# Owner(s): ["oncall: export"] # flake8: noqa import copy import dataclasses import io import logging import operator import re import unittest import warnings from contextlib import contextmanager from dataclasses import dataclass from re import escape from typing import Dict, List import torch import torch._dynamo as torchdynamo import torch.nn.functional as F from functorch.experimental.control_flow import cond, map from torch import Tensor from torch._decomp import decomposition_table, get_decompositions from torch._dynamo.test_case import TestCase from torch._dynamo.testing import normalize_gm from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse from torch._export.utils import ( get_buffer, get_param, is_buffer, is_param, register_dataclass_as_pytree_node, ) from torch._higher_order_ops.hints_wrap import hints_wrapper from torch._inductor.compile_fx import split_const_gm from torch._subclasses import FakeTensorMode from torch.export import ( default_decompositions, Dim, export, export_for_training, unflatten, ) from torch.export._trace import ( _export, _export_to_torch_ir, DEFAULT_EXPORT_DYNAMO_CONFIG, ) from torch.export.graph_signature import ( ExportGraphSignature, InputKind, OutputKind, OutputSpec, TensorArgument, ) from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.experimental.symbolic_shapes import ShapeEnv from torch.testing import FileCheck from torch.testing._internal.common_cuda import ( PLATFORM_SUPPORTS_FLASH_ATTENTION, SM90OrLater, ) from torch.testing._internal.common_device_type import onlyCPU, onlyCUDA from torch.testing._internal.common_utils import ( find_library_location, IS_FBCODE, IS_MACOS, IS_SANDCASTLE, IS_WINDOWS, run_tests, skipIfCrossRef, skipIfXpu, TEST_TRANSFORMERS, TestCase as TorchTestCase, ) from torch.utils._pytree import ( LeafSpec, tree_flatten, tree_map, tree_unflatten, TreeSpec, treespec_dumps, treespec_loads, ) try: from torchrec.sparse.jagged_tensor import KeyedJaggedTensor HAS_TORCHREC = True except ImportError: HAS_TORCHREC = False try: from . import testing except ImportError: import testing # @manual=fbcode//caffe2/test:test_export-library # The following import pattern matters as `test_export.export` is patched # in other files (like test_export_nonstrict.py). `torch.export.export` # will invalidate the patch. from torch.export import export torch.library.define("testlib::returns_tensor_symint", "(Tensor x) -> (Tensor, SymInt)") torch.library.define( "testlib::foo", "(Tensor(a!) x, Tensor(b!) z) -> (Tensor, Tensor, Tensor)", tags=torch.Tag.pt2_compliant_tag, ) torch.library.define( "testlib::foo_mutated", "(Tensor(a!) x) -> (Tensor, Tensor)", tags=torch.Tag.pt2_compliant_tag, ) torch.library.define( "testlib::foo_functional", "(Tensor x) -> (Tensor)", tags=torch.Tag.pt2_compliant_tag, ) torch.library.define( "testlib::foo_unbacked", "(Scalar x) -> (Tensor)", tags=torch.Tag.pt2_compliant_tag, ) @torch.library.impl("testlib::returns_tensor_symint", "cpu") @torch.library.impl_abstract("testlib::returns_tensor_symint") def returns_tensor_symint_impl(x): return x, x.shape[0] @torch.library.impl("testlib::foo", "cpu") @torch._dynamo.disable def foo_impl(x, z): x.add_(5) z.add_(5) return x, z, x + z @torch.library.impl_abstract("testlib::foo") def foo_abstract(x, z): return x, z, x + z @torch.library.impl("testlib::foo_mutated", "CompositeImplicitAutograd") def foo_mutated(x): a, b, c = torch.ops.testlib.foo(x, x.cos()) return a, a.cos() @torch.library.impl("testlib::foo_functional", "CompositeImplicitAutograd") def foo_functional(x): a, b, c = torch.ops.testlib.foo(x.cos(), x.cos()) return a.cos() @torch.library.impl("testlib::foo_unbacked", "CompositeImplicitAutograd") def foo_unbacked(x): if x > 2: return torch.ones(4, 4) if x < 6: return torch.ones(4, 4) return torch.ones(4, 4) @dataclass class Inp: x: Tensor y: List[Tensor] z: Dict[str, Tensor] NON_STRICT_SUFFIX = "_non_strict" RETRACEABILITY_STRICT_SUFFIX = "_retraceability" RETRACEABILITY_NON_STRICT_SUFFIX = "_retraceability_non_strict" SERDES_SUFFIX = "_serdes" SERDES_NON_STRICT_SUFFIX = "_serdes_non_strict" PREDISPATCH_SUFFIX = "_pre_dispatch" TRAINING_IR_DECOMP_STRICT_SUFFIX = "_training_ir_to_decomp" TRAINING_IR_DECOMP_NON_STRICT_SUFFIX = "_training_ir_to_decomp_non_strict" def is_non_strict_test(test_name): return test_name.endswith(NON_STRICT_SUFFIX) def is_retracebility_test(test_name): return test_name.endswith(RETRACEABILITY_STRICT_SUFFIX) or test_name.endswith( RETRACEABILITY_NON_STRICT_SUFFIX ) def is_serdes_test(test_name): return test_name.endswith(SERDES_SUFFIX) or test_name.endswith( SERDES_NON_STRICT_SUFFIX ) def is_training_ir_test(test_name): return test_name.endswith(TRAINING_IR_DECOMP_STRICT_SUFFIX) or test_name.endswith( TRAINING_IR_DECOMP_NON_STRICT_SUFFIX ) def get_hop_schema(ep: torch.export.ExportedProgram): hop_node = next( node for node in ep.graph.nodes if isinstance(node.target, torch._ops.HigherOrderOperator) ) return torch._library.utils.hop_schema_from_fx_node(hop_node) @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support") class TestDynamismExpression(TestCase): def test_export_inline_constraints(self): class Module(torch.nn.Module): def forward(self, x): b = x.item() torch._check_is_size(b) return torch.full((b, 1), 1) f = Module() inp = (torch.tensor([3]),) ref = f(*inp) gm = export(f, inp) res = gm.module()(*inp) self.assertTrue(torchdynamo.utils.same(ref, res)) gm = make_fx(f, tracing_mode="symbolic")(*inp) res = gm(*inp) self.assertTrue(torchdynamo.utils.same(ref, res)) def test_export_constraints_error_not_in_range(self): class InvalidInputConflictWithInputConstraints(torch.nn.Module): def forward(self, x): return x + 1 inp = torch.zeros([3]) dim_x = torch.export.Dim("dim_x", min=6) if is_non_strict_test(self._testMethodName): error_type = torch.fx.experimental.symbolic_shapes.ConstraintViolationError else: error_type = torch._dynamo.exc.UserError with self.assertRaisesRegex(error_type, "not in range"): export( InvalidInputConflictWithInputConstraints(), (inp,), dynamic_shapes={"x": {0: dim_x}}, ) def test_export_slice_maxsize(self): class Slice(torch.nn.Module): def forward(self, *args): return torch.ops.aten.slice.Tensor(*args) inp = (torch.rand((10, 3, 224, 224)), 0, 0, 9223372036854775807) dynamic_shapes = (({0: Dim("dim")}, None, None, None),) torch.export.export( Slice(), inp, dynamic_shapes=dynamic_shapes, ) def test_export_constraints_error(self): class ConflictingConstraints(torch.nn.Module): def forward(self, x): b = x.item() torch._check_is_size(b) torch._check(b >= 4) torch._check(b <= 5) torch._check(b <= 5) torch._check(True) return torch.full((b, 1), 1) inp = (torch.tensor([3]),) ep = export(ConflictingConstraints(), inp) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression u[\d+] \>\= 4" ): ep.module()(torch.tensor([3])) def test_export_assume_static_by_default(self): class Module(torch.nn.Module): def forward(self, x: torch.Tensor): if x.shape[0] == 4: return x + 1 else: return x branch_on_shape = Module() inp = (torch.rand(4, 5),) # Being able to export means shape is preserved as static export(branch_on_shape, inp) @unittest.skipIf(IS_WINDOWS, "Windows isn't supported for this case") @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support") class TestExport(TestCase): def _test_export_same_as_eager(self, f, args, kwargs=None): kwargs = kwargs or {} exported_program = export(f, args, kwargs) self.assertEqual(exported_program.module()(*args, **kwargs), f(*args, **kwargs)) # this is not supported by .module() # reversed_kwargs = {key: kwargs[key] for key in reversed(kwargs)} # self.assertEqual( # exported_program.module()(*args, **reversed_kwargs), f(*args, **reversed_kwargs) # ) def _check_dynamic_shapes_specs_and_shapes( self, model, inputs, specs, passing_shapes, failing_shapes, test_serdes=False ): from torch._export.serde.dynamic_shapes import ( _dump_dynamic_shapes, _load_dynamic_shapes, ) from torch.utils._pytree import tree_map def _construct_inputs(shapes): def _is_tensor_leaf(x): return isinstance(x, tuple) and all(isinstance(y, int) for y in x) return tree_map( lambda x: torch.randn(*x) if _is_tensor_leaf(x) else x, shapes, is_leaf=_is_tensor_leaf, ) # exports with a list of equivalent dynamic shapes specs, # then tests for pass/fail on list of shapes for _specs in specs: ep = export(model, inputs, dynamic_shapes=_specs) eps = [ep] if test_serdes: # test dynamic shapes serialization # test that behavior remains the same when exporting with ser/des specs: # serialize + deserialize original specs, and export. ep_serdes = export( model, inputs, dynamic_shapes=_load_dynamic_shapes( _dump_dynamic_shapes(_specs, inputs) ), ) eps.append(ep_serdes) for ep in eps: for shapes in passing_shapes: test_inputs = _construct_inputs(shapes) ep.module()(*test_inputs) for shapes in failing_shapes: test_inputs = _construct_inputs(shapes) with self.assertRaises(RuntimeError): ep.module()(*test_inputs) def test_basic(self): class Module(torch.nn.Module): def forward(self, x, y): return x[0] + y f = Module() inp = ([torch.ones(1, 3)], torch.ones(1, 3)) self._test_export_same_as_eager(f, inp) @skipIfCrossRef def test_custom_tag_metadata_re_export(self): class Foo(torch.nn.Module): def __init__(self): super().__init__() self.w = torch.nn.Parameter(torch.rand(4, 2)) self.b = torch.nn.Parameter(torch.rand(4)) def forward(self, x): out = torch.nn.functional.linear(x, self.w, self.b) return out f = Foo() inputs = (torch.zeros(1, 2),) ep = export(f, inputs) new_gm = copy.deepcopy(ep.graph_module) new_gm.meta["custom"] = {} new_gm.meta["custom"]["f"] = "bar" for node in new_gm.graph.nodes: if ( node.op == "call_function" and node.target == torch.ops.aten.linear.default ): node.meta["custom"] = {} node.meta["custom"]["quantization_tag"] = "foo" new_ep = ep._update(new_gm, ep.graph_signature) new_ep = export(new_ep.module(), inputs) self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar") # the custom field should be preserved after re-export and # should not be copied to other nodes counter = 0 for node in new_ep.graph.nodes: if "custom" in node.meta: counter += 1 self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo") self.assertTrue(node.target == torch.ops.aten.linear.default) self.assertEqual(counter, 1) def test_symint_output(self): class Foo(torch.nn.Module): def forward(self, x): z, y = x.size() return z + y + x[0], z inputs = (torch.ones(2, 3),) dim0_x, dim1_x = torch.export.dims("dim0_x", "dim1_x") dynamic_shapes = {"x": (dim0_x, dim1_x)} export(Foo(), inputs, dynamic_shapes=dynamic_shapes) def test_no_tensor_computation(self): class Module(torch.nn.Module): def forward(self, x, y): return y f = Module() inp = ([torch.ones(1, 3)], 1) ep = export(f, inp) self.assertEqual(ep.module()(*inp), f(*inp)) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x_0 : [num_users=0] = placeholder[target=x_0] %y : [num_users=0] = placeholder[target=y] return (1,)""", ) def test_no_tensor_computation_2(self): class Module(torch.nn.Module): def forward(self, x, y): return x f = Module() inp = (torch.randn(3), 1) ep = export(f, inp) self.assertEqual(ep.module()(*inp), f(*inp)) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x : [num_users=1] = placeholder[target=x] %y : [num_users=0] = placeholder[target=y] return (x,)""", ) def test_no_tensor_computation_3(self): class Module(torch.nn.Module): def forward(self, x, y): return 5 f = Module() inp = (2, 1) ep = export(f, inp) self.assertEqual(ep.module()(*inp), f(*inp)) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x : [num_users=0] = placeholder[target=x] %y : [num_users=0] = placeholder[target=y] return (5,)""", ) def test_no_tensor_computation_4(self): class Module(torch.nn.Module): def forward(self, x, y): return x f = Module() inp = ([torch.randn(3)], 1) ep = export(f, inp) self.assertEqual(ep.module()(*inp), f(*inp)) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x_0 : [num_users=1] = placeholder[target=x_0] %y : [num_users=0] = placeholder[target=y] return (x_0,)""", ) def test_not_registered_parameter(self): class Basic(torch.nn.Module): def __init__(self): super().__init__() self.params = {"foo": torch.nn.Parameter(torch.ones(3, 3))} def forward(self, x): return x + self.params["foo"] f = Basic() args = (torch.randn(1, 3),) # strict-mode will error out because foo is registered as parameter # in dynamo (a behavior that's different from eager). We decided to # follow eager behavior. ep = export(f, args, strict=False) gm = ep.module() self.assertEqual(len(ep.graph_signature.lifted_tensor_constants), 1) self.assertEqual(len(ep.graph_signature.parameters), 0) # check foo is not a parameter in the final graph self.assertEqual(len(list(gm.named_parameters())), 0) self.assertEqual(gm(*args), f(*args)) self.assertExpectedInline( str(gm.graph).strip(), """\ graph(): %lifted_tensor_0 : [num_users=1] = get_attr[target=lifted_tensor_0] %x : [num_users=1] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %lifted_tensor_0), kwargs = {}) return (add,)""", ) def test_external_call_non_strict_real_tensor(self): class ExternalMethod: def add(self, x): return x + x class Basic(torch.nn.Module): def __init__(self) -> None: super().__init__() self.external_add = ExternalMethod().add def forward(self, x): return self.external_add(x) f = Basic() args = (torch.randn(1, 3),) ep = export(f, args, strict=False) self.assertEqual(ep.module()(*args), f(*args)) def test_colon_parameter(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.register_parameter("foo:bar", torch.nn.Parameter(torch.ones(3, 3))) def forward(self, x): return x + getattr(self, "foo:bar") ep = export(M(), (torch.randn(3, 3),)) x = torch.randn(3, 3) self.assertEqual(ep.module()(x), M()(x)) def test_conv_dynamic(self): # Simple module for demonstration class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d( in_channels=3, out_channels=32, kernel_size=3, padding=1 ) self.relu = torch.nn.ReLU() self.maxpool = torch.nn.MaxPool2d(kernel_size=3) def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: a = self.conv(x) a.add_(y) return self.maxpool(self.relu(a)) example_args = (torch.randn(2, 3, 256, 256), torch.ones(2, 32, 256, 256)) dynamic_shapes = {"x": {0: Dim("batch")}, "y": {0: Dim("batch")}} m = M() exported_program: torch.export.ExportedProgram = export( m, args=example_args, dynamic_shapes=dynamic_shapes ) args = (torch.randn(17, 3, 256, 256), torch.ones(17, 32, 256, 256)) self.assertEqual(exported_program.module()(*args), m(*args)) args = (torch.randn(15, 3, 256, 256), torch.ones(15, 32, 256, 256)) self.assertEqual(exported_program.module()(*args), m(*args)) gm: torch.fx.GraphModule = torch.export.export_for_training( m, args=example_args, dynamic_shapes=dynamic_shapes ).module() args = (torch.randn(17, 3, 256, 256), torch.ones(17, 32, 256, 256)) self.assertEqual(gm(*args), m(*args)) args = (torch.randn(15, 3, 256, 256), torch.ones(15, 32, 256, 256)) self.assertEqual(gm(*args), m(*args)) def test_masked_select_dynamic(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: mask = x.ge(0.5) return torch.masked_select(x, mask) example_args = (torch.randn(3, 4, 5),) dim0_x_max, dim1_x_max = 100, 7 dynamic_shapes = { "x": { 0: Dim("dim0_x", max=dim0_x_max), 1: Dim("dim1_x_max", max=dim1_x_max), } } m = M() exported_program: torch.export.ExportedProgram = export( m, args=example_args, dynamic_shapes=dynamic_shapes ) # Test that the expected upper bound is among the range constraints. expected_upper_bound = dim0_x_max * dim1_x_max * 5 vr_upper_bounds = [ vr.upper for vr in exported_program.range_constraints.values() ] self.assertTrue(expected_upper_bound in set(vr_upper_bounds)) # Test that none of the upper bounds are larger. for vr_upper in vr_upper_bounds: self.assertTrue(vr_upper <= expected_upper_bound) def test_nonzero_dynamic(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x: torch.Tensor, as_tuple: bool) -> torch.Tensor: return torch.nonzero(x, as_tuple=as_tuple) # Case 1 and 2: as_tuple is True and as_tuple is False. for as_tuple in [True, False]: example_args = (torch.randn(3, 4, 5), as_tuple) dim0_x_max, dim1_x_max = 100, 7 dynamic_shapes = { "x": { 0: Dim("dim0_x", max=dim0_x_max), 1: Dim("dim1_x_max", max=dim1_x_max), }, "as_tuple": None, } m = M() exported_program: torch.export.ExportedProgram = export( m, args=example_args, dynamic_shapes=dynamic_shapes ) # Test that the expected upper bound is among the range constraints. expected_upper_bound = dim0_x_max * dim1_x_max * 5 vr_upper_bounds = [ vr.upper for vr in exported_program.range_constraints.values() ] self.assertTrue(expected_upper_bound in set(vr_upper_bounds)) # Test that none of the upper bounds are larger. for vr_upper in vr_upper_bounds: self.assertTrue(vr_upper <= expected_upper_bound) # Case 3: Test special case when input has zero dimensions and a nonzero # scalar value. example_args = (torch.tensor(10), as_tuple) dim0_x_max = 100 dynamic_shapes = { "x": None, "as_tuple": None, } m = M() exported_program: torch.export.ExportedProgram = export( m, args=example_args, dynamic_shapes=dynamic_shapes ) # Test that the expected upper bound is equal to 1, since our output # for this edge case should always be a tensor of size 1. vr_upper_bounds = [ vr.upper for vr in exported_program.range_constraints.values() ] for vr_upper in vr_upper_bounds: self.assertEqual(vr_upper, 1) def test_setgrad_lifted_tensor(self): class M(torch.nn.Module): def forward(self, x, y): with torch.enable_grad(): c = torch.tensor(4) z = c + x + y return z * z m = M() x = torch.randn(4) y = torch.randn(4) # Need to surround export with no_grad to bypass AutogradStateOpsFailSafeguard. with torch.no_grad(): ep = export(m, (x, y)) self.assertEqual(ep.module()(x, y), m(x, y)) def test_basic_non_strict_real_tensor(self): class Basic(torch.nn.Module): def __init__(self) -> None: super().__init__() self.param = torch.nn.Parameter(torch.randn(1, 3)) def forward(self, x, y): return x[0] + y - self.param f = Basic() args = ([torch.randn(1, 3)], torch.randn(1, 3)) ep = export(f, args, strict=False) self.assertEqual(ep.module()(*args), f(*args)) def test_basic_non_strict_fake_tensor(self): class Basic(torch.nn.Module): def __init__(self) -> None: super().__init__() self.param = torch.nn.Parameter(torch.randn(3, 2)) def forward(self, x, y): return x[0] + y - self.param fake_mode = FakeTensorMode(shape_env=ShapeEnv(tracked_fakes=[])) f = Basic() with fake_mode: args = ([torch.empty(3, 2)], torch.empty(3, 2)) ep = export(f, args, strict=False) inputs = ([torch.randn(3, 2)], torch.randn(3, 2)) self.assertEqual(ep.module()(*inputs), f(*inputs)) def test_non_strict_dynamic_shapes(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.u = torch.nn.Buffer(torch.ones(1)) self.v = torch.nn.Buffer(torch.ones(1)) def forward(self, x, ys, zs, c): y = ys[0] + ys[1] + zs["a"] + zs["b"] self.v.add_(3) w = self.u - self.v if x.shape[0] < 3 and c.shape[0] != 4: return x + w, x + y else: return x - w, x - y foo = Foo() inp = ( torch.ones(5), [torch.zeros(5), torch.ones(5)], {"a": torch.zeros(5), "b": torch.ones(5)}, torch.ones(4), ) dim = torch.export.Dim("dim", min=3) dynamic_shapes = ( {0: dim}, [{0: dim}, {0: dim}], {"a": {0: dim}, "b": {0: dim}}, None, ) ep_ns = torch.export.export( foo, inp, dynamic_shapes=dynamic_shapes, strict=False ) bad_runtime_inp1 = ( torch.ones(6), [torch.zeros(5), torch.ones(5)], {"a": torch.zeros(5), "b": torch.ones(5)}, torch.ones(4), ) with self.assertRaisesRegex( RuntimeError, escape( "Expected input at *args[1][0].shape[0] to be equal to 6, but got 5" ), ): ep_ns.module()(*bad_runtime_inp1) bad_runtime_inp2 = ( torch.ones(5), [torch.zeros(5), torch.ones(5)], {"a": torch.zeros(5), "b": torch.ones(5)}, torch.ones(6), ) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[3].shape[0] to be equal to 4, but got 6"), ): ep_ns.module()(*bad_runtime_inp2) good_runtime_inp = ( torch.ones(7), [torch.zeros(7), torch.ones(7)], {"a": torch.zeros(7), "b": torch.ones(7)}, torch.ones(4), ) ep_ns.module()(*good_runtime_inp) bad_example_inp = ( torch.ones(2), [torch.zeros(2), torch.ones(2)], {"a": torch.zeros(2), "b": torch.ones(2)}, torch.ones(4), ) with self.assertRaisesRegex( torch.fx.experimental.symbolic_shapes.ConstraintViolationError, "2 not in range.*3,", ): ep_ns = torch.export.export( foo, bad_example_inp, dynamic_shapes=dynamic_shapes, strict=False ) def test_non_strict_dynamic_shapes_suggested_fixes(self): class Foo(torch.nn.Module): def forward(self, x, c): if x.shape[0] <= 6: return x + 1, c + 2 else: return x - 1, c - 2 foo = Foo() bad_example_inp = ( torch.ones(5), torch.ones(4), ) dim = torch.export.Dim("dim", min=3) dynamic_shapes = ( {0: dim}, None, ) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Constraints violated \\(dim\\)!(.*\n)*.*" "Not all values of dim.*satisfy the generated guard(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "dim = Dim\\('dim', min=3, max=6\\)", ): torch.export.export( foo, bad_example_inp, dynamic_shapes=dynamic_shapes, strict=False ) def test_symint_item(self): class M(torch.nn.Module): def forward(self, tensor): return tensor.item() input = (torch.tensor([1], dtype=torch.int),) orig_res = M()(*input) ep_res = torch.export.export(M(), input).module()(*input) self.assertEqual(orig_res, ep_res) def test_symbool_item(self): class M(torch.nn.Module): def forward(self, tensor): return tensor.item() input = (torch.tensor([1], dtype=torch.bool),) orig_res = M()(*input) ep_res = torch.export.export(M(), input).module()(*input) self.assertEqual(orig_res, ep_res) def test_unbacked_to_cond(self): class M(torch.nn.Module): def forward(self, a): az = a.nonzero() def true_fn(x): return (x + 1).sum() def false_fn(x): return (x + 3).sum() r = torch.cond(az.size(0) > 3, true_fn, false_fn, (az,)) return r * 2 M()(torch.randn(7)) torch.export.export(M(), (torch.randn(7),)) def test_unbacked_to_cond_passthrough(self): class M(torch.nn.Module): def forward(self, a): az = a.nonzero() def true_fn(x): return x + 1 def false_fn(x): return x + 3 r = torch.cond(az.size(0) > 3, true_fn, false_fn, (az,)) return r * 2 M()(torch.randn(7)) torch.export.export(M(), (torch.randn(7),)) @torch._dynamo.config.patch(capture_scalar_outputs=True) def test_cond_contains_unbacked_no_escape(self): class M(torch.nn.Module): def forward(self, a, b1, b2, c): def true_fn(x): return x * b1.item() def false_fn(x): return x * b2.item() r = torch.cond(a, true_fn, false_fn, (c,)) return r * 2 args = ( torch.tensor(True), torch.tensor([4]), torch.tensor([4]), torch.randn(10, requires_grad=True), ) torch.export.export(M(), args) def test_cond_int_closure(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.num = 4 def forward(self, a, x): def true_fn(x): return x * self.num def false_fn(x): return x + self.num r = torch.cond(a, true_fn, false_fn, (x,)) return r * 2 args = (torch.tensor(True), torch.randn(10)) ep = torch.export.export(M(), args) self.assertEqual(ep.module()(*args), M()(*args)) def test_state_tensors(self): class M(torch.nn.Module): # simple with register buffer def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.ones(2, 3), persistent=False) def forward(self, x): # x = 2 y = self.buf # y = 1 w1 = self.buf + 3 w2 = self.buf + 4 w3 = self.buf + 5 self.buf = w1 z = self.buf self.buf = w3 # z = 4 return x + y + z + w2 ep = export(M(), (torch.randn(2, 3),), strict=False).run_decompositions({}) self.assertEqual(list(ep.graph_signature.buffers_to_mutate.values()), ["buf"]) self.assertTrue( torch.allclose(ep.module()(torch.ones(2, 3) + 1), torch.ones(2, 3) * 12) ) class M(torch.nn.Module): # simple without register buffer def __init__(self) -> None: super().__init__() self.buf = torch.ones(2, 3) def forward(self, x): # x = 2 y = self.buf # y = 1 self.buf = self.buf + 3 z = self.buf # z = 3 return x + y + z with self.assertRaisesRegex( ValueError, "The tensor attribute self.buf was assigned during export", ): export(M(), (torch.randn(2, 3),), strict=False) class M(torch.nn.Module): # complex with register buffer def __init__(self) -> None: super().__init__() tensors = [torch.ones(2, 3), torch.ones(2, 3)] for i, tensor in enumerate(tensors): self.register_buffer(f"buf_{i}", tensor, persistent=False) def get_tensor(self, i): return getattr(self, f"buf_{i}") def set_tensor(self, i, val): setattr(self, f"buf_{i}", val) def forward(self, x): # x = 2 y = self.get_tensor(0) + self.get_tensor(1) # y = 1 + 1 self.set_tensor(0, torch.ones(2, 3) + 2) self.set_tensor(1, torch.ones(2, 3) + 2) z = self.get_tensor(0) + self.get_tensor(1) # z = 3 + 3 return x + y + z ep = export(M(), (torch.randn(2, 3),), strict=False).run_decompositions({}) self.assertEqual( list(ep.graph_signature.buffers_to_mutate.values()), ["buf_0", "buf_1"] ) self.assertTrue( torch.allclose(ep.module()(torch.ones(2, 3) + 1), torch.ones(2, 3) * 10) ) class M(torch.nn.Module): # complex without register buffer def __init__(self) -> None: super().__init__() self.tensors = [torch.ones(2, 3), torch.ones(2, 3)] def get_tensor(self, i): return self.tensors[i] def set_tensor(self, i, val): self.tensors[i] = val def forward(self, x): # x = 2 y = self.get_tensor(0) + self.get_tensor(1) # y = 1 + 1 self.set_tensor(0, torch.ones(2, 3) + 2) self.set_tensor(1, torch.ones(2, 3) + 2) z = self.get_tensor(0) + self.get_tensor(1) # z = 3 + 3 return x + y + z with self.assertRaisesRegex( ValueError, "The tensor attributes self.tensors\\[0\\], self.tensors\\[1\\] were assigned during export", ): export(M(), (torch.randn(2, 3),), strict=False) def test_state_primitives(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.x = 1 self.y = {"k": 2} self.z = (3,) def forward(self, x): self.x = self.x + 4 self.y["k"] = self.y["k"] + 5 self.z = (self.z[0] + 6,) return x + self.x + self.y["k"] + self.z[0] ep = export(M(), (torch.randn(2, 3),)) self.assertTrue( torch.allclose(ep.module()(torch.zeros(2, 3)), torch.ones(2, 3) * 21) ) def test_state_shape_attribute_assignment(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 10) self.last_z_shape = self.linear.weight.shape def forward(self, x): self.last_z_shape = x.shape return self.linear(x) model = TestModule() x = torch.randn(20, 10) ep_model = export(model, (x,), strict=False).module() self.assertTrue(torch.allclose(model(x), ep_model(x))) def test_real_tensor_size_mismatch(self): from torch._subclasses.fake_tensor import MetadataMismatchError class M(torch.nn.Module): def forward(self, a, b): return torch.ops.mylib.foo(a, b) @torch.library.custom_op("mylib::foo", mutates_args={}) def foo(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return a + b @foo.register_fake def foo_fake_impl(a, b): m, n = a.shape return torch.empty(n, m) # incorrectly permute error_type = ( MetadataMismatchError if is_non_strict_test(self._testMethodName) else torch._dynamo.exc.TorchRuntimeError ) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): # won't catch anything if dims are equal export( M(), (torch.randn(4, 4), torch.randn(4, 4)), ) # catch concrete inequality with self.assertRaisesRegex( error_type, "Real tensor propagation found an output size mismatch between fake shape 8 and real shape 4, " "at output index 0, dimension 0 for func: mylib.foo.default", ): export( M(), (torch.randn(4, 8), torch.randn(4, 8)), ) # same test with dynamic shapes d0 = Dim("d0") d1 = Dim("d1") export( M(), (torch.randn(4, 4), torch.randn(4, 4)), dynamic_shapes={ "a": (d0, d1), "b": (d0, d1), }, ) with self.assertRaisesRegex( error_type, "Real tensor propagation found an output size mismatch between fake shape s1 and real shape 4, " "at output index 0, dimension 0 for func: mylib.foo.default", ): export( M(), (torch.randn(4, 8), torch.randn(4, 8)), dynamic_shapes={ "a": (d0, d1), "b": (d0, d1), }, ) def test_real_tensor_alias_dtype_mismatch(self): from torch._subclasses.fake_tensor import MetadataMismatchError error_type = ( MetadataMismatchError if is_non_strict_test(self._testMethodName) else torch._dynamo.exc.TorchRuntimeError ) # test alias case class M(torch.nn.Module): def forward(self, a): return torch.ops.mylib.foo_alias(a) @torch.library.custom_op("mylib::foo_alias", mutates_args={}) def foo_alias(a: torch.Tensor) -> torch.Tensor: return a * 2 @foo_alias.register_fake def foo_fake_impl(a): return a with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): with self.assertRaisesRegex( error_type, r"Real tensor propagation found an aliasing mismatch between fake output (.*\n)*.* " r"and real output (.*\n)*.* for func: mylib.foo_alias.default", ): ep = export(M(), (torch.randn(4, 4),)) # test dtype case class N(torch.nn.Module): def forward(self, a): return torch.ops.mylib.foo_dtype(a) @torch.library.custom_op("mylib::foo_dtype", mutates_args={}) def foo_dtype(a: torch.Tensor) -> torch.Tensor: return a * 2 @foo_dtype.register_fake def foo_fake_impl(a): m, n = a.shape return torch.empty([m, n], dtype=torch.int32) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): with self.assertRaisesRegex( error_type, r"Real tensor propagation found a metadata mismatch between fake tensor (.*\n)*.* " r"and real tensor (.*\n)*.* at output index 0, for func: mylib.foo_dtype.default", ): ep = export(N(), (torch.randn(4, 4),)) def test_real_tensor_for_max_op(self): class Foo(torch.nn.Module): def forward(self, x, y): x = x[x > 0] y = y[y > 0] return max(x.shape[0], y.shape[0]) model = Foo() inputs = (torch.randn(64), torch.randn(64)) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) self.assertEqual(ep.module()(*inputs), model(*inputs)) x = torch.zeros(64) y = torch.ones(64) # This seems to be a bug with old export because when we pass in x, x # as input, runtime assertion should fail. This is because we would create # guard on y.shape[0] > x.shape[0] but somehow in old export, we dce this # assertion. if is_training_ir_test(self._testMethodName) and is_non_strict_test( self._testMethodName ): with self.assertRaisesRegex(RuntimeError, "Runtime assertion failed for"): ep.module()(x, x) else: self.assertEqual(ep.module()(x, x), model(x, x)) self.assertEqual(ep.module()(x, y), model(x, y)) def test_draft_export_checks_mutation_with_nan(self): @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return x + y @foo.register_fake def _(x, y): return x + y class Foo(torch.nn.Module): def forward(self, x, y): return foo(x, y) model = Foo() inputs = (torch.full((64,), torch.nan), torch.full((64,), torch.nan)) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) def test_draft_export_checks_mutation(self): @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y.add_(1) return x.clone() @foo.register_fake def _(x, y): return x.clone() class Foo(torch.nn.Module): def forward(self, x, y): return foo(x, y) model = Foo() inputs = (torch.randn(64), torch.randn(64)) with self.assertRaisesRegex(RuntimeError, "for argument 'y'"): with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) @torch.library.custom_op("export::foo", mutates_args={"y"}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y.add_(1) return x.clone() @foo.register_fake def _(x, y): return x.clone() # No errors with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) def test_draft_export_checks_mutation_list(self): @torch.library.custom_op("export::foo", mutates_args={}) def foo(xs: List[torch.Tensor]) -> torch.Tensor: x, y = xs y.add_(1) return x.clone() @foo.register_fake def _(xs): x, y = xs return x.clone() class Foo(torch.nn.Module): def forward(self, xs): return foo(xs) model = Foo() inputs = ([torch.randn(64), torch.randn(64)],) with self.assertRaisesRegex(RuntimeError, "for argument 'xs'"): with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) @torch.library.custom_op("export::foo", mutates_args={"xs"}) def foo(xs: List[torch.Tensor]) -> torch.Tensor: x, y = xs y.add_(1) return x.clone() @foo.register_fake def _(xs): x, y = xs return x.clone() # No errors with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) def test_draft_export_checks_aliasing(self): @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return x @foo.register_fake def _(x, y): return x.clone() class Foo(torch.nn.Module): def forward(self, x, y): return foo(x, y) model = Foo() inputs = (torch.randn(64), torch.randn(64)) with self.assertRaisesRegex(RuntimeError, "may not alias"): with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return x.clone() @foo.register_fake def _(x, y): return x.clone() # No errors with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) # Bug: ep.run_decompositions() doesn't propagate real tensors @testing.expectedFailureTrainingIRToRunDecomp # Bug: ep.run_decompositions() doesn't propagate real tensors @testing.expectedFailureTrainingIRToRunDecompNonStrict def test_draft_export_infers_fake_kernel(self): with torch.library._scoped_library("export", "FRAGMENT") as lib: lib.define("bar(Tensor x) -> Tensor") lib.impl("bar", lambda x: x[0].clone(), "CPU") @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return x * y class Foo(torch.nn.Module): def forward(self, x, y): return foo(x, y), torch.ops.export.bar(y) model = Foo() inputs = (torch.randn(1, 3), torch.randn(2, 1)) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) # expecttest only works for the base TestExport class. if self.__class__ != TestExport: return self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, x, y): foo = torch.ops.export.foo.default(x, y); x = None sym_size_int_3 = torch.ops.aten.sym_size.int(foo, 0) sym_size_int_4 = torch.ops.aten.sym_size.int(foo, 1) sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(sym_size_int_3); sym_constrain_range_for_size_default = None ge_3 = sym_size_int_3 >= 0; sym_size_int_3 = None _assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_3, "Runtime assertion failed for expression u0 >= 0 on node 'ge_3'"); ge_3 = _assert_scalar_default = None sym_constrain_range_for_size_default_1 = torch.ops.aten.sym_constrain_range_for_size.default(sym_size_int_4); sym_constrain_range_for_size_default_1 = None ge_4 = sym_size_int_4 >= 0; sym_size_int_4 = None _assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(ge_4, "Runtime assertion failed for expression u1 >= 0 on node 'ge_4'"); ge_4 = _assert_scalar_default_1 = None bar = torch.ops.export.bar.default(y); y = None sym_size_int_5 = torch.ops.aten.sym_size.int(bar, 0) sym_constrain_range_for_size_default_2 = torch.ops.aten.sym_constrain_range_for_size.default(sym_size_int_5); sym_constrain_range_for_size_default_2 = None ge_5 = sym_size_int_5 >= 0; sym_size_int_5 = None _assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(ge_5, "Runtime assertion failed for expression u2 >= 0 on node 'ge_5'"); ge_5 = _assert_scalar_default_2 = None return (foo, bar)""", ) def test_draft_export_fake_kernel_inference_errors(self): @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return x.expand(32, 3).contiguous()[4] class Foo(torch.nn.Module): def forward(self, x, y): return foo(x, y) model = Foo() inputs = (torch.randn(1, 3), torch.randn(2, 1)) with self.assertRaisesRegex(RuntimeError, "non-zero storage offset"): with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) @torch.library.custom_op("export::foo", mutates_args={}) def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return torch.randn(3, 3).diagonal() with self.assertRaisesRegex(RuntimeError, "not dense in memory"): with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs) @testing.expectedFailureSerDer # SymBool serialization? TODO(pianpwk) @testing.expectedFailureSerDerNonStrict def test_real_tensor_bool_cast(self): class Foo(torch.nn.Module): def forward(self, x): return bool(x.eq(0.1).any()) model = Foo() inputs = (torch.randn(64),) with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): ep = export(model, inputs, strict=False) @testing.expectedFailureSerDer @testing.expectedFailureSerDerNonStrict def test_is_nonzero(self): class Foo(torch.nn.Module): def forward(self, x): return torch.is_nonzero(x) def _long_tensor(nz): return torch.full((), int(nz)) def _float_tensor(nz): return torch.full((), int(nz), dtype=torch.float32) def _bool_tensor(nz): return torch.full((), int(nz)).bool() mod = Foo() for _tensor in [ _long_tensor, _float_tensor, _bool_tensor, # local_scalar_dense on complex NYI for fake tensors ]: with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True): for nz in [True, False]: sample_input = _tensor(nz=nz) ep = export(mod, (sample_input,), strict=False) self.assertEqual(ep.module()(sample_input), nz) print(ep) def test_export_script_module(self): class Foo(torch.nn.Module): def forward(self, rv: torch.Tensor, t: torch.Tensor): i = t.item() return rv + i foo = Foo() foo_script = torch.jit.script(foo) inp = (torch.zeros(3, 4), torch.tensor(7)) with self.assertRaisesRegex( ValueError, "Exporting a ScriptModule is not supported" ): export(foo_script, inp) from torch._export.converter import TS2EPConverter TS2EPConverter(foo_script, inp).convert() def test_dim_auto_and_dim(self): # test basic Dims class Foo(torch.nn.Module): def forward(self, x, y): return x - y inputs = (torch.randn(4, 4), torch.randn(4, 4)) shapes = { "x": (Dim.AUTO, Dim("d1", min=3)), "y": (Dim("d0", max=8), Dim.DYNAMIC), } ep = export(Foo(), inputs, dynamic_shapes=shapes) x, y = [node for node in ep.graph.nodes if node.op == "placeholder"] self.assertEqual((s0 := x.meta["val"].shape[0]), y.meta["val"].shape[0]) self.assertEqual((s1 := x.meta["val"].shape[1]), y.meta["val"].shape[1]) vr0 = ep.range_constraints[s0.node.expr] vr1 = ep.range_constraints[s1.node.expr] self.assertEqual([vr0.upper, vr1.lower], [8, 3]) # test derived Dims class Bar(torch.nn.Module): def forward(self, x, y, z): return x + y[1::3] + z inputs = (torch.randn(4), torch.randn(13), torch.randn(4)) dx = Dim("dx", min=2, max=10) shapes = { "x": (dx,), "y": (3 * dx + 1,), "z": (Dim.AUTO,), } ep = export(Bar(), inputs, dynamic_shapes=shapes) x, y, z = [node for node in ep.graph.nodes if node.op == "placeholder"] self.assertEqual((s0 := x.meta["val"].shape[0]), z.meta["val"].shape[0]) expr = y.meta["val"].shape[0] free_symbols = expr.node.expr.free_symbols self.assertEqual(len(free_symbols), 1) self.assertEqual(next(iter(free_symbols)), s0.node.expr) # test specialization still complains inputs = (torch.randn(4), torch.randn(4)) shapes = { "x": (Dim.STATIC,), "y": (Dim("dy"),), } with self.assertRaisesRegex( torch._dynamo.exc.UserError, r"Not all values of dy .* in the specified range are valid because dy was inferred to be a constant", ): export(Foo(), inputs, dynamic_shapes=shapes) def test_torch_fn(self): class M1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(3, 3) self.relu = torch.nn.ReLU() def forward(self, x): x = self.linear(x) x = self.linear(x) x = self.relu(x) x = x + x return x ep1 = export(M1(), (torch.randn(3, 3),)).run_decompositions() expected_result = [ ("linear_1", "builtin_function_or_method.linear"), ("linear_1", "builtin_function_or_method.linear"), ("linear_2", "builtin_function_or_method.linear"), ("linear_2", "builtin_function_or_method.linear"), ("relu_1", "function.relu"), ("add_1", "method_descriptor.add"), ] actual_result = [] for i, node in enumerate(ep1.graph.nodes): if node.op == "call_function": actual_result.append(node.meta.get("torch_fn")) self.assertEqual(actual_result, expected_result) class M2(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x, weight, bias): x = torch.nn.functional.linear(x, weight, bias) x = torch.nn.functional.relu(x) x = torch.add(x, x) return x ep2 = export( M2(), (torch.randn(3, 3), torch.randn(3, 3), torch.randn(3)) ).run_decompositions() expected_result = [ ("linear_1", "builtin_function_or_method.linear"), ("linear_1", "builtin_function_or_method.linear"), ("relu_1", "function.relu"), ("add_1", "builtin_function_or_method.add"), ] actual_result = [] for i, node in enumerate(ep2.graph.nodes): if node.op == "call_function": actual_result.append(node.meta.get("torch_fn")) self.assertEqual(actual_result, expected_result) @testing.expectedFailureSerDer # failed serializing SymInt nodes in subgraph (known issue) @testing.expectedFailureSerDerNonStrict def test_hoo_inline_users_issue(self): # This came from an issue where replace_with_hop passes would inline subgraphs, # and mess up node.users for nodes present in multiple subgraphs (e.g. _x in SetGradCase # below, since it's used in both set_grad_enabled HOO modules). # This checks that node.users and node.args are in correspondence. def check_users_for_graph(graph): def _tuple_contains(_tuple, val): # check nested, since output node args have format ((x, y, ...),) return any( _tuple_contains(x, val) if isinstance(x, tuple) else x == val for x in _tuple ) for node in graph.nodes: # check node.users for user in node.users.keys(): assert _tuple_contains(user.args, node) # check node.args for arg in node.args: if isinstance(arg, torch.fx.Node): assert _tuple_contains(arg.users, node) # check set grad enabled class SetGradCase(torch.nn.Module): def forward(self, x): _x = x.shape[0] + 2 _xx = _x + 2 with torch.no_grad(): y = _x * 4 return _xx, y ep = export( SetGradCase(), (torch.randn(6),), dynamic_shapes={"x": (Dim("dx"),)}, strict=False, ) check_users_for_graph(ep.graph) def test_export_custom_op_lib(self): ops_registered_before = set(torch.ops.mylib) # Assert warning for CompositeImplictAutograd op with torch.library._scoped_library("mylib", "FRAGMENT") as lib: lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") ops_registered_after = set(torch.ops.mylib) self.assertEqual(ops_registered_after, ops_registered_before) def test_export_preserve_linear_but_not_custom_op(self): table = torch.export.default_decompositions() del table[torch.ops.aten.linear.default] with torch.library._scoped_library("mylib", "FRAGMENT") as lib: lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") class Bar(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): lin = self.linear(x) return torch.ops.mylib.foo123(lin) x = torch.randn(4, 4) ep = export(Bar(), (x,)).run_decompositions(table) self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, x): linear = torch.ops.aten.linear.default(x, p_linear_weight, p_linear_bias); x = p_linear_weight = p_linear_bias = None sin = torch.ops.aten.sin.default(linear); linear = None return (sin,)""", ) def test_export_preserve_linear_at_aot_level(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(3, 3) def forward(self, x): x = self.linear(x) return torch.ops.aten.chunk.default(x, 3, 0) ep = torch.export.export(Foo(), (torch.randn(3, 3),)) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.linear.default] ep = ep.run_decompositions(decomp_table) gm = ep.graph_module # linear is CompositeImplicitAutograd functional op so we should preserve it # chunk is CompositeImplicitAutograd non-functional op we decompose. self.assertExpectedInline( str(gm.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, x): linear = torch.ops.aten.linear.default(x, p_linear_weight, p_linear_bias); x = p_linear_weight = p_linear_bias = None split_with_sizes = torch.ops.aten.split_with_sizes.default(linear, [1, 1, 1]); linear = None getitem = split_with_sizes[0] getitem_1 = split_with_sizes[1] getitem_2 = split_with_sizes[2]; split_with_sizes = None return (getitem, getitem_1, getitem_2)""", ) def test_export_cond_preserve_torch_fn_for_subgraphs(self): class MySubModule(torch.nn.Module): def foo(self, x): return x.cos() def forward(self, x): return self.foo(x) class CondBranchClassMethod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.subm = MySubModule() def bar(self, x): return x.sin() def forward(self, x): return cond(x.sum() <= 2, self.subm.forward, self.bar, [x]) example_inputs = (torch.randn(1, 3, 3, 3),) m = CondBranchClassMethod() m.eval() gm = export(m, example_inputs).module() actual_torch_fns = [] for mod in gm.modules(): for node in mod.graph.nodes: if node.name in {"sin", "cos"}: torch_fn = node.meta.get("torch_fn") print(torch_fn) actual_torch_fns.append(torch_fn) exp_torch_fns = [ ("cos_1", "method_descriptor.cos"), ("sin_1", "method_descriptor.sin"), ] self.assertEqual(actual_torch_fns, exp_torch_fns) def test_duplicate_modules_with_non_persistent_buffers(self): class FooWithBuf(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buf", torch.randn(4), persistent=False) def forward(self, x): return x + self.buf class BarWithFoo(torch.nn.Module): def __init__(self, foo): super().__init__() self.foo = foo def forward(self, x): return self.foo(x) class ModWith2Bars(torch.nn.Module): def __init__(self): super().__init__() foo = FooWithBuf() self.b1 = BarWithFoo(foo) self.b2 = BarWithFoo(foo) def forward(self, x): return self.b1(x) + self.b2(x) mod = ModWith2Bars() inputs = (torch.randn(4),) ep = export(mod, inputs) self.assertTrue(torch.allclose(ep.module()(*inputs), mod(*inputs))) def test_derived_dim_basic(self): class Foo(torch.nn.Module): def forward(self, x, y): return x + y[1:] foo = Foo() x, y = torch.randn(5), torch.randn(6) dimx = torch.export.Dim("dimx", min=3, max=6) dimy = torch.export.Dim("dimy", min=4, max=7) # doesn't work with self.assertRaisesRegex( torch._dynamo.exc.UserError, ( "Constraints violated \\(dimy\\)!(.*\n)*.*" "The values of dimy.*must always be related to the values of dimx.*by.*(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "dimy = dimx \\+ 1" ), ): export( foo, (x, y), dynamic_shapes=({0: dimx}, {0: dimy}), ) dimy = dimx * 2 # doesn't work with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected input.*size.* to be equal to 2\\*dimx, where dimx = 5, but got 6", ): export( foo, (x, y), dynamic_shapes=({0: dimx}, {0: dimy}), ) dimy = dimx + 1 # works ep = export( foo, (x, y), dynamic_shapes=({0: dimx}, {0: dimy}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 5, but got 6", ): ep.module()(torch.randn(4), torch.randn(6)) self.assertEqual(ep.module()(torch.randn(4), torch.randn(5)).size()[0], 4) def test_derived_dim_nested(self): class Foo(torch.nn.Module): def forward(self, x, y): return x + y[1::2] foo = Foo() x, y = torch.randn(5), torch.randn(11) dimx = torch.export.Dim("dimx", min=3, max=6) dimy = dimx * 2 + 1 # works ep = export( foo, (x, y), dynamic_shapes=({0: dimx}, {0: dimy}), ) self.assertEqual(ep.module()(torch.randn(4), torch.randn(9)).size()[0], 4) class Foo(torch.nn.Module): def forward(self, z, y): return z[1:] + y[1::2] foo = Foo() z, y = torch.randn(6), torch.randn(11) dimz = dimx dimy = dimx * 2 - 1 # works ep = export( foo, (z, y), dynamic_shapes=({0: dimz}, {0: dimy}), ) self.assertEqual(ep.module()(torch.randn(5), torch.randn(9)).size()[0], 4) dimz = dimx + 1 dimy = dimx * 2 - 1 # doesn't work with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected input.*size.*to be equal to 2\\*dimx - 1, where dimx = 5, but got 11", ): export( foo, (z, y), dynamic_shapes=({0: dimz}, {0: dimy}), ) dimy = dimx * 2 + 1 # works ep = export( foo, (z, y), dynamic_shapes=({0: dimz}, {0: dimy}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be <= 7, but got 8" ): ep.module()(torch.randn(8), torch.randn(15)) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 9, but got 8", ): ep.module()(torch.randn(5), torch.randn(8)) self.assertEqual(ep.module()(torch.randn(5), torch.randn(9)).size()[0], 4) def test_derived_dim_integer(self): class Foo(torch.nn.Module): def forward(self, w): if w.shape[0] % 2 == 0: return w[::2] else: return w[1:-1:2] foo = Foo() w = torch.randn(10) dimx = torch.export.Dim("dimx", min=3, max=6) dimw = dimx * 2 + 1 # doesn't work with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Expected shape.*= 10 of input Tensor to be " "of the form 2\\*dimx \\+ 1, where dimx is an integer", ): export( foo, (w,), dynamic_shapes=({0: dimw},), ) dimw = dimx * 2 # works ep = export( foo, (w,), dynamic_shapes=({0: dimw},), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*= 9 to be " "of the form 2\\*s1, where s1 is an integer", ): ep.module()(torch.randn(9)) self.assertEqual(ep.module()(torch.randn(8)).size()[0], 4) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be <= 12, but got 14", ): ep.module()(torch.randn(14)) def test_derived_dim_repeat_derived(self): class Foo(torch.nn.Module): def forward(self, u, v): return u[::2] + v[::2] foo = Foo() u, v = torch.randn(10), torch.randn(10) dimx = torch.export.Dim("dimx", min=3, max=6) dimw = dimx * 2 # works ep = export( foo, (u, v), dynamic_shapes=({0: dimw}, {0: dimw}), ) self.assertEqual(ep.module()(torch.randn(8), torch.randn(8)).size()[0], 4) def test_derived_dim_out_of_order(self): dimy = torch.export.Dim("dimy", min=5, max=7) dimx = dimy - 1 # out of order, effectively dimy = dimx + 1 dimz = dimy + 1 # out of order, effectively dimz = dimx + 2 class Foo(torch.nn.Module): def forward(self, x, y, z): return x + y[1:] + z[2:] foo = Foo() u, v, w = torch.randn(5), torch.randn(6), torch.randn(7) ep = export( foo, (u, v, w), dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 8, but got 5", ): ep.module()(torch.randn(6), torch.randn(7), torch.randn(5)) self.assertEqual( ep.module()(torch.randn(6), torch.randn(7), torch.randn(8)).size()[0], 6 ) def test_derived_dim_out_of_order_repeat_derived(self): dimy = torch.export.Dim("dimy", min=5, max=7) dimx = dimy - 1 # out of order, effectively dimy = dimx + 1 dimz = dimy + 1 # out of order, effectively dimz = dimx + 2 dimx1 = dimx dimx2 = dimz - 2 # works, effectively = dimx class Foo(torch.nn.Module): def forward(self, x, y, z, x1, x2): return x + y[1:] + z[2:] + x1 + x2 foo = Foo() u, v, w, u1, u2 = ( torch.randn(5), torch.randn(6), torch.randn(7), torch.randn(5), torch.randn(5), ) ep = export( foo, (u, v, w, u1, u2), dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}, {0: dimx1}, {0: dimx2}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 6, but got 5", ): ep.module()( torch.randn(6), torch.randn(7), torch.randn(8), torch.randn(6), torch.randn(5), ) self.assertEqual( ep.module()( torch.randn(6), torch.randn(7), torch.randn(8), torch.randn(6), torch.randn(6), ).size()[0], 6, ) ep = export( foo, (u, v, w, u, u), # reused inputs dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}, {0: dimx1}, {0: dimx2}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 6, but got 5", ): ep.module()( torch.randn(6), torch.randn(7), torch.randn(8), torch.randn(6), torch.randn(5), ) self.assertEqual( ep.module()( torch.randn(6), torch.randn(7), torch.randn(8), torch.randn(6), torch.randn(6), ).size()[0], 6, ) def test_specialize_derived_dim_roots(self): # dim & derived dim both specialize class Foo(torch.nn.Module): def forward(self, x, y): return x.reshape([-1]) + y dy = Dim("dy", min=6) x, y = torch.randn(6, 2), torch.randn(12) dynamic_shapes = { "x": (dy - 6, 2), "y": (dy,), } try: export(Foo(), (x, y), dynamic_shapes=dynamic_shapes) raise Exception( "export() call should have failed with dynamic shapes error." ) except torch._dynamo.exc.UserError as exc: expected_error_msg = ( "Specializations unexpectedly required \(dy\)!(.*\n)*.*" ".*solving the guards generated for dy - 6.*resulted in a specialized value of 6(.*\n)*.*" "Suggested fixes(.*\n)*.*" ".*dy = 12(.*\n)*.*" ) self.assertTrue(re.search(expected_error_msg, exc.args[0]) is not None) self.assertTrue( "dy - 6 = 6" not in exc.args[0] ) # don't suggest fix for non-root dim @unittest.skip("See https://github.com/pytorch/pytorch/issues/135759") def test_keep_composite_ops_invalid(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(3, 3) def forward(self, x): x = self.linear(x) return torch.ops.aten.chunk.default(x, 3, 0) def _(*args, **kwargs): return NotImplemented with self.assertWarnsRegex(UserWarning, "The op aten.chunk.default"): _ = torch.export.export( Foo(), (torch.randn(3, 3),), ).run_decompositions({torch.ops.aten.chunk.default: _}) with self.assertWarnsRegex(UserWarning, "The op aten.sym_size.default"): _ = torch.export.export( Foo(), (torch.randn(3, 3),), ).run_decompositions({torch.ops.aten.sym_size.default: _}) with self.assertWarnsRegex( UserWarning, "The op aten.native_batch_norm.default", ): _ = torch.export.export( Foo(), (torch.randn(3, 3),), ).run_decompositions({torch.ops.aten.native_batch_norm.default: _}) def test_keep_composite_ops_linear_convd(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.randn(20, 98) self.bias = torch.randn(20) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.conv1d = torch.nn.Conv1d(16, 33, 3) self.linear = MyLinear() def forward(self, x, y): x_conv = self.conv(x) y_conv_1d = self.conv1d(y) x_linear = self.linear(x_conv) return x_linear.cos() + y_conv_1d.sum() ep = torch.export.export( Foo(), (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50)) ) ep_has_linear_convd = ep.run_decompositions({}) self.assertExpectedInline( str(ep_has_linear_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None linear = torch.ops.aten.linear.default(conv2d, c_linear_weight, c_linear_bias); conv2d = c_linear_weight = c_linear_bias = None cos = torch.ops.aten.cos.default(linear); linear = None sum_1 = torch.ops.aten.sum.default(conv1d); conv1d = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.conv2d.default] del decomp_table[torch.ops.aten.conv1d.default] ep_has_convd = ep.run_decompositions(decomp_table=decomp_table) self.assertExpectedInline( str(ep_has_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None permute = torch.ops.aten.permute.default(c_linear_weight, [1, 0]); c_linear_weight = None addmm = torch.ops.aten.addmm.default(c_linear_bias, view, permute); c_linear_bias = view = permute = None view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None cos = torch.ops.aten.cos.default(view_1); view_1 = None sum_1 = torch.ops.aten.sum.dim_IntList(conv1d, []); conv1d = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.conv2d.default] ep_has_convd = ep_has_convd.run_decompositions(decomp_table=decomp_table) self.assertExpectedInline( str(ep_has_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None convolution = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None permute = torch.ops.aten.permute.default(c_linear_weight, [1, 0]); c_linear_weight = None addmm = torch.ops.aten.addmm.default(c_linear_bias, view, permute); c_linear_bias = view = permute = None view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None cos = torch.ops.aten.cos.default(view_1); view_1 = None sum_1 = torch.ops.aten.sum.dim_IntList(convolution, []); convolution = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) def test_keep_composite_ops_linear_convd_for_training_ir(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.nn.Buffer(torch.randn(20, 98)) self.bias = torch.nn.Buffer(torch.randn(20)) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.conv1d = torch.nn.Conv1d(16, 33, 3) self.linear = MyLinear() def forward(self, x, y): x_conv = self.conv(x) y_conv_1d = self.conv1d(y) x_linear = self.linear(x_conv) return x_linear.cos() + y_conv_1d.sum() ep = torch.export.export_for_training( Foo(), (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50)) ) ep_has_linear_convd = ep.run_decompositions( decomp_table={}, ) self.assertExpectedInline( str(ep_has_linear_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None linear = torch.ops.aten.linear.default(conv2d, b_linear_weight, b_linear_bias); conv2d = b_linear_weight = b_linear_bias = None cos = torch.ops.aten.cos.default(linear); linear = None sum_1 = torch.ops.aten.sum.default(conv1d); conv1d = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.conv2d.default] del decomp_table[torch.ops.aten.conv1d.default] ep_has_convd = ep.run_decompositions(decomp_table=decomp_table) self.assertExpectedInline( str(ep_has_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None permute = torch.ops.aten.permute.default(b_linear_weight, [1, 0]); b_linear_weight = None addmm = torch.ops.aten.addmm.default(b_linear_bias, view, permute); b_linear_bias = view = permute = None view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None cos = torch.ops.aten.cos.default(view_1); view_1 = None sum_1 = torch.ops.aten.sum.dim_IntList(conv1d, []); conv1d = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.conv2d.default] ep_has_convd = ep_has_convd.run_decompositions(decomp_table=decomp_table) self.assertExpectedInline( str(ep_has_convd.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, b_linear_weight, b_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None convolution = torch.ops.aten.convolution.default(y, p_conv1d_weight, p_conv1d_bias, [1], [0], [1], False, [0], 1); y = p_conv1d_weight = p_conv1d_bias = None view = torch.ops.aten.view.default(conv2d, [31680, 98]); conv2d = None permute = torch.ops.aten.permute.default(b_linear_weight, [1, 0]); b_linear_weight = None addmm = torch.ops.aten.addmm.default(b_linear_bias, view, permute); b_linear_bias = view = permute = None view_1 = torch.ops.aten.view.default(addmm, [20, 33, 48, 20]); addmm = None cos = torch.ops.aten.cos.default(view_1); view_1 = None sum_1 = torch.ops.aten.sum.dim_IntList(convolution, []); convolution = None add = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add,)""", ) @unittest.skip("See https://github.com/pytorch/pytorch/issues/135759") def test_error_when_passing_mutating_primitive_op(self): class Foo(torch.nn.Module): def forward(self, x): return x.sin() ep = export(Foo(), (torch.ones(3, 3),)) with self.assertWarnsRegex( UserWarning, "The op aten.index_put_.default", ): ep.run_decompositions({torch.ops.aten.index_put_.default: None}) def test_export_cond_warns_constant_pred(self): class Mod(torch.nn.Module): def forward(self, pred, x): return torch.cond(pred, lambda x: x.sin(), lambda x: x.cos(), (x,)) mod = Mod() with self.assertWarnsRegex(UserWarning, "Pred is a Python constant"): ep = export(mod, (True, torch.randn(3, 3))) nodes = ep.module().graph.find_nodes( op="call_function", target=torch.ops.aten.sin.default ) self.assertEqual(len(nodes), 1) def test_export_custom_decomp_table_basic_pop(self): with torch.library._scoped_library("mylib", "FRAGMENT") as lib: lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") lib.define("foo456(Tensor x) -> Tensor") lib.impl("foo456", lambda x: x.sin(), "CompositeImplicitAutograd") table = default_decompositions() # Since this table hasn't been materialized yet, we shouldn't error val = table.pop(torch.ops.mylib.foo123.default) self.assertIsNotNone(val) with self.assertRaisesRegex(KeyError, "mylib.foo123.default"): table.pop(torch.ops.mylib.foo123.default) val = table.pop(torch.ops.mylib.foo123.default, "HELLO") self.assertEqual(val, "HELLO") all_ops = set(k for k, v in table.items()) self.assertTrue(table.has_materialized) # When we force materialize, torch.ops.mylib.foo123.default should have gone self.assertFalse(torch.ops.mylib.foo123.default in all_ops) self.assertTrue(torch.ops.mylib.foo456.default in all_ops) def test_export_custom_decomp_table_container_methods(self): # tests __len__ with torch.library._scoped_library("mylib", "FRAGMENT") as lib: table = default_decompositions() length_before = len(table) lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") lib.define("foo456(Tensor x) -> Tensor") lib.impl("foo456", lambda x: x.sin(), "CompositeImplicitAutograd") table = default_decompositions() self.assertEqual(len(table) - length_before, 2) # tests __contains__ with torch.library._scoped_library("mylib", "FRAGMENT") as lib: lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") table = default_decompositions() self.assertTrue(torch.ops.mylib.foo123.default in table) del table[torch.ops.mylib.foo123.default] self.assertFalse(torch.ops.mylib.foo123.default in table) # Lot of ppl do # for op in all_ops: # if op in table: # del table[op] with torch.library._scoped_library("mylib", "FRAGMENT") as lib: lib.define("foo123(Tensor x) -> Tensor") lib.impl("foo123", lambda x: x.sin(), "CompositeImplicitAutograd") table = default_decompositions() if torch.ops.mylib.foo123.default in table: del table[torch.ops.mylib.foo123.default] self.assertFalse(torch.ops.mylib.foo123.default in table) table.materialize() self.assertFalse(torch.ops.mylib.foo123.default in table) def test_if_post_autograd_op_preserved(self): class Foo(torch.nn.Module): def forward(self, x): return x.sin() + x.sum() ep = export(Foo(), (torch.ones(3, 3),)) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.sum.default] ep_preserve_sum = ep.run_decompositions(decomp_table) # Even though we are decomposing to core aten which should make # sum into sum.dim_IntList, we explicitly marked it to not do that. self.assertExpectedInline( str(ep_preserve_sum.graph_module.code).strip(), """\ def forward(self, x): sin = torch.ops.aten.sin.default(x) sum_1 = torch.ops.aten.sum.default(x); x = None add = torch.ops.aten.add.Tensor(sin, sum_1); sin = sum_1 = None return (add,)""", ) ep_no_preserve_sum = ep.run_decompositions() self.assertExpectedInline( str(ep_no_preserve_sum.graph_module.code).strip(), """\ def forward(self, x): sin = torch.ops.aten.sin.default(x) sum_1 = torch.ops.aten.sum.dim_IntList(x, []); x = None add = torch.ops.aten.add.Tensor(sin, sum_1); sin = sum_1 = None return (add,)""", ) def test_set_grad_empty(self): class M(torch.nn.Module): def forward(self, x): with torch.no_grad(): x = x + 1 return x, None ep = export(M(), (torch.ones(3, 3),)) inp = torch.randn(3, 3) self.assertTrue(torch.allclose(ep.module()(inp)[0], inp + 1)) def test_derived_dim_out_of_order_simplified(self): _dimz = torch.export.Dim("_dimz", min=6, max=8) dimy = _dimz - 1 dimx = dimy - 1 dimz = torch.export.Dim("dimz", min=6, max=8) # doesn't work, should be = _dimz class Foo(torch.nn.Module): def forward(self, x, y, z): return x + y[1:] + z[2:] foo = Foo() u, v, w = torch.randn(5), torch.randn(6), torch.randn(7) try: export( foo, (u, v, w), dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}), ) except torch._dynamo.exc.UserError as exc: expected_error_msg = ( "Constraints violated \(dimz\)!(.*\n)*.*" "The values of dimz.*must always be related to the values of _dimz - 2.*by.*(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "dimz = _dimz" ) self.assertTrue(re.search(expected_error_msg, exc.args[0]) is not None) # don't suggest fix for non-root dims, and no need to update root here self.assertTrue("_dimz - 2 = Dim(" not in exc.args[0]) self.assertTrue("_dimz - 1 = _dimz - 1" not in exc.args[0]) self.assertTrue("_dimz = Dim(" not in exc.args[0]) dimz = dimx + 2 # works, effectively = _dimz ep = export( foo, (u, v, w), dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimz}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 8, but got 5", ): ep.module()(torch.randn(6), torch.randn(7), torch.randn(5)) self.assertEqual( ep.module()(torch.randn(6), torch.randn(7), torch.randn(8)).size()[0], 6 ) def test_simple_export_for_training(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) def forward(self, x): return self.linear(x) eager_model = Foo() ep_for_training = torch.export.export_for_training( eager_model, (torch.ones(2, 2),) ) self.assertExpectedInline( str(ep_for_training.graph_module.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, x): linear = torch.ops.aten.linear.default(x, p_linear_weight, p_linear_bias); x = p_linear_weight = p_linear_bias = None return (linear,)""", ) gm = ep_for_training.module() self.assertExpectedInline( str(gm.code).strip(), """\ def forward(self, x): x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) linear_weight = self.linear.weight linear_bias = self.linear.bias linear = torch.ops.aten.linear.default(x, linear_weight, linear_bias); x = linear_weight = linear_bias = None return pytree.tree_unflatten((linear,), self._out_spec)""", ) self.assertTrue( torch.allclose(gm(torch.ones(2, 2)), eager_model(torch.ones(2, 2))) ) def test_export_for_training_with_mutation(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(4, 4)) def forward(self, x): x.add_(5) self.buffer.add_(5) return x + self.buffer eager_model_for_export = Foo() eager_model_for_testing = Foo() ep_for_training = torch.export.export_for_training( eager_model_for_export, (torch.ones(4, 4),) ) self.assertExpectedInline( str(ep_for_training.graph_module.code).strip(), """\ def forward(self, b_buffer, x): add_ = torch.ops.aten.add_.Tensor(x, 5); x = None add__1 = torch.ops.aten.add_.Tensor(b_buffer, 5); b_buffer = None add = torch.ops.aten.add.Tensor(add_, add__1); add_ = add__1 = None return (add,)""", ) gm = ep_for_training.module() self.assertExpectedInline( str(gm.code).strip(), """\ def forward(self, x): x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) buffer = self.buffer add_ = torch.ops.aten.add_.Tensor(x, 5); x = None add__1 = torch.ops.aten.add_.Tensor(buffer, 5); buffer = None add = torch.ops.aten.add.Tensor(add_, add__1); add_ = add__1 = None return pytree.tree_unflatten((add,), self._out_spec)""", ) self.assertTrue( torch.allclose( gm(torch.ones(4, 4)), eager_model_for_testing(torch.ones(4, 4)) ) ) def test_export_for_training_with_dynamic_shapes(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(4, 4)) def forward(self, x): x.add_(5) self.buffer.add_(5) return x + self.buffer.sum() eager_model_for_export_training = Foo() eager_model_for_export_inference = Foo() eager_model_for_testing = Foo() ep_for_training = torch.export.export_for_training( eager_model_for_export_training, (torch.ones(4, 4),), dynamic_shapes=({0: Dim("x")},), ) self.assertTrue( torch.allclose( ep_for_training.module()(torch.ones(2, 4)), eager_model_for_testing(torch.ones(2, 4)), ) ) ep_for_real = export( eager_model_for_export_inference, (torch.ones(4, 4),), dynamic_shapes=({0: Dim("x")},), ) self.assertEqual( str(ep_for_training.range_constraints), str(ep_for_real.range_constraints) ) def test_export_for_training_with_container_type(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(4, 4)) def forward(self, container): x = container[0][0] y = container[0][1] x.add_(5) y.add_(5) return x + y + self.buffer.sum() eager_model = Foo() ep_for_training = torch.export.export_for_training( eager_model, ([torch.ones(4, 4), torch.ones(4, 4)],), ) self.assertTrue( torch.allclose( ep_for_training.module()( ([torch.ones(4, 4), torch.ones(4, 4)]), ), eager_model(([torch.ones(4, 4), torch.ones(4, 4)])), ) ) def test_export_for_training_run_decomp(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(2, 2)) self.linear = torch.nn.Linear(2, 2) def forward(self, x): self.buffer.add_(5) return self.linear(x) + self.buffer.sum() eager_model = Foo() ep_for_training = torch.export.export_for_training( eager_model, (torch.ones(2, 2),), ) ep_for_inference = ep_for_training.run_decompositions() self.assertExpectedInline( str(ep_for_inference.graph_module.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, b_buffer, x): add = torch.ops.aten.add.Tensor(b_buffer, 5); b_buffer = None permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None addmm = torch.ops.aten.addmm.default(p_linear_bias, x, permute); p_linear_bias = x = permute = None sum_1 = torch.ops.aten.sum.dim_IntList(add, []) add_1 = torch.ops.aten.add.Tensor(addmm, sum_1); addmm = sum_1 = None return (add, add_1)""", ) def test_derived_dim_out_of_order_simplified_repeat_non_derived(self): class Foo(torch.nn.Module): def forward(self, x, y, y1, z): return x + y[1:] + y1[1:] + z[2:] foo = Foo() u, v, v1, w = torch.randn(5), torch.randn(6), torch.randn(6), torch.randn(7) _dimz = torch.export.Dim("_dimz", min=6, max=8) dimy = _dimz - 1 dimx = dimy - 1 dimz = dimx + 2 # works, effectively = _dimz ep = export( foo, (u, v, v1, w), dynamic_shapes=({0: dimx}, {0: dimy}, {0: dimy}, {0: dimz}), ) with self.assertRaisesRegex( RuntimeError, "Expected input.*shape.*to be equal to 7, but got 5", ): ep.module()( torch.randn(6), torch.randn(7), torch.randn(5), torch.randn(8), ) self.assertEqual( ep.module()( torch.randn(6), torch.randn(7), torch.randn(7), torch.randn(8), ).size()[0], 6, ) def test_static_dim_constraints(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.l = torch.nn.Linear(6, 4) def forward(self, x, y, z): x0 = self.l(x) + y[1:] return x0, z * 2.0 foo = Foo() inputs = (torch.randn(4, 6), torch.randn(5, 4), torch.randn(3, 3)) dx = Dim("dx", min=3, max=6) dy = dx + 1 dz = Dim("dz", min=3, max=6) # test that tweaking shapes fails wrong_shape_inputs = [ (torch.randn(4, 7), torch.randn(5, 4), torch.randn(3, 3)), (torch.randn(4, 6), torch.randn(5, 5), torch.randn(3, 3)), (torch.randn(4, 6), torch.randn(5, 4), torch.randn(3, 4)), ] # all of these should be fine for dynamic_shapes in [ ({0: dx, 1: 6}, {0: dy, 1: 4}, {0: dz, 1: 3}), ((dx, None), (dy, 4), (dz, 3)), ((None, 6), (5, None), (None, None)), ((4, 6), {0: None, 1: 4}, {0: None, 1: 3}), (None, None, (Dim.STATIC, Dim.STATIC)), ]: ep = export(foo, inputs, dynamic_shapes=dynamic_shapes) self.assertEqual(foo(*inputs), ep.module()(*inputs)) for wrong_inputs in wrong_shape_inputs: with self.assertRaises(RuntimeError): ep.module()(*wrong_inputs) # check range_constraints - static dims shouldn't be present ep = export(foo, inputs, dynamic_shapes=((dx, None), (dy, 4), (dz, 3))) self.assertEqual(len(ep.range_constraints), 3) for vr in ep.range_constraints.values(): self.assertTrue(vr.lower < vr.upper) # check raised errors with self.assertRaisesRegex( ( torch.fx.experimental.symbolic_shapes.ConstraintViolationError, torch._dynamo.exc.UserError, ), "Static shape constraint of 5 does not match input size of 4, for .*", ): _ = export(foo, inputs, dynamic_shapes=((5, None), None, None)) with self.assertRaisesRegex( ( torch.fx.experimental.symbolic_shapes.ConstraintViolationError, torch._dynamo.exc.UserError, ), "Static shape constraint of 9 does not match input size of 6, for .*", ): _ = export(foo, inputs, dynamic_shapes=((dx, 9), (dy, 4), (3, 3))) def test_dim_1_2(self): class Foo(torch.nn.Module): def forward(self, x): return x * 2 dx = Dim("dx", min=1, max=2) ep = export(Foo(), (torch.randn(2, 2),), dynamic_shapes=({0: dx, 1: None},)) ep.module()(torch.randn(1, 2)) ep.module()(torch.randn(2, 2)) with self.assertRaisesRegex( RuntimeError, "Expected input at .* to be <= 2, but got 3" ): ep.module()(torch.randn(3, 2)) vr = list(ep.range_constraints.values())[0] self.assertEqual(vr.lower, 1) self.assertEqual(vr.upper, 2) def test_derived_dim_1_2(self): class Bar(torch.nn.Module): def forward(self, x, y): return x + y[1:] dx = Dim("dx", min=1, max=2) ep = export( Bar(), (torch.randn(2, 2), torch.randn(3, 2)), dynamic_shapes=({0: dx, 1: None}, {0: dx + 1, 1: None}), ) ep.module()(torch.randn(1, 2), torch.randn(2, 2)) range_lower_bounds = sorted(vr.lower for vr in ep.range_constraints.values()) range_upper_bounds = sorted(vr.upper for vr in ep.range_constraints.values()) self.assertEqual(range_lower_bounds, [1, 2]) self.assertEqual(range_upper_bounds, [2, 3]) def test_dynamic_shapes_builder_basic(self): class M(torch.nn.Module): def forward(self, x, y, z): return x + y[0] + z["k"] m = M() x = torch.randn(4) y = [torch.randn(4)] z = {"k": torch.randn(4)} args = (x, y, z) shapes_collection = torch.export.ShapesCollection() dim = torch.export.Dim("dim", max=10) shapes_collection[x] = (dim,) shapes_collection[y[0]] = (dim,) shapes_collection[z["k"]] = (dim,) ep = export(m, args, dynamic_shapes=shapes_collection) sym = next(iter(ep.range_constraints.keys())) for node in ep.graph.nodes: if node.op == "placeholder": self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)") def test_dynamic_shapes_builder_kwargs(self): class M(torch.nn.Module): def forward(self, x, y, z): return x + y[0] + z["k"] m = M() x = torch.randn(4) y = [torch.randn(4)] z = {"k": torch.randn(4)} args = (x,) kwargs = {"z": z, "y": y} shapes_collection = torch.export.ShapesCollection() dim = torch.export.Dim("dim", max=10) shapes_collection[x] = (dim,) shapes_collection[y[0]] = (dim,) shapes_collection[z["k"]] = (dim,) ep = export(m, args, kwargs=kwargs, dynamic_shapes=shapes_collection) sym = next(iter(ep.range_constraints.keys())) for node in ep.graph.nodes: if node.op == "placeholder": self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)") # retracing doesn't seem to like dataclass registration, # raising a dynamo error in fx_pytree.tree_flatten_spec @testing.expectedFailureRetraceability def test_dynamic_shapes_builder_pytree(self): torch.export.register_dataclass( Inp, serialized_type_name="test_dynamic_shapes_builder_pytree.Inp", ) class M(torch.nn.Module): def forward(self, inp: Inp): return inp.x + inp.y[0] + inp.z["k"] m = M() x = torch.randn(4) y = [torch.randn(4)] z = {"k": torch.randn(4)} args = (Inp(x, y, z),) shapes_collection = torch.export.ShapesCollection() dim = torch.export.Dim("dim", max=10) shapes_collection[x] = (dim,) shapes_collection[y[0]] = (dim,) shapes_collection[z["k"]] = (dim,) ep = export(m, args, dynamic_shapes=shapes_collection.dynamic_shapes(m, args)) sym = next(iter(ep.range_constraints.keys())) for node in ep.graph.nodes: if node.op == "placeholder": self.assertEqual(str(tuple(node.meta["val"].shape)), f"({sym},)") def test_mismatched_dynamic_shapes(self): AUTO, STATIC = Dim.AUTO, Dim.STATIC class M(torch.nn.Module): def forward(self, x): return x["k"]["k"][0] + x["k"]["k"][1] inputs = ({"k": {"k": [torch.rand(4), torch.rand(4)]}},) dim = torch.export.Dim("dim") dynamic_shapes = { "k": {"k": [dim, dim]} } # ValueError: Node keys mismatch; missing key(s): {'x'}; extra key(s): {'k'}. with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "When `dynamic_shapes` is specified as a dict, its top-level keys " "must be the arg names ['x'] of `inputs`, but here they are ['k']. " "Since here `inputs` is a list/tuple enclosing a single dict, " "maybe you just forgot to enclose `dynamic_shapes` in a list/tuple?" ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ( {"k": {"k": [dim, dim]}}, ) # torch._dynamo.exc.UserError: Unexpected dynamic_shape .*dim.* of Tensor, try None instead with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Unexpected input tensor shape .*dim.* " + re.escape( "specified at `dynamic_shapes[0]['k']['k'][0]` " "(expected either a list/tuple of dimensions, or a dict mapping indices to dimensions," " where each dimension is an int, a Dim, Dim.AUTO, Dim.STATIC, or Dim.DYNAMIC)" ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ( {"k": {"k": (dim, dim)}}, ) # ValueError: Node type mismatch; expected , but got . with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Detected mismatch between the structure of `inputs` and `dynamic_shapes`: " "`inputs[0]['k']['k']` is a , but `dynamic_shapes[0]['k']['k']` is a " ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ({"k": {"k": [(dim,), (dim,)]}},) # ok export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ( {"k": {"k": dim}}, ) # ValueError: Node type mismatch; expected , but got .*_Dim.*. with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Detected mismatch between the structure of `inputs` and `dynamic_shapes`: " "`inputs[0]['k']['k']` is a , but `dynamic_shapes[0]['k']['k']` is not" ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = { "x": {"k": [(dim,), (dim,)]}, "k": {"k": [(dim,), (dim,)]}, } # ValueError: Node arity mismatch; expected 1, but got 2. with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "When `dynamic_shapes` is specified as a dict, its top-level keys " "must be the arg names ['x'] of `inputs`, but here they are ['x', 'k']. " "Alternatively, you could also ignore arg names entirely " "and specify `dynamic_shapes` as a list/tuple matching `inputs`." ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ( {"k": {"k": [(dim,), (dim,), (dim,)]}}, ) # ValueError: Node arity mismatch; expected 2, but got 3. with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Detected mismatch between the structure of `inputs` and `dynamic_shapes`: " "`inputs[0]['k']['k']` has 2 elements, but `dynamic_shapes[0]['k']['k']` has 3 elements" ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) dynamic_shapes = ( {"k": {"K": [(dim,), (dim,), (dim,)]}}, ) # ValueError: Node keys mismatch; missing key(s): {'k'}; extra key(s): {'K'}. with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Detected mismatch between the structure of `inputs` and `dynamic_shapes`: " "`inputs[0]['k']` has keys ['k'], but `dynamic_shapes[0]['k']` has keys ['K']" ), ): export(M(), inputs, dynamic_shapes=dynamic_shapes) class N(torch.nn.Module): def forward(self, x): return x["k"]["k1"][0] + x["k"]["k2"][0] inputs = ({"k": {"k1": [torch.rand(4)], "k2": [torch.rand(4)]}},) dim = torch.export.Dim("dim") dynamic_shapes = ({"k": {"k2": [(dim,)], "k1": [(dim,)]}},) # ok export(N(), inputs, dynamic_shapes=dynamic_shapes) @testing.expectedFailureSerDer # no unbacked bindings after deserialization? @testing.expectedFailureCppSerDes # no unbacked bindings after deserialization? @testing.expectedFailureSerDerNonStrict def test_unbacked_bindings_for_divisible_u_symint(self): with torch.library._scoped_library("mylib", "FRAGMENT") as lib: torch.library.define( "mylib::foo", "(Tensor a, Tensor b) -> (Tensor)", tags=torch.Tag.pt2_compliant_tag, lib=lib, ) class M(torch.nn.Module): def forward(self, a, b): return torch.ops.mylib.foo(a, b) @torch.library.impl("mylib::foo", "cpu", lib=lib) def foo_impl(a, b): return a[b.item()] @torch.library.register_fake("mylib::foo", lib=lib) def foo_fake_impl(a, b): ctx = torch.library.get_ctx() u = ctx.new_dynamic_size(min=0, max=len(a) // 10) * 10 return torch.empty(u, a.shape[1], dtype=a.dtype) ep = export( M(), (torch.randn(100, 4), torch.tensor(10)), ) foo = [node for node in ep.graph.nodes if node.name == "foo"][0] unbacked_bindings = foo.meta["unbacked_bindings"] self.assertEqual(len(unbacked_bindings), 1) # check binding is {u: path} u = next(iter(unbacked_bindings.keys())) self.assertEqual( type(u).__name__, "Symbol" ) # check binding is symbol, not expr path = unbacked_bindings[u] self.assertEqual(len(path), 3) # check path is [size, 0, DivideByKey(10)] self.assertEqual(type(path[2]).__name__, "DivideByKey") self.assertEqual(path[2].divisor, 10) def test_torch_check_eq_commutativity(self): class M1(torch.nn.Module): def forward(self, x1, x2, x3, y): z1 = x1.item() z2 = x2.item() z3 = x3.item() # instead of: torch._check((z2 + z3) == z1) torch._check(z1 == (z2 + z3)) if z2 + z3 == z1: return y * 2 else: return y + 3 export( M1(), (torch.tensor(6), torch.tensor(3), torch.tensor(3), torch.randn(1)), ) class M2(torch.nn.Module): def forward(self, x1, x2, x3, y): z1 = x1.item() z2 = x2.item() z3 = x3.item() # instead of: torch._check((z2 + z3) != z1) torch._check(z1 != (z2 + z3)) if z2 + z3 == z1: return y * 2 else: return y + 3 export( M2(), (torch.tensor(6), torch.tensor(6), torch.tensor(6), torch.randn(1)), ) def test_raise_user_error_when_guard_on_data_dependent_operation(self): class M(torch.nn.Module): def forward(self, x): y = x.nonzero() z = y.shape[0] if z > 2: return x.cos() else: return x.sin() with self.assertRaisesRegex( ( torchdynamo.exc.UserError, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode, ), "Could not guard on data-dependent expression", ): _ = export(M(), (torch.tensor([2, 3, 5]),)) def test_suggested_fixes_for_data_dependent_errors_basic(self): # suggested fixes for data-dependent errors only work in non-strict mode strict = False error_type = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode # Just to introduce some indirection: N is a top-level module N that calls # module M, defined next. class N(torch.nn.Module): def __init__(self) -> None: super().__init__() self.m = M() def forward(self, t): return self.m(t) + 1 # example input t = torch.tensor([1, 4, 4], dtype=torch.int32) # We define a series of versions of M() below. Each version has # raises a data-dependent error that the next version fixes, by # copy-pasting a suggested fix in the error message. The fix is # always a torch.check() on an unresolved condition (or its negation) # on unbacked symints mentioned in the error message. # Note that the suggested fixes are in terms of local variables # near the location of error that "contain" the unbacked symints # in the unresolved condition (either directly or indirectly, e.g., # inside a list or inside the shape of a tensor). class M_v0(torch.nn.Module): def forward(self, t): items = [t[i].item() for i in range(t.numel())] r = torch.randn([items[0], items[1]]) # Could not guard on data-dependent expression Eq(u2, -1) return r.view(items[0], items[2]) M = M_v0 with self.assertRaisesRegex( error_type, "The following call raised this error(.*\n)+" f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+" "To fix the error, insert one of the following checks before this call.*:\n" f".*{re.escape('torch._check(items[2] == (-1))')}.*\n" f".*{re.escape('torch._check(items[2] != (-1))')}(.*\n)+" f".*{re.escape('(These suggested fixes were derived by replacing `u2` with items[2] in Eq(u2, -1) and its negation.)')}", ): export(N(), (t,), strict=strict) class M_v1(torch.nn.Module): def forward(self, t): items = [t[i].item() for i in range(t.numel())] r = torch.randn([items[0], items[1]]) # Could not guard on data-dependent expression Eq(u2, -1) torch._check(items[2] != -1) # Could not guard on data-dependent expression u2 >= 0 return r.view(items[0], items[2]) M = M_v1 with self.assertRaisesRegex( error_type, "The following call raised this error(.*\n)+" f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+" "To fix the error, insert one of the following checks before this call.*:\n" f".*{re.escape('torch._check(items[2] >= 0)')}.*\n" f".*{re.escape('torch._check(items[2] < 0)')}(.*\n)+" f".*{re.escape('(These suggested fixes were derived by replacing `u2` with items[2] in u2 >= 0 and its negation.)')}", ): export(N(), (t,), strict=strict) class M_v2(torch.nn.Module): def forward(self, t): items = [t[i].item() for i in range(t.numel())] r = torch.randn([items[0], items[1]]) # Could not guard on data-dependent expression Eq(u2, -1) torch._check(items[2] != -1) # Could not guard on data-dependent expression u2 >= 0 torch._check(items[2] >= 0) # Could not guard on data-dependent expression Eq(u1, u2) return r.view(items[0], items[2]) M = M_v2 with self.assertRaisesRegex( error_type, "The following call raised this error(.*\n)+" f".*{re.escape('return r.view(items[0], items[2])')}(.*\n)+" "To fix the error, insert one of the following checks before this call.*:\n" f".*{re.escape('torch._check(items[2] == items[1])')}.*\n" f".*{re.escape('torch._check(items[2] != items[1])')}(.*\n)+" f".*{re.escape('(These suggested fixes were derived by replacing `u1` with items[1] or r.shape[1], `u2` with items[2] in Eq(u2, u1) and its negation.)')}", ): export(N(), (t,), strict=strict) class M_v3(torch.nn.Module): def forward(self, t): items = [t[i].item() for i in range(t.numel())] r = torch.randn([items[0], items[1]]) # Could not guard on data-dependent expression Eq(u2, -1) torch._check(items[2] != -1) # Could not guard on data-dependent expression u2 >= 0 torch._check(items[2] >= 0) # Could not guard on data-dependent expression Eq(u1, u2) torch._check(items[2] == r.shape[1]) return r.view(items[0], items[2]) M = M_v3 export(N(), (t,), strict=strict) @testing.expectedFailureSerDer # T195866111 @testing.expectedFailureSerDerNonStrict def test_suggested_fixes_for_data_dependent_errors_puzzlers(self): # suggested fixes for data-dependent errors only work in non-strict mode strict = False error_type = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode def retry_export(m, inp, fixes): # API that applies a series of fixes, retrying export after applying each fix, # and asserting the applied fix was suggested in the previous try. # Using this API avoids the need to define multiple versions of the same test # module, as in `test_suggested_fixes_for_data_dependent_errors_basic` above. def code(snippets): return f"[{', '.join(snippets)}]" for i in range(len(fixes)): with self.assertRaisesRegex(error_type, re.escape(fixes[i])): export(m, (*inp, code(fixes[:i])), strict=strict) export(m, (*inp, code(fixes)), strict=strict) # The following examples are lifted from @ezyang's "Data-dependent shape puzzlers" # notebook at https://www.internalfb.com/intern/anp/view/?id=5330476 # These test modules are written in a way that works well with retry_export above. # Specifically, they take an extra `fixes` argument and `eval` it at the location # that is expected to raise errors. class cf_implicitsize(torch.nn.Module): def forward(self, x, y, fixes): i = x.item() eval(fixes) # instead of y[i] return y.narrow(0, i, 1).squeeze() retry_export( cf_implicitsize(), (torch.tensor(2), torch.randn(10)), fixes=[ # Could not guard on data-dependent expression u0 < 0 "torch._check(i >= 0)", ], ) class cf_nomemo(torch.nn.Module): def forward(self, x, y, fixes): i = y[0].item() eval(fixes) return x.unsqueeze(1).expand(-1, i) retry_export( cf_nomemo(), (torch.randn(8), torch.tensor([2])), fixes=[ # Could not guard on data-dependent expression Eq(u0, 1) "torch._check(i != 1)", # Could not guard on data-dependent expression Ne(u0, -1) "torch._check(i != (-1))", ], ) class cf_changevar(torch.nn.Module): def forward(self, x, fixes): i = x.item() eval(fixes) r = torch.arange(i // 2) return r + r retry_export( cf_changevar(), (torch.tensor(20),), fixes=[ # Could not guard on data-dependent expression Eq((u0//2), 0) "torch._check(((i//2)) != 0)", # Could not guard on data-dependent expression Eq((u0//2), 1) "torch._check(((i//2)) != 1)", ], ) class cf_stacklist(torch.nn.Module): def forward(self, xs, y, fixes): i = y.item() eval(fixes) # instead of xs[i] return torch.stack(xs, 0).narrow(0, i, 1).squeeze() retry_export( cf_stacklist(), ([torch.ones(5) * i for i in range(10)], torch.tensor(2)), fixes=[ # Could not guard on data-dependent expression u0 < 0 "torch._check(i >= 0)", ], ) class cf_tensorsplit(torch.nn.Module): def forward(self, x, offsets_t, fixes): lengths = torch.diff(offsets_t).tolist() rs = [] start = 0 for length in lengths: eval(fixes) rs.append(x.narrow(0, start, length)) start += length return rs retry_export( cf_tensorsplit(), (torch.arange(10), torch.tensor([0, 2, 5, 7, 10])), fixes=[], # nothing to fix! ) def test_no_suggested_fixes_for_data_dependent_errors(self): # suggested fixes for data-dependent errors only work in non-strict mode strict = False error_type = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode class cf_stacklist(torch.nn.Module): def forward(self, xs, y): # y.item() is not a local, so we can't suggest a fix return torch.stack(xs, 0).narrow(0, y.item(), 1).squeeze() with self.assertRaisesRegex( error_type, "Could not guard on data-dependent expression u0 < 0", ): export( cf_stacklist(), ([torch.ones(5) * i for i in range(10)], torch.tensor(2)), strict=strict, ) class Box: def __init__(self, content): self.content = content from torch.utils._pytree import register_pytree_node register_pytree_node( Box, lambda box: ([box.content], None), # flatten_fn lambda contents, _context: Box(*contents), # unflatten_fn flatten_with_keys_fn=None, # unflatten_fn serialized_type_name="test_no_suggested_fixes_for_data_dependent_errors.Box", ) class cf_stacklist_udd(torch.nn.Module): def forward(self, xs, y): box = Box(y.item()) # box.content is not a local, so we can't suggest a fix return torch.stack(xs, 0).narrow(0, box.content, 1).squeeze() with self.assertRaisesRegex( error_type, "Could not guard on data-dependent expression u0 < 0", ): export( cf_stacklist_udd(), ([torch.ones(5) * i for i in range(10)], torch.tensor(2)), strict=strict, ) def test_tolist(self): class M(torch.nn.Module): def forward(self, x): return x.tolist() ep = export(M(), (torch.ones(3, dtype=torch.int),)) self.assertEqual(ep.module()(torch.tensor([1, 2, 3])), [1, 2, 3]) def test_if_functional(self): class Module(torch.nn.Module): def forward(self, x): z = x + 4 z.add_(4) y = z.view(x.shape) return x.cos() + y.cos() foo = Module() gm = export(foo, (torch.tensor([2, 3, 5]),)).run_decompositions({}) view_count = 0 for node in gm.graph.nodes: if node.op == "call_function" and node.target == torch.ops.aten.add_.Tensor: # No more inplace mutation self.assertNotEqual( node.target, torch.ops.aten.add_.Tensor, "There shouldn't be any inplace mutation node in the graph.", ) if ( node.op == "call_function" and node.target == torch.ops.aten.view.default ): view_count += 1 # There should be nonzero view nodes in the graph self.assertTrue(view_count > 0) def test_solver_unsupported_sympy_function(self): # repro of https://github.com/pytorch/pytorch/issues/131897 class MyModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): x = torch.nn.functional.interpolate( x, scale_factor=0.5, mode="bilinear" ) x = torch.nn.functional.interpolate( x, scale_factor=2.0, mode="bilinear" ) x = x + y return x model = MyModule().eval() inputs = ( torch.rand((1, 1, 32, 32)), torch.rand((1, 1, 32, 32)), ) dim = torch.export.Dim("Dim", min=16, max=64) dynamic_shapes = {"x": {2: dim, 3: dim}, "y": {2: dim, 3: dim}} exported_program = export(model, inputs, dynamic_shapes=dynamic_shapes) self.assertEqual(exported_program.module()(*inputs), model(*inputs)) def test_export_mod_constraints(self): class BasicDynamiShapeModel(torch.nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: return x.view(x.shape[0] - 1, -1) m = BasicDynamiShapeModel() a = torch.randn(3, 4) dim0_x = torch.export.Dim("dim0_x", min=3) dim1_x = torch.export.Dim("dim1_x", max=8000) dynamic_shapes = {"x": (dim0_x, dim1_x)} em = torch.export._trace._export( m, (a,), dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ) em.module()(torch.randn(4, 3)) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Eq\(Mod\(s0\*s1, s0 \- 1\), 0\)", ): em.module()(torch.randn(4, 5)) dim0_x = None dim1_x = 2 * torch.export.Dim("_dim1_x", max=4000) dynamic_shapes = {"x": (dim0_x, dim1_x)} em = torch.export.export(m, (a,), dynamic_shapes=dynamic_shapes) x = torch.randn(3, 5) with self.assertRaisesRegex( RuntimeError, "Expected.*shape\\[1\\] = 5 to be of the form 2\\*s1, where s1 is an integer", ): em.module()(x) @testing.expectedFailureRetraceabilityNonStrict def test_dont_duck_size_for_auto_dynamic(self): AUTO, STATIC = Dim.AUTO, Dim.STATIC class Foo(torch.nn.Module): def forward(self, x, y): # x: [s0, s1], y: [s0 + 1, 4] assert y.shape[1] == 4 assert x.shape[0] == y.shape[0] - 1 return x * 2, y * 2 # duck sizing would make all static based on these sample inputs inputs = (torch.randn(4, 4), torch.randn(5, 4)) shapes = { "x": (AUTO, AUTO), "y": (AUTO, AUTO), } ep = export(Foo(), inputs, dynamic_shapes=shapes) ep.module()(torch.randn(6, 3), torch.randn(7, 4)) @testing.expectedFailureRetraceability # T183144629 @testing.expectedFailureSerDerNonStrict def test_map(self): class Module(torch.nn.Module): def forward(self, xs, y, z): def body(x, y, z): return x + y + z return map(body, xs, y, z) list_tensor_map = Module() inps = (torch.ones(6, 4), torch.tensor(5), torch.tensor(4)) self._test_export_same_as_eager(list_tensor_map, inps) @unittest.expectedFailure def test_crop_like(self): # https://fb.workplace.com/groups/1405155842844877/posts/8195050017188725/ # Minimal crop code copied from https://github.com/pytorch/vision/blob/main/torchvision/transforms/v2/functional class CropLike(torch.nn.Module): def forward(self, image, crop_height, crop_width): c, image_height, image_width = image.shape crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return image[ ..., crop_top : crop_top + crop_height, crop_left : crop_left + crop_width, ] crop = CropLike() imagew = Dim("width") imageh = Dim("height") dynamic_dims = { "image": {0: None, 1: imageh, 2: imagew}, "crop_height": None, "crop_width": None, } args = (torch.rand(3, 512, 512), 150, 150) ecrop = export(crop, args=args, dynamic_shapes=dynamic_dims) args = (torch.rand(3, 700, 700), 150, 150) self.assertEqual(ecrop.module()(*args), ecrop(*args)) def test_dim_dynamic_divisibility(self): class M(torch.nn.Module): def forward(self, x): if x.size(0) % 2 == 0: return x.clone() * 2 else: return x.clone() * 0 input1 = (torch.randn(4),) model = M() dynamic_shapes = { "x": {0: torch.export.Dim.DYNAMIC}, } export(model, input1, dynamic_shapes=dynamic_shapes) def test_export_func_with_kwargs(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, kw1, kw2): return arg1 + arg2, kw1 + kw2 kw_func = Module() args = (torch.ones(6, 4), torch.ones(1, 1)) kwargs = {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)} self._test_export_same_as_eager(kw_func, args, kwargs) def test_export_func_with_pytree_kwargs(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, a, b): return arg1 + a["kw1"] + b[0], arg2 + a["kw2"] + b[1] kw_func = Module() args = (torch.ones(2, 3), torch.ones(3, 4)) kwargs = { "a": {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)}, "b": [torch.ones(2, 3), torch.ones(3, 4)], } self._test_export_same_as_eager(kw_func, args, kwargs) def test_export_func_with_default_kwargs(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, a, b=1): return arg1 + arg2, a["kw1"] + a["kw2"] + b kw_func = Module() class Module2(torch.nn.Module): def forward(self, arg1, arg2, a=1, b=2): return arg1 + a, arg2 + b kw_func2 = Module2() args = (torch.ones(6, 4), torch.ones(1, 1)) kwargs1 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}} kwargs2 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}, "b": 2} self._test_export_same_as_eager(kw_func, args, kwargs1) self._test_export_same_as_eager(kw_func, args, kwargs2) kwargs3 = {"b": 1} self._test_export_same_as_eager(kw_func2, args, kwargs3) def test_export_func_with_var_postional_args(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, *args): return arg1 + args[0], arg2 + args[1] kw_func = Module() args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) self._test_export_same_as_eager(kw_func, args) def test_export_func_with_keyword_only_args(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, *args, kw1, kw2): return arg1 + args[0] + kw1, arg2 + args[1] + kw2 kw_func = Module() args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)} self._test_export_same_as_eager(kw_func, args, kwargs) def test_export_func_with_var_keyword_args(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, *args, kw1, kw2, **kwargs): return ( arg1 + args[0] + kw1 + kwargs["kw3"], arg2 + args[1] + kw2 + kwargs["kw4"], ) kw_func = Module() args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) kwargs = { "kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4), "kw3": torch.ones(2, 3), "kw4": torch.ones(3, 4), } self._test_export_same_as_eager(kw_func, args, kwargs) def test_unbacked_slice(self): class M(torch.nn.Module): def forward(self, scores, score_thr, topk: torch.Tensor, results=None): valid_mask = scores > score_thr scores = scores[valid_mask] valid_idxs = torch.nonzero(valid_mask).to(scores.device) num_topk = torch.minimum(topk, torch.tensor(valid_idxs.shape[0])).item() torch._check_is_size(num_topk) torch._check(scores.shape[0] >= num_topk) scores, idxs = scores.sort(descending=True) scores = scores[:num_topk] topk_idxs = valid_idxs[idxs[:num_topk]] keep_idxs, labels = topk_idxs.unbind(dim=1) return scores, labels, keep_idxs score = torch.tensor( [[0.1, 0.3, 0.2], [0.12, 0.7, 0.9], [0.02, 0.8, 0.08], [0.4, 0.1, 0.08]] ) bbox_pred = torch.tensor([[0.2, 0.3], [0.4, 0.7], [0.1, 0.1], [0.5, 0.1]]) score_thr = 0.15 nms_pre = torch.tensor(4) inputs = (score, score_thr, nms_pre, dict(bbox_pred=bbox_pred)) ep = torch.export.export(M(), inputs) orig_res = M()(*inputs) ep_res = ep.module()(*inputs) self.assertTrue(torch.allclose(orig_res[0], ep_res[0])) self.assertTrue(torch.allclose(orig_res[1], ep_res[1])) self.assertTrue(torch.allclose(orig_res[2], ep_res[2])) def test_unflatten_asserts(self): # TODO: strict-export fails class M1(torch.nn.Module): def forward(self, x, y): b = x.item() torch._check_is_size(b) torch._check(b < y.size(0)) return y[:b] class M3(torch.nn.Module): def forward(self, x, y): b = x.item() torch._check_is_size(b) torch._check(b < y.size(0) * 2) return y[:b] class M2(torch.nn.Module): def __init__(self) -> None: super().__init__() self.m1 = M1() self.m3 = M3() def forward(self, x, y): return self.m1(x, y) + self.m3(x, y) inputs = (torch.tensor(3), torch.randn(10)) ep = torch.export.export( M2(), inputs, dynamic_shapes={"x": None, "y": (Dim("moo"),)}, strict=False ) orig_res = M2()(*inputs) ep_res = ep.module()(*inputs) self.assertTrue(torch.allclose(orig_res[0], ep_res[0])) self.assertTrue(torch.allclose(orig_res[1], ep_res[1])) self.assertTrue(torch.allclose(orig_res[2], ep_res[2])) unflattened = torch.export.unflatten(ep) ep_res = unflattened(*inputs) self.assertTrue(torch.allclose(orig_res[0], ep_res[0])) self.assertTrue(torch.allclose(orig_res[1], ep_res[1])) self.assertTrue(torch.allclose(orig_res[2], ep_res[2])) def test_export_func_with_var_keyword_pytree_args(self): class Module(torch.nn.Module): def forward(self, arg1, arg2, *args, kw1, kw2, **kwargs): return ( arg1 + arg2[0][0] + args[0] + kw1[0] + kwargs["kw3"][0], arg2[1] + args[1] + kw2 + kwargs["kw4"], ) kw_func = Module() args = ( torch.ones(2, 3), [(torch.ones(2, 3),), torch.ones(3, 4)], torch.ones(2, 3), torch.ones(3, 4), ) kwargs = { "kw1": (torch.ones(2, 3),), "kw2": torch.ones(3, 4), "kw3": (torch.ones(2, 3), torch.ones(3, 4)), "kw4": torch.ones(3, 4), } self._test_export_same_as_eager(kw_func, args, kwargs) @testing.expectedFailureSerDer # we don't save placeholder metadata @testing.expectedFailureCppSerDes # we don't save placeholder metadata @testing.expectedFailureSerDerNonStrict @testing.expectedFailureNonStrict @testing.expectedFailureTrainingIRToRunDecompNonStrict # source_fn_stack failure @testing.expectedFailureRetraceabilityNonStrict def test_linear_conv(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.randn(20, 98) self.bias = torch.randn(20) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.linear = MyLinear() def forward(self, x): x_conv = self.conv(x) x_linear = self.linear(x_conv) return x_linear.cos() ep = export(Foo(), (torch.randn(20, 16, 50, 100),)) for node in ep.graph.nodes: if ( node.op == "placeholder" and node.name in ep.graph_signature.inputs_to_buffers or node.name in ep.graph_signature.inputs_to_parameters ): self.assertTrue("source_fn_stack" in node.meta) def test_export_api_with_dynamic_shapes(self): from torch.export import Dim, dims, export # pass dynamic shapes of inputs [args] class Foo(torch.nn.Module): def forward(self, x, y): return torch.matmul(x, y) foo = Foo() inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch = Dim("batch") efoo = export( foo, inputs, dynamic_shapes={k: {0: batch} for k in ["x", "y"]}, ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) foo = Foo() inputs = (torch.randn(10, 2, 3),) kwinputs = {"y": torch.randn(10, 3, 4)} batch = Dim("batch") efoo = export( foo, inputs, kwinputs, dynamic_shapes={k: {0: batch} for k in ["x", "y"]} ) self.assertEqual( efoo.module()(*inputs, **kwinputs).shape, foo(*inputs, **kwinputs).shape ) # pass dynamic shapes of inputs [partial, error] foo = Foo() inputs = (torch.randn(10, 2, 3),) kwinputs = {"y": torch.randn(10, 3, 4)} batch = Dim("batch") with self.assertRaisesRegex( torch._dynamo.exc.UserError, ( "Constraints violated \\(batch\\)!(.*\n)*.*" "batch was inferred to be a constant(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "batch = 10" ), ): export( foo, inputs, kwinputs, dynamic_shapes={"x": {0: batch}, "y": None}, ) # pass dynamic shapes of inputs [module] foo = Foo() inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch = Dim("batch") efoo = export( foo, inputs, dynamic_shapes={"x": {0: batch}, "y": {0: batch}}, ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) # pass dynamic shapes of inputs [bounds, mostly shared] foo = Foo() inputs = (torch.randn(10, 3, 3), torch.randn(10, 3, 3)) batch = Dim("batch", min=8, max=64) size = Dim("size") efoo = export( foo, inputs, dynamic_shapes={ "x": (batch, size, size), "y": (batch, size, size), }, ) self.assertEqual( [ str(node.meta["val"].shape) for node in efoo.graph_module.graph.nodes if node.op == "placeholder" ], ["torch.Size([s0, s1, s1])", "torch.Size([s0, s1, s1])"], ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) # pass dynamic shapes of inputs [multiple, mostly distinct] inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch, M, K, N = dims("batch", "M", "K", "N") efoo = export( Foo(), inputs, dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)}, ) self.assertEqual( [ str(node.meta["val"].shape) for node in efoo.graph_module.graph.nodes if node.op == "placeholder" ], ["torch.Size([s0, s1, s2])", "torch.Size([s0, s2, s5])"], ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) # pass dynamic shapes of inputs [dict] class Foo(torch.nn.Module): def forward(self, inputs): return torch.matmul(inputs["x"], inputs["y"]) foo = Foo() inputs = ({"x": torch.randn(10, 2, 3), "y": torch.randn(10, 3, 4)},) batch = Dim("batch") efoo = export( foo, inputs, dynamic_shapes={"inputs": {k: {0: batch} for k in ["x", "y"]}} ) self.assertEqual( [ str(node.meta["val"].shape) for node in efoo.graph_module.graph.nodes if node.op == "placeholder" ], ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) # pass dynamic shapes of inputs [list] class Foo(torch.nn.Module): def forward(self, inputs): return torch.matmul(inputs[0], inputs[1]) foo = Foo() inputs = ([torch.randn(10, 2, 3), torch.randn(10, 3, 4)],) batch = Dim("batch") efoo = export( foo, inputs, dynamic_shapes={"inputs": [{0: batch} for _ in range(2)]} ) self.assertEqual( [ str(node.meta["val"].shape) for node in efoo.graph_module.graph.nodes if node.op == "placeholder" ], ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], ) self.assertEqual(efoo.module()(*inputs).shape, foo(*inputs).shape) # pass dynamic shapes of inputs [dataclass] # TODO(avik): This part of the test should have failed both serde and retracing # but these failures are hidden because of the local import of `export` in this test. # The serde failure is benign, and easily avoided by moving the dataclass definition # to the top-level. OTOH the retracing failure needs further investigation. @dataclass class DataClass: a: Tensor b: Tensor register_dataclass_as_pytree_node( DataClass, serialized_type_name="test_export_api_with_dynamic_shapes.DataClass", ) class Foo(torch.nn.Module): def forward(self, inputs): return torch.matmul(inputs.a, inputs.b) foo = Foo() inputs = (DataClass(a=torch.randn(10, 2, 3), b=torch.randn(10, 3, 4)),) batch = Dim("batch") efoo = export( foo, inputs, dynamic_shapes={"inputs": [{0: batch}, {0: batch}]}, ) self.assertEqual( [ str(node.meta["val"].shape) for node in efoo.graph_module.graph.nodes if node.op == "placeholder" ], ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], ) # pass dynamic shapes of inputs [pytree-registered classes] if HAS_TORCHREC: # skipping tests if torchrec not available class Foo(torch.nn.Module): def forward(self, kjt) -> torch.Tensor: return kjt.values() + 0, kjt.offsets() + 0 foo = Foo() kjt = KeyedJaggedTensor( values=torch.Tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), keys=["index_0", "index_1"], lengths=torch.IntTensor([0, 2, 0, 1, 1, 1, 0, 3]), offsets=torch.IntTensor([0, 0, 2, 2, 3, 4, 5, 5, 8]), ) inputs = (kjt,) dim = Dim("dim") dim_plus_one = Dim("dim_plus_one") efoo = torch.export.export( foo, inputs, dynamic_shapes={"kjt": [{0: dim}, None, {0: dim}, {0: dim_plus_one}]}, ) self.assertEqual( [out.shape for out in efoo.module()(*inputs)], [out.shape for out in foo(*inputs)], ) # pass dynamic shapes of inputs [distinct, error] class Foo(torch.nn.Module): def forward(self, x, y): return torch.matmul(x, y) foo = Foo() inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch, M, K1, K2, N = dims("batch", "M", "K1", "K2", "N") with self.assertRaisesRegex( torch._dynamo.exc.UserError, ( "Constraints violated \\(K2\\)!(.*\n)*.*" "K2.*and.*K1.*must always be equal(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "K2 = K1" ), ): export( foo, inputs, dynamic_shapes={"x": (batch, M, K1), "y": (batch, K2, N)}, ) # pass dynamic shapes of inputs [specialized, error] foo = Foo() inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch, M, K1, N = dims("batch", "M", "K1", "N") with self.assertRaisesRegex( torch._dynamo.exc.UserError, ( "Constraints violated \\(K1\\)!(.*\n)*.*" "K1 was inferred to be a constant(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "K1 = 3" ), ): export( foo, inputs, dynamic_shapes={"x": (batch, M, K1), "y": (batch, None, N)}, ) # pass dynamic shapes of inputs [guards, error] class Foo(torch.nn.Module): def forward(self, x, y): if x.shape[0] < 16 and y.shape[1] % 3 == 0: return torch.matmul(x, y) else: return x + y foo = Foo() inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) batch, M, K, N = dims("batch", "M", "K", "N") with self.assertRaisesRegex( torch._dynamo.exc.UserError, ( "Constraints violated.*!(.*\n)*.*" "Not all values of K.*satisfy the generated guard(.*\n)*.*" "Not all values of batch.*satisfy the generated guard(.*\n)*.*" "Suggested fixes:(.*\n)*.*" "batch = Dim\\('batch', max=15\\)(.*\n)*.*" "K = 3\\*_K" ), ): export( foo, inputs, dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)}, ) def test_suggested_fixes_new_roots(self): from torch.export import dims # suggested fixes should introduce new root dim for modulo guard class Foo(torch.nn.Module): def forward(self, x, y, z): # dy = 3 * _dx # dx = 3 * _dx - 1 # dz = 3 * _dx + 2 # suggested fixes results will look something like # {"dx": {"eq": 3*_dx-1, "min": 5, "max": 36}, "dy": {"eq": dx+1}, ...} if x.shape[0] >= 5 and x.shape[0] <= 36 and y.shape[0] % 3 == 0: return x + y[1:] + z[3:] foo = Foo() inputs = ( torch.randn( 11, ), torch.randn( 12, ), torch.randn( 14, ), ) dx, dy, dz = dims("dx", "dy", "dz") dynamic_shapes = { "x": (dx,), "y": (dy,), "z": (dz,), } with self.assertRaisesRegex( # figure out regex later torch._dynamo.exc.UserError, ( "Constraints violated.*!(.*\n)*.*" "Suggested fixes(.*\n)*.*" "_dx = Dim\(\\'_dx\\', max=12\)(.*\n)*.*" "dx = 3\*_dx - 1(.*\n)*.*" "dy = 3\*_dx(.*\n)*.*" "dz = 3\*_dx \+ 2" ), ): export(Foo(), inputs, dynamic_shapes=dynamic_shapes) # retry export _dx = Dim("_dx", min=2, max=12) dynamic_shapes = {"x": (3 * _dx - 1,), "y": (3 * _dx,), "z": (3 * _dx + 2,)} export(Foo(), inputs, dynamic_shapes=dynamic_shapes) def test_refine_dynamic_shapes_from_suggested_fixes(self): from torch.export.dynamic_shapes import ( refine_dynamic_shapes_from_suggested_fixes, ) def helper(model, inputs, dynamic_shapes): # export, fail, parse & refine suggested fixes, re-export try: export(Foo(), inps, dynamic_shapes=dynamic_shapes) raise Exception("should have raised constraint violation error") except torch._dynamo.exc.UserError as exc: new_shapes = refine_dynamic_shapes_from_suggested_fixes( exc.msg, dynamic_shapes ) export(Foo(), inps, dynamic_shapes=new_shapes) return new_shapes # specialize dims + derived dims class Foo(torch.nn.Module): def forward(self, x, y, z): x0 = x + y[1:] + z[2:] x1 = x @ torch.randn(4, 4) return x0, x1 inps = ( torch.randn( 4, ), torch.randn( 5, ), torch.randn( 6, ), ) dx = Dim("dx", max=16) dynamic_shapes = {"x": (dx,), "y": (dx + 1,), "z": (dx + 2,)} new_shapes = helper(Foo(), inps, dynamic_shapes) self.assertEqual(new_shapes["x"][0], 4) self.assertEqual(new_shapes["z"][0], 6) # refine lower, upper bound class Foo(torch.nn.Module): def forward(self, x, y): if x.shape[0] >= 6 and y.shape[0] <= 16: return x * 2.0, y + 1 inps = (torch.randn(16), torch.randn(12)) dynamic_shapes = {"x": (Dim("dx"),), "y": (Dim("dy"),)} new_shapes = helper(Foo(), inps, dynamic_shapes) self.assertEqual(new_shapes["x"][0].min, 6) self.assertEqual(new_shapes["y"][0].max, 16) # divisiblity, will introduce new root class Foo(torch.nn.Module): def forward(self, x): if x.shape[0] >= 9: return x.reshape([-1, 3]) inps = ( torch.randn( 15, ), ) dynamic_shapes = ((Dim("dx"),),) new_shapes = helper(Foo(), inps, dynamic_shapes) dim = new_shapes[0][0] root = dim.root self.assertEqual(dim.fn(2), 6) self.assertEqual(root.min, 3) # turn dim into derived dim/relation class Foo(torch.nn.Module): def forward(self, x, y): return x + y[4:] inps = (torch.randn(6, 4), torch.randn(10, 4)) dynamic_shapes = { "x": (Dim("dx0"), Dim("dx1")), "y": (Dim("dy0"), Dim("dy1")), } new_shapes = helper(Foo(), inps, dynamic_shapes) self.assertEqual(new_shapes["x"][0], new_shapes["y"][0].root) # dy0 = dx0 + 4 self.assertEqual(new_shapes["y"][0].fn(5), 9) self.assertEqual(new_shapes["x"][1], new_shapes["y"][1]) # dx1 = dy1 # nested dynamic shapes spec class Foo(torch.nn.Module): def forward(self, x, y): x0 = x[0]["data"] + x[1] + x[2][2:] x1 = y["a"] @ torch.randn(4, 4) x2 = y["b"] @ torch.randn(6, 6) return x0, x1, x2 inps = ( [ {"data": torch.randn(4, 4)}, torch.randn(4, 4), torch.randn(6, 4), ], { "a": torch.randn(8, 4), "b": torch.randn(9, 6), }, ) dynamic_shapes = { "x": [ {"data": (Dim("dx00"), Dim("dx01"))}, (Dim("dx10"), Dim("dx11")), (Dim("dx20"), Dim("dx21")), ], "y": { "a": (Dim("dya0"), Dim("dya1")), "b": (Dim("dyb0"), Dim("dyb1")), }, } new_shapes = helper(Foo(), inps, dynamic_shapes) self.assertEqual( new_shapes["x"][0]["data"][0], new_shapes["x"][1][0] ) # dx10 = dx00 self.assertEqual( new_shapes["x"][2][0].root, new_shapes["x"][0]["data"][0] ) # dx20 = dx00 + 2 self.assertEqual(new_shapes["x"][2][0].fn(10), 12) self.assertEqual( new_shapes["x"][0]["data"][1], new_shapes["x"][1][1] ) # dx11 = dx01 self.assertEqual(new_shapes["y"]["a"][1], 4) self.assertEqual(new_shapes["y"]["b"][1], 6) self.assertEqual(new_shapes["y"]["b"][0].__name__, "dyb0") # unchanged def test_dynamic_shapes_spec_with_pytree(self): from torch.export import Dim, export from torch.utils._pytree import tree_map inputs = { "tensor": torch.randn(3), "dict_of_tensors": {k: torch.randn(3) for k in ["A", "B", "C", "D"]}, "list_of_tensors": [torch.randn(3) for _ in range(4)], } batch = Dim("batch") # uniformly specify dynamic shapes for all inputs spec = tree_map(lambda x: {0: batch}, inputs) class Foo(torch.nn.Module): def forward(self, inputs): return ( inputs["tensor"] + inputs["dict_of_tensors"]["A"] + inputs["list_of_tensors"][0] ) ep = export(Foo(), (inputs,), dynamic_shapes={"inputs": spec}) input_shapes = [ str(node.meta["val"].shape) for node in ep.graph_module.graph.nodes if node.op == "placeholder" ] self.assertEqual(len(input_shapes), 9) self.assertTrue(all(shape == "torch.Size([s0])" for shape in input_shapes)) def test_error_does_not_reference_eager_fallback(self): class Module(torch.nn.Module): def forward(self, x): y = x.nonzero() z = y.shape[0] if z > 2: return x.cos() else: return x.sin() fn_ddo = Module() if is_non_strict_test(self._testMethodName): error = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode error_msg = r"Could not guard on data-dependent expression" else: error = torchdynamo.exc.UserError error_msg = r"^(?!.*fall back to eager).*" with self.assertRaisesRegex(error, error_msg): _ = export(fn_ddo, (torch.tensor([2, 3, 5]),)) def test_pytree_register_data_class(self): @dataclass class MyDataClass: x: int y: int z: int = None dt = MyDataClass(x=3, y=4) flat, spec = tree_flatten(dt) self.assertTrue(spec, LeafSpec()) self.assertTrue(len(flat) == 1) register_dataclass_as_pytree_node( MyDataClass, serialized_type_name="test_pytree_register_data_class.MyDataClass", ) flat, spec = tree_flatten(dt) self.assertEqual( spec, TreeSpec(MyDataClass, [["x", "y"], ["z"]], [LeafSpec(), LeafSpec()]), ) self.assertEqual(flat, [3, 4]) orig_dt = tree_unflatten(flat, spec) self.assertTrue(isinstance(orig_dt, MyDataClass)) self.assertEqual(orig_dt.x, 3) self.assertEqual(orig_dt.y, 4) self.assertEqual(orig_dt.z, None) roundtrip_spec = treespec_loads(treespec_dumps(spec)) self.assertEqual(roundtrip_spec, spec) @dataclass class MyOtherDataClass: # the pytree registration don't allow registering the same class twice x: int y: int z: int = None # Override the registration with keep none fields register_dataclass_as_pytree_node( MyOtherDataClass, return_none_fields=True, serialized_type_name="test_pytree_regster_data_class.MyOtherDataClass", ) dt = MyOtherDataClass(x=3, y=4) flat, spec = tree_flatten(dt) self.assertEqual( spec, TreeSpec( MyOtherDataClass, [["x", "y", "z"], []], [LeafSpec(), LeafSpec(), LeafSpec()], ), ) self.assertEqual(flat, [3, 4, None]) orig_dt = tree_unflatten(flat, spec) self.assertTrue(isinstance(orig_dt, MyOtherDataClass)) self.assertEqual(orig_dt.x, 3) self.assertEqual(orig_dt.y, 4) self.assertEqual(orig_dt.z, None) roundtrip_spec = treespec_loads(treespec_dumps(spec)) self.assertEqual(roundtrip_spec, spec) def test_pytree_register_nested_data_class(self): @dataclass class Inner: x: int y: int @dataclass class Outer: xy: Inner ab: Inner xy = Inner(1, 2) ab = Inner(3, 4) dt = Outer(xy, ab) inp = {"dt1": (dt, ({},)), "dt2": ((torch.ones(1),), dt)} register_dataclass_as_pytree_node( Inner, serialized_type_name="test_pytree_register_nested_data_class.Inner" ) register_dataclass_as_pytree_node( Outer, serialized_type_name="test_pytree_register_nested_data_class.Outer" ) flat, spec = tree_flatten(inp) self.assertEqual(flat, [1, 2, 3, 4, torch.ones(1), 1, 2, 3, 4]) unflat = tree_unflatten(flat, spec) self.assertEqual(unflat, inp) roundtrip_spec = treespec_loads(treespec_dumps(spec)) self.assertEqual(roundtrip_spec, spec) def test_param_util(self): class Basic(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lin = torch.nn.Linear(10, 1) def forward(self, x): return self.lin(x) ep = export(Basic(), (torch.randn(5, 10),)) num_params = 0 params = [] for node in ep.graph.nodes: if is_param(ep, node): num_params += 1 params.append(get_param(ep, node)) self.assertEqual(num_params, 2) self.assertEqual(params[0].shape, [1, 10]) # weight self.assertEqual(params[1].shape, [1]) # bias def test_buffer_util(self): ep = export( torch.nn.BatchNorm2d(100, affine=False), (torch.ones(20, 100, 35, 45),) ) num_buffer = 0 buffer = [] for node in ep.graph.nodes: if is_buffer(ep, node): num_buffer += 1 buffer.append(get_buffer(ep, node)) self.assertEqual(num_buffer, 3) self.assertEqual(buffer[0].shape, torch.Size([100])) # running_mean self.assertEqual(buffer[1].shape, torch.Size([100])) # running_var self.assertEqual(buffer[2].shape, torch.Size([])) # num_batches_tracked def test_export_dynamo_config(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lstm = torch.nn.LSTM(input_size=4, hidden_size=5, num_layers=1) def forward(self, inputs: torch.Tensor) -> torch.Tensor: return self.lstm(inputs) config = DEFAULT_EXPORT_DYNAMO_CONFIG mod = MyModule() @contextmanager def _patch_config(kwargs): orig_config_dict = dataclasses.asdict(config) try: for k, v in kwargs.items(): setattr(config, k, v) yield finally: for k, v in orig_config_dict.items(): setattr(config, k, v) inp = (torch.rand(5, 4),) exported_program = export(mod, inp, strict=True) with _patch_config({"allow_rnn": False}): with self.assertRaisesRegex( torch._dynamo.exc.Unsupported, "TorchDynamo purposely graph breaks on RNN, GRU, LSTMs", ): _ = export(mod, inp, strict=True) def test_device_to_static(self): class Module(torch.nn.Module): def forward(self, x): return x.to("cpu") ep = export(Module(), (torch.tensor(1, device="cpu"),)).run_decompositions({}) ops = [] for node in ep.graph.nodes: if node.op == "call_function": ops.append(node.target) self.assertGreater(len(ops), 0) for op in ops: self.assertIn(op, (torch.ops.aten._to_copy.default,)) def test_device_to_dynamic(self): class Module(torch.nn.Module): def forward(self, x): return x.to("cpu") ep = export( Module(), (torch.tensor([1, 2], device="cpu"),), dynamic_shapes={"x": {0: Dim("i")}}, ).run_decompositions({}) ops = [] for node in ep.graph.nodes: if node.op == "call_function": ops.append(node.target) self.assertGreater(len(ops), 0) for op in ops: self.assertIn(op, (torch.ops.aten._to_copy.default,)) def test_device_to_mutation(self): class Module(torch.nn.Module): def forward(self, x): y = x.to("cpu") y.add_(1) return y, x with self.assertRaisesRegex( RuntimeError, "cannot mutate tensors with frozen storage" ): export(Module(), (torch.tensor(1, device="cpu"),)).run_decompositions({}) def test_float_conversion(self): class Module(torch.nn.Module): def forward(self, x): return x.float() ep = export(Module(), (torch.tensor(1, dtype=torch.float),)).run_decompositions( {} ) ops = [] for node in ep.graph.nodes: if node.op == "call_function": ops.append(node.target) self.assertGreater(len(ops), 0) for op in ops: self.assertIn(op, (torch.ops.aten._to_copy.default,)) def test_device_to_mutation_float(self): class Module(torch.nn.Module): def forward(self, x): y = x.float() y.add_(1) return y, x with self.assertRaisesRegex( RuntimeError, "cannot mutate tensors with frozen storage" ): export(Module(), (torch.tensor(1, dtype=torch.float),)).run_decompositions( {} ) def test_module(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.randn(20, 98) self.bias = torch.randn(20) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.linear = MyLinear() def forward(self, x): a, b = x a_conv = self.conv(a) a_linear = self.linear(a_conv) b_conv = self.conv(b) b_linear = self.linear(b_conv) return ( a_linear.cos() + b_linear.sin(), a_linear.sin() + b_linear.cos(), ) inp_container = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),) ep = export(Foo(), inp_container) ep_rexported = export(ep.module(), inp_container) inp_test = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),) self.assertTrue( torch.allclose( ep.module()(*inp_test)[0], ep_rexported.module()(*inp_test)[0] ) ) self.assertTrue( torch.allclose( ep.module()(*inp_test)[1], ep_rexported.module()(*inp_test)[1] ) ) def test_use_embedding_twice(self): class Foo(torch.nn.Module): def __init__(self): super().__init__() self.embed = torch.nn.Embedding(4, 4) def forward(self, x): return self.embed(x) + self.embed.weight[x] inputs = (torch.tensor([0, 1, 2, 3]),) ep = export(Foo(), inputs) def test_module_with_dict_container_inp_out(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.randn(20, 98) self.bias = torch.randn(20) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.linear = MyLinear() def forward(self, x): a1, a2 = x["a"] b = x["b"] a1_conv = self.conv(a1) a1_linear = self.linear(a1_conv) a2_conv = self.conv(a2) a2_linear = self.linear(a2_conv) b_conv = self.conv(b) b_linear = self.linear(b_conv) return { "a": a1_linear.cos() + b_linear.sin(), "b": a2_linear.sin() + b_linear.cos(), } inp_container = ( { "a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100), }, ) ep = export(Foo(), inp_container) ep_rexported = export(ep.module(), inp_container) inp_test = ( { "a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100), }, ) self.assertTrue( torch.allclose( ep.module()(*inp_test)["a"], ep_rexported.module()(*inp_test)["a"] ) ) self.assertTrue( torch.allclose( ep.module()(*inp_test)["b"], ep_rexported.module()(*inp_test)["b"] ) ) def test_args_type_checked(self): class M(torch.nn.Module): def forward(self, x): return x + 1 inp = torch.rand(2, 2) with self.assertRaisesRegex(torch._dynamo.exc.UserError, "to be a tuple"): # Intentionally not wrapping `inp` in a tuple to trigger the error _ = export(M(), inp) def test_decomp_item_in_prim_before_decomposition(self): class M(torch.nn.Module): def forward(self, x): torch.ops.aten._assert_async.msg(torch.tensor(True), "Fail") return x ep = export(M(), (torch.randn(2, 2),)) FileCheck().check_count( "torch.ops.aten._assert_async.msg", 1, exactly=True ).run(ep.graph_module.code) def test_decomp_item_in_prim_after_decomposition(self): class M(torch.nn.Module): def forward(self, x): torch.ops.aten._assert_async.msg(torch.tensor(True), "Fail") return x decomp_table = {**default_decompositions(), **decomposition_table} ep = export_for_training(M(), (torch.randn(2, 2),)).run_decompositions( decomp_table ) self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, c_lifted_tensor_0, x): lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(c_lifted_tensor_0); c_lifted_tensor_0 = None _assert_async = torch.ops.aten._assert_async.msg(lift_fresh_copy, 'Fail'); lift_fresh_copy = _assert_async = None return (x,)""", ) def test_decomp_batch_norm_functional_predispatch(self): class ConvBatchnorm(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(1, 3, 1, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): x = self.conv(x) x = self.bn(x) return (x,) mod = ConvBatchnorm() mod.eval() inp = torch.randn(1, 1, 3, 3) gm = torch.export._trace._export(mod, (inp,), pre_dispatch=True).module() self.assertExpectedInline( str(gm.code).strip(), """\ def forward(self, x): x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) conv_weight = self.conv.weight conv_bias = self.conv.bias bn_weight = self.bn.weight bn_bias = self.bn.bias bn_running_mean = self.bn.running_mean bn_running_var = self.bn.running_var bn_num_batches_tracked = self.bn.num_batches_tracked; bn_num_batches_tracked = None conv2d = torch.ops.aten.conv2d.default(x, conv_weight, conv_bias); x = conv_weight = conv_bias = None _native_batch_norm_legit_no_training = torch.ops.aten._native_batch_norm_legit_no_training.default(conv2d, bn_weight, bn_bias, bn_running_mean, bn_running_var, 0.1, 1e-05); conv2d = bn_weight = bn_bias = bn_running_mean = bn_running_var = None getitem = _native_batch_norm_legit_no_training[0]; _native_batch_norm_legit_no_training = None return pytree.tree_unflatten((getitem,), self._out_spec)""", ) mod.train() gm_train = _export(mod, (inp,), pre_dispatch=True).module() self.assertExpectedInline( str(gm_train.code).strip(), """\ def forward(self, x): x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec) conv_weight = self.conv.weight conv_bias = self.conv.bias bn_weight = self.bn.weight bn_bias = self.bn.bias bn_running_mean = self.bn.running_mean bn_running_var = self.bn.running_var bn_num_batches_tracked = self.bn.num_batches_tracked conv2d = torch.ops.aten.conv2d.default(x, conv_weight, conv_bias); x = conv_weight = conv_bias = None add = torch.ops.aten.add.Tensor(bn_num_batches_tracked, 1) _native_batch_norm_legit_functional = torch.ops.aten._native_batch_norm_legit_functional.default(conv2d, bn_weight, bn_bias, bn_running_mean, bn_running_var, True, 0.1, 1e-05); conv2d = bn_weight = bn_bias = None getitem = _native_batch_norm_legit_functional[0] getitem_3 = _native_batch_norm_legit_functional[3] getitem_4 = _native_batch_norm_legit_functional[4]; _native_batch_norm_legit_functional = None copy__default = torch.ops.aten.copy_.default(bn_running_mean, getitem_3); bn_running_mean = getitem_3 = copy__default = None copy__default_1 = torch.ops.aten.copy_.default(bn_running_var, getitem_4); bn_running_var = getitem_4 = copy__default_1 = None copy__default_2 = torch.ops.aten.copy_.default(bn_num_batches_tracked, add); bn_num_batches_tracked = add = copy__default_2 = None return pytree.tree_unflatten((getitem,), self._out_spec)""", ) def test_constrain_size_in_eager(self): class Module(torch.nn.Module): def forward(self, x, y): n = x.max().item() torch._check_is_size(n) return y + n fn = Module() ep = export( fn, (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))), ) test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) self.assertTrue(torch.allclose(ep.module()(*test_inp), fn(*test_inp))) def test_constrain_size_with_constrain_value(self): class Module(torch.nn.Module): def forward(self, x, y): n = x.max().item() torch._check(n >= 2) torch._check(n <= 10) torch._check_is_size(n) return y + n fn = Module() with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False" ): _ = fn(torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) ep = export( fn, (torch.randint(3, 4, (2, 2)), torch.randint(3, 5, (2, 3))), ) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression u[\d+] \>\= 2" ): test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) _ = ep.module()(*test_inp) def test_constrain_size_with_various_cases(self): class Module1(torch.nn.Module): def forward(self, x, y): n = x.item() torch._check_is_size(n) torch._check(n >= 0) return y.sum() + torch.ones(n, 5).sum() case1 = Module1() class Module2(torch.nn.Module): def forward(self, x, y): n = x.item() torch._check_is_size(n) torch._check(n >= 0) torch._check(n <= 6) return y.sum() + torch.ones(n, 5).sum() case2 = Module2() class Module3(torch.nn.Module): def forward(self, x, y): n = x.item() torch._check_is_size(n) torch._check(n >= 0) torch._check(n <= 1) return y.sum() + torch.ones(n, 5).sum() case3 = Module3() class Module4(torch.nn.Module): def forward(self, x, y): n = x.item() torch._check_is_size(n) torch._check(n >= 2) return y.sum() + torch.ones(n, 5).sum() case4 = Module4() class Module5(torch.nn.Module): def forward(self, x, y): n = x.item() torch._check_is_size(n) torch._check(n >= 1) return y.sum() + torch.ones(n, 5).sum() case5 = Module5() ep = export(case1, (torch.tensor(1), torch.ones(4, 5))) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False" ): _ = case1(torch.tensor(-1), torch.randn(4, 5)) self.assertTrue( torch.allclose( ep.module()(torch.tensor(1), torch.ones(4, 5)), case1(torch.tensor(1), torch.ones(4, 5)), ) ) ep = export(case2, (torch.tensor(5), torch.randn(4, 5))) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False", ): _ = case2(torch.tensor(7), torch.randn(4, 5)) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False", ): _ = case2(torch.tensor(9), torch.randn(4, 5)) self.assertTrue( torch.allclose( ep.module()(torch.tensor(5), torch.ones(4, 5)), case2(torch.tensor(5), torch.ones(4, 5)), ) ) _ = case3(torch.tensor(1), torch.randn(4, 5)) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False", ): _ = case4(torch.tensor(1), torch.randn(4, 5)) ep = export(case4, (torch.tensor(5), torch.randn(4, 5))) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False", ): _ = case4(torch.tensor(1), torch.randn(4, 5)) self.assertTrue( torch.allclose( ep.module()(torch.tensor(5), torch.ones(4, 5)), case4(torch.tensor(5), torch.ones(4, 5)), ) ) ep = export(case5, (torch.tensor(5), torch.randn(4, 5))) with self.assertRaisesRegex( RuntimeError, r"Expected cond to be True, but got False", ): _ = case5(torch.tensor(0), torch.randn(4, 5)) self.assertTrue( torch.allclose( ep.module()(torch.tensor(5), torch.ones(4, 5)), case5(torch.tensor(5), torch.ones(4, 5)), ) ) def test_automatic_constrain_size(self): class M(torch.nn.Module): def forward(self, x, y): n = x.item() return y.sum() + torch.ones(n, 5).sum() ep = export(M(), (torch.tensor(1), torch.ones(4, 5))) # This is because we insert sym_constrain_range in the graph now error_msg = r"Invalid value range for -1 between" with self.assertRaisesRegex(RuntimeError, error_msg): _ = ep.module()(torch.tensor(-1), torch.randn(4, 5)) self.assertTrue( torch.allclose( ep.module()(torch.tensor(1), torch.ones(4, 5)), M()(torch.tensor(1), torch.ones(4, 5)), ) ) def test_cleanup_dynamic_markers(self) -> None: class Foo(torch.nn.Module): def forward(self, inputs): x, y = inputs["x"], inputs["y"] return x + y inputs = ( { "x": torch.randn(4, 8), "y": torch.randn(4, 8), }, ) shapes = { "inputs": { "x": (Dim.AUTO, Dim.STATIC), "y": (Dim.DYNAMIC, Dim.STATIC), }, } ep = export(Foo(), inputs, dynamic_shapes=shapes) for tensor in inputs[0].values(): for attr in [ "_dynamo_weak_dynamic_indices", "_dynamo_dynamic_indices", "_dynamo_dynamic_range", "_dynamo_static_indices", "_dynamo_unbacked_indices", ]: self.assertFalse(hasattr(tensor, attr)) def test_constrain_decomp(self) -> None: class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.freq = torch.ones(5, 5) def forward(self, start_pos: torch.Tensor): pos = start_pos.item() torch._check_is_size(pos) torch._check(pos >= 0) torch._check(pos <= 4) return self.freq[pos] * self.freq[pos] ep = torch.export.export(M(), (torch.tensor(1),)) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) decompose_ep = ep.run_decompositions() FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) def test_mixed_input(self): class Module(torch.nn.Module): def forward(self, a, b, alpha: int): return torch.add(a, b, alpha=alpha) func = Module() a = torch.rand(1, 2) b = torch.rand(1, 2) alpha = 10 exported = export(func, (a, b, alpha)) for node in exported.graph_module.graph.nodes: if node.op == "placeholder": self.assertTrue(isinstance(node.meta["val"], (Tensor, int))) def test_tensor_constant_with_wrapped_method(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.constant = torch.ones(4, 4) def forward(self, x): return x + self.constant, self.constant class Wrapper(torch.nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, *arg, **kwargs): return self.fn(*arg, **kwargs) inp = (torch.zeros(4, 4),) def test(m): m_result = m(*inp) ep_result = export(m, inp).module()(*inp) for m_t, ep_t in zip(m_result, ep_result): self.assertTrue(torch.allclose(m_t, ep_t)) test(M()) test(Wrapper(M().forward)) def test_export_with_inline_constraints(self): class Module(torch.nn.Module): def forward(self, x): a = x.item() torch._check(a >= 4) torch._check(a <= 7) return torch.empty((a, 4)) f = Module() ep = export(f, (torch.tensor([5]),)) self.assertEqual(ep.module()(torch.tensor([6])).shape, (6, 4)) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 0, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression u[\d+] \<\= 7", ) as cm: ep.module()(torch.tensor([30])) def test_export_with_inline_constraints_complex(self): class Module(torch.nn.Module): def forward(self, x): a = x.item() torch._check(a >= 4) torch._check(a <= 7) empty = torch.empty((a, 4)) return torch.cat((empty.transpose(0, 1), torch.zeros(6, a)), 0) f = Module() ep = export(f, (torch.tensor([6]),)) self.assertEqual(ep.module()(torch.tensor([5])).shape, (10, 5)) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 0, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) def test_to_module_with_mutated_buffer(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.zeros(1)) def forward(self, x): self.buf.add_(1) return x.sum() + self.buf.sum() exported = export(Foo(), (torch.ones(5, 5),)) stateful_gm = exported.module() export_return_val = stateful_gm(torch.ones(5, 5)) eager = Foo() eager_return_val = eager(torch.ones(5, 5)) self.assertTrue(torch.allclose(eager_return_val, export_return_val)) for name, buffer in stateful_gm.named_buffers(): self.assertTrue(torch.allclose(torch.ones(1), buffer)) changed = stateful_gm.graph.eliminate_dead_code() self.assertFalse(changed) self.assertTrue( torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5))) ) for name, buffer in stateful_gm.named_buffers(): self.assertTrue(torch.allclose(torch.tensor(2, dtype=torch.float), buffer)) def test_to_module_with_mutated_buffer_multiple(self): class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.ones(1)) def forward(self, x): self.buf.add_(1) return x.sum() + self.buf.sum() class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.zeros(1)) self.bar = Bar() def forward(self, x): self.buf.add_(1) self.bar.buf.add_(2) bar = self.bar(x) return bar.sum() + self.buf.sum() exported = export(Foo(), (torch.ones(5, 5),)) stateful_gm = exported.module() export_return_val = stateful_gm(torch.ones(5, 5)) eager = Foo() eager_return_val = eager(torch.ones(5, 5)) self.assertTrue(torch.allclose(eager_return_val, export_return_val)) for name, buffer in stateful_gm.named_buffers(): if name == "L__self___buf": self.assertTrue(torch.allclose(torch.ones(1), buffer)) if name == "L__self___bar_buf": self.assertTrue( torch.allclose(torch.tensor(4, dtype=torch.float), buffer) ) changed = stateful_gm.graph.eliminate_dead_code() self.assertFalse(changed) self.assertTrue( torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5))) ) for name, buffer in stateful_gm.named_buffers(): if name == "L__self___buf": self.assertTrue( torch.allclose(torch.tensor(2, dtype=torch.float), buffer) ) if name == "L__self___bar_buf": self.assertTrue( torch.allclose(torch.tensor(7, dtype=torch.float), buffer) ) def test_runtime_assert_for_prim(self): class Foo(torch.nn.Module): def forward(self, x, y): return x + y foo = Foo() tensor_inp = torch.ones(7, 5) dim0_x = torch.export.Dim("dim0_x", min=6) dynamic_shapes = {"x": {0: dim0_x}, "y": None} exported = torch.export.export( foo, (tensor_inp, 5), dynamic_shapes=dynamic_shapes ) self.assertTrue( torch.allclose( exported.module()(torch.ones(8, 5), 5), foo(torch.ones(8, 5), 5) ) ) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[1] to be equal to 5, but got 6"), ): _ = exported.module()(torch.ones(8, 5), 6) exported = torch.export.export( foo, (tensor_inp, 5.0), dynamic_shapes=dynamic_shapes ) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[1] to be equal to 5.0, but got 6.0"), ): _ = exported.module()(torch.ones(7, 5), 6.0) def test_runtime_assert_for_prm_str(self): class Foo(torch.nn.Module): def forward(self, a, b, mode): return torch.div(a, b, rounding_mode=mode) foo = Foo() inps = (torch.randn(4, 4), torch.randn(4), "trunc") exported = export(foo, inps) with self.assertRaisesRegex( RuntimeError, "to be equal to trunc, but got floor" ): _ = exported.module()(torch.randn(4, 4), torch.randn(4), "floor") self.assertTrue(torch.allclose(exported.module()(*inps), foo(*inps))) def test_redundant_assert_max_upper_bound(self): class M(torch.nn.Module): def forward(self, x): b = x.nonzero() torch._check(b.shape[0] >= 3) return b m = M() inp = (torch.tensor([1, 1, 1, 0, 1]),) dim = torch.export.Dim("dim") ep = export(m, inp, dynamic_shapes=((dim,),)) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 1, exactly=True ).run(ep.graph_module.code) def test_to_module_with_mutated_buffer_multiple_update_sub_later(self): class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.ones(1)) def forward(self, x): self.buf.add_(1) return x.sum() + self.buf.sum() class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.zeros(1)) self.bar = Bar() def forward(self, x): self.buf.add_(1) bar = self.bar(x) self.bar.buf.add_(2) return bar.sum() + self.buf.sum() exported = export(Foo(), (torch.ones(5, 5),)) stateful_gm = exported.module() export_return_val = stateful_gm(torch.ones(5, 5)) eager = Foo() eager_return_val = eager(torch.ones(5, 5)) self.assertTrue(torch.allclose(eager_return_val, export_return_val)) for name, buffer in stateful_gm.named_buffers(): if name == "L__self___buf": self.assertTrue(torch.allclose(torch.ones(1), buffer)) if name == "L__self___bar_buf": self.assertTrue( torch.allclose(torch.tensor(4, dtype=torch.float), buffer) ) changed = stateful_gm.graph.eliminate_dead_code() self.assertFalse(changed) self.assertTrue( torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5))) ) for name, buffer in stateful_gm.named_buffers(): if name == "L__self___buf": self.assertTrue( torch.allclose(torch.tensor(2, dtype=torch.float), buffer) ) if name == "L__self___bar_buf": self.assertTrue( torch.allclose(torch.tensor(7, dtype=torch.float), buffer) ) def test_retracable_ep(self): class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.ones(1)) def forward(self, x): self.buf.add_(1) return x.sum() + self.buf.sum() class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buf = torch.nn.Buffer(torch.zeros(1)) self.bar = Bar() def forward(self, x): self.buf.add_(1) bar = self.bar(x) self.bar.buf.add_(2) return bar.sum() + self.buf.sum() inp = torch.ones(5, 5) exported = torch.export.export(Foo(), (inp,)) reexported = torch.export.export(exported.module(), (inp,)) self.assertTrue(torch.allclose(Foo()(inp), reexported.module()(inp))) dim0_x = torch.export.Dim("dim0_x") exported = torch.export.export(Foo(), (inp,), dynamic_shapes=({0: dim0_x},)) reexported = torch.export.export(exported.module(), (inp,)) with self.assertRaisesRegex( RuntimeError, "shape\[0\] to be equal to 5, but got 7" ): reexported.module()(torch.ones(7, 5)) reexported = torch.export.export( exported.module(), (inp,), dynamic_shapes=({0: dim0_x},) ) self.assertTrue( torch.allclose( Foo()(torch.ones(7, 5)), reexported.module()(torch.ones(7, 5)) ) ) # can't retrace with invalid inputs with respect to the original ExportedProgram dim0_x_v2 = torch.export.Dim("dim0_x_v2", min=3) exported_v2 = torch.export.export( Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x_v2}} ) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[0].shape[0] to be >= 3, but got 2"), ): torch.export.export(exported_v2.module(), (torch.randn(2, 2),)) def test_export_cond_symbool_pred(self): class A(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(6, 4)) def forward(self): return self.buffer.cos() class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = A() def forward(self, x): def true_fn(x): return x.cos() + self.a().sum() def false_fn(x): return x.sin() return cond(x.shape[0] > 4, true_fn, false_fn, [x]) dim0 = torch.export.Dim("dim0", min=3) inp = torch.ones(6, 4) ep = export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0}}) schema = get_hop_schema(ep) self.assertExpectedInline( str(schema), """cond(SymBool pred, GraphModule true_fn, GraphModule false_fn, Tensor[2] operands) -> Tensor[1]""", ) self.assertExpectedInline( ep.graph_module.code.strip(), """\ def forward(self, b_a_buffer, x): sym_size_int_1 = torch.ops.aten.sym_size.int(x, 0) gt = sym_size_int_1 > 4; sym_size_int_1 = None true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [x, b_a_buffer]); gt = true_graph_0 = false_graph_0 = x = b_a_buffer = None getitem = cond[0]; cond = None return (getitem,)""", ) self.assertTrue( torch.allclose(ep.module()(torch.ones(6, 4)), Foo()(torch.ones(6, 4))) ) def test_aten_lift_fresh_copy(self): class M(torch.nn.Module): def forward(self, x): return torch.ops.aten.lift_fresh_copy(x) ep = export(M(), (torch.ones(6, 4),)).run_decompositions({}) found = False op = "torch.ops.aten.clone.default" FileCheck().check_count(op, 1, exactly=True).run(ep.graph_module.code) def test_cond_buffers(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.register_parameter( "param", torch.nn.Parameter(torch.ones(2, 3), requires_grad=False) ) self.buffer = torch.nn.Buffer(torch.ones(2, 3) + 1) def true_fn(self, x): return x + self.param def false_fn(self, x): return x + self.buffer def forward(self, x): return cond(x.shape[0] == 4, self.true_fn, self.false_fn, [x]) inp = torch.ones(2, 3) ep = torch.export.export(M(), (inp,)) inp = torch.randn(2, 3) epm = ep.module() self.assertTrue(torch.allclose(epm(inp), M()(inp))) for gm in epm.named_modules(): if not isinstance(gm, torch.fx.GraphModule): continue self.assertEqual( len([node for node in gm.graph.nodes if node.op == "placeholder"]), 1 ) # map_fn references module outside the module hierarchy @unittest.expectedFailure def test_map_buffers(self): class M1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.register_parameter( "param", torch.nn.Parameter(torch.tensor(5), requires_grad=False) ) self.buffer = torch.nn.Buffer(torch.tensor(6) + 1) m1 = M1() def map_fn(x, y): z = x + y + m1.param + m1.buffer z.add_(4) return z class M(torch.nn.Module): def forward(self, xs, y): return map(map_fn, xs, y) example_inputs = (torch.ones(3, 2), torch.tensor(3)) ep = torch.export.export(M(), example_inputs) example_inputs = (torch.randn(3, 2), torch.tensor(3)) epm = ep.module() self.assertTrue(torch.allclose(epm(*example_inputs), M()(*example_inputs))) for gm in epm.named_modules(): if not isinstance(gm, torch.fx.GraphModule): continue self.assertEqual( len([node for node in gm.graph.nodes if node.op == "placeholder"]), 2 ) def test_check_is_size_error(self): class Module(torch.nn.Module): def forward(self, x): a = x.item() # We cannot automatically infer a is a size here because view # accepts -1 return torch.randn(24).view(a, 4) f = Module() if is_non_strict_test(self._testMethodName): error = torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode else: error = torch._dynamo.exc.UserError error_msg = r"Could not guard on data-dependent expression" with self.assertRaisesRegex(error, error_msg): _ = export(f, (torch.tensor(6),)) def test_train_eval_on_exported_preautograd_module(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): if x.shape[0] > 4: return x.cos() return x.sin() graph_module = _export(Foo(), (torch.ones(7, 5),), pre_dispatch=True).module() with self.assertRaisesRegex( NotImplementedError, r"Calling train\(\) is not supported yet." ): graph_module.train() with self.assertRaisesRegex( NotImplementedError, r"Calling eval\(\) is not supported yet." ): graph_module.eval() def test_lifted_constants(self) -> None: class Module(torch.nn.Module): def forward(self, x): return x + torch.tensor(3) f = Module() ep = export(f, (torch.tensor(1),)) self.assertEqual(len(ep.graph_signature.input_specs), 2) self.assertEqual(len(ep.constants), 1) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor(3) def forward(self, x): list_tensor = [torch.tensor(3), torch.tensor(4)] return x + self.a + list_tensor[0] + list_tensor[1] ep = export(Foo(), (torch.tensor(1),)) self.assertEqual(len(ep.graph_signature.input_specs), 4) self.assertEqual(len(ep.state_dict), 0) self.assertEqual(len(ep.constants), 3) inp = (torch.tensor(5),) self.assertTrue(torch.allclose(ep.module()(*inp), Foo()(*inp))) transform = ep.run_decompositions() self.assertEqual(len(ep.graph_signature.input_specs), 4) self.assertTrue(torch.allclose(ep.module()(*inp), transform.module()(*inp))) class Boo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor(True) def forward(self, x): list_tensor = [torch.tensor(False), torch.tensor(True)] return x + self.a + list_tensor[0] + list_tensor[1] ep = export(Boo(), (torch.tensor(False),)) self.assertEqual(len(ep.graph_signature.input_specs), 4) self.assertEqual(len(ep.state_dict), 0) self.assertEqual(len(ep.constants), 3) inp = (torch.tensor(True),) self.assertTrue(torch.allclose(ep.module()(*inp), Boo()(*inp))) transform = ep.run_decompositions() self.assertEqual(len(ep.graph_signature.input_specs), 4) self.assertTrue(torch.allclose(ep.module()(*inp), transform.module()(*inp))) def test_tensor_attribute_zero_args(self): class Foo(torch.nn.Module): def __init__(self, value): super().__init__() self.x = torch.tensor(value) def forward(self): return self.x.clone() m = Foo([1, 2]) ep = export(m, ()) self.assertEqual(ep.graph_signature.lifted_tensor_constants, ["x"]) def test_preserve_shape_dynamism_for_unused_inputs(self): @dataclass class Input: f: torch.Tensor p: torch.Tensor torch._export.utils.register_dataclass_as_pytree_node( Input, serialized_type_name="test_preserve_shape_dynamism_for_unused_inputs.Input", ) class Module(torch.nn.Module): def forward(self, x: Input): return x.f + 1 mod = Module() example_inputs = (Input(f=torch.ones(10, 4), p=torch.zeros(10, 4)),) ep_static = torch.export.export(mod, example_inputs) for node in ep_static.graph.nodes: if node.op == "placeholder": for s in node.meta["val"].shape: self.assertIsInstance(s, int) dim0_x_f, dim0_x_p = torch.export.dims("dim0_x_f", "dim0_x_p") dynamic_shapes = {"x": [{0: dim0_x_f}, {0: dim0_x_p}]} ep_dynamic = torch.export.export( mod, example_inputs, dynamic_shapes=dynamic_shapes ) for node in ep_dynamic.graph.nodes: if node.op == "placeholder": for i, s in enumerate(node.meta["val"].shape): if i == 0: self.assertIsInstance(s, torch.SymInt) else: self.assertIsInstance(s, int) def test_multiple_definitions_same_name_dim(self): class Foo(torch.nn.Module): def forward(self, x, y): return torch.matmul(x, y) A = torch.export.Dim("C", min=3) B = torch.export.Dim("C", max=12) with self.assertRaisesRegex( torch._dynamo.exc.UserError, "Found different definitions Dim\\(.*min=3\\) and Dim\\(.*max=12\\) " "for the same symbolic dimension", ): torch.export.export( Foo(), (torch.randn(10, 10), torch.randn(10, 10)), dynamic_shapes={"x": (A, B), "y": (B, A)}, ) def test_export_with_wrong_inputs(self): class MyModule(torch.nn.Module): def forward(self, x): return x + x exported_program = export(MyModule(), (torch.rand(2, 3),), {}) with self.assertRaisesRegex(ValueError, "Trying to flatten user inputs"): exported_program.module()(torch.rand(2, 3), torch.rand(2, 3)) def test_export_decomps_simple(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lin = torch.nn.Linear(10, 1) def forward(self, x): return self.lin(x) inp = (torch.randn(5, 10),) m = M() ep = export(m, inp) state_dict = ep.state_dict self.assertTrue(torch.allclose(ep.module()(*inp), m(*inp))) core_aten_ep = ep.run_decompositions() FileCheck().check_count("torch.ops.aten.permute.default", 1, exactly=True).run( core_aten_ep.graph_module.code ) FileCheck().check_count("torch.ops.aten.t.default", 0, exactly=True).run( core_aten_ep.graph_module.code ) self.assertTrue(torch.allclose(core_aten_ep.module()(*inp), m(*inp))) self.assertEqual(id(state_dict), id(ep.state_dict)) @unittest.skipIf(IS_FBCODE, "We can't customize decomp in fbcode") def test_export_for_inference_e2e(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lin = torch.nn.Linear(10, 1) def forward(self, x): return self.lin(x) inp = (torch.randn(5, 10),) m = M() decomp_table = torch.export.default_decompositions() def _custom_decomp_for_linear(x, weight, bias): return x + bias.sum() decomp_table[torch.ops.aten.linear.default] = _custom_decomp_for_linear del decomp_table[torch.ops.aten.sum.default] ep = torch.export.export_for_inference( m, inp, decomp_table=decomp_table, dynamic_shapes={"x": {0: Dim("batch")}} ) self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, p_lin_weight, p_lin_bias, x): sum_1 = torch.ops.aten.sum.default(p_lin_bias); p_lin_bias = None add = torch.ops.aten.add.Tensor(x, sum_1); x = sum_1 = None return (add,)""", ) ep_core = ep.run_decompositions() self.assertExpectedInline( str(ep_core.graph_module.code).strip(), """\ def forward(self, p_lin_weight, p_lin_bias, x): sum_1 = torch.ops.aten.sum.dim_IntList(p_lin_bias, []); p_lin_bias = None add = torch.ops.aten.add.Tensor(x, sum_1); x = sum_1 = None return (add,)""", ) with self.assertRaisesRegex(RuntimeError, "Expected input"): ep.module()(torch.randn(4, 12)) with self.assertRaisesRegex(RuntimeError, "Expected input"): ep_core.module()(torch.randn(4, 12)) @unittest.skipIf(IS_FBCODE, "We can't customize decomp in fbcode") def test_export_decomp_torture_case_1(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lin = torch.nn.Linear(10, 1) def forward(self, x): return self.lin(x) inp = (torch.randn(5, 10),) m = M() ep = export(m, inp) def custom_decomp_callable(x, weight, bias): return x + bias decomp_table = default_decompositions() decomp_table[torch.ops.aten.linear.default] = custom_decomp_callable core_aten_ep = ep.run_decompositions(decomp_table) self.assertExpectedInline( str(core_aten_ep.graph_module.code).strip(), """\ def forward(self, p_lin_weight, p_lin_bias, x): add = torch.ops.aten.add.Tensor(x, p_lin_bias); x = p_lin_bias = None return (add,)""", ) @unittest.skipIf(IS_FBCODE, "We can't customize decomp in fbcode") def test_export_decomp_torture_case_2(self): class MyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.weight = torch.randn(20, 98) self.bias = torch.randn(20) def forward(self, x): return torch.nn.functional.linear(x, self.weight, self.bias) class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(16, 33, 3) self.conv1d = torch.nn.Conv1d(16, 33, 3) self.linear = MyLinear() def forward(self, x, y): x_conv = self.conv(x) y_conv_1d = self.conv1d(y) x_linear = self.linear(x_conv) return x_linear.cos() + y_conv_1d.sum() ep = export(Foo(), (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50))) ep_has_linear_convd = ep.run_decompositions(decomp_table={}) def _decompose_linear_custom(x, weight, bias): return torch.matmul(x, weight.T) + 2 * bias ep_decompose_linear = ep_has_linear_convd.run_decompositions( decomp_table={torch.ops.aten.linear.default: _decompose_linear_custom} ) self.assertExpectedInline( str(ep_decompose_linear.graph_module.code).strip(), """\ def forward(self, p_conv_weight, p_conv_bias, p_conv1d_weight, p_conv1d_bias, c_linear_weight, c_linear_bias, x, y): conv2d = torch.ops.aten.conv2d.default(x, p_conv_weight, p_conv_bias); x = p_conv_weight = p_conv_bias = None conv1d = torch.ops.aten.conv1d.default(y, p_conv1d_weight, p_conv1d_bias); y = p_conv1d_weight = p_conv1d_bias = None permute = torch.ops.aten.permute.default(c_linear_weight, [1, 0]); c_linear_weight = None matmul = torch.ops.aten.matmul.default(conv2d, permute); conv2d = permute = None mul = torch.ops.aten.mul.Tensor(c_linear_bias, 2); c_linear_bias = None add = torch.ops.aten.add.Tensor(matmul, mul); matmul = mul = None cos = torch.ops.aten.cos.default(add); add = None sum_1 = torch.ops.aten.sum.default(conv1d); conv1d = None add_1 = torch.ops.aten.add.Tensor(cos, sum_1); cos = sum_1 = None return (add_1,)""", ) def test_export_decomps_dynamic(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.lin = torch.nn.Linear(10, 1) def forward(self, x): return self.lin(x) inp = (torch.randn(5, 10),) m = M() ep = export(m, inp, dynamic_shapes={"x": {0: Dim("batch")}}) core_aten_ep = ep.run_decompositions() input_node = [ node for node in core_aten_ep.graph.nodes if node.op == "placeholder" ][-1] self.assertTrue(isinstance(input_node.meta["val"].shape[0], torch.SymInt)) FileCheck().check_count("torch.ops.aten.permute.default", 1, exactly=True).run( core_aten_ep.graph_module.code ) FileCheck().check_count("torch.ops.aten.t.default", 0, exactly=True).run( core_aten_ep.graph_module.code ) self.assertTrue(torch.allclose(core_aten_ep.module()(*inp), m(*inp))) def test_nonzero_2(self): class Module(torch.nn.Module): def forward(self, x): return torch.nonzero(x) f = Module() ep = export(f, (torch.ones(2),)) inp = torch.randn(2) self.assertTrue(torch.allclose(ep.module()(inp), torch.nonzero(inp))) def test_redundant_asserts(self): class Foo(torch.nn.Module): def forward(self, x): y = x.item() torch._check_is_size(y) return torch.zeros(y) f = Foo() ep = export(f, (torch.tensor([3]),)) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 1, exactly=True ).run(ep.graph_module.code) ep = ep.run_decompositions() FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 1, exactly=True ).run(ep.graph_module.code) def test_non_arg_name_dynamic_shapes_api(self): class Foo(torch.nn.Module): def forward(self, a, b): return a.sum() + b.sum() foo = Foo() dim = torch.export.Dim("dim") ep = torch.export.export( foo, (torch.randn(4, 4), torch.randn(4, 4)), dynamic_shapes=(None, {0: dim}), ) test_inp = (torch.randn(4, 4), torch.randn(7, 4)) self.assertEqual(ep.module()(*test_inp), foo(*test_inp)) ep_v2 = torch.export.export( foo, (torch.randn(4, 4), torch.randn(4, 4)), dynamic_shapes=(None, None), ) with self.assertRaisesRegex( RuntimeError, "shape\[0\] to be equal to 4, but got 7" ): ep_v2.module()(*test_inp) def test_constant_output(self): class ModuleConstant(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.randn(3, 2) def forward(self): return self.b class ModuleNestedConstant(torch.nn.Module): def __init__(self) -> None: super().__init__() self.bff = torch.randn(3, 2) def forward(self, x, y): return {"prediction": (x + y, self.bff)} mod = ModuleConstant() ep = export(mod, ()) self.assertEqual(ep.module()(), mod()) args = (torch.randn(3, 2), torch.randn(3, 2)) mod = ModuleNestedConstant() ep = export(mod, args) self.assertEqual(ep.module()(*args), mod(*args)) def test_non_arg_name_dynamic_shapes_api_with_kwarg(self): class Foo(torch.nn.Module): def forward(self, a, b, kw1, kw2): return a.sum() + b.sum() + kw1.sum() - kw2.sum() foo = Foo() dim = torch.export.Dim("dim") dim_for_kw1 = torch.export.Dim("dim_for_kw1") ep = torch.export.export( foo, (torch.randn(4, 4), torch.randn(4, 4)), {"kw2": torch.ones(4, 4), "kw1": torch.zeros(4, 4)}, # We are specifying dynamism on the first kwarg even though user passed in # different order dynamic_shapes=(None, {0: dim}, {0: dim_for_kw1}, None), ) test_inp = (torch.randn(4, 4), torch.randn(7, 4)) test_kwargs = {"kw2": torch.ones(4, 4), "kw1": torch.zeros(9, 4)} # This should work even if the kwarg order are flipped. self.assertEqual( ep.module()(*test_inp, **test_kwargs), foo(*test_inp, **test_kwargs) ) def test_non_arg_name_dynamic_shapes_api_with_container_type(self): class Foo(torch.nn.Module): def forward(self, a, b): return a[0].sum() + a[1].sum() + b.sum() inp_a = (torch.randn(4, 4), torch.randn(4, 4)) inp_b = torch.randn(4, 4) inp = (inp_a, inp_b) count = 0 def dynamify_inp(x): # Mark the second input a[1] dynamic nonlocal count if count == 1: dim = torch.export.Dim("dim", min=3) count += 1 return {0: dim} count += 1 return None dynamic_shapes = tree_map(dynamify_inp, inp) foo = Foo() ep = torch.export.export(foo, inp, dynamic_shapes=dynamic_shapes) test_inp = ((torch.randn(4, 4), torch.randn(2, 4)), torch.randn(4, 4)) with self.assertRaisesRegex(RuntimeError, "shape\[0\] to be >= 3, but got 2"): ep.module()(*test_inp) def test_nested_module(self): class M1(torch.nn.Module): def forward(self, x): return x + x class M2(torch.nn.Module): def forward(self, x): m = M1() return m(x) * x inps = (torch.randn(3, 3),) ep = export(M2(), inps) self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps))) add_nodes = [ node for node in ep.graph.nodes if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor ] self.assertEqual(len(add_nodes), 1) add_node = add_nodes[0] self.assertEqual(len(add_node.meta["nn_module_stack"]), 1) self.assertTrue("M2" in list(add_node.meta["nn_module_stack"].values())[0][1]) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x : [num_users=2] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %x), kwargs = {}) %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {}) return (mul,)""", ) unflattened = unflatten(ep) self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps))) def test_nested_module_with_init_buffer(self): class M1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.ones(3, 3) def forward(self, x): return x + self.b class M2(torch.nn.Module): def forward(self, x): m = M1() return m(x) * x inps = (torch.randn(3, 3),) ep = export(M2(), inps) self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps))) self.assertEqual(len(ep.state_dict), 0) self.assertEqual(len(ep.constants), 0) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %x : [num_users=2] = placeholder[target=x] %ones : [num_users=1] = call_function[target=torch.ops.aten.ones.default](args = ([3, 3],), kwargs = {device: cpu, pin_memory: False}) %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %ones), kwargs = {}) %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {}) return (mul,)""", ) unflattened = unflatten(ep) self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps))) def test_nested_module_with_constant_buffer(self): class M1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.b = torch.tensor(5) def forward(self, x): return x + self.b class M2(torch.nn.Module): def forward(self, x): m = M1() return m(x) * x inps = (torch.randn(3, 3),) ep = export_for_training(M2(), inps).run_decompositions({}) self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps))) self.assertEqual(len(ep.state_dict), 0) self.assertEqual(len(ep.constants), 1) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0] %x : [num_users=2] = placeholder[target=x] %lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {}) %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %lift_fresh_copy), kwargs = {}) %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {}) return (mul,)""", ) unflattened = unflatten(ep) self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps))) def test_nested_module_with_parameter(self): class M1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.nn.Parameter(torch.ones(3, 3)) self.b = torch.nn.Parameter(torch.tensor(5.0)) def forward(self, x): return x + self.a * self.b class M2(torch.nn.Module): def forward(self, x): m = M1() return m(x) * x inps = (torch.randn(3, 3),) # Strict export segfaults (Issue #128109) ep = export_for_training(M2(), inps, strict=False).run_decompositions({}) self.assertTrue(torch.allclose(ep.module()(*inps), M2()(*inps))) self.assertEqual(len(ep.state_dict), 0) self.assertEqual(len(ep.constants), 1) self.assertExpectedInline( str(ep.graph).strip(), """\ graph(): %c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0] %x : [num_users=2] = placeholder[target=x] %ones : [num_users=1] = call_function[target=torch.ops.aten.ones.default](args = ([3, 3],), kwargs = {device: cpu, pin_memory: False}) %detach : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%ones,), kwargs = {}) %detach_1 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%detach,), kwargs = {}) %detach_2 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%detach_1,), kwargs = {}) %lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {}) %detach_3 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%lift_fresh_copy,), kwargs = {}) %detach_4 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%detach_3,), kwargs = {}) %detach_5 : [num_users=1] = call_function[target=torch.ops.aten.detach.default](args = (%detach_4,), kwargs = {}) %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%detach_2, %detach_5), kwargs = {}) %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, %mul), kwargs = {}) %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %x), kwargs = {}) return (mul_1,)""", ) unflattened = unflatten(ep) self.assertTrue(torch.allclose(unflattened(*inps), M2()(*inps))) def test_module_dict_key(self): class Module(torch.nn.Module): def __init__(self): super().__init__() self.mod = torch.nn.Linear(10, 10) def forward(self, x, d): d = {m: d[name] for name, m in self.named_children()} return x + d[self.mod] m = Module() sample_inputs = (torch.randn(10), {"mod": torch.randn(10)}) ep = export(m, sample_inputs) self.assertEqual(ep.module()(*sample_inputs), m(*sample_inputs)) def test_lazy_module_kwargs(self): class LazyModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module): def initialize_parameters(self, *args, **kwargs): pass def forward(self, x, y): return x + y m = LazyModule() ep = export(m, (), {"x": torch.randn(3, 3), "y": torch.randn(3, 3)}) inputs = {"x": torch.randn(3, 3), "y": torch.randn(3, 3)} self.assertEqual(ep.module()(**inputs), m(**inputs)) def test_retrace_pre_autograd(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.buffer = torch.nn.Buffer(torch.ones(4, 4)) def forward(self, x): self.buffer.add_(4) return x.sum() + self.buffer.sum() inp = torch.randn(4, 4) gm = export( Foo(), (inp,), dynamic_shapes=({0: torch.export.Dim("dim", min=3)},), ).module() with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[0].shape[0]") ): gm(torch.randn(2, 2)) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[0].shape[0]") ): export(gm, (torch.randn(2, 2),)) ep = export( gm, (torch.randn(5, 4),), dynamic_shapes=({0: torch.export.Dim("dim", min=3)},), ) test_inp = torch.ones(8, 4) self.assertTrue(torch.allclose(ep.module()(test_inp), Foo().forward(test_inp))) def test_runtime_assert_with_size(self): class M(torch.nn.Module): def forward(self, x, y): a = x.item() torch._check_is_size(a) torch._check(a <= y.size(0)) return y[:a] ep = export( M(), (torch.tensor(5), torch.ones(10)), dynamic_shapes={"x": None, "y": {0: torch.export.Dim("t")}}, ) inp = (torch.tensor(6), torch.randn(13)) self.assertTrue(torch.allclose(ep.module()(*inp), M()(*inp))) @unittest.skip("Test is only supposed to work with non-strict mode") def test_issue_113041(self): class TestModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.tensor(1.0) def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.a def forward_hook(module: torch.nn.Module, inputs, output) -> torch.Tensor: return 2 * output seq = torch.nn.Sequential(TestModule()).eval() seq.b = torch.tensor(2) handle = seq.register_forward_hook(forward_hook) class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.seq = seq def forward(self, x): return self.seq(x) + self.seq.b inp = (torch.randn(2, 8),) ep = export(M(), inp) # This errors because dynamo adds an extra input def test_export_with_fake_tensor_inputs(self): fake_mode = torch._subclasses.fake_tensor.FakeTensorMode() class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) def forward(self, x): out = self.linear(x) return out # Put the inputs on a device with fake_mode, torch.device("meta"): x = torch.rand(5, 2, 2) model = Model() exported_program = torch.export.export(model, (x,)) export_res = exported_program.module()(x) exp_res = model(x) all_meta_val = [ node.meta["val"] for node in exported_program.graph_module.graph.nodes if "val" in node.meta ] self.assertTrue(export_res.size() == exp_res.size()) self.assertTrue(all(val.device == x.device for val in all_meta_val)) self.assertTrue( all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val) ) decomposed_ep = exported_program.run_decompositions() export_res = decomposed_ep.module()(x) self.assertTrue(export_res.size() == exp_res.size()) @skipIfXpu def test_export_with_fake_tensor_inputs_on_cuda_devices(self): fake_mode = torch._subclasses.fake_tensor.FakeTensorMode() class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) def forward(self, x): out = self.linear(x) return out # Put the inputs on a device with fake_mode, torch.device("meta"): x = torch.rand(5, 2, 2) model = Model() # Manualy set the fake_device of fake tensors. x.fake_device = torch.device("cuda:0") for n, p in model.named_parameters(): p.fake_device = torch.device("cuda:0") # Need to set all the requires_grad of tensors to False, because fake_tensor with CUDA device # doesn't quite work well with aot_autograd right now due to some logic fails # the check in call getDeviceGuardImpl in InputMetadata. x.requires_grad = False for n, p in model.named_parameters(): p.requires_grad = False def check_device_and_fake_mode(): exported_program = torch.export.export(model, (x,)) export_res = exported_program.module()(x) exp_res = model(x) all_meta_val = [ node.meta["val"] for node in exported_program.graph_module.graph.nodes if "val" in node.meta ] self.assertTrue(export_res.size() == exp_res.size()) self.assertTrue(all(val.device == x.device for val in all_meta_val)) self.assertTrue( all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val) ) check_device_and_fake_mode() def test_run_decomposition_supports_user_input_mutation(self): class SingleOp(torch.nn.Module): def __init__(self) -> None: super().__init__() self.op = torch.ops.aten.native_batch_norm def forward( self, input, weight, bias, running_mean, running_var, training, momentum, eps, **kwargs, ): return self.op( input, weight, bias, running_mean, running_var, training, momentum, eps, **kwargs, ) input = torch.randn(5, 5, 5) weight = torch.randn(5) bias = torch.randn(5) running_mean = torch.randn(5) running_var = torch.randn(5) training = True momentum = 0.5 eps = 0.6 model = SingleOp() output = model( input, weight, bias, running_mean, running_var, training, momentum, eps ) ep = torch.export.export( model, args=( input, weight, bias, running_mean, running_var, training, momentum, eps, ), ) ep.run_decompositions() self.assertEqual( ep.module()( input, weight, bias, running_mean, running_var, training, momentum, eps ), output, ) def test_export_graph_with_no_inputs(self): # We saw this pattern when users want to export # a graph that initlizes the states of a model. class Module(torch.nn.Module): def forward(self): return torch.randn(3, 4), torch.randn(3, 4) f = Module() ep = torch.export.export(f, ()) a, b = ep.module()() self.assertEqual(a.size(), torch.Size([3, 4])) self.assertEqual(b.size(), torch.Size([3, 4])) # Contains unbacked symint class M(torch.nn.Module): def forward(self): full = torch.full((), 11) i0 = full.item() return (torch.full((i0,), 0.0),) f = M() ep = torch.export.export(f, ()) a = ep.module()()[0] self.assertEqual(a.size(), torch.Size([11])) self.assertEqual(a, torch.zeros(11)) def test_pad_sequence(self): class Module(torch.nn.Module): def forward(self, x): return torch._C._nn.pad_sequence([x]) m0 = Module() inputs = (torch.randn(3, 2),) ep = torch.export.export( m0, inputs, dynamic_shapes={"x": {0: Dim("batch_size")}} ) self.assertEqual(ep.module()(*inputs), m0(*inputs)) class ModuleBatchFirst(torch.nn.Module): def forward(self, x): return torch._C._nn.pad_sequence([x], batch_first=True) m1 = ModuleBatchFirst() inputs = (torch.randn(3, 2),) ep = torch.export.export( m1, inputs, dynamic_shapes={"x": {0: Dim("batch_size")}} ) self.assertEqual(ep.module()(*inputs), m1(*inputs)) class ModuleMulti(torch.nn.Module): def forward(self, x, y, z): return torch._C._nn.pad_sequence([x, y, z]) m2 = ModuleMulti() inputs = (torch.randn(5, 2), torch.randn(4, 2), torch.randn(3, 2)) ep = torch.export.export( m2, inputs, dynamic_shapes={ "x": {0: Dim("batch_size")}, "y": {0: Dim("y")}, "z": {0: Dim("z")}, }, ) self.assertEqual(ep.module()(*inputs), m2(*inputs)) class ModuleMultiBatchFirst(torch.nn.Module): def forward(self, x, y, z): return torch._C._nn.pad_sequence([x, y, z], batch_first=True) m3 = ModuleMulti() inputs = (torch.randn(5, 2), torch.randn(4, 2), torch.randn(3, 2)) ep = torch.export.export( m2, inputs, dynamic_shapes={ "x": {0: Dim("batch_size")}, "y": {0: Dim("y")}, "z": {0: Dim("z")}, }, ) self.assertEqual(ep.module()(*inputs), m3(*inputs)) def test_export_then_compile_tensor_ctor(self): class M(torch.nn.Module): def forward(self, scores, mask): scores = scores.masked_fill( mask, torch.tensor(torch.finfo(scores.dtype).min) ) # (bs, n_heads, q_length, k_length) return scores tensor_cpu = torch.randn(2, 4) mask_cpu = torch.BoolTensor( [[False, True, False, False], [False, False, False, False]] ) m = M().eval() # res_ref = m(tensor_cpu, mask_cpu) # print("res_ref is: {}".format(res_ref), flush=True) exported_model = _export(m, (tensor_cpu, mask_cpu), pre_dispatch=True).module() optimized_model = torch.compile(exported_model) optimized_model(tensor_cpu, mask_cpu) def test_export_input_mutation_static_shape(self): class MutationModel(torch.nn.Module): def forward(self, x, y): x.view(3, 2, -1).add_(y) return x inputs = (torch.randn(12), torch.tensor(2)) model = MutationModel() ep = export(model, inputs) inputs_export = copy.deepcopy(inputs) inputs_model = copy.deepcopy(inputs) self.assertEqual(ep.module()(*inputs_export), model(*inputs_model)) self.assertEqual(inputs[0] + torch.tensor(2), inputs_model[0]) self.assertEqual(inputs[0] + torch.tensor(2), inputs_export[0]) def test_export_input_mutation_dynamic_shape(self): class MutationModel(torch.nn.Module): def forward(self, x, y): x[0].mul_(y) return x inputs = ((torch.randn(12), torch.randn(3, 2)), 2.0) model = MutationModel() ep = torch.export.export( model, inputs, dynamic_shapes={"x": ({0: torch.export.Dim("dim")}, None), "y": None}, ) nodes = list(ep.graph.nodes) self.assertEqual(nodes[0].op, "placeholder") self.assertIsInstance(nodes[0].meta["val"], torch.Tensor) self.assertIsInstance(nodes[0].meta["val"].shape[0], torch.SymInt) inputs_export = copy.deepcopy(inputs) inputs_model = copy.deepcopy(inputs) self.assertEqual(ep.module()(*inputs_export), model(*inputs_model)) self.assertEqual(inputs[0][0] * 2.0, inputs_model[0][0]) self.assertEqual(inputs[0][0] * 2.0, inputs_export[0][0]) def test_export_input_mutation_bug(self): class M(torch.nn.Module): def forward(self, x): x[:, :2, :] = x[:, :2, :] + 1 return x inputs = (torch.ones(4, 4, 4),) ep = torch.export.export(M(), inputs) m = ep.module() # Make the name conflict with a placeholder name that we get from # aot_export for i, node in enumerate(m.graph.nodes): if node.op == "placeholder": node.name = f"arg0_{i + 1}" m.recompile() ep = torch.export.export(m, inputs) inputs = (torch.randn(4, 4, 4),) self.assertEqual( ep.module()(*copy.deepcopy(inputs)), M()(*copy.deepcopy(inputs)) ) def test__scaled_dot_product_flash_attention(self): class Module(torch.nn.Module): def forward(self, q, k, v): res = torch.nn.functional.scaled_dot_product_attention(q, k, v) return res[0] m = Module() inputs = ( torch.randn(5, 4, 3, 2), torch.randn(5, 4, 3, 2), torch.randn(5, 4, 3, 2), ) ep = export(m, inputs) self.assertEqual(ep.module()(*inputs), m(*inputs)) @testing.expectedFailureSerDer # symfloat nyi @testing.expectedFailureSerDerNonStrict def test_sym_sqrt(self): import math class M(torch.nn.Module): def forward(self, x): return x / torch.sym_sqrt(x.shape[0]) ep = export(M(), (torch.ones(16, 4),), dynamic_shapes={"x": {0: Dim("dim")}}) _ExportPassBaseDeprecatedDoNotUse()(ep.graph_module) FileCheck().check_count("torch._sym_sqrt", 1, exactly=True).run( ep.graph_module.code ) def test_check_specialized_int(self): class SingleOp(torch.nn.Module): def __init__(self) -> None: super().__init__() self.op = torch.ops.aten.scatter_add def forward(self, t, dim, index, src, **kwargs): return self.op(t, dim, index, src, **kwargs) t = torch.randn(10, 5) dim = -1 index = torch.tensor( [ [2, 4, 3, 1, 0], [0, 2, 1, 4, 3], [3, 1, 4, 2, 0], [4, 0, 3, 1, 2], [3, 0, 4, 1, 2], ] ) src = torch.randn(5, 5) model = SingleOp() output = model(t, dim, index, src) ep = torch.export.export(model, args=(t, dim, index, src)) ep = ep.run_decompositions() self.assertEqual(ep.module()(t, dim, index, src), output) def test_fqn(self): class NestedChild(torch.nn.Module): def forward(self, x): return x / x class Child1(torch.nn.Module): def __init__(self) -> None: super().__init__() self.nested = NestedChild() self.register_parameter( "child1param", torch.nn.Parameter(torch.ones(2, 3)) ) def forward(self, x): x = self.nested(x) return x + self.child1param class Child2(torch.nn.Module): def __init__(self) -> None: super().__init__() self.child2buffer = torch.nn.Buffer(torch.ones(2, 3)) def forward(self, x): return x - self.child2buffer class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = Child1() self.bar = Child2() self.register_parameter( "rootparam", torch.nn.Parameter(torch.ones(2, 3)) ) def forward(self, x): x = x * self.rootparam x = self.foo(x) x = self.bar(x) return x orig_eager = MyModule() test_inp = torch.randn(2, 3) torch_gm = _export_to_torch_ir(orig_eager, (torch.rand(2, 3),), {}) for k, v in orig_eager.state_dict().items(): normalized_k = k.replace(".", "_") self.assertIn(normalized_k, torch_gm.state_dict()) self.assertEqual(v, torch_gm.state_dict()[normalized_k]) self.assertTrue(torch.allclose(torch_gm(test_inp), orig_eager(test_inp))) pre_autograd_gm = torch.export._trace._export( orig_eager, (torch.rand(2, 3),), {}, pre_dispatch=True ).module() for k, v in orig_eager.state_dict().items(): normalized_k = k.replace(".", "_") self.assertIn(k, pre_autograd_gm.state_dict()) self.assertEqual(v, pre_autograd_gm.state_dict()[k]) self.assertTrue(torch.allclose(pre_autograd_gm(test_inp), orig_eager(test_inp))) ep = export(orig_eager, (torch.rand(2, 3),), {}) for k, v in orig_eager.state_dict().items(): # We do not need to normalize the key here because exported # program's state dict is able to contain the module information. self.assertIn(k, ep.state_dict) self.assertEqual(v, ep.state_dict[k]) self.assertTrue(torch.allclose(ep.module()(test_inp), orig_eager(test_inp))) def test_nn_module_stack(self): class Leaf(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): return self.linear(x) class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.leaf = Leaf() self.buffer = torch.nn.Buffer(torch.randn(4, 4)) def forward(self, x): return self.buffer.sum() + self.leaf(x).sum() class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.bar = Bar() def forward(self, x): y = self.bar.buffer + x return (self.bar(x) + y.sum(),) inp = (torch.randn(4, 4),) mod = Foo() ep_strict = torch.export.export(mod, inp).run_decompositions() ep_non_strict = torch.export.export(mod, inp, strict=False).run_decompositions() gm_unflat_non_strict = unflatten(ep_non_strict) self.assertTrue(hasattr(gm_unflat_non_strict, "bar")) self.assertTrue(hasattr(gm_unflat_non_strict.bar, "buffer")) self.assertTrue(hasattr(gm_unflat_non_strict.bar, "leaf")) gm_unflat_strict = unflatten(ep_strict) self.assertEqual(gm_unflat_non_strict(*inp), gm_unflat_strict(*inp)) self.assertExpectedInline( str(gm_unflat_non_strict.bar.leaf.linear.graph).strip(), """\ graph(): %x : [num_users=1] = placeholder[target=x] %weight : [num_users=1] = get_attr[target=weight] %bias : [num_users=1] = get_attr[target=bias] %permute : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%weight, [1, 0]), kwargs = {}) %addmm : [num_users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%bias, %x, %permute), kwargs = {}) return addmm""", ) gm_flat_non_strict = ep_non_strict.module() gm_flat_strict = ep_strict.module() self.assertEqual(gm_flat_non_strict(*inp), gm_flat_strict(*inp)) def test_nn_module_stack_shared_submodule(self): class Leaf(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): return self.linear(x) class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.leaf = Leaf() self.buffer = torch.nn.Buffer(torch.randn(4, 4)) def forward(self, x): return self.buffer.sum() + self.leaf(x).sum() class BarDifferent(torch.nn.Module): def __init__(self) -> None: super().__init__() self.leaf = Leaf() def forward(self, x): a = self.leaf(x).sum() b = self.leaf(x).sum() return a + b class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.bar = Bar() self.bar_different = BarDifferent() def forward(self, x): y = self.bar.buffer + x return ( self.bar(x) + self.bar_different(x + 2), y.sum(), ) inp = (torch.randn(4, 4),) mod = Foo() ep_strict = torch.export.export(mod, inp) ep_non_strict = torch.export.export(mod, inp, strict=False) gm_unflat_non_strict = unflatten(ep_non_strict) self.assertTrue(hasattr(gm_unflat_non_strict, "bar")) self.assertTrue(hasattr(gm_unflat_non_strict.bar, "buffer")) self.assertTrue(hasattr(gm_unflat_non_strict.bar, "leaf")) self.assertTrue(hasattr(gm_unflat_non_strict.bar_different, "leaf")) gm_unflat_strict = unflatten(ep_strict) self.assertEqual(gm_unflat_non_strict(*inp), gm_unflat_strict(*inp)) self.assertExpectedInline( str(gm_unflat_non_strict.bar.leaf.linear.graph).strip(), """\ graph(): %x : [num_users=1] = placeholder[target=x] %weight : [num_users=1] = get_attr[target=weight] %bias : [num_users=1] = get_attr[target=bias] %linear : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%x, %weight, %bias), kwargs = {}) return linear""", ) self.assertExpectedInline( str(gm_unflat_non_strict.bar_different.leaf.linear.graph).strip(), """\ graph(): %add_2 : [num_users=1] = placeholder[target=add_2] %weight : [num_users=1] = get_attr[target=weight] %bias : [num_users=1] = get_attr[target=bias] %linear_1 : [num_users=1] = call_function[target=torch.ops.aten.linear.default](args = (%add_2, %weight, %bias), kwargs = {}) return linear_1""", ) gm_flat_non_strict = ep_non_strict.module() gm_flat_strict = ep_strict.module() self.assertEqual(gm_flat_non_strict(*inp), gm_flat_strict(*inp)) def test_unflatten_no_unroll(self): inp = (torch.ones(1),) class N(torch.nn.Module): def __init__(self): super().__init__() self.const = torch.ones(1) * 4 self.buf = torch.nn.Buffer(torch.ones(1) * 4) def forward(self, x, b): if b: return x + self.const + 1 else: return x + 2 * (self.buf + 1) - self.const class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() def forward(self, x): x0 = x + 3 x1 = self.n(x0, True) x2 = self.n(x0, False) return x1 + x2 m = M() eager_result = m(*inp) def test(ep, swap): epm = ep.module() ufm = torch.export.unflatten(ep) exported_result = epm(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) for fqn, mod in swap.items(): ufm.set_submodule(fqn, mod) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if not is_retracebility_test(self._testMethodName): test( export(M(), inp, preserve_module_call_signature=("n",)), swap={"n": N()}, ) class _N(torch.nn.Module): def forward(self, x): return x + 5 class _N_1(torch.nn.Module): def forward(self, x): return x + 6 test( export(M(), inp), swap={"n": _N(), "n@1": _N_1()}, ) def test_preserve_module_call_signature_unflatten_specialization(self): class N(torch.nn.Module): def forward(self, x, b): if b: return x + 1 else: return x + 2 class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() def forward(self, x): x0 = x + 3 x1 = self.n(x0, True) return x1 + 4 inp = (torch.ones(1),) m = M() eager_result = m(*inp) if not is_retracebility_test(self._testMethodName): ep = export(M(), inp, preserve_module_call_signature=("n",)) epm = ep.module() ufm = torch.export.unflatten(ep) exported_result = epm(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) ufm.set_submodule("n", N()) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) def test_unflatten_multiple_graphs_dispatch(self): class N(torch.nn.Module): def forward(self, x, b): if b: return x + 1 else: return x + 2 class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() def forward(self, x): x = x + 3 x = self.n(x, True) x = x + 4 x = self.n(x, True) x = x + 5 x = self.n(x, False) x = x + 6 return x inp = (torch.ones(1),) m = M() eager_result = m(*inp) def test(ep): epm = ep.module() ufm = torch.export.unflatten(ep) exported_result = epm(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if not is_retracebility_test(self._testMethodName): if is_training_ir_test(self._testMethodName): test( torch.export.export_for_training( M(), inp, strict=not is_non_strict_test(self._testMethodName), preserve_module_call_signature=("n",), ) ) test(export(M(), inp, preserve_module_call_signature=("n",))) def test_unflatten_multiple_graphs_preserve_signature_no_error(self): class N(torch.nn.Module): def forward(self, x, b): if b: return x + 1 else: return x + 2 class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() def forward(self, x): x = x + 3 x = self.n(x, True) x = x + 4 x = self.n(x, False) x = x + 5 return x inp = (torch.ones(1),) m = M() eager_result = m(*inp) def test(ep, swap=None): epm = ep.module() ufm = torch.export.unflatten(ep) exported_result = epm(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if swap: for fqn, mod in swap.items(): ufm.set_submodule(fqn, mod) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if not is_retracebility_test(self._testMethodName): test( export(M(), inp, preserve_module_call_signature=("n",)), swap={"n": N()}, ) test(export(M(), inp)) @testing.expectedFailureRetraceabilityNonStrict def test_unflatten_multiple_graphs_state(self): class N(torch.nn.Module): def __init__(self): super().__init__() self.register_buffer("buf", torch.ones(1), persistent=False) def forward(self, x, b): if b: self.buf.add_(1) else: self.buf.add_(2) return x + self.buf class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() def forward(self, x): x = self.n(x, True) x = x + 1 x = self.n(x, False) x = x + 1 x = self.n(x, True) x = x + 1 x = self.n(x, False) return x inp = (torch.ones(1),) m = M() eager_result = m(*inp) def test(ep, swap=None): epm = ep.module() ufm = torch.export.unflatten(ep) exported_result = epm(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if swap: for fqn, mod in swap.items(): ufm.set_submodule(fqn, mod) unflattened_result = ufm(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) if not is_retracebility_test(self._testMethodName): test( export(M(), inp, preserve_module_call_signature=("n",)), swap={"n": N()}, ) # running decompositions again should work for all IRs ep = export(M(), inp, preserve_module_call_signature=("n",)) test(ep.run_decompositions({}), swap={"n": N()}) if is_training_ir_test(self._testMethodName): # since we run decompositions by default when testing training IR, # also test training IR without running decompositions strict = not is_non_strict_test(self._testMethodName) ept = torch.export.export_for_training( M(), inp, strict=strict, preserve_module_call_signature=("n",), ) test(ept, swap={"n": N()}) test(export(M(), inp)) def test_set_grad_unflatten(self): class M1(torch.nn.Module): def forward(self, a, b): with torch.no_grad(): return a + b class M(torch.nn.Module): def __init__(self): super().__init__() self.m1 = M1() def forward(self, a, b): return self.m1(a, b) inp = (torch.ones(3, 3), torch.ones(3, 3)) ep = export(M(), inp) epm = ep.module() ufm = torch.export.unflatten(ep) self.assertTrue(torch.allclose(ufm(*inp), epm(*inp))) def test_cond_unflatten(self): class M1(torch.nn.Module): def forward(self, p, a, b): def true_fn(x, y): return x + y def false_fn(x, y): return x - y return torch.cond(p, true_fn, false_fn, [a, b]) class M(torch.nn.Module): def __init__(self): super().__init__() self.m1 = M1() def forward(self, p, a, b): return self.m1(p, a, b) inp = (torch.tensor(False), torch.ones(3, 3), torch.ones(3, 3)) ep = export(M(), inp) epm = ep.module() ufm = torch.export.unflatten(ep) self.assertTrue(torch.allclose(ufm(*inp), epm(*inp))) def test_unflatten_multiple_graphs_shared_submodule(self): class N(torch.nn.Module): def forward(self, x, b): if b: return x + 1 else: return x + 2 def gen_m(n, n_1, p, p_1): # Create a module instance where self.n and self.p # share the same submodule instance. # The booleans n, n_1 and p, p_1 are passed to two calls each # to self.n and self.p, and they determine which path through # the shared submodule instance is taken during export. class M(torch.nn.Module): def __init__(self): super().__init__() self.n = N() self.p = self.n def forward(self, x): x = x + 3 x = self.n(x, n) x = x + 4 x = self.n(x, n_1) x = x + 5 x = self.p(x, p) x = x + 6 x = self.p(x, p_1) return x + 7 return M() inp = (torch.ones(1),) def test(m, expected_graph, expected_fqns, expected_duplicates): eager_result = m(*inp) ep = export(m, inp) exported_result = ep.module()(*inp) # exported and eager results should match (baseline) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened = torch.export.unflatten(ep) unflattened_result = unflattened(*inp) # unflattened and eager results should match # (needs multiple specialized graphs for shared submodule instance) self.assertTrue(torch.allclose(unflattened_result, eager_result)) # expected graph should call minimal number of specialized submodules self.assertExpectedInline( str(unflattened.graph).strip(), expected_graph, ) # expected graph should contain minimal number of specialized submodule fqns self.assertEqual( sorted( [ fqn for fqn, _ in unflattened.named_modules(remove_duplicate=False) ] ), expected_fqns, ) # expected graph should contain minimal number of specialized submodule instances for a, b in expected_duplicates: if is_non_strict_test(self._testMethodName): # NOTE: non-strict does not de-duplicate shared submodules through different fqns. # In particular, we use different module ids for self.n and self.p calls in non-strict, # but in strict we use the same module id, which enables additional reuse. # This is pre-existing behavior that might need to be fixed orthogonally. self.assertNotEqual( id(getattr(unflattened, a)), id(getattr(unflattened, b)) ) else: self.assertEqual( id(getattr(unflattened, a)), id(getattr(unflattened, b)) ) if not is_retracebility_test(self._testMethodName): # preserving module call signatures ep = export(m, inp, preserve_module_call_signature=("n", "p")) exported_result = ep.module()(*inp) self.assertTrue(torch.allclose(exported_result, eager_result)) unflattened = torch.export.unflatten(ep) unflattened_result = unflattened(*inp) self.assertTrue(torch.allclose(unflattened_result, eager_result)) test( gen_m(n=True, n_1=False, p=False, p_1=False), # p should share n_1 graph, p_1 should be optimized away """\ graph(): %x : [num_users=1] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, 3), kwargs = {}) %n : [num_users=1] = call_module[target=n](args = (%add,), kwargs = {}) %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n, 4), kwargs = {}) %n_1 : [num_users=1] = call_module[target=n@1](args = (%add_2,), kwargs = {}) %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n_1, 5), kwargs = {}) %p : [num_users=1] = call_module[target=p](args = (%add_4,), kwargs = {}) %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p, 6), kwargs = {}) %p_1 : [num_users=1] = call_module[target=p](args = (%add_6,), kwargs = {}) %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p_1, 7), kwargs = {}) return (add_8,)""", ["", "n", "n@1", "p"], [("n@1", "p")], ) test( gen_m(n=True, n_1=False, p=True, p_1=False), # p should reuse n graph, p_1 should reuse n_1 graph """\ graph(): %x : [num_users=1] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, 3), kwargs = {}) %n : [num_users=1] = call_module[target=n](args = (%add,), kwargs = {}) %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n, 4), kwargs = {}) %n_1 : [num_users=1] = call_module[target=n@1](args = (%add_2,), kwargs = {}) %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n_1, 5), kwargs = {}) %p : [num_users=1] = call_module[target=p](args = (%add_4,), kwargs = {}) %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p, 6), kwargs = {}) %p_1 : [num_users=1] = call_module[target=p@1](args = (%add_6,), kwargs = {}) %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p_1, 7), kwargs = {}) return (add_8,)""", ["", "n", "n@1", "p", "p@1"], [("n", "p"), ("n@1", "p@1")], ) test( gen_m(n=True, n_1=True, p=True, p_1=False), # n_1 should be optimized away, p should reuse n graph """\ graph(): %x : [num_users=1] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, 3), kwargs = {}) %n : [num_users=1] = call_module[target=n](args = (%add,), kwargs = {}) %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n, 4), kwargs = {}) %n_1 : [num_users=1] = call_module[target=n](args = (%add_2,), kwargs = {}) %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n_1, 5), kwargs = {}) %p : [num_users=1] = call_module[target=p](args = (%add_4,), kwargs = {}) %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p, 6), kwargs = {}) %p_1 : [num_users=1] = call_module[target=p@1](args = (%add_6,), kwargs = {}) %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p_1, 7), kwargs = {}) return (add_8,)""", ["", "n", "p", "p@1"], [("n", "p")], ) test( gen_m(n=True, n_1=False, p=False, p_1=True), # p should reuse n_1 graph, p_1 should reuse n graph """\ graph(): %x : [num_users=1] = placeholder[target=x] %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%x, 3), kwargs = {}) %n : [num_users=1] = call_module[target=n](args = (%add,), kwargs = {}) %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n, 4), kwargs = {}) %n_1 : [num_users=1] = call_module[target=n@1](args = (%add_2,), kwargs = {}) %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%n_1, 5), kwargs = {}) %p : [num_users=1] = call_module[target=p](args = (%add_4,), kwargs = {}) %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p, 6), kwargs = {}) %p_1 : [num_users=1] = call_module[target=p@1](args = (%add_6,), kwargs = {}) %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%p_1, 7), kwargs = {}) return (add_8,)""", ["", "n", "n@1", "p", "p@1"], [("n", "p@1"), ("p", "n@1")], ) def test_stack_trace(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): x = self.linear(x) x *= 2.0 return x ep = export( Foo(), (torch.randn(4, 4),), ).run_decompositions({}) # check correct lines are in stack trace trace_mul = [node for node in ep.graph.nodes if node.name == "mul"][0].meta.get( "stack_trace", "" ) self.assertTrue( re.search(r"test_export.py.*in forward\n.*x \*= 2.0", trace_mul) ) trace_addmm = [ node for node in ep.graph.nodes if node.name in ["addmm", "linear"] ][0].meta.get("stack_trace", "") self.assertTrue( re.search( r"test_export.py.*in forward\n.*x = self.linear\(x\)", trace_addmm ) ) def test_cond_with_module_stack_export_with(self): class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): def true_fn(x): return self.linear(x).cos() def false_fn(x): return self.linear(x).sin() return torch.cond(x.sum() > 4, true_fn, false_fn, [x]) class CondExport(torch.nn.Module): def __init__(self) -> None: super().__init__() self.bar = Bar() def forward(self, x): return x.cos() + self.bar(x) inp = (torch.randn(4, 4),) ep = torch.export.export(CondExport(), inp, strict=False) self.assertExpectedInline( ep.graph_module.code.strip(), """\ def forward(self, p_bar_linear_weight, p_bar_linear_bias, x): cos = torch.ops.aten.cos.default(x) sum_1 = torch.ops.aten.sum.default(x) gt = torch.ops.aten.gt.Scalar(sum_1, 4); sum_1 = None true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [p_bar_linear_bias, p_bar_linear_weight, x]); gt = true_graph_0 = false_graph_0 = p_bar_linear_bias = p_bar_linear_weight = x = None getitem = cond[0]; cond = None add = torch.ops.aten.add.Tensor(cos, getitem); cos = getitem = None return (add,)""", ) schema = get_hop_schema(ep) self.assertExpectedInline( str(schema), """cond(Tensor pred, GraphModule true_fn, GraphModule false_fn, Tensor[3] operands) -> Tensor[1]""", ) cond_top_level_nn_module_stack = [ node.meta["nn_module_stack"] for node in ep.graph.nodes if node.name == "true_graph_0" ][0] self.assertTrue( "test_cond_with_module_stack_export_with..Bar" in str(cond_top_level_nn_module_stack) ) # TODO: See https://github.com/pytorch/pytorch/issues/115790 @unittest.expectedFailure def test_cond_with_module_stack_export_with_unflatten(self): class Bar(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): def true_fn(x): return self.linear(x).cos() def false_fn(x): return self.linear(x).sin() return torch.cond(x.shape[0] > 4, true_fn, false_fn, [x]) class CondExport(torch.nn.Module): def __init__(self) -> None: super().__init__() self.bar = Bar() def forward(self, x): return x.cos() + self.bar(x) inp = (torch.randn(4, 4),) ep = torch.export.export(CondExport(), inp, strict=False) cond_top_level_nn_module_stack = [ node.meta["nn_module_stack"] for node in ep.graph.nodes if node.name == "true_graph_0" ][0] # we can't preserve nn_module_stack for the subgraphs for now. for node in ep.graph_module.true_graph_0.graph.nodes: self.assertEqual( node.meta["nn_module_stack"], cond_top_level_nn_module_stack ) # this doesn't work today gm_unflat_strict = unflatten(ep) def test_modules_access_for_deleted_submodule(self): class Foo(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 10) self.foo = torch.nn.Linear(10, 10) def forward(self, x): for name, mod in self._modules.items(): if mod is None: continue pass return self.linear(x) mod = Foo() mod.foo = None mod(torch.randn(10, 10)) export(mod, (torch.randn(10, 10),), strict=False) def test_predispatch_cond(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.pred = torch.nn.Buffer(torch.tensor(False)) self.t = torch.nn.Buffer(torch.tensor(10)) def forward(self, x, y): def true_fn(x, y): with torch.enable_grad(): return x - 1 + self.t + y return torch.cond( self.pred, true_fn, lambda x, y: x + 1 - self.t + y, [x, y], ) model = Model() with torch.no_grad(): exported_program = torch.export.export_for_training( model, (torch.tensor(10), torch.tensor(12)), {}, dynamic_shapes=None, strict=False, ) schema = get_hop_schema(exported_program) self.assertExpectedInline( str(schema), """cond(Tensor pred, GraphModule true_fn, GraphModule false_fn, Tensor[3] operands) -> Tensor[1]""", # noqa: B950 ) self.assertExpectedInline( str(exported_program.graph_module.code.strip()), """\ def forward(self, b_pred, b_t, x, y): true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 cond = torch.ops.higher_order.cond(b_pred, true_graph_0, false_graph_0, [b_t, x, y]); b_pred = true_graph_0 = false_graph_0 = b_t = x = y = None getitem = cond[0]; cond = None return (getitem,)""", ) # noqa: B950 self.assertExpectedInline( str(exported_program.graph_module.true_graph_0.code.strip()), """\ def forward(self, b_t, x, y): submod_3 = self.submod_1 add_1 = torch.ops.higher_order.wrap_with_set_grad_enabled(True, submod_3, x, b_t, y); submod_3 = x = b_t = y = None getitem = add_1[0]; add_1 = None return (getitem,)""", ) self.assertExpectedInline( str(exported_program.graph_module.true_graph_0.submod_1.code.strip()), """\ def forward(self, x, b_t, y): sub = torch.ops.aten.sub.Tensor(x, 1); x = None add = torch.ops.aten.add.Tensor(sub, b_t); sub = b_t = None add_1 = torch.ops.aten.add.Tensor(add, y); add = y = None return (add_1,)""", ) def test_predispatch_grad_wrappers(self): class Model(torch.nn.Module): def forward(self, x, y): with torch.enable_grad(): x = x - y with torch.no_grad(): x = x + y return x # no grad model = Model() with torch.no_grad(): ep_nograd = torch.export.export_for_training( model, (torch.tensor(10), torch.tensor(12)), {}, dynamic_shapes=None, strict=False, ) # check that only sub op is wrapped with grad_enabled getattr_nodes = [ node for node in ep_nograd.graph.nodes if node.op == "get_attr" ] self.assertEqual(len(getattr_nodes), 1) grad_subgraph = getattr(ep_nograd.graph_module, getattr_nodes[0].target) op_node = [ node for node in grad_subgraph.graph.nodes if node.op == "call_function" ][0] self.assertEqual(op_node.target._name, "aten::sub.Tensor") # enable grad model = Model() ep_grad = torch.export.export_for_training( model, (torch.tensor(10), torch.tensor(12)), {}, dynamic_shapes=None, strict=False, ) # check that only add op is wrapped with grad_enabled getattr_nodes = [node for node in ep_grad.graph.nodes if node.op == "get_attr"] self.assertEqual(len(getattr_nodes), 1) grad_subgraph = getattr(ep_grad.graph_module, getattr_nodes[0].target) op_node = [ node for node in grad_subgraph.graph.nodes if node.op == "call_function" ][0] self.assertEqual(op_node.target._name, "aten::add.Tensor") @testing.expectedFailureRetraceability def test_layer_sharing(self): N, C, H, W = 1, 2, 2, 3 class Module(torch.nn.Module): def __init__(self) -> None: super().__init__() layer = torch.nn.LayerNorm([C, H, W]) self.norms = torch.nn.ModuleList( [ layer, layer, ] ) def forward(self, x): for norm in self.norms: x = norm(x) return x m = Module() copied_m = copy.deepcopy(m) ep = export(copied_m, (torch.randn(N, C, H, W),)) self.assertEqual(copied_m.state_dict(), m.state_dict()) self.assertEqual(ep.state_dict, m.state_dict()) def test_non_persistent_buffer(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.nn.Buffer(torch.rand(2, 3), persistent=False) def forward(self, x): return self.foo + x class MyOuterModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.inner = MyModule() def forward(self, x): return self.inner(x) inp = torch.rand(2, 3) def _test(m, non_persistent_buffer): ep = export(m, (inp,), {}) self.assertEqual(ep.module()(inp), m(inp)) # Non-persistent buffers should not show up in the state dict self.assertNotIn(non_persistent_buffer, ep.state_dict) named_buffers = {name: buffer for (name, buffer) in ep.named_buffers()} # But they should show up in named_buffers() self.assertIn(non_persistent_buffer, named_buffers) self.assertIn(non_persistent_buffer, ep.constants) self.assertEqual(len(ep.constants), 1) # Check the same properties of the unlifted module mod = ep.module() self.assertNotIn(non_persistent_buffer, mod.state_dict()) mod_named_buffers = {name: buffer for (name, buffer) in mod.named_buffers()} self.assertIn(non_persistent_buffer, mod_named_buffers) self.assertIn(non_persistent_buffer, ep.constants) self.assertEqual(len(ep.constants), 1) self.assertEqual(mod(inp), m(inp)) _test(MyModule(), "foo") _test(MyOuterModule(), "inner.foo") def test_export_with_set_grad_enabled(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): with torch.no_grad(): return self.linear(x) model = Model() ep = export(model, (torch.randn(4, 4),), {}) # _export_for_traininig is using pre_dispatch=False # Therefore the set_grad calls are not replaced with a hop. if not is_training_ir_test(self._testMethodName): self.assertIn( "torch.ops.higher_order.wrap_with_set_grad_enabled", ep.graph_module.code, ) gm = torch.export.export_for_training(model, (torch.randn(4, 4),)).module() self.assertIn( "set_grad_enabled", gm.code, ) def test_export_with_autocast(self): class Model(torch.nn.Module): def forward(self, x): with torch.autocast( device_type="cuda", dtype=torch.int16, enabled=True ): y = x.sin().sum() with torch.autocast( device_type="cpu", dtype=torch.float16, enabled=True ): z = y.sin().sum() return z model = Model() ep = export(model, (torch.randn(4, 4),), {}) # autocast nodes do not exist after run_decomposition() if not is_training_ir_test(self._testMethodName): self.assertIn( "torch.ops.higher_order.wrap_with_autocast", ep.graph_module.code, ) # _export_for_traininig is using pre_dispatch=False # Therefore the autocast calls are not replaced with a hop. gm = torch.export.export_for_training(model, (torch.randn(4, 4),)).module() self.assertIn( "autocast", gm.code, ) def test_export_as_backend(self): def f(x, y): return x + y def my_custom_backend(gm, example_inputs): gm = ( torch.export.export(gm, tuple(example_inputs), strict=False) .run_decompositions() .module() ) return gm inp = (torch.randn(3, 3), torch.randn(3, 3)) new_res = torch.compile(f, backend=my_custom_backend)(*inp) self.assertTrue(torch.allclose(f(*inp), new_res)) def test_nonstrict_retrace_preserves_metadata(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(4, 4) def forward(self, x): return self.linear(x) inp = torch.randn(4, 4) m = MyModule() ep = torch.export.export(m, (inp,), {}, strict=False) # retrace ep2 = torch.export.export(ep.module(), (inp,), {}, strict=False) for n1, n2 in zip(list(ep.graph.nodes), list(ep2.graph.nodes)): self.assertEqual(n1.meta.get("stack_trace"), n2.meta.get("stack_trace")) def test_fake_weights(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.nn.Parameter(torch.randn(4, 4)) self.bar = torch.nn.Buffer(torch.randn(4, 4), persistent=False) self.baz = torch.nn.Buffer(torch.randn(4, 4), persistent=True) def forward(self, x): return self.foo + x + self.bar + self.baz fake_mode = torch._subclasses.FakeTensorMode( shape_env=ShapeEnv(tracked_fakes=[]) ) with fake_mode: m = MyModule() inp = torch.randn(4, 4) ep = export(m, (inp,)) # Can't compare outputs because the module has fake weights. def test_fake_inputs(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.nn.Parameter(torch.randn(4, 4)) def forward(self, x): return self.foo + x fake_mode = torch._subclasses.FakeTensorMode( shape_env=ShapeEnv(tracked_fakes=[]) ) m = MyModule() with fake_mode: inp = torch.randn(4, 4) ep = export(m, (inp,)) self.assertEqual(ep.module()(torch.ones(4, 4)), m(torch.ones(4, 4))) def test_double_lifted_constants(self): class EmptyM(torch.nn.Module): def __init__(self): super().__init__() def forward(self): return (torch.tensor([1, 2, 3]), torch.tensor([4, 5, 6])) m = EmptyM() ep = torch.export.export(m, ()) for out, real_out in zip(ep.module()(), m()): self.assertTrue(torch.allclose(out, real_out)) def test_trace_under_fake(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.nn.Parameter(torch.randn(4, 4)) def forward(self, x): return self.foo + x fake_mode = torch._subclasses.FakeTensorMode( shape_env=ShapeEnv(tracked_fakes=[]) ) with fake_mode: m = MyModule() inp = torch.randn(4, 4) # Can't use unqualified export() as it will attempt to deserialize # under a new FakeTensorMode. ep = torch.export.export(m, (inp,)) def test_compiling_state(self): class TestModule1(torch.nn.Module): def forward(self, x): if torch._dynamo.is_compiling(): return x * 2 else: return x * 3 class TestModule2(torch.nn.Module): def forward(self, x): if torch._utils.is_compiling(): return x * 2 else: return x * 3 class TestModule3(torch.nn.Module): def forward(self, x): if torch.compiler.is_compiling(): return x * 2 else: return x * 3 for m in [TestModule1(), TestModule2(), TestModule3()]: input = torch.randn(5) ep_strict = export(m, (input,), strict=True) ep_non_strict = export(m, (input,), strict=False) self.assertTrue(torch.allclose(input * 3, m(input))) self.assertTrue(torch.allclose(input * 2, ep_strict.module()(input))) self.assertTrue(torch.allclose(input * 2, ep_non_strict.module()(input))) def test_user_input_and_buffer_mutation(self): class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.nn.Buffer(torch.randn(4, 4)) def forward(self, x): self.foo.add_(1) x.add_(1) return self.foo + x mod = MyModule() mod_copy = copy.deepcopy(mod) ep = export(mod_copy, (torch.rand(4, 4),)) self.assertEqual(mod.foo, ep.module().foo) self.assertEqual(mod(torch.ones(4, 4)), ep.module()(torch.ones(4, 4))) def test_symint_tensor_return(self): class Module(torch.nn.Module): def forward(self, x): a, b = torch.ops.testlib.returns_tensor_symint(x) return a, b self._test_export_same_as_eager(Module(), (torch.randn(4, 4),)) def test_custom_op_auto_functionalize(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x, z): return torch.ops.testlib.foo(x, z) inps = (torch.ones(5), torch.ones(5)) inps_for_export = (torch.ones(5), torch.ones(5)) inps_for_export_with_decomp = (torch.ones(5), torch.ones(5)) ep = torch.export.export(M(), inps_for_export) x_new_eager, z_new_eager, legit_eager = M()(*inps) x_new_export, z_new_export, legit_export = ep.module()(*inps_for_export) self.assertTrue(torch.allclose(x_new_eager, x_new_export)) self.assertTrue(torch.allclose(z_new_eager, z_new_export)) self.assertTrue(torch.allclose(legit_eager, legit_export)) ep = ep.run_decompositions() x_new_export, z_new_export, legit_export = ep.module()( *inps_for_export_with_decomp ) self.assertTrue(torch.allclose(x_new_eager, x_new_export)) self.assertTrue(torch.allclose(z_new_eager, z_new_export)) self.assertTrue(torch.allclose(legit_eager, legit_export)) def test_custom_op_auto_functionalize_pre_dispatch(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): return torch.ops.testlib.foo_mutated(x) inps = (torch.ones(5),) ep = export_for_training(M(), inps).run_decompositions({}) self.assertExpectedInline( str(ep.graph_module.code.strip()), """\ def forward(self, x): cos = torch.ops.aten.cos.default(x) auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = x, z = cos); x = cos = None getitem_3 = auto_functionalized[3]; auto_functionalized = None cos_1 = torch.ops.aten.cos.default(getitem_3) return (getitem_3, getitem_3, cos_1)""", ) def test_custom_op_auto_warn_pre_dispatch(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): return torch.ops.testlib.foo_functional(x) inps = (torch.ones(5),) ep = torch.export.export(M(), inps).run_decompositions() self.assertExpectedInline( str(ep.graph_module.code.strip()), """\ def forward(self, x): cos = torch.ops.aten.cos.default(x) cos_1 = torch.ops.aten.cos.default(x); x = None auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = cos, z = cos_1); cos = cos_1 = None getitem_3 = auto_functionalized[3]; auto_functionalized = None cos_2 = torch.ops.aten.cos.default(getitem_3); getitem_3 = None return (cos_2,)""", ) ep = torch.export._trace._export(M(), inps, pre_dispatch=True) self.assertExpectedInline( str(ep.graph_module.code.strip()), """\ def forward(self, x): foo_functional = torch.ops.testlib.foo_functional.default(x); x = None return (foo_functional,)""", ) def test_placeholder_naming_collisions(self): # test collisions between nested user inputs class Foo(torch.nn.Module): def forward(self, x, x_foo, x_foo_0): return x["foo"][0] + x_foo[0] + x_foo_0 inputs = ( {"foo": [torch.randn(4, 4)]}, (torch.randn(4, 4),), torch.randn(4, 4), ) ep = export(Foo(), inputs) expected_names = ["x_foo_0", "x_foo_0_1", "x_foo_0_2"] real_names = [spec.arg.name for spec in ep.graph_signature.input_specs] self.assertEqual(expected_names, real_names) # test collisions between user inputs and params, buffers, constants class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.param = torch.nn.Parameter(torch.randn(4)) self.alpha = torch.nn.Buffer(torch.randn(4), persistent=True) self.beta = torch.nn.Buffer(torch.randn(4), persistent=False) self.gamma = torch.randn(4) def forward(self, p, b_alpha, b, c_gamma): p = p["param"] + self.param b = self.alpha + self.beta + b_alpha + b["beta"] c = self.gamma + c_gamma return p, b, c inputs = ( {"param": torch.randn(4)}, torch.randn(4), {"beta": torch.randn(4)}, torch.randn(4), ) ep = export(Foo(), inputs) expected_names = [ # user inputs should be prioritized, unprefixed ("p_param_1", InputKind.PARAMETER), ("b_alpha_1", InputKind.BUFFER), ("b_beta_1", InputKind.BUFFER), ("c_gamma_1", InputKind.CONSTANT_TENSOR), ("p_param", InputKind.USER_INPUT), ("b_alpha", InputKind.USER_INPUT), ("b_beta", InputKind.USER_INPUT), ("c_gamma", InputKind.USER_INPUT), ] real_names = [ (spec.arg.name, spec.kind) for spec in ep.graph_signature.input_specs ] self.assertEqual(expected_names, real_names) # test collisions between user inputs & call_function nodes class Foo(torch.nn.Module): def forward(self, mul, add, add_1): return mul * mul + add * add_1 ep = export(Foo(), (torch.randn(4, 4), torch.randn(4, 4), torch.randn(4, 4))) expected_names_and_ops = [ ("mul", "placeholder"), ("add", "placeholder"), ("add_1", "placeholder"), ("mul_1", "call_function"), ("mul_2", "call_function"), ("add_2", "call_function"), ("output", "output"), ] real_names_and_ops = [(node.name, node.op) for node in ep.graph.nodes] self.assertEqual(expected_names_and_ops, real_names_and_ops) @skipIfCrossRef # Dynamo changes the order of ops under Torch function modes def test_placeholder_naming_collisions_hoo_subgraphs(self): # test collisions between user inputs, top-level nodes, and HOO subgraph nodes class Foo(torch.nn.Module): def forward(self, x, mul, mul_1): _mul = x * x y = cond( _mul.sum() > 0, lambda x, y, z: x * y * z, lambda x, y, z: x + y + z, [_mul, mul, mul_1], ) with torch.enable_grad(): y = y * y return y with torch.no_grad(): ep = torch.export._trace._export( Foo(), (torch.randn(4), torch.randn(4), torch.randn(4)), pre_dispatch=True, ) schema = get_hop_schema(ep) self.assertExpectedInline( str(schema), """cond(Tensor pred, GraphModule true_fn, GraphModule false_fn, Tensor[3] operands) -> Tensor[1]""", ) # test cond subgraph expected_names_and_ops = [ ("mul_2", "placeholder"), ("mul", "placeholder"), ("mul_1", "placeholder"), ("mul_3", "call_function"), ("mul_4", "call_function"), ("output", "output"), ] real_names_and_ops = [ (node.name, node.op) for node in ep.graph_module.true_graph_0.graph.nodes ] self.assertEqual(expected_names_and_ops, real_names_and_ops) # test set_grad_enabled subgraph expected_names_and_ops = [ ("getitem", "placeholder"), ("mul_1", "call_function"), ("output", "output"), ] real_names_and_ops = [ (node.name, node.op) for node in ep.graph_module.submod_1.graph.nodes ] self.assertEqual(expected_names_and_ops, real_names_and_ops) # test collisions between user inputs & higher order op subgraphs # (please never do this) class Foo(torch.nn.Module): def forward(self, input, true_graph, body_graph): x = input + true_graph[0] + true_graph[1] x = cond(x.sum() > 0, lambda x: x * 2.0, lambda x: x + 2.0, [x]) x = cond(x.sum() > 0, lambda x: x * 2.0, lambda x: x + 2.0, [x]) return x inputs = ( torch.randn(10, 4), (torch.randn(4), torch.randn(4)), (torch.randn(4),), ) ep = export(Foo(), inputs) expected_getattr_names = [ "true_graph_2", "false_graph_0", "true_graph_3", "false_graph_1", ] real_getattr_names = [ node.name for node in ep.graph.nodes if node.op == "get_attr" ] self.assertEqual(expected_getattr_names, real_getattr_names) def test_constant_input_naming(self): class Foo(torch.nn.Module): def forward(self, x, y, div="floor"): return torch.div(x, y, rounding_mode=div) f = Foo() inputs = (torch.randn(4), torch.randn(4), "floor") ep = export(f, inputs) div_spec = ep.graph_signature.input_specs[2] self.assertEqual(div_spec.arg.name, "div") self.assertEqual(div_spec.arg.value, "floor") def test_unbacked_deferred_runtime_retrace(self): class Foo(torch.nn.Module): def forward(self, x, y): y_sum = y.sin().sum() with torch.no_grad(): a = x.item() torch._check_is_size(a) torch._check(a > 2) torch._check(a < 6) unbacked_shape = torch.ops.testlib.foo_unbacked(a) return y + y_sum + unbacked_shape.sum() inps = (torch.tensor(4), torch.randn(5, 5)) from torch.export import _trace ep_pre = _trace._export(Foo(), inps, pre_dispatch=True, strict=False) self.assertExpectedInline( str(ep_pre.graph_module.submod_1.code).strip(), """\ def forward(self, x): item = torch.ops.aten.item.default(x); x = None sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(item); sym_constrain_range_for_size_default = None ge_1 = item >= 3 _assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u1 >= 3 on node 'ge_1'"); ge_1 = _assert_scalar_default = None le = item <= 5 _assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le, "Runtime assertion failed for expression u1 <= 5 on node 'le'"); le = _assert_scalar_default_1 = None gt_1 = item > 2 _assert_scalar_default_2 = torch.ops.aten._assert_scalar.default(gt_1, "Runtime assertion failed for expression 2 < u1 on node 'gt_1'"); gt_1 = _assert_scalar_default_2 = None lt_1 = item < 6 _assert_scalar_default_3 = torch.ops.aten._assert_scalar.default(lt_1, "Runtime assertion failed for expression u1 < 6 on node 'lt_1'"); lt_1 = _assert_scalar_default_3 = None foo_unbacked = torch.ops.testlib.foo_unbacked.default(item); item = None return (foo_unbacked,)""", ) ep_aot = ep_pre.run_decompositions() self.assertExpectedInline( str(ep_aot.graph_module.code).strip(), """\ def forward(self, x, y): sin = torch.ops.aten.sin.default(y) sum_1 = torch.ops.aten.sum.dim_IntList(sin, []); sin = None _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x); x = None sym_constrain_range_for_size_default = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size_default = None ge_1 = _local_scalar_dense >= 3 _assert_scalar_default = torch.ops.aten._assert_scalar.default(ge_1, "Runtime assertion failed for expression u3 >= 3 on node 'ge_1'"); ge_1 = _assert_scalar_default = None le_1 = _local_scalar_dense <= 5; _local_scalar_dense = None _assert_scalar_default_1 = torch.ops.aten._assert_scalar.default(le_1, "Runtime assertion failed for expression u3 <= 5 on node 'le_1'"); le_1 = _assert_scalar_default_1 = None full = torch.ops.aten.full.default([4, 4], 1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu'), pin_memory = False) add = torch.ops.aten.add.Tensor(y, sum_1); y = sum_1 = None sum_2 = torch.ops.aten.sum.dim_IntList(full, []); full = None add_1 = torch.ops.aten.add.Tensor(add, sum_2); add = sum_2 = None return (add_1,)""", ) def test_nested_dynamic_shapes_spec(self): class Foo(torch.nn.Module): def forward(self, x): (a0, a1), (b0, b1), (c0, c1, c2) = x return a0 + a1 + b0 + b1 + c0 + c1 + c2 f = Foo() inputs = ( (1, 2), ( torch.randn(4, 4), torch.randn(4, 4), ), ( torch.randn(4, 4), torch.randn(4, 4), torch.randn(4, 4), ), ) # make sure this gets parsed correctly as 7 individual inputs, not 3 tensors dynamic_shapes = { "x": ( (None, None), (None, None), (None, None, None), ) } export(f, (inputs,), dynamic_shapes=dynamic_shapes) @testing.expectedFailureRetraceabilityNonStrict @testing.expectedFailureCppSerDes # dynamic shape serialization def test_disable_forced_specializations_ok(self): # check that we don't force specialization, and defer to runtime asserts # with allow_complex_guards_as_runtime_asserts=True to successfully export # case 1: modulo guards from torch.export import dims class Mod4Reshape(torch.nn.Module): def forward(self, x): return x.reshape(x.shape[0] - 1, 4, -1) # Mod(s0*s1, 4*(s0-1)) = 0 inputs = (torch.randn(10, 72),) dx, dy = dims("dx", "dy") ep = torch.export._trace._export( Mod4Reshape(), inputs, dynamic_shapes={"x": (dx, dy)}, allow_complex_guards_as_runtime_asserts=True, ) out1 = ep.module()(torch.randn(8, 7)) self.assertEqual(out1.shape, torch.ones(7, 4, 2).shape) out2 = ep.module()(torch.randn(12, 11)) self.assertEqual(out2.shape, torch.ones(11, 4, 3).shape) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Eq\(Mod\(s0\*s1, 4\*s0 \- 4\), 0\) on node 'eq.*'", ): ep.module()(torch.randn(8, 8)) # fail # case 2: 2d reshape class FreeReshape(torch.nn.Module): def forward(self, x, y, z): return x.reshape([-1]) + y.reshape([-1]) + z # s0*s1 = s2*s3 = s4 inputs = ( torch.randn(6, 8), torch.randn(3, 16), torch.randn(48), ) dynamic_shapes = { "x": [Dim(f"dx{i}", min=2) for i in range(2)], "y": [Dim(f"dy{i}", min=2) for i in range(2)], "z": [Dim(f"dz{i}", min=4) for i in range(1)], } ep = torch.export._trace._export( FreeReshape(), inputs, dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ) ep = export(FreeReshape(), inputs, dynamic_shapes=dynamic_shapes) out1 = ep.module()(torch.randn(48, 1), torch.randn(4, 12), torch.randn(48)) self.assertEqual(out1.shape, torch.ones(48).shape) out2 = ep.module()(torch.randn(5, 8), torch.randn(4, 10), torch.randn(40)) self.assertEqual(out2.shape, torch.ones(40).shape) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Eq\(s0\*s1, s2\*s3\) on node 'eq.*'", ): # fail only at runtime ep.module()(torch.randn(5, 8), torch.randn(4, 5), torch.randn(30)) # fail # case 3: 3d reshape (previously failing with different issue) class Reshape3d(torch.nn.Module): def forward(self, x, y): return x.reshape([-1]) + y # s0*s1*s2 = s3 inputs = ( torch.randn(4, 3, 2), torch.randn(24), ) dynamic_shapes = { "x": (Dim("dx0", min=2), Dim("dx1", min=2), Dim("dx2", min=2)), "y": (Dim("dy", min=8),), } ep = torch.export._trace._export( Reshape3d(), inputs, dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ) out1 = ep.module()(torch.randn(9, 7, 2), torch.randn(126)) self.assertEqual(out1.shape, torch.ones(126).shape) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Eq\(s0\*s1\*s2, s3\) on node 'eq.*'", ): # fail only at runtime ep.module()(torch.randn(4, 3, 2), torch.randn(10)) # fail def test_disable_forced_specializations_errors(self): # check error messages with hybrid symints class Foo(torch.nn.Module): def forward(self, w, x, y, z): return w.reshape([-1]) + x, y + z # simple: s0*s1 = s2, s3 = s4 inputs = ( torch.randn(3, 4), torch.randn(12), torch.randn(4), torch.randn(4), ) dynamic_shapes = { "w": [Dim(f"dw{i}") for i in range(2)], "x": [Dim(f"dx{i}") for i in range(1)], "y": [Dim("dy")], # y & z incorrect, export is supposed to fail. "z": [Dim("dz")], # suggested fix should be to match these up. } with self.assertRaisesRegex( # if disable=True, suggested fixes should not specialize. torch._dynamo.exc.UserError, r".*Constraints violated(.*\n)*" r"Suggested fixes:(.*\n)*" r".*dz = dy(.*\n)*", ) as msg: export( Foo(), inputs, dynamic_shapes=dynamic_shapes, strict=False, ) # TODO requires_grad doesn't seem to work with serialization. @testing.expectedFailureSerDer @testing.expectedFailureCppSerDes @testing.expectedFailureSerDerNonStrict def test_preserve_requires_grad_placeholders(self): class Module(torch.nn.Module): def __init__(self) -> None: super().__init__() self.p = torch.nn.Parameter(torch.randn(3, 3)) def forward(self, x, y): return self.p + x + y m = Module() ep = export(m, (torch.randn(3, 3), torch.randn(3, 3, requires_grad=True))) placeholders = [ node for node in ep.graph_module.graph.nodes if node.op == "placeholder" ] self.assertTrue(placeholders[0].meta["val"].requires_grad) self.assertFalse(placeholders[1].meta["val"].requires_grad) self.assertTrue(placeholders[2].meta["val"].requires_grad) def test_reshape_view_helper(self): # see: https://github.com/pytorch/pytorch/issues/126607 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x): x = x.view(x.size(1), -1) # torch/_refs/__init__/_reshape_view_helper() will generate guards on reshape kernel(?) # Ne(s0, 20), so that reshape isn't no-op # Ne(Mod(s0, 20), 0), so that reshape needs to first flatten [s0, 20, 16] -> [s0*20, 16] # then split_dim -> [20, s0, 16] # check that these show up in graph return torch.nn.functional.softmax( x, dim=0 ) # don't think softmax actually creates any issues, just part of original test model = Model() x = torch.rand(1024, 20, 16) dynamic_shapes = {"x": {0: Dim("batch")}} ep = torch.export._trace._export( model, (x,), dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Ne\(s0, 20\)", ): ep.module()(torch.randn(20, 20, 16)) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Ne\(Mod\(s0, 20\), 0\)", ): ep.module()(torch.randn(400, 20, 16)) ep.module()(torch.randn(42, 20, 16)) def test_allow_explicit_guards_as_runtime_asserts(self): # check that explicit guards are treated as runtime assertions class Foo(torch.nn.Module): def forward(self, x, y): # check that negation of first guard also shows up as runtime assertion if x.shape[0] == y.shape[0]: # False return x + y elif x.shape[0] == y.shape[0] ** 3: # False return x + 2, y + 3 elif x.shape[0] ** 2 == y.shape[0] * 3: # True return x * 2.0, y * 3.0 inputs = (torch.randn(6), torch.randn(12)) dynamic_shapes = {"x": [Dim("dx", min=4)], "y": [Dim("dy", min=4)]} ep = torch.export._trace._export( Foo(), inputs, dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ) # check forward pass out0, out1 = ep.module()(torch.randn(9), torch.randn(27)) self.assertEqual(out0.shape, torch.ones(9).shape) self.assertEqual(out1.shape, torch.ones(27).shape) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Ne\(s0, s1\)", ): # fail only at runtime ep.module()(torch.randn(4), torch.randn(4)) # fail with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Ne\(s0, s1\**3\)", ): ep.module()(torch.randn(64), torch.randn(4)) # fail with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression Eq\(s0\**2, 3\*s1\)", ): ep.module()(torch.randn(10), torch.randn(9)) # fail # this should be set with command line flag TORCH_DYNAMO_DO_NOT_EMIT_RUNTIME_ASSERTS=1, # but dynamo checks that at torch import time, so setting os.environ makes no difference # instead, manually patch dynamo config and test. # test that setting this flag removes runtime asserts from torch._dynamo import config as _dynamo_config with _dynamo_config.patch( do_not_emit_runtime_asserts=True, ): ep = torch.export._trace._export( Foo(), inputs, dynamic_shapes=dynamic_shapes, allow_complex_guards_as_runtime_asserts=True, ).run_decompositions() self.assertEqual( [ node.target == torch.ops.aten._assert_scalar.default for node in ep.graph.nodes ].count(True), 0, ) def test_constant_output_dup(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.constant = torch.ones(4, 4) def forward(self, x): return x + self.constant, self.constant ep = export(M(), (torch.ones(4, 4),)).run_decompositions() mod = ep.module() a, b = mod(torch.zeros(4, 4)) self.assertTrue(torch.allclose(a, torch.ones(4, 4))) self.assertTrue(torch.allclose(b, torch.ones(4, 4))) def test_constant_requires_grad_const(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.foo = torch.randn(2, 2, requires_grad=True) def forward(self, x): return x.cos() + self.foo.sum() gm = export(M(), (torch.ones(2, 2),)).module() self.assertFalse(gm.foo.requires_grad) def test_constant_aliasing(self): class M1(torch.nn.Module): def __init__(self, m2, foo): super().__init__() self.m2 = m2 self.foo = foo def forward(self, x): return x + self.foo + self.m2(x) class M2(torch.nn.Module): def __init__(self) -> None: super().__init__() self.foo = torch.ones(3, 3, requires_grad=True) def forward(self, x): return x + self.foo m2 = M2() m1 = M1(m2, m2.foo) inps = (torch.ones(3, 3),) ep = export(m1, inps, strict=False) # check both constants appear in list self.assertEqual(sorted(list(ep.constants)), ["foo", "m2.foo"]) # check only one input spec exists num_constant_inputs = [ spec.kind == InputKind.CONSTANT_TENSOR for spec in ep.graph_signature.input_specs ].count(True) self.assertEqual(num_constant_inputs, 1) # unflatten unflattened = unflatten(ep) self.assertTrue(torch.allclose(m1(*inps), unflattened(*inps))) @testing.expectedFailureRetraceability def test_unused_aliases(self): class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() # param self.alpha = torch.nn.Parameter(torch.randn(4)) self.beta = self.alpha self.gamma = self.alpha def forward(self, x): return x + self.gamma inps = (torch.randn(4),) ep = export(Foo(), inps) # placeholder nodes will be deduplicated in strict-mode, # but check that all params still appear in state dict for param in ["alpha", "beta", "gamma"]: self.assertTrue(param in ep.state_dict) # check that they also appear in unflattened state dict unep = unflatten(ep) for param in ["alpha", "beta", "gamma"]: self.assertTrue(param in unep.state_dict()) @testing.expectedFailureRetraceabilityNonStrict def test_intermediate_shape_comp(self): class Foo(torch.nn.Module): def forward(self, x, y): z = torch.cat([x, x], dim=0) w = z.repeat(y.shape[0]) return w.shape[0] + x.shape[0] inputs = (torch.randn(6), torch.randn(4)) shapes = { "x": (Dim("dx0"),), "y": (Dim("dy"),), } ep = export( Foo(), inputs, dynamic_shapes=shapes, ) # test that shape is from size compute, not sym_size call add_node = [node for node in ep.graph.nodes if node.target == operator.add][0] self.assertTrue(add_node.args[0].target == operator.mul) # test sym_size calls only happen on placeholders sym_size_nodes = [ node for node in ep.graph.nodes if node.target == torch.ops.aten.sym_size.int ] self.assertEqual(len(sym_size_nodes), 2) self.assertTrue( all(node.args[0].op == "placeholder" for node in sym_size_nodes) ) # dynamo will DCE the repeat node, AOTAutograd will leave it # training IR will also DCE due to retracing repeat_nodes = [ node for node in ep.graph.nodes if node.target == torch.ops.aten.repeat.default ] self.assertEqual( len(repeat_nodes), 1 if is_non_strict_test(self._testMethodName) and not is_training_ir_test(self._testMethodName) else 0, ) def test_checks_to_constrain_range(self): class Foo(torch.nn.Module): def forward(self, x, y): n = y.item() m = y.item() torch._check_is_size(n) torch._check(m >= 0) torch._check(n >= 3) torch._check(-m >= -9) # m <= 9 torch._check(n <= 6) # n has range [3, 9] return x[:n] inputs = (torch.randn(10), torch.tensor(6)) ep = export(Foo(), inputs) FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 0, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) ep = ep.run_decompositions() FileCheck().check_count( "torch.ops.aten._assert_scalar.default", 2, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 0, exactly=True ).run(ep.graph_module.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range_for_size.default", 1, exactly=True ).run(ep.graph_module.code) # check runtime ep.module()(torch.randn(10), torch.tensor(5)) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression u[\d+] \>\= 3", ): ep.module()(torch.randn(10), torch.tensor(2)) def test_cse_for_symint(self): class Foo(torch.nn.Module): # check sym ops only get computed once def forward(self, x, y): if ( x.shape[0] ** 2 - y.shape[0] ** 2 >= 4 # 16 and x.shape[0] ** 2 - y.shape[0] ** 2 <= 20 and x.shape[0] ** 2 - y.shape[0] ** 2 != 15 ): return x * 2, y * 2 inputs = (torch.randn(5), torch.randn(3)) shapes = {"x": (Dim("dx"),), "y": (Dim("dy"),)} ep = torch.export._trace._export( Foo(), inputs, dynamic_shapes=shapes, allow_complex_guards_as_runtime_asserts=True, ) # count 2 pow nodes, 2 sym_size.int nodes self.assertEqual( [node.target for node in ep.graph.nodes].count( operator.pow, ), 2, ) FileCheck().check_count("torch.ops.aten.sym_size.int", 2, exactly=True).run( ep.graph_module.code ) ep = ep.run_decompositions() self.assertEqual( [node.target for node in ep.graph.nodes].count( operator.pow, ), 2, ) FileCheck().check_count("torch.ops.aten.sym_size.int", 2, exactly=True).run( ep.graph_module.code ) @testing.expectedFailureCppSerDes def test_slice_with_floordiv(self): # slice operation emits runtime assert s0//2 <= s1 class M1(torch.nn.Module): def forward(self, x, y): d = x.size(0) // 2 return y[d:] class M(torch.nn.Module): def __init__(self) -> None: super().__init__() self.m1 = M1() def forward(self, x, y): d = x.size(0) // 2 m1_res = self.m1(x, y) return y[d:] + m1_res inputs = (torch.ones(10), torch.ones(10)) d0 = torch.export.Dim("d0", max=2048) d1 = torch.export.Dim("d1", max=2048) ep = export( M(), inputs, dynamic_shapes=((d0,), (d1,)), ) ep.module()(torch.ones(8), torch.ones(4)) ep.module()(torch.ones(8), torch.ones(5)) with self.assertRaisesRegex( RuntimeError, r"Runtime assertion failed for expression \(s0//2\) \<\= s1", ): ep.module()(torch.ones(10), torch.ones(4)) def test_split_const_gm_with_lifted_constants(self): class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.w_pre = torch.randn(4, 4) self.b = torch.randn(4) def forward(self, x): w_transpose = torch.transpose(self.w_pre, 0, 1) w_relu = torch.nn.functional.relu(w_transpose) w = w_relu + self.b return ( torch.matmul(x, w) + self.b + torch.arange(4, dtype=torch.float16) ) example_inputs = (torch.randn(4, 4),) mod = Model() ep = torch.export.export(mod, example_inputs) new_gm = copy.deepcopy(ep.graph_module) new_sig = copy.deepcopy(ep.graph_signature) placeholder_nodes = [ node for node in new_gm.graph.nodes if node.op == "placeholder" ] constants = {**ep.state_dict, **ep.constants} lifted_constants = { n.name: constants[spec.target] for n, spec in zip(placeholder_nodes, new_sig.input_specs) if spec.target is not None } # [self.w_pre, self.b] lifted_constant_names = list(lifted_constants) lifted_constant_values = [lifted_constants[n] for n in lifted_constant_names] const_gm, _ = split_const_gm(new_gm, False, lifted_constant_names) counter = 0 for node in const_gm.graph.nodes: if node.op == "call_function": counter += 1 self.assertTrue(counter == 4) counter = 0 for n in new_gm.graph.nodes: if n.op == "placeholder": counter += 1 # expect 3 existing placeholders and 2 folded constant self.assertTrue(counter == 5) # return (self.b, folded_const, folded_const) const_folded_value = const_gm(*lifted_constant_values) test_input = torch.randn(4, 4) # new_gm(c_w_pre, b, x, folded_const, folded_const) actual = new_gm( lifted_constant_values[0], const_folded_value[0], test_input, const_folded_value[1], const_folded_value[2], )[0] expected = mod(test_input) self.assertEqual(actual, expected) const_gm, _ = split_const_gm( ep.graph_module, False, lifted_constant_names, lambda x: True ) counter = 0 for node in const_gm.graph.nodes: if node.op == "call_function": self.assertTrue(False) def test_istft_op(self): class istft_class(torch.nn.Module): def forward(self, spec): window = torch.hann_window(1024).type(torch.FloatTensor) return torch.istft( spec, n_fft=1024, hop_length=512, window=window, length=144000, ) model = istft_class() real_part = torch.randn(1, 513, 282, dtype=torch.float32) imaginary_part = torch.randn(1, 513, 282, dtype=torch.float32) spec = torch.complex(real_part, imaginary_part) export(model, (spec,)) def test_custom_op_preserve(self): class M(torch.nn.Module): def forward(self, x): y = torch.ops.testlib.foo_functional.default(x) return torch.ops.testlib.foo_mutated.default(y) decomp_table = torch.export.default_decompositions() del decomp_table[torch.ops.testlib.foo_functional.default] ep = torch.export.export(M(), (torch.randn(4, 4),)).run_decompositions( decomp_table, ) self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, x): foo_functional = torch.ops.testlib.foo_functional.default(x); x = None cos = torch.ops.aten.cos.default(foo_functional) auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.testlib.foo.default, x = foo_functional, z = cos); foo_functional = cos = None getitem_3 = auto_functionalized[3]; auto_functionalized = None cos_1 = torch.ops.aten.cos.default(getitem_3) return (getitem_3, cos_1)""", ) def test_export_linear_preserve_dynamic_shape(self): class M(torch.nn.Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(4, 4) def forward(self, x): return self.lin(x) mod = M() ep = export( mod, (torch.randn(8, 4),), dynamic_shapes={ "x": { 0: Dim("x"), } }, ) table = torch.export.default_decompositions() del table[torch.ops.aten.linear.default] ep = ep.run_decompositions(table) comp_mod = ep.module() inp1 = torch.randn(3, 4) inp2 = torch.randn(7, 4) self.assertTrue(torch.allclose(comp_mod(inp1), mod(inp1))) self.assertTrue(torch.allclose(comp_mod(inp2), mod(inp2))) @testing.expectedFailureRetraceabilityNonStrict def test_automatic_dynamic_shapes_simple_equality(self): # The next 3 test cases tests for automatic dynamic shapes specs, verifying that automatic dynamism # leads to replacement symbols being set for equalities, and inferred relationships being checked # with runtime asserts. Check that we specialize to static values when the program says so. AUTO, STATIC = Dim.AUTO, Dim.STATIC # case 1: direct equality between symbols class SimpleEquality(torch.nn.Module): def forward(self, x, y, z): # all inputs should have shape [s0, s1] return x + y + z inputs = tuple(torch.randn(6, 3) for _ in range(3)) # fully dynamic self._check_dynamic_shapes_specs_and_shapes( SimpleEquality(), inputs, specs=[ ((AUTO, AUTO), (AUTO, AUTO), (AUTO, AUTO)), [[AUTO, AUTO], [AUTO, AUTO], [AUTO, AUTO]], {"x": (AUTO, AUTO), "y": (AUTO, AUTO), "z": (AUTO, AUTO)}, ], passing_shapes=[ ((4, 4), (4, 4), (4, 4)), ((1, 1), (1, 1), (1, 1)), ((0, 9), (0, 9), (0, 9)), ], failing_shapes=[ ((4, 4), (4, 4), (4, 3)), ((4, 4), (5, 4), (4, 5)), ], test_serdes=True, ) # static s1 self._check_dynamic_shapes_specs_and_shapes( # specifying just one dimension as static should be enough to specialize all s1 SimpleEquality(), inputs, specs=[ [{0: AUTO, 1: AUTO}, {0: AUTO, 1: AUTO}, (AUTO, None)], {"x": (AUTO, AUTO), "y": (AUTO, AUTO), "z": (AUTO, None)}, ], passing_shapes=[ ((4, 3), (4, 3), (4, 3)), ((1, 3), (1, 3), (1, 3)), ((0, 3), (0, 3), (0, 3)), ], failing_shapes=[ ((4, 4), (4, 4), (4, 4)), ((1, 1), (1, 1), (1, 1)), ((0, 9), (0, 9), (0, 9)), ], test_serdes=True, ) # fully static self._check_dynamic_shapes_specs_and_shapes( # this should specialize all SimpleEquality(), inputs, specs=[{"x": (None, AUTO), "y": (AUTO, AUTO), "z": (AUTO, None)}], passing_shapes=[ ((6, 3), (6, 3), (6, 3)), ], failing_shapes=[ ((6, 4), (6, 4), (6, 4)), ((1, 3), (1, 3), (1, 3)), ((0, 9), (0, 9), (0, 9)), ], test_serdes=True, ) @testing.expectedFailureRetraceabilityNonStrict def test_automatic_dynamic_shapes_constant_relation(self): AUTO, STATIC = Dim.AUTO, Dim.STATIC # case 2: related by constant: s0 + 4 = s1 class OffBy4(torch.nn.Module): def forward(self, x, y): return x + y[4:] inputs = (torch.randn(6), torch.randn(10)) # fully dynamic self._check_dynamic_shapes_specs_and_shapes( OffBy4(), inputs, specs=[ ((AUTO,), (AUTO,)), {"x": (AUTO,), "y": (AUTO,)}, ], passing_shapes=[ ((10,), (14,)), ((3,), (7,)), ((2,), (6,)), ], failing_shapes=[ ((10,), (13,)), ], test_serdes=True, ) # static s1 should specialize s0 self._check_dynamic_shapes_specs_and_shapes( OffBy4(), inputs, specs=[ {"x": (AUTO,), "y": (None,)}, ], passing_shapes=[ ((6,), (10,)), ], failing_shapes=[ ((10,), (14,)), ((3,), (7,)), ((2,), (6,)), ], test_serdes=True, ) @testing.expectedFailureRetraceabilityNonStrict def test_automatic_dynamic_shapes_linear_relation(self): AUTO, STATIC = Dim.AUTO, Dim.STATIC # case 3: linear relation class LinearRel(torch.nn.Module): def forward(self, x, y): # x: [s0], y: [s1] # relation seems to be (s0 + 2) // 4 == s1 return x[1::4] + y inputs = (torch.randn(21), torch.randn(5)) # fully dynamic self._check_dynamic_shapes_specs_and_shapes( LinearRel(), inputs, specs=[ ((AUTO,), (AUTO,)), {"x": (AUTO,), "y": (AUTO,)}, ], passing_shapes=[ ((33,), (8,)), ((32,), (8,)), ((31,), (8,)), ((30,), (8,)), ], failing_shapes=[ ((34,), (8,)), ((22,), (5,)), ], test_serdes=False, ) # static s1 shouldn't actually specialize s0 (guard: (s0 + 2) // 4 == 5) self._check_dynamic_shapes_specs_and_shapes( LinearRel(), inputs, specs=[ ((AUTO,), None), {"x": (AUTO,), "y": None}, ], passing_shapes=[ ((21,), (5,)), ((20,), (5,)), ((19,), (5,)), ((18,), (5,)), ], failing_shapes=[ ((33,), (8,)), ], test_serdes=False, ) # but static s0 will definitely specialize s1 (guard: (21 + 2) // 4 == s1 -> 5 == s1) self._check_dynamic_shapes_specs_and_shapes( LinearRel(), inputs, specs=[ (None, (AUTO,)), ], passing_shapes=[ ((21,), (5,)), ], failing_shapes=[ ((22,), (5,)), ], test_serdes=True, ) def test_dynamic_shapes_serdes_generic(self): from torch._export.serde.dynamic_shapes import ( _dump_dynamic_shapes, _load_dynamic_shapes, ) class Foo(torch.nn.Module): def forward(self, a, b, c, d): if d == "hello": x = a[0] + a[1][1:] b = torch.cat([b, b], dim=0).reshape([-1, 1]) return x + b, c * 2 # test de/serialization on some generic specs dz = Dim("dz", min=4, max=16) dx = 2 * dz dy = dx + 1 inputs = ( [ torch.randn(8, 4), torch.randn(9, 4), ], torch.randn(4), torch.randn(4, 4), "hello", ) dynamic_shapes = { "a": [ (dx, 4), (dy, 4), ], "b": (dz,), "c": None, "d": None, } ep = export(Foo(), inputs, dynamic_shapes=dynamic_shapes) self._check_dynamic_shapes_specs_and_shapes( Foo(), inputs, [dynamic_shapes], [ ([(16, 4), (17, 4)], (8,), (4, 4), "hello"), ([(24, 4), (25, 4)], (12,), (4, 4), "hello"), ], [ ([(16, 4), (17, 4)], (8,), (5, 5), "hello"), ], test_serdes=True, ) self.assertExpectedInline( _dump_dynamic_shapes(dynamic_shapes, inputs), """DynamicShapesSpec(dynamic_shapes=([['2*dz', 4], ['2*dz + 1', 4]], ['dz'], ['_DimHint.STATIC', '_DimHint.STATIC'], None), dims={'dz': RootDim(min=4, max=16, derived=['2*dz', '2*dz + 1'])})""", ) self.assertExpectedInline( _dump_dynamic_shapes(dynamic_shapes, inputs, to_dict=True), """{'dynamic_shapes': ([['2*dz', 4], ['2*dz + 1', 4]], ['dz'], ['_DimHint.STATIC', '_DimHint.STATIC'], None), 'dims': {'dz': {'min': 4, 'max': 16, 'derived': ['2*dz', '2*dz + 1']}}}""", ) ((dx, _), (dy, _)), (dz,), (_, _), _ = _load_dynamic_shapes( _dump_dynamic_shapes(dynamic_shapes, inputs) ) self.assertEqual(dx.root, dz) self.assertEqual(dy.root, dz) def test_dynamic_shapes_serdes_various(self): # serialization for dataclass inputs, Dim.AUTO/STATIC, and kwargs from torch._export.serde.dynamic_shapes import ( _dump_dynamic_shapes, _load_dynamic_shapes, ) auto, static = Dim.AUTO, Dim.STATIC @dataclass class Input: a: Tensor b: Tensor register_dataclass_as_pytree_node( Input, serialized_type_name="test_dynamic_shapes_serdes_various.Input", ) class Foo(torch.nn.Module): def forward(self, x, y, z): return x - torch.randn(4), y.a + y.b + z[1:] args = (torch.randn(4, 4),) kwargs = { "y": Input(a=torch.randn(8, 8), b=torch.randn(8, 8)), "z": torch.randn(9, 8), } dynamic_shapes = { "x": (auto, static), "y": [(auto, auto), (auto, auto)], "z": (auto, 8), } # dump dynamic_shapes self.assertExpectedInline( _dump_dynamic_shapes(dynamic_shapes, args, kwargs), """DynamicShapesSpec(dynamic_shapes=(['_DimHint.AUTO', '_DimHint.STATIC'], [['_DimHint.AUTO', '_DimHint.AUTO'], ['_DimHint.AUTO', '_DimHint.AUTO']], ['_DimHint.AUTO', 8]), dims={})""", ) self.assertExpectedInline( _dump_dynamic_shapes(dynamic_shapes, args, kwargs, to_dict=True), """{'dynamic_shapes': (['_DimHint.AUTO', '_DimHint.STATIC'], [['_DimHint.AUTO', '_DimHint.AUTO'], ['_DimHint.AUTO', '_DimHint.AUTO']], ['_DimHint.AUTO', 8]), 'dims': {}}""", ) def test_dynamic_shapes_serdes_user_errors(self): # check error messages for dynamic shapes de/serialization from torch._export.serde.dynamic_shapes import ( _dump_dynamic_shapes, _load_dynamic_shapes, DynamicShapesSpec, RootDim, ) from torch._export.serde.serialize import _dataclass_to_dict # this stuff should be well tested in `test_mismatched_dynamic_shapes` with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Detected mismatch between the structure of `inputs` and `dynamic_shapes`: `inputs[0]['k']` " "is a , but `dynamic_shapes[0]['k']` is a " ), ): dynamic_shapes = {"x": {"k": (Dim("dx"), Dim("dy"))}} _dump_dynamic_shapes(dynamic_shapes, ({"k": [torch.randn(4, 4)]},)) # loading with from_dict=True/False spec = DynamicShapesSpec( dynamic_shapes=[["dx"]], dims={"dx": RootDim(min=4, max=16, derived=[])}, ) spec_dict = _dataclass_to_dict(spec) with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "With from_dict=True, expected `spec` to be a dict, " "got " ), ): _load_dynamic_shapes(spec, from_dict=True) with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape("Expected `spec` to be a DynamicShapesSpec, got "), ): _load_dynamic_shapes(spec_dict, from_dict=False) self.assertExpectedInline( _load_dynamic_shapes(spec, from_dict=False), """[[]]""", ) # check incorrect info in dims with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Expected dims in `spec['dims']` to map `min` to an int, got dx: None" ), ): spec = { "dynamic_shapes": [["dx"]], "dims": { "dx": { "min": None, "max": 4, "derived": [], }, }, } _load_dynamic_shapes(spec, from_dict=True) with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Expected dims in `spec['dynamic_shapes']` to be tracked in `spec['dims']`, " "got dx which is not in dict_keys(['dy'])" ), ): spec = { "dynamic_shapes": [["dx"]], "dims": { "dy": { "min": 2, "max": 4, "derived": [], }, }, } _load_dynamic_shapes(spec, from_dict=True) with self.assertRaisesRegex( torch._dynamo.exc.UserError, re.escape( "Expected derived expressions to be linear expressions, got dx**2 + 4" ), ): spec = { "dynamic_shapes": [["dx"]], "dims": { "dx": { "min": 2, "max": 4, "derived": ["dx**2 + 4"], }, }, } _load_dynamic_shapes(spec, from_dict=True) @testing.expectedFailureSerDer # TODO(pianpwk): PowByNatural valuerange deserialization @testing.expectedFailureCppSerDes # TODO(pianpwk): PowByNatural valuerange deserialization @testing.expectedFailureSerDerNonStrict @testing.expectedFailureRetraceabilityNonStrict def test_dim_dynamic(self): dynamic = Dim.DYNAMIC # dynamic should infer equalities and relations class Relations(torch.nn.Module): def forward(self, u, w, x, y, z): a = u[1:] + w + x # s0 == s1 + 1 == s2 + 1 b = y.flatten() + z # s2*s3 == s4 return a, b inputs = ( torch.randn(5), torch.randn(4), torch.randn(4), torch.randn(4, 4), torch.randn(16), ) ep = export( Relations(), inputs, dynamic_shapes={ "u": (dynamic,), "w": (dynamic,), "x": (dynamic,), "y": (dynamic, dynamic), "z": (dynamic,), }, ) ep.module()( torch.randn(6), torch.randn(5), torch.randn(5), torch.randn(7, 8), torch.randn(56), ) # dynamic should complain when force specialized class Specialize(torch.nn.Module): def forward(self, x): torch._check(x.shape[0] == 4) return x + 2 with self.assertRaisesRegex( torch._dynamo.exc.UserError, r"Not all values of RelaxedUnspecConstraint.* are valid because .* was inferred to be a constant", ): ep = export( Specialize(), (torch.randn(4, 8),), dynamic_shapes={ "x": (dynamic, dynamic), }, ) # dynamic should handle complex guards in the same way as auto class ModConstraint(torch.nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: return x.view(x.shape[0] - 1, -1) ep = export( ModConstraint(), (torch.randn(3, 4),), dynamic_shapes={ "x": (dynamic, dynamic), }, ) ep.module()(torch.randn(5, 8)) num_asserts = [ node.target == torch.ops.aten._assert_scalar.default for node in ep.graph.nodes ].count(True) self.assertEqual(num_asserts, 1) with self.assertRaises(RuntimeError): ep.module()(torch.randn(4, 2)) @testing.expectedFailureNonStrict @testing.expectedFailureTrainingIRToRunDecompNonStrict # unbacked symint not tracked? @testing.expectedFailureSerDer # T195866111 @testing.expectedFailureSerDerNonStrict @testing.expectedFailureRetraceabilityNonStrict def test_hints_wrapper(self): class M(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x, y): x = x + y def inner_body_fn(x, y): x = torch.relu(x) x = x + y return x def outer_body_fn(x, y): x = hints_wrapper( inner_body_fn, (x, y), {}, hints={"inner_body": True} ) x = torch.abs(x) return x res = hints_wrapper( outer_body_fn, (x, y), {}, hints={"outer_body": True} ) return res x = torch.randn(2, 4) y = torch.ones(4) ep_for_training = torch.export.export_for_training(M(), (x, y)) self.assertExpectedInline( normalize_gm( ep_for_training.graph_module.print_readable(print_output=False) ), """\ class GraphModule(torch.nn.Module): def forward(self, x: "f32[2, 4]", y: "f32[4]"): add: "f32[2, 4]" = torch.ops.aten.add.Tensor(x, y); x = None hints_wrapper_body_graph_0 = self.hints_wrapper_body_graph_0 hints_wrapper = torch.ops.higher_order.hints_wrapper(hints_wrapper_body_graph_0, (add, y), {}, hints = {'outer_body': True}); hints_wrapper_body_graph_0 = add = y = None getitem: "f32[2, 4]" = hints_wrapper[0]; hints_wrapper = None return (getitem,) class hints_wrapper_body_graph_0(torch.nn.Module): def forward(self, arg0_1: "f32[2, 4]", arg1_1: "f32[4]"): hints_wrapper_body_graph_0 = self.hints_wrapper_body_graph_0 hints_wrapper = torch.ops.higher_order.hints_wrapper(hints_wrapper_body_graph_0, (arg0_1, arg1_1), {}, hints = {'inner_body': True}); hints_wrapper_body_graph_0 = arg0_1 = arg1_1 = None getitem: "f32[2, 4]" = hints_wrapper[0]; hints_wrapper = None abs_1: "f32[2, 4]" = torch.ops.aten.abs.default(getitem); getitem = None return (abs_1,) class hints_wrapper_body_graph_0(torch.nn.Module): def forward(self, arg0_1: "f32[2, 4]", arg1_1: "f32[4]"): relu: "f32[2, 4]" = torch.ops.aten.relu.default(arg0_1); arg0_1 = None add: "f32[2, 4]" = torch.ops.aten.add.Tensor(relu, arg1_1); relu = arg1_1 = None return (add,) """, ) ep = export(M(), (x, y)).run_decompositions({}) export_res = ep.module()(x, y) ref_res = M()(x, y) self.assertEqual(export_res, ref_res) self.assertExpectedInline( normalize_gm(ep.graph_module.print_readable(print_output=False)), """\ class GraphModule(torch.nn.Module): def forward(self, x: "f32[2, 4]", y: "f32[4]"): add: "f32[2, 4]" = torch.ops.aten.add.Tensor(x, y); x = None hints_wrapper_body_graph_0 = self.hints_wrapper_body_graph_0 hints_wrapper = torch.ops.higher_order.hints_wrapper(hints_wrapper_body_graph_0, (add, y), {}, hints = {'outer_body': True}); hints_wrapper_body_graph_0 = add = y = None getitem: "f32[2, 4]" = hints_wrapper[0]; hints_wrapper = None return (getitem,) class hints_wrapper_body_graph_0(torch.nn.Module): def forward(self, arg0_1: "f32[2, 4]", arg1_1: "f32[4]"): hints_wrapper_body_graph_0 = self.hints_wrapper_body_graph_0 hints_wrapper = torch.ops.higher_order.hints_wrapper(hints_wrapper_body_graph_0, (arg0_1, arg1_1), {}, hints = {'inner_body': True}); hints_wrapper_body_graph_0 = arg0_1 = arg1_1 = None getitem: "f32[2, 4]" = hints_wrapper[0]; hints_wrapper = None abs_1: "f32[2, 4]" = torch.ops.aten.abs.default(getitem); getitem = None return (abs_1,) class hints_wrapper_body_graph_0(torch.nn.Module): def forward(self, arg0_1: "f32[2, 4]", arg1_1: "f32[4]"): relu: "f32[2, 4]" = torch.ops.aten.relu.default(arg0_1); arg0_1 = None add: "f32[2, 4]" = torch.ops.aten.add.Tensor(relu, arg1_1); relu = arg1_1 = None return (add,) """, ) def test_export_for_training_with_state_dict_hooks(self): def _state_dict_pre_hook(mod, prefix, keep_vars): mod._buffers["test"] = torch.Tensor([1]) def _state_dict_hook(mod, state_dict, prefix, *args, **kwargs): keys = list(state_dict.keys()) for key in keys: local_key = key[len(prefix) :] if local_key.startswith("layer"): new_key = prefix + local_key.replace("layer.", "") state_dict[new_key] = state_dict[key] if new_key != key: del state_dict[key] class Layer(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(2, 2) self.linear2 = torch.nn.Linear(2, 2) def forward(self, x): x = self.linear1(x) x = torch.relu(x) x = self.linear2(x) return x class CustomModule(torch.nn.Module): def __init__(self): super().__init__() self._register_state_dict_hook(_state_dict_hook) self.register_state_dict_pre_hook(_state_dict_pre_hook) # non-persistent buffer in named_buffers() self.foo = torch.nn.Buffer(torch.rand(2, 3), persistent=False) # non-persistent buffer not in named_buffers() self.register_buffer("buf", None, persistent=False) self.layer = Layer() def forward(self, x): x = self.layer(x) return x M = CustomModule() inp = (torch.randn(2, 2),) ep = export(M, inp) export_res = ep.module()(*inp) ref_res = M(*inp) self.assertEqual(export_res, ref_res) # we want to store the unprocessed keys self.assertTrue( { "layer.linear1.weight", "layer.linear1.bias", "layer.linear2.weight", "layer.linear2.bias", }.issubset({spec.target for spec in ep.graph_signature.input_specs}) ) unflattened = torch.export.unflatten(ep) export_res = unflattened(*inp) self.assertEqual(export_res, ref_res) with torch._export.utils._disable_load_state_dict_hooks(M): state_dict = M.state_dict() self.assertEqual( { "layer.linear1.weight", "layer.linear1.bias", "layer.linear2.weight", "layer.linear2.bias", }, state_dict.keys(), ) state_dict = M.state_dict() self.assertEqual( { "linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias", "test", }, state_dict.keys(), ) @testing.expectedFailureSerDer # T202237665 @testing.expectedFailureSerDerNonStrict def test_dynamic_sym_round(self): class ModuleWithSymRound(torch.nn.Module): def forward(self, x): out_size = round(x.shape[0] / 2.0) return x[:out_size] dim_min = 5 dim_max = 10 dynamic_shapes = {"x": {0: Dim("n", min=dim_min, max=dim_max)}} module = ModuleWithSymRound() inp = (torch.randn(8),) ep = export(module, inp, dynamic_shapes=dynamic_shapes) # Expect builtin round in the export graph round_nodes = [ n for n in ep.graph.nodes if n.op == "call_function" and n.target == round ] self.assertEqual(len(round_nodes), 1) # Check pre/post-export equality for i in range(dim_min, dim_max + 1): dyn_inp = (torch.randn(i),) export_res = ep.module()(*dyn_inp) ref_res = module(*dyn_inp) self.assertEqual(export_res, ref_res) @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support") class TestOneOffModelExportResult(TestCase): def test_scaled_dot_product_attention_cpu(self): """ This test makes sure we are always getting the same decomposition result for SDPA. As of now _scaled_dot_product_flash_attention_for_cpu is expected to show up in export() result. Some downstream backend then further decompose it into core ATen ops in torch/_decomp/decompositions.py (search for _scaled_dot_product_flash_attention_for_cpu). Export is decomposing based on the CompositeImplicitAutograd kernel implementation of SDPA. If this test fails, it means the kernel is being modified. In this case we strongly encourage you to change the decomposition rule under torch/_decomp/decompositions.py along with the kernel changes, so all of the downstream backends are not being affected. """ class ScaledDotProductAttention(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, q, k, v): attn_output = F.scaled_dot_product_attention( q, k, v, None, dropout_p=0.0, is_causal=True ) return attn_output q = torch.randn(1, 1, 8, 8, device="cpu") k = torch.randn(1, 1, 8, 8, device="cpu") v = torch.randn(1, 1, 8, 8, device="cpu") from torch.nn.attention import SDPBackend with torch.nn.attention.sdpa_kernel([SDPBackend.MATH]): ep = torch.export.export(ScaledDotProductAttention(), (q, k, v)) print(ep.graph) ep.run_decompositions() print(ep.graph) # self.assertExpectedInline(ep.graph_module.code.strip(), """\ # def forward(self, arg0_1, arg1_1, arg2_1): # _scaled_dot_product_flash_attention_for_cpu = torch.ops.aten._scaled_dot_product_flash_attention_for_cpu.default(arg0_1, arg1_1, arg2_1, 0.0, True); arg0_1 = arg1_1 = arg2_1 = None # getitem = _scaled_dot_product_flash_attention_for_cpu[0]; _scaled_dot_product_flash_attention_for_cpu = None # return (getitem,)""") @skipIfCrossRef @unittest.skipIf( not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Can't run fused SDPA on this platform", ) def test_scaled_dot_product_attention_cuda(self): """ This test makes sure we are always getting the same decomposition result for SDPA. As of now _scaled_dot_product_flash_attention is expected to show up in export() result (GPU tensors are given). Currently there's no downstream backend relies on this export result so if this test fails, feel free to change it to the latest export() result. """ class ScaledDotProductAttention(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, q, k, v): attn_output = F.scaled_dot_product_attention( q, k, v, None, dropout_p=0.0, is_causal=True ) return attn_output q = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda") k = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda") v = torch.randn(1, 16, 16, 64, dtype=torch.bfloat16, device="cuda") ep = torch.export.export( ScaledDotProductAttention(), (q, k, v) ).run_decompositions() code_str = """\ def forward(self, q, k, v): _scaled_dot_product_flash_attention = torch.ops.aten._scaled_dot_product_flash_attention.default(q, k, v, 0.0, True, scale = 0.125); q = k = v = None getitem = _scaled_dot_product_flash_attention[0]; _scaled_dot_product_flash_attention = None return (getitem,)""" if SM90OrLater and not torch.version.hip: code_str = """\ def forward(self, q, k, v): _scaled_dot_product_cudnn_attention = torch.ops.aten._scaled_dot_product_cudnn_attention.default(q, k, v, None, False, 0.0, True); q = k = v = None getitem = _scaled_dot_product_cudnn_attention[0]; _scaled_dot_product_cudnn_attention = None return (getitem,)""" self.assertExpectedInline( ep.graph_module.code.strip(), code_str, ) def test_int_list_output(self): class M(torch.nn.Module): def forward(self, x): return [((1, 3), [x + x, x * x])] ep = torch.export.export(M(), (torch.ones(2, 3),)) res = ep.module()(torch.ones(2, 3)) self.assertEqual(res[0][0], (1, 3)) def test_primitive_constant_output(self): class Z(torch.nn.Module): def forward(self, x, y): with torch.no_grad(): return y * x, "moo" ep = torch.export.export(Z(), (torch.tensor(3), 5)) res = ep.module()(torch.tensor(4), 5) self.assertEqual(res[0], torch.tensor(20)) self.assertEqual(res[1], "moo") class B(torch.nn.Module): def forward(self, x, y): return y * x, y ep = torch.export.export(B(), (torch.tensor(3), 5)) res = ep.module()(torch.tensor(4), 5) self.assertEqual(res[0], torch.tensor(20)) self.assertEqual(res[1], 5) with self.assertRaisesRegex( RuntimeError, escape("Expected input at *args[1] to be equal to 5, but got 20"), ): res = ep.module()(torch.tensor(4), 20) class F(torch.nn.Module): def forward(self, x): # return a constant of primitive type y = 5 return y * x, y ep = torch.export.export(F(), (torch.tensor(3),)) res = ep.module()(torch.tensor(4)) self.assertEqual(res[0], torch.tensor(20)) self.assertEqual(res[1], 5) class Q(torch.nn.Module): def forward(self, x, y): return y * x, y - 1 ep = torch.export.export(Q(), (torch.tensor(3), 5)) res = ep.module()(torch.tensor(4), 5) self.assertEqual(res[0], torch.tensor(20)) self.assertEqual(res[1], 4) def test_unbacked_sdpa(self): import torch from torch.nn.attention import sdpa_kernel, SDPBackend from torch.nn.functional import scaled_dot_product_attention class Module(torch.nn.Module): def forward( self, query: torch.Tensor, cache: torch.Tensor, start_pos: torch.Tensor ) -> torch.Tensor: # x.sizes(): 1, 128, 16, 128 sp = start_pos.item() torch._check_is_size(sp) torch._check(sp >= 0) torch._check(sp <= 126) key = cache[:, : sp + 1, :, :] # 1, sp+1, 16, 128 value = cache[:, : sp + 1, :, :] # 1, sp+1, 16, 128 query = query.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) key = key.transpose(1, 2) value = value.transpose(1, 2) # https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/transformers/attention.cpp#L732 return scaled_dot_product_attention(query, key, value) cache = torch.randn(1, 128, 16, 128, dtype=torch.float16) query = torch.randn(1, 1, 16, 128, dtype=torch.float16) start_pos = torch.tensor([0]) with sdpa_kernel(SDPBackend.MATH), torch.no_grad(): ep = torch.export.export(Module(), (query, cache, start_pos)) args = (query, cache, start_pos) self.assertEqual(ep.module()(*args), Module()(*args)) args = (query, cache, torch.tensor([3])) self.assertEqual(ep.module()(*args), Module()(*args)) args = (query, cache, torch.tensor([126])) self.assertEqual(ep.module()(*args), Module()(*args)) def test_none_input_output(self): class Z(torch.nn.Module): def forward(self, x, y): return x * x ep = torch.export.export(Z(), (torch.tensor(3), None)) res = ep.module()(torch.tensor(4), None) self.assertEqual(res, torch.tensor(16)) class B(torch.nn.Module): def forward(self, x, y): return x * x, y ep = torch.export.export(B(), (torch.tensor(3), None)) res = ep.module()(torch.tensor(4), None) self.assertEqual(res[0], torch.tensor(16)) self.assertEqual(res[1], None) decomp = ep.run_decompositions() gm = decomp.module() res = gm(torch.tensor(4), None) self.assertEqual(res[0], torch.tensor(16)) self.assertEqual(res[1], None) def test_print(self): class M(torch.nn.Module): def forward(self, x): print("start") x1 = x + x print(x1) x2 = x1 * x1 print(1, 2, 3) x3 = x2 + x2 return (x1, x3) gm = export(M(), (torch.randn(3, 3),)).graph_module self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): add = torch.ops.aten.add.Tensor(x, x); x = None mul = torch.ops.aten.mul.Tensor(add, add) add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None return (add, add_1)""", ) def test_logging_logger(self): logger = logging.getLogger(__name__) class M(torch.nn.Module): def forward(self, x): logger.log("start") x1 = x + x logger.debug(x1) x2 = x1 * x1 logger.info(1, 2, 3) x3 = x2 + x2 return (x1, x3) gm = export(M(), (torch.randn(3, 3),)).graph_module self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): add = torch.ops.aten.add.Tensor(x, x); x = None mul = torch.ops.aten.mul.Tensor(add, add) add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None return (add, add_1)""", ) @unittest.skipIf(not TEST_TRANSFORMERS, "No transformers") def test_hf_logging_logger(self): import transformers logger = transformers.utils.logging.get_logger(__name__) class M(torch.nn.Module): def forward(self, x): logger.warning_once("start") x1 = x + x x2 = x1 * x1 x3 = x2 + x2 return (x1, x3) gm = export(M(), (torch.randn(3, 3),)).graph_module self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): add = torch.ops.aten.add.Tensor(x, x); x = None mul = torch.ops.aten.mul.Tensor(add, add) add_1 = torch.ops.aten.add.Tensor(mul, mul); mul = None return (add, add_1)""", ) def test_warning(self): class M(torch.nn.Module): def forward(self, x): warnings.warn("moo") res = x + x warnings.warn(f"{res}") return res gm = export(M(), (torch.randn(3, 3),)).graph_module self.assertExpectedInline( gm.code.strip(), """\ def forward(self, x): add = torch.ops.aten.add.Tensor(x, x); x = None return (add,)""", ) def test_constant_fqn(self): class Nested(torch.nn.Module): def __init__(self) -> None: super().__init__() self.constant = torch.rand(2, 3) self.parameter = torch.nn.Parameter(torch.rand(2, 3)) def forward(self, x): return x + self.constant class Mod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.nested = Nested() def forward(self, x): return self.nested(x) + self.nested.constant + self.nested.parameter m = Mod() ep = export(m, (torch.rand(2, 3),), strict=True) self.assertEqual(ep.constants["nested.constant"], m.nested.constant) self.assertEqual(ep.module()(torch.ones(2, 3)), m(torch.ones(2, 3))) def test_constant_name(self): class Nested(torch.nn.Module): def __init__(self) -> None: super().__init__() self.constant = torch.rand(2, 3) self.parameter = torch.nn.Parameter(torch.rand(2, 3)) def forward(self, x): return x + self.constant class Mod(torch.nn.Module): def __init__(self) -> None: super().__init__() self.nested_1 = Nested() self.nested_2 = Nested() def forward(self, x): return ( self.nested_1(x) + self.nested_2(x) + self.nested_1.constant + self.nested_2.constant + self.nested_1.parameter + self.nested_2.parameter ) m = Mod() ep = export(m, (torch.rand(2, 3),), strict=False) self.assertEqual(ep.module()(torch.ones(2, 3)), m(torch.ones(2, 3))) # check constant fqn when there are multiple instances of the same class self.assertEqual(ep.constants["nested_1.constant"], m.nested_1.constant) self.assertEqual(ep.constants["nested_2.constant"], m.nested_2.constant) # check constant_name in the graph placeholders = [ node for node in ep.graph_module.graph.nodes if node.op == "placeholder" ] self.assertEqual(len(placeholders), 5) self.assertTrue(all(ph.name == ph.target for ph in placeholders)) # suffix should be added to duplicated constant_name self.assertEqual(placeholders[2].name, "c_nested_1_constant") self.assertEqual(placeholders[3].name, "c_nested_2_constant") def test_nested_retrace(self): class Nested(torch.nn.Module): def __init__(self) -> None: super().__init__() self.param = torch.nn.Parameter(torch.randn(3)) def forward(self, x): return x + self.param class Foo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.nested = Nested() def forward(self, x): return x + self.nested(x) # first export foo = Foo().to("meta") inputs = (torch.ones(3, device="meta"),) foo(*inputs) ep = torch.export.export(foo, inputs, strict=False) # second export foo_1 = ep.module() ep_1 = torch.export.export(foo_1, inputs, strict=False) for node1, node2 in zip(ep.graph.nodes, ep_1.graph.nodes): nn_module_stack_1 = node1.meta.get("nn_module_stack", None) nn_module_stack_2 = node2.meta.get("nn_module_stack", None) if nn_module_stack_1 is None: self.assertTrue(nn_module_stack_2 is None) else: for v1, v2 in zip( nn_module_stack_1.values(), nn_module_stack_2.values() ): self.assertEqual(v1, v2) def test_duplicated_getitem(self): class Foo(torch.nn.Module): def forward(self, x): return torch.topk(x, 2) foo = Foo() inputs = (torch.randn(3),) ep = torch.export.export(foo, inputs, strict=False) graph_module = copy.deepcopy(ep.graph_module) call_function_node = None num_getitems = 0 for node in graph_module.graph.nodes: if ( node.op == "call_function" and node.target == torch.ops.aten.topk.default ): call_function_node = node elif node.op == "call_function" and node.target == operator.getitem: self.assertIs(node.args[0], call_function_node) num_getitems += 1 self.assertIsNotNone(call_function_node) self.assertEqual(num_getitems, 2) output_node = list(graph_module.graph.nodes)[-1] nodes = [] with graph_module.graph.inserting_before(output_node): nodes.append( graph_module.graph.call_function( operator.getitem, (call_function_node, 1) ) ) nodes.append( graph_module.graph.call_function( operator.getitem, (call_function_node, 0) ) ) nodes.append( graph_module.graph.call_function( operator.getitem, (call_function_node, 0) ) ) nodes.append( graph_module.graph.call_function( operator.getitem, (call_function_node, 1) ) ) signature = ExportGraphSignature( input_specs=ep.graph_signature.input_specs, output_specs=ep.graph_signature.output_specs + [ OutputSpec( kind=OutputKind.USER_OUTPUT, arg=TensorArgument(name=node.name), target=None, ) for node in nodes ], ) output_node.args = (output_node.args[0] + tuple(nodes),) graph_module.recompile() new_ep = ep._update(graph_module, signature) new_num_getitems = 0 for node in new_ep.graph.nodes: if ( node.op == "call_function" and node.target == torch.ops.aten.topk.default ): call_function_node = node elif node.op == "call_function" and node.target == operator.getitem: self.assertIs(node.args[0], call_function_node) new_num_getitems += 1 self.assertEqual(num_getitems, new_num_getitems) self.assertEqual( len(list(new_ep.graph.nodes)[-1].args[0]), len(signature.output_specs) ) @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support") class TestExportCustomClass(TorchTestCase): def setUp(self): if IS_FBCODE: lib_file_path = "//caffe2/test/cpp/jit:test_custom_class_registrations" elif IS_SANDCASTLE or IS_MACOS: raise unittest.SkipTest("non-portable load_library call used in test") elif IS_WINDOWS: lib_file_path = find_library_location("torchbind_test.dll") else: lib_file_path = find_library_location("libtorchbind_test.so") torch.ops.load_library(str(lib_file_path)) def test_lift_custom_obj(self): # TODO: fix this test once custom class tracing is implemented custom_obj = torch.classes._TorchScriptTesting._PickleTester([3, 4]) class Foo(torch.nn.Module): def forward(self, x): return x + x f = Foo() inputs = (torch.zeros(4, 4),) ep = export(f, inputs) # Replace one of the values with an instance of our custom class for node in ep.graph.nodes: if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor: with ep.graph.inserting_before(node): setattr(ep.graph_module, "custom_obj", custom_obj) getattr_node = ep.graph.get_attr("custom_obj") # Copy over an nn_module_stack as they are required. getattr_node.meta["nn_module_stack"] = node.meta["nn_module_stack"] custom_node = ep.graph.call_function( torch.ops._TorchScriptTesting.take_an_instance.default, (getattr_node,), ) custom_node.meta["val"] = torch.ones(4, 4) # Copy over an nn_module_stack as they are required. custom_node.meta["nn_module_stack"] = node.meta["nn_module_stack"] custom_node.meta["torch_fn"] = ( "custom_op", "torch.ops._TorchScriptTesting.take_an_instance.default", ) arg0, _ = node.args node.args = (arg0, custom_node) from torch._export.passes.lift_constants_pass import lift_constants_pass from torch._export.serde.serialize import deserialize, serialize constants = lift_constants_pass(ep.graph_module, ep.graph_signature, {}) for k, v in constants.items(): assert k not in ep.constants ep._constants[k] = v serialized_vals = serialize(ep) deserialized_ep = deserialize(serialized_vals) for node in deserialized_ep.graph.nodes: if ( node.op == "call_function" and node.target == torch.ops._TorchScriptTesting.take_an_instance.default ): arg = node.args[0] self.assertTrue(arg.op == "placeholder") def test_preserve_non_cia_op(self): class M(torch.nn.Module): def forward(self, x): return torch.nn.functional.elu(x) ep = export(M(), (torch.randn(2, 3, 4, 5),)) FileCheck().check_count("torch.ops.aten.elu.default", 1, exactly=True).run( ep.graph_module.code ) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.elu.default] ep = ep.run_decompositions( decomp_table=decomp_table, ) FileCheck().check_count("torch.ops.aten.elu.default", 1, exactly=True).run( ep.graph_module.code ) def test_preserve_cia_op(self): class StaticResizeBilinear2dModule(torch.nn.Module): def forward(self, x): a = torch.nn.functional.interpolate( x, size=(x.shape[2] * 2, x.shape[3] * 3), mode="bilinear", align_corners=False, antialias=False, ) return a ep = export(StaticResizeBilinear2dModule(), (torch.randn(2, 3, 4, 5),)) FileCheck().check_count( "torch.ops.aten.upsample_bilinear2d.vec", 1, exactly=True ).run(ep.graph_module.code) decomp_table = default_decompositions() del decomp_table[torch.ops.aten.upsample_bilinear2d.vec] ep = ep.run_decompositions( decomp_table=decomp_table, ) FileCheck().check_count( "torch.ops.aten.upsample_bilinear2d.vec", 1, exactly=True ).run(ep.graph_module.code) if __name__ == "__main__": run_tests()