#!/usr/bin/env python3 from __future__ import annotations import argparse import collections import contextlib import copy import csv import dataclasses import functools import gc import importlib import itertools import json import logging import os import platform import random import shutil import signal import subprocess import sys import tempfile import time import weakref from contextlib import contextmanager from typing import Any, NamedTuple, Optional, overload, TYPE_CHECKING, TypeVar from unittest.mock import MagicMock import numpy as np import pandas as pd import psutil import yaml from scipy.stats import gmean, ttest_ind from tqdm.auto import tqdm, trange import torch import torch._dynamo import torch._dynamo.utils import torch._export import torch.distributed import torch.multiprocessing as mp from torch._C import _has_cuda as HAS_CUDA, _has_xpu as HAS_XPU from torch._C._nativert import PyModelRunner from torch._dynamo.profiler import fx_insert_profiling, Profiler from torch._dynamo.testing import ( dummy_fx_compile, format_speedup, reset_rng_state, same, ) from torch._dynamo.utils import bitwise_same from torch._logging.scribe import open_source_signpost try: from torch._dynamo.utils import clone_inputs, graph_break_reasons from torch._inductor.utils import fresh_cache except ImportError: from _dynamo.utils import clone_inputs, graph_break_reasons from _inductor.utils import fresh_cache import torch._functorch.config from torch._functorch.aot_autograd import set_model_name from torch._inductor import config as inductor_config, metrics from torch._subclasses.fake_tensor import FakeTensorMode from torch.utils import _pytree as pytree from torch.utils._pytree import tree_map, tree_map_only try: import torch_xla import torch_xla.core.xla_model as xm # This is to workaround the backward issue https://github.com/pytorch/xla/issues/4174 torch_xla._XLAC._init_computation_client() except ImportError: # ignore the error if torch_xla is not installed pass if TYPE_CHECKING: from collections.abc import Sequence _D = TypeVar("_D", bound=dict[str, Any]) _T = TypeVar("_T") log = logging.getLogger(__name__) # We are primarily interested in TF32 torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True) # Suppress torch.profiler spam os.environ["KINETO_LOG_LEVEL"] = "5" current_name = "" current_device = "" current_backend = "" current_mode = "" current_dtype = "" current_quantization = "" current_settings = None current_batch_size = None output_filename = None disable_output = False MAX_DOWNLOAD_ATTEMPTS = 5 class CI(NamedTuple): backend: str # aot_eager or inductor training: bool dynamic: bool = False device: str = "cuda" CI_SKIP_OPTIMIZER = { # HF "MobileBertForMaskedLM", # Stack issue in fx } try: from .fb.common import INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY except ImportError: INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY = set() try: from pytorch.benchmark.fb.run_utils import trace_handler except ImportError: trace_handler = None CI_SKIP_DYNAMIC_BATCH_ONLY = { "sam", # See https://github.com/mindee/doctr/blob/f2114758d529ed8d3d0030581638f0520b6b98d8/doctr/models/detection/core.py#L89 # It iterates over the batch, which is dynamic, and dynamo chokes # We should be able to graphbreak there. "doctr_det_predictor", "dlrm", "pyhpc_isoneutral_mixing", "pyhpc_equation_of_state", "pyhpc_turbulent_kinetic_energy", "detectron2_fcos_r_50_fpn", "detectron2_fasterrcnn_r_101_c4", "detectron2_fasterrcnn_r_101_dc5", "detectron2_fasterrcnn_r_101_fpn", "detectron2_fasterrcnn_r_50_c4", "detectron2_fasterrcnn_r_50_dc5", "detectron2_fasterrcnn_r_50_fpn", "Reformer", "llama", }.union(INTERNAL_CI_SKIP_DYNAMIC_BATCH_ONLY) # These models currently fail accuracy with eager Adam optimizer # so we use SGD when running the full benchmarks # https://github.com/pytorch/pytorch/issues/115966 BENCHMARK_USE_SGD = { # TorchBench "BERT_pytorch", "LearningToPaint", "alexnet", "dcgan", "demucs", "densenet121", "dlrm", "fastNLP_Bert", "mobilenet_v2", "phlippe_densenet", "phlippe_resnet", "pytorch_stargan", "resnet18", "shufflenet_v2_x1_0", "speech_transformer", "squeezenet1_1", "stable_diffusion_text_encoder", "vgg16", # HF "AlbertForMaskedLM", "BartForCausalLM", "ElectraForCausalLM", "M2M100ForConditionalGeneration", "MBartForCausalLM", "OPTForCausalLM", "PLBartForCausalLM", "PegasusForCausalLM", "TrOCRForCausalLM", "XGLMForCausalLM", # TIMM "adv_inception_v3", "tf_efficientnet_b0", "ghostnet_100", } # These models OOM in CI # due to the extra memory of Adam optimizer states, # so we fall back to SGD in CI CI_USE_SGD = { "torchrec_dlrm", "demucs", "detectron2_fasterrcnn_r_101_c4", "detectron2_fasterrcnn_r_101_dc5", "detectron2_fasterrcnn_r_101_fpn", "detectron2_fasterrcnn_r_50_c4", "detectron2_fasterrcnn_r_50_dc5", "detectron2_fasterrcnn_r_50_fpn", "detectron2_maskrcnn_r_101_c4", "detectron2_maskrcnn_r_101_fpn", "detectron2_maskrcnn_r_50_c4", "detectron2_maskrcnn_r_50_fpn", "llama_v2_7b_16h", "mobilenet_v2_quantized_qat", "phi_1_5 resnet50_quantized_qat", "BlenderbotForCausalLM", "DALLE2_pytorch", "moco", "timm_efficientdet", "ghostnet_100", "inception_v3", "mobilevit_s", "pytorch_CycleGAN_and_pix2pix", "vision_maskrcnn", "dlrm", "resnet50", "dm_nfnet_f0", } DO_NOT_CAST_INPUTS = {"stable_diffusion"} # Maps a benchmark model name to a list of status codes. For any listed entry, we'll # capture TORCH_COMPILE_DEBUG logs in CI runs and preserve them (i.e., for upload) if # the result status matches one listed. CI_PRESERVE_COMPILE_DEBUG = { # For example: # "mnasnet1_0": ["fail_accuracy"], } @functools.lru_cache(maxsize=1) def load_yaml_file(filename): filepath = os.path.join(os.path.dirname(__file__), filename) with open(filepath) as f: data = yaml.safe_load(f) internal_file_path = os.path.join(os.path.dirname(__file__), "fb", filename) if os.path.exists(internal_file_path): with open(internal_file_path) as f: internal_data = yaml.safe_load(f) data.update(internal_data) def flatten(lst): for item in lst: if isinstance(item, list): yield from flatten(item) else: yield item def maybe_list_to_set(obj): if isinstance(obj, dict): return {k: maybe_list_to_set(v) for k, v in obj.items()} if isinstance(obj, list): return set(flatten(obj)) return obj return maybe_list_to_set(data) def model_specified_by_path(path_and_class_str): return ":" in path_and_class_str def load_model_from_path(path_and_class_str): configs = {} for kvstr in path_and_class_str.split(","): k, v = kvstr.split(":") configs[k] = v for name in ["path", "class"]: if name not in configs: raise RuntimeError( "Invalid --only arguments. Check help message for the correct format" ) path = configs["path"] class_name = configs["class"] if path[:1] != "/": raise RuntimeError( "Use absolute path since dynamo may change the current working directory which makes using relative path tricky" ) spec = importlib.util.spec_from_file_location("module_name", path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) model_class = getattr(module, class_name) assert issubclass(model_class, torch.nn.Module) model = model_class() assert hasattr(model, "get_example_inputs") inputs = model.get_example_inputs() return model, inputs def write_outputs(filename, headers, row, upload_to_benchmark_db: bool = True): """ Write both CSV and JSON outputs using the original CSV output interface """ global disable_output if disable_output: return output_csv(filename, headers, row) if upload_to_benchmark_db: output_json(filename, headers, row) def output_csv(filename, headers, row): if os.path.exists(filename): with open(filename) as fd: lines = list(csv.reader(fd)) or [[]] if headers and len(headers) > len(lines[0]): # if prior results failed the header might not be filled in yet lines[0] = headers else: headers = lines[0] else: lines = [headers] lines.append([(f"{x:.6f}" if isinstance(x, float) else x) for x in row]) with open(filename, "w") as fd: writer = csv.writer(fd, lineterminator="\n") for line in lines: writer.writerow(list(line) + ["0"] * (len(headers) - len(line))) def output_json(filename, headers, row): """ Write the result into JSON format, so that it can be uploaded to the benchmark database to be displayed on OSS dashboard. The JSON format is defined at https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database """ origin = "" if "torchbench" in filename: origin = "torchbench" elif "huggingface" in filename: origin = "huggingface" elif "timm_models" in filename: origin = "timm_models" extra_info = { "device": current_device, "quantization": current_quantization, "batch_size": current_batch_size, } if current_settings: extra_info.update(current_settings) mapping_headers = {headers[i]: v for i, v in enumerate(row)} with open(f"{os.path.splitext(filename)[0]}.json", "a") as f: for header, value in mapping_headers.items(): # These headers are not metric names if header in ("dev", "name", "batch_size"): continue # Make sure that the record is valid if not current_name: continue record = { "benchmark": { "name": "TorchInductor", "mode": current_mode, "dtype": current_dtype, "extra_info": extra_info, }, "model": { "name": current_name, "type": "OSS model", "backend": current_backend, "origins": [origin], }, } # NB: When the metric is accuracy, its value is actually a string, i.e. pass, and # not a number. ClickHouse doesn't support mix types atm. It has a Variant type # https://clickhouse.com/docs/en/sql-reference/data-types/variant, but this isn't # recommended by CH team themselves. The workaround here is to store that value # in the extra_info field instead. if isinstance(value, str): record["metric"] = { "name": header, "extra_info": {"benchmark_values": [value]}, } else: record["metric"] = { "name": header, "benchmark_values": [value], } print(json.dumps(record), file=f) def get_suite_from_model_iter_fn(model_iter_fn): # TODO: This is a bit of a hack suite = None if (runner := getattr(model_iter_fn, "__self__", None)) and hasattr( runner, "suite_name" ): suite = runner.suite_name return suite def output_signpost(data, args, suite, error=None): from torch.utils._stats import simple_call_counter data = data.copy() if "name" not in data: data["name"] = current_name if "dev" not in data: data["dev"] = current_device filtered_args = vars(args).copy() # I generated this list by reading through all the configs and dropping # ones that looked irrelevant or redundant for k in [ "filter", "exclude", "exclude_exact", "dump_raw_metrics", "log_operator_inputs", "distributed_master_port", "skip_accuracy_check", "generate_aot_autograd_stats", "output", "output_directory", "disable_output", "export_profiler_trace", "profiler_trace_name", "explain", "stats", "print_memory", "print_compilation_time", "print_dataframe_summary", "print_graph_breaks", "log_graph_breaks", "timing", "progress", "timeout", "per_process_memory_fraction", "minify", "verbose", "quiet", "print_fx", "print_aten_ops", "log_conv_args", "recompile_profiler", "find_batch_sizes", # Redundant "batch_size", "batch_size_file", "only", "diff_branch", "tag", "coverage", "overhead", "speedup_dynamo_ts", "speedup_fx2trt", "speedup_fx2trt_fp16", "accuracy", "performance", "tolerance", ]: del filtered_args[k] event_name = "unknown" if args.accuracy: event_name = "accuracy" elif args.quantization: event_name = "quantization" elif args.performance: event_name = "performance" from torch._dynamo.utils import calculate_time_spent, compilation_time_metrics wall_time_by_phase = calculate_time_spent() open_source_signpost( subsystem="dynamo_benchmark", name=event_name, parameters=json.dumps( { **data, # TODO: Arguably the rest of these should be in the CSV too "suite": suite, # Better than using compile_times utils directly # NB: Externally, compilation_metrics colloquially refers to # the coarse-grained phase timings, even though internally # they are called something else "compilation_metrics": wall_time_by_phase, "agg_compilation_metrics": { k: sum(v) for k, v in compilation_time_metrics.items() }, "detailed_compilation_metrics": compilation_time_metrics, "simple_call_counter": simple_call_counter, # NB: args has training vs inference "args": filtered_args, "error": error, } ), ) return wall_time_by_phase["total_wall_time"] def nothing(f): return f @functools.cache def patch_torch_manual_seed(): """Make torch manual seed deterministic. Helps with accuracy testing.""" def deterministic_torch_manual_seed(*args, **kwargs): from torch._C import default_generator seed = 1337 if HAS_CUDA: import torch.cuda if not torch.cuda._is_in_bad_fork(): torch.cuda.manual_seed_all(seed) if HAS_XPU: import torch.xpu if not torch.xpu._is_in_bad_fork(): torch.xpu.manual_seed_all(seed) return default_generator.manual_seed(seed) torch.manual_seed = deterministic_torch_manual_seed def empty_gpu_cache(device): """ Explicitly empty gpu cache to avoid OOM in subsequent run. """ if device not in ["cuda", "xpu", "mps"]: log.warning( "Trying to call the empty_gpu_cache for device: %s, which is not in list [cuda, xpu]", device, ) return getattr(torch, device).empty_cache() def synchronize(): pass def summarize_graph_break(filename): """ Sorts and de-dupes the graphs breaks on the reason string. Note that this function is just a best effort to reduce the logging information. We could miss some graph breaks because of de-duping. We can further refine this function as need arises. """ log_file = f"{filename.rstrip('.csv')}_graph_breaks.csv" if os.path.exists(log_file): df = pd.read_csv(log_file) df = df.sort_values("reason").drop_duplicates(subset="reason") # Specialize for multi tensor sgd as reason is not identical multi_tensor_sgd_row = df.loc[df["reason"].str.contains("_multi_tensor_sgd")] if len(multi_tensor_sgd_row): df = df[ ~df["reason"].str.contains("_multi_tensor_sgd") ] # Drop all sgd rows df = pd.concat( [df, pd.DataFrame([multi_tensor_sgd_row.iloc[0]])], axis=0 ) # Add back a single row df.to_csv(f"{log_file.rstrip('.csv')}_deduped.csv", index=False) def print_summary(filename, print_dataframe=False): if not (filename and os.path.exists(filename)): return data = pd.read_csv(filename) if "tag" in data.columns: for tag in data.tag.unique(): if tag == "0.0000": continue # This happens for failed runs print(f"\nSummary for tag={tag}:") print_summary_table(data[data.tag == tag], print_dataframe=print_dataframe) else: print_summary_table(data, print_dataframe=print_dataframe) summarize_graph_break(filename) def print_summary_table(data, print_dataframe=False): if print_dataframe: pd.options.display.max_rows = 1000 pd.options.display.max_columns = 1000 pd.options.display.width = 2000 print(data) width = max(map(len, data.columns)) for col in data.columns: try: if col in ("dev", "name", "batch_size", "tag"): continue elif col in ("pct_ops", "pct_time"): print(col.ljust(width), f"{data[col].mean():.3%}") elif col in ("graphs", "graph_calls", "captured_ops", "total_ops"): print(col.ljust(width), f"{data[col].mean():.3f}") elif col in ("compilation_latency"): print(col.ljust(width), f"mean={data[col].mean():.3f} seconds") elif col in ("compression_ratio"): print(col.ljust(width), f"mean={data[col].mean():.3f}x") elif col in ("accuracy"): pass_rate = (data[col] == "pass").mean() print(col.ljust(width), f"pass_rate={100 * pass_rate:.2f}%") else: cdata = data[col] print( col.ljust(width), f"gmean={gmean(cdata):.2f}x mean={cdata.mean():.3f}x", ) except Exception: pass def tensor_is_on_xla(tensors): def visit(x: torch.Tensor): nonlocal result if x.device.type == "xla": result = True result = False tree_map_only(torch.Tensor, visit, tensors) return result def timed( model, model_iter_fn, example_inputs, times=1, return_result=False, collect_outputs=False, batch_size=None, ): use_xla = tensor_is_on_xla(example_inputs) synchronize() if batch_size: patch_torch_manual_seed() if use_xla: xm.mark_step() xm.wait_device_ops() def vary_batch(t: torch.Tensor, new_batch_size) -> torch.Tensor: for i, s in enumerate(t.size()): if s == batch_size: # If new batch is smaller, we truncate if new_batch_size < batch_size: indexer = [slice(None)] * t.ndim indexer[i] = slice(0, new_batch_size) t = t[tuple(indexer)] # If new batch is greater, we just duplicate the last row # over and over until we hit the desired batch size elif new_batch_size > batch_size: indexer = [slice(None)] * t.ndim indexer[i] = -1 last_slice = t[tuple(indexer)].unsqueeze(i) repeat_shape = list(t.shape) repeat_shape[i] = new_batch_size - batch_size padding = last_slice.expand(*repeat_shape) t = torch.cat([t, padding], dim=i) break return t time_total = 0 # Dont collect outputs to correctly measure timing for i in range(times): # If batch_size is 1, it too often collides with other non batch size # dimensions resulting in errors. if batch_size and batch_size > 1: # Calculate new batch size by varying the original batch size by up to 20% # Ensure it's at least greater than 1 variation = random.uniform(0.8, 1.2) new_batch_size = max(2, int(batch_size * variation)) example_inputs = tree_map_only( torch.Tensor, lambda x: vary_batch(x, new_batch_size), example_inputs ) # Put this call inside the loop to reset the seed for each iteration. # Don't include reset_rng_state() to correctly measure timing reset_rng_state(use_xla) t_iter_begin = time.perf_counter() result = model_iter_fn(model, example_inputs, collect_outputs=collect_outputs) # instead of calling sync on result_list, we should call mark_step. # In training case, result_list may be empty, but we want to # send all the pending graphs for compilation. if use_xla: # For the model running on regular torchxla (baseline), we need the # mark step to send the accumulated graph for compilation. # # For the model running with dynamo/torchxla bridge, in training case, # we need the mark step to send the optimizer graph out for # compilation. xm.mark_step() t_iter_end = time.perf_counter() time_total += t_iter_end - t_iter_begin t_0 = time.perf_counter() if use_xla: xm.wait_device_ops() synchronize() t_1 = time.perf_counter() time_total += t_1 - t_0 return (time_total, result) if return_result else time_total @overload def _normalize_bench_inputs(example_inputs: _D) -> tuple[tuple[()], _D]: ... @overload def _normalize_bench_inputs( example_inputs: Sequence[_T], ) -> tuple[tuple[_T, ...], dict[str, Any]]: ... def _normalize_bench_inputs(example_inputs): # NOTE(bowbao): For huggingface benchmark, example_inputs are formatted as dictionary, # and consumed like `model(**example_inputs)`. # For other benchmarks, example_inputs are formatted as tuple and consumed # like `model(*example_inputs)`. if isinstance(example_inputs, dict): return (), example_inputs else: return tuple(example_inputs), {} def _register_dataclass_output_as_pytree(example_outputs) -> None: # NOTE(angelayi): For huggingface benchmark, some example outputs are # formatted as a dataclass which pytree cannot consume. So we want # to register the pytree implementation here example_outputs_flat = pytree.tree_leaves(example_outputs) output_dataclass_types = [ type(out) for out in example_outputs_flat if dataclasses.is_dataclass(type(out)) ] for output_type in output_dataclass_types: from torch._export.utils import register_dataclass_as_pytree_node register_dataclass_as_pytree_node( output_type, serialized_type_name=f"{output_type.__module__}.{output_type.__name__}", ) class Stats: totals = collections.defaultdict(collections.Counter) @classmethod def reset_counters(cls): for k, v in torch._dynamo.utils.counters.items(): cls.totals[k].update(v) ok = torch._dynamo.utils.counters["frames"]["ok"] total = torch._dynamo.utils.counters["frames"]["total"] torch._dynamo.utils.counters.clear() return ok, total @classmethod def print_summary(cls): for k, v in sorted(cls.totals.items()): lines = "\n ".join(map(str, v.most_common(50))) print(f"STATS {k}\n {lines}") @classmethod def aot_summary(cls): return [cls.totals["aot_autograd"]["total"], cls.totals["aot_autograd"]["ok"]] def coverage_experiment(args, model_iter_fn, model, example_inputs): """ Test operator/model coverage of TorchDynamo and record statistics taken from a profiler. This target is mainly intended to check correctness. Writes to ./coverage.csv """ profiler = Profiler() frozen_model_iter_fn = torch._dynamo.run(model_iter_fn) with profiler.prof: frozen_model_iter_fn(model, example_inputs) coverage_result = profiler.results() write_outputs( output_filename, ( "dev", "name", "batch_size", "graphs", "graph_calls", "captured_ops", "total_ops", "pct_ops", "pct_time", ), [ current_device, current_name, current_batch_size, ] + coverage_result.tocsv(), ) return coverage_result def speedup_experiment_fx2trt(args, model_iter_fn, model, example_inputs): """ Measure speedups over eager using the trt inference backend. TRT backend is based fx graph generated by torch._dynamo. Writes to ./speedups_fx2trt.csv """ return speedup_experiment(args, model_iter_fn, model, example_inputs) # TODO: CompilerProfiler is deprecated, remove this def recompile_profiler_experiment(args, model_iter_fn, model, example_inputs): prof = torch._dynamo.utils.CompilerProfiler() opt_model_iter_fn = torch._dynamo.optimize(prof, nopython=args.nopython)( model_iter_fn ) opt_model_iter_fn(model, example_inputs) write_outputs( output_filename, ["model", "profiler report"], [current_name, prof.report()] ) met = prof.get_metrics() guard_failures = len(met["guard_failures"]) return [guard_failures] def randomize_input(inputs): if isinstance(inputs, (list, tuple)): return type(inputs)([randomize_input(x) for x in inputs]) elif isinstance(inputs, torch.Tensor): if inputs.dtype in (torch.float32, torch.float64): torch._dynamo.utils.counters["randomize_input"]["times"] += 1 return torch.randn_like(inputs) elif inputs.dtype == torch.int64: # Note: we can not simply tune integer tensors as follows # `return torch.randint_like(inputs, high=inputs.max().item())` # This may break some invariants between tensors. # E.g. in embedding lookup case, one tensor is the length # and another is an indices tensor. return inputs else: raise RuntimeError( f"randomize_input need support tensor of type {inputs.dtype}" ) else: raise RuntimeError( f"randomize_input can not handle input of type {type(inputs)}" ) def maybe_mark_step(args): if args.trace_on_xla: xm.mark_step() def latency_experiment(args, model_iter_fn, model, example_inputs, mark, **kwargs): """ Measure latency on a specific backend. """ timings = np.zeros((args.repeat,), np.float64) # if we randomize the input, we should also check the result is correct should_randomize_input = args.randomize_input import contextlib from torch._inductor.utils import maybe_profile @contextlib.contextmanager def maybe_mark_profile(*args, **kwargs): prof: torch.profiler.profile = kwargs.pop("p", None) mark = kwargs.pop("mark", None) if prof: with torch.profiler.record_function(mark): yield else: yield times = args.iterations_per_run with maybe_profile(args.export_profiler_trace, **args.profile_details) as p: for rep in trange(args.repeat, desc="running benchmark"): inputs = ( randomize_input(copy.deepcopy(example_inputs)) if should_randomize_input else example_inputs ) # need call mark_step to perform the computation # on randomize_input. Otherwise the first call using the # inputs will incur high penalty then the next one. maybe_mark_step(args) with maybe_mark_profile(p=p, mark=mark): timings[rep], actual_output = timed( model, model_iter_fn, inputs, return_result=True, times=times, collect_outputs=args.collect_outputs, ) if args.export_profiler_trace: name = args.profiler_trace_name + "_" + model.name if hasattr(args, "rank"): name += f"_rank_{args.rank}" name += ".json" name = os.path.join(torch._dynamo.config.base_dir, name) p.export_chrome_trace(name) return timings # TODO: This seems to be specifically triggered by torchao testing def latency_experiment_summary(suite_name, args, model, timings, **kwargs): median = np.median(timings, axis=0) speedup = median[0] / median[1] if args.dump_raw_metrics: np.save( f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy", timings, ) first_headers = ["dev", "name", "batch_size"] first_fields = [current_device, current_name, current_batch_size] if "tag" in kwargs: first_headers.append("tag") first_fields.append(kwargs["tag"]) headers = first_headers + ["speedup", "abs_latency"] row = first_fields + [float(speedup), median[1] * 1000] msg = f"{speedup:.3f}x" if args.baseline: headers.extend( [ "baseline", "speedup_vs_baseline", ] ) df = pd.read_csv(args.baseline) try: baseline_speedup = df[df["name"] == current_name]["speedup"].item() row.extend([baseline_speedup, speedup / baseline_speedup]) msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]" except (KeyError, ZeroDivisionError): row.extend( [ 0.0, 0.0, ] ) if "compilation_latency" in kwargs: headers += [ "compilation_latency", "compression_ratio", "eager_peak_mem", "dynamo_peak_mem", ] row.append(kwargs["compilation_latency"]) row.append(kwargs["compression_ratio"]) row.append(kwargs["eager_peak_mem"]) row.append(kwargs["dynamo_peak_mem"]) if "cache_lookup_latency" in kwargs: headers.append("cache_lookup_latency") row.append(kwargs["cache_lookup_latency"]) if "dynamo_stats" in kwargs: for k, v in kwargs["dynamo_stats"].items(): headers.append(k) row.append(v) write_outputs( output_filename, headers, row, ) c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True) assert output_filename.find(".csv") > 0, ( f"expected output_filename to be a .csv, but got {output_filename}" ) write_outputs( output_filename[:-4] + "_compilation_metrics.csv", first_headers + c_headers, first_fields + c_data, ) # Hypothetically you can use this from other places, but it's currently # inaccessible, and when this assert fails you need to update the # event_name here to account for the other cases you are using this assert args.quantization is not None output_signpost( dict(zip(headers, row)), args, suite_name, ) return msg def speedup_experiment(args, model_iter_fn, model, example_inputs, **kwargs): """ Measure speedups over eager. Writes to ./speedups.csv """ timings = np.zeros((args.repeat, 2), np.float64) # if we randomize the input, we should also check the result is correct should_randomize_input = args.randomize_input import contextlib from torch._inductor.utils import maybe_profile @contextlib.contextmanager def maybe_mark_profile(*args, **kwargs): prof: torch.profiler.profile = kwargs.pop("p", None) mark = kwargs.pop("mark", None) if prof: with torch.profiler.record_function(mark): yield else: yield times = args.iterations_per_run # Use higher tolerance for XLA since XLA cause numerical instability when # graph size changes tolerance = args.xla_tolerance if args.trace_on_xla else 1e-4 torch._dynamo.config.repro_tolerance = tolerance with maybe_profile(args.export_profiler_trace, **args.profile_details) as p: if args.export_aot_inductor: frozen_model_iter_fn = export_aot_inductor( model, example_inputs, args.inductor_compile_mode ) elif args.export_nativert: frozen_model_iter_fn = export_nativert(model, example_inputs) elif args.torchscript_jit_trace: frozen_model_iter_fn = torchscript_jit_trace(model, example_inputs) elif args.aot_precompile: frozen_model_iter_fn = aot_precompile(model, example_inputs) else: if kwargs["hf_llm"]: # If it's an llm, we want to optimize model.forward, and use # the generate function model.forward = torch._dynamo.run(model) frozen_model_iter_fn = model_iter_fn else: frozen_model_iter_fn = torch._dynamo.run(model_iter_fn) for rep in trange(args.repeat, desc="running benchmark"): inputs = ( randomize_input(copy.deepcopy(example_inputs)) if should_randomize_input else example_inputs ) # need call mark_step to perform the computation # on randomize_input. Otherwise the first call using the # inputs will incur high penalty then the next one. maybe_mark_step(args) # interleave the runs to handle frequency scaling and load changes with ( maybe_mark_profile(p=p, mark="expected"), torch.compiler.set_stance("force_eager"), ): timings[rep, 0], expected_output = timed( model, model_iter_fn, inputs, return_result=True, times=times, collect_outputs=args.collect_outputs, batch_size=kwargs.get("batch_size"), ) # call mark_step between the 2 calls to make the comparison fair. maybe_mark_step(args) with maybe_mark_profile(p=p, mark="actual"): timings[rep, 1], actual_output = timed( model, frozen_model_iter_fn, inputs, return_result=True, times=times, collect_outputs=args.collect_outputs, ) if args.export_profiler_trace: name = args.profiler_trace_name + "_" + model.name if hasattr(args, "rank"): name += f"_rank_{args.rank}" if args.export_perfdoctor and trace_handler: trace_handler(name, p) else: name += ".json" name = os.path.join(torch._dynamo.config.base_dir, name) p.export_chrome_trace(name) median = np.median(timings, axis=0) speedup = median[0] / median[1] if args.dump_raw_metrics: np.save( f"{output_filename[:-4]}-raw_timings-{current_name}-{current_device}.npy", timings, ) first_headers = ["dev", "name", "batch_size"] first_fields = [current_device, current_name, current_batch_size] if "tag" in kwargs: first_headers.append("tag") first_fields.append(kwargs["tag"]) headers = first_headers + ["speedup", "abs_latency"] row = first_fields + [float(speedup), median[1] * 1000] msg = f"{speedup:.3f}x" if args.baseline: headers.extend( [ "baseline", "speedup_vs_baseline", ] ) df = pd.read_csv(args.baseline) try: baseline_speedup = df[df["name"] == current_name]["speedup"].item() row.extend([baseline_speedup, speedup / baseline_speedup]) msg = f"{baseline_speedup:.3f}x -> {speedup:.3f}x [{speedup / baseline_speedup:.3f}x]" except (KeyError, ZeroDivisionError): row.extend( [ 0.0, 0.0, ] ) if "compilation_latency" in kwargs: headers += [ "compilation_latency", "compression_ratio", "eager_peak_mem", "dynamo_peak_mem", ] row.append(kwargs["compilation_latency"]) row.append(kwargs["compression_ratio"]) row.append(kwargs["eager_peak_mem"]) row.append(kwargs["dynamo_peak_mem"]) if "cache_lookup_latency" in kwargs: headers.append("cache_lookup_latency") row.append(kwargs["cache_lookup_latency"]) if "dynamo_stats" in kwargs: for k, v in kwargs["dynamo_stats"].items(): headers.append(k) row.append(v) write_outputs( output_filename, headers, row, ) c_headers, c_data = torch._dynamo.utils.compile_times(repr="csv", aggregate=True) assert output_filename.find(".csv") > 0, ( f"expected output_filename to be a .csv, but got {output_filename}" ) write_outputs( output_filename[:-4] + "_compilation_metrics.csv", first_headers + c_headers, first_fields + c_data, ) output_signpost( dict(zip(headers, row)), args, get_suite_from_model_iter_fn(model_iter_fn), ) return msg def overhead_experiment(*args, model_iter_fn): """ Measure overheads of TorchDynamo by running with no backend (only eager+FX), and reporting speedup/slowdown over eager. Writes to ./overheads.csv """ return speedup_experiment(*args, model_iter_fn) def print_fx(gm, example_inputs): print(gm.graph) return gm def print_aten_ops(gm, example_inputs): from functorch.compile import aot_module def trace_printer(gm, _): print(gm.graph) return gm return aot_module(gm, fw_compiler=trace_printer, bw_compiler=trace_printer) def baselines(models, model_iter_fn, example_inputs, args): """ Common measurement code across all baseline experiments. """ models = list(models) for idx, (name, model) in enumerate(models): if idx == 0: result0 = model_iter_fn(model, example_inputs) elif model is not None: try: result = model_iter_fn(model, example_inputs) if same(result0, result): continue print(name, "is INCORRECT") except Exception: log.exception("error checking %s", name) models[idx] = (name, None) timings = np.zeros((args.repeat, len(models)), np.float64) timings.fill(1.0e10) for rep in range(args.repeat): for idx, (name, model) in enumerate(models): if model is not None: try: timings[rep, idx] = timed(model, model_iter_fn, example_inputs) except Exception: pass pvalue = [ ttest_ind(timings[:, 0], timings[:, i]).pvalue for i in range(1, timings.shape[1]) ] median = np.median(timings, axis=0) speedup = median[0] / median[1:] for idx, (name, model) in enumerate(models[1:]): if model is None: speedup[idx] = 0.0 result = " ".join( [ format_speedup(s, p, m is not None) for s, p, m in zip(speedup, pvalue, [m for n, m in models[1:]]) ] ) write_outputs( output_filename, ("dev", "name", "batch_size") + tuple(n for n, m in models[1:]), [current_device, current_name, current_batch_size] + [f"{x:.4f}" for x in speedup], ) return result def xla(args, model_iter_fn, model, example_inputs): xla_dev = xm.xla_device(devkind=current_device) model_xla = copy.deepcopy(model).to("cpu").to(device=xla_dev) example_inputs_xla = tree_map_only( torch.Tensor, lambda x: x.to("cpu").to(device=xla_dev), example_inputs ) for _ in range(3): # warmup timed(model, model_iter_fn, example_inputs) timed(model_xla, model_iter_fn, example_inputs_xla) timings = np.zeros((args.repeat, 2), np.float64) timings.fill(1.0e10) for rep in range(args.repeat): timings[rep, 0] = timed(model, model_iter_fn, example_inputs) timings[rep, 1] = timed(model_xla, model_iter_fn, example_inputs_xla) pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue time_baseline, time_xla = np.median(timings, axis=0) speedup = time_baseline / time_xla write_outputs( output_filename, ("dev", "name", "batch_size", "speedup", "time_baseline", "time_xla"), [ current_device, current_name, current_batch_size, speedup, time_baseline, time_xla, ], ) return format_speedup(speedup, pvalue) def try_script(model, example_inputs): try: return torch.jit.script(model) except Exception: return None def _produce_dynamic_shapes_for_export(path, x): # mark_dynamic() is ignored for export. # use this to produce dynamic_shapes spec instead. from torch.export.dynamic_shapes import Dim if not isinstance(x, torch.Tensor): return None return dict.fromkeys(getattr(x, "_dynamo_dynamic_indices", {}), Dim.AUTO) class AOTInductorModelCache: cache: dict[weakref.ref, tuple[Any, float]] = {} @classmethod def load(cls, model, example_inputs, mode): import torch._inductor from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path key = weakref.ref(model) if key not in cls.cache: # Register the output dataclass to pytree example_args, example_kwargs = _normalize_bench_inputs(example_inputs) with torch.no_grad(): # copy.deepcopy is required to prevent any surprising side-effect, # see https://github.com/pytorch/pytorch/issues/113029 # This will cause memory stats to be overshadowed by this eager run. # To fix that, memory stats will be reset later. example_outputs = copy.deepcopy(model)(*example_args, **example_kwargs) if pytree.is_namedtuple_instance(example_outputs): typ = type(example_outputs) pytree._register_namedtuple( typ, serialized_type_name=f"{typ.__module__}.{typ.__name__}", ) else: _register_dataclass_output_as_pytree(example_outputs) combined_args = _combine_args(model, example_args, example_kwargs) dynamic_shapes = _tree_map_with_path( _produce_dynamic_shapes_for_export, combined_args ) # delete example_outputs and reset memory stats here del example_outputs if current_device == "cuda": empty_gpu_cache(current_device) torch.cuda.reset_peak_memory_stats() pre_clone_memory_used = torch.cuda.max_memory_allocated() elif current_device == "hpu": torch.hpu.reset_peak_memory_stats() pre_clone_memory_used = torch.hpu.max_memory_allocated() # Clone the model pre-exporting. This prevents scenarios observed in a few # models, where the forward pass modifies model state while exporting, and # FakeTensors are thus saved as model data members. This invalidates model # reuse in eager mode, so it's safest to export a model clone. model_clone = copy.deepcopy(model) # Since CPU doesn't monitor max memory allocation, anything measuring peak # memory will miss our transient model clone on CPU anyway. # # The justification for tracking this value (in order to remove it from the # AOTInductor memory measurements) is that normal usage of AOTInductor would # not clone the model, since the eager model would be unused post-export. clone_memory_used = 0.0 if current_device == "cuda": clone_memory_used = ( torch.cuda.max_memory_allocated() - pre_clone_memory_used ) / 1e9 elif current_device == "hpu": clone_memory_used = ( torch.hpu.max_memory_allocated() - pre_clone_memory_used ) / 1e9 inductor_configs = {} if mode == "max-autotune": inductor_configs["max_autotune"] = True ep = torch.export.export( model_clone, example_args, example_kwargs, dynamic_shapes=dynamic_shapes, strict=False, ) with torch.no_grad(): package_path = torch._inductor.aoti_compile_and_package( ep, inductor_configs=inductor_configs ) # type: ignore[arg-type] cls.cache[key] = ( torch._inductor.aoti_load_package(package_path), clone_memory_used, ) return cls.cache[key][0] @classmethod def get_excess_memory(cls, model) -> float: return cls.cache.get(weakref.ref(model), (None, 0.0))[1] class NativeRTCache: cache: dict[weakref.ref, Any] = {} @classmethod def load(cls, model, example_inputs): from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path key = weakref.ref(model) if key not in cls.cache: example_args, example_kwargs = _normalize_bench_inputs(example_inputs) example_outputs = model(*example_args, **example_kwargs) _register_dataclass_output_as_pytree(example_outputs) combined_args = _combine_args(model, example_args, example_kwargs) dynamic_shapes = _tree_map_with_path( _produce_dynamic_shapes_for_export, combined_args ) ep = torch.export.export( model, example_args, example_kwargs, dynamic_shapes=dynamic_shapes ) ep = ep.run_decompositions({}) with tempfile.NamedTemporaryFile(delete=False) as f: torch.export.pt2_archive._package.package_pt2( f, exported_programs={"forward": ep} ) filename = f.name cls.cache[key] = PyModelRunner(filename, "forward") return cls.cache[key] class JitTracedCache: cache: dict[weakref.ref, Any] = {} @classmethod def load(cls, model, example_inputs): key = weakref.ref(model) if key not in cls.cache: example_args, example_kwargs = _normalize_bench_inputs(example_inputs) if example_args: jit_traced_module = torch.jit.trace( model, example_inputs=example_args, strict=False ) else: jit_traced_module = torch.jit.trace( model, example_kwarg_inputs=example_kwargs, strict=False ) cls.cache[key] = jit_traced_module return cls.cache[key] def export(model, example_inputs): from torch.export.dynamic_shapes import _combine_args, _tree_map_with_path example_args, example_kwargs = _normalize_bench_inputs(example_inputs) example_outputs = model(*example_args, **example_kwargs) _register_dataclass_output_as_pytree(example_outputs) combined_args = _combine_args(model, example_args, example_kwargs) dynamic_shapes = _tree_map_with_path( _produce_dynamic_shapes_for_export, combined_args ) # NOTE: if args.export is ever enabled for --performance mode (rather than solely # --accuracy), we'll need to clone the model and subtract out extra memory usage, as # done in AOTInductorModelCache. ep = torch.export.export( model, example_args, example_kwargs, dynamic_shapes=dynamic_shapes, strict=True ) def opt_export(_, example_inputs): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) return ep.module()(*example_args, **example_kwargs) return opt_export def aot_precompile(model, example_inputs): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) with tempfile.NamedTemporaryFile(suffix=".pt", delete=False) as f: save_path = f.name with fresh_cache(), torch._dynamo.config.patch("enable_aot_compile", True): compiled_fn = torch.compile( model, fullgraph=True, options={"guard_filter_fn": lambda guards: [False for _ in guards]}, ).forward.aot_compile((example_args, example_kwargs)) compiled_fn.save_compiled_function(save_path) torch._dynamo.reset() with open(save_path, "rb") as f: load_start_time = time.perf_counter() loaded_fn = torch.compiler.load_compiled_function(f) load_end_time = time.perf_counter() print( f"AOT Precompile loading time: {load_end_time - load_start_time} seconds" ) def opt_aot_precompile(_, example_inputs, collect_outputs=False): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) return loaded_fn(model, *example_args, **example_kwargs) return opt_aot_precompile def export_nativert(model, example_inputs): optimized = NativeRTCache.load(model, example_inputs) def opt_nativert(_, example_inputs, collect_outputs=False): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) return optimized.run(*example_args, **example_kwargs) return opt_nativert def export_aot_inductor(model, example_inputs, mode): optimized = AOTInductorModelCache.load(model, example_inputs, mode) def opt_aot_inductor(_, example_inputs, collect_outputs=False): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) return optimized(*example_args, **example_kwargs) return opt_aot_inductor def torchscript_jit_trace(model, example_inputs): optimized = JitTracedCache.load(model, example_inputs) def opt_jit_trace(_, example_inputs, collect_outputs=False): example_args, example_kwargs = _normalize_bench_inputs(example_inputs) return optimized(*example_args, **example_kwargs) return opt_jit_trace def download_retry_decorator(download_fn): """ Decorator function for applying retry logic to a download function. The wrapped function will be called up to 5 times and raises an exception if the function fails each time. After each unsuccessful attempt, there is a delay before the next attempt, which is increased linearly with the number of tries. Usage: @download_retry_decorator def download_function(model_name: str): # download logic goes here """ @functools.wraps(download_fn) def wrapper(self, *args, **kwargs) -> Any: tries = 0 total_allowed_tries = MAX_DOWNLOAD_ATTEMPTS while tries <= total_allowed_tries: try: model = download_fn(self, *args, **kwargs) return model except Exception as e: tries += 1 if tries <= total_allowed_tries: wait = tries * 30 print( f"Failed to load model: {e}. Trying again ({tries}/{total_allowed_tries}) after {wait}s" ) time.sleep(wait) else: raise RuntimeError( # noqa: B904 f"Failed to load model '{args}' with following error(s): {str(e)}." ) return wrapper def read_batch_size_from_file(args, filename, model_name): batch_size = None if os.path.exists("benchmarks"): filename = os.path.join("benchmarks", filename) assert os.path.exists(filename), filename with open(filename) as f: lines = f.readlines() lines = [i.split(",") for i in lines if len(i.strip()) > 0] for val in lines: cur_name, b = val if model_name == cur_name: batch_size = int(b) if batch_size is None: log.warning("Could not find batch size for %s", model_name) elif batch_size == -1: raise RuntimeError( f"Batch size is unset for {model_name} in {args.batch_size_file}" ) print(f"batch size: {batch_size}") return batch_size class TimeOutException(Exception): pass def alarm_handler(signum, frame): raise TimeOutException def exit_after(s): """ Decorator to raise TimeoutException if the fn is taking more than s seconds to run. """ def outer(fn): def inner(*args, **kwargs): signal.signal(signal.SIGALRM, alarm_handler) signal.alarm(s) try: result = fn(*args, **kwargs) finally: signal.alarm(0) return result return inner return outer def get_peak_memory(): return torch.cuda.max_memory_allocated() / 10**9 def null_experiment(args, model_iter_fn, model, example_inputs): """ A no-op experiment useful for making sure TorchBenchark alone works properly. """ return [] def cast_to(dtype, model, inputs): # cast model and inputs to fp16 if dtype == torch.float16: model = model.half() else: model = model.to(dtype) inputs = tree_map( lambda x: x.to(dtype) if isinstance(x, torch.Tensor) and x.is_floating_point() else x, inputs, ) return model, inputs def cast_to_bf16(model, inputs): return cast_to(torch.bfloat16, model, inputs) def cast_to_fp16(model, inputs): return cast_to(torch.float16, model, inputs) def cast_to_fp64(model, inputs): return cast_to(torch.float64, model, inputs) def cast_to_fp32(model, inputs): return cast_to(torch.float32, model, inputs) class DummyGradScaler: def scale(self, loss): return loss def get_dynamo_stats(): # TODO: consider deepcopy'ing the entire counters struct and # adding a helper to do subtraction on it return collections.Counter( { "calls_captured": torch._dynamo.utils.counters["stats"]["calls_captured"], "unique_graphs": torch._dynamo.utils.counters["stats"]["unique_graphs"], "graph_breaks": sum(torch._dynamo.utils.counters["graph_break"].values()), # NB: The plus removes zero counts "unique_graph_breaks": len(+torch._dynamo.utils.counters["graph_break"]), "autograd_captures": torch._dynamo.utils.counters["compiled_autograd"][ "captures" ], "autograd_compiles": torch._dynamo.utils.counters["compiled_autograd"][ "compiles" ], "cudagraph_skips": torch._dynamo.utils.counters["inductor"][ "cudagraph_skips" ], } ) @contextmanager def maybe_init_distributed(should_init_distributed, rank, world_size, port="6789"): try: if should_init_distributed: torch.cuda.set_device(rank) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = port torch.distributed.init_process_group( "nccl", rank=rank, world_size=world_size ) yield finally: if should_init_distributed: torch.distributed.destroy_process_group() @contextmanager def maybe_snapshot_memory(should_snapshot_memory, suffix): # Enables Memory Snapshot tool for memory deep dives: # https://pytorch.org/blog/understanding-gpu-memory-1/ try: if should_snapshot_memory: torch.cuda.memory._record_memory_history(max_entries=100000) yield finally: if should_snapshot_memory: try: torch.cuda.memory._dump_snapshot( os.path.join( torch._dynamo.config.base_dir, f"{output_filename.rstrip('.csv')}_{suffix}.pickle", ) ) except Exception: log.exception("Failed to save memory snapshot") torch.cuda.memory._record_memory_history(enabled=None) class BenchmarkRunner: def __init__(self): self.model_iter_fn = None self.grad_scaler = DummyGradScaler() self.autocast = contextlib.nullcontext self.autocast_arg = {} self.optimizer: Optional[torch.optim.Optimizer] = None self._args = None def setup_amp(self, current_device=None): if self.args.only in self.fp32_only_models: return devices = [current_device] if current_device else self.args.devices if self.args.amp: # AMP training can lead to small loss values which can underflow # gradient values returning in zero gradients. To solve this # problem, PyTorch introduces GradScaler. GradScaler is a stateful # structure, that scales the loss values to prevent underflow. Loss # values are big at the beginning of training (therefore not # requiring scaling), while loss value tends to be small as network # starts getting better (requiring scaling). GradScaler manages all # of this fine tuning, checking the gradients are turning to inf, # discarding such batches. # Since we are not running a long iteration, default value of # init_scale 65536 is going to turn all gradients to inf. Therefore, # we just use a init_scale of 2.0 for benchmarking purpose. # Disabling Gradscaler because # 1) Benchmark setup runs 2 iterations of fwd-bwd. So, not useful. # 2) Current setup shares grad_scaler for eager and dynamo model, # which is bad as Gradscaler has state and can adjust the scaling # factor between eager and dynamo run, making accuracy check # harder. # self.grad_scaler = torch.amp.GradScaler(device="cuda", init_scale=2.0) self.autocast = functools.partial( torch.amp.autocast, device_type=devices[0] ) if self.args.amp_dtype: amp_dtype = ( torch.float16 if self.args.amp_dtype == "float16" else torch.bfloat16 ) self.autocast_arg["dtype"] = amp_dtype def init_optimizer(self, name, device, params): if device == "cuda" and self.args.training and name not in CI_SKIP_OPTIMIZER: if (name in CI_USE_SGD and self.args.ci) or name in BENCHMARK_USE_SGD: self.optimizer = torch.optim.SGD(params, lr=0.01, foreach=True) # Disable multi_tensor_sgd for benchmarking, there isn't a large performance benefit (~1%) to compiling # this optimizer because it is a single foreach add, and increases compile time. # After autotuning and fake tensor caching lands, we can enable, because the compile time impact will be lower. # Fake Tensor caching: https://github.com/pytorch/pytorch/pull/113873 # Autotuning: https://github.com/pytorch/pytorch/issues/117447 self.optimizer.step = torch._dynamo.disable(self.optimizer.step) else: self.optimizer = torch.optim.Adam( params, lr=0.01, capturable=True, foreach=True ) else: self.optimizer = None @property def args(self): return self._args @args.setter def args(self, args): self._args = args @property def skip_models(self): return set() @property def skip_models_for_cuda(self): return set() @property def skip_models_for_cpu(self): return set() @property def skip_models_for_cpu_aarch64(self): return set() @property def skip_models_for_freezing_cpu(self): return set() @property def skip_models_for_freezing_cuda(self): return set() @property def slow_models(self): return set() @property def very_slow_models(self): return set() @property def non_deterministic_models(self): return set() @property def fp32_only_models(self): return set() @property def force_amp_for_fp16_bf16_models(self): return set() @property def force_fp16_for_bf16_models(self): return set() @property def skip_not_suitable_for_training_models(self): return set() @property def failing_torchinductor_models(self): return set() @property def failing_fx2trt_models(self): return set() @property def skip_accuracy_checks_large_models_dashboard(self): return set() @property def skip_accuracy_check_as_eager_non_deterministic(self): return set() @property def skip_multiprocess_models(self): return set() @property def skip_models_due_to_control_flow(self): return set() @property def skip_models_due_to_export_not_supported(self): return set() @property def disable_cudagraph_models(self): return set() @property def guard_on_nn_module_models(self): return set() @property def inline_inbuilt_nn_modules_models(self): return set() def get_tolerance_and_cosine_flag(self, is_training, current_device, name): raise NotImplementedError @property def equal_nan(self): equal_nan = True if self.args.float32: equal_nan = False return equal_nan def use_larger_multiplier_for_smaller_tensor(self, name): return False def iter_models(self, args): for model_name in self.iter_model_names(args): for device in args.devices: try: yield self.load_model( device, model_name, batch_size=args.batch_size, ) except NotImplementedError: continue # bad benchmark implementation def deepcopy_model(self, model): return copy.deepcopy(model) def cast_based_on_args(self, model, example_inputs): if self.args.float32 or self.args.only in self.fp32_only_models: if not self.args.float32: log.warning("Model %s supports float32 only", self.args.only) model, example_inputs = cast_to_fp32(model, example_inputs) elif self.args.float16: if self.args.only in self.force_amp_for_fp16_bf16_models: log.warning( "Model %s does not support float16, running with amp instead", self.args.only, ) self.args.amp = True self.setup_amp() else: model, example_inputs = cast_to_fp16(model, example_inputs) elif self.args.bfloat16: if self.args.only in self.force_amp_for_fp16_bf16_models: log.warning( "Model %s does not support bfloat16, running with amp instead", self.args.only, ) self.args.amp = True self.setup_amp() elif self.args.only in self.force_fp16_for_bf16_models: log.warning( "Model %s does not support bfloat16, running with float16 instead", self.args.only, ) model, example_inputs = cast_to_fp16(model, example_inputs) else: model, example_inputs = cast_to_bf16(model, example_inputs) return model, example_inputs def validate_model(self, model, example_inputs): """ Runs the eager model with example inputs to ensure that eager passes. """ model = self.deepcopy_model(model) example_inputs = clone_inputs(example_inputs) model, example_inputs = self.cast_based_on_args(model, example_inputs) try: self.model_iter_fn(model, example_inputs) except Exception as e: raise RuntimeError("Eager run failed") from e def maybe_cast(self, model, example_inputs): model, example_inputs = self.cast_based_on_args(model, example_inputs) return model, example_inputs def decay_batch_exp(self, batch_size, factor=0.5, divisor=2): out_batch_size = batch_size * factor if out_batch_size > divisor: out_batch_size = (out_batch_size + 1) // divisor * divisor else: out_batch_size = batch_size - 1 return max(0, int(out_batch_size)) def batch_size_finder(self, device, model_name, initial_batch_size=1024): batch_size = initial_batch_size while batch_size >= 1: empty_gpu_cache(current_device) try: device, name, model, example_inputs, _ = self.load_model( device, model_name, batch_size, ) self.model_iter_fn(model, example_inputs) return batch_size except RuntimeError as e: error_str = str(e) if "channels_last" in error_str: break batch_size = self.decay_batch_exp(batch_size) return 1 def run_n_iterations(self, mod, inputs, model_iter_fn): n = self.args.iterations for _ in range(n - 1): model_iter_fn(mod, inputs, collect_outputs=False) return model_iter_fn(mod, inputs, collect_outputs=True) @torch._disable_dynamo(recursive=True) def optimizer_zero_grad(self, mod): if self.optimizer is not None: self.optimizer.zero_grad(True) else: mod.zero_grad(True) def optimizer_step(self): if self.optimizer is not None: self.optimizer.step() def get_benchmark_indices(self, length): start = self._args.partition_id * (length // self._args.total_partitions) end = ( (self._args.partition_id + 1) * (length // self._args.total_partitions) if self._args.partition_id < self._args.total_partitions - 1 else length ) return start, end def get_fsdp_auto_wrap_policy(self, model_name: str): from diffusers.models.transformer_2d import Transformer2DModel from torchbenchmark.models.nanogpt.model import Block from transformers.models.llama.modeling_llama import LlamaDecoderLayer from torch.distributed.fsdp.wrap import ( ModuleWrapPolicy, size_based_auto_wrap_policy, ) # handcrafted wrap policy MODEL_FSDP_WRAP = { "stable_diffusion_unet": (Transformer2DModel,), "llama_v2_7b_16h": (LlamaDecoderLayer,), "nanogpt": (Block,), } if model_name not in MODEL_FSDP_WRAP: # default to using wrap policy based on module size return functools.partial( size_based_auto_wrap_policy, recurse=True, min_num_params=int(1e5) ) return ModuleWrapPolicy(MODEL_FSDP_WRAP[model_name]) def deepcopy_and_maybe_parallelize(self, model): model = self.deepcopy_model(model) if self.args.ddp: assert torch.distributed.is_available(), ( "Can't use DDP without a distributed enabled build" ) from torch.nn.parallel import DistributedDataParallel as DDP model = DDP(model, find_unused_parameters=True) elif self.args.fsdp: assert torch.distributed.is_available(), ( "Can't use FSDP without a distributed enabled build" ) from torch.distributed.fsdp import ( FullyShardedDataParallel as FSDP, MixedPrecision, ) if self.args.float16: dtype = torch.float16 elif self.args.bfloat16: dtype = torch.bfloat16 else: dtype = torch.float32 mp_policy = MixedPrecision( param_dtype=dtype, # Gradient communication precision. reduce_dtype=dtype, # Buffer precision. buffer_dtype=dtype, ) model = FSDP( model, use_orig_params=True, device_id=torch.cuda.current_device() if self.args.devices[-1] == "cuda" else None, mixed_precision=mp_policy, limit_all_gathers=True, auto_wrap_policy=self.get_fsdp_auto_wrap_policy(self.args.only), ) return model def check_accuracy( self, name, model, example_inputs, optimize_ctx, experiment, tag ): """ Checks accuracy. 1) Collect the outputs with fp64 datatype. This is useful for error checking. 2) Checks if eager itself has variations. """ start_stats = get_dynamo_stats() def record_status(accuracy_status, dynamo_start_stats): """ Records the status in the csv file """ if current_name in self.non_deterministic_models: if accuracy_status in ( "pass", "eager_two_runs_differ", "fail_accuracy", ): accuracy_status = "pass" headers = ["dev", "name", "batch_size", "accuracy"] fields = [current_device, current_name, current_batch_size, accuracy_status] if tag is not None: headers.insert(3, "tag") fields.insert(3, tag) o_headers = list(headers) o_fields = list(fields) dynamo_stats = get_dynamo_stats() dynamo_stats.subtract(dynamo_start_stats) for k, v in dynamo_stats.items(): headers.append(k) fields.append(v) total_wall_time = output_signpost( dict(zip(o_headers, o_fields)), self.args, self.suite_name, ) headers.append("compilation_latency") fields.append(total_wall_time) write_outputs(output_filename, headers, fields) if self.args.print_compilation_time: print(f"Compilation time (from dynamo_timed): {total_wall_time}") return accuracy_status if name in self.skip_accuracy_checks_large_models_dashboard: return record_status("pass_due_to_skip", dynamo_start_stats=start_stats) # Skip all accuracy check for the torchao backend if self.args.backend == "torchao": return record_status("pass_due_to_skip", dynamo_start_stats=start_stats) with self.pick_grad(name, self.args.training): # Collect the fp64 reference outputs to be used later for accuracy checking. fp64_outputs = None model_fp64 = None inputs_fp64 = None try: model_fp64, inputs_fp64 = cast_to_fp64( self.deepcopy_and_maybe_parallelize(model), clone_inputs(example_inputs), ) self.init_optimizer(name, current_device, model_fp64.parameters()) fp64_outputs = self.run_n_iterations( model_fp64, inputs_fp64, self.model_iter_fn ) fp64_outputs = tree_map( lambda x: x.to(torch.float64) if isinstance(x, torch.Tensor) and x.is_floating_point() else x, fp64_outputs, ) except Exception: log.warning( "fp64 golden ref were not generated for %s. Setting accuracy check to cosine", name, ) self.args.cosine = True fp64_outputs = None finally: del model_fp64, inputs_fp64 empty_gpu_cache(current_device) tolerance, cos_similarity = self.get_tolerance_and_cosine_flag( self.args.training, current_device, name ) # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) accuracy_status = "pass" # Get results of native pytorch reset_rng_state() model_copy = None try: with torch.compiler.set_stance("force_eager"): model_copy = self.deepcopy_and_maybe_parallelize(model) self.init_optimizer(name, current_device, model_copy.parameters()) correct_result = self.run_n_iterations( model_copy, clone_inputs(example_inputs), self.model_iter_fn ) except Exception as e: accuracy_status = ( "eager_1st_run_OOM" if isinstance(e, torch.cuda.OutOfMemoryError) else "eager_1st_run_fail" ) log.exception("") return record_status(accuracy_status, dynamo_start_stats=start_stats) finally: del model_copy empty_gpu_cache(current_device) # Rerun native pytorch reset_rng_state() model_copy = None try: with torch.compiler.set_stance("force_eager"): model_copy = self.deepcopy_and_maybe_parallelize(model) self.init_optimizer(name, current_device, model_copy.parameters()) correct_rerun_result = self.run_n_iterations( model_copy, clone_inputs(example_inputs), self.model_iter_fn ) except Exception as e: accuracy_status = ( "eager_2nd_run_OOM" if isinstance(e, torch.cuda.OutOfMemoryError) else "eager_2nd_run_fail" ) log.exception("") return record_status(accuracy_status, dynamo_start_stats=start_stats) finally: del model_copy empty_gpu_cache(current_device) # Two eager runs should have exactly same result, within tolerance. # TODO If we want the above to be true, then deterministic should be set. # For example, MIOpen convolutions could be implemented with non-deterministic algos. is_same = True try: if ( name not in self.skip_accuracy_check_as_eager_non_deterministic and not same( correct_result, correct_rerun_result, fp64_ref=None, cos_similarity=False, tol=tolerance if torch.version.hip else 0, equal_nan=self.equal_nan, use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor( name ), ) ): is_same = False except Exception as e: # Sometimes torch.allclose may throw RuntimeError exception_string = str(e) accuracy_status = f"fail_exception: {exception_string}" return record_status(accuracy_status, dynamo_start_stats=start_stats) if not is_same: accuracy_status = "eager_two_runs_differ" return record_status(accuracy_status, dynamo_start_stats=start_stats) correct_rerun_result = None # Run with Dynamo reset_rng_state() torch._dynamo.reset() torch._dynamo.utils.counters.clear() model_copy = None try: model_copy = self.deepcopy_and_maybe_parallelize(model) self.init_optimizer(name, current_device, model_copy.parameters()) if ( self.args.export or self.args.export_aot_inductor or self.args.export_nativert or self.args.torchscript_jit_trace or self.args.aot_precompile ): # apply export on module directly # no need for n iterations # the logic should be the same to self.model_iter_fn (forward_pass) with self.autocast(**self.autocast_arg): optimized_model_iter_fn = optimize_ctx( model_copy, example_inputs ) new_result = optimized_model_iter_fn(model_copy, example_inputs) else: optimized_model_iter_fn = optimize_ctx(self.model_iter_fn) new_result = self.run_n_iterations( model_copy, example_inputs, optimized_model_iter_fn ) except Exception as e: log.exception("") print( "TorchDynamo optimized model failed to run because of following error" ) accuracy_status = ( "OOM" if isinstance(e, torch.cuda.OutOfMemoryError) else "fail_to_run" ) return record_status(accuracy_status, dynamo_start_stats=start_stats) finally: del model_copy if name in self.skip_accuracy_check_as_eager_non_deterministic: return record_status("pass_due_to_skip", dynamo_start_stats=start_stats) force_max_multiplier = False if ( self.args.freezing and self.args.bfloat16 and torch._dynamo.utils.counters["inductor"]["binary_folding_conv"] > 0 ): force_max_multiplier = True try: if self.args.training and self.args.amp: if process_fn := self.get_output_amp_train_process_func.get( name, None ): correct_result = process_fn(correct_result) new_result = process_fn(new_result) fp64_outputs = process_fn(fp64_outputs) if ( self.args.save_model_outputs_to and self.args.compare_model_outputs_with and self.args.save_model_outputs_to == self.args.compare_model_outputs_with ): log.warning( "args.save_model_outputs_to and args.compare_model_outputs_with points to the same path." "Result will be undefined." ) if self.args.save_model_outputs_to: print(f"Save model outputs to: {self.args.save_model_outputs_to}") torch.save(new_result, self.args.save_model_outputs_to) if self.args.compare_model_outputs_with: print( f"Load model outputs from {self.args.compare_model_outputs_with} to compare" ) saved_result = torch.load(self.args.compare_model_outputs_with) is_bitwise_same = bitwise_same(saved_result, new_result) if not is_bitwise_same: print( "The result is not bitwise equivalent to the previously saved result" ) return record_status( "not_bitwise_equivalent", dynamo_start_stats=start_stats ) print( "The result is bitwise equivalent to the previously saved result" ) del saved_result if not same( correct_result, new_result, fp64_outputs, equal_nan=self.equal_nan, use_larger_multiplier_for_smaller_tensor=self.use_larger_multiplier_for_smaller_tensor( name ), cos_similarity=cos_similarity, tol=tolerance, force_max_multiplier=force_max_multiplier, ): is_same = False except Exception as e: # Sometimes torch.allclose may throw RuntimeError exception_string = str(e) accuracy_status = f"fail_exception: {exception_string}" return record_status(accuracy_status, dynamo_start_stats=start_stats) if not is_same: if self.args.skip_accuracy_check: accuracy_status = "pass_due_to_skip" else: accuracy_status = "fail_accuracy" return record_status(accuracy_status, dynamo_start_stats=start_stats) return record_status(accuracy_status, dynamo_start_stats=start_stats) def check_tolerance( self, name, model, example_inputs, optimize_ctx, base_device="cpu" ): """ Checks tolerance based on https://pytorch.org/docs/stable/generated/torch.allclose.html. """ tolerance_status = "pass" if name in self.skip_accuracy_checks_large_models_dashboard: tolerance_status = "pass_due_to_skip" return tolerance_status # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) with self.pick_grad(name, self.args.training): # Get results of native pytorch reset_rng_state() model_copy = copy.deepcopy(model) model_copy = model_copy.to(base_device) example_inputs_copy = copy.deepcopy(example_inputs) example_inputs_copy = tree_map( lambda x: x.to(base_device), example_inputs_copy ) self.init_optimizer(name, base_device, model_copy.parameters()) correct_result = self.run_n_iterations( model_copy, example_inputs_copy, self.model_iter_fn ) # Run with Dynamo # Sometime CI fails with random triton compilation failure which will be skipped for now # TODO: revisit this after switching to new Triton runtime reset_rng_state() torch._dynamo.reset() try: self.init_optimizer(name, current_device, model.parameters()) optimized_model_iter_fn = optimize_ctx(self.model_iter_fn) new_result = self.run_n_iterations( model_copy, example_inputs, optimized_model_iter_fn ) except Exception: log.exception("") print( "TorchDynamo optimized model failed to run because of following error" ) return "fail_to_run" def dump_max_mean_values(tol, ref, res): if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)): for refi, resi in zip(ref, res): dump_max_mean_values(tol, refi, resi) elif isinstance(ref, dict): for k in ref.keys(): dump_max_mean_values(tol, ref[k], res[k]) elif isinstance(ref, torch.Tensor): res = res.to(base_device) t = torch.abs(ref - res) / (1 + torch.abs(ref)) tol.append(t.flatten().to(torch.float32)) return tol tol = [] dump_max_mean_values(tol, correct_result, new_result) tol = torch.cat(tol) tol = torch.tensor(tol) max = torch.max(tol) mean = torch.mean(tol) div = torch.std(tol) headers = ["dev", "name", "batch_size", "max", "mean", "std"] fields = [ current_device, current_name, current_batch_size, max.item(), mean.item(), div.item(), ] write_outputs(output_filename, headers, fields) return tolerance_status def run_performance_test_non_alternate( self, name, model, example_inputs, optimize_ctx, experiment, tag=None ): "Run performance test in non-alternately." assert experiment.func is latency_experiment, ( "Must run with latency_experiment." ) def warmup(fn, model, example_inputs, mode, niters=10): gc.collect() peak_mem = 0 start_stats = get_dynamo_stats() try: if current_device == "cuda": torch.cuda.reset_peak_memory_stats() empty_gpu_cache(current_device) elif current_device == "hpu": torch.hpu.reset_peak_memory_stats() t0 = time.perf_counter() for _ in range(niters): fn(model, example_inputs) t1 = time.perf_counter() latency = t1 - t0 if current_device == "cuda": peak_mem = get_peak_memory() elif current_device == "hpu": peak_mem = torch.hpu.max_memory_allocated() / 10**9 elif current_device == "cpu": total = psutil.virtual_memory().total percentage = psutil.Process(os.getpid()).memory_percent() peak_mem = percentage * total / 10**9 except Exception: log.exception("Backend %s failed in warmup()", mode) write_csv_when_exception( self.args, current_name, "warmup_failed", current_device ) output_signpost({}, self.args, self.suite_name, error="warmup_failed") return sys.exit(-1) dynamo_stats = get_dynamo_stats() dynamo_stats.subtract(start_stats) return latency, peak_mem, dynamo_stats # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) # Use distributed wrapping as necessary model = self.deepcopy_and_maybe_parallelize(model) if not hasattr(model, name): model.name = name self.init_optimizer(name, current_device, model.parameters()) # The self.autocast context is needed for the model we export with aot_compile, # similar to what we do in the check_accuracy function ctx = ( self.autocast(**self.autocast_arg) if self.args.export_aot_inductor else contextlib.nullcontext() ) with self.pick_grad(name, self.args.training), ctx: ok, total = Stats.reset_counters() experiment_kwargs = {} if tag is not None: experiment_kwargs["tag"] = tag results = [] with maybe_snapshot_memory( self.args.snapshot_memory, f"eager_{self.args.only}" ): eager_latency, eager_peak_mem, _ = warmup( self.model_iter_fn, model, example_inputs, "eager" ) if self.args.use_warm_peak_memory: _, eager_peak_mem, _ = warmup( self.model_iter_fn, model, example_inputs, "eager", niters=1 ) baseline_timings = experiment( self.model_iter_fn, model, example_inputs, mark="expected", **experiment_kwargs, ) if self.args.export_aot_inductor: optimized_model_iter_fn = optimize_ctx else: optimized_model_iter_fn = optimize_ctx(self.model_iter_fn) with maybe_snapshot_memory( self.args.snapshot_memory, f"compiled_{self.args.only}" ): dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup( optimized_model_iter_fn, model, example_inputs, "dynamo" ) if self.args.use_warm_peak_memory: _, dynamo_peak_mem, _ = warmup( optimized_model_iter_fn, model, example_inputs, "dynamo", niters=1, ) # If we use warm peak memory, the AOT model loading transient memory # won't be present on the warm measurement. We only have to account for # it when using cold memory. elif self.args.export_aot_inductor: dynamo_peak_mem -= AOTInductorModelCache.get_excess_memory(model) if self.args.profile_dynamo_cache_lookup: with torch.profiler.profile( activities=[torch.profiler.ProfilerActivity.CPU] ) as prof: warmup(optimized_model_iter_fn, model, example_inputs, "dynamo") events = list( filter( lambda event: "TorchDynamo Cache Lookup" in event.key, prof.key_averages(), ) ) dynamo_cache_lookup_latency = events[0].self_cpu_time_total compilation_time = dynamo_latency - eager_latency compression_ratio = ( eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0 ) if self.args.print_memory: print( f"memory: eager: {eager_peak_mem:.2f} GB, " f"dynamo: {dynamo_peak_mem:.2f} GB, " f"ratio: {compression_ratio:.2f}" ) if self.args.print_compilation_time: print(f"Compilation time: {compilation_time:.2f}") if experiment.func is speedup_experiment: experiment_kwargs["compilation_latency"] = compilation_time experiment_kwargs["compression_ratio"] = compression_ratio experiment_kwargs["eager_peak_mem"] = eager_peak_mem experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem experiment_kwargs["dynamo_stats"] = dynamo_stats if self.args.profile_dynamo_cache_lookup: experiment_kwargs["cache_lookup_latency"] = ( dynamo_cache_lookup_latency ) backend_timings = experiment( self.model_iter_fn, model, example_inputs, mark="expected", **experiment_kwargs, ) timings = np.stack((baseline_timings, backend_timings), axis=1) result_summary = latency_experiment_summary( self.suite_name, self.args, model, timings, **experiment_kwargs ) results.append(result_summary) return " ".join(map(str, results)) def run_performance_test( self, name, model, example_inputs, optimize_ctx, experiment, tag=None, batch_size=None, ): niters = 5 if getattr(self, "hf_llm", False): # If we're benchmarking an llm, we want to use the generate function self.model_iter_fn = self.generate niters = 1 if self.args.xla: with self.pick_grad(name, self.args.training): return experiment( self.model_iter_fn, *self.maybe_cast(model, example_inputs) ) def warmup(fn, model, example_inputs, mode, niters=5): gc.collect() peak_mem = 0 start_stats = get_dynamo_stats() try: if current_device == "cuda": torch.cuda.reset_peak_memory_stats() empty_gpu_cache(current_device) elif current_device == "hpu": torch.hpu.reset_peak_memory_stats() t0 = time.perf_counter() for _ in range(niters): fn(model, example_inputs) t1 = time.perf_counter() latency = t1 - t0 if current_device == "cuda": peak_mem = get_peak_memory() elif current_device == "hpu": peak_mem = torch.hpu.max_memory_allocated() / 10**9 elif current_device == "cpu": total = psutil.virtual_memory().total percentage = psutil.Process(os.getpid()).memory_percent() peak_mem = percentage * total / 10**9 except Exception: log.exception("Backend %s failed in warmup()", mode) write_csv_when_exception( self.args, current_name, "warmup_failed", current_device ) output_signpost({}, self.args, self.suite_name, error="warmup_failed") return sys.exit(-1) dynamo_stats = get_dynamo_stats() dynamo_stats.subtract(start_stats) return latency, peak_mem, dynamo_stats # Cast the model to float16/float32 as necessary model, example_inputs = self.maybe_cast(model, example_inputs) # Use distributed wrapping as necessary model = self.deepcopy_and_maybe_parallelize(model) if not hasattr(model, name): model.name = name self.init_optimizer(name, current_device, model.parameters()) # The self.autocast context is needed for the model we export with aot_compile, # similar to what we do in the check_accuracy function ctx = ( self.autocast(**self.autocast_arg) if self.args.export_aot_inductor else contextlib.nullcontext() ) with self.pick_grad(name, self.args.training), ctx: ok, total = Stats.reset_counters() experiment_kwargs = {} experiment_kwargs["batch_size"] = batch_size if tag is not None: experiment_kwargs["tag"] = tag results = [] with maybe_snapshot_memory( self.args.snapshot_memory, f"eager_{self.args.only}" ): with torch.compiler.set_stance("force_eager"): eager_latency, eager_peak_mem, _ = warmup( self.model_iter_fn, copy.deepcopy(model), example_inputs, "eager", niters=niters, ) if self.args.use_warm_peak_memory: _, eager_peak_mem, _ = warmup( self.model_iter_fn, copy.deepcopy(model), example_inputs, "eager", niters=1, ) if ( self.args.export_aot_inductor or self.args.export_nativert or self.args.torchscript_jit_trace or self.args.aot_precompile ): optimized_model_iter_fn = optimize_ctx else: if getattr(self, "hf_llm", False): # If it's an llm, we want to optimize model.forward, and use # the generate function model = optimize_ctx(model) optimized_model_iter_fn = self.model_iter_fn else: optimized_model_iter_fn = optimize_ctx(self.model_iter_fn) with maybe_snapshot_memory( self.args.snapshot_memory, f"compiled_{self.args.only}" ): dynamo_latency, dynamo_peak_mem, dynamo_stats = warmup( optimized_model_iter_fn, model, example_inputs, "dynamo" ) if self.args.use_warm_peak_memory: _, dynamo_peak_mem, _ = warmup( optimized_model_iter_fn, model, example_inputs, "dynamo", niters=1, ) # If we use warm peak memory, the AOT model loading transient memory # won't be present on the warm measurement. We only have to account for # it when using cold memory. elif self.args.export_aot_inductor: dynamo_peak_mem -= AOTInductorModelCache.get_excess_memory(model) if self.args.profile_dynamo_cache_lookup: with torch.profiler.profile( activities=[torch.profiler.ProfilerActivity.CPU] ) as prof: warmup(optimized_model_iter_fn, model, example_inputs, "dynamo") events = list( filter( lambda event: "TorchDynamo Cache Lookup" in event.key, prof.key_averages(), ) ) dynamo_cache_lookup_latency = events[0].self_cpu_time_total compilation_time = dynamo_latency - eager_latency compression_ratio = ( eager_peak_mem / dynamo_peak_mem if dynamo_peak_mem else 0.0 ) if self.args.print_memory: print( f"memory: eager: {eager_peak_mem:.2f} GB, " f"dynamo: {dynamo_peak_mem:.2f} GB, " f"ratio: {compression_ratio:.2f}" ) if self.args.print_compilation_time: print(f"Compilation time: {compilation_time:.2f}") if experiment.func is speedup_experiment: experiment_kwargs["compilation_latency"] = compilation_time experiment_kwargs["compression_ratio"] = compression_ratio experiment_kwargs["eager_peak_mem"] = eager_peak_mem experiment_kwargs["dynamo_peak_mem"] = dynamo_peak_mem experiment_kwargs["dynamo_stats"] = dynamo_stats if self.args.profile_dynamo_cache_lookup: experiment_kwargs["cache_lookup_latency"] = ( dynamo_cache_lookup_latency ) if experiment.func is coverage_experiment: ok, total = Stats.reset_counters() results = [] # run with torch._dynamo few times to populate the cache for _ in range(3): optimized_model_iter_fn(model, example_inputs) _, frames_second_pass = Stats.reset_counters() # should be 0 if frames_second_pass > 0: optimized_model_iter_fn(model, example_inputs) _, frames_third_pass = Stats.reset_counters() # should be 0 else: frames_third_pass = 0 results.append( f"{ok:3}/{total:3} +{frames_third_pass} frames {compilation_time:3.0f}s" ) experiment_kwargs["hf_llm"] = getattr(self, "hf_llm", False) results.append( experiment( self.model_iter_fn, model, example_inputs, **experiment_kwargs ) ) return " ".join(map(str, results)) def minify_model( self, name, model, example_inputs, optimize_ctx, experiment, tag, ): log.info("Minifying %s...", name) os.environ["TORCH_COMPILE_DEBUG"] = "1" os.environ["TORCHDYNAMO_REPRO_AFTER"] = "dynamo" os.environ["TORCHDYNAMO_REPRO_LEVEL"] = "4" self.check_accuracy(name, model, example_inputs, optimize_ctx, experiment, tag) if self.args.output_directory: repro_dir = self.args.output_directory else: repro_dir = torch._dynamo.config.base_dir try: shutil.move("repro.py", f"{repro_dir}/{name}_repro.py") except OSError: log.error("Could not find repro script for model %s", name) else: log.info( "Repro script for model %s with minified graph saved to %s", name, repro_dir, ) def maybe_preserve_compile_debug(self, name, status): if ( name in CI_PRESERVE_COMPILE_DEBUG and status in CI_PRESERVE_COMPILE_DEBUG[name] ): src_dir = torch._dynamo.utils.get_debug_dir() if os.path.isdir(src_dir): dbg_dir = os.path.join( os.getcwd(), "test", "debug", "torch_compile_debug" ) dst_dir = os.path.join(dbg_dir, os.path.basename(src_dir)) try: os.makedirs(dbg_dir, exist_ok=True) os.rename(src_dir, dst_dir) log.warning("Moved %s to %s", src_dir, dst_dir) except OSError: log.exception("Failed to preserve %s", src_dir) def run_one_model( self, name, model, example_inputs, optimize_ctx, experiment, explain=False, tag=None, batch_size=None, ): mode = "train" if self.args.training else "eval" msg = f"{current_device:4} {mode:5} {current_name:34} " if tag: msg += f" {tag:26}" print(msg, flush=True) start_stats = get_dynamo_stats() if self.args.accuracy: status = self.check_accuracy( name, model, example_inputs, optimize_ctx, experiment, tag ) print(status) if status == "fail_accuracy" and self.args.minify: self.minify_model( name, model, example_inputs, optimize_ctx, experiment, tag ) elif self.args.tolerance: status = self.check_tolerance(name, model, example_inputs, optimize_ctx) print(status) elif self.args.performance: if self.args.backend == "torchao": status = self.run_performance_test_non_alternate( name, model, example_inputs, optimize_ctx, experiment, tag ) else: status = self.run_performance_test( name, model, example_inputs, optimize_ctx, experiment, tag, batch_size=batch_size, ) print(status) empty_gpu_cache(current_device) self.maybe_preserve_compile_debug(name, status) if self.args.timing: from torch._dynamo.utils import op_count, print_time_report from torch.utils._stats import simple_call_counter print_time_report() stats = "STATS: " stats = stats + " | ".join( itertools.chain( [f"call_* op count: {op_count}"], (f"{key}:{value}" for key, value in simple_call_counter.items()), ) ) print(stats) stats = get_dynamo_stats() stats.subtract(start_stats) if explain: print( f"Dynamo produced {stats['unique_graphs']} graphs " f"covering {stats['calls_captured']} ops with " f"{stats['graph_breaks']} graph breaks ({stats['unique_graph_breaks']} unique)" ) if explain or self.args.log_graph_breaks or self.args.print_graph_breaks: filename = f"{output_filename.rstrip('.csv')}_graph_breaks.csv" def add_double_quotes(x): # Delimiter because reason could have comma return f'"{x}"' for graph_break in graph_break_reasons: reason = add_double_quotes(graph_break.reason) user_stack = add_double_quotes( ", ".join([str(x) for x in graph_break.user_stack]) ) # NB: Don't upload them to the benchmark database as they are debugging # information. There are also around a million records a day which is # wasteful to store write_outputs( filename, ["model", "reason", "user_stack"], [current_name, reason, user_stack], False, ) if self.args.stats: Stats.print_summary() def help(fn): return fn.__doc__ diff_branch_default = "DIFF-BRANCH-DEFAULT" def should_diff_branch(args): return args.diff_branch != diff_branch_default def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument( "--filter", "-k", action="append", help="filter benchmarks with regexp" ) parser.add_argument( "--exclude", "-x", action="append", help="filter benchmarks with regexp" ) parser.add_argument( "--exclude-exact", action="append", help="filter benchmarks with exact match" ) parser.add_argument( "--total-partitions", type=int, default=1, choices=range(1, 16), help="Total number of partitions we want to divide the benchmark suite into", ) parser.add_argument( "--partition-id", type=int, default=0, help="ID of the benchmark suite partition to be run. Used to divide CI tasks", ) parser.add_argument( "--devices", "--device", "-d", action="append", help="cpu, cuda or hpu" ) parser.add_argument("--device-index", help="CUDA device index") parser.add_argument( "--repeat", "-n", type=int, default=30, help="number of timing runs" ) iterations_per_run_help = """ Run this may iterations for each time measurement. This is mainly used for XLA training. We want to run multiple iterations per measurement so the tracing and computation for different iterations can overlap with each other. This makes sure we have an accurate xla baseline. """ parser.add_argument( "--iterations-per-run", type=int, default=1, help=iterations_per_run_help ) parser.add_argument( "--randomize-input", action="store_true", help="Whether to randomize the input values. Dimensions will be kept the same.", ) parser.add_argument( "--threads", "-t", type=int, help="number of threads to use for eager and inductor", ) parser.add_argument( "--nopython", action="store_true", help="Turn graph breaks into errors" ) parser.add_argument( "--no-skip", action="store_true", help="run models that are in the global SKIP list", ) parser.add_argument( "--prims-nvfuser", action="store_true", help="user prims + nvfuser backend" ) parser.add_argument( "--dump-raw-metrics", action="store_true", help="dump raw timing metrics from speedup experiment", ) parser.add_argument( "--log-operator-inputs", action="store_true", default=False, ) parser.add_argument( "--channels-last", action="store_true", default=False, help="use channels last format", ) parser.add_argument( "--batch-size", "--batch_size", type=int, help="batch size for benchmarking" ) parser.add_argument( "--iterations", type=int, default=2, help="how many iterations to run" ) parser.add_argument( "--batch-size-file", type=str, help="String to load batch size from" ) parser.add_argument("--cosine", action="store_true", help="use cosine similarity") parser.add_argument( "--freezing", action="store_true", help="turn on freezing", default=False ) parser.add_argument( "--inductor-config", "-c", action="append", help="key=value in torch._inductor.config", ) parser.add_argument( "--ci", action="store_true", help="Flag to tell that its a CI run" ) parser.add_argument( "--dashboard", action="store_true", help="Flag to tell that its a Dashboard run" ) parser.add_argument( "--skip-fp64-check", action="store_true", help="skip accuracy check using fp64" ) parser.add_argument( "--fast", "-f", action="store_true", help="skip slow benchmarks" ) parser.add_argument( "--only", help="""Run just one model from torchbench. Or specify the path and class name of the model in format like: --only=path:,class: Due to the fact that dynamo changes current working directory, the path should be an absolute path. The class should have a method get_example_inputs to return the inputs for the model. An example looks like ``` class LinearModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(10, 10) def forward(self, x): return self.linear(x) def get_example_inputs(self): return (torch.randn(2, 10),) ``` """, ) parser.add_argument( "--multiprocess", action="store_true", help="Create n processes based on the number of devices (distributed use case).", ) parser.add_argument( "--ddp", action="store_true", help="Wraps model in DDP before running it, and uses dynamo DDPOptmizer (graph breaks) by default.", ) parser.add_argument( "--fsdp", action="store_true", help="""Wraps model in FSDP before running it. Doesn't recursively wrap, mainly useful for checking dynamo UnspecNNModule compatibility """, ) parser.add_argument( "--optimize-ddp-mode", type=str, default="ddp_optimizer", help="Specify the DDP optimization mode -- the value of torch._dynamo.config.optimize_ddp.", ) parser.add_argument( "--distributed-master-port", default="6789", help="Port to bind for for torch.distributed. Use the default unless it's conflicting with another user", ) parser.add_argument( "--dynamic-shapes", action="store_true", help="Runs a dynamic shapes version of the benchmark, if available.", ) parser.add_argument( "--propagate-real-tensors", action="store_true", help="Capture as much data dependent as you can by unsoundly propagating real tensors", ) parser.add_argument( "--dynamic-batch-only", action="store_true", help="Only assume batch dimension is dynamic. Implies --dynamic-shapes", ) parser.add_argument( "--specialize-int", action="store_true", help="Run with specialize_int=True." ) parser.add_argument( "--use-eval-mode", action="store_true", help="sets model.eval() to reduce randomness", ) parser.add_argument( "--skip-accuracy-check", action="store_true", help="keeps running even when accuracy fails", ) parser.add_argument( "--generate-aot-autograd-stats", action="store_true", help="Generates AOT Autograd stats like how many graphs are sent to AOT", ) parser.add_argument( "--inductor-settings", action="store_true", help="Use same settings as --inductor for baseline comparisons", ) parser.add_argument( "--suppress-errors", action="store_true", help="Suppress errors instead of raising them", ) parser.add_argument( "--output", help="Overrides the output filename", ) parser.add_argument( "--output-directory", help="Overrides the directory to place output files.", ) parser.add_argument( "--disable-output", action="store_true", help="Disable writing of output files, e.g., for warm-up runs", ) parser.add_argument( "--baseline", help="Compare with a prior --output", ) parser.add_argument( "--part", default=None, help="Specify the part of the model to run.", ) parser.add_argument( "--export-profiler-trace", action="store_true", help="exports trace of kineto profiler", ) parser.add_argument( "--profiler-trace-name", "--profiler_trace_name", help="Overwrites exported trace name", ) parser.add_argument( "--profile-details", action="store_true", help="More detailed profiler trace." ) parser.add_argument( "--export-perfdoctor", action="store_true", help="Export Chrome trace to perf doctor. (internal only)", ) parser.add_argument( "--diff-branch", default=diff_branch_default, help="delta current branch against given branch.", ) parser.add_argument( "--tag", default=None, help="Specify a tag to be included in csv files." ) parser.add_argument( "--explain", action="store_true", help="print some graph/op statistics during the run, similar to .explain()", ) parser.add_argument( "--stats", action="store_true", help="print graph counter stats", ) parser.add_argument( "--use-warm-peak-memory", "--use_warm_peak_memory", action="store_true", help="Measure peak memory using a warm run to reduce autotuning noise", ) parser.add_argument( "--print-memory", action="store_true", help="print extra memory statistics", ) parser.add_argument( "--print-compilation-time", action="store_true", help="print compilation latency", ) parser.add_argument( "--print-dataframe-summary", action="store_true", help="print dataframe result used for calculating accuracy", ) parser.add_argument( "--disable-cudagraphs", action="store_true", help="Disables cudagraphs for Inductor", ) parser.add_argument( "--disable-split-reductions", action="store_true", help="Disables split reductions for Inductor", ) parser.add_argument( "--disable-persistent-reductions", action="store_true", help="Disables split reductions for Inductor", ) parser.add_argument( "--disable-divisible-by-16", action="store_true", help="Disables divisible by 16 hint to Triton for Inductor", ) parser.add_argument( "--inductor-compile-mode", default=None, help="torch.compile mode argument for inductor runs.", ) parser.add_argument( "--print-graph-breaks", action="store_true", help="Show a warning whenever graph break", ) parser.add_argument( "--log-graph-breaks", action="store_true", help="log graph breaks in a file", ) parser.add_argument( "--trace-on-xla", action="store_true", help="Whether to trace the model on XLA or on eager device", ) parser.add_argument( "--xla-tolerance", type=float, default=1e-2, help="XLA needs a loose tolerance to pass the correctness check", ) parser.add_argument( "--collect-outputs", action="store_true", help="""Whether to collect outputs for training. Set this to true if we want to verify the numerical correctness of graidents. But that may cause time measurement not accurate""", ) parser.add_argument( "--enable-activation-checkpointing", action="store_true", help="Enables activation checkpointing for HF models", ) parser.add_argument("--timing", action="store_true", help="Emits phase timing") parser.add_argument( "--progress", action="store_true", help="Print n/k models message between each model run.", ) parser.add_argument( "--timeout", type=int, default=2000, help="timeout (second) for benchmarking.", ) parser.add_argument( "--per_process_memory_fraction", type=float, default=1, help="Set per-process GPU memory fraction (limit) for reducing usable size and reproducing OOMs", ) parser.add_argument( "--no-translation-validation", action="store_true", help="Disable translation validation for accuracy builds.", ) parser.add_argument( "--minify", action="store_true", help="Enable minification when failure is below tolerance. Save repro script for each model.", ) parser.add_argument( "--compiled-autograd", action="store_true", help="Enables compiled autograd on compiled benchmark", ) parser.add_argument( "--profile_dynamo_cache_lookup", "--profile-dynamo-cache-lookup", action="store_true", help="profiles TorchDynamo cache lookup", ) parser.add_argument( "--snapshot-memory", "--snapshot_memory", action="store_true", help="Enables Memory Snapshot tool for memory deep dives: https://pytorch.org/blog/understanding-gpu-memory-1/", ) parser.add_argument( "--retain-output", action="store_true", help="Enables appending to the already existing output file if it exists \ instead of deleting it and creating a new one.", ) parser.add_argument( "--caching-precompile", action="store_true", help="Enables caching precompile, serializing artifacts to DynamoCache between runs", ) parser.add_argument( "--save-model-outputs-to", default="", help="Specify the path to save model output to so we can load later for comparison", ) parser.add_argument( "--compare-model-outputs-with", default="", help="Specify the path for the saved model outputs to compare against", ) group_latency = parser.add_mutually_exclusive_group() group_latency.add_argument( "--cold-start-latency", "--cold_start_latency", action="store_true", help="Use a fresh triton cachedir when running each model, to force cold-start compile.", ) group_latency.add_argument( "--warm-start-latency", "--warm_start_latency", action="store_true", help="Run model(s) twice and preserve caches in between to enable a 'warm start' on the 2nd run", ) group_fuser = parser.add_mutually_exclusive_group() # --nvfuser is now the default, keep the option to not break scripts group_fuser.add_argument("--nvfuser", action="store_true", help=argparse.SUPPRESS) group_fuser.add_argument("--nnc", action="store_true", help="enable NNC for GPUs") group_prec = parser.add_mutually_exclusive_group() group_prec.add_argument("--float16", action="store_true", help="cast model to fp16") group_prec.add_argument( "--bfloat16", action="store_true", help="cast model to bf16" ) group_prec.add_argument("--float32", action="store_true", help="cast model to fp32") group_prec.add_argument( "--amp", action="store_true", help="use automatic mixed precision" ) parser.add_argument( "--amp-dtype", choices=("bfloat16", "float16"), help="the data type used with automatic mixed precision", ) group_printout = parser.add_mutually_exclusive_group() group_printout.add_argument( "--verbose", "-v", action="store_true", help="enable verbose debug printouts" ) group_printout.add_argument( "--quiet", "-q", action="store_true", help="suppress debug printouts" ) group = parser.add_mutually_exclusive_group() group.add_argument( "--coverage", action="store_true", help="(default) " + help(coverage_experiment) ) group.add_argument( "--overhead", action="store_true", help=help(overhead_experiment) ) group.add_argument( "--speedup-dynamo-ts", action="store_true", help="TorchDynamo frontend with torchscript backend", ) group.add_argument( "--speedup-fx2trt", action="store_true", help=help(speedup_experiment_fx2trt) ) group.add_argument( "--speedup-fx2trt-fp16", action="store_true", help=help(speedup_experiment_fx2trt), ) group.add_argument( "--print-fx", action="store_true", help="Print fx traces captured from model", ) group.add_argument( "--print-aten-ops", action="store_true", help="Print traces of aten ops captured by AOT autograd", ) group.add_argument( "--inductor", action="store_true", help="Measure speedup with TorchInductor", ) group.add_argument( "--quantization", choices=[ "int8dynamic", "int8weightonly", "int4weightonly", "autoquant", "noquant", ], default=None, help="Measure speedup of torchao quantization with TorchInductor baseline", ) group.add_argument( "--export", action="store_true", help="Measure pass rate with export", ) group.add_argument( "--export-aot-inductor", action="store_true", help="Measure pass rate with Export+AOTInductor", ) group.add_argument( "--aot-precompile", action="store_true", help="Measure pass rate with AOT Precompile", ) group.add_argument( "--export-nativert", action="store_true", help="Measure pass rate with Export+NativeRT", ) group.add_argument( "--torchscript-jit-trace", action="store_true", help="Measure pass rate with TorchScript jit.trace", ) group.add_argument( "--xla", action="store_true", help="Compare TorchXLA to eager PyTorch" ) group.add_argument( "--backend", choices=torch._dynamo.list_backends(exclude_tags=None), help="measure speedup with a given backend", ) group.add_argument("--nothing", action="store_true", help=help(null_experiment)) group.add_argument( "--log-conv-args", action="store_true", help="Dump convolution input/weight/bias's shape/stride/dtype and other options to json", ) group.add_argument( "--recompile-profiler", "--recompile_profiler", action="store_true", help="Run the dynamo recompilation profiler on each model.", ) group.add_argument( "--find-batch-sizes", action="store_true", help="finds the largest batch size that could fit on GPUs", ) mode_group = parser.add_mutually_exclusive_group(required=True) mode_group.add_argument( "--accuracy", action="store_true", help="Checks accuracy with small batch size and eval mode", ) mode_group.add_argument( "--performance", action="store_true", help="Measures performance speedup" ) mode_group.add_argument( "--tolerance", action="store_true", help="extracts the tolerance for each model with small batch size and eval mode", ) run_mode_group = parser.add_mutually_exclusive_group(required=True) run_mode_group.add_argument( "--training", action="store_true", help="Performs training", ) run_mode_group.add_argument( "--inference", action="store_true", help="Performs inference" ) return parser.parse_args(args) def process_caching_precompile(): """ After every process_entry, save precompile artifacts to DynamoCache """ assert torch._dynamo.config.caching_precompile, ( "Caching precompile should be enabled with --caching-precompile" ) from torch._dynamo.precompile_context import PrecompileContext debug_info = PrecompileContext.save_to_dynamo_cache() print( f"Saved {len(debug_info['dynamo'])} precompile artifacts with {len(debug_info['backends'])} backends" ) def process_entry(rank, runner, original_dir, args): args.rank = rank with maybe_init_distributed( args.init_distributed, rank=rank, world_size=args.world_size, port=args.distributed_master_port, ): result = run(runner, args, original_dir) if args.caching_precompile: process_caching_precompile() return result def maybe_fresh_cache(args): cache_dir_assigned = "TORCHINDUCTOR_CACHE_DIR" in os.environ if not cache_dir_assigned and ( args.cold_start_latency or args.warm_start_latency or args.ci ): return fresh_cache() else: return contextlib.nullcontext() def main(runner, original_dir=None, args=None): if original_dir: os.chdir(original_dir) args = parse_args() if not args else parse_args(args) if args.baseline: args.baseline = os.path.abspath(args.baseline) if should_diff_branch(args): import git # We do this here so we error out earlier if there's an issue repo = git.Repo() if repo.is_dirty(): raise RuntimeError( "--diff-branch called on dirty branch. Commit, stash, or reset." ) main_branch = repo.active_branch.name if main_branch == args.diff_branch: raise RuntimeError( f"--diff-branch: current branch is same as {args.diff_branch} branch, what are you diffing?" ) with maybe_fresh_cache(args): if args.caching_precompile: os.environ["TORCH_CACHING_PRECOMPILE"] = "1" torch._dynamo.config.caching_precompile = True args.init_distributed = args.only and args.multiprocess if args.init_distributed: # NB: Do NOT query device count before CUDA initialization; we're # going to overwrite CUDA_VISIBLE_DEVICES and this will result in # https://github.com/pytorch/pytorch/issues/107300 device_count = torch.cuda.device_count() if device_count <= 1: log.warning( "The use multiprocess flag is set but there are <= 1 devices available." ) # multiprocess path args.world_size = device_count mp.spawn( process_entry, args=(runner, original_dir, args), nprocs=device_count ) elif args.only and args.warm_start_latency: # Warm start mode. Enable FX graph caching and perform back-to-back runs in # separate processes (but ensure the inductor cache is preserved across runs). env = os.environ.copy() env["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1" cmd = [sys.executable] + sys.argv cmd.remove("--warm-start-latency") print(f"Performing cold-start run for {args.only}") warmup_cmd = cmd + ["--repeat=1", "--disable-output"] subprocess.check_call(warmup_cmd, timeout=args.timeout, env=env) print(f"Performing warm-start run for {args.only}") subprocess.check_call(cmd, timeout=args.timeout, env=env) else: # single process path just uses the main process args.world_size = 1 process_entry(0, runner, original_dir, args) def write_csv_when_exception(args, name: str, status: str, device=None): print(status) placeholder_batch_size = 0 devices = [device] if device is not None else args.devices if args.accuracy: headers = ["dev", "name", "batch_size", "accuracy"] rows = [[device, name, placeholder_batch_size, status] for device in devices] elif args.performance: headers = ["dev", "name", "batch_size", "speedup", "abs_latency"] rows = [[device, name, placeholder_batch_size, 0.0, 0.0] for device in devices] else: headers = [] rows = [[device, name, placeholder_batch_size, 0.0] for device in devices] for row in rows: write_outputs(output_filename, headers, row) def setup_determinism_for_accuracy_test(args): if args.only is not None and args.only not in { "alexnet", "Background_Matting", "pytorch_CycleGAN_and_pix2pix", "pytorch_unet", "Super_SloMo", "vgg16", # https://github.com/pytorch/pytorch/issues/96724 "Wav2Vec2ForCTC", "Wav2Vec2ForPreTraining", "sam", "sam_fast", "resnet50_quantized_qat", "mobilenet_v2_quantized_qat", "detectron2_maskrcnn", "detectron2_maskrcnn_r_101_c4", "detectron2_maskrcnn_r_101_fpn", "detectron2_maskrcnn_r_50_c4", "detectron2_maskrcnn_r_50_fpn", "detectron2_fasterrcnn_r_101_c4", "detectron2_fasterrcnn_r_101_dc5", "detectron2_fasterrcnn_r_101_fpn", "detectron2_fasterrcnn_r_50_c4", "detectron2_fasterrcnn_r_50_dc5", "detectron2_fasterrcnn_r_50_fpn", }: # some of the models do not support use_deterministic_algorithms torch.use_deterministic_algorithms(True) if args.devices == ["xpu"]: torch.use_deterministic_algorithms(True, warn_only=True) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.mkldnn.deterministic = True def run(runner, args, original_dir=None): # Pass the parsed args object to benchmark runner object torch._dynamo.reset() runner.args = args args.filter = args.filter or [r"."] args.exclude = args.exclude or [r"^$"] args.exclude_exact = args.exclude_exact or [] if args.inductor: assert args.backend is None args.backend = "inductor" if args.quantization: assert args.backend is None args.backend = "torchao" if args.dynamic_batch_only: args.dynamic_shapes = True torch._dynamo.config.assume_static_by_default = True if args.dynamic_shapes: if not args.dynamic_batch_only: torch._dynamo.config.assume_static_by_default = False if args.compiled_autograd: torch._dynamo.config.compiled_autograd = True if args.propagate_real_tensors: # TODO: Separate flag for data dependent torch._dynamo.config.capture_scalar_outputs = True torch._dynamo.config.capture_dynamic_output_shape_ops = True torch._functorch.config.fake_tensor_propagate_real_tensors = True if args.specialize_int: torch._dynamo.config.specialize_int = True if args.ci: if args.accuracy: # Run fewer iterations when checking accuracy args.repeat = min(args.repeat, 2) # Set translation validation on by default on CI accuracy runs. torch.fx.experimental._config.translation_validation = True if args.ddp: assert args.training, "DDP benchmark requires --training mode" torch._dynamo.config.optimize_ddp = args.optimize_ddp_mode if args.only == "dlrm": log.error( "DLRM+DDP is unsupported as it requires sharding the embedding layer separately from DDP" ) return sys.exit(-1) if args.accuracy: # Use small batch size. We use >1 batch size to ensure we test # batch_norm type of operators that work on batch dims. # TODO - Go through the failures for batch size = 2 if args.batch_size is None: if runner.suite_name == "huggingface": args.batch_size = 1 elif runner.suite_name == "torchbench": args.batch_size = 4 else: # Larger batch size of TIMM models to have stable batch_norm assert runner.suite_name == "timm_models" args.batch_size = 8 # Remove sources of randomness if runner.suite_name not in ("timm_models", "huggingface"): # TODO - Using train mode for timm_models and HF models. Move to train mode for Torchbench as well. args.use_eval_mode = True inductor_config.fallback_random = True setup_determinism_for_accuracy_test(args) os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" if args.only is not None and args.only in { "nvidia_deeprecommender", }: # These seem unhappy with numerics of larger cuBLASLt workspace torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(False) # Remove randomness when torch manual seed is called patch_torch_manual_seed() # Some models e.g. yolov3 assert batch size on n_gpus if "CUDA_VISIBLE_DEVICES" not in os.environ and not args.multiprocess: args.device_index = "0" # Stricter check to disable fallbacks args.suppress_errors = False if not args.disable_cudagraphs: runner.skip_models.update( { # xfail: https://github.com/pytorch/pytorch/issues/145773 "llama", "cm3leon_generate", } ) if args.device_index is not None: if args.multiprocess: print("Cannot specify both --device_index and --multiprocess") return sys.exit(-1) os.environ["CUDA_VISIBLE_DEVICES"] = args.device_index elif args.performance: # Ensure that we test on real scenarios args.use_eval_mode = False if args.partition_id > args.total_partitions or args.partition_id < 0: print("Invalid partition id") return sys.exit(-1) if not args.devices: if torch.cuda.is_available(): args.devices = ["cuda"] else: log.warning("torch.cuda.is_available() == False, using CPU") args.devices = ["cpu"] if args.devices != ["cpu"] and (HAS_CUDA or HAS_XPU): global synchronize synchronize = torch.cuda.synchronize if HAS_CUDA else torch.xpu.synchronize if args.nnc: torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) torch._C._jit_set_texpr_fuser_enabled(True) torch._C._jit_set_nvfuser_enabled(False) if args.threads: torch.set_num_threads(args.threads) if args.verbose: torch._logging.set_logs(dynamo=logging.DEBUG) if args.print_graph_breaks: torch._logging.set_logs(graph_breaks=True) if args.quiet: torch._logging.set_logs(dynamo=logging.ERROR) torch._dynamo.config.suppress_errors = args.suppress_errors if args.training: runner.model_iter_fn = runner.forward_and_backward_pass runner.skip_models.update(runner.skip_not_suitable_for_training_models) else: runner.model_iter_fn = runner.forward_pass if args.fast: runner.skip_models.update(runner.slow_models) if args.devices == ["cpu"]: arch = platform.machine() runner.skip_models.update(runner.skip_models_for_cpu) if arch == "aarch64": runner.skip_models.update(runner.skip_models_for_cpu_aarch64) elif args.devices == ["cuda"]: runner.skip_models.update(runner.skip_models_for_cuda) if not args.multiprocess: runner.skip_models.update(runner.skip_multiprocess_models) if args.freezing: if args.devices == ["cpu"]: runner.skip_models.update(runner.skip_models_for_freezing_cpu) elif args.devices == ["cuda"]: runner.skip_models.update(runner.skip_models_for_freezing_cuda) if args.no_skip: runner.skip_models.clear() experiment = null_experiment global \ current_name, \ current_device, \ current_batch_size, \ current_backend, \ current_mode, \ current_dtype, \ current_quantization, \ current_settings, \ output_filename, \ disable_output, \ optimize_ctx optimize_ctx = contextlib.nullcontext() if args.disable_output: disable_output = True if args.overhead: optimize_ctx = torch._dynamo.optimize(dummy_fx_compile, nopython=args.nopython) experiment = speedup_experiment output_filename = "overheads.csv" elif args.inductor: inductor_config.debug = args.verbose if args.threads: inductor_config.cpp.threads = args.threads optimize_ctx = functools.partial( torch.compile, backend="inductor", fullgraph=args.nopython, mode=args.inductor_compile_mode, ) experiment = speedup_experiment output_filename = "inductor.csv" elif args.export: optimize_ctx = export experiment = speedup_experiment output_filename = "export.csv" elif args.aot_precompile: optimize_ctx = aot_precompile experiment = speedup_experiment output_filename = "aot_precompile.csv" elif args.export_nativert: optimize_ctx = export_nativert experiment = speedup_experiment output_filename = "export_nativert.csv" elif args.torchscript_jit_trace: optimize_ctx = torchscript_jit_trace experiment = speedup_experiment output_filename = "torchscript_jit_trace.csv" elif args.xla: (dev,) = args.devices os.environ["PJRT_DEVICE"] = {"cuda": "GPU", "cpu": "CPU"}[dev] torch._dynamo.mark_dynamic = MagicMock() experiment = xla output_filename = "xla.csv" elif args.speedup_dynamo_ts: optimize_ctx = torch._dynamo.optimize("ts", nopython=args.nopython) experiment = speedup_experiment output_filename = "speedup_dynamo_ts.csv" elif args.prims_nvfuser: optimize_ctx = torch._dynamo.optimize("prims_nvfuser", nopython=args.nopython) experiment = speedup_experiment backend_str = "prims_nvfuser" output_filename = f"accuracy_aot_{backend_str}.csv" elif args.print_fx: optimize_ctx = torch._dynamo.optimize( print_fx, nopython=args.nopython, ) elif args.print_aten_ops: optimize_ctx = torch._dynamo.optimize( print_aten_ops, nopython=args.nopython, ) elif args.nothing: optimize_ctx = nothing experiment = speedup_experiment output_filename = "nothing.csv" elif args.backend or args.export_aot_inductor: if args.export_aot_inductor: assert not args.training, "AOTInductor only supports inference" optimize_ctx = functools.partial( export_aot_inductor, mode=args.inductor_compile_mode ) # AOTInductor doesn't support control flow yet runner.skip_models.update(runner.skip_models_due_to_control_flow) runner.skip_models.update(runner.skip_models_due_to_export_not_supported) elif args.backend == "torchao": assert "cuda" in args.devices, "Quantization requires CUDA device." assert args.bfloat16, "Quantization requires dtype bfloat16." try: from torchao_backend import setup_baseline, torchao_optimize_ctx except ImportError: try: from .torchao_backend import setup_baseline, torchao_optimize_ctx except ImportError: from userbenchmark.dynamo.dynamobench.torchao_backend import ( setup_baseline, torchao_optimize_ctx, ) setup_baseline() baseline_ctx = functools.partial( torch.compile, backend="inductor", fullgraph=args.nopython, mode=args.inductor_compile_mode, ) model_iter_fn = baseline_ctx(runner.model_iter_fn) # needed to avoid error that causes inconsistent timing due to: # Unable to hit fast path of CUDAGraphs because of pending, uninvoked backwards def model_iter_fn_and_mark_step(*args, **kwargs): torch.compiler.cudagraph_mark_step_begin() model_iter_fn(*args, **kwargs) runner.model_iter_fn = model_iter_fn_and_mark_step optimize_ctx = torchao_optimize_ctx(args.quantization) else: optimize_ctx = torch._dynamo.optimize(args.backend, nopython=args.nopython) experiment = ( speedup_experiment if args.backend != "torchao" else latency_experiment ) if args.accuracy: output_filename = f"accuracy_{args.backend}.csv" elif args.tolerance: output_filename = f"tolerance_{args.backend}.csv" else: output_filename = f"speedup_{args.backend}.csv" elif args.recompile_profiler: output_filename = "recompile_profiler_log.csv" experiment = recompile_profiler_experiment else: optimize_ctx = torch._dynamo.optimize( fx_insert_profiling, nopython=args.nopython ) experiment = coverage_experiment output_filename = "coverage.csv" if args.only in runner.disable_cudagraph_models: args.disable_cudagraphs = True if args.inductor or args.backend == "inductor" or args.export_aot_inductor: inductor_config.triton.cudagraphs = not args.disable_cudagraphs inductor_config.triton.persistent_reductions = ( not args.disable_persistent_reductions ) inductor_config.split_reductions = not args.disable_split_reductions inductor_config.triton.divisible_by_16 = not args.disable_divisible_by_16 if args.inference: inductor_config.freezing = args.freezing if args.inductor_config: for config in args.inductor_config: key, value = config.split("=") typ = type(inductor_config.__getattr__(key)) if issubclass(typ, bool): assert value in ("0", "1", "True", "False") value = value in ("1", "True") elif issubclass(typ, (str, int, float)): value = typ(value) else: raise NotImplementedError(typ) inductor_config.__setattr__(key, value) runner.setup_amp() if args.output: output_filename = args.output if output_filename: if args.output_directory: output_filename = os.path.join(args.output_directory, output_filename) else: output_filename = os.path.join( torch._dynamo.config.base_dir, output_filename ) if args.find_batch_sizes and args.only: for device in args.devices: batch_size = runner.batch_size_finder(device, args.only) print(args.only, batch_size) write_outputs(output_filename, [], [args.only, batch_size]) return args.profile_details = {} if args.export_profiler_trace: if args.profile_details: args.profile_details = { "record_shapes": True, "profile_memory": True, "with_stack": True, "with_modules": True, } if args.profiler_trace_name is None: if args.backend: args.profiler_trace_name = args.backend elif args.inductor: args.profiler_trace_name = "inductor" else: args.profiler_trace_name = "profile" else: args.profiler_trace_name = args.profiler_trace_name if args.no_translation_validation: # Overwrite 'translation_validation' config, if specified. torch.fx.experimental._config.translation_validation = False experiment = functools.partial(experiment, args) if args.only and should_diff_branch(args): import git repo = git.Repo() main_branch = repo.active_branch.name try: # Adding diff-branch again to the args will override previous value call_args = ( [sys.executable] + sys.argv + [f"--diff-branch={diff_branch_default}"] ) # Run for main branch subprocess.check_call(call_args + [f"--tag={main_branch}"]) # Run for comparison branch repo.git.checkout(args.diff_branch) subprocess.check_call(call_args + [f"--tag={args.diff_branch}"]) finally: # Go back to main branch repo.git.checkout(main_branch) elif args.only: model_name = args.only for device in args.devices: batch_size = args.batch_size if args.batch_size_file: batch_size = read_batch_size_from_file( args, args.batch_size_file, model_name ) if model_specified_by_path(args.only): model, example_inputs = load_model_from_path(args.only) name = model.__class__.__name__ model = model.to(device=device) example_inputs = tree_map_only( torch.Tensor, lambda x: x.to(device=device), example_inputs ) else: name = model_name try: with tqdm(desc="loading model"): extra_args = [] if hasattr(args, "rank") and hasattr(args, "world_size"): extra_args += [ "--rank", str(args.rank), "--world_size", str(args.world_size), ] if args.part: ( device, name, model, example_inputs, batch_size, ) = runner.load_model( device, model_name, batch_size=batch_size, part=args.part, extra_args=extra_args, ) else: if args.fsdp: # Always load model on cpu for fsdp # When initializing FSDP, we will use the cuda device if args.cuda is set ( _, name, model, example_inputs, batch_size, ) = runner.load_model( "cpu", model_name, batch_size=batch_size, extra_args=extra_args, ) else: ( device, name, model, example_inputs, batch_size, ) = runner.load_model( device, model_name, batch_size=batch_size, extra_args=extra_args, ) except Exception as e: import traceback mode = "train" if args.training else "eval" print(f"{device:4} {mode:5} {name:34} ") print(traceback.format_exc()) status = ( "model_fail_to_load" if isinstance(e, NotImplementedError) else "eager_fail_to_run" ) write_csv_when_exception(args, name, status, device) # NB: current_name/current_device not set, so pass # explicitly output_signpost( {"name": name, "dev": device}, args, runner.suite_name, error=status, ) continue # bad benchmark implementation if args.trace_on_xla: xla_dev = xm.xla_device() model = model.to(device=xla_dev) example_inputs = tree_map_only( torch.Tensor, lambda x: x.to(device=xla_dev), example_inputs ) current_name = name current_device = device current_batch_size = batch_size current_backend = args.backend current_mode = ( "training" if args.training else "inference" if args.inference else "" ) if args.float16: current_dtype = "float16" elif args.bfloat16: current_dtype = "bfloat16" elif args.float32: current_dtype = "float32" elif args.amp: current_dtype = "amp" else: current_dtype = "" current_quantization = args.quantization # Keep the remaining of the settings current_settings = vars(args) set_model_name(name) # Look for stuff that looks like batch size, and mark it dynamic. # Better integration would integrate directly with benchmark suite # but cannot conveniently do this # NB: This must be done late enough so that we don't do more # conversions on the inputs # NB: Assumes only the first batch-y like dimension is the batch marked = False def detect_and_mark_batch(t): nonlocal marked for i, s in enumerate(t.size()): if s == batch_size: torch._dynamo.maybe_mark_dynamic(t, i) marked = True break if ( args.dynamic_batch_only and batch_size > 1 and model_name not in CI_SKIP_DYNAMIC_BATCH_ONLY ): tree_map_only(torch.Tensor, detect_and_mark_batch, example_inputs) assert marked, f"nothing in example_inputs had a dim with {batch_size}" if args.log_operator_inputs: log_operator_inputs( model, example_inputs, runner.model_iter_fn, name, args ) continue if args.per_process_memory_fraction != 1: torch.cuda.set_per_process_memory_fraction( args.per_process_memory_fraction ) if model_name in DO_NOT_CAST_INPUTS: model, _ = runner.cast_based_on_args(model, example_inputs) else: model, example_inputs = runner.cast_based_on_args(model, example_inputs) runner.setup_amp(current_device) guard_ctx = contextlib.nullcontext() if name in runner.guard_on_nn_module_models: guard_ctx = torch._dynamo.config.patch(guard_nn_modules=True) inline_ctx = contextlib.nullcontext() if name in runner.inline_inbuilt_nn_modules_models: inline_ctx = torch._dynamo.config.patch(inline_inbuilt_nn_modules=True) with guard_ctx: with inline_ctx: runner.run_one_model( name, model, example_inputs, optimize_ctx, experiment, explain=args.explain, tag=args.tag, batch_size=batch_size if args.dynamic_batch_only else None, ) if args.generate_aot_autograd_stats: stats_file = output_filename.split(".csv")[0] + "_stats.csv" write_outputs( stats_file, ("dev", "name", "batch_size", "total_aot_graphs", "ok_aot_graphs"), [ current_device, current_name, current_batch_size, *Stats.aot_summary(), ], ) else: metrics.purge_old_log_files() if ( output_filename and os.path.exists(output_filename) and not args.retain_output ): os.unlink(output_filename) if original_dir: os.chdir(original_dir) model_names = list(runner.iter_model_names(args)) nmodels = len(model_names) for i, name in enumerate(model_names): current_name = name if args.progress: print(f"Running model {i + 1}/{nmodels}", flush=True) try: timeout = args.timeout if should_diff_branch(args): timeout *= 2 env = os.environ.copy() if args.ci and name in CI_PRESERVE_COMPILE_DEBUG: env["TORCH_COMPILE_DEBUG"] = "1" subprocess.check_call( [sys.executable] + sys.argv + [f"--only={name}"], timeout=timeout, env=env, ) except subprocess.TimeoutExpired: write_csv_when_exception(args, name, "timeout") # NB: device is potentially multiple here, though we should # try our best to report in anyway TODO output_signpost( {"name": name}, args, runner.suite_name, error="timeout" ) except subprocess.CalledProcessError as e: print("Run failed with return code: ", e.returncode, file=sys.stderr) print("Output: ", e.output, file=sys.stderr) print("Error: ", e.stderr, file=sys.stderr) print_summary(output_filename, print_dataframe=args.print_dataframe_summary) def log_operator_inputs(model, example_inputs, model_iter_fn, name, args): mode = "training" if args.training else "eval" output = os.path.join(os.path.dirname(args.output), f"{name}_{mode}.txt") # TODO - add option for coalescing inputs over multiple runs if os.path.exists(output): print(f"Skipping {name}, {output} already exists") return print(f"Running {name}") try: from .microbenchmarks.operator_inp_utils import OperatorInputsMode except ImportError: from microbenchmarks.operator_inp_utils import OperatorInputsMode operator_mode = OperatorInputsMode() fake_tensor_mode = FakeTensorMode() with torch._subclasses.fake_tensor.FakeCopyMode(fake_tensor_mode): model_fake = copy.deepcopy(model) example_inputs_fake = copy.deepcopy(example_inputs) try: with fake_tensor_mode, operator_mode: model_iter_fn(model_fake, example_inputs_fake, collect_outputs=False) except Exception as e: print(f"{name} failed to run with fake tensors, trying real. Exception: {e}") operator_mode = OperatorInputsMode() try: with operator_mode: model_iter_fn(model, example_inputs, collect_outputs=False) except Exception as e2: print(f"{name} failed to run with real. Exception: {e2}") raise print(f"Writing output to {output}") operator_mode.log_to_file(output) if __name__ == "__main__": raise RuntimeError( f"You shouldn't run {sys.argv[0]} directly, instead try timm_model.py, torchbench.py or huggingface.py" )