, rnumel) = template_node.group assert rnumel == 1 kernel, render = template_node.node.make_kernel_render(template_node.node) with kernel: if not only_gen_src_code: for node in [template_node, *epilogue_nodes]: node.mark_run() partial_code = render() with kernel.set_subgraph_body(""): for node in epilogue_nodes: node.codegen(kernel.split_and_set_ranges(node.get_ranges())) if not isinstance(partial_code, str): partial_code.finalize_hook("") partial_code.finalize_hook("", strict=False) # finalize must be called after adding epilogue above with V.set_kernel_handler(kernel): # TODO: Maybe unify CUDATemplateKernel to also use PartialRender for flexible epilogue fusion. with kernel.set_subgraph_body(""): if isinstance(partial_code, str): src_code = partial_code else: partial_code.finalize_hook("") src_code = partial_code.code node_schedule = [template_node, *epilogue_nodes] if config.benchmark_kernel: num_gb = kernel.estimate_kernel_num_bytes() / 1e9 grid_args = V.graph.sizevars.size_hints(kernel.call_sizes) assert kernel.meta is not None, "meta is None" grid = kernel.grid_fn(*grid_args, kernel.meta) src_code = ( f"{kernel.imports_for_benchmark_kernel()}\n" f"{src_code}\n" f"{kernel.codegen_kernel_benchmark(num_gb, grid).getvalue()}" ) if only_gen_src_code: return src_code kernel_name = self.define_kernel(src_code, node_schedule, kernel) self.codegen_comment(node_schedule) kernel.call_kernel(kernel_name, template_node.node) V.graph.removed_buffers |= kernel.removed_buffers V.graph.inplaced_to_remove |= kernel.inplaced_to_remove self.scheduler.free_buffers() return None def codegen_sync(self): V.graph.wrapper_code.writeline(V.graph.device_ops.synchronize()) def generate_combo_kernel_code( self, subkernel_nodes: List[BaseSchedulerNode], custom_part_algorithm: bool, enable_autotune: bool, mixed_sizes: bool, only_gen_src_code: bool = False, ) -> List[Tuple[str, Any, Any]]: from .triton_combo_kernel import ComboKernel fused_node_lists = [node.get_nodes() for node in subkernel_nodes] subkernel_map, node_schedule_map = {}, {} for pn, nodes in zip(subkernel_nodes, fused_node_lists): _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group node_schedule = self.generate_node_schedule(nodes, numel, rnumel) tiled_groups = self.select_tiling(node_schedule, numel, rnumel) node_schedule_map[pn] = node_schedule, tiled_groups, numel, rnumel subkernel_map[pn] = ComboKernel.create_triton_kernel( *tiled_groups, features=SIMDKernelFeatures(node_schedule, numel, rnumel), optimize_mask=not mixed_sizes, ) partitions = ComboKernel.horizontal_partition( nodes=subkernel_nodes, triton_scheduling=self, custom_algorithm=custom_part_algorithm, kernel_map=subkernel_map, node_info_map=node_schedule_map, ) log.debug( "ComboKernels: %d nodes partitioned into %s groups", len(subkernel_nodes), [len(p) for p in partitions], ) kernel_code_list = [] for node_group in partitions: fused_node_lists = [node.get_nodes() for node in node_group] kernel = ComboKernel( enable_autotune=enable_autotune, mixed_sizes=mixed_sizes, ) for pn, nodes in zip(node_group, fused_node_lists): self.codegen_node_schedule_with_kernel( node_schedule_map[pn][0], kernel.create_sub_kernel(subkernel_map[pn]), ) subkernel = subkernel_map[pn] node_schedule = node_schedule_map[pn][0] if not only_gen_src_code: with V.set_kernel_handler(subkernel): # type: ignore[call-arg] for node in NodeScheduleMarker.only_nodes(node_schedule): node.mark_run() V.graph.removed_buffers |= subkernel.removed_buffers V.graph.inplaced_to_remove |= subkernel.inplaced_to_remove src_code = kernel.codegen_kernel() kernel_code_list.append((src_code, kernel, node_group)) return kernel_code_list def codegen_combo_kernel(self, combo_kernel_node): subkernel_nodes = combo_kernel_node.get_subkernel_nodes() custom_part_algorithm = combo_kernel_node.use_custom_partition_algo enable_autotune = combo_kernel_node.enable_autotune mixed_sizes = config.combo_kernel_allow_mixed_sizes > 1 or ( config.combo_kernel_allow_mixed_sizes == 1 and custom_part_algorithm ) kernel_code_list = self.generate_combo_kernel_code( subkernel_nodes, custom_part_algorithm, enable_autotune, mixed_sizes ) for src_code, kernel, _ in kernel_code_list: kernel_name = self.define_kernel(src_code, [combo_kernel_node], kernel) self.codegen_comment([combo_kernel_node]) log.debug("ComboKernels: generated kernel %s.", kernel_name) kernel.call_kernel(V.graph.wrapper_code, kernel_name) self.scheduler.free_buffers() @staticmethod @functools.lru_cache(32) def candidate_tilings(node): ranges, reduction_ranges = node.get_ranges() if len(ranges) <= 1: return () rw = node.pointwise_read_writes() assert len(rw.range_vars) == len(ranges), f"{rw.range_vars=} {ranges=}" # isinstance(dep, MemoryDep): this filters out StarDeps. StarDeps refer to reads # that need to access the entire tensor; they don't contribute read indexing # information (and practically, they don't have dep.index so they can't be used # for stride_hints below dep_sources = [rw.reads, rw.writes] assert all( isinstance(dep, (MemoryDep, StarDep)) for dep in itertools.chain.from_iterable(dep_sources) ) deps = [ dep for dep in itertools.chain.from_iterable(dep_sources) if dep.name not in V.graph.removed_buffers and isinstance(dep, MemoryDep) ] write_names = {dep.name for dep in rw.writes} tilings: List[CandidateTiling] = [] for dep in deps: strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars) assert len(strides) == len(ranges) try: split = strides.index(1) + 1 if split == len(ranges): continue if all(s == 0 for s in strides[split:]): # if this is a broadcasted tensor and all dimensions after split are broadcast, # this is not a real split continue except ValueError: continue tiled_groups = ( V.graph.sizevars.simplify(sympy_product(ranges[:split])), V.graph.sizevars.simplify(sympy_product(ranges[split:])), ) # score by number of elements score = V.graph.sizevars.size_hint( sympy_product( size for size, stride in zip(ranges, strides) if stride != 0 ) ) if dep.name in write_names: # ngimel said contiguous writes is more important than reads score *= 2 if CandidateTiling.is_good_size(tiled_groups[0]): score *= 2 if CandidateTiling.is_good_size(tiled_groups[1]): score *= 2 if ( V.graph.sizevars.size_hint( score - sympy_product(itertools.chain(ranges, reduction_ranges)) ) >= 0 ): tilings.append(CandidateTiling(tiled_groups, score, dep.name)) return tilings @classmethod def select_tiling(cls, node_schedule, numel, reduction_numel=sympy.S.One): """ Heuristics to decide how to tile kernels. Currently, we tile based on stride-1 dimensions. Returns: `(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel` """ if reduction_numel != 1 or config.triton.max_tiles <= 1: # TODO(jansel): should we tile reductions? # do perf hint here if stride-1 dim is not being reduced if perf_hint_log.level <= logging.WARNING: for node in EnableReduction.filter(node_schedule): if len(cls.candidate_tilings(node)) > 0: perf_hint_log.info("reduction over non-contiguous dims") break return (numel, reduction_numel) seen_names: OrderedSet[str] = OrderedSet() candidate_tiles: Counter[Any] = collections.Counter() for node in EnableReduction.filter(node_schedule): for tiling in cls.candidate_tilings(node): if tiling.name in seen_names: continue seen_names.add(tiling.name) candidate_tiles[tiling.tiling] += tiling.score ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()] if config.triton.max_tiles >= 3: # Consider adding a third dimension of tiling, but only # when a1 is a multiple of b1; otherwise, you have a lot # of stragglers which is annoying to generate code for. # # NB: More than three max tiles is not enabled by default. # Add one 3D tiling choice for i in range(1, len(ranked_tilings)): a0, a1 = ranked_tilings[0] b0, b1 = ranked_tilings[i] if V.graph.sizevars.size_hint(a1 - b1) == 0: continue if V.graph.sizevars.size_hint(a1 - b1) < 0: # swap so a0 is bigger a0, a1 = ranked_tilings[i] b0, b1 = ranked_tilings[0] assert V.graph.sizevars.size_hint(a1 - b1) > 0 if V.graph.sizevars.statically_known_multiple_of(a1, b1): tiling = (a0, FloorDiv(a1, b1), b1) ranked_tilings = [tiling] + ranked_tilings break # only 1 choice for now if len(ranked_tilings) > 1: perf_hint_log.info("possibly bad tiling: %s", ranked_tilings) # Optionally, prefer tiling into as many dimensions as possible. if config.triton.prefer_nd_tiling: # Get candidate tilings from the node ranges. node_ranges = [ node.get_ranges()[0] for node in EnableReduction.filter(node_schedule) if isinstance(node, scheduler.SchedulerNode) ] new_tilings: OrderedSet[Tuple[sympy.Expr]] = OrderedSet() for node_range in node_ranges: # Collapse leading dims, to fit in the maximum dimensionality. num_leading_dims = max(0, len(node_range) - config.triton.max_tiles) first_trailing_dim = num_leading_dims + 1 collapsed_leading_dim = sympy_product(node_range[:first_trailing_dim]) tiling = [collapsed_leading_dim] + list(node_range[first_trailing_dim:]) new_tilings.add(tuple(tiling)) # Rank tilings by the number of dimensions. E.g., prefer 2D to 1D. # Since this is a stable sort, ties are broken by schedule order. ranked_new_tilings = sorted(new_tilings, key=len, reverse=True) ranked_tilings = ranked_new_tilings + ranked_tilings for tiled_groups in ranked_tilings: new_groups = (*tiled_groups, reduction_numel) if all( SIMDKernel.is_compatible(new_groups, node.get_ranges()) for node in node_schedule if isinstance(node, scheduler.SchedulerNode) ): return new_groups return (numel, reduction_numel) def flush(self): pass def ready_to_flush(self) -> bool: return False def generate_kernel_code_from_nodes(self, nodes, benchmark_kernel=False): if not nodes[0].is_template(): _, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group node_schedule = self.generate_node_schedule(nodes, numel, rnumel) tiled_groups = self.select_tiling(node_schedule, numel, rnumel) kernel = self.kernel_type( *tiled_groups, features=SIMDKernelFeatures(node_schedule, numel, rnumel), ) self.codegen_node_schedule_with_kernel(node_schedule, kernel) with config.patch( "benchmark_kernel", benchmark_kernel ), V.set_kernel_handler(kernel): src_code = kernel.codegen_kernel() else: template_node = nodes[0] epilogue_nodes = nodes[1:] with config.patch("benchmark_kernel", benchmark_kernel): src_code = self.codegen_template( template_node, epilogue_nodes, only_gen_src_code=True ) src_code = src_code.replace(str(Placeholder.KERNEL_NAME), "triton_") return src_code def codegen_comment(self, node_schedule): pass def define_kernel(self, src_code, node_schedule, kernel): raise NotImplementedError @dataclasses.dataclass class CandidateTiling: tiling: Tuple[sympy.Expr, sympy.Expr] score: int # higher is better name: Optional[str] = None @staticmethod def is_good_size(s): """Somewhat arbitrary heuristic used to boost scores for some sizes""" s = V.graph.sizevars.size_hint(s) return s >= 32 and (s % 32 == 0) class CantSplit(Exception): pass