from __future__ import annotations import base64 import copyreg import dataclasses import functools import hashlib import importlib import importlib.resources import io import itertools import json import logging import os import pickle import pkgutil import platform import re import shlex import shutil import struct import subprocess import sys import tempfile import textwrap import threading import warnings from bisect import bisect_right from copy import copy from ctypes import c_void_p, CDLL, cdll from datetime import timedelta from functools import lru_cache, partial from pathlib import Path from tempfile import _TemporaryFileWrapper from time import time, time_ns from types import ModuleType from typing import Any, Callable, cast, Generic, NoReturn, TYPE_CHECKING, TypeVar, Union from typing_extensions import override, Self import torch import torch.distributed as dist from torch import SymInt, Tensor from torch._dynamo.device_interface import get_interface_for_device from torch._dynamo.exc import SkipFrame from torch._dynamo.utils import ( CompileEventLogger, counters, dynamo_timed, get_metrics_context, ) from torch._inductor import config, exc, metrics from torch._inductor.codegen.common import ( custom_backend_codegen_configs, custom_backend_passes, init_backend_registration, ) from torch._inductor.codegen.cuda import cuda_env from torch._inductor.codegen.rocm.compile_command import ( rocm_compile_command, rocm_compiler, ) from torch._inductor.compile_worker.utils import in_toplevel_process from torch._inductor.cpp_builder import ( _LINKER_SCRIPT, _set_gpu_runtime_env, _TORCH_PATH, _transform_cuda_paths, convert_cubin_to_obj, CppBuilder, CppOptions, CppTorchDeviceOptions, get_compiler_version_info, get_ld_and_objcopy, get_name_and_dir_from_output_file_path, normalize_path_separator, run_asm_build_object, ) from torch._inductor.cpu_vec_isa import pick_vec_isa from torch._inductor.custom_graph_pass import ( CustomGraphModulePass, CustomGraphPass, CustomGraphPassType, CustomPartitionerFn, CustomPartitionerFnType, ) from torch._inductor.freezing_utils import has_frozen_params, is_frozen_param from torch._inductor.runtime.compile_tasks import _reload_python_module from torch._inductor.runtime.runtime_utils import cache_dir, default_cache_dir from torch._inductor.utils import ( ALIGN_BYTES, clear_on_fresh_cache, determine_aoti_mmap_flags, is_linux, is_windows, ) from torch._logging import trace_structured from torch._subclasses.fake_tensor import ( extract_tensor_metadata, FakeTensor, TensorMetadata, ) from torch._utils_internal import log_cache_bypass from torch.compiler import config as cconfig from torch.compiler._cache import ( CacheArtifact, CacheArtifactFactory, CacheArtifactManager, ) from torch.export.pt2_archive._package_weights import TensorProperties, Weights from torch.export.pt2_archive.constants import CUSTOM_OBJ_FILENAME_PREFIX from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv from torch.utils._ordered_set import OrderedSet from .output_code import CompiledFxGraph from .remote_cache import create_cache from .runtime import autotune_cache from .runtime.autotune_cache import AutotuneCacheBundler from .triton_bundler import TritonBundler from .virtualized import V if config.is_fbcode(): from triton.fb.build import build_paths T = TypeVar("T") if TYPE_CHECKING: from collections.abc import Generator, KeysView, Sequence from concurrent.futures import Future from .compile_fx import _CompileFxKwargs from .cpp_builder import BuildOptionsBase from .graph import GraphLowering from .ir import ChoiceCaller from .output_code import CompiledFxGraphConstants, OutputCode from .remote_cache import JsonDataTy, RemoteCache from .runtime.hints import HalideInputSpec, HalideMeta from .runtime.triton_heuristics import CachingAutotuner from .utils import InputType _IS_WINDOWS = sys.platform == "win32" LOCK_TIMEOUT = config.file_lock_timeout output_code_log = torch._logging.getArtifactLogger(__name__, "output_code") autotuning_log = torch._logging.getArtifactLogger(__name__, "autotuning") log = logging.getLogger(__name__) def use_re_build() -> bool: """ Use for CUTLASS compilation only right now. """ if config.is_fbcode() and not cuda_env.nvcc_exist(_cuda_compiler()): from triton.fb.re_build_helper import should_build_locally return not should_build_locally() return False def get_cpp_wrapper_cubin_path_name() -> str: return "cubin_path" if torch.version.hip is None else "hsaco_path" def get_kernel_bin_format(device: str) -> str: if device == "cuda": return "cubin" if torch.version.hip is None else "hsaco" elif device == "xpu": return "spv" else: return "" def get_device_information(device_type: str) -> dict[str, str]: """ Gets all the current device information used to compile the .so. """ metadata: dict[str, str] = { "AOTI_PLATFORM": sys.platform, "AOTI_MACHINE": platform.machine(), "AOTI_CPU_ISA": str(torch._inductor.cpu_vec_isa.pick_vec_isa()).upper(), "AOTI_COMPUTE_CAPABILITY": str( get_interface_for_device(device_type).get_compute_capability() ), } return metadata class CacheBase: @staticmethod @functools.cache def get_system() -> dict[str, Any]: from torch._inductor.runtime.triton_compat import HAS_TRITON, triton_key if HAS_TRITON: # Use triton_key instead of triton.__version__ as the version # is not updated with each code change triton_version = triton_key() else: triton_version = None try: system: dict[str, Any] = { "device": {"name": None}, "version": { "triton": triton_version, }, } device_properties = torch.cuda.get_device_properties( torch.cuda.current_device() ) if torch.version.cuda is not None: system["device"]["name"] = device_properties.name system["version"]["cuda"] = torch.version.cuda else: system["device"]["name"] = device_properties.gcnArchName system["version"]["hip"] = torch.version.hip except (AssertionError, RuntimeError): # If cuda is not installed, none of the above config is relevant. system = {} system["hash"] = hashlib.sha256( json.dumps(system, sort_keys=True).encode("utf-8") ).hexdigest() return system @staticmethod @clear_on_fresh_cache @functools.cache def get_local_cache_path() -> Path: return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"])) def __init__(self) -> None: self.system = CacheBase.get_system() def get_local_cache(self) -> dict[str, Any]: local_cache_path = self.get_local_cache_path() if not local_cache_path.is_file(): return {} with open(local_cache_path) as local_cache_fp: local_cache = json.load(local_cache_fp) return local_cache["cache"] def update_local_cache(self, local_cache: dict[str, Any]) -> None: local_cache_path = self.get_local_cache_path() write_atomic( str(local_cache_path), json.dumps({"system": self.system, "cache": local_cache}, indent=4), make_dirs=True, ) class LocalCache(CacheBase): def lookup(self, *keys: str) -> dict[str, Any] | None: cache = self.get_local_cache() sub_cache = cache for key in keys: if key in cache: sub_cache = cache[key] else: return None return sub_cache def set_value(self, *keys: str, value: Any) -> None: cache = self.get_local_cache() sub_cache = cache for key in keys[0:-1]: sub_cache.setdefault(key, {}) sub_cache = sub_cache[key] sub_cache[keys[-1]] = value self.update_local_cache(cache) class PersistentCache(CacheBase): def lookup( self, choices: list[ChoiceCaller], op: str, inputs: str, benchmark: Callable[[Any], dict[ChoiceCaller, float]] | None, hint_override: int | None = None, ) -> dict[ChoiceCaller, float]: """ Check to see if we have benchmarked the given choice callers. For each choice caller: 1. Check local_cache[op][inputs][choice][precision], return benchmark if cached. 2. If benchmark is not None: a. `max_autotune_gemm=True`: benchmark the choice, update local_cache[op][inputs][choice], and return the benchmark. b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing. """ precision = torch.get_float32_matmul_precision() cache_key = f"{inputs}_{hint_override}" if hint_override is not None else inputs timings = {} def check_cache(cache: dict[str, Any]) -> bool: """Check if `cache` contains data for all the choices""" hit = True for choice in choices: choice_hash = choice.hash_key() if choice_hash in cache.get(op, {}).get(cache_key, {}).get( precision, {} ): # cache hit timings[choice] = cache[op][cache_key][precision][choice_hash] else: # cache miss hit = False break return hit local_cache = self.get_local_cache() if config.autotune_local_cache else {} if (not check_cache(local_cache)) and (benchmark is not None): # re-benchmark everything to try to get consistent numbers from the same machine timings = benchmark(choices) assert all(choice in timings for choice in choices) local_cache.setdefault(op, {}) local_cache[op].setdefault(cache_key, {}).setdefault(precision, {}) for choice, timing in timings.items(): local_cache[op][cache_key][precision][choice.hash_key()] = timing self.update_local_cache(local_cache) return timings def get_lock_dir() -> str: lock_dir = os.path.join(cache_dir(), "locks") if not os.path.exists(lock_dir): os.makedirs(lock_dir, exist_ok=True) return lock_dir def sha256_hash(data: bytes) -> str: # [:51] to strip off the "Q====" suffix common to every hash value. return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower() def code_hash(code: str | bytes, extra: str | bytes = "") -> str: hashing_str = code if isinstance(code, bytes) else code.encode("utf-8") if extra: extra_b = extra if isinstance(extra, bytes) else extra.encode("utf-8") hashing_str = hashing_str + b"||" + extra_b return "c" + sha256_hash(hashing_str) def get_path( basename: str, extension: str, specified_dir: str = "" ) -> tuple[str, str, str]: if specified_dir: if os.path.isabs(specified_dir): subdir = specified_dir else: subdir = os.path.join(cache_dir(), specified_dir) else: subdir = os.path.join(cache_dir(), basename[1:3]) path = os.path.join(subdir, f"{basename}.{extension}") return basename, subdir, path def get_hash(content: str | bytes, extra: str = "", hash_type: str = "code") -> str: if hash_type in {"amdgcn", "code", "ptx", "spv"}: return code_hash(content, extra) if hash_type in {"cubin", "hsaco", "spv"}: return code_hash(repr(content)) raise AssertionError(f"Unknown hash type {hash_type}") class WritableTempFile: """ Avoid "Permission denied error" on Windows: with tempfile.NamedTemporaryFile("w", suffix=".gv") as temp_file: # Not writable on Windows: # https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile Example: with WritableTempFile("w", suffix=".gv") as temp_file: tree.to_dotfile(temp_file.name) """ def __init__( self, mode: str = "w", *, encoding: Any = None, suffix: Any = None ) -> None: self.mode = mode self.encoding = encoding self.suffix = suffix def __enter__(self) -> _TemporaryFileWrapper[Any]: self.temp_file = tempfile.NamedTemporaryFile( self.mode, encoding=self.encoding, suffix=self.suffix, delete=False ) return self.temp_file def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: self.temp_file.close() try: os.unlink(self.temp_file.name) except OSError as e: if _IS_WINDOWS: # On Windows, some case temp file is opened and fail to unlink. Need to ignore it. pass else: raise e def write( content: str | bytes, extension: str, extra: str = "", hash_type: str = "code", specified_dir: str = "", key: str | None = None, ) -> tuple[str, str]: if key is None: # use striped content to compute hash so we don't end up with different # hashes just because the content begins/ends with different number of # spaces. key = get_hash(content.strip(), extra, hash_type) basename, _subdir, path = get_path(key, extension, specified_dir) if not os.path.exists(path): write_atomic(path, content, make_dirs=True) return basename, path def write_text(text: str) -> str: """ Write the `text` to a file and return the path computed based on the hash. """ return write(text, "txt")[1] def write_atomic( path_: str, content: str | bytes, make_dirs: bool = False, encode_utf_8: bool = False, ) -> None: # Write into temporary file first to avoid conflicts between threads # Avoid using a named temporary file, as those have restricted permissions assert isinstance(content, (str, bytes)), ( "Only strings and byte arrays can be saved in the cache" ) path = Path(path_) if make_dirs: path.parent.mkdir(parents=True, exist_ok=True) tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp" write_mode = "w" if isinstance(content, str) else "wb" with tmp_path.open(write_mode, encoding="utf-8" if encode_utf_8 else None) as f: f.write(content) try: tmp_path.rename(target=path) except FileExistsError: if not _IS_WINDOWS: raise # On Windows file exist is expected: https://docs.python.org/3/library/pathlib.html#pathlib.Path.rename # Below two lines code is equal to `tmp_path.rename(path)` on non-Windows OS. # 1. Copy tmp_file to Target(Dst) file. shutil.copy2(src=tmp_path, dst=path) # 2. Delete tmp_file. os.remove(tmp_path) @dataclasses.dataclass class TensorMetadataAndValues: """ TensorMetadata plus the elements as a list of raw values. Used for hashing inlined constants. """ tensor_metadata: TensorMetadata values: list[Any] def _ident(x: T) -> T: return x def extract_tensor_metadata_for_cache_key(t: Tensor) -> TensorMetadata: """ Extracts the tensor metadata and removes fields of the TensorMetadata that are not needed for caching """ meta = extract_tensor_metadata(t) if not hasattr(t, "_is_inductor_static"): meta = dataclasses.replace(meta, storage_offset=0, storage_bytes=None) return meta class FxGraphCachePickler(pickle.Pickler): """ Custom pickler to customize the pickling of some objects (Tensors), only for the purpose of computing a hash for keying into the FxGraphCache. Tensors contain objects that don't pickle and/or vary between runs, and we want to capture the data that allow us to compute a stable, but safe hash. """ def __init__( self, gm: torch.fx.GraphModule, has_user_defined_triton_kernels: bool = False, ) -> None: """ Create an FX graph pickler. If include_non_inlined=True, then pickling will include the _values_ for all Tensors. (Note that any tensors are constants attached as attributes to the GraphModule). Otherwise, pickling will include only the metadata for these tensors. """ self._stream = io.BytesIO() super().__init__(self._stream) self.dispatch_table = copyreg.dispatch_table.copy() self.dispatch_table.update( { FakeTensor: functools.partial(self._reduce_fake_tensor), torch.Tensor: functools.partial(self._reduce_tensor), torch.nn.parameter.Parameter: functools.partial(self._reduce_tensor), torch.SymInt: functools.partial(self._reduce_symint), torch.fx.experimental._backward_state.BackwardState: functools.partial( self._reduce_unsupported ), } ) if has_user_defined_triton_kernels: # Need to use runtime type as GraphModule generates a singleton in __new__ function self.dispatch_table[gm.__class__] = functools.partial( self._reduce_graph_module ) # Run with pickler.fast so it doesn't intern strings, making the hash result more predictable # TODO: pickler.fast is technically deprecated. Will this work on new python versions? self.fast = True def _reduce_fake_tensor( self, t: Tensor ) -> tuple[Callable[[T], T], tuple[TensorMetadata]]: """ Custom reducer to pickle FakeTensors. """ metadata = extract_tensor_metadata_for_cache_key(t) return (_ident, (metadata,)) def _reduce_tensor( self, t: Tensor ) -> tuple[Callable[[T], T], tuple[TensorMetadata | TensorMetadataAndValues]]: """ Custom reducer to pickle Tensors. If we see tensors, we know they're constants stored as attributes on the GraphModule. """ from .graph import GraphLowering if t.is_mkldnn: # TODO: These tensors don't currently pickle, so we can't cache a compiled # graph containing them. Just fail now. If mkldnn tensors get pickling # support, we can remove this. raise BypassFxGraphCache("mkldnn tensors unpickleable") metadata = extract_tensor_metadata_for_cache_key(t) # If this is a non-inlined frozen parameter, we consider the metadata only. if is_frozen_param(t) and not GraphLowering.can_inline_constant(t): return (_ident, (metadata,)) # Very large tensors will be expensive to copy to cpu and hash. Let's at least # report any slowness. start = time() values = t.tolist() elapsed = time() - start if elapsed > 1.0: warnings.warn( f"FX graph cache copying of a large constant took {elapsed:.1}s. " "Please file an issue." ) return (_ident, (TensorMetadataAndValues(metadata, values),)) def _reduce_symint(self, s: SymInt) -> tuple[Callable[[T], T], tuple[str]]: """ Custom reducer to pickle SymInts. """ # For hashing purposes, we only care about the name of the symbol and not the # backed value. We evaluate guards stored with a cached graph to ensure a cached # entity with SymInt args is safe to reuse. return (_ident, (str(s),)) def _reduce_unsupported(self, s: Any) -> NoReturn: """ Custom reducer to handle any objects that we don't support and therefore raise to bypass caching. """ raise BypassFxGraphCache("Reduce unsupported") def _reduce_graph_module( self, gm: torch.fx.GraphModule ) -> tuple[Any, tuple[dict[str, Any], str]]: """ Custom reducer for graph module to handle irrelevant data for user defined triton kernels Essentially what we are doing here is a huge hack where user defined triton kernel contain a dynamo time side table and the arguments to the call_function are indices into this side table. These arguments are not for hashing purposes since we included the source code into the cache key and the numbers are prone to give false negatives due to ordering. """ fn, (data, imports) = gm.__reduce__() code = data["_code"] code = re.sub(r"kernel_idx = \d+", "", code) code = re.sub(r"constant_args_idx = \d+", "", code) data["_code"] = code return fn, (data, imports) def dumps(self, obj: Any) -> bytes: """ Pickle an object and return a byte string. """ try: self.dump(obj) return self._stream.getvalue() except (TypeError, AttributeError) as e: # Some configs options may not pickle. log.warning("Failed to pickle cache key", exc_info=True) raise BypassFxGraphCache("Failed to pickle cache key") from e finally: # Reset our stream for the next dump. self._stream.seek(0) self._stream.truncate(0) def get_hash(self, obj: Any) -> str: """ Serialize an object and return a hash of the bytes. """ serialized_data = self.dumps(obj) return sha256_hash(serialized_data) def debug_lines(self, inp: FxGraphHashDetails) -> list[str]: """ Get a printable string describing in more detail all the attributes comprising an object. Useful for debugging when one graph hashes to a different value than another. """ def get_str(obj: Any) -> str: if isinstance(obj, torch.Tensor): return str(extract_tensor_metadata_for_cache_key(obj)) elif isinstance(obj, bytes): val = obj.decode("utf-8", errors="replace") return val if len(val) <= 1024 else val[:1024] + "..." elif type(obj) in self.dispatch_table: # Run the reducer on the object return str(self.dispatch_table[type(obj)](obj)[1]) else: return str(obj) lines = [] for attr, obj in vars(inp).items(): if isinstance(obj, list): for ii in range(len(obj)): h = self.get_hash(obj[ii]) lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}") elif isinstance(obj, dict): for k, v in obj.items(): h = self.get_hash(v) lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}") else: h = self.get_hash(obj) lines.append(f"[{h}] {attr}: {get_str(obj)}") return lines def build_code_hash( roots: list[str] | None, prefix: str, hasher: hashlib._Hash ) -> None: for lib in sorted(pkgutil.iter_modules(roots, prefix), key=lambda x: x.name): spec = lib.module_finder.find_spec(lib.name, None) assert spec is not None module = spec.origin assert module is not None with open(module, "rb") as f: hasher.update(spec.name.encode("utf-8")) hasher.update(f.read()) if lib.ispkg: # need to also hash submodules build_code_hash(spec.submodule_search_locations, f"{spec.name}.", hasher) def torch_key_cache(func: Callable[[], bytes]) -> Callable[[], bytes]: """ This function is a reimplementation of functools.lru_cache with a set function that allows prepopulating the cache. """ # Use list for reference semantics _cache: list[bytes] = [] def wrapper() -> bytes: if len(_cache) == 0: _cache.append(func()) return _cache[0] def set_val(val: bytes) -> None: assert len(_cache) == 0 _cache.append(val) def clear() -> None: _cache.clear() wrapper.set = set_val # type: ignore[attr-defined] wrapper.clear = clear # type: ignore[attr-defined] return wrapper @torch_key_cache def torch_key() -> bytes: """ Compute a key that contains relevant information about torch source files """ with dynamo_timed("inductor_codecache_torch_key", log_pt2_compile_event=False): if not config.is_fbcode(): def get_code_hash(root: str) -> bytes: # This function isn't meant to be used outside of torch_key, just a # helper for clarity. Instead, use torch_key() directly when you need # a hash representing the state of the source code. extra_files = ( "codegen/aoti_runtime/interface.cpp", "script.ld", ) inductor_root = os.path.dirname(__file__) extra_files = [os.path.join(inductor_root, x) for x in extra_files] hasher = hashlib.sha256() hasher.update(torch.__version__.encode("utf-8")) build_code_hash([root], "", hasher) for path in extra_files: if os.path.exists(path): with open(path, "rb") as f: hasher.update(f.read()) return hasher.digest() return get_code_hash(_TORCH_PATH) from libfb.py import parutil return parutil.get_file_contents("torch/src_hash.txt").rstrip().encode("ascii") def get_inductor_root() -> str: return os.path.dirname(__file__) @dataclasses.dataclass class OrderedSetHolder: """ See FxGraphHashDetails. Holds a sorted list to support stable hashing of set kwargs. """ items: list[Any] class BypassFxGraphCache(Exception): """ Exception to indicate that the FxGraphCache should be bypassed. """ class FxGraphHashDetails: """ Object to capture all the details for a compiled FX graph relevant to computing a safe and stable cache key. """ # Excluded kwargs param that are not stable between runs EXCLUDED_KWARGS = ["graph_id"] def __init__( self, gm: torch.fx.GraphModule, example_inputs: Sequence[InputType], fx_kwargs: _CompileFxKwargs, inputs_to_check: Sequence[int], ) -> None: self.gm = gm self.example_inputs = example_inputs self.cache_key_tag = cconfig.cache_key_tag # Order kwargs so hashing is stable to changes in kwarg order. Although # it's technically a _CompileFxKwargs we don't actually need it typed as # such since we're just using it to generate a hash. self.fx_kwargs: dict[str, object] = {} for k, v in sorted(fx_kwargs.items()): if k not in self.EXCLUDED_KWARGS: if type(v) in (set, OrderedSet): # noqa: set_linter # Special case to handle set params. Python sets can't be # ordered, so sort the elements and store them in a proxy. self.fx_kwargs[k] = OrderedSetHolder(sorted(v)) # type: ignore[call-overload] else: self.fx_kwargs[k] = v from torch._higher_order_ops.triton_kernel_wrap import ( kernel_side_table, triton_kernel_wrapper_functional, triton_kernel_wrapper_mutation, ) from torch._inductor.codegen.wrapper import ( user_defined_triton_kernel_transitive_closure_source_code, ) # Node meta will not be part of gm's reduce function, so lets remember # the kernel source code separately self.user_defined_triton_source: list[Any] = [] if gm is not None: for module in gm.modules(): if not isinstance(module, torch.fx.GraphModule): continue for node in itertools.chain( module.graph.find_nodes( op="call_function", target=triton_kernel_wrapper_functional ), module.graph.find_nodes( op="call_function", target=triton_kernel_wrapper_mutation ), ): from triton.runtime.autotuner import Autotuner kernel = kernel_side_table.get_kernel(node.kwargs["kernel_idx"]) configs = None if isinstance(kernel, Autotuner): if kernel.configs: configs = str( sorted( sorted(str(kv) for kv in c.all_kwargs().items()) for c in kernel.configs ) ) kernel = kernel.fn kernel_source = ( user_defined_triton_kernel_transitive_closure_source_code( kernel ) ) constant_args = kernel_side_table.get_constant_args( node.kwargs["constant_args_idx"] ) self.user_defined_triton_source.append( (kernel_source, constant_args, configs) ) # Alignment checks self.inputs_to_check = inputs_to_check no_tensor_inputs = not any(isinstance(x, torch.Tensor) for x in example_inputs) # This device index is usually already encoded by the device of the inputs # but fx graphs don't necessarily have tensor inputs. If there aren't any, # we need to guard on the device index in case we allocate cuda tensors if no_tensor_inputs and torch.accelerator.is_available(): self.default_cuda_device_index = torch.accelerator.current_device_index() # 'Deterministic algorithms' can affect codegen via lowering to cuda kernels. self.deterministic_algorithms_settings = ( torch.are_deterministic_algorithms_enabled(), torch.is_deterministic_algorithms_warn_only_enabled(), torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined] ) # Global settings affecting matmul codegen. self.cuda_matmul_settings = ( torch.backends.cuda.matmul.fp32_precision, torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction, torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction, ) # Also hash on various system info (including the triton compiler version). self.torch_version = torch_key() self.system_info = CacheBase.get_system() self.inductor_config = config.save_config_portable(ignore_private_configs=False) # Custom post grad passes should provide an ID to hash. self.post_grad_custom_pre_pass = self._get_custom_pass_detail( config.post_grad_custom_pre_pass ) # TODO: change to more holistic config rather than bundled_autograd_cache self.precompile_enabled = torch._functorch.config.bundled_autograd_cache self.post_grad_custom_post_pass = self._get_custom_pass_detail( config.post_grad_custom_post_pass ) self.joint_custom_pre_pass = self._get_custom_pass_detail( config.joint_custom_pre_pass ) self.joint_custom_post_pass = self._get_custom_pass_detail( config.joint_custom_post_pass ) self._pre_fusion_custom_pass = self._get_custom_pass_detail_unsafe( config._pre_fusion_custom_pass ) self._fuse_ddp_communication_passes = self._get_custom_pass_detail_unsafe( config._fuse_ddp_communication_passes ) # Register indcutor backends and custom passes and get their UUIDs. init_backend_registration() self.custom_backend_passes = tuple( map(self._get_custom_pass_detail, custom_backend_passes.values()) ) # Save custom inductor codegen configs self.custom_backend_codegen_configs = { device: custom_config.save_config_portable(ignore_private_configs=False) for device, custom_config in custom_backend_codegen_configs.items() if custom_config is not None } # Register the custom partitioner function self._custom_partitioner_fn = self._get_custom_partitioner_fn_detail( config.custom_partitioner_fn ) # This is mainly added to handle these two inductor configs, which are (unfortunately) # sometimes cache safe: # - _pre_fusion_custom_pass # - _fuse_ddp_communication_passes # Their types can be found in `torch/_inductor/config.py`, but: # - if they are string names, we can cache them safely (one is by default) # - if any of them are set to custom callables, we will need to cache miss # Future work is for someone to find any places where these functions are used # and force them to be of type CustomGraphPass, so we can guarantee serialization. def _get_custom_pass_detail_unsafe(self, custom_pass: Any) -> Any | None: if not custom_pass: return None if isinstance(custom_pass, list): return [self._get_custom_pass_detail_unsafe(x) for x in custom_pass] if isinstance(custom_pass, str): return custom_pass if isinstance(custom_pass, CustomGraphPass): return custom_pass.uuid() if callable(custom_pass): # Returning None is safe here because we raise an explicit bypass error # later if we detect these passes are set to callables return None raise AssertionError(f"unknown config type: {str(type(custom_pass))}") def _get_custom_pass_detail( self, custom_pass: CustomGraphPassType | CustomGraphModulePass ) -> Any | None: if not custom_pass: return None assert isinstance(custom_pass, (CustomGraphPass, CustomGraphModulePass)) return custom_pass.uuid() def _get_custom_partitioner_fn_detail( self, custom_partitioner_fn: CustomPartitionerFnType ) -> Any | None: if not custom_partitioner_fn: return None assert isinstance(custom_partitioner_fn, CustomPartitionerFn) return custom_partitioner_fn.uuid() def compiled_fx_graph_hash( gm: torch.fx.GraphModule, example_inputs: Sequence[InputType], fx_kwargs: _CompileFxKwargs, inputs_to_check: Sequence[int], ) -> tuple[str, list[str]]: """ Generate a unique hash of the FX graph for caching. """ details = FxGraphHashDetails(gm, example_inputs, fx_kwargs, inputs_to_check) has_user_defined_triton_kernels = len(details.user_defined_triton_source) != 0 pickler = FxGraphCachePickler(gm, has_user_defined_triton_kernels) # The prefix distinguishes among the other kinds of objects we # cache in this module. key = "f" + pickler.get_hash(details) debug_lines = pickler.debug_lines(details) debug_str = "\n".join(debug_lines) log.debug(f"FX graph cache hash details for key {key}:\n{debug_str}") # noqa: G004 return key, debug_lines def add_ephemeral_timeout_increase_for_distributed(time_saved_ns: int) -> int: """ Ephemerally increases the NCCL timeout when compiling for a distributed job Returns amount of seconds increased """ if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return 0 increased_timeout_sec = int(time_saved_ns // 1e9) # convert to seconds if config.is_fbcode(): fudge_factor = torch._utils_internal.justknobs_getval_int( "pytorch/remote_cache:ephemeral_timeout_fudge_factor_percentage" ) log.info( "Ephemeral NCCL timeout increase fudge factor %d and original increase value %d", fudge_factor, increased_timeout_sec, ) increased_timeout_sec += int(increased_timeout_sec * fudge_factor / 100) log.info("Increasing NCCL timeout by %d", increased_timeout_sec) dist.distributed_c10d._add_ephemeral_timeout_for_all_pgs( timedelta(seconds=increased_timeout_sec) ) return increased_timeout_sec class GuardedCache(Generic[T]): """ Mixin for caches that have guards associated with their entries. """ @classmethod def _get_tmp_dir_for_key(cls: type[GuardedCache[T]], _key: str) -> str: raise NotImplementedError("Implement _get_tmp_dir_for_key on parent class") @classmethod def iterate_over_candidates( cls: type[GuardedCache[T]], local: bool, remote_cache: RemoteCache[JsonDataTy] | None, key: str, ) -> Generator[tuple[T, bytes], None, None]: if local: subdir = cls._get_tmp_dir_for_key(key) if os.path.exists(subdir): for path in sorted(os.listdir(subdir)): try: with open(os.path.join(subdir, path), "rb") as f: content = f.read() yield pickle.loads(content), content except Exception: log.warning( "fx graph cache unable to load compiled graph", exc_info=True, ) if remote_cache: try: if (cache_data := remote_cache.get(key)) is not None: assert isinstance(cache_data, dict) data = cache_data["data"] assert isinstance(data, (str, bytes)) content = base64.b64decode(data) yield pickle.loads(content), content except Exception: log.warning( "%s unable to load compiled graph", cls.__name__, exc_info=True ) @classmethod def find_guarded_entry( cls: type[GuardedCache[T]], key: str, local: bool, remote_cache: RemoteCache[JsonDataTy] | None, evaluate_guards: Callable[[str, list[int] | list[torch.SymInt]], bool], hints: list[int], ) -> tuple[T | None, bytes | None, dict[str, str]]: """ Find the first cache entry in iterate_over_candidates that passes `evaluate_guards`. Args: key: The cache key to look up local: Whether to check the local cache remote_cache: The remote cache to check, if any evaluate_guards: Function that evaluates whether a guard passes the check, given a list of hint values and the guard expression. hints: List of symint hints paired with evaluate_guards Returns: A tuple of (graph, pickled_content) if found, or (None, None) if not found """ graph = None pickled_content = None result_status = "full_miss" sample_guards_expr = None # Iterate over any entries in the subdir for this key and evaluate # guards to determine whether there's a hit. for candidate, content in cls.iterate_over_candidates(local, remote_cache, key): assert hasattr(candidate, "guards_expr") if not candidate.guards_expr: # type: ignore[attr-defined] # No guards to evaluate, so this is a hit. graph = candidate pickled_content = content result_status = "hit" break # Evaluate the guard expression in the current context. # If there's not a cache hit, we don't want the evaluation to # affect the current env, e.g., cause the creation of new guards, # so we evaluate with the hints instead of the symbols. hit = bool(evaluate_guards(candidate.guards_expr, hints)) # type: ignore[attr-defined] if hit: graph = candidate pickled_content = content result_status = "hit" sample_guards_expr = candidate.guards_expr break else: # At least one guard missed, log this result_status = "guard_miss" sample_guards_expr = candidate.guards_expr info = {"cache_status_detailed": result_status} if sample_guards_expr is not None: info["cache_status_guard_expr"] = sample_guards_expr return graph, pickled_content, info @classmethod def _filter_backed_symints( cls: type[GuardedCache[T]], inputs: Sequence[InputType] ) -> list[torch.SymInt]: """ Get the backed SymInt objects from the input list. Note that we can never have guards that depend on unbacked symint. """ return [s for s in inputs if isinstance(s, torch.SymInt) and has_hint(s)] @classmethod def _get_shape_env(cls: type[GuardedCache[T]]) -> ShapeEnv | None: """ Helper to get the shape env from the tracing context. """ ctx = torch._guards.TracingContext.try_get() if not ctx or not ctx.fake_mode: return None return ctx.fake_mode.shape_env @CacheArtifactFactory.register class InductorCacheArtifact(CacheArtifact): @override def populate_cache(self) -> None: FxGraphCache._write_to_local_cache(self.key, self.content) @override @staticmethod def type() -> str: return "inductor" class FxGraphCache(GuardedCache[CompiledFxGraph]): """ Supports caching and reusing compiled Fx graphs. The overall strategy is as follows: - This cache stores entries on disk. When saving an entry, we can't serialize callables (that could be C++, Triton, etc.), so we serialize their own disk cache location. We then recreate the compiled artifact after fetching from disk. - For indexing the cache, we gather the fields relevant to identifying an FxGraph (the graph module, graph inputs, system settings etc.) into an FxGraphCacheDetails object, pickle it, and compute a hash for the key. See FxGraphCachePickler. - Among the metadata we store, we also include a guards expression that's appropriate for validating any symbols for Tensor arguments that have symbolic bounds. On cache lookup then, we evaluate those guards in the current context to validate that a cached entry can be served. - A given graph could have multiple compiled versions, corresponding to different sets of guards. Therefore, we store cache entries in the form: // - On lookup, we compute the key from the graph details, iterate over all leaf files in the corresponding subdirectory, deserialize the entry, and evaluate its guards expression. If the evaluation succeeds, we have a cache hit. If it fails, we compile the graph and store a new entry. - Finally, on a cache hit, we need to make sure any guards that would have been created during compilation are added to the current context. """ # TODO(masnesral): Investigate whether it's beneficial to store compiled graphs # in an in-memory cache after loading from disk. @staticmethod def _get_tmp_dir() -> str: """ Get the toplevel temporary directory for storing compiled graphs. """ return os.path.join(cache_dir(), "fxgraph") @classmethod def _get_tmp_dir_for_key(cls: type[FxGraphCache], key: str) -> str: """ Return the disk location for a given cache key. """ return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key) @staticmethod def cache_hit_post_compile( graph: CompiledFxGraph, cache_info: dict[str, Any], constants: CompiledFxGraphConstants, ) -> tuple[CompiledFxGraph | None, dict[str, Any]]: """ Cache specific post compile steps that need to run if we find a graph in the cache This includes putting bundled triton artifacts in the right place, reloading the PyCodeCache artifact, etc. These don't always happen (i.e. on a cache miss, so they are in a separate function from CompiledFxGraph.post_compile) """ if bundle := graph._triton_bundle: triton_bundler_meta = TritonBundler.read_and_emit(bundle) if (meta := triton_bundler_meta) is not None: cache_info["triton_bundler_meta"] = str(meta) CompileEventLogger.try_add_pt2_compile( "inductor_compile", cached_kernel_names=meta.cached_kernel_names ) CompileEventLogger.try_add_pt2_compile( "AOTAutogradCache.inductor_load", cached_kernel_names=meta.cached_kernel_names, ) if len(meta.cached_kernel_names) > 0: CompileEventLogger.try_( CompileEventLogger.increment_toplevel, "num_triton_bundles" ) try: artifact_path = graph.after_deserialization(constants) from .graph import GraphLowering # This is used by tests to check the output for specific details. if GraphLowering.save_output_code is not None: GraphLowering.save_output_code(graph.source_code) except OSError: # Not expected, but in case the PyCodeCache entry is removed from # underneath us, treat it as a cache miss and recompile. return None, cache_info inductor_meta = autotune_cache.inductor_meta_from_config() code = graph.source_code AutotuneCacheBundler.begin_compile(inductor_meta, code=code) # Increment the cached metrics/counters by the amounts recorded when the FX # graph was compiled for this cache entry. Pretending these counters # were incremented normally is useful for testing with the cache enabled. metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas) counters["inductor"] += graph.counter_deltas output_code_log.debug("Output code: \n%s", code) output_code_log.debug("Output code written to: %s", artifact_path) # On cache hit, use artifact path as filename trace_structured( "artifact", metadata_fn=lambda: { "name": "fx_graph_runnable", "encoding": "string", }, payload_fn=lambda: graph.runnable_graph_str, ) trace_structured( "inductor_post_grad_graph", payload_fn=lambda: graph.inductor_post_grad_graph_str, ) trace_structured( "inductor_output_code", lambda: { "filename": artifact_path, "file_path": os.path.abspath(artifact_path), }, payload_fn=lambda: code, ) trace_structured( "artifact", metadata_fn=lambda: { "name": "inductor_provenance_tracking_node_mappings", "encoding": "json", }, payload_fn=lambda: graph.inductor_provenance_mapping_str, ) trace_structured( "artifact", metadata_fn=lambda: { "name": "inductor_provenance_tracking_kernel_stack_traces", "encoding": "json", }, payload_fn=lambda: graph.inductor_provenance_stack_traces_str, ) if get_metrics_context().in_progress(): get_metrics_context().add_to_set( "inductor_provenance", graph.inductor_provenance_stack_traces_str ) return graph, cache_info @staticmethod def _lookup_graph( key: str, example_inputs: Sequence[InputType], local: bool, remote_cache: RemoteCache[JsonDataTy] | None, constants: CompiledFxGraphConstants, evaluate_guards: Callable[[str, list[int] | list[torch.SymInt]], bool] | None = None, ) -> tuple[CompiledFxGraph | None, dict[str, Any]]: """ Lookup a compiled graph in the cache by key. On a hit, return the deserialized CompiledFxGraph object. On a miss, return None. `constants` tracks a list of constants, or a way to obtain the list of constants associated with a given cache entry `evaluate_guards` allows AOTAutogradCache and other callers to customize what constitutes a guard success. Normally, a guard hit happens if `shape_env.evaluate_guards_expression` returns True. """ shape_env = FxGraphCache._get_shape_env() assert shape_env is not None symints = FxGraphCache._filter_backed_symints(example_inputs) hints = [hint_int(s) for s in symints] # If this config is turned on, everything is a guard hit and we check nothing if config.unsafe_skip_cache_dynamic_shape_guards: # This also makes it so we don't add anything to the dynamic # shape environment evaluate_guards = lambda x, y: True # noqa: E731 if evaluate_guards is None: evaluate_guards = shape_env.evaluate_guards_expression cache_info: dict[str, Any] = dict() # Use the find_graph_for_key method to find a graph for the given key graph, pickled_content, guard_info = FxGraphCache.find_guarded_entry( key, local, remote_cache, evaluate_guards, hints ) cache_info.update(guard_info) if graph is None: return None, cache_info if pickled_content is not None: CacheArtifactManager.record_artifact( InductorCacheArtifact.type(), key, pickled_content ) # Now re-evaluate with the symints to add any guards to the current env. if graph.guards_expr: check = bool(evaluate_guards(graph.guards_expr, symints)) assert check is True log.debug( "fx graph cache key %s post-load guards: %s", key, shape_env.guards ) return FxGraphCache.cache_hit_post_compile(graph, cache_info, constants) @staticmethod def _write_to_local_cache(key: str, content: bytes) -> None: subdir = FxGraphCache._get_tmp_dir_for_key(key) if not os.path.exists(subdir): os.makedirs(subdir, exist_ok=True) # Use a hash of the serialized CompiledFxGraph to get a unique file # name. The specific name doesn't matter since a lookup involves # iterating over all entries in the parent subdir. path = os.path.join(subdir, sha256_hash(content)) write_atomic(path, content, make_dirs=True) @staticmethod def _save_graph( key: str, compiled_graph: OutputCode, example_inputs: Sequence[InputType], local: bool, remote_cache: RemoteCache[JsonDataTy] | None, ) -> None: """ Store a serialized CompiledFxGraph on disk. """ from .compile_fx import CompiledFxGraph assert isinstance(compiled_graph, CompiledFxGraph), ( f"serialization for {type(compiled_graph)} NYI" ) # Before serializing, compute the guard expression that will be used to # ensure that a CompiledFxGraph is valid when loaded from the cache. It's # sufficient to consider only the SymInt args to the fx graph since the # Tensor shapes are already captured in the hash for the cache key. Any # Tensor arg with a symbolic shape will have a SymInt arg for the graph. shape_env = FxGraphCache._get_shape_env() assert shape_env is not None symints = FxGraphCache._filter_backed_symints(example_inputs) guards = shape_env.get_pruned_guards(symints) compiled_graph.guards_expr = shape_env.produce_guards_expression( placeholders=symints, guards=guards ) disk_compiled_graph = copy(compiled_graph) disk_compiled_graph.prepare_for_serialization() try: content = pickle.dumps(disk_compiled_graph) except Exception: log.warning( "fx graph cache unable to serialize compiled graph", exc_info=True ) counters["inductor"]["fxgraph_cache_pickle_error"] += 1 return try: CacheArtifactManager.record_artifact( InductorCacheArtifact.type(), key, content ) if local: FxGraphCache._write_to_local_cache(key, content) if remote_cache: time_taken_ms = int((disk_compiled_graph._time_taken_ns or 0) // 1e6) cache_data: JsonDataTy = { "data": base64.b64encode(content).decode("ascii"), "time_taken_ms": time_taken_ms, } remote_cache.put(key, cache_data) except Exception: log.warning("fx graph unable to write to cache", exc_info=True) counters["inductor"]["fxgraph_cache_write_error"] += 1 @staticmethod def _check_for_hop(gm: torch.fx.GraphModule) -> None: for module in gm.modules(): if not isinstance(module, torch.fx.GraphModule): continue for node in module.graph.nodes: if ( isinstance(node.target, torch._ops.HigherOrderOperator) and not node.target.cacheable() ): raise BypassFxGraphCache( f"Can't cache HigherOrderOperator: {node.target.name()}" ) if node.op == "getattr" and isinstance( getattr(gm, node.target), torch._C.ScriptObject ): raise BypassFxGraphCache("Can't cache torchbind objects") @staticmethod def _check_can_cache(gm: torch.fx.GraphModule) -> None: """ Check some conditions that would preclude caching and raise BypassFxGraphCache to bypass in case caching is not possible. """ # Post grad custom passes must implement the CustomGraphPass or we don't # know how to include them in the cache key calculation. for p in (config.post_grad_custom_pre_pass, config.post_grad_custom_post_pass): if p and (not isinstance(p, CustomGraphPass) or not p.uuid()): raise BypassFxGraphCache("Unsupported post grad custom pass") # Same with the joint custom passes for p in (config.joint_custom_pre_pass, config.joint_custom_post_pass): if p and (not isinstance(p, CustomGraphPass) or not p.uuid()): raise BypassFxGraphCache("Unsupported joint custom pass") # We should find any users of _pre_fusion_custom_pass and _fuse_ddp_communication_passes # and ensure they are not passing us raw callables if config._pre_fusion_custom_pass is not None: if not isinstance(config._pre_fusion_custom_pass, CustomGraphPass): raise BypassFxGraphCache("Unsupported _pre_fusion_custom_pass") for p in config._fuse_ddp_communication_passes: if callable(p) and not isinstance(p, CustomGraphPass): raise BypassFxGraphCache("Unsupported _fuse_ddp_communication_pass") # Freezing can embed constants that wouldn't be static across runs. if has_frozen_params(gm) and not torch._utils_internal.justknobs_check( "pytorch/inductor:allow_freezing_with_caching" ): raise BypassFxGraphCache("Skipping graph with frozen constants") if config.aot_inductor.use_runtime_constant_folding: raise BypassFxGraphCache( "Runtime constant folding can introduce constants that aren't " "static across runs" ) from torch._inductor.compiler_bisector import CompilerBisector if CompilerBisector.bisection_enabled: log.debug("dont cache graph when bisect enabled") raise BypassFxGraphCache # The treatment of guards in the caching implementation requires that # we have a shape env. if FxGraphCache._get_shape_env() is None: log.debug("fx graph cache no shape env") raise BypassFxGraphCache("No shape env") # We skip caching if there are any HOPs or torchbind objects. FxGraphCache._check_for_hop(gm) @staticmethod def prepare_key( gm: torch.fx.GraphModule, example_inputs: Sequence[InputType], fx_kwargs: _CompileFxKwargs, inputs_to_check: Sequence[int], remote: bool, ) -> tuple[tuple[str, list[str]] | None, dict[str, Any]]: """ Checks that the inductor input is cacheable, then computes and returns the cache key for the input. Returns (key_info, cache_info) where: - key_info is (hash_key, debug_lines), and - cache_info will contain debug info in the event of BypassFxGraphCache. NB: It is possible to have this function return a union instead. But I personally believe it is more annoying/difficult to read in that format. """ try: FxGraphCache._check_can_cache(gm) key, debug_lines = compiled_fx_graph_hash( gm, example_inputs, fx_kwargs, inputs_to_check ) except BypassFxGraphCache as e: counters["inductor"]["fxgraph_cache_bypass"] += 1 log.info("Bypassing FX Graph Cache because '%s'", e) # noqa: G200 if remote: log_cache_bypass("bypass_fx_graph", str(e)) cache_info = { "cache_state": "bypass", "cache_bypass_reason": str(e), "cache_event_time": time_ns(), } return None, cache_info # If key exists, then cache_info will come from load_with_key return (key, debug_lines), {} @staticmethod def get_remote_cache() -> RemoteCache[JsonDataTy] | None: """ Attempts to load the remote cache, returns None on error. """ cache_id = "fx-graph-v1" return create_cache( cache_id, config.is_fbcode(), "FbRemoteFxGraphCache", "RemoteFxGraphCache", ) @staticmethod def load_with_key( key: str, debug_lines: list[str], example_inputs: Sequence[InputType], local: bool, remote_cache: RemoteCache[JsonDataTy] | None, is_backward: bool, constants: CompiledFxGraphConstants, evaluate_guards: Callable[[str, list[int] | list[torch.SymInt]], bool] | None = None, ) -> tuple[CompiledFxGraph | None, dict[str, Any]]: """ Lookup the graph with the given key, and return results and metadata. Doesn't do any logging on its own, because AOTAutograd handles a cache miss differently from FXGraphCache. """ compiled_graph, cache_info = FxGraphCache._lookup_graph( key, example_inputs, local, remote_cache, constants, evaluate_guards ) cache_info = { **cache_info, "key": key, "components": debug_lines, "cache_event_time": time_ns(), } if compiled_graph is not None: log.info("fx graph cache hit for key %s", key) counters["inductor"]["fxgraph_cache_hit"] += 1 cache_info["cache_state"] = "hit" if remote_cache: # Count remote cache hit stats CompileEventLogger.try_( CompileEventLogger.increment_toplevel, "inductor_fx_remote_cache_hit_count", ) CompileEventLogger.try_( CompileEventLogger.add_to_set_toplevel, "inductor_fx_remote_cache_hit_keys", key, ) if (time_saved_ns := compiled_graph._time_taken_ns) is not None: cache_info["time_saved_ns"] = time_saved_ns CompileEventLogger.try_( CompileEventLogger.increment_toplevel, "distributed_ephemeral_timeout_us", time_saved_ns // 1000, ) if ( ephemeral_increase := add_ephemeral_timeout_increase_for_distributed(time_saved_ns) ) != 0: cache_info["ephemeral_timeout_increase"] = ephemeral_increase else: if remote_cache: # Count remote cache miss stats CompileEventLogger.try_( CompileEventLogger.increment_toplevel, "inductor_fx_remote_cache_miss_count", ) CompileEventLogger.try_( CompileEventLogger.add_to_set_toplevel, "inductor_fx_remote_cache_miss_keys", key, ) log.info("fx graph cache miss for key %s", key) counters["inductor"]["fxgraph_cache_miss"] += 1 cache_info["cache_state"] = "miss" return compiled_graph, cache_info @staticmethod def clear() -> None: """ Clear out the on-disk cache. """ try: shutil.rmtree(FxGraphCache._get_tmp_dir()) except FileNotFoundError: pass @functools.cache def split_aot_inductor_output_path(path: str) -> tuple[str, str]: def get_module_ext_type() -> str: if _IS_WINDOWS: return ".pyd" else: return ".so" """Returns the path where the AOT Inductor compiled kernels are stored.""" if path.endswith(get_module_ext_type()): return os.path.split(path) elif path.endswith(".pt2"): return os.path.split(path) else: return path, "" @clear_on_fresh_cache class CudaKernelParamCache: cache: dict[str, dict[str, Any]] = {} cache_clear = staticmethod(cache.clear) @classmethod def set( cls, key: str, params: dict[str, str | None], cubin: str, bin_type: str, asm: str | None = None, asm_type: str | None = None, ) -> None: basename = None if config.aot_inductor.package_cpp_only: assert config.triton.unique_kernel_names, ( "package_cpp_only requires triton kernel names to be unique" ) assert params["mangled_name"], "Missing kernel name" basename = params["mangled_name"] _, bin_path = write( cubin, bin_type, hash_type=bin_type, specified_dir=split_aot_inductor_output_path( config.aot_inductor.output_path )[0], key=basename, ) # Retrieve the basename again in case it is a generated hashcode basename, _ = get_name_and_dir_from_output_file_path(bin_path) if config.aot_inductor.emit_multi_arch_kernel: bin_type_to_ext = {"cubin": ".fatbin", "spv": ".spv"} assert bin_type in bin_type_to_ext.keys(), ( "multi_arch_kernel_binary only supported in CUDA/XPU" ) base_path, _ = os.path.splitext(bin_path) bin_path = base_path + bin_type_to_ext[bin_type] asm_path: str = "" if ( config.aot_inductor.emit_multi_arch_kernel or config.aot_inductor.package_cpp_only ): assert asm, "Missing kernel assembly code" assert asm_type, "Missing kernel assembly type" _, asm_path = write( asm, asm_type, hash_type=asm_type, specified_dir=split_aot_inductor_output_path( config.aot_inductor.output_path )[0], # make sure asm file has the same basename key=basename, ) params[get_cpp_wrapper_cubin_path_name()] = bin_path params["asm"] = asm_path cls.cache[key] = params @classmethod def get(cls, key: str) -> dict[str, Any] | None: return cls.cache.get(key, None) @classmethod def get_keys(cls) -> KeysView[str]: return cls.cache.keys() class AotCodeCompiler: """ Compile AOT Inductor generated code. """ @classmethod def compile( cls, graph: GraphLowering, wrapper_code: str, kernel_code: str, serialized_extern_kernel_nodes: str | None, *, device_type: str, additional_files: list[str], ) -> list[Union[str, Weights]] | str: """ Returns the .so path, or returns a list of files that were generated if config.aot_inductor.package=True. """ generated_files: list[str | Weights] = additional_files # type: ignore[assignment] _set_gpu_runtime_env() # cpp_extension consults the env picked_vec_isa = pick_vec_isa() vec_isa_cmd_gen = CppBuilder( name="o", sources="i", BuildOption=CppTorchDeviceOptions( vec_isa=picked_vec_isa, device_type=device_type, aot_mode=graph.aot_mode, ), ) # write function will calc source_code hash, the same source code with different # ISA level should be generate different hash. # So we need get a command_line which contains isa related parameter as a part of hash key. # And then pass the command_line to below write function as extra parameter to # guarantee the source code hash contains ISA difference. cpp_command = repr(vec_isa_cmd_gen.get_command_line()) # Meta internal AOTInductor CPU use_relative_path = ( config.is_fbcode() and device_type == "cpu" and graph.aot_mode ) ( specified_output_path, specified_artifact_name, ) = split_aot_inductor_output_path(config.aot_inductor.output_path) # TODO (benjaminglass1): the CMake packaging path doesn't support linking files # built with different flags. Until that's implemented, append the kernel code # to the wrapper and build everything at max optimization. if config.aot_inductor.package_cpp_only: wrapper_code = "\n".join((wrapper_code, kernel_code)) kernel_code = "" wrapper_key, wrapper_path = write( wrapper_code, "wrapper.cpp", extra=cpp_command, specified_dir=specified_output_path, key=config.aot_inductor.model_name_for_generated_files, ) kernel_code = ( f"// Triton kernels are embedded as comments in {wrapper_path}\n" + kernel_code ) _, kernel_path = write( kernel_code, "kernel.cpp", extra=cpp_command, specified_dir=specified_output_path, key=config.aot_inductor.model_name_for_generated_files, ) header_code = "" header_path = "" if not config.aot_inductor.dynamic_linkage: # to link statically, we also need a header file with open( os.path.join( os.path.dirname(os.path.dirname(__file__)), "csrc", "inductor", "aoti_runtime", "model.h", ) ) as f: # model_name_for_generated_files is guaranteed to be non-empty when compile_standalone model_class_name = config.aot_inductor.model_name_for_generated_files class_name = f"AOTInductorModel{model_class_name}" header_code = f.read() # we replace like this to avoid replacing # AOTInductorModelBase and AOTInductorModelKernelsBase header_code = ( header_code.replace("", f"<{class_name}>") .replace("AOTInductorModel(", f"{class_name}(") .replace("AOTInductorModel :", f"{class_name} :") ) _, header_path = write( header_code, "h", specified_dir=specified_output_path, key=model_class_name, ) # Log the AOTInductor wrapper and kernel code, if needed. with WritableTempFile("w+") as t: """ Avoid "Permission denied error" on Windows: with tempfile.NamedTemporaryFile("w", suffix=".gv") as temp_file: # Not writable on Windows: # https://docs.python.org/3/library/tempfile.html#tempfile.NamedTemporaryFile Example: with WritableTempFile("w", suffix=".gv") as temp_file: tree.to_dotfile(temp_file.name) """ t.writelines((wrapper_code, "\n", kernel_code, "\n")) t.flush() V.debug.output_code(t.name, extension="cpp") if config.aot_inductor.package: generated_files.append(wrapper_path) if not config.aot_inductor.package_cpp_only: generated_files.append(kernel_path) if not config.aot_inductor.dynamic_linkage: generated_files.append(header_path) output_code_log.info("Wrapper code written to: %s", wrapper_path) output_code_log.info("Kernel code written to: %s", kernel_path) trace_structured( "graph_dump", lambda: { "name": "inductor_aot_wrapper_code", "type": "cpp", "filename": wrapper_path, }, payload_fn=lambda: wrapper_code, ) trace_structured( "graph_dump", lambda: { "name": "inductor_aot_kernel_code", "type": "cpp", "filename": kernel_path, }, payload_fn=lambda: kernel_code, ) if not config.aot_inductor.dynamic_linkage: output_code_log.info("Header code written to: %s", header_path) trace_structured( "graph_dump", lambda: { "name": "inductor_aot_header_code", "type": "cpp", "filename": header_path, }, payload_fn=lambda: header_code, ) # We use a file lock below to protect FS operations. The lock file # is scoped to the 'key', so make sure the consts_s is protected # by the same lock: wrapper_path_operator = Path(wrapper_path) kernel_path_operator = Path(kernel_path) specified_sub_dir = wrapper_path_operator.parent / wrapper_key if not specified_sub_dir.exists(): specified_sub_dir.mkdir(exist_ok=True) cmake_path = str(Path(specified_sub_dir) / "CMakeLists.txt") def _compile_consts(consts: bytes, platform: str) -> str: # Load from aot_inductor, and update the value on demand. use_asm_build: bool = config.aot_inductor.use_consts_asm_build if platform == "linux": if graph.mutated_buffers & OrderedSet(graph.constants.keys()): # .data section is between .text and .bss. When the size of .data is large, # during the linking, the relocation of .text against .bss may overflow. # Rename it to .ldata so that it won't be in between the .text and .bss section if len(consts) > 2_000_000_000: raise ValueError( "Models with buffer mutation included doesn't support constants greater than 2GB!" ) section_attr = '.ldata, "aw"' else: section_attr = '.lrodata, "a"' symbol_prefix = "" elif platform == "darwin": section_attr = "__DATA,__data" symbol_prefix = "_" elif platform == "win32": symbol_prefix = "" # ASM build is not supported on Windows, force use CPP build. use_asm_build = False else: raise RuntimeError(f"Unsupported platform: {platform}") # Intel compiler failed to compile this manually constructed assembly file. # Switch XPU to use consts cpp build. if device_type == "xpu": use_asm_build = False is_large_consts = len(consts) > 1024 is_zero_size_consts = len(consts) == 0 def format_consts_to_gnu_asm( consts: bytes, align_bytes: int, symbol_prefix: str, is_large_consts: bool, ) -> tuple[str, str]: consts_asm = f"\t.section\t{section_attr}\n" consts_asm += f"\t.balign {align_bytes}\n" consts_asm += f"\t.globl\t{symbol_prefix}_binary_constants_bin_start\n" consts_asm += f"{symbol_prefix}_binary_constants_bin_start:\n" if not is_large_consts: for c in consts: consts_asm += f"\t.byte {c}\n" # Add one element even if constants are empty # Otherwise assembler will not put them in data section if not consts: consts_asm += "\t.space 1\n" else: consts_asm += "\t.quad 0x1234567899abcdef\n" consts_asm += f"\t.space {len(consts) - 8}\n" consts_asm += f".globl\t{symbol_prefix}_binary_constants_bin_end\n" consts_asm += f"{symbol_prefix}_binary_constants_bin_end:\n" return consts_asm, "weights.S" # Use c++ to convert consts to object file can support more compilers, such as msvc and icx. def format_consts_to_cpp( consts: bytes, align_bytes: int, symbol_prefix: str ) -> tuple[str, str]: consts_size = len(consts) asan_attr = """#if defined(__clang__) || defined (__GNUC__)\t\n\ #define ATTRIBUTE_NO_SANITIZE_ADDRESS __attribute__((no_sanitize("address")))\t\n\ #else\t\n\ #define ATTRIBUTE_NO_SANITIZE_ADDRESS\t\n\ #endif\t\n\ \t\n\ ATTRIBUTE_NO_SANITIZE_ADDRESS\t\n""" const_cpp = asan_attr const_cpp += f"alignas({align_bytes}) extern " const_cpp += f"unsigned char {symbol_prefix}_binary_constants_bin_start[{consts_size}] = {{\t\n" count_bytes = 0 for c in consts: const_cpp += f"{c}, " count_bytes = count_bytes + 1 if count_bytes % 16 == 0: const_cpp += "\t\n" const_cpp += "};\t\n" const_cpp += f"alignas({align_bytes}) extern unsigned char * {symbol_prefix}_binary_constants_bin_end;\t\n" return const_cpp, "weights.cpp" def get_zero_consts_asm_code( align_bytes: int, symbol_prefix: str, ) -> tuple[str, str]: """ This function handles zero-sized constants because the C++ standard prohibits zero-length arrays: https://stackoverflow.com/questions/9722632/what-happens-if-i-define-a-0-size-array-in-c-c On Windows (MSVC): The compiler reports error C2466 for zero-sized arrays: https://learn.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2466 Solution: Use assembly compilation to handle this case. Why not use Win32 assembly for all paths? ml64 only supports alignment up to 16 bytes, which isn't optimal for performance. Cross-platform implementation: Linux: Added '-pedantic' to disable zero-sized arrays in C++ compiler Windows: MSVC naturally rejects zero-sized arrays by default """ if _IS_WINDOWS: # Windows ml64 is max support align to 16, but it is no effect to zero size data. asm_code = """ option casemap:none .data ?_binary_constants_bin_start@@3PAEA: align 16 ?_binary_constants_bin_end@@3PAEA: align 16 public ?_binary_constants_bin_start@@3PAEA public ?_binary_constants_bin_end@@3PAEA end """ asm_ext = "asm" else: asm_code = f"\t.section\t{section_attr}\n" asm_code += f"\t.balign {align_bytes}\n" asm_code += ( f"\t.globl\t{symbol_prefix}_binary_constants_bin_start\n" ) asm_code += f"{symbol_prefix}_binary_constants_bin_start:\n" asm_code += f".globl\t{symbol_prefix}_binary_constants_bin_end\n" asm_code += f"{symbol_prefix}_binary_constants_bin_end:\n" asm_ext = "S" return asm_code, asm_ext if use_asm_build: consts_code, code_ext = format_consts_to_gnu_asm( consts, ALIGN_BYTES, symbol_prefix, is_large_consts ) else: if is_zero_size_consts: consts_code, code_ext = get_zero_consts_asm_code( ALIGN_BYTES, symbol_prefix ) else: consts_code, code_ext = format_consts_to_cpp( consts, ALIGN_BYTES, symbol_prefix ) _, consts_s = write( consts_code, code_ext, specified_dir=str(specified_sub_dir), key=config.aot_inductor.model_name_for_generated_files, ) consts_s = Path(consts_s) object_build_options = CppTorchDeviceOptions( device_type=device_type, aot_mode=graph.aot_mode, compile_only=True, use_relative_path=use_relative_path, ) object_builder = CppBuilder( name=str(consts_s.stem), sources=str(consts_s), output_dir=str(consts_s.parent), BuildOption=object_build_options, ) consts_o = object_builder.get_target_file_path() if use_asm_build is False and is_zero_size_consts: run_asm_build_object(str(consts_s), consts_o, str(consts_s.parent)) else: object_builder.build() if is_large_consts and use_asm_build: with open(consts_o, "r+b") as f: f.seek(0) hdr = f.read(1024) # Search for magic number and write the actual data over it start_idx = ( hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12") if sys.byteorder == "little" else hdr.find(b"\x12\x34\x56\x78\x99\xab\xcd\xef") ) assert start_idx != -1 f.seek(start_idx) pos = 0 while pos < len(consts): rc = f.write(consts[pos:]) pos += rc # Remove the .S file to save space os.remove(consts_s) return consts_o from torch.utils._filelock import FileLock lock_dir = get_lock_dir() lock = FileLock( os.path.join(lock_dir, wrapper_key + ".lock"), timeout=LOCK_TIMEOUT ) with lock: if serialized_extern_kernel_nodes: extern_kernel_nodes_json = str( wrapper_path_operator.with_suffix(".json") ) with open(extern_kernel_nodes_json, "w") as f: f.write(serialized_extern_kernel_nodes) if config.aot_inductor.package: generated_files.append(extern_kernel_nodes_json) metadata = config.aot_inductor.metadata metadata["AOTI_DEVICE_KEY"] = device_type # Add environment information to ensure .so compatibility metadata.update(get_device_information(device_type)) # Save user provided metadata meta_json = str( wrapper_path_operator.with_name( f"{wrapper_path_operator.stem}_metadata.json" ) ) for k, v in config.aot_inductor.metadata.items(): assert isinstance(k, str) and isinstance(v, (str)), ( "Metadata must only contain strings" ) with open(meta_json, "w") as f: f.write(json.dumps(config.aot_inductor.metadata)) kernel_meta_json = str( kernel_path_operator.with_name( f"{kernel_path_operator.stem}_metadata.json" ) ) shutil.copy(meta_json, kernel_meta_json) if config.aot_inductor.package: generated_files.append(meta_json) if not config.aot_inductor.package_cpp_only: generated_files.append(kernel_meta_json) output_so = ( config.aot_inductor.output_path if specified_artifact_name else str(wrapper_path_operator.with_suffix(".so")) ) all_cuda = all( graph.get_original_value_of_constant(name).is_cuda for name in graph.constants.keys() if name not in graph.folded_constants ) def _to_bytes(t: torch.Tensor, all_cuda: bool) -> bytes: def _pad_to_alignment(raw_bytes: bytes) -> bytes: padded_bytes = raw_bytes.ljust( (len(raw_bytes) + ALIGN_BYTES - 1) // ALIGN_BYTES * ALIGN_BYTES, b"\x00", ) return padded_bytes # This serializes the tensor's untyped_storage to bytes by accessing # the raw data of the underlying structure. import ctypes if t.numel() == 0: return b"" if t.is_mkldnn: data_ptr = torch.ops.mkldnn.data_ptr(t) nbytes = torch.ops.mkldnn._nbytes(t) else: t_cpu = t.untyped_storage().cpu() data_ptr = t_cpu.data_ptr() nbytes = t_cpu.nbytes() raw_array = ctypes.cast( data_ptr, ctypes.POINTER(ctypes.c_ubyte * nbytes), ) # pyrefly: ignore # missing-attribute raw_bytes = bytes(raw_array.contents) return raw_bytes if all_cuda else _pad_to_alignment(raw_bytes) if ( config.aot_inductor.package_constants_in_so or config.aot_inductor.package_constants_on_disk_format == "binary_blob" ): serialized_weights = b"".join( _to_bytes(graph.get_original_value_of_constant(name), all_cuda) for name in graph.constants.keys() if name not in graph.folded_constants ) else: serialized_weights = b"" if config.aot_inductor.package_constants_on_disk_format == "pickle_weights": # We need to return a storage key here because the original value tensor might be a clone weights_dict = Weights( { graph.allocated_constant_name[name]: ( graph.get_original_value_of_constant(name), TensorProperties(graph.constants[name]), ) for name in graph.constants.keys() if name not in graph.folded_constants } ) generated_files.append(weights_dict) consts_size = len(serialized_weights) use_external_weights, use_mmap_weights = determine_aoti_mmap_flags( consts_size ) if use_external_weights and use_mmap_weights: # Should never reach here, just a check for sanity raise RuntimeError( "use_external_weights and use_mmap_weights cannot both be True." ) external_weights_path = None if use_external_weights: external_weights_filename = f"{wrapper_path_operator.stem}_weights.blob" external_weights_path = str( wrapper_path_operator.with_name(external_weights_filename) ) compile_command: dict[str, Any] = { "aot_mode": graph.aot_mode, "device_type": device_type, "use_mmap_weights": use_mmap_weights, "use_mmap_weights_external": use_external_weights, "use_relative_path": use_relative_path, "vec_isa": picked_vec_isa, } # If we're packaging via CMake, we build the whole code at max optimization. wrapper_build_options = CppTorchDeviceOptions( compile_only=True, min_optimize=not config.aot_inductor.package_cpp_only, **compile_command, ) kernel_build_options = CppTorchDeviceOptions( compile_only=True, **compile_command, ) # potentially, precompile the AOT header for this device if config.aot_inductor.precompile_headers and not _IS_WINDOWS: header_file = _get_cpp_wrapper_header( device_type, aot_mode=graph.aot_mode ) wrapper_build_options.precompiled_header = _precompile_header( header_file, cpp_command, min_optimize=not config.aot_inductor.package_cpp_only, **compile_command, ) if cpp_prefix := _get_cpp_prefix_header(device_type): kernel_build_options.precompiled_header = _precompile_header( cpp_prefix, cpp_command, **compile_command, ) wrapper_builder = CppBuilder( name=str(wrapper_path_operator.stem), sources=wrapper_path, output_dir=str(wrapper_path_operator.parent), BuildOption=wrapper_build_options, ) wrapper_compile_cmd = wrapper_builder.get_command_line() wrapper_o = wrapper_builder.get_target_file_path() kernel_builder = CppBuilder( name=str(kernel_path_operator.stem), sources=kernel_path, output_dir=str(wrapper_path_operator.parent), BuildOption=kernel_build_options, ) kernel_compile_cmd = kernel_builder.get_command_line() kernel_o = kernel_builder.get_target_file_path() log.debug("aot wrapper compilation command: %s", wrapper_compile_cmd) log.debug("aot kernel compilation command: %s", kernel_compile_cmd) if config.aot_inductor.package_cpp_only: # Not doing the actual compilation here compile_flags = str( wrapper_path_operator.with_name( f"{wrapper_path_operator.stem}_compile_flags.json" ) ) wrapper_build_options.save_flags_to_json(compile_flags) generated_files.append(compile_flags) wrapper_builder.save_compile_cmd_to_cmake(cmake_path, device_type) wrapper_builder.save_src_to_cmake(cmake_path, wrapper_path) generated_files.append(cmake_path) else: try: wrapper_builder.build() except (exc.CppCompileError, SkipFrame) as e: if " is too big to optimize" in str(e): raise RuntimeError( "Please use torch._inductor.config.aot_inductor.compile_wrapper_opt_level = 'O0' flag." ) from e raise e kernel_builder.build() if not use_mmap_weights: aot_constants = serialized_weights magic_number = 0 if use_external_weights: aot_constants = struct.pack("q", consts_size) assert external_weights_path is not None # For external weights, write weights to separate file and embed minimal placeholder with open(external_weights_path, "wb") as f_weights: f_weights.write(serialized_weights) generated_files.append(external_weights_path) else: # we'll append weights binary to the end of .so file and mmap it when loading magic_number = cast( int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item() ) aot_constants = struct.pack("qq", consts_size + 8, magic_number) consts_o = _compile_consts(aot_constants, sys.platform) custom_obj_idx = 0 # Note that custom_objs_config.json file is different from the model_constants_config.json file produced # in package_sigmoid(). The keys in custom_objs_config.json directly correspond to the arg name in extern # nodes json. The key in model_constants_config.json produced by package_sigmoid is the attribute name in the # user model code. qual_name_to_id = {} # Map from constant name to its name in constants folder for custom_obj_idx, (name, constant) in enumerate( graph.torchbind_constants.items() ): if isinstance( constant, torch._library.fake_class_registry.FakeScriptObject ): constant = constant.real_obj assert isinstance(constant, torch._C.ScriptObject) custom_obj_name = f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}" log.debug("saving script object %s as %s", name, custom_obj_name) qual_name_to_id[name] = custom_obj_name custom_obj_bytes = torch._C._pickle_save(constant) custom_obj_path = os.path.join( wrapper_path_operator.parent, custom_obj_name ) write_atomic(custom_obj_path, custom_obj_bytes, True) generated_files.append(custom_obj_path) if qual_name_to_id: constants_config_json = os.path.join( wrapper_path_operator.parent, "custom_objs_config.json" ) with open(constants_config_json, "w") as f: f.write(json.dumps(qual_name_to_id)) generated_files.append(constants_config_json) gpu_codecache: ROCmCodeCache | CUDACodeCache = ( ROCmCodeCache() if torch.version.hip else CUDACodeCache() ) gpu_kernels_o = gpu_codecache.aot_kernels_o.copy() # clear the list of aot kernels after each linking gpu_codecache.aot_kernels_o.clear() if gpu_kernels_o: assert not config.aot_inductor.emit_multi_arch_kernel, ( "TODO: add emit_multi_arch_kernel support for cutlass kernels" ) cubins_o = [] asm_files = [] if not _IS_WINDOWS: ld, objcopy = get_ld_and_objcopy(use_relative_path) kernels = getattr(V.graph.wrapper_code, "_kernel_name_to_body", {}) for kernel_name, value in CudaKernelParamCache.cache.items(): if kernel_name not in kernels: # It is possible that CudaKernelParamCache contains more Triton kernels # than what the current graph uses continue if asm_file := value["asm"]: asm_files.append(asm_file) cubin_file = value[get_cpp_wrapper_cubin_path_name()] if ( config.aot_inductor.emit_multi_arch_kernel and device_type == "cuda" ): current_arch = _nvcc_arch_as_compile_option() cmd = ( # pyrefly: ignore # unbound-name f"{_cuda_compiler()} -fatbin {asm_file} -o {cubin_file} " # Triton only allows generating PTX version as same as the current arch f"-gencode arch=compute_{current_arch},code=compute_{current_arch} " # Include SASS for the current specific arch f"-gencode arch=compute_{current_arch},code=sm_{current_arch} " ) try: subprocess.run( cmd.split(), capture_output=True, text=True, check=True, ) except subprocess.CalledProcessError as e: print( f"{cmd} failed with:\nstdout:\n{e.stdout}\nstderr:\n{e.stderr}", file=sys.stderr, ) raise if config.aot_inductor.embed_kernel_binary: # Embed cubin files into model.so using objcopy cubins_o.append( convert_cubin_to_obj(cubin_file, kernel_name, ld, objcopy) ) output_name, output_dir = get_name_and_dir_from_output_file_path(output_so) so_build_options = CppTorchDeviceOptions( vec_isa=picked_vec_isa, device_type=device_type, aot_mode=graph.aot_mode, use_relative_path=use_relative_path, ) obj_srcs = [wrapper_o, kernel_o, consts_o, *gpu_kernels_o, *cubins_o] so_builder = CppBuilder( name=output_name, sources=obj_srcs, output_dir=output_dir, BuildOption=so_build_options, ) link_cmd = so_builder.get_command_line() output_so = so_builder.get_target_file_path() log.debug("aot linkage command: %s", link_cmd) # Append cmds to the end of codegen-ed wrapper file with open(wrapper_path, "a") as f: f.write("\n") f.write(f"// Compile cmd\n// {wrapper_compile_cmd}\n") f.write(f"// Link cmd\n// {link_cmd}\n") with open(kernel_path, "a") as f: f.write("\n") f.write(f"// Compile cmd\n// {kernel_compile_cmd}\n") f.write(f"// Link cmd\n// {link_cmd}\n") if config.aot_inductor.package_cpp_only: linker_flags = str( wrapper_path_operator.with_name( f"{wrapper_path_operator.stem}_linker_flags.json" ) ) so_build_options.save_flags_to_json(linker_flags) generated_files.append(linker_flags) generated_files.append(_LINKER_SCRIPT) # If we only want to package the cpp, then we need to save the # weights separately into a bin, and we also need to prevent compiling the so if use_mmap_weights: weight_file = str( wrapper_path_operator.with_name( f"{wrapper_path_operator.stem}_serialized_weights.bin" ) ) with open(weight_file, "wb") as f_weights: f_weights.write(serialized_weights) f_weights.write(struct.pack("q", magic_number)) generated_files.append(weight_file) else: # TODO: unify to always use mmap_weights generated_files.append(consts_o) so_builder.save_src_to_cmake(cmake_path, consts_o) if config.aot_inductor.emit_multi_arch_kernel: so_builder.save_kernel_asm_to_cmake(cmake_path, asm_files) generated_files.extend(asm_files) else: obj_srcs = [*gpu_kernels_o, *cubins_o] generated_files.extend(obj_srcs) for obj in obj_srcs: so_builder.save_src_to_cmake(cmake_path, obj) so_builder.save_link_cmd_to_cmake(cmake_path) else: so_builder.build() for o_file in obj_srcs: if o_file in gpu_kernels_o: continue # Remove these as they are not needed anymore os.remove(o_file) if use_mmap_weights: if config.aot_inductor.cross_target_platform == "windows": raise RuntimeError( "when cross_target_platform is windows, use_mmap_weights should not be true." ) def get_page_size() -> int: # Don't use resource.getpagesize() on Windows, as it is a Unix specific package # as seen in https://docs.python.org/2/library/resource.html if _IS_WINDOWS: from ctypes import ( # type: ignore[attr-defined] byref, Structure, windll, ) from ctypes.wintypes import DWORD, LPVOID, WORD class SYSTEM_INFO(Structure): _fields_ = [ ("wProcessorArchitecture", WORD), ("wReserved", WORD), ("dwPageSize", DWORD), ("lpMinimumApplicationAddress", LPVOID), ("lpMaximumApplicationAddress", LPVOID), ("dwActiveProcessorMask", DWORD), ("dwNumberOfProcessors", DWORD), ("dwProcessorType", DWORD), ("dwAllocationGranularity", DWORD), ("wProcessorLevel", WORD), ("wProcessorRevision", WORD), ] si = SYSTEM_INFO() windll.kernel32.GetSystemInfo(byref(si)) sys_page_size = si.dwPageSize else: import resource sys_page_size = resource.getpagesize() return sys_page_size page_size_ = get_page_size() page_size = max(16384, page_size_) with open(output_so, "a+b") as f_so: so_size = f_so.tell() # Page align the weights f_so.write(b" " * (page_size - so_size % page_size)) f_so.write(serialized_weights) f_so.write(struct.pack("q", magic_number)) if config.aot_inductor.package: generated_files.append(output_so) if config.trace.provenance_tracking_level != 0: kernel_info = torch._inductor.debug.create_kernel_information_json() kernel_info_json = os.path.join( wrapper_path_operator.parent, "kernel_information.json" ) with open(kernel_info_json, "w") as f: f.write(json.dumps(kernel_info, indent=4)) generated_files.append(kernel_info_json) if config.aot_inductor.package: # We want to return the directory that contains all the AOTI # generated files, not just the so # return os.path.split(output_so)[0] return generated_files return output_so _libgomp: CDLL | None = None def custom_op_wrapper(op: str, *args: Any) -> list[c_void_p] | c_void_p | None: # This function will be called from generated cpp wrapper code in the JIT mode. # Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them. def convert_arg(arg: Any) -> Any: if str(type(arg)) == "": # No easy way to do isinstance check on PyCapsule return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg) elif isinstance(arg, (list, tuple)): return type(arg)(convert_arg(a) for a in arg) else: return arg converted_args = [convert_arg(arg) for arg in args] assert op.startswith("torch.ops."), ( op + " can not be called through custom_op_wrapper" ) func = None for i, s in enumerate(op.split(".")): if i == 0: func = importlib.import_module(s) func = getattr(func, s) assert callable(func), op + " can not be loaded through custom_op_wrapper" # convert any kwarg-only arguments to kwargs kwargs = dict() # pyrefly: ignore # missing-attribute for func_arg, conv_arg in zip(func._schema.arguments, converted_args): if func_arg.kwarg_only: kwargs[func_arg.name] = conv_arg if kwargs: del converted_args[-len(kwargs) :] result = func(*converted_args, **kwargs) if result is None: return None if isinstance(result, (list, tuple)): # unsafe_alloc_void_ptrs_from_tensors expects result contains tensor only result = [torch.tensor([]) if r is None else r for r in result] for i, r in enumerate(result): assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors" return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result) # type: ignore[arg-type] assert isinstance(result, torch.Tensor), op + " returns a non-tensor" return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result) # Precompiled headers are persistent past program runtime, but associated with one # specific compiler version and set of flags. We explicitly use default_cache_dir here # because these headers need to be global, rather than ignored by fresh_cache. _HEADER_DIR = os.path.join(default_cache_dir(), "precompiled_headers") _HEADER_LOCK_DIR = os.path.join(_HEADER_DIR, "locks") @functools.cache def _precompile_header( header: str, hashable_cmd_line: str, **compile_command: Any, ) -> str: assert not _IS_WINDOWS, ( "CppBuilder does not currently support precompiling on Windows!" ) # Get the preprocessed output from the header file to be precompiled. This allows # us to properly invalidate the file cache when any header dependency changes. This # is thread-safe, as each thread will get its own temporary directory. # # N.B. we can't use NamedTemporaryFile here because Windows errors out on attempts # to read from a file with an open write handle. with tempfile.TemporaryDirectory() as preprocessing_dir: preprocessing_header = Path(preprocessing_dir) / "header.hpp" preprocessing_header.write_text(f"#include <{header}>\n") preprocessor = CppBuilder( name=str(preprocessing_header)[:-4], # strip off the .hpp extension sources=str(preprocessing_header), BuildOption=CppTorchDeviceOptions(**compile_command, preprocessing=True), ) preprocessor.build() def _get_file_checksum(filename: str) -> str: """Reading the whole preprocessed header in for hashing is very expensive, but calling a fast hashing utility in a subprocess is cheap.""" # If Windows support needs to be added here, use certutil -hashfile. cmd_output = subprocess.run( ("openssl", "sha512", filename), capture_output=True, text=True ) return cmd_output.stdout.split()[-1] preprocessor_hash = _get_file_checksum(preprocessor.get_target_file_path()) header_build_option = CppTorchDeviceOptions(**compile_command, precompiling=True) header_hash, header_full_path = write( content=f"#include <{header}>\n", extension="h", extra=( hashable_cmd_line + preprocessor_hash + get_compiler_version_info(header_build_option.get_compiler()) ), specified_dir=_HEADER_DIR, ) cpp_builder = CppBuilder( name=header_full_path, sources=header_full_path, BuildOption=header_build_option, ) # _worker_compile_cpp will automatically ignore any compilation whose result already # exists, so this is always safe. os.makedirs(_HEADER_LOCK_DIR, exist_ok=True) _worker_compile_cpp( os.path.join(_HEADER_LOCK_DIR, f"{header_hash}.lock"), (cpp_builder,), ) return header_full_path def _get_cpp_prefix_header(device: str) -> str | None: if device.startswith("cpu"): return "torch/csrc/inductor/cpp_prefix.h" return None def _get_cpp_wrapper_header(device: str, aot_mode: bool = False) -> str: """Given a device type (and optionally whether we're in AOT Inductor mode), returns the path to the cpp_wrapper header file to be precompiled.""" base_device = device.split(":", maxsplit=1)[0] is_array_ref = config.aot_inductor.allow_stack_allocation and base_device == "cpu" return ( "torch/csrc/inductor/" f"{'aoti_include' if aot_mode else 'cpp_wrapper'}/" f"{'array_ref' if is_array_ref else base_device}.h" ) @clear_on_fresh_cache class CppCodeCache: """Compiles and caches C++ libraries. Users of this class supply the source code to be compiled, while compilation flags are set by CppBuilder.""" cache: dict[str, Callable[[], CDLL | ModuleType]] = {} cache_clear = staticmethod(cache.clear) cpp_compile_command_flags: dict[str, Any] = {} @staticmethod def _load_library_inner(path: str, key: str) -> CDLL | ModuleType: return cdll.LoadLibrary(path) @classmethod def _load_library(cls, path: str, key: str) -> CDLL | ModuleType: try: result = cls._load_library_inner(path, key) result.key = key # type: ignore[union-attr] return result except (ImportError, OSError) as e: if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"): # hacky workaround for fbcode/buck global _libgomp _libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1") result = cls._load_library_inner(path, key) result.key = key # type: ignore[union-attr] return result if "failed to map segment from shared object" in str(e): raise OSError( f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder " "is mounted with noexec (e.g., by default Docker mounts tmp file systems " f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another " "temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable." ) from e raise @classmethod def _get_uncompiled_header(cls, device: str) -> str | None: """ Given a device type, returns the path to a CPP header file to be precompiled. """ return None @classmethod def load_async( cls, main_code: str, device_type: str = "cpu", submit_fn: Any = None, extra_flags: Sequence[str] = (), optimized_code: str | None = None, ) -> Any: """Compile and load a C++ library. Returns a callable that returns the loaded library.""" compile_command = { **cls.cpp_compile_command_flags, "device_type": device_type, "extra_flags": extra_flags, "use_relative_path": config.is_fbcode(), "vec_isa": pick_vec_isa(), } _set_gpu_runtime_env() # cpp_extension consults the env # Note the distinction between the two booleans. We do minimal optimization if # the optimized_code argument is present at all, since that's how the user of # this function opts in, but we do compilation and linking in one step if the # optimized_code argument is empty (as a micro-optimization). main_build_option = CppTorchDeviceOptions( compile_only=bool(optimized_code), min_optimize=optimized_code is not None, # pyrefly: ignore # bad-argument-type **compile_command, ) optimized_build_option = CppTorchDeviceOptions( # pyrefly: ignore # bad-argument-type compile_only=True, # pyrefly: ignore # bad-argument-type **compile_command, ) def get_hashable_command_line(build_option: BuildOptionsBase) -> str: """Writing the code to file will calculate a hash, which we need to vary if the command line flags change. This implements a mostly-generic way of validating that.""" return CppBuilder( name="o", sources="i", BuildOption=build_option ).get_command_line() main_cmd_line = get_hashable_command_line(main_build_option) optimized_cmd_line = get_hashable_command_line(optimized_build_option) key, main_path = write( main_code, "main.cpp", extra=f"{optimized_code} {main_cmd_line}" ) # Don't bother writing if the argument is empty. if optimized_code: _, optimized_path = write( optimized_code, "optimized.cpp", extra=optimized_cmd_line ) else: # Unused, but makes type checkers happy. optimized_path = os.devnull if key not in cls.cache: from torch.utils._filelock import FileLock lock_path = os.path.join(get_lock_dir(), key + ".lock") future: Future[Any] | None = None lib = None # if requested, pre-compile any headers if config.cpp_cache_precompile_headers and not _IS_WINDOWS: if header := cls._get_uncompiled_header(device_type): main_build_option.precompiled_header = _precompile_header( header, main_cmd_line, min_optimize=optimized_code is not None, **compile_command, ) # Currently, the optimized_code field is only used for cpp kernel code, # so go ahead and precompile the relevant header here. Revisit this # decision if that ever changes. if optimized_code and (header := _get_cpp_prefix_header(device_type)): optimized_build_option.precompiled_header = _precompile_header( # pyrefly: ignore # unbound-name header, optimized_cmd_line, **compile_command, ) main_name, output_dir = get_name_and_dir_from_output_file_path(main_path) main_builder = CppBuilder( name=main_name, sources=main_path, BuildOption=main_build_option, output_dir=output_dir, ) if optimized_code: optimized_name, _ = get_name_and_dir_from_output_file_path( optimized_path ) optimized_builder = CppBuilder( name=optimized_name, sources=optimized_path, BuildOption=optimized_build_option, output_dir=output_dir, ) linker = CppBuilder( name=main_name, sources=[ main_builder.get_target_file_path(), optimized_builder.get_target_file_path(), ], # pyrefly: ignore # bad-argument-type BuildOption=CppTorchDeviceOptions(**compile_command), output_dir=output_dir, ) worker_fn = functools.partial( _worker_compile_cpp, lock_path, (main_builder, optimized_builder, linker), ) binary_path = normalize_path_separator(linker.get_target_file_path()) else: worker_fn = functools.partial( _worker_compile_cpp, lock_path, (main_builder,) ) binary_path = normalize_path_separator( main_builder.get_target_file_path() ) def load_fn() -> Any: nonlocal lib if lib is None: if future is not None: future.result() result = worker_fn() assert result is None lib = cls._load_library(binary_path, key) assert lib is not None return lib if submit_fn is not None: with FileLock(lock_path, timeout=LOCK_TIMEOUT): if not os.path.exists(binary_path): future = submit_fn(worker_fn) cls.cache[key] = load_fn return cls.cache[key] @classmethod def load(cls, *args: Any, **kwargs: Any) -> Any: return cls.load_async(*args, **kwargs)() def _worker_compile_cpp( lock_path: str, cpp_builders: Sequence[CppBuilder], ) -> None: from torch.utils._filelock import FileLock with FileLock(lock_path, timeout=LOCK_TIMEOUT): for builder in cpp_builders: if not os.path.exists(builder.get_target_file_path()): builder.build() # Customized Python binding for cpp kernels @clear_on_fresh_cache class CppPythonBindingsCodeCache(CppCodeCache): cache: dict[str, Callable[[], CDLL | ModuleType]] = {} cache_clear = staticmethod(cache.clear) cpp_compile_command_flags = { # kernels have no dependency on libtorch "include_pytorch": False, "shared": True, } entry_function = "kernel" call_entry_function = "kernel({}); Py_RETURN_NONE;" extra_parse_arg = "" suffix_template = textwrap.dedent( """ // Python bindings to call {entry_func}(): #define PY_SSIZE_T_CLEAN #include #include #include #ifndef _MSC_VER #if __cplusplus < 202002L // C++20 (earlier) code // https://en.cppreference.com/w/cpp/language/attributes/likely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif #else #define likely(x) (x) #define unlikely(x) (x) #endif // This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow. // We manually link it below to workaround issues with fbcode build. static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj); template static inline T parse_arg(PyObject* args, size_t n) {{ static_assert(std::is_pointer_v, "arg type must be pointer or long"); return static_cast(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n))); }} template <> inline int64_t parse_arg(PyObject* args, size_t n) {{ auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n)); if(unlikely(result == -1 && PyErr_Occurred())) throw std::runtime_error("expected int arg"); return result; }} template <> inline uintptr_t parse_arg(PyObject* args, size_t n) {{ auto result = PyLong_AsVoidPtr(PyTuple_GET_ITEM(args, n)); if(unlikely(result == reinterpret_cast(-1) && PyErr_Occurred())) throw std::runtime_error("expected int arg"); return reinterpret_cast(result); }} {extra_parse_arg} static PyObject* {entry_func}_py(PyObject* self, PyObject* args) {{ try {{ if(unlikely(!PyTuple_CheckExact(args))) throw std::runtime_error("tuple args required"); if(unlikely(PyTuple_GET_SIZE(args) != {arg_len})) throw std::runtime_error("requires {arg_len} args"); {call_entry_func} }} catch(std::exception const& e) {{ PyErr_SetString(PyExc_RuntimeError, e.what()); return nullptr; }} catch(...) {{ PyErr_SetString(PyExc_RuntimeError, "unhandled error"); return nullptr; }} }} static PyMethodDef py_methods[] = {{ {{"{entry_func}", {entry_func}_py, METH_VARARGS, ""}}, {{NULL, NULL, 0, NULL}}}}; static struct PyModuleDef py_module = {{PyModuleDef_HEAD_INIT, "{entry_func}", NULL, -1, py_methods}}; PyMODINIT_FUNC PyInit_{entry_func}(void) {{ const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"); if(!str_addr) {{ PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set"); return nullptr; }} std::istringstream iss(str_addr); uintptr_t addr = 0; iss >> addr; _torchinductor_pyobject_tensor_data_ptr = reinterpret_cast(addr); PyObject* module = PyModule_Create(&py_module); if (module == NULL) {{ return NULL; }} #ifdef Py_GIL_DISABLED PyUnstable_Module_SetGIL(module, Py_MOD_GIL_NOT_USED); #endif return module; }} """ ) @classmethod # pyrefly: ignore # bad-override def _load_library_inner(cls, path: str, key: str) -> ModuleType: os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str( torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined] ) module_name = f"{key}.{cls.entry_function}" try: return sys.modules[module_name] except KeyError: pass spec = importlib.util.spec_from_file_location(module_name, path) assert spec is not None module = importlib.util.module_from_spec(spec) sys.modules[module_name] = module assert spec.loader is not None spec.loader.exec_module(module) return module @classmethod def _get_uncompiled_header(cls, device: str) -> str | None: return _get_cpp_prefix_header(device) @classmethod def load_pybinding_async( cls, argtypes: Sequence[str], main_code: str, device_type: str = "cpu", num_outputs: int = -1, submit_fn: Any = None, extra_flags: Sequence[str] = (), kernel_code: str | None = None, ) -> Any: """ Wrap a C++ function in fast Python bindings. Args: argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"] main_code: C++ source code containing ENTRY_FUNCTION(). Will be built at -O3 if kernel_code is None (to maximize performance in any kernels that are present), or -O1 otherwise (to minimize compile time). kernel_code: If present, C++ source code that will be built at -O3 and linked to main_code. Returns: A python version of ENTRY_FUNCTION() """ parseargs = ", ".join( f"parse_arg<{argtype.replace('const ', '')}>(args, {n})" for n, argtype in enumerate(argtypes) ) suffix = cls.suffix_template.format( arg_len=len(argtypes), call_entry_func=cls.call_entry_function.format(parseargs), entry_func=cls.entry_function, extra_parse_arg=cls.extra_parse_arg.format(array_len=num_outputs), ) get_result = cls.load_async( main_code + suffix, device_type, submit_fn=submit_fn, extra_flags=extra_flags, optimized_code=kernel_code, ) result = None def future() -> Any: nonlocal result if result is None: result = get_result() assert isinstance(result, ModuleType) return getattr(result, cls.entry_function) return future @classmethod def load_pybinding(cls, *args: Any, **kwargs: Any) -> Any: return cls.load_pybinding_async(*args, **kwargs)() @clear_on_fresh_cache class CppWrapperCodeCache(CppPythonBindingsCodeCache): cache: dict[str, Callable[[], CDLL | ModuleType]] = {} cache_clear = staticmethod(cache.clear) cpp_compile_command_flags = { "include_pytorch": True, "shared": True, } entry_function = "inductor_entry_cpp" call_entry_function = "return inductor_entry_cpp({});" extra_parse_arg = textwrap.dedent( """ #include static inline std::vector unpack_tensor_handle_list(PyObject* pyvec) {{ std::vector result; size_t result_len = PyList_GET_SIZE(pyvec); result.reserve(result_len); for (size_t i = 0; i < result_len; i++) {{ // AtenTensorHandle is essentially a pointer void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL); result.push_back(reinterpret_cast(elem)); }} return result; }} static inline PyObject* pack_tensor_handle_list(const std::array& arr) {{ PyObject* result = PyList_New({array_len}); for (size_t i = 0; i < {array_len}; i++) {{ PyObject *elem = arr[i] == nullptr ? Py_None // Store AtenTensorHandle as PyCapsulate : PyCapsule_New(reinterpret_cast(arr[i]), NULL, NULL); PyList_SET_ITEM(result, i, elem); }} return result; }} template <> inline std::vector parse_arg>(PyObject* args, size_t n) {{ return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n)); }} PyObject* inductor_entry_cpp(std::vector&& input_handles) {{ // For outputs, we only allocate an array to hold returned tensor handles, // not the actual output tensor storage. std::array output_handles{{}}; try {{ inductor_entry_impl(input_handles.data(), output_handles.data()); if (PyErr_Occurred()) {{ return nullptr; }} return pack_tensor_handle_list(output_handles); }} catch(std::exception const& e) {{ PyErr_SetString(PyExc_RuntimeError, e.what()); return nullptr; }} catch(...) {{ PyErr_SetString(PyExc_RuntimeError, "unhandled error"); return nullptr; }} }} """ ) @classmethod def _get_uncompiled_header(cls, device: str) -> str | None: return _get_cpp_wrapper_header(device) @clear_on_fresh_cache class HalideCodeCache(CppPythonBindingsCodeCache): cache: dict[str, Callable[[], ModuleType | CDLL]] = {} cache_clear = staticmethod(cache.clear) _standalone_runtime_path: str | None = None prefix = textwrap.dedent( """ #include "{halideruntime_h}" #include "{headerfile}" #include #include namespace c10 {{ inline long div_floor_integer(long a, long b) {{ if ((a<0) != (b<0)) {{ const auto quot = a / b; const auto rem = a % b; return rem ? quot - 1 : quot; }} return a / b; }} }} """ ) glue_template_cpp = prefix + textwrap.dedent( """ void kernel({argdefs}) {{ {buffers} int err = halide_kernel({buffer_names}); if(err != 0) throw std::runtime_error("halide_kernel failed"); }} """ ) glue_template_cuda = prefix + textwrap.dedent( """ #include static const halide_device_interface_t* cuda_interface = halide_cuda_device_interface(); void kernel({argdefs}, uintptr_t stream) {{ {buffers} int err = halide_kernel(reinterpret_cast(stream), {buffer_names}); if(err != 0) throw std::runtime_error("halide_kernel failed"); }} """ ) standalone_runtime_cuda_init = textwrap.dedent( """ #include "{}" #include static int acquire_context(void* user_context, void** cuda_context_out, bool create) {{ return cuCtxGetCurrent(reinterpret_cast(cuda_context_out)); }} static int release_context(void* user_context) {{ return 0; }} static int get_stream(void* user_context, void* cuda_context, void** stream_out) {{ *stream_out = user_context; return 0; }} static int register_halide_hooks() {{ halide_set_cuda_acquire_context(&acquire_context); halide_set_cuda_release_context(&release_context); halide_set_cuda_get_stream(&get_stream); return 0; }} int inductor_register_halide_hooks_result = register_halide_hooks(); """ ) @classmethod def _codegen_buffer(cls, name: str, arg: HalideInputSpec, cuda: bool) -> list[str]: assert arg.shape is not None assert arg.stride is not None and len(arg.shape) == len(arg.stride) assert arg.offset is not None data_ptr = f"{arg.alias_of or arg.name} + {arg.offset}" if cuda: device = f"reinterpret_cast({data_ptr})" device_interface = "cuda_interface" host = "nullptr" flags = "halide_buffer_flag_device_dirty" else: device = "0" device_interface = "nullptr" host = f"reinterpret_cast({data_ptr})" flags = "halide_buffer_flag_host_dirty" dims = [] for size, stride in zip(arg.shape, arg.stride): dims.append(f"halide_dimension_t(0, {size}, {stride})") return [ f"halide_buffer_t {name};", f"halide_dimension_t {name}_dims[] = {{{', '.join(dims)}}};" if len(dims) > 0 else f"halide_dimension_t * {name}_dims = nullptr;", f"{name}.device = {device};", f"{name}.device_interface = {device_interface};", f"{name}.host = {host};", f"{name}.flags = {flags};", f"{name}.type = {arg.halide_type()};", f"{name}.dimensions = {len(dims)};", f"{name}.dim = {name}_dims;", f"{name}.padding = nullptr;", ] @classmethod def _codegen_glue(cls, meta: HalideMeta, headerfile: object) -> str: is_cuda = meta.is_cuda() assert is_cuda is ("user_context" in meta.target) assert "no_runtime" in meta.target buffers = [] buffer_names = [] for i, arg in enumerate(meta.argtypes): if arg.is_buffer(): # pyrefly: ignore # bad-argument-type buffer_names.append(f"&hl_buf_{i}") buffers.extend(cls._codegen_buffer(f"hl_buf_{i}", arg, is_cuda)) else: assert "*" not in arg.ctype # pyrefly: ignore # bad-argument-type buffer_names.append(arg.name) buffers = "\n".join([f" {line}" for line in buffers]).lstrip() glue_template = cls.glue_template_cuda if is_cuda else cls.glue_template_cpp glue_code = glue_template.format( halideruntime_h=cls.find_header( "HalideRuntimeCuda.h" if is_cuda else "HalideRuntime.h" ), headerfile=headerfile, argdefs=", ".join( f"{a.bindings_type()} {a.name}" for a in meta.argtypes if a.alias_of is None ), buffers=buffers, buffer_names=", ".join(buffer_names), ) return glue_code @classmethod @functools.cache def config_hash(cls) -> str: command_gen = CppBuilder( name="O", sources="I", BuildOption=CppOptions(), ) command_line = command_gen.get_command_line() return sha256_hash( "\n".join( [ cls.glue_template_cpp, cls.glue_template_cuda, cls.standalone_runtime_cuda_init, command_line, ] ).encode("utf-8") ) @staticmethod def _search_for_file(suffix: str, errmsg: str) -> str: spec = importlib.machinery.PathFinder.find_spec("halide") if spec is None or not spec.submodule_search_locations: raise RuntimeError("halide python bindings not installed") try: search = spec.submodule_search_locations[0] for file in os.listdir(search): if file.endswith(".so"): try: out = subprocess.check_output( ["ldd", os.path.join(search, file)] ) except subprocess.SubprocessError: continue m = re.search(r"(/.*)/libHalide.so", out.decode("utf-8")) if m: path = os.path.join(os.path.abspath(m.group(1)), suffix) if os.path.exists(path): return os.path.abspath(path) except Exception as e: raise RuntimeError(errmsg) from e raise RuntimeError(errmsg) @staticmethod @functools.cache def find_libautoschedule(name: str) -> str: sofile = f"libautoschedule_{name.lower()}.so" if "HALIDE_LIB" in os.environ: path = os.path.join(os.environ["HALIDE_LIB"], sofile) if os.path.exists(path): return path errmsg = ( f"Can't find {sofile}, set env HALIDE_LIB to the directory containing it" ) return HalideCodeCache._search_for_file(sofile, errmsg) @staticmethod @functools.cache def find_header(name: str) -> str: if "HALIDE_INCLUDE" in os.environ: path = os.path.join(os.environ["HALIDE_INCLUDE"], name) if os.path.exists(path): return path if "HALIDE_LIB" in os.environ: path = os.path.abspath( os.path.join(os.environ["HALIDE_LIB"], f"../include/{name}") ) if os.path.exists(path): return path errmsg = ( f"Can't find {name}, set env HALIDE_INCLUDE to the directory containing it" ) return HalideCodeCache._search_for_file(f"../include/{name}", errmsg) @classmethod def generate_halide_async( cls, meta: HalideMeta, source_code: str, submit_fn: Any = None ) -> Callable[[], Any]: dirpath = Path( get_path( code_hash( source_code, extra=repr((cls.config_hash(), meta)), ), "halide", )[2] ) os.makedirs(dirpath, exist_ok=True) wait_for_compile = None genfile = str(dirpath / "generate_kernel.py") libfile = str(dirpath / "halide_kernel.a") headerfile = str(dirpath / "halide_kernel.h") donefile = str(dirpath / "done") lockfile = str(dirpath / "lock") need_compile = not os.path.exists(donefile) jobs: list[Any] = [] if need_compile: write_atomic(genfile, source_code) cmd = [ sys.executable, genfile, "-g", "kernel", "-o", f"{dirpath}", "-f", "halide_kernel", "-e", "static_library,h,schedule", ] if meta.scheduler: cmd.extend(["-p", cls.find_libautoschedule(meta.scheduler)]) cmd.extend(meta.args()) jobs.append(functools.partial(subprocess.check_call, cmd)) binding_types = [ arg.bindings_type() for arg in meta.argtypes if arg.alias_of is None ] if meta.is_cuda(): binding_types.append("uintptr_t") # stream bindings_future = cls.load_pybinding_async( binding_types, cls._codegen_glue(meta, headerfile), extra_flags=(libfile, cls.build_standalone_runtime()), submit_fn=jobs.append if need_compile else None, device_type="cuda" if meta.is_cuda() else "cpu", ) if need_compile: jobs.append(functools.partial(touch, donefile)) task = functools.partial(_worker_task_halide, lockfile, jobs) if submit_fn: wait_for_compile = submit_fn(task).result else: task() def load() -> Callable[[], Any]: if wait_for_compile: wait_for_compile() return bindings_future() return load @classmethod def generate_halide(cls, *args: Any, **kwargs: Any) -> Callable[[], Any]: return cls.generate_halide_async(*args, **kwargs)() @classmethod def build_standalone_runtime(cls) -> str: if cls._standalone_runtime_path and os.path.exists( cls._standalone_runtime_path ): return cls._standalone_runtime_path device_type = "cuda" if torch.cuda.is_available() else "cpu" libname = "libStandaloneHalideRuntime.so" target = "host-cuda" if device_type == "cuda" else "host" if cls._standalone_runtime_path: assert not os.path.exists(cls._standalone_runtime_path) # We hit this case in unittests when we run with fresh_cache() # Generating a fresh runtime over and over causes errors because we initialize # cuda hundreds of times in the same process and run out of file descriptors. # Workaround by jail breaking the current fresh_cache(). base = default_cache_dir() else: base = cache_dir() dirpath = Path(base) / f"halide-runtime-{target}-{cls.config_hash()}" os.makedirs(dirpath, exist_ok=True) done_file = str(dirpath / "done") lock_file = str(dirpath / "lock") hook_file = str(dirpath / "hooks.cpp") a_file = str(dirpath / "standalone_halide_runtime.a") so_file = str(dirpath / libname) if not os.path.exists(done_file): import halide as hl # type: ignore[import-untyped,import-not-found] from torch.utils._filelock import FileLock with FileLock(lock_file, LOCK_TIMEOUT): if not os.path.exists(done_file): with open(hook_file, "w") as f: if device_type == "cuda": f.write( cls.standalone_runtime_cuda_init.format( cls.find_header("HalideRuntimeCuda.h") ) ) hl.compile_standalone_runtime(a_file, hl.Target(target)) name, output_dir = get_name_and_dir_from_output_file_path(so_file) halide_cmd_gen = CppBuilder( name=name, sources=[hook_file, a_file], output_dir=output_dir, BuildOption=CppTorchDeviceOptions( device_type=device_type, ), ) subprocess.check_call( shlex.split(halide_cmd_gen.get_command_line()) ) touch(done_file) assert os.path.exists(so_file) cls._standalone_runtime_path = so_file return so_file @classmethod def _get_uncompiled_header(cls, device: str) -> str | None: """Header precompiling is currently disabled for halide.""" return None def _worker_task_halide(lockfile: str, jobs: list[partial[Any]]) -> None: from torch.utils._filelock import FileLock try: with FileLock(lockfile, LOCK_TIMEOUT): for job in jobs: job() except subprocess.SubprocessError as e: if os.environ.get("HALIDE_REPRO") == "1": cmd: list[Any] python, script, *cmd = getattr(e, "cmd", ("", "", "")) if os.path.basename(python).startswith("python"): code = open(script).read() main = " hl.main()" assert code.count(main) == 1 class Out: def __repr__(self) -> str: return "out" ci = cmd.index("-o") assert isinstance(ci, int) # pyrefly: ignore # unsupported-operation cmd[ci + 1] = Out() repl = textwrap.indent( textwrap.dedent( f"""\ import sys, tempfile with tempfile.TemporaryDirectory() as out: sys.argv = {["repro.py", *cmd]!r} hl.main() """ ), " ", ) code = code.replace(main, repl) with open("repro.py", "w") as fd: fd.write(code.lstrip()) raise RuntimeError(f"wrote repro.py: {e}") from e raise def touch(filename: str) -> None: open(filename, "a").close() @clear_on_fresh_cache class PyCodeCache: # Track the loaded modules so we can remove the on-disk artifacts when # clearing the cache. Note also that we may load the same path more # than once, but attach different attributes, i.e., due to different # constant values. modules: list[ModuleType] = [] # Modules loaded without extra attributes are stored here, those do not # need to be re-loaded. modules_no_attr: dict[str, ModuleType] = {} linemaps: dict[str, list[tuple[Any, ...]]] = {} @classmethod def write(cls, source_code: str, extra: str = "") -> tuple[str, str]: return write(source_code, "py", extra=extra) @classmethod def load(cls, source_code: str, extra: str = "") -> ModuleType: key, path = write(source_code, "py", extra=extra) return cls.load_by_key_path(key, path) @classmethod def load_by_key_path( cls, key: str, path: str, linemap: list[tuple[int, str]] | None = None, attrs: dict[str, Any] | None = None, ) -> ModuleType: if linemap is None: linemap = [] # we only cache when attrs is None if attrs is None and path in cls.modules_no_attr: return cls.modules_no_attr[path] in_toplevel = in_toplevel_process() mod = _reload_python_module(key, path, set_sys_modules=in_toplevel) # unzip into separate lines/nodes lists if in_toplevel: cls.linemaps[path] = list(zip(*linemap)) if attrs is not None: for k, v in attrs.items(): setattr(mod, k, v) if in_toplevel: # we only cache when attrs is None if attrs is None: cls.modules_no_attr[path] = mod cls.modules.append(mod) return mod @classmethod def cache_clear(cls, purge: bool = False) -> None: """ Clear the in-memory module cache. If purge=True, also delete all the corresponding on-disk source files. """ if purge: for mod in cls.modules: try: assert mod.__file__ os.remove(mod.__file__) except FileNotFoundError: pass cls.modules.clear() cls.modules_no_attr.clear() @classmethod @functools.cache def stack_frames_for_code( cls, path: str, lineno: int ) -> list[dict[str, Any]] | None: if path not in cls.linemaps: return None if len(cls.linemaps[path]) == 0: return None # [(starting_line, ), ...] lines, nodes = cls.linemaps[path] p = bisect_right(lines, lineno) if p == 0: return None entry = nodes[p - 1] if not entry: return None def parse_stack_trace(stack_trace: str) -> list[dict[str, Any]]: # ideally fx stores stack traces as data rather than a string # but this is not along a performance critical path regex = r'File "(.+)", line (\d+), in (.+)\n' matches = re.findall(regex, stack_trace) return [ {"filename": f, "line": int(l), "name": n} for f, l, n in reversed(matches) ] return parse_stack_trace(entry) def _load_triton_kernel_from_source( kernel_name: str, source_code: str ) -> CachingAutotuner: return getattr(PyCodeCache.load(source_code), kernel_name) def _cuda_compiler() -> str | None: if cuda_env.nvcc_exist(config.cuda.cuda_cxx): return config.cuda.cuda_cxx if config.is_fbcode(): return os.path.join(build_paths.sdk_home, "bin", "nvcc") if cuda_env.nvcc_exist(os.getenv("CUDACXX")): return os.getenv("CUDACXX", "") if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")): return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc")) return "nvcc" def _cutlass_path() -> str: if config.is_fbcode(): from libfb.py import parutil return parutil.get_dir_path("cutlass-4-headers") else: return config.cuda.cutlass_dir def _cutlass_paths() -> list[str]: return [ "include", "tools/library/include", "tools/library/src", "tools/util/include", ] def _clone_cutlass_paths(build_root: str) -> list[str]: paths = _cutlass_paths() cutlass_root = _cutlass_path() for path in _cutlass_paths(): old_path = os.path.join(cutlass_root, path) new_path = os.path.join(build_root, path) shutil.copytree(old_path, new_path, dirs_exist_ok=True) return paths def _cutlass_include_paths() -> list[str]: cutlass_path = _cutlass_path() return [ # Use realpath to get canonical absolute paths, in order not to mess up cache keys os.path.realpath(os.path.join(cutlass_path, path)) for path in _cutlass_paths() ] @torch_key_cache def cutlass_key() -> bytes: """ Compute a key representing the state of the CUTLASS library. Note: OSS and fbcode will have different keys. """ if config.is_fbcode(): with importlib.resources.path( "cutlass_library", "src_hash.txt" ) as resource_path: with open(resource_path) as resource_file: return resource_file.read().encode() combined_hash = hashlib.sha256() build_code_hash([config.cuda.cutlass_dir], "", combined_hash) return combined_hash.digest() def _cuda_lib_options() -> list[str]: """ Util function for CUTLASS backend to find the correct CUDA libraries. """ _set_gpu_runtime_env() # cpp_extension consults the env from torch.utils import cpp_extension lpaths = cpp_extension.library_paths(device_type="cuda") if use_re_build(): lpaths += [ build_paths.sdk_lib, os.path.join(build_paths.sdk_lib, "stubs"), ] extra_ldflags: list[str] = [] if is_linux(): _transform_cuda_paths(lpaths) for path in lpaths: if "torch/lib" in path: # don't want to depend on pytorch continue extra_ldflags.append(f"-L{path}") # -rpath ensures the DLL can find its dependencies when loaded, even # if the library path is non-standard. # But do not add the stubs folder to rpath as the driver is expected to be found at runtime if os.path.basename(path) != "stubs": extra_ldflags.extend(["-Xlinker", f"-rpath={path}"]) extra_ldflags.append("-lcuda") extra_ldflags.append("-lcudart") else: raise NotImplementedError( "Unsupported env, failed to find cuda libs! Currently only Linux is supported." ) return extra_ldflags def _nvcc_host_compiler_options() -> list[str]: return [ "-fPIC", "-fno-strict-aliasing", "-fvisibility=hidden", "-Wconversion", ] def _nvcc_arch_as_compile_option() -> str: arch = cuda_env.get_cuda_arch() if arch == "90": # Required by cutlass compilation. return "90a" if arch == "100": return "100a" return arch def _nvcc_compiler_options() -> list[str]: arch = _nvcc_arch_as_compile_option() code = [f"sm_{arch}", f"compute_{arch}"] if config.cuda.enable_cuda_lto: code += [f"lto_{arch}"] options = [ "-t=0", "-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1", "-DCUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES=1", "-DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED", "-w", f"-gencode=arch=compute_{arch},code=[{','.join(code)}]", config.cuda.compile_opt_level, "-std=c++17", "--expt-relaxed-constexpr", "-DNDEBUG", ] if config.is_fbcode(): options.extend(["-ccbin", os.path.dirname(build_paths.gcc)]) if config.cuda.enable_debug_info: options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"]) if config.cuda.enable_ptxas_info: options.extend( [ "--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.) "--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels "--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels "--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.) "--source-in-ptx", ] ) # Annotate the ptx file with source information if config.cuda.use_fast_math: options.extend( [ "--use_fast_math", "-DCUTLASS_USE_TANH_FOR_SIGMOID=1", ] ) return options def cuda_compile_command( src_files: list[str], dst_file: str, dst_file_ext: str, extra_args: list[str] | None = None, ) -> str: if extra_args is None: extra_args = [] if use_re_build(): build_path = os.path.dirname(dst_file) include_paths = _clone_cutlass_paths(build_path) src_files = [os.path.basename(src_file) for src_file in src_files] dst_file = os.path.basename(dst_file) else: include_paths = _cutlass_include_paths() cuda_lib_options = _cuda_lib_options() nvcc_host_compiler_options = _nvcc_host_compiler_options() nvcc_compiler_options = _nvcc_compiler_options() options = ( nvcc_compiler_options + extra_args + [ f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}" for opt in nvcc_host_compiler_options ] + ["-I" + path for path in include_paths] + cuda_lib_options ) src_file = " ".join(src_files) res = "" if dst_file_ext == "o": res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}" elif dst_file_ext == "so": options.append("-shared") res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}" elif dst_file_ext == "exe": res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}" else: raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!") if log.isEnabledFor(logging.DEBUG): log.debug("CUDA command: %s", res) else: autotuning_log.debug("CUDA command: %s", res) return res class DLLWrapper: """A wrapper for a dynamic library.""" def __init__( self, lib_path: str, ) -> None: self.lib_path = lib_path self.is_open = False self.DLL = cdll.LoadLibrary(lib_path) self.is_open = True def close(self) -> None: if self.is_open: self._dlclose() self.is_open = False def _dlclose(self) -> None: f_dlclose = None if is_linux(): syms = CDLL(None) if not hasattr(syms, "dlclose"): # Apline Linux syms = CDLL("libc.so") if hasattr(syms, "dlclose"): f_dlclose = syms.dlclose elif is_windows(): import ctypes kernel32 = ctypes.CDLL("kernel32", use_last_error=True) f_dlclose = kernel32.FreeLibrary else: raise NotImplementedError("Unsupported env, failed to do dlclose!") if f_dlclose is not None: if is_linux(): f_dlclose.argtypes = [c_void_p] f_dlclose(self.DLL._handle) elif is_windows(): import ctypes from ctypes import wintypes f_dlclose.argtypes = [wintypes.HMODULE] f_dlclose(self.DLL._handle) else: log.warning( "dll unloading function was not found, library may not be unloaded properly!" ) def __getattr__(self, name: str) -> Callable[..., None]: if not self.is_open: raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}") method = getattr(self.DLL, name) def _wrapped_func(*args: Any) -> None: err = method(*args) if err: raise RuntimeError(f"Error in function: {method.__name__}") return _wrapped_func def __enter__(self) -> Self: return self def __exit__(self, *args: Any) -> None: self.close() def __del__(self) -> None: self.close() @lru_cache def binary_error_path(output_path: str) -> str: """ standard format for the error path """ return output_path + ".error" @clear_on_fresh_cache class CUDACodeCache: """ A cache for managing the compilation and loading of CUDA source code specifically for CUTLASS. This class handles writing source code to files, compiling them into shared objects, and caching the results to avoid redundant compilations. It also manages error handling and logging for the compilation process. """ @dataclasses.dataclass class CacheEntry: input_path: str output_path: str error_json: str | None = None cache: dict[str, CacheEntry] = {} aot_kernels_o: list[str] = [] _SOURCE_CODE_SUFFIX = "cu" @staticmethod def cache_clear() -> None: CUDACodeCache.cache.clear() CUDACodeCache.aot_kernels_o.clear() @staticmethod @lru_cache(maxsize=4) def get_kernel_binary_remote_cache( caching_enabled: bool, caching_available: bool ) -> Any | None: """ Get or create the class instance of the CUTLASSKernelBinaryRemoteCache. Args: caching_enabled: Whether binary remote caching is enabled caching_available: Whether we're in fbcode environment Returns: CUTLASSKernelBinaryRemoteCache: The class instance of the kernel binary remote cache """ if not caching_enabled: log.debug("CUTLASSKernelBinaryRemoteCache not requested, skipping") return None if not caching_available: return None try: from torch._inductor.fb.kernel_binary_remote_cache import ( CUTLASSKernelBinaryRemoteCache, ) return CUTLASSKernelBinaryRemoteCache() except ImportError: log.debug( "CUTLASSKernelBinaryRemoteCache not available, remote caching disabled" ) return None @classmethod @lru_cache(None) def write(cls, source_code: str, dst_file_ext: str) -> tuple[str, str]: """ Writes source code into a file with dst_file_ext as the file extension. Returns the hash key of source code, and the path to the file. """ if config.cuda.cutlass_hash_with_compile_cmd: cuda_command = repr( cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext) ) extra = cuda_command else: extra = repr( [ # nvcc and cuda hash _cuda_compiler(), # cutlass flags and gcc hash _nvcc_compiler_options(), # flags _nvcc_host_compiler_options(), # cutlass key cutlass_key(), # hack to deal with AOTI .o compilation ] ) key, input_path = write(source_code, cls._SOURCE_CODE_SUFFIX, extra=extra) return key, input_path @classmethod def compile( cls, source_code: str, dst_file_ext: str, extra_args: list[str] | None = None ) -> tuple[str, str, str]: """ Compiles CUDA source_code into a file with dst_file_ext extension. If dst_file_ext is "so", first compiles to ".o" and then links to ".so". Returns a tuple of dst_file_path, hash_key, source_code_path """ if dst_file_ext == "so": # Two-step compilation: first compile to .o, then link to .so obj_path, _, _ = cls.compile(source_code, "o", extra_args) key, input_path = cls.write(source_code, dst_file_ext) src_files, operation_name = [obj_path], "Linking" else: # Regular compilation for non-.so files key, input_path = cls.write(source_code, dst_file_ext) src_files, operation_name = [input_path], "Compilation" key_with_ext = key + dst_file_ext if key_with_ext not in cls.cache: from torch.utils._filelock import FileLock lock_dir = get_lock_dir() lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT) with lock: output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext error_path = binary_error_path(output_path) binary_remote_cache = cls.get_kernel_binary_remote_cache( caching_enabled=config.cuda.use_binary_remote_cache and not config.force_disable_caches, caching_available=config.is_fbcode(), ) if binary_remote_cache is not None: # The remote cache implementation will only download if the file does # not already exist locally binary_remote_cache.get(output_path, error_path) if os.path.exists(error_path): with open(error_path, encoding="utf-8") as fh: error_json = fh.read() cmd_parts, error_output = json.loads(error_json) if ( binary_remote_cache is not None and config.cuda.upload_to_binary_remote_cache ): # This ensures that a local error is uploaded to the remote cache, # as we make no assumptions about the remote cache having the same # information as the local cache binary_remote_cache.put( error_path, config.cuda.binary_remote_cache_force_write ) cls.cache[key_with_ext] = CUDACodeCache.CacheEntry( input_path, output_path, error_json ) raise exc.CUDACompileError(cmd_parts, error_output) if not os.path.exists(output_path): cmd = cuda_compile_command( src_files, output_path, dst_file_ext, extra_args ) with open(input_path, "a") as f: f.write("\n") f.write(f"// CUDA {operation_name} cmd\n// {cmd}\n") start_time = time() log.debug("CUDA %s: %s", operation_name, cmd) cmd_parts = cmd.split(" ") try: if use_re_build(): from triton.fb.re_build_helper import run_build_command run_build_command( cmd_parts, os.path.dirname(input_path), os.path.basename(output_path), ) else: subprocess.check_output( cmd_parts, stderr=subprocess.STDOUT, env=os.environ ) except subprocess.CalledProcessError as error: cls._record_cuda_compile_error( error.output.decode("utf-8"), key_with_ext, cmd_parts, input_path, output_path, binary_remote_cache, ) raise exc.CUDACompileError(cmd_parts, error.output) from error except Exception as error: if "COMPILE FAILED WITH" in str(error): cls._record_cuda_compile_error( str(error), key_with_ext, cmd_parts, input_path, output_path, binary_remote_cache, ) raise exc.CUDACompileError(cmd_parts, str(error)) from error raise error end_time = time() log_duration_msg = f"CUDA {operation_name} took {end_time - start_time} seconds. Command: {cmd}" log.info(log_duration_msg) else: log.debug( "CUDA %s skipped: %s since output already exists", operation_name, output_path, ) # Upload to remote cache if enabled if ( binary_remote_cache is not None and config.cuda.upload_to_binary_remote_cache ): # will log on errors, but not fail out binary_remote_cache.put( output_path, config.cuda.binary_remote_cache_force_write ) cls.cache[key_with_ext] = CUDACodeCache.CacheEntry( input_path, output_path, None ) cache_entry: CUDACodeCache.CacheEntry = cls.cache[key_with_ext] if cache_entry.error_json is not None: # Restore cached Exception and raise it as if we had compiled cmd_parts, error_output = json.loads(cache_entry.error_json) raise exc.CUDACompileError(cmd_parts, error_output.encode("utf-8")) return (cls.cache[key_with_ext].output_path, key, input_path) @classmethod def load(cls, source_code: str, dst_file_ext: str) -> tuple[DLLWrapper, str, str]: """ Compiles source code and loads the generated .so file. Returns a tuple of DLLWrapper, hash_key, source_code_path """ if dst_file_ext != "so": raise RuntimeError( f"Only support loading a .so file for now. " f"Requested file extension: {dst_file_ext}. Source code: {source_code}" ) dst_file_path, hash_key, source_code_path = cls.compile( source_code, dst_file_ext ) return (DLLWrapper(dst_file_path), hash_key, source_code_path) @classmethod def _record_cuda_compile_error( cls, error_str: str, key_with_ext: str, cmd_parts: list[str], input_path: str, output_path: str, # Any here, as the import and type will only work in fbcode # TODO: Make the typing hint strong here binary_remote_cache: Any = None, ) -> None: error_json = json.dumps([cmd_parts, error_str]) cls.cache[key_with_ext] = CUDACodeCache.CacheEntry( input_path, output_path, error_json ) error_path = binary_error_path(output_path) with open(error_path, "w", encoding="utf-8") as fh: fh.write(error_json) # Upload to remote cache directly from memory if enabled if ( binary_remote_cache is not None and config.cuda.upload_to_binary_remote_cache ): binary_remote_cache.put( error_path, config.cuda.binary_remote_cache_force_write ) @clear_on_fresh_cache class ROCmCodeCache: @dataclasses.dataclass class CacheEntry: input_path: str output_path: str cache: dict[str, CacheEntry] = {} aot_kernels_o: list[str] = [] _SOURCE_CODE_SUFFIX = "cpp" _logged_compiler_version = False @staticmethod def cache_clear() -> None: ROCmCodeCache.cache.clear() ROCmCodeCache.aot_kernels_o.clear() @classmethod def write(cls, source_code: str, dst_file_ext: str) -> tuple[str, str]: """ Writes source code into a file with dst_file_ext as the file extension. Returns the hash key of source code, and the path to the file. """ cuda_command = repr( rocm_compile_command(["dummy_input"], "dummy_output", dst_file_ext) ) key, input_path = write( source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command ) return key, input_path @classmethod def compile( cls, source_code: str, dst_file_ext: str, extra_args: list[str] | None = None ) -> tuple[str, str, str]: """ Compiles source_code into a file with dst_file_ext extension, using the compile command specific for the ROCm platform. Returns a tuple of dst_file_path, hash_key, source_code_path """ if not cls._logged_compiler_version: cls._logged_compiler_version = True log.debug(get_compiler_version_info(str(rocm_compiler()))) key, input_path = cls.write(source_code, dst_file_ext) if key not in cls.cache: from torch.utils._filelock import FileLock lock_dir = get_lock_dir() lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT) with lock: output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext if not os.path.exists(output_path): cmd = rocm_compile_command( [input_path], output_path, dst_file_ext, extra_args ) start_time = time() cmd_parts = cmd.split(" ") try: output = subprocess.check_output( cmd_parts, stderr=subprocess.STDOUT, text=True, env=os.environ, ) log.debug("Compilation output: %s", output) except subprocess.CalledProcessError as error: raise exc.CUDACompileError(cmd_parts, error.output) from error end_time = time() log_duration_msg = f"Compilation took {end_time - start_time} seconds. Compile command: {cmd}" log.info(log_duration_msg) else: log.debug( "Skip compiling %s: output %s already exists", input_path, output_path, ) cls.cache[key] = ROCmCodeCache.CacheEntry(input_path, output_path) return (cls.cache[key].output_path, key, input_path) @classmethod def load(cls, source_code: str, dst_file_ext: str) -> tuple[DLLWrapper, str, str]: """ Compiles source code and loads the generated .so file. Returns a tuple of DLLWrapper, hash_key, source_code_path """ if dst_file_ext != "so": raise RuntimeError( f"Only support loading a .so file for now. " f"Requested file extension: {dst_file_ext}. Source code: {source_code}" ) dst_file_path, hash_key, source_code_path = cls.compile( source_code, dst_file_ext ) return (DLLWrapper(dst_file_path), hash_key, source_code_path) class CodeCacheFuture: def result(self) -> Callable[..., Any]: raise NotImplementedError class LambdaFuture(CodeCacheFuture): def __init__( self, result_fn: Callable[..., Any], future: Future[Any] | None = None ) -> None: self.result_fn = result_fn self.future = future def result(self) -> Callable[..., Any]: return self.result_fn() class StaticAutotunerFuture(CodeCacheFuture): """ A statically launchable CachingAutotuner, loaded from TritonBundler """ def __init__(self, static_autotuner: CachingAutotuner) -> None: # Pickled version of CachingAutotuner self.static_autotuner = static_autotuner # This needs to be set in AsyncCompile.triton, in case # we need to reload the CachingAutotuner from its source code # We don't store the source code on the CachingAutotuner itself # since it can be very large. self.reload_kernel_from_src: Callable[[], Any] | None = None def result(self) -> CachingAutotuner: assert self.reload_kernel_from_src is not None with dynamo_timed("StaticAutotunerFuture.warm_precompile"): self.static_autotuner.recheck_autotune_cache( reload_kernel_from_src=self.reload_kernel_from_src ) self.static_autotuner.precompile( # type: ignore[union-attr] warm_cache_only=False, reload_kernel=self.reload_kernel_from_src, static_triton_bundle_key=None, # no need to save again ) return self.static_autotuner