import torch import unittest from torch.testing._internal.common_utils import TestCase, run_tests from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes class TestForeach(TestCase): @dtypes(*torch.testing.get_all_dtypes()) def test_int_scalar(self, device, dtype): tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] int_scalar = 1 # bool tensor + 1 will result in int64 tensor if dtype == torch.bool: expected = [torch.ones(10, 10, device=device, dtype=torch.int64) for _ in range(10)] else: expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)] res = torch._foreach_add(tensors, int_scalar) self.assertEqual(res, expected) if dtype in [torch.bool]: with self.assertRaisesRegex(RuntimeError, "result type Long can't be cast to the desired output type Bool"): torch._foreach_add_(tensors, int_scalar) else: torch._foreach_add_(tensors, int_scalar) self.assertEqual(res, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_float_scalar(self, device, dtype): tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] float_scalar = 1. # float scalar + integral tensor will result in float tensor if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.bool]: expected = [torch.ones(10, 10, device=device, dtype=torch.float32) for _ in range(10)] else: expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)] res = torch._foreach_add(tensors, float_scalar) self.assertEqual(res, expected) if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.bool]: self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, float_scalar)) else: torch._foreach_add_(tensors, float_scalar) self.assertEqual(res, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_complex_scalar(self, device, dtype): tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] complex_scalar = 3 + 5j # bool tensor + 1 will result in int64 tensor expected = [torch.add(complex_scalar, torch.zeros(10, 10, device=device, dtype=dtype)) for _ in range(10)] if dtype in [torch.float16, torch.float32, torch.float64, torch.bfloat16] and device == 'cuda:0': # value cannot be converted to dtype without overflow: self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar)) self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, complex_scalar)) return res = torch._foreach_add(tensors, complex_scalar) self.assertEqual(res, expected) if dtype not in [torch.complex64, torch.complex128]: self.assertRaises(RuntimeError, lambda: torch._foreach_add_(tensors, complex_scalar)) else: torch._foreach_add_(tensors, complex_scalar) self.assertEqual(res, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_bool_scalar(self, device, dtype): tensors = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] bool_scalar = True expected = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)] res = torch._foreach_add(tensors, bool_scalar) self.assertEqual(res, expected) torch._foreach_add_(tensors, bool_scalar) self.assertEqual(res, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_add_scalar_with_different_size_tensors(self, device, dtype): if dtype == torch.bool: return tensors = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)] expected = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)] torch._foreach_add_(tensors, 1) self.assertEqual(expected, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype): # TODO: enable empty list case for tensors in [[torch.randn([0])]]: res = torch._foreach_add(tensors, 1) self.assertEqual(res, tensors) torch._foreach_add_(tensors, 1) self.assertEqual(res, tensors) @dtypes(*torch.testing.get_all_dtypes()) def test_add_scalar_with_overlapping_tensors(self, device, dtype): tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)] expected = [torch.tensor([[[2, 2, 2]], [[2, 2, 2]]], dtype=dtype, device=device)] # bool tensor + 1 will result in int64 tensor if dtype == torch.bool: expected[0] = expected[0].to(torch.int64).add(1) res = torch._foreach_add(tensors, 1) self.assertEqual(res, expected) def test_add_scalar_with_different_tensor_dtypes(self, device): tensors = [torch.tensor([1.1], dtype=torch.float, device=device), torch.tensor([1], dtype=torch.long, device=device)] self.assertRaises(RuntimeError, lambda: torch._foreach_add(tensors, 1)) def test_add_list_error_cases(self, device): tensors1 = [] tensors2 = [] # Empty lists with self.assertRaises(RuntimeError): torch._foreach_add(tensors1, tensors2) with self.assertRaises(RuntimeError): torch._foreach_add_(tensors1, tensors2) # One empty list tensors1.append(torch.tensor([1], device=device)) with self.assertRaisesRegex(RuntimeError, "Tensor list must have at least one tensor."): torch._foreach_add(tensors1, tensors2) with self.assertRaisesRegex(RuntimeError, "Tensor list must have at least one tensor."): torch._foreach_add_(tensors1, tensors2) # Lists have different amount of tensors tensors2.append(torch.tensor([1], device=device)) tensors2.append(torch.tensor([1], device=device)) with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"): torch._foreach_add(tensors1, tensors2) with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"): torch._foreach_add_(tensors1, tensors2) # Different dtypes tensors1 = [torch.zeros(10, 10, device=device, dtype=torch.float) for _ in range(10)] tensors2 = [torch.ones(10, 10, device=device, dtype=torch.int) for _ in range(10)] with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."): torch._foreach_add(tensors1, tensors2) with self.assertRaisesRegex(RuntimeError, "All tensors in the tensor list must have the same dtype."): torch._foreach_add_(tensors1, tensors2) # different devices if torch.cuda.is_available() and torch.cuda.device_count() > 1: tensor1 = torch.zeros(10, 10, device="cuda:0") tensor2 = torch.ones(10, 10, device="cuda:1") with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch._foreach_add([tensor1], [tensor2]) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch._foreach_add_([tensor1], [tensor2]) # Coresponding tensors with different sizes tensors1 = [torch.zeros(10, 10, device=device) for _ in range(10)] tensors2 = [torch.ones(11, 11, device=device) for _ in range(10)] with self.assertRaisesRegex(RuntimeError, "Corresponding tensors in lists must have the same size"): torch._foreach_add(tensors1, tensors2) with self.assertRaisesRegex(RuntimeError, r", got \[10, 10\] and \[11, 11\]"): torch._foreach_add_(tensors1, tensors2) @dtypes(*torch.testing.get_all_dtypes()) def test_add_list_same_size(self, device, dtype): tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] tensors2 = [torch.ones(10, 10, device=device, dtype=dtype) for _ in range(10)] res = torch._foreach_add(tensors1, tensors2) torch._foreach_add_(tensors1, tensors2) self.assertEqual(res, tensors1) self.assertEqual(res[0], torch.ones(10, 10, device=device, dtype=dtype)) @dtypes(*torch.testing.get_all_dtypes()) def test_add_list_different_sizes(self, device, dtype): tensors1 = [torch.zeros(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)] tensors2 = [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)] res = torch._foreach_add(tensors1, tensors2) torch._foreach_add_(tensors1, tensors2) self.assertEqual(res, tensors1) self.assertEqual(res, [torch.ones(10 + n, 10 + n, device=device, dtype=dtype) for n in range(10)]) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not found") @dtypes(*torch.testing.get_all_dtypes()) def test_add_list_slow_path(self, device, dtype): # different strides tensor1 = torch.zeros(10, 10, device=device, dtype=dtype) tensor2 = torch.ones(10, 10, device=device, dtype=dtype) res = torch._foreach_add([tensor1], [tensor2.t()]) torch._foreach_add_([tensor1], [tensor2]) self.assertEqual(res, [tensor1]) # non contiguous tensor1 = torch.randn(5, 2, 1, 3, device=device)[:, 0] tensor2 = torch.randn(5, 2, 1, 3, device=device)[:, 0] self.assertFalse(tensor1.is_contiguous()) self.assertFalse(tensor2.is_contiguous()) res = torch._foreach_add([tensor1], [tensor2]) torch._foreach_add_([tensor1], [tensor2]) self.assertEqual(res, [tensor1]) instantiate_device_type_tests(TestForeach, globals()) if __name__ == '__main__': run_tests()