#include #include #include #include #include namespace torch::autograd { static PyObject* THPVariable_nested_tensor( PyObject* /*self*/, PyObject* args, PyObject* kwargs) { HANDLE_TH_ERRORS static PythonArgParser parser({ "nested_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)", }); constexpr int ctor_num_args = 5; ParsedArgs parsed_args; auto r = parser.parse(args, kwargs, parsed_args); jit::tracer::warn( "torch.nested.nested_tensor", jit::tracer::WARN_CONSTRUCTOR); return THPVariable_Wrap(torch::utils::nested_tensor_ctor( torch::tensors::get_default_dispatch_key(), torch::tensors::get_default_scalar_type(), r)); END_HANDLE_TH_ERRORS } // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays) static PyMethodDef nested_functions_manual[] = { {"nested_tensor", castPyCFunctionWithKeywords(THPVariable_nested_tensor), METH_VARARGS | METH_KEYWORDS, nullptr}, }; PyMethodDef* get_nested_functions_manual() { return nested_functions_manual; } } // namespace torch::autograd