import math import random import string import unittest import itertools import contextlib import warnings import pickle from copy import deepcopy from itertools import repeat, product from functools import wraps, reduce from operator import mul from collections import OrderedDict import hashlib import os import torch from torch._six import inf, nan import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel as dp import torch.nn.init as init import torch.nn.utils.rnn as rnn_utils from torch.nn.utils import clip_grad_norm_, clip_grad_value_ from torch.nn.utils import parameters_to_vector, vector_to_parameters from torch.autograd import Variable, gradcheck from torch.autograd.gradcheck import gradgradcheck from torch.nn import Parameter from torch.nn.parallel._functions import Broadcast from common_utils import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, skipIfRocm, TEST_WITH_ROCM, \ TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, download_file, PY3, PY34, to_gpu, \ get_function_arglist, skipCUDAMemoryLeakCheckIf, load_tests from common_cuda import TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, \ TEST_CUDNN_VERSION from common_nn import NNTestCase, ModuleTest, CriterionTest, TestBase, \ module_tests, criterion_tests, loss_reference_fns, get_reduction, \ get_weight, smoothl1loss_reference, kldivloss_reference, ctcloss_reference # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests if TEST_SCIPY: from scipy import stats import scipy.ndimage if TEST_NUMPY: import numpy as np ALL_TENSORTYPES = [torch.float, torch.double] if not TEST_WITH_ROCM: ALL_TENSORTYPES.append(torch.half) NO_HALF_TENSORTYPES = [torch.float, torch.double] DOUBLE_TENSORTYPES = [torch.double] dtype2prec = {torch.float: 1e-5, torch.double: 1e-5, torch.half: 1e-2} # WARNING: If you add a new top-level test case to this file, you MUST # update test/run_test.py to list it, otherwise it will NOT be run in # CI. # Used to run the same test with different tensor types def repeat_test_for_types(dtypes): def repeat_helper(f): @wraps(f) def call_helper(self, *args): for dtype in dtypes: if PY34: with TestCase.subTest(self, dtype=dtype): f(self, *args, dtype=dtype) else: f(self, *args, dtype=dtype) return call_helper return repeat_helper class PackedSequenceTest(TestCase): _type_by_name = { 'torch.DoubleTensor': (torch.DoubleTensor, 'double'), 'torch.FloatTensor': (torch.FloatTensor, 'float'), # We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),` # because of an error in `pad_packed_sequence` # > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_' 'torch.LongTensor': (torch.LongTensor, 'long'), 'torch.IntTensor': (torch.IntTensor, 'int'), 'torch.ShortTensor': (torch.ShortTensor, 'short'), 'torch.CharTensor': (torch.CharTensor, 'char'), 'torch.ByteTensor': (torch.ByteTensor, 'byte'), } def __init__(self, *args, **kwargs): super(PackedSequenceTest, self).__init__(*args, **kwargs) self.batch_size = 5 self.max_length = 6 def _ordered_sequence(self, tensor_type): """Create ordered list of random sequences""" seqs = [tensor_type(random.randint(1, self.max_length)) for _ in range(self.batch_size)] seqs = [s.random_(-128, 128) for s in seqs] ordered = sorted(seqs, key=len, reverse=True) return ordered def _padded_sequence(self, tensor_type): """Create Tensor of random padded sequences""" ordered = self._ordered_sequence(tensor_type) lengths = list(map(len, ordered)) padded_tensor = rnn_utils.pad_sequence(ordered) return padded_tensor, lengths def test_type_casts(self): """Test type casting of `PackedSequence` against type casting of tensor""" for _, (input_type, _) in self._type_by_name.items(): for expected_type_str, (_, cast_str) in self._type_by_name.items(): padded, lengths = self._padded_sequence(input_type) packed = rnn_utils.pack_padded_sequence(padded, lengths) # Apply cast to `PackedSequence` instance and unpack masked = getattr(packed, cast_str)() unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked) self.assertEqual(unpacked.type(), expected_type_str) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_cuda_mask(self): tensor_type = torch.FloatTensor cuda_type_str = 'torch.cuda.FloatTensor' padded, lengths = self._padded_sequence(tensor_type) packed = rnn_utils.pack_padded_sequence(padded, lengths) self.assertFalse(packed.is_cuda) packed = packed.cuda() self.assertTrue(packed.is_cuda) unpacked, _ = rnn_utils.pad_packed_sequence(packed) self.assertEqual(unpacked.type(), cuda_type_str) def test_total_length(self): padded, lengths = self._padded_sequence(torch.FloatTensor) max_length = max(lengths) packed = rnn_utils.pack_padded_sequence(padded, lengths) # test ValueError if total_length < max_length for total_length in (-1, 0, max_length - 1): for batch_first in (True, False): def err_fn(): rnn_utils.pad_packed_sequence(packed, batch_first=batch_first, total_length=total_length) self.assertRaisesRegex(ValueError, r'Expected total_length to be at least the ' r'length of the longest sequence in input', err_fn) # test that pad_packed_sequence returns results of correct length for batch_first in (True, False): no_extra_pad, _ = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first) for total_length_delta in (0, 1, 8): total_length = max_length + total_length_delta unpacked, lengths_out = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first, total_length=total_length) self.assertEqual(lengths, lengths_out) self.assertEqual(unpacked.size(1 if batch_first else 0), total_length) if total_length_delta == 0: ref_output = no_extra_pad elif batch_first: extra_pad = no_extra_pad.new_zeros(self.batch_size, total_length_delta) ref_output = torch.cat([no_extra_pad, extra_pad], 1) else: extra_pad = no_extra_pad.new_zeros(total_length_delta, self.batch_size) ref_output = torch.cat([no_extra_pad, extra_pad], 0) self.assertEqual(unpacked, ref_output) def test_to(self): padded, lengths = self._padded_sequence(torch.IntTensor) a = rnn_utils.pack_padded_sequence(padded, lengths).cpu() self.assertIs(a, a.to('cpu')) self.assertIs(a, a.to('cpu', dtype=torch.int32)) self.assertEqual(a.long(), a.to(torch.int64)) if torch.cuda.is_available(): for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = a.cuda(device=cuda) self.assertIs(b, b.to(cuda)) self.assertEqual(a, b.to('cpu')) self.assertEqual(b, a.to(cuda)) self.assertEqual(a, b.to('cpu', dtype=torch.int32)) self.assertIs(b, b.to(dtype=torch.int32)) self.assertEqual(b.long(), b.to(dtype=torch.int64)) def default_tensor_type(type): type_str = torch.typename(type) def decorator(fn): @wraps(fn) def wrapper(*args, **kwargs): old_type = torch.Tensor().type() torch.set_default_tensor_type(type_str) try: return fn(*args, **kwargs) finally: torch.set_default_tensor_type(old_type) return wrapper return decorator def _assertGradAndGradgradChecks(test_case, apply_fn, inputs): # call assert function rather than returning a bool since it's nicer # if we get whether this failed on the gradcheck or the gradgradcheck. test_case.assertTrue(gradcheck(apply_fn, inputs)) test_case.assertTrue(gradgradcheck(apply_fn, inputs)) class InputVariableMixin(object): def _get_input(self): input = TestBase._get_input(self, False) def map_variables(i): if isinstance(i, torch.Tensor): if i.is_floating_point(): i.requires_grad = True return i else: return type(i)(map_variables(elem) for elem in i) return map_variables(input) class NewModuleTest(InputVariableMixin, ModuleTest): def __init__(self, *args, **kwargs): super(NewModuleTest, self).__init__(*args, **kwargs) self.cudnn = kwargs.get('cudnn', False) self.check_inplace = kwargs.get('check_inplace', False) self.check_gradgrad = kwargs.get('check_gradgrad', True) self.skip_double = kwargs.get('skip_double', False) def _do_test(self, test_case, module, input): test_case.check_jacobian(module, input, self.jacobian_input) if self.check_gradgrad: # could probably unify check_jacobian above with this. params = tuple(x for x in module.parameters()) _assertGradAndGradgradChecks(test_case, lambda x, *args, **kw: test_case._forward(module, x), (input,) + params) # check if module can be printed module.__repr__() if self.check_inplace: # check if the inplace variant of the module gives the same result # as the out-of-place module_ip = self.constructor(*self.constructor_args, inplace=True) input_version = input._version with freeze_rng_state(): output = module(input) test_case.assertEqual(input._version, input_version) input_ip = deepcopy(input) input_ip_clone = input_ip.clone() with freeze_rng_state(): output_ip = module_ip(input_ip_clone) test_case.assertNotEqual(input_ip_clone._version, input_version) test_case.assertEqual(output, output_ip) grad = output.data.clone().normal_() input.grad.data.zero_() output.backward(grad) output_ip.backward(grad) test_case.assertEqual(input.grad, input_ip.grad) if isinstance(input, torch.LongTensor) and TEST_CUDA: # check that cuda() moves module parameters to correct GPU device, # and that float() casts parameters correctly input = input.cuda() module.float().cuda() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 0) if torch.cuda.device_count() > 1: input = input.cuda(1) module.cuda(1) with torch.cuda.device(1): module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 1) else: # check that float()/double() casters work correctly # to float if not isinstance(input, torch.LongTensor): input = input.float() module.float() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.FloatTensor) # and back to double if not isinstance(input, torch.LongTensor): input = input.double() module.double() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.DoubleTensor) if TEST_CUDA and self.should_test_cuda: # check that cuda() moves module parameters to correct GPU device, # and that float() casts parameters correctly # to GPU0 input = input.float().cuda() module.float().cuda() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 0) # to CPU input = input.cpu() module.cpu() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.FloatTensor) # back to GPU0 input = input.cuda() module.cuda() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 0) # test that forwards of module runs correctly without cuDNN if self.cudnn: with torch.backends.cudnn.flags(enabled=False): module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 0) if torch.cuda.device_count() >= 2: # test cross-GPU transfer works # to GPU1 input = input.cuda(1) module.cuda(1) with torch.cuda.device(1): module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.FloatTensor) test_case.assertEqual(p.get_device(), 1) if not self.skip_double: # test double() input = input.double().cuda() module.double().cuda() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.DoubleTensor) test_case.assertEqual(p.get_device(), 0) if not TEST_WITH_ROCM: # test half() input = input.half().cuda() module.half().cuda() module(input) for p in module.parameters(): test_case.assertIsInstance(p, torch.cuda.HalfTensor) test_case.assertEqual(p.get_device(), 0) def _get_target(self): return self._get_arg('target', False) @property def constructor_args(self): return self._get_arg('constructor_args', False) class NewCriterionTest(InputVariableMixin, CriterionTest): # TODO: check that criterions don't ignore grad_output def __init__(self, *args, **kwargs): super(NewCriterionTest, self).__init__(*args, **kwargs) self.check_gradgrad = kwargs.get('check_gradgrad', True) self.check_half = kwargs.get('check_half', True) self.convert_target = kwargs.get('convert_target', True) def _do_extra_tests(self, test_case, module, input, target): if not self.check_gradgrad: return test_case.assertFalse(target.requires_grad) params = tuple(x for x in module.parameters()) if not isinstance(input, tuple): inputs = (input,) + params def apply_fn(input, *params): return module(input, target) else: inputs = input + params def apply_fn(input1, input2, *params): return module(input1, input2, target) # TODO: we don't pass `target` as part of inputs because we don't # currently compute the gradient w.r.t. target for loss functions. gradcheck(apply_fn, inputs) gradgradcheck(apply_fn, inputs) def test_cuda(self, test_case, dtype=None, extra_args=None): def convert_dtype(obj, dtype, requires_grad=False): if isinstance(obj, torch.Tensor): return obj.detach().to(dtype=dtype).requires_grad_(requires_grad) elif isinstance(obj, torch.Tensor): return obj.to(dtype) elif isinstance(obj, tuple): return tuple(convert_dtype(o, dtype, requires_grad) for o in obj) else: return obj if not TEST_CUDA or not self.should_test_cuda: raise unittest.SkipTest('Excluded from CUDA tests') try: cpu_input = self._get_input() cpu_target = self._get_target() cpu_module = self.constructor(*self.constructor_args) gpu_module = self.constructor(*self.constructor_args) # Convert input, target and module parameters to dtype if dtype is not None: cpu_input = convert_dtype(cpu_input, dtype, True) # NLLLoss requires target to be LongTensor if not isinstance(cpu_target, torch.LongTensor) and self.convert_target: cpu_target = convert_dtype(cpu_target, dtype) cpu_module.type(dtype) gpu_module.type(dtype) # GPU setup gpu_input = to_gpu(cpu_input) gpu_target = to_gpu(cpu_target) gpu_module.cuda() # torch.HalfTensor doesn't support most operations, converting back to default if dtype == torch.half: cpu_input = self._get_input() cpu_target = self._get_target() # Loss modules with weights require consistent input/module weight types cpu_module = self.constructor(*self.constructor_args) cpu_output = test_case._forward_criterion(cpu_module, cpu_input, cpu_target, extra_args=extra_args) gpu_output = test_case._forward_criterion(gpu_module, gpu_input, gpu_target, extra_args=extra_args) # dtype can be None, so set precision in this way instead of a precision map test_case.assertEqual(cpu_output, gpu_output, 1e-1 if dtype == torch.half else 4e-4) cpu_gradInput = test_case._backward_criterion(cpu_module, cpu_input, cpu_target, extra_args=extra_args) gpu_gradInput = test_case._backward_criterion(gpu_module, gpu_input, gpu_target, extra_args=extra_args) test_case.assertEqual(cpu_gradInput, gpu_gradInput, 1e-1 if dtype == torch.half else 4e-4) except NotImplementedError: pass def _get_target(self): return self._get_arg('target', False) @property def constructor_args(self): return self._get_arg('constructor_args', False) @property def extra_args(self): return self._get_arg('extra_args', False) class TestNN(NNTestCase): _do_cuda_memory_leak_check = True def _forward(self, module, input): with freeze_rng_state(): return module(input) def _backward(self, module, input, output, grad_output, create_graph=False): output.backward(grad_output, retain_graph=True, create_graph=create_graph) if input.grad is None: return None return input.grad.data def _forward_criterion(self, criterion, input, target, extra_args=None): if extra_args is None: extra_args = tuple() if isinstance(input, tuple): args = input + (target,) + extra_args output = criterion(*args) else: output = criterion(input, target, *extra_args) return output.item() def _backward_criterion(self, criterion, input, target, gradOutput=None, extra_args=None): if extra_args is None: extra_args = tuple() input_tuple = input if isinstance(input, tuple) else (input,) for i in input_tuple: if i.grad is not None: i.grad.data.zero_() args = input_tuple + (target,) + extra_args if gradOutput is None: gradOutput = torch.ones(()) criterion(*args).backward(gradOutput.type_as(input_tuple[0])) if isinstance(input, tuple): return tuple(map(lambda i: i.grad.data, input)) else: return input.grad.data def _zero_grad_parameters(self, module): for p in module.parameters(): if p.grad is not None: p.grad.data.zero_() p.grad.detach_() def _get_parameters(self, module): params = [] d_params = [] for p in module.parameters(): params.append(p) d_params.append(p.grad) return params, d_params def _create_basic_net(self): class Layer(nn.Module): def __init__(self): super(Layer, self).__init__() self.layer_dummy_param = Parameter(torch.Tensor(3, 5)) self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7)) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = Layer() self.dummy_param = Parameter(torch.Tensor(3, 5)) self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1)) l = Layer() n = Net() s = nn.Sequential(n, n) return l, n, s def test_module_backcompat(self): from torch.serialization import SourceChangeWarning path = download_file('https://download.pytorch.org/test_data/linear.pt') with warnings.catch_warnings(): warnings.simplefilter('ignore', SourceChangeWarning) m = torch.load(path) input = torch.randn(2, 3, dtype=torch.float) self.assertEqual(m(input).size(), (2, 5)) def test_hooks(self): module = nn.Sigmoid() input = torch.ones(5, 5, requires_grad=True) counter = { 'forwards': 0, 'backwards': 0 } def fw_hook(inc, h_module, input, output): self.assertIsInstance(input, tuple) self.assertTrue(isinstance(output, torch.Tensor)) self.assertTrue(h_module is module) self.assertEqual(input[0].data, torch.ones(5, 5)) self.assertEqual(output.data, torch.Tensor(5, 5).fill_(1 / (1 + 1 / math.e))) counter['forwards'] += inc def bw_hook(inc, h_module, grad_input, grad_output): self.assertIsInstance(grad_input, tuple) self.assertIsInstance(grad_output, tuple) self.assertTrue(h_module is module) self.assertEqual(grad_output[0].data, torch.ones(5, 5) * 2) counter['backwards'] += inc test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args)) module(input) module(input) self.assertEqual(counter['forwards'], 2) self.assertEqual(counter['backwards'], 0) test_bwd = module.register_backward_hook( lambda *args: bw_hook(1, *args)) output = module(input) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 0) output.backward(torch.ones(5, 5) * 2, retain_graph=True) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 1) output.backward(torch.ones(5, 5) * 2, retain_graph=True) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 2) test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args)) output = module(input) self.assertEqual(counter['forwards'], 6) self.assertEqual(counter['backwards'], 2) test2_bwd = module.register_backward_hook(lambda *args: bw_hook(2, *args)) module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 9) self.assertEqual(counter['backwards'], 5) test2_bwd.remove() module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 12) self.assertEqual(counter['backwards'], 6) test2_fwd.remove() module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 13) self.assertEqual(counter['backwards'], 7) test_fwd.remove() test_bwd.remove() def test_hook_cpp(self): counter = [0] bn = nn.BatchNorm1d(5) def hook(module, grad_inputs, grad_outputs): counter[0] += 1 self.assertEqual(len(grad_inputs), 3) self.assertEqual(len(grad_outputs), 1) self.assertEqual(module, bn) bn.register_backward_hook(hook) output = bn(torch.randn(5, 5, requires_grad=True)) output.sum().backward() def test_hook_fail(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) def fw_fail1(self, input, output): return output def fw_fail2(self, input, output): return input def bw_fail1(self, grad_input, grad_output): return grad_input[:-1] def bw_fail2(self, grad_input, grad_output): return grad_input + (torch.randn(2, 2),) with module.register_forward_hook(fw_fail1): with self.assertRaises(RuntimeError) as err: module(input) self.assertIn("fw_fail", err.exception.args[0]) self.assertIn("didn't return None", err.exception.args[0]) with module.register_forward_hook(fw_fail2): with self.assertRaises(RuntimeError) as err: module(input) self.assertIn("fw_fail2", err.exception.args[0]) self.assertIn("didn't return None", err.exception.args[0]) with module.register_backward_hook(bw_fail1): with self.assertRaises(RuntimeError) as err: module(input).sum().backward() self.assertIn("bw_fail", err.exception.args[0]) self.assertIn("got 0, but expected 1", err.exception.args[0]) with module.register_backward_hook(bw_fail2): with self.assertRaises(RuntimeError) as err: module(input).sum().backward() self.assertIn("bw_fail2", err.exception.args[0]) self.assertIn("got 2, but expected 1", err.exception.args[0]) def test_hook_writeable(self): module = nn.Linear(5, 5) input = torch.randn(5, 5, requires_grad=True) def bw_hook(module, grad_input, grad_output): for grad in grad_input: self.assertTrue(isinstance(grad, torch.Tensor)) for grad in grad_output: self.assertTrue(isinstance(grad, torch.Tensor)) return tuple(gi * 2 for gi in grad_input) module.register_backward_hook(bw_hook) module(input).backward(torch.ones(5, 5)) expected_grad = torch.ones(5, 5).mm(module.weight.data) * 2 self.assertEqual(input.grad.data, expected_grad) def test_to(self): m = nn.Linear(3, 5) self.assertIs(m, m.to('cpu')) self.assertIs(m, m.to('cpu', dtype=torch.float32)) self.assertEqual(m.double(), m.to(torch.float64)) self.assertRaises(RuntimeError, lambda: m.to('cpu', copy=True)) if torch.cuda.is_available(): for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: m2 = m.cuda(device=cuda) self.assertIs(m2, m2.to(cuda)) self.assertEqual(m, m2.to('cpu')) self.assertEqual(m2, m.to(cuda)) self.assertIs(m2, m2.to(dtype=torch.float32)) self.assertEqual(m2.double(), m2.to(dtype=torch.float64)) def test_zero_grad(self): i = torch.randn(2, 5, requires_grad=True) module = nn.Linear(5, 5) for p in module.parameters(): p.requires_grad = False module.zero_grad() module.weight.requires_grad = True module.zero_grad() self.assertIsNone(module.weight.grad) # uninitialized grad module(i).sum().backward() self.assertIsNotNone(module.weight.grad) self.assertGreater(module.weight.grad.data.abs().sum(), 0) module.zero_grad() self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) module.bias.requires_grad = True module.zero_grad() self.assertIsNotNone(module.weight.grad) self.assertIsNone(module.bias.grad) module(i).sum().backward() self.assertIsNotNone(module.weight.grad) self.assertIsNotNone(module.bias.grad) self.assertGreater(module.weight.grad.data.abs().sum(), 0) self.assertGreater(module.bias.grad.data.abs().sum(), 0) module.zero_grad() self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_()) def test_no_grad(self): module = nn.Conv2d(2, 5, kernel_size=3, padding=1) input = torch.randn(1, 2, 10, 10) x = input y = input.clone() output = module(x) self.assertTrue(output.requires_grad) output.backward(torch.ones(1, 5, 10, 10)) with torch.no_grad(): output2 = module(y) self.assertFalse(output2.requires_grad) self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10))) def test_invalid_conv2d(self): module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2) input = torch.empty(1, 1, 4, 4) self.assertRaises(RuntimeError, lambda: module(input)) module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True) input = torch.randn(1, 3, 1, 1) with self.assertRaisesRegex(RuntimeError, r'Calculated padded input size per channel: \(1 x 1\). ' + r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'): module(input) def test_invalid_conv3d(self): module = torch.nn.Conv3d(1, 1, kernel_size=3, dilation=2, stride=2) input = torch.empty(1, 1, 4, 4, 4) self.assertRaises(RuntimeError, lambda: module(input)) def _test_dropout(self, cls, cuda, input): p = 0.2 device = torch.device("cuda") if cuda else torch.device("cpu") input = input.to(device).fill_(1 - p) module = cls(p) input_var = input.clone().requires_grad_() output = module(input_var) self.assertLess(abs(output.data.mean() - (1 - p)), 0.05) output.backward(input) self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05) module = cls(p, True) input_var = input.clone().requires_grad_() output = module(input_var + 0) self.assertLess(abs(output.data.mean() - (1 - p)), 0.05) output.backward(input) self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05) # check eval mode doesn't change anything for inplace in [True, False]: module = cls(p, inplace).eval() self.assertEqual(input, module(input)) # Check that these don't raise errors module.__repr__() str(module) def _test_alpha_dropout(self, cls, input): mean = input.mean() std = input.std() for p in [0.2, 0.5, 0.8]: module = cls(p) input_var = input.detach().clone().requires_grad_() output = module(input_var) # output mean should be close to input mean self.assertLess(abs(output.data.mean() - mean), 0.1) # output std should be close to input std self.assertLess(abs(output.data.std() - std), 0.1) output.backward(input) def test_parameters_and_named_parameters(self): def names(named_parameters): return [k for k, _ in named_parameters] l, n, s = self._create_basic_net() self.assertEqual(len(list(l.parameters())), 1) self.assertEqual( names(l.named_parameters()), ['layer_dummy_param']) self.assertEqual(len(list(n.parameters())), 2) self.assertEqual( names(n.named_parameters()), ['dummy_param', 'l1.layer_dummy_param']) self.assertEqual(len(list(n.parameters(recurse=False))), 1) self.assertEqual( names(n.named_parameters(recurse=False)), ['dummy_param']) self.assertEqual(len(list(s.parameters())), 2) self.assertEqual( names(s.named_parameters()), ['0.dummy_param', '0.l1.layer_dummy_param']) def test_buffers_and_named_buffers(self): def names(named_buffers): return [k for k, _ in named_buffers] l, n, s = self._create_basic_net() self.assertEqual(len(list(l.buffers())), 1) self.assertEqual( names(l.named_buffers()), ['layer_dummy_buf']) self.assertEqual(len(list(n.buffers())), 2) self.assertEqual( names(n.named_buffers()), ['dummy_buf', 'l1.layer_dummy_buf']) self.assertEqual(len(list(n.buffers(recurse=False))), 1) self.assertEqual( names(n.named_buffers(recurse=False)), ['dummy_buf']) self.assertEqual(len(list(s.buffers())), 2) self.assertEqual( names(s.named_buffers()), ['0.dummy_buf', '0.l1.layer_dummy_buf']) def test_call_supports_python_dict_output(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = nn.Linear(10, 20) self.register_backward_hook(self.hook) self.check_backward_hook_flag = False def hook(self, module, grad_out, grad_in): self.check_backward_hook_flag = True def forward(self, inputs): return {"output": self.l1(inputs).sum()} net = Net() model_output = net(torch.randn([5, 10])) model_output["output"].backward() self.assertTrue(net.check_backward_hook_flag) def test_children(self): l1 = nn.Linear(2, 2) l2 = nn.Linear(2, 2) l3 = nn.Linear(2, 2) l4 = nn.Linear(2, 2) subnet = nn.Sequential(l3, l4) s = nn.Sequential(l1, l2, l1, l2, subnet) self.assertEqual(list(s.children()), [l1, l2, subnet]) def test_dir(self): linear = nn.Linear(2, 2) linear._test_submodule = nn.Linear(2, 2) linear._test_parameter = Parameter(torch.Tensor(2, 2)) linear.register_buffer('_test_buffer', torch.Tensor(2, 2)) keys = dir(linear) self.assertIn('_test_submodule', keys) self.assertIn('_test_parameter', keys) self.assertIn('_test_buffer', keys) for key in keys: self.assertTrue(hasattr(linear, key)) def test_repr(self): # no extra information or sub-modules empty_sequential = nn.Sequential() expected_repr_empty = 'Sequential()' self.assertEqual(repr(empty_sequential), expected_repr_empty) # one liner extra information linear = nn.Linear(1, 1) expected_repr_linear = 'Linear(in_features=1, out_features=1, bias=True)' self.assertEqual(repr(linear), expected_repr_linear) # sub-modules repr sequential = nn.Sequential(linear) expected_repr_sequential = 'Sequential(\n' \ ' (0): Linear(in_features=1, out_features=1, bias=True)\n' \ ')' self.assertEqual(repr(sequential), expected_repr_sequential) def test_dir_digit(self): model = nn.Sequential(nn.Linear(2, 2)) keys = dir(model) self.assertNotIn('0', keys) def test_named_children(self): l1 = nn.Linear(2, 2) l2 = nn.Linear(2, 2) l3 = nn.Linear(2, 2) l4 = nn.Linear(2, 2) subnet = nn.Sequential(l3, l4) s = nn.Sequential() with self.assertRaises(KeyError): s.add_module('', l1) with self.assertRaises(KeyError): s.add_module('name.with.dot', l1) s.add_module('layer1', l1) s.add_module('layer2', l2) s.add_module('layer3', l1) s.add_module('layer4', l2) s.add_module('subnet', subnet) self.assertEqual(list(s.named_children()), [('layer1', l1), ('layer2', l2), ('subnet', subnet)]) def test_modules(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = l self.l2 = l self.param = torch.empty(3, 5) l = nn.Linear(10, 20) n = Net() s = nn.Sequential(n, n, n, n) self.assertEqual(list(s.modules()), [s, n, l]) def test_named_modules(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = l self.l2 = l self.param = torch.empty(3, 5) self.block = block l = nn.Linear(10, 20) l1 = nn.Linear(10, 20) l2 = nn.Linear(10, 20) block = nn.Sequential() block.add_module('linear1', l1) block.add_module('linear2', l2) n = Net() s = nn.Sequential(n, n, n, n) self.assertEqual(list(s.named_modules()), [('', s), ('0', n), ('0.l1', l), ('0.block', block), ('0.block.linear1', l1), ('0.block.linear2', l2)]) def test_register_buffer_raises_error_if_name_is_not_string(self): m = nn.Module() expected_error = 'buffer name should be a string. Got ' with self.assertRaisesRegex(TypeError, expected_error + 'int'): m.register_buffer(1, torch.rand(5)) with self.assertRaisesRegex(TypeError, expected_error + 'NoneType'): m.register_buffer(None, torch.rand(5)) def test_register_buffer_raises_error_if_attr_exists(self): m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) del m.attribute_name m.register_parameter('attribute_name', nn.Parameter()) with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) del m.attribute_name m.add_module('attribute_name', nn.Module()) with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) def test_register_buffer_raises_error_if_not_tensor(self): m = nn.Module() with self.assertRaises(TypeError): m.register_buffer('attribute_name', 5) def test_register_buffer_allows_overwriting_with_same_name(self): m = nn.Module() buffer1 = torch.rand(5) buffer2 = buffer1 + 5 buffer3 = None m.register_buffer('buffer_name', buffer1) self.assertEqual(m.buffer_name, buffer1) m.register_buffer('buffer_name', buffer2) self.assertEqual(m.buffer_name, buffer2) m.register_buffer('buffer_name', buffer3) self.assertEqual(m.buffer_name, buffer3) def test_register_parameter_raises_error_if_name_is_not_string(self): m = nn.Module() expected_error = 'parameter name should be a string. Got ' with self.assertRaisesRegex(TypeError, expected_error + 'int'): m.register_parameter(1, nn.Parameter()) with self.assertRaisesRegex(TypeError, expected_error + 'NoneType'): m.register_parameter(None, nn.Parameter()) def test_register_parameter_raises_error_if_attr_exists(self): m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) del m.attribute_name m.register_buffer('attribute_name', torch.rand(5)) with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) del m.attribute_name m.add_module('attribute_name', nn.Module()) with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) def test_register_parameter_allows_overwriting_with_same_name(self): m = nn.Module() param1 = nn.Parameter(torch.rand(5)) param2 = nn.Parameter(param1.data + 5) param3 = None m.register_parameter('param_name', param1) self.assertEqual(m.param_name, param1) m.register_parameter('param_name', param2) self.assertEqual(m.param_name, param2) m.register_parameter('param_name', param3) self.assertEqual(m.param_name, param3) def test_add_module_raises_error_if_attr_exists(self): m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): m.add_module('attribute_name', nn.Module()) del m.attribute_name m.register_buffer('attribute_name', torch.rand(5)) with self.assertRaises(KeyError): m.add_module('attribute_name', nn.Module()) del m.attribute_name m.register_parameter('attribute_name', nn.Parameter()) with self.assertRaises(KeyError): m.add_module('attribute_name', nn.Module()) def test_Sequential_getitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3, l4) self.assertIs(n[0], l1) self.assertIs(n[1], l2) self.assertIs(n[2], l3) self.assertIs(n[3], l4) self.assertIs(n[torch.tensor(3, dtype=torch.int64)], l4) self.assertEqual(n[1:], nn.Sequential(l2, l3, l4)) self.assertEqual(n[3:], nn.Sequential(l4)) self.assertEqual(n[:-1], nn.Sequential(l1, l2, l3)) self.assertEqual(n[:-3], nn.Sequential(l1)) self.assertEqual(n[::-1], nn.Sequential(l4, l3, l2, l1)) def test_Sequential_setitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3) n[0] = l4 n[-1] = l4 n[torch.tensor(1, dtype=torch.int16)] = l1 self.assertIs(n[0], l4) self.assertIs(n[1], l1) self.assertIs(n[2], l4) def test_Sequential_setitem_named(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(OrderedDict([ ('linear1', l1), ('linear2', l2), ('linear3', l3), ])) n[0] = l4 n[-1] = l4 self.assertEqual(n.linear1, l4) self.assertEqual(n.linear3, l4) def test_Sequential_delitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3, l4) del n[-1] self.assertEqual(n, nn.Sequential(l1, l2, l3)) del n[1::2] self.assertEqual(n, nn.Sequential(l1, l3)) def test_ModuleList(self): modules = [nn.ReLU(), nn.Linear(5, 5)] module_list = nn.ModuleList(modules) def check(): self.assertEqual(len(module_list), len(modules)) for m1, m2 in zip(modules, module_list): self.assertIs(m1, m2) for m1, m2 in zip(modules, module_list.children()): self.assertIs(m1, m2) for i in range(len(modules)): self.assertIs(module_list[i], modules[i]) check() modules += [nn.Conv2d(3, 4, 3)] module_list += [modules[-1]] check() modules.insert(1, nn.Linear(3, 2)) module_list.insert(1, modules[1]) check() modules.append(nn.Tanh()) module_list.append(modules[-1]) check() next_modules = [nn.Linear(5, 5), nn.Sigmoid()] modules.extend(next_modules) module_list.extend(next_modules) check() modules[2] = nn.Conv2d(5, 3, 2) module_list[2] = modules[2] check() idx = torch.tensor(2, dtype=torch.int32) modules[2] = nn.Conv2d(5, 3, 2) module_list[idx] = modules[2] self.assertIs(module_list[idx], modules[2]) check() self.assertEqual(module_list[1:], nn.ModuleList(modules[1:])) self.assertEqual(module_list[3:], nn.ModuleList(modules[3:])) self.assertEqual(module_list[:-1], nn.ModuleList(modules[:-1])) self.assertEqual(module_list[:-3], nn.ModuleList(modules[:-3])) self.assertEqual(module_list[::-1], nn.ModuleList(modules[::-1])) del module_list[-1] self.assertEqual(module_list, nn.ModuleList(modules[:-1])) del module_list[1::2] self.assertEqual(module_list, nn.ModuleList(modules[:-1][0::2])) with self.assertRaises(TypeError): module_list += nn.ReLU() with self.assertRaises(TypeError): module_list.extend(nn.ReLU()) l1 = nn.Linear(1, 2) l2 = nn.Linear(2, 3) l3 = nn.Linear(3, 2) l4 = nn.Linear(2, 3) subnet = nn.Sequential(l3, l4) s = nn.Sequential( OrderedDict([ ("layer1", l1), ("layer2", l2), ("layer3", l3), ("layer4", l4), ("subnet_layer", subnet) ]) ) modules = list(s.modules()) module_list = nn.ModuleList() module_list.extend(s.modules()) check() def test_ModuleDict(self): modules = OrderedDict([ ('act', nn.ReLU()), ('conv', nn.Conv2d(10, 10, 5)), ('fc', nn.Linear(5, 5)), ]) module_dict = nn.ModuleDict(modules) def check(): self.assertEqual(len(module_dict), len(modules)) for k1, m2 in zip(modules, module_dict.children()): self.assertIs(modules[k1], m2) for k1, k2 in zip(modules, module_dict): self.assertIs(modules[k1], module_dict[k2]) for k in module_dict: self.assertIs(module_dict[k], modules[k]) for k in module_dict.keys(): self.assertIs(module_dict[k], modules[k]) for k, v in module_dict.items(): self.assertIs(modules[k], v) for k1, m2 in zip(modules, module_dict.values()): self.assertIs(modules[k1], m2) for k in modules.keys(): self.assertTrue(k in module_dict) check() modules['conv'] = nn.Conv2d(3, 4, 3) module_dict['conv'] = modules['conv'] check() next_modules = [ ('fc2', nn.Linear(5, 5)), ('act', nn.Sigmoid()), ] modules.update(next_modules) module_dict.update(next_modules) check() next_modules = OrderedDict([ ('fc3', nn.Linear(5, 5)), ('act2', nn.Sigmoid()), ]) modules.update(next_modules) module_dict.update(next_modules) check() next_modules = { 'fc4': nn.Linear(5, 5), 'act3': nn.Sigmoid() } modules.update(sorted(next_modules.items())) module_dict.update(next_modules) check() del module_dict['fc'] del modules['fc'] check() with self.assertRaises(TypeError): module_dict.update(nn.ReLU()) with self.assertRaises(TypeError): module_dict.update([nn.ReLU()]) with self.assertRaises(ValueError): module_dict.update([[nn.ReLU()]]) with self.assertRaises(TypeError): module_dict[1] = nn.ReLU() s = nn.Sequential(modules) module_dict = nn.ModuleDict(s.named_children()) check() c = module_dict.pop('conv') self.assertIs(c, modules['conv']) modules.pop('conv') check() module_dict.clear() self.assertEqual(len(module_dict), 0) modules.clear() check() def test_ParameterList(self): def make_param(): return Parameter(torch.randn(10, 10)) parameters = [make_param(), make_param()] param_list = nn.ParameterList(parameters) def check(): self.assertEqual(len(parameters), len(param_list)) for p1, p2 in zip(parameters, param_list): self.assertIs(p1, p2) for p1, p2 in zip(parameters, param_list.parameters()): self.assertIs(p1, p2) for i in range(len(parameters)): self.assertIs(parameters[i], param_list[i]) check() parameters += [make_param()] param_list += [parameters[-1]] check() parameters.append(make_param()) param_list.append(parameters[-1]) check() next_params = [make_param(), make_param()] parameters.extend(next_params) param_list.extend(next_params) check() parameters[2] = make_param() param_list[2] = parameters[2] check() idx = torch.tensor(2, dtype=torch.int32) parameters[2] = make_param() param_list[idx] = parameters[2] self.assertIs(param_list[idx], parameters[2]) check() self.assertEqual(param_list[1:], nn.ParameterList(parameters[1:])) self.assertEqual(param_list[3:], nn.ParameterList(parameters[3:])) self.assertEqual(param_list[:-1], nn.ParameterList(parameters[:-1])) self.assertEqual(param_list[:-3], nn.ParameterList(parameters[:-3])) self.assertEqual(param_list[::-1], nn.ParameterList(parameters[::-1])) with self.assertRaises(TypeError): param_list += make_param() with self.assertRaises(TypeError): param_list.extend(make_param()) l1 = nn.Linear(1, 2) l2 = nn.Linear(2, 3) l3 = nn.Linear(3, 2) l4 = nn.Linear(2, 3) subnet = nn.Sequential(l3, l4) s = nn.Sequential( OrderedDict([ ("layer1", l1), ("layer2", l2), ("layer3", l3), ("layer4", l4), ("subnet_layer", subnet) ]) ) parameters = list(s.parameters()) param_list = nn.ParameterList() param_list.extend(s.parameters()) check() def test_ParameterDict(self): parameters = OrderedDict([ ('p1', Parameter(torch.randn(10, 10))), ('p2', Parameter(torch.randn(10, 10))), ('p3', Parameter(torch.randn(10, 10))), ]) parameter_dict = nn.ParameterDict(parameters) def check(): self.assertEqual(len(parameter_dict), len(parameters)) for k1, m2 in zip(parameters, parameter_dict.parameters()): self.assertIs(parameters[k1], m2) for k1, k2 in zip(parameters, parameter_dict): self.assertIs(parameters[k1], parameter_dict[k2]) for k in parameter_dict: self.assertIs(parameter_dict[k], parameters[k]) for k in parameter_dict.keys(): self.assertIs(parameter_dict[k], parameters[k]) for k, v in parameter_dict.items(): self.assertIs(v, parameters[k]) for k1, m2 in zip(parameters, parameter_dict.values()): self.assertIs(parameters[k1], m2) for k in parameters.keys(): self.assertTrue(k in parameter_dict) check() parameters['p4'] = Parameter(torch.randn(10, 10)) parameter_dict['p4'] = parameters['p4'] check() next_parameters = [ ('p5', Parameter(torch.randn(10, 10))), ('p2', Parameter(torch.randn(10, 10))), ] parameters.update(next_parameters) parameter_dict.update(next_parameters) check() next_parameters = OrderedDict([ ('p6', Parameter(torch.randn(10, 10))), ('p5', Parameter(torch.randn(10, 10))), ]) parameters.update(next_parameters) parameter_dict.update(next_parameters) check() next_parameters = { 'p8': Parameter(torch.randn(10, 10)), 'p7': Parameter(torch.randn(10, 10)) } parameters.update(sorted(next_parameters.items())) parameter_dict.update(next_parameters) check() del parameter_dict['p3'] del parameters['p3'] check() with self.assertRaises(TypeError): parameter_dict.update(1) with self.assertRaises(TypeError): parameter_dict.update([1]) with self.assertRaises(ValueError): parameter_dict.update(Parameter(torch.randn(10, 10))) with self.assertRaises(TypeError): parameter_dict[1] = Parameter(torch.randn(10, 10)) p_pop = parameter_dict.pop('p4') self.assertIs(p_pop, parameters['p4']) parameters.pop('p4') check() parameter_dict.clear() self.assertEqual(len(parameter_dict), 0) parameters.clear() check() def test_add_module(self): l = nn.Linear(10, 20) net = nn.Module() net.l = l net.l2 = l net.add_module('empty', None) self.assertEqual(net.l, l) self.assertEqual(net.l2, l) self.assertEqual(net.empty, None) net.add_module('l3', l) self.assertEqual(net.l3, l) l3 = nn.Linear(20, 10) net.add_module('l', l3) self.assertEqual(net.l, l3) self.assertRaises(TypeError, lambda: net.add_module('x', 'non-module')) self.assertRaisesRegex(TypeError, 'module name should be a string. Got int', lambda: net.add_module(1, l)) self.assertRaisesRegex(TypeError, 'module name should be a string. Got NoneType', lambda: net.add_module(None, l)) def test_module_to_argparse(self): net = nn.Sequential(nn.Linear(3, 3)) cpu = torch.device('cpu') with self.assertRaises(TypeError): net.to(cpu, True) with self.assertRaises(TypeError): net.to(torch.long) with self.assertRaises(TypeError): net.to(None, True) with self.assertRaises(TypeError): net.to(cpu, torch.long, True) with self.assertRaises(TypeError): net.to(cpu, dtype=torch.long, non_blocking=True) with self.assertRaises(TypeError): net.to([]) with self.assertRaises(TypeError): net.to({}, non_blocking=True) with self.assertRaises(TypeError): net.to(torch.tensor(3, dtype=torch.long), non_blocking=True) with self.assertRaises(TypeError): net.to(cpu, torch.tensor(3, dtype=torch.long), non_blocking=True) def test_type(self): l = nn.Linear(10, 20) net = nn.Module() net.l = l net.l2 = l net.add_module('empty', None) net.register_buffer('indices', torch.LongTensor(1)) net.float() self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.double() self.assertIsInstance(l.weight.data, torch.DoubleTensor) self.assertIsInstance(l.bias.data, torch.DoubleTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.to(torch.half) self.assertIsInstance(l.weight.data, torch.HalfTensor) self.assertIsInstance(l.bias.data, torch.HalfTensor) self.assertIsInstance(net.indices, torch.LongTensor) if TEST_CUDA: net.float().cuda() self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor) self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.cpu() self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.to("cuda", torch.double, True) self.assertIsInstance(l.weight.data, torch.cuda.DoubleTensor) self.assertIsInstance(l.bias.data, torch.cuda.DoubleTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.to(torch.empty(1, device="cuda:0", dtype=torch.half)) self.assertIsInstance(l.weight.data, torch.cuda.HalfTensor) self.assertIsInstance(l.bias.data, torch.cuda.HalfTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.to(torch.device("cpu"), non_blocking=True) self.assertIsInstance(l.weight.data, torch.HalfTensor) self.assertIsInstance(l.bias.data, torch.HalfTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.type(torch.FloatTensor) self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) net.to(torch.DoubleTensor(1)) self.assertIsInstance(l.weight.data, torch.DoubleTensor) self.assertIsInstance(l.bias.data, torch.DoubleTensor) if TEST_CUDA: net.type(torch.cuda.FloatTensor) self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor) self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor) def test_non_leaf_parameters(self): l1 = nn.Linear(10, 10) l2 = nn.Linear(10, 10) def assign_weight(): l2.weight = l1.weight + 2 self.assertRaises(TypeError, assign_weight) # This should work though l2.weight = Parameter(torch.randn(10, 10)) def test_clip_grad_norm(self): l = nn.Linear(10, 10) max_norm = 2 def compute_norm(norm_type): norm_type = float(norm_type) if norm_type != inf: total_norm = 0 for p in l.parameters(): total_norm += p.grad.data.abs().pow(norm_type).sum() return pow(total_norm, 1. / norm_type) else: return max(p.grad.data.abs().max() for p in l.parameters()) def compare_scaling(grads): p_scale = [p.grad.data.div(g).view(-1) for p, g in zip(l.parameters(), grads)] scale = torch.cat(p_scale) self.assertEqual(scale.std(), 0) return scale[0] grads = torch.arange(1., 101).view(10, 10), torch.ones(10).div(1000) for norm_type in [0.5, 1.5, 2, 4, 'inf']: for p, g in zip(l.parameters(), grads): p._grad = Variable(g.clone().view_as(p.data)) norm_before = compute_norm(norm_type) norm = clip_grad_norm_(l.parameters(), max_norm, norm_type=norm_type) norm_after = compute_norm(norm_type) self.assertEqual(norm, norm_before) self.assertEqual(norm_after, max_norm) self.assertLessEqual(norm_after, norm_before) compare_scaling(grads) # Small gradients should be left unchanged grads = torch.rand(10, 10).div(10000), torch.ones(10).div(500) for norm_type in [0.5, 1.5, 2, 4, 'inf']: for p, g in zip(l.parameters(), grads): p.grad.data.copy_(g) norm_before = compute_norm(norm_type) norm = clip_grad_norm_(l.parameters(), max_norm, norm_type=norm_type) norm_after = compute_norm(norm_type) self.assertEqual(norm, norm_before) self.assertEqual(norm_before, norm_after) self.assertLessEqual(norm_after, max_norm) scale = compare_scaling(grads) self.assertEqual(scale, 1) # Should accept a single Tensor as input p1, p2 = torch.randn(10, 10), torch.randn(10, 10) g = torch.arange(1., 101).view(10, 10) p1._grad = g.clone() p2._grad = g.clone() for norm_type in [0.5, 1.5, 2, 4, 'inf']: clip_grad_norm_(p1, max_norm, norm_type=norm_type) clip_grad_norm_([p2], max_norm, norm_type=norm_type) self.assertEqual(p1.grad, p2.grad) def test_clip_grad_value(self): l = nn.Linear(10, 10) clip_value = 2.5 grad_w, grad_b = torch.arange(-50., 50).view(10, 10).div_(5), torch.ones(10).mul_(2) for grad_list in [[grad_w, grad_b], [grad_w, None]]: for p, g in zip(l.parameters(), grad_list): p._grad = g.clone().view_as(p.data) if g is not None else g clip_grad_value_(l.parameters(), clip_value) for p in filter(lambda p: p.grad is not None, l.parameters()): self.assertLessEqual(p.grad.data.max(), clip_value) self.assertGreaterEqual(p.grad.data.min(), -clip_value) # Should accept a single Tensor as input p1, p2 = torch.randn(10, 10), torch.randn(10, 10) g = torch.arange(-50., 50).view(10, 10).div_(5) p1._grad = g.clone() p2._grad = g.clone() clip_grad_value_(p1, clip_value) clip_grad_value_([p2], clip_value) self.assertEqual(p1.grad, p2.grad) def test_parameters_to_vector(self): conv1 = nn.Conv2d(3, 10, 5) fc1 = nn.Linear(10, 20) model = nn.Sequential(conv1, fc1) vec = parameters_to_vector(model.parameters()) self.assertEqual(vec.size(0), 980) def test_vector_to_parameters(self): conv1 = nn.Conv2d(3, 10, 5) fc1 = nn.Linear(10, 20) model = nn.Sequential(conv1, fc1) vec = Variable(torch.arange(0., 980)) vector_to_parameters(vec, model.parameters()) sample = next(model.parameters())[0, 0, 0] self.assertTrue(torch.equal(sample.data, vec.data[:5])) # We don't want to make propagating NaN a hard requirement on ops, but for # these easy ones, we should make them do so. def _test_nonlinearity_propagate_nan(self, device): def test(nonlinearity, *args, **kwargs): x = torch.tensor([nan], device=device) fn = getattr(F, nonlinearity) try: self.assertTrue(math.isnan(fn(x, *args, **kwargs).item())) except Exception as e: if 'not implemented' not in str(e): raise test('relu') test('relu', inplace=True) test('relu6') test('elu') test('selu') test('celu') test('rrelu') test('rrelu', inplace=True) test('hardtanh') test('tanh') test('sigmoid') test('logsigmoid') test('hardshrink') test('tanhshrink') test('softsign') test('softmin', 0) test('softmax', 0) test('log_softmax', 0) test('leaky_relu', 0.2) test('threshold', 3, 2) test('threshold', 3, 2, inplace=True) def test_nonlinearity_propagate_nan(self): self._test_nonlinearity_propagate_nan('cpu') @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_nonlinearity_propagate_nan_cuda(self): self._test_nonlinearity_propagate_nan('cuda') def test_weight_norm(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) expected_output = m(input) # add weight normalization m = torch.nn.utils.weight_norm(m) self.assertEqual(m.weight_v.size(), m.weight.size()) self.assertEqual(m.weight_g.size(), (7, 1)) self.assertEqual(m(input), expected_output) # remove weight norm m = torch.nn.utils.remove_weight_norm(m) self.assertFalse(hasattr(m, 'weight_g')) self.assertFalse(hasattr(m, 'weight_v')) self.assertEqual(m(input), expected_output) # test with dim=1 m = torch.nn.utils.weight_norm(m, dim=1) self.assertEqual(m.weight_v.size(), m.weight.size()) self.assertEqual(m.weight_g.size(), (1, 5)) self.assertEqual(m(input), expected_output) # test with dim=None m = nn.Linear(5, 7) expected_output = m(input) m = torch.nn.utils.weight_norm(m, dim=None) self.assertEqual(m(input), expected_output) with self.assertRaisesRegex(RuntimeError, 'register two weight_norm hooks'): m = torch.nn.utils.weight_norm(m) m = torch.nn.utils.weight_norm(m) def test_weight_norm_pickle(self): m = torch.nn.utils.weight_norm(nn.Linear(5, 7)) m = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m, nn.Linear) @skipIfRocm def test_spectral_norm(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.spectral_norm(m) self.assertEqual(m.weight_u.size(), torch.Size([m.weight.size(0)])) # weight_orig should be trainable self.assertTrue(hasattr(m, 'weight_orig')) self.assertTrue('weight_orig' in m._parameters) # weight_u should be just a reused buffer self.assertTrue(hasattr(m, 'weight_u')) self.assertTrue('weight_u' in m._buffers) self.assertTrue('weight_v' in m._buffers) # weight should be a plain attribute, not counted as a buffer or a param self.assertFalse('weight' in m._buffers) self.assertFalse('weight' in m._parameters) # it should also be sharing storage as `weight_orig` self.assertEqual(m.weight_orig.storage(), m.weight.storage()) self.assertEqual(m.weight_orig.size(), m.weight.size()) self.assertEqual(m.weight_orig.stride(), m.weight.stride()) m = torch.nn.utils.remove_spectral_norm(m) self.assertFalse(hasattr(m, 'weight_orig')) self.assertFalse(hasattr(m, 'weight_u')) # weight should be converted back as a parameter self.assertTrue(hasattr(m, 'weight')) self.assertTrue('weight' in m._parameters) with self.assertRaisesRegex(RuntimeError, 'register two spectral_norm hooks'): m = torch.nn.utils.spectral_norm(m) m = torch.nn.utils.spectral_norm(m) # test correctness in training/eval modes and cpu/multi-gpu settings for apply_dp in (True, False): if apply_dp: if not TEST_MULTIGPU: continue device = torch.device('cuda:0') def maybe_wrap(m): return torch.nn.DataParallel(m, [0, 1]) else: device = torch.device('cpu') def maybe_wrap(m): return m for requires_grad in (True, False): m = nn.Linear(3, 4).to(device) m.weight.requires_grad_(requires_grad) m = torch.nn.utils.spectral_norm(m) wrapped_m = maybe_wrap(m) self.assertTrue(hasattr(m, 'weight_u')) u0 = m.weight_u.clone() v0 = m.weight_v.clone() # TEST TRAINING BEHAVIOR # assert that u and v are updated input = torch.randn(2, 3, device=device) out = wrapped_m(input) self.assertNotEqual(u0, m.weight_u) self.assertNotEqual(v0, m.weight_v) # assert that backprop reaches weight_orig # can't use gradcheck because the function changes as we # activate through it in training mode if requires_grad: torch.autograd.grad(out.sum(), m.weight_orig) # test backward works with multiple forwards # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = m.weight_u.clone() saved_v = m.weight_v.clone() def fn(input): m.weight_u.data.copy_(saved_u) m.weight_v.data.copy_(saved_v) out0 = wrapped_m(input) out1 = wrapped_m(input) return out0 + out1 torch.autograd.gradcheck(fn, (input.clone().requires_grad_(),)) # test removing pre_remove_out = wrapped_m(input) m = torch.nn.utils.remove_spectral_norm(m) self.assertEqual(wrapped_m(input), pre_remove_out) m = torch.nn.utils.spectral_norm(m) for i in range(3): pre_remove_out = wrapped_m(input) m = torch.nn.utils.remove_spectral_norm(m) self.assertEqual(wrapped_m(input), pre_remove_out) # TEST EVAL BEHAVIOR m = torch.nn.utils.spectral_norm(m) wrapped_m(input) last_train_out = wrapped_m(input) last_train_u = m.weight_u.clone() last_train_v = m.weight_v.clone() wrapped_m.zero_grad() wrapped_m.eval() eval_out0 = wrapped_m(input) # assert eval gives same result as last training iteration self.assertEqual(eval_out0, last_train_out) # assert doing more iteartion in eval don't change things self.assertEqual(eval_out0, wrapped_m(input)) self.assertEqual(last_train_u, m.weight_u) self.assertEqual(last_train_v, m.weight_v) # test backward works with multiple forwards in mixed training # and eval modes # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = m.weight_u.clone() saved_v = m.weight_v.clone() def fn(input): m.weight_u.data.copy_(saved_u) m.weight_v.data.copy_(saved_v) wrapped_m.train() out0 = wrapped_m(input) wrapped_m.eval() out1 = wrapped_m(input) wrapped_m.train() out2 = wrapped_m(input) wrapped_m.eval() out3 = wrapped_m(input) return out0 + out1 + out2 + out3 torch.autograd.gradcheck(fn, (input.clone().requires_grad_(),)) # assert that backprop reaches weight_orig in eval if requires_grad: def fn(weight): return wrapped_m(input) torch.autograd.gradcheck(fn, (m.weight_orig,)) def test_spectral_norm_load_state_dict(self): inp = torch.randn(2, 3) for activate_times in (0, 3): # Test backward compatibility # At version None -> 1: weight becomes not a buffer and v vector becomes a buffer m = nn.Linear(3, 5) snm = torch.nn.utils.spectral_norm(m) snm.train() for _ in range(activate_times): snm(inp) # craft a version None state_dict version_none_state_dict = deepcopy(snm.state_dict()) self.assertEqual({'weight_orig', 'bias', 'weight_u', 'weight_v'}, set(version_none_state_dict.keys())) self.assertIn('spectral_norm', version_none_state_dict._metadata['']) del version_none_state_dict._metadata['']['spectral_norm'] # remove metadata info del version_none_state_dict['weight_v'] # remove v vector version_none_state_dict['weight'] = snm.weight.detach().clone() # set W as a buffer # normal state_dict version_latest_state_dict = deepcopy(snm.state_dict()) snm.eval() out0_eval = snm(inp) snm.train() out1_train = snm(inp) out2_train = snm(inp) snm.eval() out3_eval = snm(inp) snm.load_state_dict(version_none_state_dict) if activate_times > 0: # since in loading version None state dict, we assume that the # values in the state dict have gone through at lease one # forward, we only test for equivalence when activate_times > 0. snm.eval() self.assertEqual(out0_eval, snm(inp)) snm.train() self.assertEqual(out1_train, snm(inp)) self.assertEqual(out2_train, snm(inp)) snm.eval() self.assertEqual(out3_eval, snm(inp)) # Test normal loading snm.load_state_dict(version_latest_state_dict) snm.eval() self.assertEqual(out0_eval, snm(inp)) snm.train() self.assertEqual(out1_train, snm(inp)) self.assertEqual(out2_train, snm(inp)) snm.eval() self.assertEqual(out3_eval, snm(inp)) def test_spectral_norm_dim(self): inp = torch.randn(2, 3, 10, 12) m = nn.ConvTranspose2d(3, 4, (5, 6)) m = torch.nn.utils.spectral_norm(m) # this should not run into incompatible shapes x = m(inp) # check that u refers to the same dimension self.assertEqual(m.weight_u.shape, m.weight_orig[0, :, 0, 0].shape) def test_spectral_norm_forward(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.spectral_norm(m) # naive forward _weight, _bias, _u = m.weight_orig, m.bias, m.weight_u _weight_mat = _weight.view(_weight.size(0), -1) _v = torch.mv(_weight_mat.t(), _u) _v = F.normalize(_v, dim=0, eps=1e-12) _u = torch.mv(_weight_mat, _v) _u = F.normalize(_u, dim=0, eps=1e-12) _weight.data /= torch.dot(_u, torch.matmul(_weight_mat, _v)) out_hat = torch.nn.functional.linear(input, _weight, _bias) expect_out = m(input) self.assertAlmostEqual(expect_out, out_hat) def test_spectral_norm_pickle(self): m = torch.nn.utils.spectral_norm(nn.Linear(5, 7)) m = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m, nn.Linear) def test_threshold_int(self): x = torch.tensor([-3, -2, -1, 0, 1, 2, 3]) expected = torch.tensor([99, 99, 99, 99, 1, 2, 3]) self.assertEqual(F.threshold(x, 0, 99), expected) def test_embedding_sparse_basic(self): embedding = nn.Embedding(10, 20, sparse=True) input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]])) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) def test_embedding_sparse_empty_tensor(self): embedding = nn.Embedding(0, 0, sparse=True) input = torch.tensor([], dtype=torch.int64) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) embedding = nn.Embedding(10, 0, sparse=True) input = torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) def test_embedding_padding_idx(self): embedding = nn.Embedding(10, 20, padding_idx=0) input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]])) output = embedding(input) self.assertEqual(output[0][0].sum(), 0) self.assertEqual(output[1][2].sum(), 0) embedding = nn.Embedding(10, 20, padding_idx=0, sparse=True) input = Variable(torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]])) output = embedding(input) self.assertEqual(output[0][0].sum(), 0) self.assertEqual(output[1][2].sum(), 0) # negative indexing check for padding_idx # padding_idx=-2, num_embeddings=10 ==> index 8 padded embedding = nn.Embedding(10, 20, padding_idx=-2) input = Variable(torch.LongTensor([[0, 2, 8, 5], [4, 8, 0, 9]])) output = embedding(input) self.assertEqual(output[0][2].sum(), 0) self.assertEqual(output[1][1].sum(), 0) embedding = nn.Embedding(10, 20, padding_idx=-2, sparse=True) input = Variable(torch.LongTensor([[0, 2, 8, 5], [4, 8, 0, 9]])) output = embedding(input) self.assertEqual(output[0][2].sum(), 0) self.assertEqual(output[1][1].sum(), 0) # out of bounds check for padding_idx self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=25) self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=-25) # test backward when input contains padding_idx padding_idx = 0 embedding = nn.Embedding(5, 2, padding_idx=padding_idx) for n in (1, 2): for other_indices in ([], [1, 3], [2]): indices = torch.LongTensor(other_indices + [padding_idx] * n) pre = embedding.weight[padding_idx].clone() embedding(indices).sum().backward() after = (embedding.weight + embedding.weight.grad)[padding_idx] embedding.zero_grad() self.assertEqual(after, pre) def test_embedding_max_norm(self): embedding = nn.Embedding(22, 5, max_norm=1.0) input = Variable(torch.LongTensor([2, 8, 8, 6])) output = embedding(input) self.assertEqual(output[1], output[2]) self.assertTrue(output.data.norm(p=2, dim=1).le(1).all()) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_embedding_max_norm_cuda(self, dtype=torch.float): embedding = nn.Embedding(22, 5, max_norm=1.0).to("cuda", dtype=dtype) # nn.Embedding only takes LongTensor as input input = torch.tensor([2, 8, 8, 6], device="cuda", dtype=torch.long) output = embedding(input) self.assertEqual(output[1], output[2]) self.assertTrue(output.data.norm(p=2, dim=1).le(1).all()) def test_embedding_from_pretrained(self): a = torch.Tensor([[1, 2, 3], [4, 5, 6]]) embedding = nn.Embedding.from_pretrained(a) self.assertEqual(a, embedding.weight.data) input = Variable(torch.LongTensor([0, 1])) output = embedding(input) self.assertEqual(a, output) def test_embedding_functional(self): a = torch.tensor([ [1, 3, 2], [0, 2, 1] ], dtype=torch.long) embeddings = torch.rand(4, 3, requires_grad=True) embed_old = torch.nn.Embedding(4, 3) embed_old.weight.data = embeddings.data res_old = embed_old(a) res_F = F.embedding(a, embeddings) self.assertEqual(res_old, res_F) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types([torch.float, torch.half]) def test_softmax_dtype(self, dtype=torch.float): input = torch.rand(32, 100, device="cuda", dtype=dtype, requires_grad=True) inputf = input.to(torch.float).detach().requires_grad_(True) out = F.softmax(input, dim=-1, dtype=torch.float) outf = F.softmax(inputf, dim=-1) # should be bitwise equal self.assertEqual(out, outf, prec=0) gO = torch.empty_like(outf).uniform_() out.backward(gO) outf.backward(gO) # should be bitwise equal self.assertEqual(input.grad, inputf.grad.to(dtype), prec=0) def _test_gumbel_softmax_st(self, cuda, dtype=torch.float): th = torch.cuda if cuda else torch """ Things we might want to check: - if we make various draws, do we get different one-hot values? - is the proportion approximately in line with the softmax values? - with hard, is it one-hot? - with hard, is there still a gradient? """ num_draws = 100 K = 3 logits = torch.tensor([[0.2, 0.8, 0.1]]) if dtype != torch.half: logits = logits.to(dtype) logits_softmax = torch.nn.functional.softmax(logits, 1) y_draws = torch.zeros(num_draws, K) preds = torch.zeros(num_draws) if cuda: logits = logits.cuda() y_draws = y_draws.cuda() preds = preds.cuda() exceed_limits = 0 for draw in range(num_draws): logits_var = logits.detach().requires_grad_() y_draw = torch.nn.functional.gumbel_softmax( logits_var, hard=True) assert y_draw.size() == logits.size() # check we have a gradient assert y_draw.requires_grad err = y_draw - logits.new_tensor([[0, 0.5, 0.3]]) loss = (err * err).sum() loss.backward() if logits_var.grad.std() < 0.01 or logits_var.grad.std() > 1.0: exceed_limits += 1 y_draws[draw] = y_draw.data _, pred = y_draw.max(1) preds[draw] = pred.data[0] assert exceed_limits / num_draws < 0.05 # check it's approximately one-hot num_ones = (y_draws == 1).int().sum() num_zeros = (y_draws == 0).int().sum() assert num_ones + num_zeros == num_draws * K assert num_ones == num_draws # check output classes approx in line with logits num_class_one = (preds == 1).int().sum() assert num_class_one < num_draws assert num_class_one > num_draws / 3 def test_gumbel_softmax_st(self): self._test_gumbel_softmax_st(False) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_gumbel_softmax_st_cuda(self, dtype=torch.float): self._test_gumbel_softmax_st(True, dtype=dtype) def _test_EmbeddingBag(self, cuda, mode, sparse, dtype=torch.double): # check a known test example device = torch.device("cuda") if cuda else torch.device("cpu") es = nn.EmbeddingBag(5, 2, mode=mode, sparse=sparse).to(device, dtype) es.weight.data.copy_(torch.arange(1, 11, device=device, dtype=dtype).view_as(es.weight)) input = torch.tensor([3, 1, 1, 1, 4, 0], device=device, dtype=torch.long) offsets = torch.tensor([0, 0, 3, 3, 6], device=device, dtype=torch.long) grad_output = torch.tensor( [1, 2, 3, 4], device=device, dtype=dtype).view(2, 2) grad_output_with_empty = torch.tensor( [99, 99, 1, 2, 99, 99, 3, 4, 99, 99], device=device, dtype=dtype).view(5, 2) if mode == "sum" or mode == "mean": denominator = 1 if mode == "sum" else 3 expected_output = torch.tensor( [[13, 16], [13, 16]], device=device, dtype=dtype) / denominator expected_output_with_empty = torch.tensor( [[0, 0], [13, 16], [0, 0], [13, 16], [0, 0]], device=device, dtype=dtype) / denominator expected_grad_weight = torch.tensor( [[3, 4], [5, 8], [0, 0], [1, 2], [3, 4]], device=device, dtype=dtype) / denominator elif mode == "max": expected_output = torch.tensor( [[7, 8], [9, 10]], device=device, dtype=dtype) expected_output_with_empty = torch.tensor( [[0, 0], [7, 8], [0, 0], [9, 10], [0, 0]], device=device, dtype=dtype) expected_grad_weight = torch.tensor( [[0, 0], [0, 0], [0, 0], [1, 2], [3, 4]], device=device, dtype=dtype) output = es(input, offsets) output.backward(grad_output_with_empty) es_weight_grad = es.weight.grad.data if sparse: es_weight_grad = es.weight.grad.to_dense() self.assertEqual(output, expected_output_with_empty) self.assertEqual(es_weight_grad, expected_grad_weight, dtype2prec[dtype]) # check same example except as 2D (2 x 3) input = input.view(2, -1) es.zero_grad() output = es(input) output.backward(grad_output) es_weight_grad = es.weight.grad if sparse: es_weight_grad = es.weight.grad.to_dense() self.assertEqual(output, expected_output) self.assertEqual(es_weight_grad, expected_grad_weight, dtype2prec[dtype]) # test all empty bags es.zero_grad() inputs = torch.tensor([], dtype=torch.long, device=device) offsets = torch.tensor([0, 0, 0, 0], device=device) es(inputs, offsets).sum().backward() dense_grad = es.weight.grad if dense_grad.is_sparse: dense_grad = dense_grad.to_dense() self.assertEqual(dense_grad, torch.zeros_like(es.weight)) # now compare EmbeddingBag vs Embedding + Sum/Mean, for constant bag length def _test_vs_Embedding(N, D, B, L, max_norm=None): es = nn.EmbeddingBag(N, D, mode=mode, sparse=sparse, max_norm=max_norm).to(device, dtype) e = nn.Embedding(N, D, max_norm=max_norm).to(device, dtype) e.weight.data.copy_(es.weight) input = torch.randint(N, (B, L), device=device, dtype=torch.long) offsets = torch.arange(0, B, device=device, dtype=torch.long).mul_(L) grad_output = torch.rand(B, D, device=device, dtype=dtype) output = es(input.view(-1), offsets) if mode == 'sum': ref_output = e(input).sum(1) elif mode == 'mean': ref_output = e(input).mean(1) elif mode == 'max': ref_output = e(input).max(1)[0] self.assertEqual(output, ref_output, dtype2prec[dtype]) output.backward(grad_output) ref_output.backward(grad_output) es_weight_grad = es.weight.grad.data if sparse: es_weight_grad = es.weight.grad.data.to_dense() # We have more floating point error here because we are dealing with larger numbers needed_prec = dtype2prec[dtype] * 2 self.assertEqual(es_weight_grad, e.weight.grad, needed_prec) N, D, B, L = random.randint(1, 100), random.randint(1, 100), random.randint(1, 50), random.randint(1, 50) _test_vs_Embedding(N, D, B, L) for max_norm in (None, 3): for p in itertools.product([1, 2], repeat=4): _test_vs_Embedding(*p, max_norm=max_norm) # check that giving illegal input combos raises error es = nn.EmbeddingBag(10, 20, mode=mode, sparse=sparse) input = torch.ones(3, 4) offset = torch.arange(0, 3) self.assertRaises(ValueError, lambda: es(input, offset)) self.assertRaises(ValueError, lambda: es(input.view(-1))) offset[0] = 1 self.assertRaises(ValueError, lambda: es(input.view(-1), offset)) offset[0] = 0 offset[-1] = 100 self.assertRaises(ValueError, lambda: es(input.view(-1), offset)) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_pool3d_size_one_feature_dim(self): # Tests crazy strides for feature dim of size 1 x = Variable(torch.randn(7, 1, 5, 3, 2, device="cuda")) strange_strides = [30, 1234, 6, 2, 1] y = x.as_strided(x.size(), strange_strides) x = x.cpu().as_strided(x.size(), strange_strides) to_test = { 'max_pool3d': lambda t: F.max_pool3d(t, (5, 1, 1), stride=(5, 1, 1)), 'avg_pool3d': lambda t: F.avg_pool3d(t, (5, 1, 1), stride=(5, 1, 1)), } for test, fn in to_test.items(): # Should not crash out_y = fn(y) out_x = fn(x) self.assertEqual(out_y, out_x.cuda(), test) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_AvgPool3d_backward_after_cat_dim1_cuda(self): # x has to have batch_size 1 to test contiguous checks x = torch.randn(1, 3, 4, 4, 4, device="cuda", requires_grad=True) y = F.avg_pool3d(x, kernel_size=3, padding=1, stride=2) grad = torch.randn(y.size(), device="cuda") # increase the stride in dimension 0. the tensor is still contiguous because size[0] is 1 stride = list(grad.stride()) stride[0] = stride[0] * 2 grad.set_(grad.storage(), 0, grad.size(), stride) assert grad.is_contiguous() y.backward(grad) @unittest.skipIf(not TEST_CUDNN, "needs cudnn") @skipIfRocm def test_contig_wrong_stride_cudnn(self): # x has to have batch_size 1 to test contiguous checks x = torch.randn(1, 16, 5, 5, device="cuda") stride = list(x.stride()) stride[0] = 20 # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 x.set_(x.storage(), 0, x.size(), stride) self.assertTrue(x.is_contiguous()) F.conv_transpose2d(x, torch.randn(16, 1, 1, 1, device="cuda")) F.conv2d(x, torch.randn(1, 16, 1, 1, device="cuda")) def test_embedding_bag(self): self._test_EmbeddingBag(False, 'sum', False) self._test_EmbeddingBag(False, 'mean', False) self._test_EmbeddingBag(False, 'max', False) self._test_EmbeddingBag(False, 'sum', True) self._test_EmbeddingBag(False, 'mean', True) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_embedding_bag_cuda(self, dtype=torch.float): self._test_EmbeddingBag(True, 'sum', False, dtype) self._test_EmbeddingBag(True, 'mean', False, dtype) self._test_EmbeddingBag(True, 'max', False, dtype) if dtype != torch.half: # torch.cuda.sparse.HalfTensor is not enabled. self._test_EmbeddingBag(True, 'sum', True, dtype) self._test_EmbeddingBag(True, 'mean', True, dtype) def test_fractional_max_pool2d(self): x = torch.randn(1, 2, 7, 7, requires_grad=True) samples = x.new(1, 2, 2).uniform_() def func(x): return F.fractional_max_pool2d( x, (2, 2), output_size=(3, 3), _random_samples=samples) self.assertEqual(func(x).shape, (1, 2, 3, 3)) gradcheck(func, [x]) gradgradcheck(func, [x]) x = torch.randn(2, 7, 7, requires_grad=True) samples = x.new(2, 2).uniform_() self.assertEqual(func(x).shape, (2, 3, 3)) gradcheck(func, [x]) gradgradcheck(func, [x]) def test_Dropout(self): input = torch.Tensor(1000) self._test_dropout(nn.Dropout, False, input) def test_Dropout2d(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) num_features = 1000 input = torch.Tensor(num_features, b, w, h) self._test_dropout(nn.Dropout2d, False, input) def test_Dropout3d(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) d = random.randint(1, 2) num_features = 1000 input = torch.Tensor(num_features, b, d, w, h) self._test_dropout(nn.Dropout3d, False, input) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_Dropout_cuda(self): input = torch.Tensor(1000) self._test_dropout(nn.Dropout, True, input) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_Dropout2d_cuda(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) num_features = 1000 input = torch.Tensor(num_features, b, w, h) self._test_dropout(nn.Dropout2d, True, input) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_Dropout3d_cuda(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) d = random.randint(1, 2) num_features = 1000 input = torch.Tensor(num_features, b, d, w, h) self._test_dropout(nn.Dropout3d, True, input) def test_AlphaDropout(self): # generate random tensor with zero mean and unit std input = torch.randn(5000) self._test_alpha_dropout(nn.AlphaDropout, input) def test_FeatureAlphaDropout(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) d = random.randint(1, 2) num_features = 1000 input = torch.randn(num_features, b, d, w, h) self._test_alpha_dropout(nn.FeatureAlphaDropout, input) def _test_InstanceNorm_general(self, cls, input, device="cpu", dtype=torch.float): # default case track_running_stats=False b, c = input.size(0), input.size(1) input_var = input.to(device=device, dtype=dtype).requires_grad_() IN = cls(c, eps=0).to(device, dtype) output = IN(input_var) out_reshaped = output.view(b * c, -1) mean = out_reshaped.mean(1) var = out_reshaped.var(1, unbiased=False) self.assertAlmostEqual(torch.abs(mean.data).mean(), 0, delta=1e-5) self.assertAlmostEqual(torch.abs(var.data).mean(), 1, delta=1e-5) # check that eval mode doesn't change behavior grad_out = torch.randn_like(output) res1 = output.data.clone() output.backward(grad_out) grad1 = input_var.grad.data.clone() IN.eval() output = IN(input_var) input_var.grad = None output.backward(grad_out) res2 = output.data grad2 = input_var.grad.data self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) # If track_running_stats=True and momentum=1, running_mean/var should be # equal to mean/var of the input (with unbias correction) IN = cls(c, momentum=1, eps=0, track_running_stats=True).to(device, dtype) output = IN(input_var) input_reshaped = input_var.transpose(1, 0).reshape(c, -1) mean = input_reshaped.mean(1) input_reshaped = input_var.transpose(1, 0).reshape(c, b, -1) var = input_reshaped.var(2, unbiased=True)[:, :] self.assertAlmostEqual(torch.abs(mean.data - IN.running_mean).mean(), 0, delta=1e-5) self.assertAlmostEqual(torch.abs(var.data.mean(1) - IN.running_var).mean(), 0, delta=1e-5) # in eval mode, adding X * std to a channel in input should make the # corresponding channel in output have mean X IN.eval() delta = IN.running_var.sqrt() * torch.arange(c, device=device, dtype=dtype) delta = delta.view(-1, *[1 for _ in range(2, input.dim())]) output = IN(input_var + delta) self.assertEqual(output.transpose(0, 1).reshape(c, -1).mean(1), torch.arange(c)) def _test_InstanceNorm_cuda_half(self, cls, input): # THNN input = Variable(input.cuda().half().random_(1, 10), requires_grad=True) m = cls(input.size(1), affine=True, track_running_stats=True).to("cuda", torch.half) thnn_output = m(input) thnn_output.sum().backward() thnn_input_grad = input.grad.data.clone() self.assertEqual(thnn_output.type(), input.type()) # cuDNN if TEST_CUDNN: input.grad = None m = m.float() cudnn_output = m(input) cudnn_output.sum().backward() cudnn_input_grad = input.grad.data.clone() self.assertEqual(cudnn_output.type(), input.type()) self.assertAlmostEqual(cudnn_output, thnn_output, delta=1e-4) self.assertAlmostEqual(cudnn_input_grad, thnn_input_grad, delta=1e-3) def test_InstanceNorm1d_general(self): b = random.randint(3, 5) c = random.randint(3, 5) d = random.randint(8, 10) input = torch.rand(b, c, d) self._test_InstanceNorm_general(nn.InstanceNorm1d, input, dtype=torch.float) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_InstanceNorm1d_general_cuda(self): b = random.randint(3, 5) c = random.randint(3, 5) d = random.randint(8, 10) input = torch.rand(b, c, d) self._test_InstanceNorm_general(nn.InstanceNorm1d, input, "cuda", torch.float) self._test_InstanceNorm_cuda_half(nn.InstanceNorm1d, input) def test_InstanceNorm2d_general(self): b = random.randint(3, 5) c = random.randint(3, 5) w = random.randint(3, 6) h = random.randint(6, 8) input = torch.rand(b, c, h, w) self._test_InstanceNorm_general(nn.InstanceNorm2d, input, dtype=torch.float) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_InstanceNorm2d_general_cuda(self): b = random.randint(3, 5) c = random.randint(3, 5) w = random.randint(3, 6) h = random.randint(6, 8) input = torch.rand(b, c, h, w) self._test_InstanceNorm_general(nn.InstanceNorm2d, input, "cuda", torch.float) self._test_InstanceNorm_cuda_half(nn.InstanceNorm2d, input) def test_InstanceNorm3d_general(self): b = random.randint(3, 5) c = random.randint(3, 5) w = random.randint(2, 5) h = random.randint(2, 5) d = random.randint(2, 5) input = torch.rand(b, c, h, w, d) self._test_InstanceNorm_general(nn.InstanceNorm3d, input, dtype=torch.float) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_InstanceNorm3d_general_cuda(self): b = random.randint(3, 5) c = random.randint(2, 5) w = random.randint(2, 5) h = random.randint(2, 5) d = random.randint(2, 5) input = torch.rand(b, c, h, w, d) self._test_InstanceNorm_general(nn.InstanceNorm3d, input, "cuda", torch.float) self._test_InstanceNorm_cuda_half(nn.InstanceNorm3d, input) def _test_LayerNorm_general(self, device="cpu", dtype=torch.float): for i in range(2, 6): shape = torch.randint(3, 6, (i,), dtype=torch.long).tolist() x = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) normalized_ndim = random.randint(1, i - 1) # inclusive normalized_shape = shape[-normalized_ndim:] unnormalized_shape = shape[:-normalized_ndim] # test that LN normalizes to mean 0 and stddev 1 ln = nn.LayerNorm(normalized_shape, eps=0).to(device, dtype) ln.weight.data.fill_(1) ln.bias.data.fill_(0) output = ln(x) out_reshaped = output.view(*(unnormalized_shape + [-1])) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) self.assertAlmostEqual(torch.abs(mean.data).mean(), 0, delta=1e-5) self.assertAlmostEqual(torch.abs(var.data).mean(), 1, delta=1e-5) # test that LN applies weight and bias correctly scale, bias = torch.empty(2).uniform_(0.2, 2).tolist() ln.weight.data.fill_(scale) ln.bias.data.fill_(bias) output = ln(x) out_reshaped = output.view(*(unnormalized_shape + [-1])) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) self.assertAlmostEqual(torch.abs(mean.data).mean(), bias, delta=1e-5) self.assertAlmostEqual(torch.abs(var.data).mean(), scale ** 2, delta=1e-5) bad_norm_shape_input_shape = { (): (), (2, 3): (3,), (2,): (1, 2, 3), (10,): (2, 3), 10: (2, 3), } for norm_shape, input_shape in bad_norm_shape_input_shape.items(): ln = nn.LayerNorm(norm_shape) input = torch.empty(input_shape, device=device, dtype=dtype).uniform_(0, 10) self.assertRaises(RuntimeError, lambda: ln(input)) def _test_LayerNorm_cuda_half(self): input = Variable(torch.empty(2, 3, 3, 2).to("cuda", torch.half).random_(1, 10), requires_grad=True) m = nn.LayerNorm([3, 2]).to("cuda", torch.half) output = m(input) output.sum().backward() self.assertEqual(output.type(), input.type()) def test_LayerNorm_general(self): self._test_LayerNorm_general() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_LayerNorm_general_cuda(self): self._test_LayerNorm_general("cuda") self._test_LayerNorm_cuda_half() def _test_GroupNorm_general(self, device="cpu", dtype=torch.float): good_shape_g = { (1, 2, 3, 4): 2, (2, 3, 10): 3, (3, 1, 1, 1, 2): 1, (2, 6, 4, 2, 2): 3, } for shape, g in good_shape_g.items(): x = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) b = shape[0] c = shape[1] # test that GN normalizes to mean 0 and stddev 1 gn = nn.GroupNorm(g, c, eps=0).to(device, dtype) gn.weight.data.fill_(1) gn.bias.data.fill_(0) output = gn(x) out_reshaped = output.view(b, g, -1) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) self.assertAlmostEqual(torch.abs(mean).mean(), 0, delta=1e-5) self.assertAlmostEqual(torch.abs(var).mean(), 1, delta=1e-5) # test that GN applies weight and bias correctly scale = torch.empty(c, device=device, dtype=dtype).uniform_(0.2, 2) bias = torch.empty(c, device=device, dtype=dtype).uniform_(0.2, 2) gn.weight.data.copy_(scale) gn.bias.data.copy_(bias) output = gn(x) out_reshaped = output.view(b, c, -1) out_normed = (out_reshaped - bias.view(c, 1)) / scale.view(c, 1) out_normed_reshaped = out_normed.view(b, g, -1) mean = out_normed_reshaped.mean(-1) var = out_normed_reshaped.var(-1, unbiased=False) self.assertAlmostEqual(torch.abs(mean).mean(), 0, delta=1e-5) self.assertAlmostEqual(torch.abs(var).mean(), 1, delta=1e-5) bad_shape_g = { (1, 2, 3, 4): 3, (2, 3, 10): 2, (3, 1, 1, 1, 2): 10, (2, 6, 4, 2, 2): 4, } for shape, g in bad_shape_g.items(): gn = nn.GroupNorm(g, shape[1]) input = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) self.assertRaises(RuntimeError, lambda: gn(input)) def _test_GroupNorm_cuda_half(self): input = Variable(torch.empty(2, 3, 3, 2).to("cuda", torch.half).random_(1, 10), requires_grad=True) input = torch.zeros(2, 4, 3, 2, requires_grad=True).cuda().half().random_(1, 10) m = nn.GroupNorm(2, 4).to("cuda", torch.half) output = m(input) output.sum().backward() self.assertEqual(output.type(), input.type()) def test_GroupNorm_general(self): self._test_GroupNorm_general(dtype=torch.float) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_GroupNorm_general_cuda(self): self._test_GroupNorm_general("cuda", torch.float) self._test_GroupNorm_cuda_half() def test_pad(self): inputs = torch.randn(1, 3, 4, 4, requires_grad=True) _assertGradAndGradgradChecks(self, lambda x: F.pad(x, (1, 1, 1, 1)), (inputs,)) _assertGradAndGradgradChecks(self, lambda x: F.pad(x, (-1, 1, -2, 1)), (inputs,)) _assertGradAndGradgradChecks(self, lambda x: F.pad(x, (-1, 1, -2, 1), value=2), (inputs,)) self.assertTrue(gradcheck(lambda x: F.pad(x, (-1, 1, -2, 1), mode='replicate'), (inputs,))) self.assertTrue(gradcheck(lambda x: F.pad(x, (-1, 1, -2, 1), mode='reflect'), (inputs,))) inputs = torch.randn(1, 2, 3, 4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x: F.pad(x, (1, 1, 1, 1, 1, 1), mode='replicate'), (inputs,))) # assert that relfection padding errors when pad >= input size expected_err_msg = r"Padding size should be less than the corresponding input dimension" self.assertRaisesRegex(RuntimeError, expected_err_msg, lambda: F.pad(torch.randn(1, 1, 2, 3), (1, 1, 3, 0), mode='reflect')) self.assertRaisesRegex(RuntimeError, expected_err_msg, lambda: F.pad(torch.randn(1, 1, 2), (2, 1), mode='reflect')) def test_pad_scalar_error(self): inputs = torch.tensor(0., requires_grad=True) self.assertRaises(AssertionError, lambda: F.pad(inputs, (1, 1))) self.assertRaises(AssertionError, lambda: F.pad(inputs, (1,))) def test_normalize(self): inputs = torch.randn(1, 3, 4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=1, dim=-1), (inputs,))) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=2, dim=-2), (inputs,))) inputs = torch.randn((), requires_grad=True) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=1, dim=-1), (inputs,))) def _test_maxpool_indices(self, num_dim, adaptive=False, device="cpu", dtype=torch.float): def expected_indices(dim): if dim == 1: return torch.tensor([1, 3], dtype=torch.double).repeat(2, 2, 1) if dim == 2: return torch.tensor([[5, 7], [13, 15]], dtype=torch.double).repeat(2, 2, 1, 1) def expected_grad(dim): if dim == 1: return torch.tensor([0, 1, 0, 1], dtype=torch.double).repeat(2, 2, 1) grad = expected_grad(dim - 1) zero = torch.zeros(grad.size()) return torch.stack((zero, grad, zero, grad), 2) def expected_output(dim): if dim == 1: return torch.arange(2, 17, 2).view(2, 2, 2) if dim == 2: col = torch.arange(6, 63, 8) return torch.stack([col, col + 2], 1).view(2, 2, 2, 2) if adaptive: cls_name = 'AdaptiveMaxPool{}d'.format(num_dim) else: cls_name = 'MaxPool{}d'.format(num_dim) module_cls = getattr(nn, cls_name) module = module_cls(2, return_indices=True).to(device, dtype=dtype) numel = 4 ** (num_dim + 1) input = torch.arange(1, numel + 1).view(2, 2, *repeat(4, num_dim)).to(device, dtype=dtype) input_var = input.clone().detach().requires_grad_() # Check forward output, indices = module(input_var) if num_dim != 3: expected_indices = expected_indices(num_dim) expected_output = expected_output(num_dim) self.assertEqual(indices.dim(), input.dim()) self.assertEqual(indices.data.squeeze(), expected_indices) self.assertEqual(output.data.squeeze(), expected_output) self.assertTrue(output.requires_grad) self.assertFalse(indices.requires_grad) # Make sure backward works grad_output = torch.ones(output.size(), device=device, dtype=dtype) output.backward(grad_output, retain_graph=True) expected_grad = expected_grad(num_dim) self.assertEqual(input_var.grad.data, expected_grad.view_as(input)) # Make sure backward after changing indices will result in an error indices.add_(1) self.assertRaises(RuntimeError, lambda: output.backward(grad_output)) def test_adaptive_pooling_input_size(self): for numel in (2, 3): for pool_type in ('Max', 'Avg'): cls_name = 'Adaptive{}Pool{}d'.format(pool_type, numel) module_cls = getattr(nn, cls_name) output_size = (2,) * numel module = module_cls(output_size) input = torch.randn(output_size) self.assertRaises(ValueError, lambda: module(input)) def test_adaptive_pooling_size_none(self): for numel in (2, 3): for pool_type in ('Max', 'Avg'): cls_name = 'Adaptive{}Pool{}d'.format(pool_type, numel) module_cls = getattr(nn, cls_name) output_size = (2,) * (numel - 1) + (None,) module = module_cls(output_size) input = torch.randn((4,) * (numel + 1)) output = module(input) self.assertEqual(output.size(), (4,) + (2,) * (numel - 1) + (4,)) def test_Conv2d_naive_groups(self): self._test_Conv2d_naive_groups() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_Conv2d_naive_groups_cuda(self, dtype=torch.float): self._test_Conv2d_naive_groups("cuda", dtype) def test_batchnorm_grad(self): self._test_batchnorm_grad() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_batchnorm_grad_cuda(self): self._test_batchnorm_grad("cuda") if TEST_CUDNN: with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_grad("cuda") def test_batchnorm_eval(self): self._test_batchnorm_eval() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_batchnorm_eval_cuda(self, dtype=torch.float): self._test_batchnorm_eval("cuda", dtype) if TEST_CUDNN: with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_eval("cuda", dtype) def test_batchnorm_simple_average(self): self._test_batchnorm_simple_average() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_batchnorm_simple_average_cuda(self): self._test_batchnorm_simple_average(torch.cuda.FloatTensor) if TEST_CUDNN: with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_simple_average(torch.cuda.FloatTensor) def test_MaxPool1d_indices(self): self._test_maxpool_indices(1) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_MaxPool1d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(1, device="cuda", dtype=dtype) def test_MaxPool2d_indices(self): self._test_maxpool_indices(2) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_MaxPool2d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(2, device="cuda", dtype=dtype) def test_MaxPool3d_indices(self): self._test_maxpool_indices(3) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_MaxPool3d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(3, device="cuda", dtype=dtype) def test_AdaptiveMaxPool1d_indices(self): self._test_maxpool_indices(1, adaptive=True) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_AdaptiveMaxPool1d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(1, adaptive=True, device="cuda", dtype=dtype) def test_AdaptiveMaxPool2d_indices(self): self._test_maxpool_indices(2, adaptive=True) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_AdaptiveMaxPool2d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(2, adaptive=True, device="cuda", dtype=dtype) def test_AdaptiveMaxPool3d_indices(self): self._test_maxpool_indices(3, adaptive=True) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm @repeat_test_for_types(ALL_TENSORTYPES) def test_AdaptiveMaxPool3d_indices_cuda(self, dtype=torch.float): self._test_maxpool_indices(3, adaptive=True, device="cuda", dtype=dtype) @staticmethod def _test_max_pool_nan(self, device, dtype=torch.float): for adaptive in ['', 'adaptive_']: for num_dim in [1, 2, 3]: fn_name = '{}max_pool{}d'.format(adaptive, num_dim) fn = getattr(F, fn_name) x = torch.full([1, 1] + num_dim * [3], nan) res = fn(x, 1 if adaptive else 3) self.assertTrue(math.isnan(res.item())) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_max_pool_nan_cuda(self, dtype=torch.float): self._test_max_pool_nan(self, device="cuda", dtype=dtype) def test_max_pool_nan(self, dtype=torch.float): self._test_max_pool_nan(self, device="cpu") def _test_scatter(self, tensor): x = tensor.detach().requires_grad_() result = dp.scatter(x, (0, 1)) self.assertEqual(len(result), 2) self.assertEqual(result[0], x[:2]) self.assertEqual(result[0].get_device(), 0) self.assertEqual(result[1], x[2:]) self.assertEqual(result[1].get_device(), 1) grad = result[0].data.clone().fill_(2) result[0].backward(grad) self.assertEqual(x.grad.data[:2], grad) self.assertEqual(x.grad.data[2:], grad.clone().zero_()) _assertGradAndGradgradChecks(self, lambda y: dp.scatter(y, (0, 1)), (x,)) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_scatter_cpu(self): self._test_scatter(torch.randn(4, 4)) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_scatter_gpu(self): self._test_scatter(torch.randn(4, 4).cuda()) def _test_gather(self, output_device): inputs = ( torch.randn(2, 4, device='cuda:0', requires_grad=True), torch.randn(2, 4, device='cuda:1', requires_grad=True), ) result = dp.gather(inputs, output_device) self.assertEqual(result.size(), torch.Size([4, 4])) self.assertEqual(result[:2], inputs[0]) self.assertEqual(result[2:], inputs[1]) if output_device != -1: self.assertEqual(result.get_device(), output_device) else: self.assertFalse(result.is_cuda) grad = torch.randn(4, 4) if output_device != -1: grad = grad.cuda(output_device) result.backward(grad) self.assertEqual(inputs[0].grad.data, grad[:2]) self.assertEqual(inputs[1].grad.data, grad[2:]) _assertGradAndGradgradChecks(self, lambda x, y: dp.gather((x, y), output_device), inputs) # test scalar inputs, should stack into a vector in this case inputs = ( torch.randn((), device='cuda:0', requires_grad=True), torch.randn((), device='cuda:1', requires_grad=True), ) result = dp.gather(inputs, output_device) self.assertEqual(result.size(), torch.Size([2])) self.assertEqual(result[0], inputs[0]) self.assertEqual(result[1], inputs[1]) if output_device != -1: self.assertEqual(result.get_device(), output_device) else: self.assertFalse(result.is_cuda) grad = torch.randn(2) if output_device != -1: grad = grad.cuda(output_device) result.backward(grad) self.assertEqual(inputs[0].grad, grad[0]) self.assertEqual(inputs[1].grad, grad[1]) _assertGradAndGradgradChecks(self, lambda x, y: dp.gather((x, y), output_device), inputs) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_gather_cpu(self): self._test_gather(-1) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_gather_gpu(self): self._test_gather(0) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_gather_different_len_dicts(self): inputs = ( {'a': Variable(torch.randn(1, 2).cuda(0), requires_grad=True)}, { 'b': Variable(torch.randn(1, 2).cuda(1), requires_grad=True), 'a': Variable(torch.randn(1, 2).cuda(1), requires_grad=True) } ) with self.assertRaises(ValueError): _ = dp.gather(inputs, target_device=0) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_broadcast_double_backwards_gpu(self): tensors = (torch.randn(4, 4, device='cuda', requires_grad=True), torch.randn(4, 4, device='cuda', requires_grad=True), torch.randn(4, 4, device='cuda', requires_grad=True)) _assertGradAndGradgradChecks(self, lambda *i: Broadcast.apply((0, 1), *i), tensors) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_broadcast_not_requiring_grad(self): variables = [ torch.randn(1, 2, device='cuda', requires_grad=True), torch.randn(1, 2, device='cuda', requires_grad=False), torch.randn(1, 2, device='cuda', requires_grad=False), torch.randn(1, 2, device='cuda', requires_grad=True), torch.randn(1, 2, device='cuda', requires_grad=True), ] broadcasted_variables = Broadcast.apply((0, 1), *variables) for output_idx, broadcasted_var in enumerate(broadcasted_variables): input_var = variables[output_idx % len(variables)] self.assertEqual(input_var.requires_grad, broadcasted_var.requires_grad) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_broadcast_no_grad(self): x = torch.randn(1, 2, dtype=torch.float32, requires_grad=True, device='cuda') with torch.no_grad(): broadcasted = Broadcast.apply((0, 1), x) self.assertTrue(x.requires_grad) for output in broadcasted: self.assertFalse(output.requires_grad) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_replicate(self): module = nn.Linear(10, 5).float().cuda() input = Variable(torch.randn(2, 10).float().cuda()) expected_output = module(input).data replicas = dp.replicate(module, (0, 1)) for i, replica in enumerate(replicas): for p in replica.parameters(): self.assertEqual(p.get_device(), i) replica_input = input.cuda(i) self.assertEqual(replica(replica_input).data, expected_output) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_replicate_buffers(self): net = nn.Module() net.bn = nn.BatchNorm2d(10) net.cuda() replicas = dp.replicate(net, (0, 1)) for i, replica in enumerate(replicas): self.assertEqual(replica.bn.running_mean.get_device(), i, 'buffer on wrong device') self.assertEqual(replica.bn.running_var.get_device(), i, 'buffer on wrong device') self.assertEqual(replica.bn.num_batches_tracked.get_device(), i, 'buffer on wrong device') @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_parallel_apply(self): l1 = nn.Linear(10, 5).to("cuda:0", torch.float) l2 = nn.Linear(10, 5).to("cuda:1", torch.float) i1 = torch.randn(2, 10, device="cuda:0", dtype=torch.float) i2 = torch.randn(2, 10, device="cuda:1", dtype=torch.float) expected1 = l1(i1).data expected2 = l2(i2).data modules = (l1, l2) expected_outputs = (expected1, expected2) # each input can be either a collection of positional arguments # or an object representing the single argument for inputs in [((i1,), (i2,)), (i1, i2)]: outputs = dp.parallel_apply(modules, inputs, None) for out, expected in zip(outputs, expected_outputs): self.assertEqual(out.data, expected) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_data_parallel_multiple_input(self): class TestModule(nn.Module): def forward(self, var1, var2, float1, var3=None): if var3 is None: return float1 * (var1 * var2) else: return float1 * (var1 * var2 + var3) m = TestModule() var1 = torch.randn(5, 5, dtype=torch.float, requires_grad=True) var2 = torch.randn(5, 5, dtype=torch.float, requires_grad=True) var3 = torch.randn(5, 5, dtype=torch.float, requires_grad=False) float1 = torch.randn(1).item() expected = m(var1, var2, float1) loss = expected.sum() loss.backward() gvar1_exp = var1.grad.clone() gvar2_exp = var2.grad.clone() def local_test(out): var1.grad.data.fill_(0.0) var2.grad.data.fill_(0.0) loss = out.sum() loss.backward() self.assertEqual(out, expected) self.assertEqual(gvar1_exp, var1.grad) self.assertEqual(gvar2_exp, var2.grad) out = dp.data_parallel(m, (var1, var2, float1), (0, 1)) local_test(out) out = dp.data_parallel(m, (var1, var2, float1), (1, 0)) local_test(out) out = dp.data_parallel(m, (var1, var2, float1), (0,)) local_test(out) var1.grad.data.fill_(0.0) var2.grad.data.fill_(0.0) expected = m(var1, var2, float1, var3=var3) loss = expected.sum() loss.backward() gvar1_exp = var1.grad.clone() gvar2_exp = var2.grad.clone() dpm = nn.DataParallel(TestModule()) out = dpm(var1, var2, float1, var3=var3) local_test(out) dpm = nn.DataParallel(TestModule(), device_ids=[0]) out = dpm(var1, var2, float1, var3=var3) local_test(out) kwarg_wrap = {'var3': var3} out = dp.data_parallel( m, (var1, var2, float1), (0, 1), module_kwargs=kwarg_wrap) local_test(out) out = dp.data_parallel( m, (var1, var2, float1), (0,), module_kwargs=kwarg_wrap) local_test(out) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_data_parallel_small_back(self): l = nn.Linear(10, 5).float().cuda() i = Variable(torch.randn(20, 10).float().cuda()) out = dp.data_parallel(l, i, (0, 1)) self.assertEqual(out, l(i)) @unittest.skipIf(not TEST_MULTIGPU or not PY3, "multi-GPU not supported") @skipIfRocm def test_data_parallel_model_no_refcycles(self): # Python 2.7 will create reference cycles with the following # Module on multiple GPUs, but Python 3 shouldn't unless # there are refcycles on the PyTorch side (or the defined module) import gc class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear = nn.Linear(1, 1) def forward(self, x): return self.linear(x) gc.collect() model = nn.DataParallel(Model().cuda()) data = Variable(torch.randn(1).cuda()) model(data) refcycles = gc.collect() self.assertEqual(refcycles, 0) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_data_parallel_no_grad(self): test = self class Layer(nn.Module): def forward(self, x): test.assertFalse(torch.is_grad_enabled()) return x l = Layer() i = Variable(torch.randn(20, 10).float().cuda()) with torch.no_grad(): dp.data_parallel(l, i, (0, 1)) self.assertRaises(AssertionError, lambda: dp.data_parallel(l, i, (0, 1))) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_data_parallel(self): l = nn.Linear(10, 5).float().cuda() i = Variable(torch.randn(20, 10).float().cuda(1)) l.cuda(1) expected_out = l(i) loss = expected_out.sum() loss.backward() expected_grads = [] for param in l.parameters(): expected_grads.append(param.grad.clone()) dev_ids_list = [(0, 1), (1, 0)] for dev_id in dev_ids_list: with torch.cuda.device(dev_id[0]): l.cuda() l.zero_grad() out = dp.data_parallel(l, i, dev_id) loss = out.sum() loss.backward() self.assertEqual(out.get_device(), dev_id[0]) self.assertEqual(out.data, expected_out.data) for expected, param in zip(expected_grads, l.parameters()): self.assertEqual(param.grad.data, expected.data) # Check for None device_ids l = l.cuda() out = dp.data_parallel(l, i) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_data_parallel_sparse(self): l = nn.Embedding(10, 5, sparse=True).to("cuda:1") i = torch.randint(10, (20, 5), device="cuda:1", dtype=torch.long) expected_out = l(i) loss = expected_out.sum() loss.backward() expected_grads = [] for param in l.parameters(): expected_grads.append(param.grad.clone()) dev_ids_list = [(0, 1), (1, 0)] for dev_id in dev_ids_list: with torch.cuda.device(dev_id[0]): l.cuda() l.zero_grad() out = dp.data_parallel(l, i, dev_id) loss = out.sum() loss.backward() self.assertEqual(out.get_device(), dev_id[0]) self.assertEqual(out.data, expected_out.data) for expected, param in zip(expected_grads, l.parameters()): self.assertEqual(param.grad.data, expected.data) # Check for None device_ids l = l.cuda() out = dp.data_parallel(l, i) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_data_parallel_nested_output(self): def fn(input): return [ input, (input.sin(), input.cos(), [input.add(1)]), input, OrderedDict(a=input, b=[input.sin()]) ] class Net(nn.Module): def forward(self, input): return fn(input) i = torch.randn(2, 2).float().cuda(1) gpus = range(torch.cuda.device_count()) output = dp.data_parallel(Net(), i, gpus) self.assertEqual(output, fn(i)) self.assertIsInstance(output[0], torch.Tensor) self.assertIsInstance(output[1], tuple) self.assertIsInstance(output[1][0], torch.Tensor) self.assertIsInstance(output[1][1], torch.Tensor) self.assertIsInstance(output[1][2], list) self.assertIsInstance(output[1][2][0], torch.Tensor) self.assertIsInstance(output[2], torch.Tensor) self.assertIsInstance(output[3], dict) self.assertEqual(len(output[3]), 2) self.assertIn('a', output[3]) self.assertIn('b', output[3]) self.assertIsInstance(output[3]['a'], torch.Tensor) self.assertIsInstance(output[3]['b'], list) self.assertIsInstance(output[3]['b'][0], torch.Tensor) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_data_parallel_nested_input(self): def fn(input): return input[1][0] class Net(nn.Module): def forward(self, *input): return fn(input) i = Variable(torch.randn(20, 3).float().cuda(1)) input = (i.cos(), (i.sin(), i), i.sin()) gpus = range(torch.cuda.device_count()) output = dp.data_parallel(Net(), input, gpus) self.assertEqual(output, fn(input)) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_data_parallel_module(self, dtype=torch.float): l = nn.Linear(10, 5).to("cuda", dtype) i = torch.randn(20, 10, device="cuda", dtype=dtype) expected_out = l(i).data net = nn.DataParallel(l) out = net(i) self.assertEqual(out.get_device(), 0) self.assertEqual(out.data, expected_out) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_data_parallel_module_kwargs_only(self, dtype=torch.float): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l = l def forward(self, input): return self.l(input) l = nn.Linear(10, 5).to("cuda", dtype) i = torch.randn(20, 10, device="cuda", dtype=dtype) expected_out = l(i).data n = nn.DataParallel(Net()) out = n(input=i) self.assertEqual(out.get_device(), 0) self.assertEqual(out.data, expected_out) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_data_parallel_module_kwargs_only_empty_list(self, dtype=torch.float): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l = l def forward(self, input): return self.l(input['data']) l = nn.Linear(10, 5).to("cuda", dtype) i = torch.randn(20, 10, device="cuda", dtype=dtype) expected_out = l(i).data n = nn.DataParallel(Net()) out = n(input={'data': i, 'unused': []}) self.assertEqual(out.get_device(), 0) self.assertEqual(out.data, expected_out) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_data_parallel_module_kwargs_only_empty_dict(self, dtype=torch.float): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l = l def forward(self, input): return self.l(input['data']) l = nn.Linear(10, 5).to("cuda", dtype) i = torch.randn(20, 10, device="cuda", dtype=dtype) expected_out = l(i).data n = nn.DataParallel(Net()) out = n(input={'data': i, 'unused': {}}) self.assertEqual(out.get_device(), 0) self.assertEqual(out.data, expected_out) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(ALL_TENSORTYPES) def test_data_parallel_module_kwargs_only_empty_tuple(self, dtype=torch.float): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l = l def forward(self, input): return self.l(input['data']) l = nn.Linear(10, 5).to("cuda", dtype) i = torch.randn(20, 10, device="cuda", dtype=dtype) expected_out = l(i).data n = nn.DataParallel(Net()) out = n(input={'data': i, 'unused': ()}) self.assertEqual(out.get_device(), 0) self.assertEqual(out.data, expected_out) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_data_parallel_device_args(self): cuda0 = torch.device('cuda:0') cuda1 = torch.device('cuda:1') # test output_device l = nn.Linear(10, 5).to(cuda0, torch.float) i = torch.randn(20, 10, dtype=torch.float, device=cuda0, requires_grad=True) out = dp.data_parallel(l, i, device_ids=(0, 1), output_device=cuda0) self.assertEqual(out, l(i)) # test device_ids l = nn.Linear(10, 5).to(cuda0, torch.float) i = torch.randn(20, 10, dtype=torch.float, device=cuda0, requires_grad=True) out = dp.data_parallel(l, i, device_ids=(cuda0, cuda1), output_device=cuda0) self.assertEqual(out, l(i)) def test_state_dict(self): l = nn.Linear(5, 5) block = nn.Module() block.conv = nn.Conv2d(3, 3, 3, bias=False) net = nn.Module() net.linear1 = l net.linear2 = l net.bn = nn.BatchNorm2d(2) net.block = block net.add_module('empty', None) state_dict = net.state_dict() self.assertEqual(len(state_dict), 10) self.assertEqual(len(state_dict._metadata), 6) self.assertIn('', state_dict._metadata) self.assertIn('linear1', state_dict._metadata) self.assertIn('linear1.weight', state_dict) self.assertIn('linear1.bias', state_dict) self.assertIn('linear2', state_dict._metadata) self.assertIn('linear2.weight', state_dict) self.assertIn('linear2.bias', state_dict) self.assertIn('block', state_dict._metadata) self.assertIn('block.conv', state_dict._metadata) self.assertIn('block.conv.weight', state_dict) self.assertIn('block.conv.weight', state_dict) self.assertNotIn('block.conv.bias', state_dict) self.assertIn('bn', state_dict._metadata) self.assertIn('bn.weight', state_dict) self.assertIn('bn.bias', state_dict) self.assertIn('bn.running_var', state_dict) self.assertIn('bn.running_mean', state_dict) self.assertIn('bn.num_batches_tracked', state_dict) self.assertFalse(any(map(lambda k: k.startswith('empty'), state_dict.keys()))) for k, v in state_dict.items(): param = net for component in k.split('.'): param = getattr(param, component) if isinstance(param, Parameter): param = param.data self.assertEqual(v.data_ptr(), param.data_ptr()) l = nn.Linear(5, 5) state_dict = l.state_dict() self.assertEqual(len(state_dict), 2) self.assertEqual(len(state_dict._metadata), 1) self.assertIn('', state_dict._metadata) self.assertTrue(state_dict._metadata['']['version'] >= 0) self.assertEqual(state_dict['weight'].data_ptr(), l.weight.data_ptr()) self.assertEqual(state_dict['bias'].data_ptr(), l.bias.data_ptr()) def test_load_state_dict(self): l = nn.Linear(5, 5) block = nn.Module() block.conv1 = nn.Conv2d(3, 3, 3, bias=True) block.conv2 = nn.Conv2d(3, 3, 3, bias=False) net = nn.Module() net.linear1 = l net.linear2 = l net.bn = nn.BatchNorm2d(2) net.block = block net.add_module('empty', None) state_dict = net.state_dict() state_dict.update({ 'linear1.weight': torch.ones(5, 5), 'block.conv1.bias': torch.arange(1, 4), 'bn.running_mean': torch.randn(2), }) net.load_state_dict(state_dict) self.assertEqual(net.linear1.weight.data, state_dict['linear1.weight']) self.assertEqual(net.block.conv1.bias.data, state_dict['block.conv1.bias']) self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean']) state_dict = net.state_dict() state_dict.update({'extra': torch.ones(5)}) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) state_dict = net.state_dict() state_dict.update({'extra.param': torch.ones(5)}) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) state_dict = net.state_dict() del state_dict['linear1.weight'] self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) state_dict = net.state_dict() state_dict.update({'bn.running_mean': torch.rand(14, 4)}) # wrong size self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) state_dict = net.state_dict() old_state_dict = deepcopy(state_dict) state_dict = { 'linear1.weight': torch.ones(5, 5), 'block.conv1.bias': torch.arange(1, 4), 'bn.running_mean': torch.randn(2), 'nonexistent_key': torch.rand(3) } net.load_state_dict(state_dict, strict=False) self.assertEqual(net.linear1.weight.data, state_dict['linear1.weight']) self.assertEqual(net.block.conv1.bias.data, state_dict['block.conv1.bias']) self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean']) new_state_dict = net.state_dict() del old_state_dict['linear1.weight'] del old_state_dict['block.conv1.bias'] del old_state_dict['bn.running_mean'] for k, v, in old_state_dict.items(): self.assertTrue(v.equal(new_state_dict[k])) def test_load_state_dict_BC(self): # BatchNormNd # Added num_batches_tracked buffer at version 2. For state dict with # earlier versions or no versions, it should provide default value of 0. bn = nn.BatchNorm2d(3) state_dict = bn.state_dict() del state_dict['num_batches_tracked'] state_dict._metadata['']['version'] = 1 # version 1 bn.load_state_dict(state_dict) self.assertEqual(bn.num_batches_tracked.dtype, torch.long) self.assertEqual(bn.num_batches_tracked.item(), 0) del state_dict._metadata['']['version'] # no version bn.load_state_dict(state_dict) self.assertEqual(bn.num_batches_tracked.dtype, torch.long) self.assertEqual(bn.num_batches_tracked.item(), 0) def test_parameter_assignment(self): l = nn.Linear(5, 5) def num_params(): return len(list(l.parameters())) self.assertEqual(num_params(), 2) new_param = Parameter(torch.randn(5, 5)) l.param_name = new_param self.assertEqual(num_params(), 3) self.assertObjectIn(new_param, l.parameters()) var = torch.randn(5, 5) l.var_name = var self.assertEqual(num_params(), 3) self.assertNotIn(id(var), map(id, l.parameters())) # Make sure Variables are not saved as parameters l.variable_attr = torch.empty(5, 5) self.assertEqual(num_params(), 3) l.param_attr = Parameter(torch.empty(5, 5)) self.assertEqual(num_params(), 4) # It shouldn't be possible to replace a parameter with a Variable def assign_var(): l.param_attr = torch.empty(5, 5) self.assertRaises(TypeError, assign_var) # But replacing it with None should be fine l.param_attr = None self.assertEqual(num_params(), 3) def test_assignment(self): l = nn.Module() a = nn.Parameter(torch.randn(2)) b = nn.Parameter(torch.randn(3)) c = nn.Parameter(torch.randn(4)) q = nn.Linear(4, 4) r = nn.Linear(5, 5) w = nn.Linear(6, 6) def test_assignments(get_list, a, b, c): # Check that None can be shadowed l.a = None self.assertIsNone(l.a) self.assertIn('a', l.__dict__) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [a]) self.assertNotIn('a', l.__dict__) # Assign second object l.b = None self.assertIsNone(l.b) self.assertIn('b', l.__dict__) l.b = b self.assertIs(l.b, b) self.assertEqual(get_list(), [a, b]) self.assertNotIn('b', l.__dict__) # Remove and add the object back. Order should be unchanged. l.a = None self.assertIsNone(l.a) self.assertEqual(get_list(), [b]) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [a, b]) # Replace object with another one. Order should be unchanged. l.a = c self.assertIs(l.a, c) self.assertEqual(get_list(), [c, b]) # Remove and reassign an attribute. It should appear at the end of the list now. del l.a self.assertFalse(hasattr(l, 'a')) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [b, a]) test_assignments(lambda: list(l.parameters()), a, b, c) del l.a, l.b self.assertEqual(list(l.parameters()), []) test_assignments(lambda: list(l.children()), q, r, w) del l.a, l.b self.assertEqual(list(l.children()), []) buf = torch.randn(10) l.register_buffer('buf', buf) self.assertIs(l.buf, buf) l.buf = None self.assertIs(l.buf, None) self.assertNotIn('buf', l.__dict__) # should be stored in l._buffers l.buf = buf self.assertIn('buf', l.state_dict()) self.assertEqual(l.state_dict()['buf'], buf) def test_Conv2d_inconsistent_types(self): inputs = Variable(torch.randn(4, 1, 7, 7).float()) weights = Variable(torch.randn(1, 1, 3, 3).double()) # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float()) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_Conv2d_inconsistent_types_on_GPU_without_cudnn(self): inputs = Variable(torch.randn(4, 1, 7, 7).float().cuda()) weights = Variable(torch.randn(1, 1, 3, 3).double().cuda()) bias = Variable(torch.randn(1).double().cuda()) with torch.backends.cudnn.flags(enabled=False): # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_Conv2d_inconsistent_types_on_GPU_with_cudnn(self): inputs = Variable(torch.randn(4, 1, 7, 7).float().cuda()) weights = Variable(torch.randn(1, 1, 3, 3).double().cuda()) bias = Variable(torch.randn(1).double().cuda()) with torch.backends.cudnn.flags(enabled=True): # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_Conv2d_deterministic_cudnn(self, dtype=torch.float): inputs = torch.randn(2, 3, 5, 5, device="cuda", dtype=dtype, requires_grad=True) with cudnn.flags(enabled=True, benchmark=True, deterministic=True): conv1 = torch.nn.Conv2d(3, 3, 3).to("cuda", dtype) conv2 = torch.nn.Conv2d(3, 3, 3).to("cuda", dtype) conv2.bias.data.copy_(conv1.bias.data) conv2.weight.data.copy_(conv1.weight.data) out1 = conv1(inputs) out2 = conv2(inputs) self.assertEqual(out1, out2, prec=0.0) y = torch.randn(out1.size(), device="cuda", dtype=dtype) out1.backward(y) out2.backward(y) self.assertEqual(conv1.bias.grad.data, conv2.bias.grad.data, prec=0.0) self.assertEqual(conv1.weight.grad.data, conv2.weight.grad.data, prec=0.0) def test_Conv2d_missing_argument(self): c = nn.Conv2d(3, 3, 3) self.assertRaises(TypeError, lambda: c(None)) def test_Conv2d_backward_twice(self): input = torch.randn(2, 3, 5, 5) c = nn.Conv2d(3, 3, 3) o1 = c(input) o1.sum().backward() self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True', lambda: o1.sum().backward()) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @repeat_test_for_types(ALL_TENSORTYPES) def test_Conv2d_large_workspace(self, dtype=torch.float): # These sizes require huge cuDNN workspaces. Make sure we choose a # reasonable algorithm that does not run out of memory sizes = [ (1, 256, 109, 175), (1, 256, 80, 128), (1, 256, 120, 192), ] def run_test(benchmark): with torch.backends.cudnn.flags(benchmark=benchmark): conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).to("cuda", dtype) for size in sizes: x = torch.randn(size, device="cuda", dtype=dtype) out = conv(x.detach().clone().requires_grad_()) out.backward(torch.ones_like(out)) run_test(benchmark=False) run_test(benchmark=True) def test_conv_modules_raise_error_on_incorrect_input_size(self): modules = [nn.Conv1d(3, 8, 3), nn.ConvTranspose1d(3, 8, 3), nn.Conv2d(3, 8, 3), nn.ConvTranspose2d(3, 8, 3), nn.Conv3d(3, 8, 3), nn.ConvTranspose3d(3, 8, 3)] invalid_input_dims = [(2, 4), (2, 4), (3, 5), (3, 5), (4, 6), (4, 6)] for invalid_dims, module in zip(invalid_input_dims, modules): for dims in invalid_dims: input = torch.empty(torch.Size((3, ) * dims)) self.assertRaises(RuntimeError, lambda: module(input)) def test_conv_shapecheck(self): def test(should_raise, module, input_size): input = torch.empty(3, *input_size) if should_raise: self.assertRaises(RuntimeError, lambda: module(input)) else: # just run it to ensure no exception raised. module(input) # Conv1d test(True, nn.Conv1d(1, 1, 3), (1, 2)) test(True, nn.Conv1d(1, 1, 3, stride=2), (1, 2)) test(False, nn.Conv1d(1, 1, 2), (1, 2)) test(False, nn.Conv1d(1, 1, 2, stride=2), (1, 2)) test(False, nn.Conv1d(1, 1, 3, stride=2, padding=1), (1, 2)) # Conv2d test(True, nn.Conv2d(1, 1, (3, 3)), (1, 2, 2)) test(False, nn.Conv2d(1, 1, (3, 3)), (1, 3, 3)) test(False, nn.Conv2d(1, 1, (3, 3), padding=1), (1, 2, 2)) # Conv3D test(True, nn.Conv3d(1, 1, (3, 3, 3)), (1, 2, 2, 2)) test(False, nn.Conv3d(1, 1, (3, 3, 3)), (1, 3, 3, 3)) test(False, nn.Conv3d(1, 1, (3, 3, 3), padding=1), (1, 2, 2, 2)) def test_ConvTranspose2d_output_size(self): m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2) i = torch.randn(2, 3, 6, 6) for h in range(15, 22): for w in range(15, 22): if 18 <= h <= 20 and 18 <= w <= 20: output = m(i, output_size=(h, w)) self.assertEqual(output.size()[2:], (h, w)) else: self.assertRaises(ValueError, lambda: m(i, (h, w))) def test_ConvTranspose3d_correct_output_size(self): # Check that ConvTranspose3d can take a 5d output_size. m = nn.ConvTranspose3d(2, 2, 2) i = torch.rand(1, 2, 1, 1, 1) out = m(i, output_size=(1, 2, 2, 2, 2)) def _test_Conv2d_naive_groups(self, device="cpu", dtype=torch.float): # Check that grouped convolutions matches two half convolutions m = nn.Conv2d(4, 4, kernel_size=3, groups=2).to(device, dtype) i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) output = m(i) grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) output.backward(grad_output) m1 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) m1.weight.data.copy_(m.weight.data[:2]) m1.bias.data.copy_(m.bias.data[:2]) i1 = Variable(i.data[:, :2].contiguous(), requires_grad=True) output1 = m1(i1) output1.backward(grad_output[:, :2].contiguous()) m2 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) m2.weight.data.copy_(m.weight.data[2:]) m2.bias.data.copy_(m.bias.data[2:]) i2 = Variable(i.data[:, 2:].contiguous(), requires_grad=True) output2 = m2(i2) output2.backward(grad_output[:, 2:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), prec=dtype2prec[dtype]) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), prec=dtype2prec[dtype]) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), prec=dtype2prec[dtype]) # For https://github.com/pytorch/pytorch/pull/1273 # Almost identical to the above `test_Conv2d_naive_groups` @skipIfRocm def test_Conv2d_groups_nobias(self): dev_dtypes = [("cpu", torch.float)] if TEST_CUDA: dev_dtypes += [("cuda", torch.float), ("cuda", torch.half)] for device, dtype in dev_dtypes: m = nn.Conv2d(4, 4, kernel_size=3, groups=2, bias=False).to(device, dtype) i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) output = m(i) grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) output.backward(grad_output) m1 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) m1.weight.data.copy_(m.weight.data[:2]) i1 = Variable(i.data[:, :2].contiguous(), requires_grad=True) output1 = m1(i1) output1.backward(grad_output[:, :2].contiguous()) m2 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) m2.weight.data.copy_(m.weight.data[2:]) i2 = Variable(i.data[:, 2:].contiguous(), requires_grad=True) output2 = m2(i2) output2.backward(grad_output[:, 2:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), dtype2prec[dtype]) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), 1e-1 if dtype == torch.half else dtype2prec[dtype]) # Very similar to test_Conv2d_naive_groups but with special care to handle # the number of groups == number of input channels @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @skipIfRocm @repeat_test_for_types(ALL_TENSORTYPES) def test_Conv2d_depthwise_naive_groups_cuda(self, dtype=torch.float): for depth_multiplier in [1, 2]: m = nn.Conv2d(2, 2 * depth_multiplier, kernel_size=3, groups=2).to("cuda", dtype) i = torch.randn(2, 2, 6, 6, device="cuda", dtype=dtype).div_(2).requires_grad_() output = m(i) grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4, device="cuda", dtype=dtype) / 2 output.backward(grad_output) offset = 1 * depth_multiplier m1 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to("cuda", dtype) m1.weight.data = m.weight.data[:offset].clone() m1.bias.data = m.bias.data[:offset].clone() i1 = i.detach()[:, :1].clone().requires_grad_() output1 = m1(i1) output1.backward(grad_output[:, :offset].contiguous()) m2 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to("cuda", dtype) m2.weight.data.copy_(m.weight.data[offset:]) m2.bias.data.copy_(m.bias.data[offset:]) i2 = i.detach()[:, 1:].clone().requires_grad_() output2 = m2(i2) output2.backward(grad_output[:, offset:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1), prec=dtype2prec[dtype]) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), prec=dtype2prec[dtype]) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), prec=dtype2prec[dtype]) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), prec=dtype2prec[dtype]) def test_MaxUnpool2d_output_size(self): m = nn.MaxPool2d(3, stride=2, return_indices=True) mu = nn.MaxUnpool2d(3, stride=2) big_t = torch.rand(1, 1, 6, 6) big_t[0][0][4][4] = 100 output_big, indices_big = m(big_t) self.assertRaises(RuntimeError, lambda: mu(output_big, indices_big)) small_t = torch.rand(1, 1, 5, 5) for i in range(0, 4, 2): for j in range(0, 4, 2): small_t[:, :, i, j] = 100 output_small, indices_small = m(Variable(small_t)) for h in range(3, 10): for w in range(3, 10): if 4 <= h <= 6 and 4 <= w <= 6: size = (h, w) if h == 5: size = torch.LongStorage(size) elif h == 6: size = torch.LongStorage((1, 1) + size) mu(output_small, indices_small, output_size=size) else: self.assertRaises(ValueError, lambda: mu(output_small, indices_small, (h, w))) def test_container_copy(self): class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear = nn.Linear(4, 5) def forward(self, input): return self.linear(input) input = torch.randn(2, 4) model = Model() model_cp = deepcopy(model) self.assertEqual(model(input).data, model_cp(input).data) model_cp.linear.weight.data[:] = 2 self.assertNotEqual(model(input).data, model_cp(input).data) def test_RNN_cell(self): # this is just a smoke test; these modules are implemented through # autograd so no Jacobian test is needed for module in (nn.RNNCell, nn.GRUCell): for bias in (True, False): input = torch.randn(3, 10) hx = torch.randn(3, 20) cell = module(10, 20, bias=bias) for i in range(6): hx = cell(input, hx) hx.sum().backward() def _test_loss_equal_input_target_shape(self, cast): # Tests losses whose inputs should have the same size. losses = { 'mse_loss': lambda x, y: F.mse_loss(x, y), 'l1_loss': lambda x, y: F.l1_loss(x, y), 'smooth_l1_loss': lambda x, y: F.smooth_l1_loss(x, y), 'kl_div': lambda x, y: F.kl_div(x, y), 'poisson_nll_loss': lambda x, y: F.poisson_nll_loss(x, y), } input = Variable(cast(torch.randn(3, 5))) target = Variable(cast(torch.randn(5, 3))) for name, fn in losses.items(): self.assertRaises(Exception, lambda: fn(input, target)) def test_loss_equal_input_target_shape(self): self._test_loss_equal_input_target_shape(lambda x: x) def test_NLLLoss_mismatched_batch(self): x = torch.randn((10, 3), requires_grad=True) # t should have size (10,) t = torch.zeros((3,), dtype=torch.int64) with self.assertRaisesRegex(ValueError, 'Expected.*batch_size'): F.nll_loss(x, t) @unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 7000), "needs cudnn >= 7.0") def test_CTCLoss_cudnn(self): target_lengths = [30, 25, 20] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (sum(target_lengths),), dtype=torch.int) log_probs = torch.randn(50, 3, 15, dtype=torch.float, device='cuda').log_softmax(2) res = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) expected = ctcloss_reference(log_probs, targets.cuda(), input_lengths, target_lengths).float() with torch.backends.cudnn.flags(enabled=False): res2 = torch.nn.functional.ctc_loss(log_probs, targets.cuda().long(), input_lengths, target_lengths) self.assertEqual(res, expected) self.assertEqual(res2, res) def test_RNN_cell_no_broadcasting(self): def test(cell_module, input, hx, input_size, hidden_size): cell = cell_module(input_size, hidden_size) self.assertRaises(RuntimeError, lambda: cell(input, hx)) def test_all(hidden_size, bad_hx, good_hx, input_size, input): test(nn.RNNCell, input, bad_hx, input_size, hidden_size) test(nn.GRUCell, input, bad_hx, input_size, hidden_size) test(nn.LSTMCell, input, (bad_hx, good_hx), input_size, hidden_size) test(nn.LSTMCell, input, (good_hx, bad_hx), input_size, hidden_size) hidden_size = 20 input_size = 10 input = torch.randn(3, input_size) bad_hx = torch.randn(1, hidden_size) good_hx = torch.randn(3, hidden_size) # Test hidden/input batch size broadcasting test_all(hidden_size, bad_hx, good_hx, input_size, input) # Test hx's hidden_size vs module's hidden_size broadcasting bad_hx = torch.randn(3, 1) test_all(hidden_size, bad_hx, good_hx, input_size, input) # Test input's input_size vs module's input_size broadcasting bad_input = torch.randn(3, 1) test_all(hidden_size, good_hx, good_hx, input_size, bad_input) def test_invalid_dropout_p(self): v = torch.ones(1) self.assertRaises(ValueError, lambda: nn.Dropout(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout(1.1)) self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1)) self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1)) self.assertRaises(ValueError, lambda: F.dropout(v, -0.1)) self.assertRaises(ValueError, lambda: F.dropout(v, 1.1)) def test_pad_sequence(self): def pad(tensor, length): return torch.cat( [tensor.data, tensor.data.new( length - tensor.size(0), *tensor.size()[1:]).zero_()]) # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) # batch_first = true expected = torch.tensor([[4, 5, 0], [1, 2, 3], [6, 0, 0]]) padded = rnn_utils.pad_sequence([b, a, c], True) self.assertEqual(padded, expected) # batch_first = false padded = rnn_utils.pad_sequence([b, a, c]) self.assertEqual(padded, expected.transpose(0, 1)) # pad with non-zero value expected = torch.tensor([[4, 5, 1], [1, 2, 3], [6, 1, 1]]) padded = rnn_utils.pad_sequence([b, a, c], True, 1) self.assertEqual(padded, expected) # Test pad sorted sequence expected = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]]) padded = rnn_utils.pad_sequence([a, b, c], True) self.assertEqual(padded, expected) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] trailing_dims = [4] * num_dim for i in range(1, maxlen + 1): seq_len = i * i sequences.append(torch.rand(seq_len, 5, *trailing_dims)) random.shuffle(sequences) expected = [] for seq in sequences: expected.append(pad(seq, maxlen * maxlen)) # batch first = true expected = torch.stack(expected) padded = rnn_utils.pad_sequence(sequences, True) self.assertEqual(padded, expected) # batch first = false padded = rnn_utils.pad_sequence(sequences) self.assertEqual(padded, expected.transpose(0, 1)) def test_pack_sequence(self): def _compatibility_test(sequences, lengths, batch_first): padded = rnn_utils.pad_sequence(sequences, batch_first) packed = rnn_utils.pack_sequence(sequences) unpacked = rnn_utils.pad_packed_sequence(packed, batch_first) self.assertEqual(padded, unpacked[0]) pack_padded = rnn_utils.pack_padded_sequence(padded, lengths, batch_first) self.assertEqual(packed, pack_padded) # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) packed = rnn_utils.pack_sequence([a, b, c]) expected = torch.tensor([1, 4, 6, 2, 5, 3]) self.assertEqual(packed.batch_sizes, [3, 2, 1]) self.assertEqual(packed.data.data, expected) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] lengths = [] trailing_dims = [4] * num_dim for i in range(maxlen, 0, -1): seq_len = i * i lengths.append(seq_len) sequences.append(torch.rand(seq_len, 5, *trailing_dims)) # compatibility with other utilities for batch_first in (True, False): _compatibility_test(sequences, lengths, batch_first) def test_pack_padded_sequence(self): def pad(tensor, length): return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()]) lengths = [10, 8, 4, 2, 2, 2, 1] max_length = lengths[0] batch_sizes = [sum(map(bool, filter(lambda x: x >= i, lengths))) for i in range(1, max_length + 1)] offset = 0 padded = torch.cat([pad(i * 100 + torch.arange(1., 5 * l + 1).view(l, 1, 5), max_length) for i, l in enumerate(lengths, 1)], 1).requires_grad_() expected_data = [[torch.arange(1., 6) + (i + 1) * 100 + 5 * n for i in range(batch_size)] for n, batch_size in enumerate(batch_sizes)] expected_data = list(itertools.chain.from_iterable(expected_data)) expected_data = torch.stack(expected_data, dim=0) for batch_first in (True, False): src = padded if batch_first: src = src.transpose(0, 1) # check output packed = rnn_utils.pack_padded_sequence(src, lengths, batch_first=batch_first) self.assertEqual(packed.data.data, expected_data) self.assertEqual(packed.batch_sizes, batch_sizes) # test inverse unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first) self.assertEqual(unpacked, src) self.assertEqual(unpacked_len, lengths) # check grad if padded.grad is not None: padded.grad.data.zero_() grad_output = unpacked.data.clone().normal_() unpacked.backward(grad_output) if batch_first: grad_output.transpose_(0, 1) for i, l in enumerate(lengths): self.assertEqual(padded.grad.data[:l, i], grad_output[:l, i]) if l < 10: self.assertEqual(padded.grad.data[l:, i].abs().sum(), 0) def _test_variable_sequence(self, device="cpu", dtype=torch.float): def pad(var, length): if var.size(0) == length: return var return torch.cat([var, var.new_zeros(length - var.size(0), *var.size()[1:])]) lengths = [10, 10, 6, 2, 2, 1, 1] max_length = lengths[0] x_leaf = torch.randn(max_length, len(lengths), 3, device=device, dtype=dtype, requires_grad=True) lstm = nn.LSTM(3, 4, bidirectional=True, num_layers=2).to(device, dtype) lstm2 = deepcopy(lstm).to(device, dtype) x = x_leaf # Compute sequences separately seq_outs = [] seq_hiddens = [] for i, l in enumerate(lengths): out, hid = lstm2(x[:l, i:i + 1]) out_pad = pad(out, max_length) seq_outs.append(out_pad) seq_hiddens.append(hid) seq_out = torch.cat(seq_outs, 1) seq_hidden = tuple(torch.cat(hids, 1) for hids in zip(*seq_hiddens)) # Use packed format packed = rnn_utils.pack_padded_sequence(x, lengths) packed_out, packed_hidden = lstm(packed) unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed_out) # Check forward self.assertEqual(packed_hidden, seq_hidden) self.assertEqual(unpacked, seq_out) self.assertEqual(unpacked_len, lengths) # Check backward seq_out.sum().backward() grad_x = x_leaf.grad.data.clone() x_leaf.grad.data.zero_() unpacked.sum().backward() self.assertEqual(x_leaf.grad, grad_x, dtype2prec[dtype]) for p1, p2 in zip(lstm.parameters(), lstm2.parameters()): prec = dtype2prec[dtype] if dtype == torch.float16: prec = 2e-2 self.assertEqual(p1.grad, p2.grad, prec) def test_variable_sequence(self): self._test_variable_sequence() @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_variable_sequence_cuda(self, dtype=torch.float): self._test_variable_sequence("cuda", dtype) def test_LSTM_cell(self): # this is just a smoke test; these modules are implemented through # autograd so no Jacobian test is needed for bias in (True, False): input = torch.randn(3, 10) hx = torch.randn(3, 20) cx = torch.randn(3, 20) lstm = nn.LSTMCell(10, 20, bias=bias) for i in range(6): hx, cx = lstm(input, (hx, cx)) (hx + cx).sum().backward() @unittest.skipIf(not (TEST_CUDNN and TEST_MULTIGPU), 'CUDNN or multi-gpu not available') @skipIfRocm def test_cudnn_rnn_dropout_states_device(self): rnn = nn.RNN(10, 20, num_layers=2, dropout=.5) device = 1 input = torch.randn(5, 4, 10).cuda(device) rnn.cuda(device) hx = torch.randn(2, 4, 20).cuda(device) output = rnn(input, hx) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_cudnn_weight_format(self): rnns = [ nn.LSTM(10, 20, batch_first=True), nn.GRU(10, 20, batch_first=True), nn.RNN(10, 20, batch_first=True) ] first_warn = True for rnn in rnns: rnn.cuda() input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True) hx = Variable(torch.randn(1, 5, 20).cuda(), requires_grad=True) all_vars = [input, hx] + list(rnn.parameters()) if isinstance(rnn, nn.LSTM): cx = Variable(torch.randn(1, 5, 20).cuda(), requires_grad=True) all_vars[2:2] = [cx] hx = (hx, cx) output = rnn(input, hx) output[0].sum().backward() grads = [v.grad.data.clone() for v in all_vars] for v in all_vars: v.grad.data.zero_() # Weights will no longer view onto the same chunk of memory weight = all_vars[4] weight_data = weight.data.clone() weight.data.set_(weight_data) for i in range(2): with warnings.catch_warnings(record=True) as w: output_noncontig = rnn(input, hx) if first_warn: self.assertEqual(len(w), 1) self.assertIn('weights are not part of single contiguous chunk of memory', w[0].message.args[0]) first_warn = False output_noncontig[0].sum().backward() grads_noncontig = [v.grad.data.clone() for v in all_vars] for v in all_vars: v.grad.data.zero_() self.assertEqual(output, output_noncontig) self.assertEqual(grads_noncontig, grads) # Make sure these still share storage weight_data[:] = 4 self.assertEqual(weight_data, all_vars[4].data) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_cudnn_weight_tying(self): rnns = [ nn.LSTM(10, 20, batch_first=True, bidirectional=True), nn.GRU(10, 20, batch_first=True, bidirectional=True), nn.RNN(10, 20, batch_first=True, bidirectional=True) ] for rnn in rnns: rnn.bias_ih_l0_reverse = rnn.bias_ih_l0 rnn.cuda() input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True) hx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True) all_vars = [input, hx] + list(rnn.parameters()) opt = torch.optim.SGD(rnn.parameters(), lr=0.1) opt.zero_grad() if isinstance(rnn, nn.LSTM): cx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True) all_vars[2:2] = [cx] hx = (hx, cx) with warnings.catch_warnings(record=True) as w: output = rnn(input, hx) output[0].sum().backward() opt.step() with warnings.catch_warnings(record=True) as w: output_cuda = rnn(input, hx) rnn.cpu() hx = (hx[0].cpu(), hx[1].cpu()) if isinstance(rnn, nn.LSTM) else hx.cpu() output_cpu = rnn(input.cpu(), hx) self.assertEqual(output_cuda, output_cpu) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @repeat_test_for_types(NO_HALF_TENSORTYPES) def test_cuda_rnn_fused(self, dtype=torch.float): def copy_rnn(rnn1, rnn2): for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights): for x, y in zip(x_layer, y_layer): x.data.copy_(y.data) def check_rnn_grads(rnn1, rnn2): for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights): for x, y in zip(x_layer, y_layer): self.assertEqual(x.grad, y.grad, prec=5e-5) input_size = 10 hidden_size = 6 num_layers = 2 seq_length = 7 batch = 6 input_val = torch.randn(seq_length, batch, input_size, dtype=dtype) grad_output = torch.randn(seq_length, batch, hidden_size, dtype=dtype) hx_val = torch.randn(num_layers, batch, hidden_size, dtype=dtype) grad_hy = torch.randn(num_layers, batch, hidden_size, dtype=dtype) with torch.backends.cudnn.flags(enabled=False): for module in (nn.GRU, nn.LSTM): for bias in (True, False): rnn = module(input_size, hidden_size, num_layers, bias=bias).to(dtype) rnn_cuda = module(input_size, hidden_size, num_layers, bias=bias).to("cuda", dtype) copy_rnn(rnn, rnn_cuda) is_lstm = isinstance(rnn, nn.LSTM) if is_lstm: hx = (Variable(hx_val.clone(), requires_grad=True), Variable(hx_val.clone().add(1), requires_grad=True)) hx_cuda = (Variable(hx_val.clone().cuda(), requires_grad=True), Variable(hx_val.clone().cuda().add(1), requires_grad=True)) else: hx = Variable(hx_val.clone(), requires_grad=True) hx_cuda = Variable(hx_val.clone().cuda(), requires_grad=True) inp = Variable(input_val.clone(), requires_grad=True) inp_cu = Variable(input_val.clone().cuda(), requires_grad=True) output1, hy1 = rnn(inp, hx) output2, hy2 = rnn_cuda(inp_cu, hx_cuda) if is_lstm: torch.autograd.backward( [output1, hy1[0], hy1[1]], [grad_output, grad_hy, grad_hy + 1] ) torch.autograd.backward( [output2, hy2[0], hy2[1]], [grad_output.cuda(), grad_hy.cuda(), (grad_hy + 1).cuda()] ) else: torch.autograd.backward([output1, hy1], [grad_output, grad_hy]) torch.autograd.backward([output2, hy2], [grad_output.cuda(), grad_hy.cuda()]) self.assertEqual(output1, output2) self.assertEqual(hy1, hy2) check_rnn_grads(rnn, rnn_cuda) self.assertEqual(inp.grad.data, inp_cu.grad.data) if is_lstm: self.assertEqual(hx[0].grad.data, hx_cuda[0].grad.data) self.assertEqual(hx[1].grad.data, hx_cuda[1].grad.data) else: self.assertEqual(hx.grad.data, hx_cuda.grad.data) def test_rnn_args_check(self): input_size = 3 hidden_size = 5 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 bad_size = 7 # prime number so that no size can divide it. def test(input_shape, hidden_shape, mode): for input, hidden in get_inputs(input_shape, hidden_shape, mode): model = getattr(nn, mode)(input_size, hidden_size, num_layers) self.assertRaises(RuntimeError, lambda: model(input, hidden)) correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size) def update_shape(shape, dim, new_dim_size): new_shape = list(shape) new_shape[dim] = new_dim_size return tuple(new_shape) def get_inputs(input_shape, hidden_shape, mode): '''returns list( tuple(input, hidden) ) where input, hidden are inputs to a model''' input = torch.randn(input_shape) hidden = torch.randn(hidden_shape) if mode is not 'LSTM': return [(input, hidden)] if hidden_shape == correct_hidden_shape: return [(input, (hidden, hidden))] good_hidden = torch.randn(correct_hidden_shape) return [ (input, (hidden, good_hidden)), (input, (good_hidden, hidden)), ] rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: # Incorrect input batch size input_shape = update_shape(correct_input_shape, 1, bad_size) hidden_shape = correct_hidden_shape test(input_shape, hidden_shape, mode) # Incorrect hidden batch size input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 1, bad_size) test(input_shape, hidden_shape, mode) # Incorrect input size input_shape = update_shape(correct_input_shape, 2, bad_size) hidden_shape = correct_hidden_shape test(input_shape, hidden_shape, mode) # Incorrect hidden size input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 2, bad_size) test(input_shape, hidden_shape, mode) # Incorrect hidden[0] input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 0, bad_size) test(input_shape, hidden_shape, mode) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") @skipIfRocm def test_rnn_check_device(self): input_size = 3 hidden_size = 5 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size) rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: model = getattr(nn, mode)(input_size, hidden_size, num_layers) input = torch.randn(correct_input_shape) hidden = torch.randn(correct_hidden_shape) # input and weights are not at the same device with self.assertRaisesRegex(RuntimeError, "Input and parameter tensors are not at the same device"): model(input.to('cuda:0')) # input and hiddens are not at the same device with self.assertRaisesRegex(RuntimeError, r"Input and hidden tensors are not at the same device"): if mode is 'LSTM': model(input, (hidden.to('cuda:0'), hidden.to('cuda:0'))) else: model(input, (hidden.to('cuda:0'))) # hidden tensors are not at the same CUDA device if mode is 'LSTM': with self.assertRaisesRegex(RuntimeError, "Input and hidden tensors are not at the same device"): model(input.to('cuda:0'), (hidden.to('cuda:0'), hidden.to('cuda:1'))) def test_rnn_initial_hidden_state(self): rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: rnn = getattr(nn, mode)(30, 20, 2) input = torch.randn(10, 32, 30) hidden = torch.zeros(2, 32, 20) if mode is 'LSTM': hidden = (hidden, hidden) output1, hidden1 = rnn(input, hidden) output2, hidden2 = rnn(input) self.assertEqual(output1, output2) self.assertEqual(hidden1, hidden2) def _test_rnn_retain_variables(self, device="cpu", dtype=torch.double): rnns = [nn.LSTM(10, 20, num_layers=2).to(device, dtype), nn.GRU(10, 20, num_layers=2).to(device, dtype), nn.RNN(10, 20, num_layers=2).to(device, dtype)] for rnn in rnns: input = torch.randn(5, 6, 10, device=device, dtype=dtype, requires_grad=True) output = rnn(input) output[0].sum().backward(retain_graph=True) grads = [input.grad.data.clone()] + [p.grad.data.clone() for p in rnn.parameters()] for i in range(4): rnn.zero_grad() input.grad.data.zero_() output[0].sum().backward(retain_graph=True) grads2 = [input.grad.data] + [p.grad.data for p in rnn.parameters()] self.assertEqual(grads, grads2) def test_rnn_retain_variables(self): self._test_rnn_retain_variables() @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_rnn_retain_variables_cuda(self, dtype=torch.float): with torch.backends.cudnn.flags(enabled=False): self._test_rnn_retain_variables("cuda", dtype) self._test_rnn_retain_variables("cuda", dtype) def _test_RNN_cpu_vs_cudnn(self, dropout): def forward_backward(cuda, rnn, input_val, hx_val, grad_output, grad_hy, weights_val): is_lstm = isinstance(rnn, nn.LSTM) for x_layer, y_layer in zip(rnn.all_weights, weights_val): for x, y in zip(x_layer, y_layer): x.data.copy_(y.data) if isinstance(input_val, rnn_utils.PackedSequence): input = rnn_utils.PackedSequence( Variable(input_val.data.data, requires_grad=True), input_val.batch_sizes) input_var = input.data else: input = Variable(input_val.clone(), requires_grad=True) input_var = input if is_lstm: hx = (Variable(hx_val.clone(), requires_grad=True), Variable(hx_val.add(1), requires_grad=True)) else: hx = Variable(hx_val.clone(), requires_grad=True) if cuda: rnn.cuda() input_var.data = input_var.data.cuda() if is_lstm: hx[0].data = hx[0].data.cuda() hx[1].data = hx[1].data.cuda() else: hx.data = hx.data.cuda() grad_hy = grad_hy.cuda() grad_output = grad_output.cuda() output, hy = rnn(input, hx) if isinstance(output, rnn_utils.PackedSequence): output = output.data if is_lstm: torch.autograd.backward([output, hy[0], hy[1]], [grad_output, grad_hy, grad_hy + 1]) else: torch.autograd.backward([output, hy], [grad_output, grad_hy]) return {'output': output.data, 'hy': hy[0].data if is_lstm else hy.data, 'weights': rnn.all_weights, 'grad_input': input_var.grad.data, 'grad_hx': hx[0].grad.data if is_lstm else hx.grad.data, 'cy': hy[1].data if is_lstm else None, 'grad_cx': hx[1].grad.data if is_lstm else None} input_size = 10 hidden_size = 6 num_layers = 2 seq_length = 7 batch = 6 def make_noncontig(tensor): ndim = tensor.dim() return torch.stack([tensor.clone().zero_(), tensor], ndim).select(ndim, 1) def compare_cpu_gpu(outputs_cpu, outputs_gpu): self.assertEqual(list(outputs_cpu.keys()), list(outputs_gpu.keys())) for key in outputs_cpu.keys(): if key != 'weights': self.assertEqual(outputs_cpu[key], outputs_gpu[key], prec=5e-5, message=key) # check grad weights separately, as nested dict for cpu_layer_weight, gpu_layer_weight in zip(outputs_cpu['weights'], outputs_gpu['weights']): for (cpu_weight, gpu_weight) in zip(cpu_layer_weight, gpu_layer_weight): self.assertEqual(cpu_weight.grad.data, gpu_weight.grad.data, prec=5e-5) for module in (nn.RNN, nn.LSTM, nn.GRU): for bias, bidirectional, batch_first, contig, variable_len, lens_as_tensor \ in product((True, False), repeat=6): num_directions = 2 if bidirectional else 1 if batch_first: input_val = torch.randn(batch, seq_length, input_size) grad_output = torch.randn(batch, seq_length, hidden_size * num_directions) else: input_val = torch.randn(seq_length, batch, input_size) grad_output = torch.randn(seq_length, batch, hidden_size * num_directions) if not contig: grad_output = make_noncontig(grad_output) grad_hy = make_noncontig(grad_hy) input_var = make_noncontig(input_val) hx_val = make_noncontig(hx_val) hx_val = torch.randn(num_layers * num_directions, batch, hidden_size) grad_hy = torch.randn(num_layers * num_directions, batch, hidden_size) if variable_len: lengths = [7, 5, 5, 2, 1, 1] if lens_as_tensor: lengths = torch.tensor(lengths, dtype=torch.long) input_val = rnn_utils.pack_padded_sequence(input_val, lengths, batch_first=batch_first) grad_output = rnn_utils.pack_padded_sequence(grad_output, lengths, batch_first=batch_first).data rnn = module(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first) outputs_cpu = forward_backward( False, rnn, input_val, hx_val, grad_output, grad_hy, rnn.all_weights) rnn_gpu = module(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first) outputs_gpu = forward_backward( True, rnn_gpu, input_val, hx_val, grad_output, grad_hy, rnn.all_weights) compare_cpu_gpu(outputs_cpu, outputs_gpu) for nonlinearity in ('tanh', 'relu'): hx_val = torch.randn(num_layers, batch, hidden_size) input_val = torch.randn(seq_length, batch, input_size) grad_output = torch.randn( seq_length, batch, hidden_size * num_directions) grad_hy = torch.randn( num_layers * num_directions, batch, hidden_size) rnn = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity) outputs_cpu = forward_backward(False, rnn, input_val, hx_val, grad_output, grad_hy, rnn.all_weights) rnn_gpu = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity) outputs_gpu = forward_backward(True, rnn_gpu, input_val, hx_val, grad_output, grad_hy, rnn.all_weights) compare_cpu_gpu(outputs_cpu, outputs_gpu) @unittest.skipIf(not TEST_CUDNN, "needs cudnn") @default_tensor_type(torch.FloatTensor) # FIXME: just until torch.cuda.DoubleTensor.sum() implemented @skipIfRocm def test_RNN_cpu_vs_cudnn_no_dropout(self): self._test_RNN_cpu_vs_cudnn(0) @unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1") @default_tensor_type(torch.FloatTensor) # FIXME: just until torch.cuda.DoubleTensor.sum() implemented def test_RNN_cpu_vs_cudnn_with_dropout(self): # Because of dropout randomness, can only compare dropout=0 and dropout=1 self._test_RNN_cpu_vs_cudnn(1) @unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1") def test_RNN_dropout(self): # checking the assumption that cuDNN sticks dropout in between # RNN layers for p in (0, 0.276, 0.731, 1): for train in (True, False): for cuda in (True, False): rnn = nn.RNN(10, 1000, 2, bias=False, dropout=p, nonlinearity='relu') if cuda: rnn.cuda() if train: rnn.train() else: rnn.eval() rnn.weight_ih_l0.data.fill_(1) rnn.weight_hh_l0.data.fill_(1) rnn.weight_ih_l1.data.fill_(1) rnn.weight_hh_l1.data.fill_(1) input = torch.ones(1, 1, 10) hx = torch.zeros(2, 1, 1000) if cuda: input = input.cuda() hx = hx.cuda() output, hy = rnn(input, hx) self.assertEqual(output.data.min(), output.data.max()) output_val = output.data[0][0][0] if p == 0 or not train: self.assertEqual(output_val, 10000) elif p == 1: self.assertEqual(output_val, 0) else: self.assertGreater(output_val, 8000) self.assertLess(output_val, 12000) denorm_mod = (output_val * (1 - p)) % 10 self.assertLess(min(denorm_mod, 10 - denorm_mod), 1e-2) self.assertEqual(hy[0].data.min(), hy[0].data.max()) self.assertEqual(hy[1].data.min(), hy[1].data.max()) self.assertEqual(hy.data[0][0][0], 10) self.assertEqual(hy.data[1][0][0], output_val) @unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1") def test_RNN_dropout_state(self): import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle for p in (0, 0.1234): for train in (True, False): for cuda in (True, False): rnn = nn.RNN(100, 100, 2, bias=False, dropout=p, nonlinearity='relu') if cuda: rnn.cuda() if train: rnn.train() else: rnn.eval() input = torch.rand(1, 1, 100) hx = torch.rand(2, 1, 100) if cuda: input = input.cuda() hx = hx.cuda() output1, hy1 = rnn(input, hx) output2, hy2 = rnn(input, hx) rnn_pickle = pickle.dumps(rnn) rnn2 = pickle.loads(rnn_pickle) rnn2.flatten_parameters() output3, hy3 = rnn2(input, hx) if p == 0 or not train: self.assertEqual(output1, output2) self.assertEqual(output1, output3) self.assertEqual(hy1, hy2) self.assertEqual(hy1, hy3) else: self.assertNotEqual(output1, output2) self.assertNotEqual(output1, output3) self.assertNotEqual(hy1, hy2) self.assertNotEqual(hy1, hy3) @unittest.skipIf(not (TEST_CUDNN and TEST_CUDNN_VERSION >= 5103), "needs cudnn >= 5.1") def test_RNN_change_dropout(self): for train, cuda in product((True, False), repeat=2): rnn = nn.RNN(100, 100, 2, dropout=0, nonlinearity='relu') input = torch.rand(3, 2, 100) if cuda: input.data = input.data.cuda() rnn.cuda() if train: rnn.train() else: rnn.eval() prev_output = None for p in (0, 0.5, 0, 0.7, 0.2, 1, 0.2, 0): rnn.dropout = p output1, hy1 = rnn(input) output2, hy2 = rnn(input) if p == 0 or p == 1 or not train: self.assertEqual(output1, output2) self.assertEqual(hy1, hy2) else: self.assertNotEqual(output1, output2) self.assertNotEqual(hy1, hy2) if prev_output is not None: if not train: self.assertEqual(output1.data, prev_output) self.assertEqual(output2.data, prev_output) else: self.assertNotEqual(output1.data, prev_output) self.assertNotEqual(output2.data, prev_output) prev_output = output1.data def _verify_pixel_shuffle(self, input, output, upscale_factor): for c in range(output.size(1)): for h in range(output.size(2)): for w in range(output.size(3)): height_idx = h // upscale_factor weight_idx = w // upscale_factor channel_idx = (upscale_factor * (h % upscale_factor)) + (w % upscale_factor) + \ (c * upscale_factor ** 2) self.assertEqual(output[:, c, h, w], input[:, channel_idx, height_idx, weight_idx]) def test_inplace_thnn(self): modules = [nn.ReLU, nn.ELU, nn.SELU, nn.CELU, nn.RReLU] for mod in modules: r = mod(inplace=True) input = torch.randn(5, 5, requires_grad=True) output = r(input + 0) grad_output = torch.randn(5, 5) grad_output_clone = grad_output.clone() output.backward(grad_output) self.assertEqual(grad_output, grad_output_clone) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @repeat_test_for_types(ALL_TENSORTYPES) @skipIfRocm def test_noncontig_conv_grad_cuda(self, dtype=torch.float): # FIXME: remove after adding non-contiguous grad tests for all modules module = nn.Conv2d(3, 5, kernel_size=3, padding=1).to("cuda", dtype) input = torch.randn(2, 3, 10, 10, dtype=dtype, device="cuda", requires_grad=True) output = module(input) grad = torch.randn(2, 2, 5, 10, 10, dtype=dtype, device="cuda")[:, 1] assert not grad.is_contiguous() output.backward(grad, retain_graph=True) self.assertIsNotNone(input.grad) result = input.grad.data.clone() input.grad.data.zero_() output.backward(grad.contiguous()) self.assertEqual(result, input.grad.data, dtype2prec[dtype]) def test_pixel_shuffle(self): batch_size = random.randint(1, 3) upscale_factor = random.randint(2, 5) channels = random.randint(1, 4) * upscale_factor ** 2 height = random.randint(5, 10) width = random.randint(5, 10) input = torch.rand(batch_size, channels, height, width, requires_grad=True) ps = nn.PixelShuffle(upscale_factor) output = ps(input) self._verify_pixel_shuffle(input.data, output.data, upscale_factor) output.backward(output.data) self.assertEqual(input.data, input.grad.data) def test_elu_inplace_view(self): v = torch.tensor([1.0, -1.0, 1.0, -1.0], requires_grad=True) def func(root): x = root.clone() view = x.narrow(0, 1, 2) res = F.elu(view, inplace=True) self.assertIs(res, view) return x gradcheck(func, [v]) gradgradcheck(func, [v]) def test_relu_inplace_view(self): v = torch.tensor([1.0, -1.0, 1.0, -1.0], requires_grad=True) def func(root): x = root.clone() view = x.narrow(0, 1, 2) res = F.relu(view, inplace=True) self.assertIs(res, view) return x gradcheck(func, [v]) gradgradcheck(func, [v]) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_PReLU_backward_requires_grad_false(self): m = nn.PReLU().to('cuda') x = torch.randn(2, 3, 4, 5, requires_grad=False, device='cuda') y = m(x) y.mean().backward() self.assertEqual(x.grad, None) def test_bce_loss_always_nonnegative(self): target = torch.ones(5) input = torch.ones(5) self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) target = torch.zeros(5) input = torch.zeros(5) self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) def test_bce_with_logits_raises_if_target_and_input_are_different_size(self): target = torch.rand(5) input = torch.rand(5, 1) with self.assertRaises(ValueError): nn.BCEWithLogitsLoss()(input, target) target = torch.rand(5, 1) input = torch.rand(5) with self.assertRaises(ValueError): nn.BCEWithLogitsLoss()(input, target) def test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss(self): sigmoid = nn.Sigmoid() target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target)) weight = torch.rand(4) self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target)) target = torch.zeros(4, 1, dtype=torch.float) output = torch.empty(4, 1, dtype=torch.float).fill_(-100) self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target)) self.assertEqual(nn.BCEWithLogitsLoss(reduction='none')(output, target), nn.BCELoss(reduction='none')(sigmoid(output), target)) weight = torch.rand(1, dtype=torch.float) self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target)) def test_bce_with_logits_has_correct_grad_at_zero(self): output = torch.zeros(3, 1, requires_grad=True) target = torch.zeros(3, 1) nn.BCEWithLogitsLoss(reduction='sum')(output, target).backward() expected_grad = torch.empty(3, 1).fill_(0.5) self.assertEqual(output.grad, expected_grad) def test_bce_with_logits_broadcasts_weights(self): target = torch.rand(16, 4) output = torch.rand(16, 4) - 0.5 weight = torch.rand(4) out1 = nn.BCEWithLogitsLoss(weight)(output, target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCEWithLogitsLoss(weight)(output, target) self.assertEqual(out1, out2) weight = torch.rand(16, 1) out1 = nn.BCEWithLogitsLoss(weight)(output, target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCEWithLogitsLoss(weight)(output, target) self.assertEqual(out1, out2) def test_bce_with_logits_ones_in_pos_weights_are_the_same_as_none(self): target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 pos_weight = torch.ones(64, 4) self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target)) def test_bce_with_logits_broadcasts_pos_weights(self): target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 pos_weight = torch.rand(4) out1 = nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target) pos_weight1 = pos_weight.expand(1, 4) out2 = nn.BCEWithLogitsLoss(pos_weight=pos_weight1)(output, target) pos_weight2 = pos_weight.expand(64, 4) out3 = nn.BCEWithLogitsLoss(pos_weight=pos_weight2)(output, target) self.assertEqual(out1, out2) self.assertEqual(out1, out3) def test_bce_with_logits_with_pos_weight_has_correct_grad_at_zero(self): output = torch.zeros(3, 1, requires_grad=True) target = torch.zeros(3, 1) pos_weight = torch.ones(3, 1) nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction='sum')(output, target).backward() expected_grad = torch.empty(3, 1).fill_(0.5) grad = output.grad self.assertEqual(grad, expected_grad) def test_bce_loss_broadcasts_weights(self): sigmoid = nn.Sigmoid() target = torch.rand(16, 4) output = torch.rand(16, 4) - 0.5 weight = torch.rand(4) out1 = nn.BCELoss(weight)(sigmoid(output), target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCELoss(weight)(sigmoid(output), target) self.assertEqual(out1, out2) weight = torch.rand(16, 1) out1 = nn.BCELoss(weight)(sigmoid(output), target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCELoss(weight)(sigmoid(output), target) self.assertEqual(out1, out2) def test_elu_inplace_gradgrad(self): v = torch.randn(8, requires_grad=True) def func(root): x = root.clone() return F.elu(x, inplace=True) gradcheck(func, [v]) gradgradcheck(func, [v]) def test_hardtanh_inplace_gradgrad(self): v = torch.randn(8, requires_grad=True) def func(root): x = root.clone() return F.hardtanh(x, inplace=True) gradcheck(func, [v]) gradgradcheck(func, [v]) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_batchnorm_cudnn_half(self): # THNN input = torch.randint(1, 10, (2, 3, 2, 2), dtype=torch.half, device="cuda", requires_grad=True) m = nn.BatchNorm2d(3).half().cuda() thnn_output = m(input) thnn_output.sum().backward() thnn_input_grad = input.grad.data.clone() self.assertEqual(thnn_output.type(), input.type()) # cuDNN if TEST_CUDNN: input.grad = None m = m.float() cudnn_output = m(input) cudnn_output.sum().backward() cudnn_input_grad = input.grad.data.clone() self.assertEqual(cudnn_output.type(), input.type()) self.assertEqual(cudnn_output, thnn_output) self.assertAlmostEqual(cudnn_input_grad, thnn_input_grad, delta=1e-3) def _test_batchnorm_update_stats(self, device="cpu", dtype=torch.float): module = nn.BatchNorm1d(3).to(device, dtype) data = torch.rand(4, 3, device=device, dtype=dtype) # training pass old_running_mean = module.running_mean.clone() old_running_var = module.running_var.clone() old_num_batches_tracked = module.num_batches_tracked.clone() module(data) self.assertNotEqual(old_running_mean, module.running_mean) self.assertNotEqual(old_running_var, module.running_var) self.assertEqual(old_num_batches_tracked + 1, module.num_batches_tracked) # eval pass module.eval() old_running_mean = module.running_mean.clone() old_running_var = module.running_var.clone() old_num_batches_tracked = module.num_batches_tracked.clone() module(data) self.assertEqual(old_running_mean, module.running_mean) self.assertEqual(old_running_var, module.running_var) self.assertEqual(old_num_batches_tracked, module.num_batches_tracked) def test_batchnorm_update_stats(self): self._test_batchnorm_update_stats() @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_batchnorm_update_stats_cuda(self): self._test_batchnorm_update_stats("cuda", torch.float) if TEST_CUDNN: with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_update_stats("cuda", torch.float) def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, torch.rand(size), running_var) def test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, torch.rand(size)) def test_batchnorm_raises_error_if_weight_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, running_var, weight=Parameter(torch.rand(size))) def test_batchnorm_raises_error_if_bias_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, running_var, bias=Parameter(torch.rand(size))) def _test_batchnorm_grad(self, device="cpu", dtype=torch.double): bs, n_feat, size_feat = 4, 5, 6 input = torch.arange(bs * n_feat * size_feat, device=device, requires_grad=True, dtype=dtype).view(bs, n_feat, size_feat) weight = torch.arange(1, n_feat + 1, device=device, requires_grad=True, dtype=dtype) bias = torch.arange(n_feat, device=device, requires_grad=True, dtype=dtype) running_mean = 1 - torch.arange(n_feat, device=device, dtype=dtype) running_var = 2 * torch.arange(n_feat, device=device, dtype=dtype) for training in [False, True]: _assertGradAndGradgradChecks(self, F.batch_norm, (input, running_mean, running_var, weight, bias, training, 0.1, 0.0001)) def _test_batchnorm_eval(self, device="cpu", dtype=torch.float): module = nn.BatchNorm1d(3).to(device, dtype) module.eval() data = torch.rand(4, 3, device=device, dtype=dtype, requires_grad=True) grad = torch.rand(4, 3, device=device, dtype=dtype) # 1st pass res1 = module(data) res1.backward(grad) grad1 = data.grad.clone() # 2nd pass if data.grad is not None: data.grad.data.zero_() res2 = module(data) res2.backward(grad) grad2 = data.grad.clone() self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) # track_running_stats=False module = nn.BatchNorm1d(3, track_running_stats=False).to(device, dtype) data = torch.rand(4, 3, device=device, dtype=dtype, requires_grad=True) grad = torch.rand(4, 3, device=device, dtype=dtype) # 1st pass res1 = module(data) res1.backward(grad) grad1 = data.grad.clone() # set eval module.eval() # 2nd pass if data.grad is not None: data.grad.data.zero_() res2 = module(data) res2.backward(grad) grad2 = data.grad.clone() self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) def _test_batchnorm_simple_average(self, test_type=torch.FloatTensor): module = nn.BatchNorm1d(3, momentum=None).type(test_type) zeros = torch.zeros(3).type(test_type) ones = torch.ones(3).type(test_type) self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) data1 = torch.rand(4, 3).type(test_type) data2 = torch.rand(4, 3).type(test_type) # 1st pass res1 = module(data1) running_mean1 = module.running_mean.clone() running_var1 = module.running_var.clone() self.assertNotEqual(running_mean1, zeros) self.assertNotEqual(running_var1, ones) # reset stats module.reset_running_stats() self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) # 2nd pass res2 = module(data2) running_mean2 = module.running_mean.clone() running_var2 = module.running_var.clone() self.assertNotEqual(running_mean2, zeros) self.assertNotEqual(running_var2, ones) # reset stats module.reset_running_stats() self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) # 3rd (combined) pass res3 = module(data1) res4 = module(data2) self.assertEqual(res3, res1) self.assertEqual(res4, res2) self.assertAlmostEqual(module.running_mean, (running_mean1 + running_mean2) / 2) self.assertAlmostEqual(module.running_var, (running_var1 + running_var2) / 2) def test_pairwise_distance(self): input1 = torch.randn(4, 4, requires_grad=True) input2 = torch.randn(4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x, y: F.pairwise_distance(x, y), (input1, input2))) @skipIfRocm def test_pdist(self): for device, trans in itertools.product(device_(), [False, True]): inp = torch.randn(4, 5, dtype=torch.double, device=device, requires_grad=True) if trans: inp = inp.transpose(0, 1) for p in [0, 1, 2, 0.5, 1.5, 2.5, float('inf')]: self.assertTrue(gradcheck(lambda x: F.pdist(x, p), (inp,))) @skipIfRocm def test_pdist_zeros(self): """Test that grad is still valid when dist is 0""" for device in device_(): inp = torch.randn(1, 3, dtype=torch.double, device=device, requires_grad=True).repeat([2, 1]) for p in [0, 1, 2, 0.5, 1.5, 2.5, float('inf')]: self.assertTrue(gradcheck(lambda x: F.pdist(x, p), (inp,))) @skipIfRocm def test_pdist_empty_row(self): for device in device_(): inp = torch.randn(1, 3, dtype=torch.double, device=device, requires_grad=True) self.assertTrue(gradcheck(F.pdist, (inp,))) def test_pdist_empty_col(self): for device in device_(): inp = torch.randn(4, 0, dtype=torch.double, device=device, requires_grad=True) self.assertTrue(gradcheck(F.pdist, (inp,))) @unittest.expectedFailure def test_pdist_cpu_gradgrad_unimplemented(self): inp = torch.randn(4, 5, requires_grad=True) gradgradcheck(F.pdist, (inp,)) @unittest.expectedFailure def test_pdist_cuda_gradgrad_unimplemented(self): inp = torch.randn(4, 5, device='cuda', requires_grad=True) gradgradcheck(F.pdist, (inp,)) def test_cosine_embedding_loss_no_reduce(self): input1 = torch.randn(15, 10, requires_grad=True) input2 = torch.randn(15, 10, requires_grad=True) target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.cosine_embedding_loss( x, y, z, reduction='none'), (input1, input2, target))) self.assertEqual(F.cosine_embedding_loss(input1, input2, target, reduction='none'), loss_reference_fns['CosineEmbeddingLoss'](input1, input2, target, reduction='none')) def test_cosine_embedding_loss_margin_no_reduce(self): input1 = torch.randn(15, 10, requires_grad=True) input2 = torch.randn(15, 10, requires_grad=True) target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.cosine_embedding_loss( x, y, z, margin=0.5, reduction='none'), (input1, input2, target))) self.assertEqual(F.cosine_embedding_loss(input1, input2, target, margin=0.5, reduction='none'), loss_reference_fns['CosineEmbeddingLoss'](input1, input2, target, margin=0.5, reduction='none')) def test_margin_ranking_loss_no_reduce(self): input1 = torch.randn(15).mul_(10).requires_grad_() input2 = torch.randn(15).mul_(10).requires_grad_() target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.margin_ranking_loss( x, y, z, reduction='none'), (input1, input2, target))) self.assertEqual(F.margin_ranking_loss(input1, input2, target, reduction='none'), loss_reference_fns['MarginRankingLoss'](input1, input2, target, reduction='none')) def test_margin_ranking_loss_margin_no_reduce(self): input1 = torch.randn(15).mul_(10).requires_grad_() input2 = torch.randn(15).mul_(10).requires_grad_() target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.margin_ranking_loss( x, y, z, margin=0.5, reduction='none'), (input1, input2, target))) self.assertEqual(F.margin_ranking_loss(input1, input2, target, margin=0.5, reduction='none'), loss_reference_fns['MarginRankingLoss'](input1, input2, target, margin=0.5, reduction='none')) def test_triplet_margin_loss(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3), loss_reference_fns['TripletMarginLoss'](input1, input2, input3)) def test_triplet_margin_loss_swap(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, swap=True), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, swap=True), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, swap=True)) def test_triplet_margin_loss_no_reduce(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, reduction='none'), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, reduction='none'), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, reduction='none')) def test_triplet_margin_loss_swap_no_reduce(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, swap=True, reduction='none'), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, swap=True, reduction='none'), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, swap=True, reduction='none')) def test_pointwise_loss_target_grad_none_reduction(self): i = torch.randn(5, 10) t = torch.randn(5, 10, requires_grad=True) self.assertEqual(F.mse_loss(i, t, reduction='none').size(), t.size()) self.assertEqual(F.l1_loss(i, t, reduction='none').size(), t.size()) def test_pointwise_loss_broadcast(self): losses = { 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), } input = torch.randn(2, 1, requires_grad=True) for name, fn in losses.items(): for requires_grad in [True, False]: # When target.requires_grad=True, its impl is in Python, while the other is in TH. target = torch.randn(2, 10, requires_grad=requires_grad) for reduction in ['none', 'mean', 'sum']: l = fn(input, target, reduction) if reduction == 'none': self.assertEqual(l.size(), target.size()) self.assertTrue(gradcheck(fn, (input, target, reduction))) def test_cosine_similarity(self): input1 = torch.randn(4, 4, requires_grad=True) input2 = torch.randn(4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y), (input1, input2))) input1 = torch.randn(4, 5, 6, requires_grad=True) input2 = torch.randn(4, 5, 6, requires_grad=True) self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=0), (input1, input2))) self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=-1), (input1, input2))) input1 = torch.randn((), requires_grad=True) input2 = torch.randn((), requires_grad=True) self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=0), (input1, input2))) self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=-1), (input1, input2))) # Check cosine_similarity input/output shapes input_size = (1, 3, 2, 1) expected_size = (1, 2, 1) input1 = torch.randn(input_size, requires_grad=True) input2 = torch.randn(input_size, requires_grad=True) self.assertEqual(F.cosine_similarity(input1, input2, dim=1).size(), expected_size) def test_grid_sample_error_checking(self): input = torch.empty(1, 1, 2, 2) grid = torch.empty(1, 1, 1, 2) # assert no error F.grid_sample(input, grid) with self.assertRaisesRegex(ValueError, "but got: 'garbage'"): F.grid_sample(input, grid, mode='garbage') with self.assertRaisesRegex(ValueError, "but got: 'garbage'"): F.grid_sample(input, grid, padding_mode='garbage') with self.assertRaisesRegex(RuntimeError, "expected input and grid to have same dtype"): F.grid_sample(input.float(), grid.double()) with self.assertRaisesRegex(RuntimeError, "expected 4D or 5D input"): F.grid_sample(input[0], grid) with self.assertRaisesRegex(RuntimeError, "grid with same number of dimensions"): F.grid_sample(input, torch.empty(1, 1, 1, 1, 3)) with self.assertRaisesRegex(RuntimeError, "expected grid and input to have same batch size"): F.grid_sample(input, torch.empty(2, 1, 1, 2)) with self.assertRaisesRegex(RuntimeError, "expected grid to have size 2 in last dimension"): F.grid_sample(input, torch.empty(1, 1, 1, 3)) with self.assertRaisesRegex(RuntimeError, "expected input to have non-empty spatial dimensions"): F.grid_sample(torch.empty(1, 1, 0, 2), grid) if TEST_CUDA: with self.assertRaisesRegex(RuntimeError, "expected input and grid to be on same device"): F.grid_sample(input.cuda(), grid) @skipIfRocm def test_grid_sample(self): def test(N, C, H, W, mode, padding_mode): def test_shape(N, C, IH, IW, H, W, mode, padding_mode): for grid_dim_contig_order in [(0, 1, 2, 3), (0, 3, 1, 2), (3, 0, 1, 2), (0, 2, 1, 3)]: # grid_dim_contig_order specifies the dimension order that can # make grid to be contiguous. # i.e., grid.permute(grid_dim_contig_order) is contiguous. # e.g., with grid_dim_contig_order=[0, 3, 1, 2], grid should be # initialized with contiguous tensor of shape [N, 2, H, W] # and permuted to [N, H, W, 2] afterwards. grid_shape = [N, H, W, 2] grid_init_shape = [grid_shape[d] for d in grid_dim_contig_order] grid_fwd_permute = [None, None, None, None] for i, d in enumerate(grid_dim_contig_order): grid_fwd_permute[d] = i def get_grid(device='cpu', data=None): if data is not None: assert list(data.shape) == grid_shape data = data.permute(grid_dim_contig_order).to(device) else: data = torch.randn(grid_init_shape, device=device) grid = data.permute(grid_fwd_permute) assert grid.permute(grid_dim_contig_order).is_contiguous() return grid input_cpu = torch.randn(C, N, IH, IW).transpose(0, 1).requires_grad_() grid_cpu = get_grid().requires_grad_() out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode) self.assertTrue(out_cpu.size() == torch.Size([N, C, H, W])) gradients = torch.randn_like(out_cpu) out_cpu.backward(gradients) if TEST_CUDA: input_cuda = input_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_() grid_cuda = get_grid('cuda', grid_cpu.detach()).requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode) self.assertEqual(out_cpu, out_cuda) out_cuda.backward(gradients.cuda()) self.assertEqual(input_cpu.grad, input_cuda.grad) self.assertEqual(grid_cpu.grad, grid_cuda.grad, prec=5e-5) # check that zero-dimensional input strides don't error out base_input = torch.randn(N, C, 1, IW) input_cpu = base_input.expand_as(input_cuda).requires_grad_() out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode) input_cuda = base_input.cuda().expand_as(input_cuda).requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode) self.assertEqual(out_cpu, out_cuda) # test same size output test_shape(N, C, H, W, H, W, mode, padding_mode) # test larger output N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(IH + 1, 12) W = random.randint(IW + 1, 12) test_shape(N, C, IH, IW, H, W, mode, padding_mode) # test smaller output N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(2, IH) W = random.randint(2, IW) test_shape(N, C, IH, IW, H, W, mode, padding_mode) # test 1x1 inpput N = random.randint(2, 8) C = random.randint(2, 8) IH = 1 IW = 1 H = random.randint(2, 5) W = random.randint(2, 5) test_shape(N, C, IH, IW, H, W, mode, padding_mode) # testing empty grid N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) W = random.randint(3, IW + 2) test_shape(N, C, IH, IW, 0, W, mode, padding_mode) # testing empty channel N = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(N, 0, IH, IW, H, W, mode, padding_mode) # testing empty batch C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(0, C, IH, IW, H, W, mode, padding_mode) for mode in ('bilinear', 'nearest'): for padding_mode in ('zeros', 'border', 'reflection'): # test known input on CPU input = torch.arange(1., 11).view(1, 1, 2, 5) grid = torch.tensor( [[[-0.9, -4.1], [0, 0.2000], [1, -1], [-0.333, 1e-10], [0.5, 1.0]], [[-1.0, -0.5], [0, 0.3333], [1, -1], [-0.200, 1e-10], [1.5, 0.5]]]).view(1, 2, 5, 2) if mode == 'bilinear': if padding_mode == 'zeros': groundtruth = torch.tensor( [[0.0000, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 0.0000]]).view(1, 1, 2, 5) elif padding_mode == 'border': groundtruth = torch.tensor( [[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 8.7500]]).view(1, 1, 2, 5) elif padding_mode == 'reflection': groundtruth = torch.tensor( [[3.4500, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 7.7500]]).view(1, 1, 2, 5) else: assert False, "missing groundtruth test for padding mode '{}'".format(padding_mode) elif mode == 'nearest': if padding_mode == 'zeros': groundtruth = torch.tensor( [[0., 8., 5., 7., 9.], [1., 8., 5., 8., 0.]]).view(1, 1, 2, 5) elif padding_mode == 'border': groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 10.]]).view(1, 1, 2, 5) elif padding_mode == 'reflection': groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 9.]]).view(1, 1, 2, 5) else: assert False, "missing groundtruth test for padding mode '{}'".format(padding_mode) else: assert False, "missing groundtruth test for interpolation mode '{}'".format(mode) output = F.grid_sample(input, grid, mode=mode, padding_mode=padding_mode) self.assertEqual(output, groundtruth, "groundtruth comparison failed for mode={}, " "padding_mode={}".format(mode, padding_mode)) # do gradcheck N = random.randint(2, 8) C = random.randint(2, 6) H = random.randint(2, 8) W = random.randint(2, 8) input = torch.randn(N, C, H, W, requires_grad=True) grid = torch.randn(N, H, W, 2, requires_grad=True) self.assertTrue(gradcheck( lambda inp, grid: F.grid_sample(inp, grid, mode=mode, padding_mode=padding_mode), (input, grid))) test(N, C, H, W, mode, padding_mode) if TEST_CUDNN: with cudnn.flags(enabled=False): test(N, C, H, W, mode, padding_mode) @skipIfRocm def test_grid_sample_3d(self): def test(N, C, D, H, W, mode, padding_mode): def test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode): input_cpu = torch.randn(C, N, ID, IH, IW).transpose(0, 1).requires_grad_() grid_cpu = torch.randn(D, N, H, W, 3).transpose(0, 1).requires_grad_() out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode) self.assertTrue(out_cpu.size() == torch.Size([N, C, D, H, W])) gradients = torch.randn_like(out_cpu) out_cpu.backward(gradients) if TEST_CUDA: input_cuda = input_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_() grid_cuda = grid_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode) self.assertEqual(out_cpu, out_cuda) out_cuda.backward(gradients.cuda()) self.assertEqual(input_cpu.grad, input_cuda.grad) self.assertEqual(grid_cpu.grad, grid_cuda.grad, prec=5e-5) # check that zero-dimensional input strides don't error out base_input = torch.randn(N, C, 1, IH, IW) input_cpu = base_input.expand_as(input_cuda).requires_grad_() grid_cpu = torch.randn(N, D, H, W, 3, requires_grad=True) out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode) input_cuda = base_input.cuda().expand_as(input_cuda).requires_grad_() grid_cuda = grid_cpu.detach().cuda().requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode) self.assertEqual(out_cpu, out_cuda) # test same size output test_shape(N, C, D, H, W, D, H, W, mode, padding_mode) # test larger output N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(ID + 1, 10) H = random.randint(IH + 1, 10) W = random.randint(IW + 1, 10) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode) # test smaller output N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(2, ID) H = random.randint(2, IH) W = random.randint(2, IW) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode) # test 1x1 inpput N = random.randint(2, 7) C = random.randint(2, 7) ID = 1 IH = 1 IW = 1 H = random.randint(2, 5) W = random.randint(2, 5) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode) # testing empty grid N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) W = random.randint(3, IW + 2) test_shape(N, C, ID, IH, IW, D, 0, W, mode, padding_mode) # testing empty channel N = random.randint(2, 7) ID = random.randint(2, 5) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(N, 0, ID, IH, IW, D, H, W, mode, padding_mode) # testing empty batch C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(0, C, ID, IH, IW, D, H, W, mode, padding_mode) for mode in ('bilinear', 'nearest'): for padding_mode in ('zeros', 'border', 'reflection'): # do gradcheck N = random.randint(2, 5) C = random.randint(2, 4) D = random.randint(2, 5) H = random.randint(2, 5) W = random.randint(2, 5) input = torch.randn(N, C, D, H, W, requires_grad=True) grid = torch.randn(N, D, H, W, 3, requires_grad=True) self.assertTrue(gradcheck( lambda inp, grid: F.grid_sample(inp, grid, mode=mode, padding_mode=padding_mode), (input, grid))) test(N, C, D, H, W, mode, padding_mode) def test_affine_grid(self): # test known input on CPU input = torch.arange(1., 7).view(1, 2, 3) output = F.affine_grid(input, torch.Size([1, 1, 2, 2])) groundtruth = torch.Tensor( [[[0, -3], [2, 5]], [[4, 7], [6, 15]]]).view(1, 2, 2, 2) self.assertEqual(output, groundtruth) # do gradcheck N = random.randint(1, 8) C = random.randint(1, 8) H = random.randint(1, 8) W = random.randint(1, 8) sz = torch.Size([N, C, H, W]) inp = torch.randn(N, 2, 3, requires_grad=True) self.assertTrue(gradcheck(lambda inp: F.affine_grid(inp, sz), (inp,))) # test CPU against CUDA if TEST_CUDNN: input_cpu = torch.randn(N, 2, 3, requires_grad=True) out_cpu = F.affine_grid(input_cpu, sz) gradients = torch.randn(out_cpu.size()) out_cpu.backward(gradients) input_gpu = input_cpu.detach().cuda().requires_grad_() out_cuda = F.affine_grid(input_gpu, sz) out_cuda.backward(gradients.cuda()) self.assertEqual(out_cpu, out_cuda) self.assertEqual(input_cpu.grad, input_gpu.grad) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @skipIfRocm def test_affine_2d_rotate0(self): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for device in device_(): input_size = [1, 1, 3, 3] input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = [1, 1, 5, 5] angle_rad = 0. transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size) ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border' ).to('cpu').numpy() assert np.abs(scipy_ary.mean() - gridsample_ary.mean()) < 1e-6 assert np.abs(scipy_ary - gridsample_ary).max() < 1e-6 @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @skipIfRocm def test_affine_2d_rotate90(self): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for device, input_size2dsq, output_size2dsq in \ itertools.product(device_(), input_size2dsq_(), output_size2dsq_()): input_size = input_size2dsq input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = output_size2dsq angle_rad = 0.25 * math.pi * 2 transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=True) if input_size2dsq == output_size2dsq: assert np.abs(scipy_ary.mean() - input_ary.mean()) < 1e-6 assert np.abs(scipy_ary[0, 0] - input_ary[0, 0, 0, -1]).max() < 1e-6 assert np.abs(scipy_ary[0, -1] - input_ary[0, 0, -1, -1]).max() < 1e-6 assert np.abs(scipy_ary[-1, -1] - input_ary[0, 0, -1, 0]).max() < 1e-6 assert np.abs(scipy_ary[-1, 0] - input_ary[0, 0, 0, 0]).max() < 1e-6 affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size) ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border' ).to('cpu').numpy() assert np.abs(scipy_ary.mean() - gridsample_ary.mean()) < 1e-6 assert np.abs(scipy_ary - gridsample_ary).max() < 1e-6 @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @skipIfRocm def test_affine_2d_rotate45(self): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for device in device_(): input_size = [1, 1, 3, 3] input_ary = np.array(np.zeros(input_size), dtype=np.float32) input_ary[0, 0, 0, :] = 0.5 input_ary[0, 0, 2, 2] = 1.0 output_size = [1, 1, 3, 3] angle_rad = 0.125 * math.pi * 2 transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size) ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border' ).to('cpu').numpy() assert np.abs(scipy_ary - gridsample_ary).max() < 1e-6 @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @skipIfRocm def test_affine_2d_rotateRandom(self): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for device, angle_rad, input_size2d, output_size2d in \ itertools.product(device_(), angle_rad_(), input_size2d_(), output_size2d_()): input_size = input_size2d input_ary = np.array(np.random.random(input_size), dtype=np.float32).round(3) output_size = output_size2d input_ary[0, 0, 0, 0] = 2 input_ary[0, 0, 0, -1] = 4 input_ary[0, 0, -1, 0] = 6 input_ary[0, 0, -1, -1] = 8 transform_tensor, transform_ary, grid_ary = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size) ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border' ).to('cpu').numpy() affine_tensor = affine_tensor.to('cpu') for r in range(affine_tensor.size(1)): for c in range(affine_tensor.size(2)): grid_out = np.dot(grid_ary, [r, c, 1]) assert np.allclose(affine_tensor[0, r, c], grid_out[:2], atol=1e-5) assert np.abs(scipy_ary - gridsample_ary).max() < 1e-5 @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @skipIfRocm def test_affine_3d_rotateRandom(self): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for device, angle_rad, axis_vector, input_size3d, output_size3d in \ itertools.product(device_(), angle_rad_(), axis_vector_(), input_size3d_(), output_size3d_()): input_size = input_size3d input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = output_size3d input_ary[0, 0, 0, 0, 0] = 2 input_ary[0, 0, 0, 0, -1] = 3 input_ary[0, 0, 0, -1, 0] = 4 input_ary[0, 0, 0, -1, -1] = 5 input_ary[0, 0, -1, 0, 0] = 6 input_ary[0, 0, -1, 0, -1] = 7 input_ary[0, 0, -1, -1, 0] = 8 input_ary[0, 0, -1, -1, -1] = 9 transform_tensor, transform_ary, grid_ary = \ _buildEquivalentAffineTransforms3d(device, input_size, output_size, angle_rad, axis_vector) scipy_ary = scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size) ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border' ).to('cpu').numpy() affine_tensor = affine_tensor.to('cpu') for i in range(affine_tensor.size(1)): for r in range(affine_tensor.size(2)): for c in range(affine_tensor.size(3)): grid_out = np.dot(grid_ary, [i, r, c, 1]) assert np.allclose(affine_tensor[0, i, r, c], grid_out[:3], atol=1e-5) assert np.abs(scipy_ary - gridsample_ary).max() < 1e-5 def test_upsamplingNearest1d(self): m = nn.Upsample(size=4, mode='nearest') in_t = torch.ones(1, 1, 2) out_t = m(Variable(in_t)) self.assertEqual(torch.ones(1, 1, 4), out_t.data) input = torch.randn(1, 1, 2, requires_grad=True) gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input]) def test_upsamplingLinear1d(self): for align_corners in [True, False]: kwargs = dict(mode='linear', align_corners=align_corners) # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: m = nn.Upsample(scale_factor=scale_factor, **kwargs) in_t = torch.ones(1, 1, 2) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) out_t = m(in_t) self.assertEqual(torch.ones(1, 1, out_size), out_t.data) input = torch.randn(1, 1, 2, requires_grad=True) gradcheck(lambda x: F.upsample(x, out_size, **kwargs), (input,)) def test_upsamplingLinear1d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='linear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9) in_t_9[:, :, :4].normal_() out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5]) self.assertEqual(out_t_9[:, :, :15], out_t_5) def test_upsamplingNearest2d(self): m = nn.Upsample(size=4, mode='nearest') in_t = torch.ones(1, 1, 2, 2) out_t = m(Variable(in_t)) self.assertEqual(torch.ones(1, 1, 4, 4), out_t.data) input = torch.randn(1, 1, 2, 2, requires_grad=True) self.assertEqual( F.upsample(input, 4, mode='nearest'), F.upsample(input, scale_factor=2, mode='nearest')) gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input]) gradgradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input]) def test_upsamplingBilinear2d(self): for align_corners in [True, False]: kwargs = dict(mode='bilinear', align_corners=align_corners) # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: m = nn.Upsample(scale_factor=scale_factor, **kwargs) in_t = torch.ones(1, 1, 2, 2) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) out_t = m(in_t) self.assertEqual(torch.ones(1, 1, out_size, out_size), out_t.data) input = torch.randn(1, 1, 2, 2, requires_grad=True) gradcheck(lambda x: F.upsample(x, out_size, **kwargs), [input]) def test_upsamplingBilinear2d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='bilinear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9, 9) in_t_9[:, :, :4, :4].normal_() out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5, :5]) self.assertEqual(out_t_9[:, :, :15, :15], out_t_5) def test_upsamplingNearest3d(self): m = nn.Upsample(size=4, mode='nearest') in_t = torch.ones(1, 1, 2, 2, 2) out_t = m(Variable(in_t)) self.assertEqual(torch.ones(1, 1, 4, 4, 4), out_t.data) input = torch.randn(1, 1, 2, 2, 2, requires_grad=True) gradcheck(lambda x: F.upsample(x, 4, mode='nearest'), [input]) def test_upsamplingTrilinear3d(self): for align_corners in [True, False]: kwargs = dict(mode='trilinear', align_corners=align_corners) # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: m = nn.Upsample(scale_factor=scale_factor, **kwargs) in_t = torch.ones(1, 1, 2, 2, 2) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) out_t = m(in_t) self.assertEqual(torch.ones(1, 1, out_size, out_size, out_size), out_t.data) input = torch.randn(1, 1, 2, 2, 2, requires_grad=True) self.assertEqual( F.upsample(input, (out_size, out_size, out_size), **kwargs), F.upsample(input, scale_factor=scale_factor, **kwargs)) gradcheck(lambda x: F.upsample(x, out_size, **kwargs), [input]) gradgradcheck(lambda x: F.upsample(x, out_size, **kwargs), [input]) def test_upsamplingTrilinear3d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='trilinear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9, 9, 9) in_t_9[:, :, :4, :4, :4].normal_() out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5, :5, :5]) self.assertEqual(out_t_9[:, :, :15, :15, :15], out_t_5) def test_interpolate(self): def _test_interpolate_helper(in_t, scale_factor, layer): out_size = int(math.floor(in_t.shape[-1] * scale_factor)) dim = len(in_t.shape) - 2 out_shape = [1, 1] + [out_size] * dim out_t = m(in_t) self.assertEqual(torch.ones(out_shape), out_t) self.assertEqual( F.interpolate(in_t, (out_size,) * dim, **kwargs), F.interpolate(in_t, scale_factor=scale_factor, **kwargs)) gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [in_t]) gradgradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [in_t]) def _make_input(dim): size = [1, 1] size += [2] * dim return torch.ones(size, requires_grad=True) device_list = ['cpu'] if TEST_CUDA: device_list.append('cuda') for device in device_list: for scale_factor in [0.5, 1.5, 2]: for mode in ['nearest', 'area']: kwargs = dict(mode=mode) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) for input in [_make_input(1), _make_input(2), _make_input(3)]: _test_interpolate_helper(input, scale_factor, m) for align_corners in [True, False]: kwargs = dict(mode='linear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(1), scale_factor, m) kwargs = dict(mode='bilinear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(2), scale_factor, m) kwargs = dict(mode='trilinear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(3), scale_factor, m) def test_linear_broadcasting(self): m = nn.Linear(5, 8) inp = torch.randn(2, 3, 5) expected = m(inp.view(6, 5)).view(2, 3, 8) self.assertEqual(expected, m(inp)) def test_bilinear(self): module = nn.Bilinear(10, 10, 8) input1 = torch.randn(4, 10, requires_grad=True) input2 = torch.randn(4, 10, requires_grad=True) grad_output = torch.randn(4, 8) res = module(input1, input2) expected = (torch.einsum("bi,kij,bj->bk", input1, module.weight, input2) + module.bias) self.assertEqual(res, expected) grads = torch.autograd.grad(res, [module.weight, module.bias, input1, input2], grad_output) grads_expected = torch.autograd.grad(expected, [module.weight, module.bias, input1, input2], grad_output) for g, ge in zip(grads, grads_expected): self.assertEqual(g, ge) def test_bilinear_no_bias(self): module = nn.Bilinear(10, 10, 8) module_no_bias = nn.Bilinear(10, 10, 8, False) module.bias.data.zero_() module.weight.data.copy_(module_no_bias.weight) input1 = torch.randn(4, 10, requires_grad=True) input2 = torch.randn(4, 10, requires_grad=True) grad_output = torch.randn(4, 8) def run(net): input1.grad = input2.grad = None output = net(input1, input2) output.backward(grad_output) return output.data, input1.grad.data, input2.grad.data out, g1, g2 = run(module) out_nb, g1_nb, g2_nb = run(module_no_bias) self.assertEqual(out, out_nb) self.assertEqual(g1, g1_nb) self.assertEqual(g2, g2_nb) _assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module_no_bias.weight, module_no_bias.bias), (input1, input2)) def test_bilinear_broadcasting(self): m = nn.Bilinear(5, 6, 8) input1 = torch.randn(2, 3, 5) input2 = torch.randn(2, 3, 6) expected = m(input1.view(6, 5), input2.view(6, 6)).view(2, 3, 8) self.assertEqual(expected, m(input1, input2)) def test_conv_tbc(self): inp = torch.randn(9, 4, 5, requires_grad=True) weight = torch.randn(3, 5, 6, requires_grad=True) bias = torch.randn(6, requires_grad=True) gradcheck(lambda i, w, b, pad: F.conv_tbc(i, w, b, pad), (inp, weight, bias, 3)) @staticmethod def _test_conv_noncontig_weights(self, device): for dim in (1, 2, 3): for grouped in (False, True): nc = 3 groups = 3 if grouped else 1 w = torch.randn([3] * dim, device=device) w = w.expand([nc, int(nc / groups)] + list(w.shape)) w = w.detach().requires_grad_() x = torch.randn([1, nc] + ([5] * dim), device=device, requires_grad=True) y = getattr(F, 'conv{}d'.format(dim))(x, w, groups=groups) y.sum().backward() y = getattr(F, 'conv_transpose{}d'.format(dim))(x, w, groups=groups) y.sum().backward() def test_conv_noncontig_weights(self): self._test_conv_noncontig_weights(self, torch.device('cpu')) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_conv_noncontig_weights_cuda(self): self._test_conv_noncontig_weights(self, torch.device('cuda')) def run_conv_double_back_test(self, kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, groups=1, use_cuda=False, use_bias=True, dtype=torch.double): if use_cuda: device = torch.device("cuda") else: device = torch.device("cpu") x = torch.randn(batch_size, chan_in, inp_size, inp_size, device=device, dtype=dtype, requires_grad=True) weight = torch.randn(chan_out, chan_in // groups, kern, kern, device=device, dtype=dtype, requires_grad=not no_weight) if use_bias: bias = torch.randn(chan_out, device=device, dtype=dtype, requires_grad=True) else: bias = None def func(*inputs): if use_bias: lx, lweight, lbias = inputs else: lx, lweight = inputs lbias = None # We disable cudnn during forward to avoid finite difference imprecision issues with cudnn.flags(enabled=False): out = F.conv2d(lx, lweight, lbias, stride, padding, dilation, groups) return out if use_bias: inputs = x, weight, bias else: inputs = x, weight dummy_out = func(*inputs) grad_y = torch.randn_like(dummy_out, device=device, dtype=dtype, requires_grad=True) return gradgradcheck(func, inputs, (grad_y,)) def test_conv_double_backward(self): batch_size = 2 for kern, inp_size, dilations in [(3, 6, [1, 2]), (3, 7, [1]), (4, 9, [1])]: for stride, padding, chan_in, chan_out, dilation in \ product([1, 2], [0, 1, 2], [2], [3], dilations): for no_weight in (True, False): result = self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation)) def test_conv_double_backward_no_bias(self): kern = 3 stride = 2 chan_in, chan_out = 2, 4 batch_size = 2 inp_size = 5 padding = 1 dilation = 1 no_weight = False use_bias = True result = self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, use_bias=use_bias) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation)) def test_conv_double_backward_groups(self): kern = 3 stride = 1 padding = 2 chan_in, chan_out = 2, 4 batch_size = 2 inp_size = 6 dilation = 1 no_weight = False groups = 2 result = self.run_conv_double_back_test(kern, stride, padding, chan_in * groups, chan_out * groups, batch_size, inp_size, dilation, no_weight, groups=groups) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation) + "\ngroups: " + str(groups)) def test_conv_double_backward_stride(self): batch_size = 2 # Cannot provide ggW when stride is > 1 for kern, inp_size, dilations in [(3, 5, [1, 2]), (3, 7, [1])]: for stride, padding, chan_in, chan_out, dilation in product([2], [0, 1], [1], [2], dilations): no_weight = False self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @skipIfRocm def test_cudnn_noncontiguous_weight(self): # Noncontiguous weights must be contiguous() before being # passed to cuDNN input = Variable(torch.cuda.DoubleTensor([1, 1, 1]).view(1, 1, 3)) weights1 = Variable(torch.cuda.DoubleTensor([1]).expand(1, 1, 2)) weights2 = Variable(torch.cuda.DoubleTensor([1]).expand(1, 1, 2)).contiguous() self.assertEqual(F.conv1d(input, weights1, bias=None, stride=2, dilation=2), F.conv1d(input, weights2, bias=None, stride=2, dilation=2)) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @repeat_test_for_types(DOUBLE_TENSORTYPES) def test_conv_double_backward_cuda(self, dtype=torch.double): # Double backward only runs with DoubleTensor due to precison reason batch_size = 1 for kern, inp_size, dilations in [(3, 5, [1, 2]), (4, 9, [1])]: for stride, padding, chan_in, chan_out, dilation in product([1], [2], [2], [3], dilations): no_weight = stride == 2 result = self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, use_cuda=True, dtype=dtype) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation)) def run_grad_conv_test(self, func_forward, func_backward, dim=1, gradient='input'): for kern, inp_size in [(3, 6), (3, 7), (4, 9)]: for batch, stride, padding, chan_in, chan_out, dilation in \ product([1, 2], [1, 2], [0, 1, 2], [2], [3], [1]): for has_bias in [True, False]: input_shape = [batch, chan_in] weight_shape = [chan_out, chan_in] for _ in range(dim): input_shape.append(inp_size) weight_shape.append(kern) input = torch.randn(input_shape, requires_grad=True) weight = torch.randn(weight_shape, requires_grad=True) if has_bias: bias = torch.randn([chan_out], requires_grad=True) output = func_forward(input, weight, stride=stride, padding=padding, dilation=dilation, bias=bias) gradient_o = torch.randn(output.shape) gradient_w = torch.autograd.grad(output, input if (gradient == 'input') else weight, gradient_o) self.assertAlmostEqual(gradient_w[0], func_backward( input_shape if (gradient == 'input') else input, weight_shape if (gradient == 'weight') else weight, gradient_o, stride=stride, padding=padding, dilation=dilation)) def test_grad_conv1d_input(self): self.run_grad_conv_test(F.conv1d, F.grad.conv1d_input, 1, 'input') def test_grad_conv1d_weight(self): self.run_grad_conv_test(F.conv1d, F.grad.conv1d_weight, 1, 'weight') def test_grad_conv2d_input(self): self.run_grad_conv_test(F.conv2d, F.grad.conv2d_input, 2, 'input') def test_grad_conv2d_weight(self): self.run_grad_conv_test(F.conv2d, F.grad.conv2d_weight, 2, 'weight') def test_grad_conv3d_input(self): self.run_grad_conv_test(F.conv3d, F.grad.conv3d_input, 3, 'input') def test_grad_conv3d_weight(self): self.run_grad_conv_test(F.conv3d, F.grad.conv3d_weight, 3, 'weight') def test_fold_invalid_arg(self): # input wrong dimension fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3)) with self.assertRaisesRegex(NotImplementedError, r"Only 3D input Tensors are supported"): fold(torch.randn(1, 5)) # input.size(1) not divisible by \prod(kernel_size) fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3)) with self.assertRaisesRegex(RuntimeError, r"be divisible by the product of kernel_size"): fold(torch.randn(1, 5, 9)) with self.assertRaisesRegex(RuntimeError, r"be divisible by the product of kernel_size"): fold(torch.randn(1, 19, 9)) # input.size(2) not matching the total number of sliding blocks with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3)) fold(torch.randn(1, 6, 10)) with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3), stride=(2, 2)) fold(torch.randn(1, 6, 5)) with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3), stride=(2, 2), dilation=(1, 2), padding=(2, 0)) fold(torch.randn(1, 6, 5)) # should be 4 * 1 = 4 sliding blocks def test_unfold_invalid_arg(self): # input wrong dimension unfold = nn.Unfold(kernel_size=(2, 3)) with self.assertRaisesRegex(NotImplementedError, r"Only 4D input Tensors are supported"): unfold(torch.randn(1, 5, 2)) # calculated output shape is too small with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(2, 3)) unfold(torch.randn(1, 2, 2, 2)) with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(5, 3), padding=(1, 1)) unfold(torch.randn(1, 2, 2, 3)) with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(1, 3), padding=(1, 1), dilation=(1, 2)) unfold(torch.randn(1, 2, 2, 2)) def test_softmin(self): x = torch.randn(2, 16) self.assertEqual(F.softmin(x, 1), F.softmax(-x, 1)) self.assertEqual(F.softmin(x, 0), F.softmax(-x, 0)) def test_adaptive_log_softmax(self): # args validation with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 15], div_value=2.) with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 10], div_value=2.) with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 25], div_value=2.) # input shapes with self.assertRaisesRegex(RuntimeError, r"Input and target should have the same size"): asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 5, 10]) asfm(x, y) # out-of-bound targets with self.assertRaisesRegex(RuntimeError, r"Target values should be in"): asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 20]) asfm(x, y) # cluster sizes asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 17]) self.assertEqual(asfm.head.weight.size(), (5 + 3, 16)) # 5 targets in head, 3 clusters, dimensionality 16 self.assertEqual(asfm.tail[0][1].weight.size(), (5, 8)) # 5 targets in this cluster, dimensionality 8 self.assertEqual(asfm.tail[1][1].weight.size(), (5, 4)) self.assertEqual(asfm.tail[2][1].weight.size(), (5, 2)) self.assertEqual(asfm(x, y).output.size(), (2, )) # log_probs actually returns log_proba asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 4, [2], div_value=2.) x = torch.randn(4, 8) logprob_out = asfm.log_prob(x) self.assertEqual(torch.exp(logprob_out).data.sum(1), torch.ones(4)) # forward returns the same thing as log_probs for v in [0, 1, 2, 3]: y = torch.full((4,), v, dtype=torch.long) out, loss = asfm(x, y) self.assertEqual(out, logprob_out.gather(1, y.unsqueeze(1)).squeeze()) self.assertEqual(loss, F.nll_loss(logprob_out, y)) # predict x = torch.randn(64, 8).abs_() # argmax in shortlist asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() asfm.head.weight.data[asfm.shortlist_size:, :].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) # argmax outside of shortlist asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() asfm.head.weight.data[:asfm.shortlist_size, :].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) # half of the argmax in shortlist, half in clusters asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() x[:32, :asfm.shortlist_size].zero_() x[32:, asfm.shortlist_size:].zero_() asfm.head.weight.data[:asfm.shortlist_size, asfm.shortlist_size:].zero_() asfm.head.weight.data[asfm.shortlist_size:, :asfm.shortlist_size].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) class TestNNInit(TestCase): def setUp(self): super(TestNNInit, self).setUp() random.seed(123) def _is_normal(self, tensor, mean, std): samples = tensor.view(-1).tolist() p_value = stats.kstest(samples, 'norm', args=(mean, std))[1] return p_value > 0.0001 def _is_uniform(self, tensor, a, b): samples = tensor.view(-1).tolist() p_value = stats.kstest(samples, 'uniform', args=(a, (b - a)))[1] return p_value > 0.0001 def _create_random_nd_tensor(self, dims, size_min, size_max): size = [random.randint(size_min, size_max) for _ in range(dims)] tensor = torch.zeros(size) return tensor def _random_float(self, a, b): return (b - a) * random.random() + a def test_calculate_gain_linear(self): for fn in ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose2d', 'conv_transpose2d', 'conv_transpose3d']: gain = init.calculate_gain(fn) self.assertEqual(gain, 1) def test_calculate_gain_nonlinear(self): for fn in ['sigmoid', 'tanh', 'relu', 'leaky_relu']: gain = init.calculate_gain(fn) if fn == 'sigmoid': self.assertEqual(gain, 1) elif fn == 'tanh': # 5 / 3 self.assertEqual(gain, 1.6666666666666667) elif fn == 'relu': # sqrt(2) self.assertEqual(gain, 1.4142135623730951) elif fn == 'leaky_relu': # sqrt(2 / 1 + slope^2)) self.assertEqual(gain, 1.4141428569978354) def test_calculate_gain_leaky_relu(self): for param in [None, 0, 0.01, 10]: gain = init.calculate_gain('leaky_relu', param) if param is None: # Default slope is 0.01 self.assertEqual(gain, 1.4141428569978354) elif param == 0: # No slope = same gain as normal ReLU self.assertEqual(gain, 1.4142135623730951) elif param == 0.01: self.assertEqual(gain, 1.4141428569978354) elif param == 10: self.assertEqual(gain, 0.14071950894605836) def test_calculate_gain_leaky_relu_only_accepts_numbers(self): for param in [True, [1], {'a': 'b'}]: with self.assertRaises(ValueError): init.calculate_gain('leaky_relu', param) def test_calculate_gain_only_accepts_valid_nonlinearities(self): for n in [2, 5, 25]: # Generate random strings of lengths that definitely aren't supported random_string = ''.join([random.choice(string.ascii_lowercase) for i in range(n)]) with self.assertRaises(ValueError): init.calculate_gain(random_string) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_uniform(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50) a = self._random_float(-3, 3) b = a + self._random_float(1, 5) init.uniform_(input_tensor, a=a, b=b) assert self._is_uniform(input_tensor, a, b) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_normal(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50) mean = self._random_float(-3, 3) std = self._random_float(1, 5) init.normal_(input_tensor, mean=mean, std=std) assert self._is_normal(input_tensor, mean, std) def test_constant(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5) val = self._random_float(1, 10) init.constant_(input_tensor, val) self.assertEqual(input_tensor, input_tensor.clone().fill_(val)) def test_ones_and_zeros(self): for init_fn_, val in zip([init.ones_, init.zeros_], [1, 0]): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5) init_fn_(input_tensor) self.assertEqual(input_tensor, input_tensor.clone().fill_(val)) def test_eye(self): input_tensor = self._create_random_nd_tensor(2, size_min=1, size_max=5) init.eye_(input_tensor) # Check every single element for i in range(input_tensor.size(0)): for j in range(input_tensor.size(1)): if i == j: assert input_tensor[i][j] == 1 else: assert input_tensor[i][j] == 0 def test_eye_only_works_on_2d_inputs(self): for dims in [1, 3]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.eye_(tensor) def test_max_unpool(self): # Test 1D output, indices = F.max_pool1d(torch.randn([1, 1, 4]), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool1d(output, indices, 2), F.max_unpool1d(output, indices, 2, stride=2)) # Test 2D output, indices = F.max_pool2d(torch.randn([1, 1, 4, 4]), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool2d(output, indices, 2), F.max_unpool2d(output, indices, 2, stride=2)) # Test 3D output, indices = F.max_pool3d(torch.randn([4, 4, 4, 4, 4]), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool3d(output, indices, 2), F.max_unpool3d(output, indices, 2, stride=2)) def test_dirac_properties(self): for dims in [3, 4, 5]: input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5) init.dirac_(input_tensor) c_out, c_in = input_tensor.size(0), input_tensor.size(1) min_d = min(c_out, c_in) # Check number of nonzeros is equivalent to smallest dim assert torch.nonzero(input_tensor).size(0) == min_d # Check sum of values (can have precision issues, hence assertEqual) is also equivalent self.assertEqual(input_tensor.sum(), min_d) def test_dirac_identity(self): batch, in_c, out_c, size, kernel_size = 8, 3, 4, 5, 3 # Test 1D input_var = torch.randn(batch, in_c, size) filter_var = torch.zeros(out_c, in_c, kernel_size) init.dirac_(filter_var) output_var = F.conv1d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, :in_c, :]) # Assert in_c outputs are preserved assert torch.nonzero(output_tensor[:, in_c:, :]).numel() == 0 # Assert extra outputs are 0 # Test 2D input_var = torch.randn(batch, in_c, size, size) filter_var = torch.zeros(out_c, in_c, kernel_size, kernel_size) init.dirac_(filter_var) output_var = F.conv2d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, :in_c, :, :]) assert torch.nonzero(output_tensor[:, in_c:, :, :]).numel() == 0 # Test 3D input_var = torch.randn(batch, in_c, size, size, size) filter_var = torch.zeros(out_c, in_c, kernel_size, kernel_size, kernel_size) init.dirac_(filter_var) output_var = F.conv3d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, :in_c, :, :]) assert torch.nonzero(output_tensor[:, in_c:, :, :, :]).numel() == 0 def test_dirac_only_works_on_3_4_5d_inputs(self): for dims in [1, 2, 6]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.dirac_(tensor) def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) with self.assertRaises(ValueError): init.xavier_uniform_(tensor) def test_xavier_normal_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) with self.assertRaises(ValueError): init.xavier_normal_(tensor) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_xavier_uniform(self): for use_gain in [True, False]: for dims in [2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) gain = 1 if use_gain: gain = self._random_float(0.1, 2) init.xavier_uniform_(input_tensor, gain=gain) else: init.xavier_uniform_(input_tensor) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out)) bounds = expected_std * math.sqrt(3) assert self._is_uniform(input_tensor, -bounds, bounds) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_xavier_normal(self): for use_gain in [True, False]: for dims in [2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) gain = 1 if use_gain: gain = self._random_float(0.1, 2) init.xavier_normal_(input_tensor, gain=gain) else: init.xavier_normal_(input_tensor) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out)) assert self._is_normal(input_tensor, 0, expected_std) def test_kaiming_uniform_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) init.kaiming_uniform_(tensor) def test_kaiming_normal_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) init.kaiming_normal_(tensor) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_kaiming_uniform(self): for use_a in [True, False]: for dims in [2, 4]: for mode in ['fan_in', 'fan_out']: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) if use_a: a = self._random_float(0.1, 2) init.kaiming_uniform_(input_tensor, a=a, mode=mode) else: a = 0 init.kaiming_uniform_(input_tensor, mode=mode) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() if mode == 'fan_in': n = fan_in else: n = fan_out expected_std = math.sqrt(2.0 / ((1 + a**2) * n)) bounds = expected_std * math.sqrt(3.0) assert self._is_uniform(input_tensor, -bounds, bounds) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_kaiming_normal(self): for use_a in [True, False]: for dims in [2, 4]: for mode in ['fan_in', 'fan_out']: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) if use_a: a = self._random_float(0.1, 2) init.kaiming_normal_(input_tensor, a=a, mode=mode) else: a = 0 init.kaiming_normal_(input_tensor, mode=mode) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() if mode == 'fan_in': n = fan_in else: n = fan_out expected_std = math.sqrt(2.0 / ((1 + a**2) * n)) assert self._is_normal(input_tensor, 0, expected_std) def test_sparse_only_works_on_2d_inputs(self): for dims in [1, 3]: with self.assertRaises(ValueError): sparsity = self._random_float(0.1, 0.9) tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.sparse_(tensor, sparsity) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_sparse_default_std(self): for use_random_std in [True, False]: input_tensor = self._create_random_nd_tensor(2, size_min=30, size_max=35) rows, cols = input_tensor.size(0), input_tensor.size(1) sparsity = self._random_float(0.1, 0.2) std = 0.01 # default std if use_random_std: std = self._random_float(0.01, 0.2) init.sparse_(input_tensor, sparsity=sparsity, std=std) else: init.sparse_(input_tensor, sparsity=sparsity) for col_idx in range(input_tensor.size(1)): column = input_tensor[:, col_idx] assert column[column == 0].nelement() >= math.ceil(sparsity * rows) assert self._is_normal(input_tensor[input_tensor != 0], 0, std) @skipIfNoLapack def test_orthogonal(self): for use_gain in [True, False]: for tensor_size in [[3, 4], [4, 3], [20, 2, 3, 4], [2, 3, 4, 5]]: input_tensor = torch.zeros(tensor_size) gain = 1.0 if use_gain: gain = self._random_float(0.1, 2) init.orthogonal_(input_tensor, gain=gain) else: init.orthogonal_(input_tensor) rows, cols = tensor_size[0], reduce(mul, tensor_size[1:]) flattened_tensor = input_tensor.view(rows, cols) if rows > cols: self.assertEqual(torch.mm(flattened_tensor.t(), flattened_tensor), torch.eye(cols) * gain ** 2, prec=1e-6) else: self.assertEqual(torch.mm(flattened_tensor, flattened_tensor.t()), torch.eye(rows) * gain ** 2, prec=1e-6) def test_deprecation(self): x = torch.randn(3, 3) def fn(): init.normal(x) self.assertWarnsRegex(fn, 'deprecated', 'methods not suffixed with underscore should be deprecated') # Generates rand tensor with non-equal values. This ensures that duplicate # values won't be causing test failure for modules like MaxPooling. # size should be small, otherwise randperm fails / long overflows. def _rand_tensor_non_equal(*size): total = reduce(mul, size, 1) return torch.randperm(total).view(*size).double() def add_test(test, decorator=None): def add(test_name, fn): if hasattr(TestNN, test_name): raise RuntimeError('Found two tests with the same name: ' + test_name) if decorator is not None: fn = decorator(fn) setattr(TestNN, test_name, fn) test_name = test.get_name() add(test_name, lambda self, test=test: test(self)) cuda_test_name = test_name + '_cuda' # With dtype enable, it's good enough to test against three floating types kwargs = {} if 'extra_args' in get_function_arglist(test.test_cuda): kwargs['extra_args'] = test.extra_args if 'dtype' in get_function_arglist(test.test_cuda): add(cuda_test_name + '_float', lambda self, test=test, kwargs=kwargs: test.test_cuda(self, dtype=torch.float, **kwargs)) add(cuda_test_name + '_double', lambda self, test=test, kwargs=kwargs: test.test_cuda(self, dtype=torch.double, **kwargs)) def test_half(self, test=test, kwargs=kwargs): test.test_cuda(self, dtype=torch.half, **kwargs) if getattr(test, 'check_half', True): add(cuda_test_name + '_half', test_half) else: add(cuda_test_name, lambda self, test=test, kwargs=kwargs: test.test_cuda(self, **kwargs)) def wrap_functional(fn, **kwargs): class FunctionalModule(nn.Module): def forward(self, *args): return fn(*args, **kwargs) return FunctionalModule new_criterion_tests = [ dict( module_name='BCEWithLogitsLoss', input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2), target_fn=lambda: torch.randn(15, 10).gt(0).double(), ), dict( module_name='BCEWithLogitsLoss', constructor_args=(torch.rand(10),), input_fn=lambda: torch.rand(15, 10).clamp_(1e-2, 1 - 1e-2), target_fn=lambda: torch.randn(15, 10).gt(0).double(), desc='weights', ), dict( module_name='BCEWithLogitsLoss', constructor_args=(torch.rand(()),), input_fn=lambda: torch.rand(()).clamp_(1e-2, 1 - 1e-2), target_fn=lambda: torch.randn(()).gt(0).double(), desc='scalar_weights' ), dict( module_name='NLLLoss', input_size=(2, 3, 5, 5), target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(), reference_fn=lambda i, t, m: loss_reference_fns['NLLLossNd'](i, t, reduction=get_reduction(m)), check_sum_reduction=True, desc='2d', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='NLLLoss', constructor_args_fn=lambda: (torch.rand(3),), input_size=(2, 3, 5, 5), target=torch.rand(2, 5, 5).mul(3).floor().long(), reference_fn=lambda i, t, m: loss_reference_fns['NLLLossNd'](i, t, weight=get_weight(m)), desc='2d_weights', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='NLLLoss', constructor_args=(None, None, 1), input_size=(2, 3, 5, 5), target_fn=lambda: torch.rand(2, 5, 5).mul(3).floor().long(), reference_fn=lambda i, t, m: loss_reference_fns['NLLLossNd'](i, t, ignore_index=1), desc='2d_ignore_index', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='NLLLoss', input_size=(2, 3, 5, 5, 2, 2), target_fn=lambda: torch.rand(2, 5, 5, 2, 2).mul(3).floor().long(), reference_fn=lambda i, t, m: loss_reference_fns['NLLLossNd'](i, t, reduction=get_reduction(m)), check_sum_reduction=True, desc='higher_dim', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='NLLLoss', input_size=(2, 3, 5), target_fn=lambda: torch.rand(2, 5).mul(3).floor().long(), reference_fn=lambda i, t, m: loss_reference_fns['NLLLossNd'](i, t, reduction=get_reduction(m)), check_sum_reduction=True, desc='dim_is_3', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='PoissonNLLLoss', input_size=(2, 3, 4, 5), target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(), desc='no_full_loss', # without sterling approx ), dict( module_name='PoissonNLLLoss', constructor_args=(False,), input_fn=lambda: torch.randn(2, 3, 4, 5).abs_().add_(0.001), target_fn=lambda: torch.randn(2, 3, 4, 5).floor_().abs_(), desc='full_loss', # with sterling approx ), dict( module_name='L1Loss', input_size=(), target_size=(), reference_fn=lambda i, t, _: 1. / i.numel() * (i - t).abs().sum(), desc='scalar', ), dict( module_name='KLDivLoss', input_fn=lambda: torch.rand(()).log(), target_fn=lambda: torch.rand(()), reference_fn=lambda i, t, m: kldivloss_reference(i, t, get_reduction(m)), check_sum_reduction=True, desc='scalar', ), dict( module_name='MSELoss', input_size=(), target_size=(), reference_fn=lambda i, t, m: ((i - t).abs().pow(2).sum() / (i.numel() if get_reduction(m) == 'mean' else 1)), check_sum_reduction=True, desc='scalar' ), dict( module_name='MSELoss', input_fn=lambda: torch.ones(5, 68, 64, 64, dtype=torch.float) / 10, target_fn=lambda: torch.zeros(5, 68, 64, 64, dtype=torch.float), reference_fn=lambda i, t, m: ((i - t).abs().pow(2).sum() / (i.numel() if get_reduction(m) == 'mean' else 1)), check_forward_only=True, desc='prec', ), dict( module_name='BCELoss', constructor_args_fn=lambda: (torch.rand(()),), input_fn=lambda: torch.rand(()).clamp_(1e-2, 1 - 1e-2), target_fn=lambda: torch.rand(()).gt(0).double(), reference_fn=lambda i, t, m: -((t * i.log() + (1 - t) * (1 - i).log()) * get_weight(m)).sum() / (i.numel() if get_reduction(m) == 'mean' else 1), desc='scalar_weights', check_gradgrad=False, ), dict( module_name='HingeEmbeddingLoss', constructor_args=(0.5,), input_size=(), target_fn=lambda: torch.randn(()).gt(0).double().mul_(2).sub(1), desc='scalar_margin', check_sum_reduction=True, ), dict( module_name='SmoothL1Loss', input_size=(), target_size=(), check_sum_reduction=True, reference_fn=lambda i, t, m: smoothl1loss_reference(i, t, reduction=get_reduction(m)), desc='scalar', ), dict( module_name='MultiLabelSoftMarginLoss', constructor_args=(torch.rand(10),), input_fn=lambda: torch.randn(5, 10), target_fn=lambda: torch.rand(5, 10).mul(2).floor(), reference_fn=lambda i, t, m: -((t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log()) * get_weight(m)).sum() / (i.numel() if get_reduction(m) == 'mean' else i.size(1) if get_reduction(m) == 'sum' else 1), desc='weights', check_sum_reduction=True, check_gradgrad=False, ), dict( module_name='CTCLoss', constructor_args=(14,), # blank=14 extra_args=([50, 50, 50], [30, 25, 20]), # input_lengths, target_lengths input_fn=lambda: torch.randn(50, 3, 15).log_softmax(2), target_fn=lambda: torch.randint(0, 14, (3, 30), dtype=torch.long), reference_fn=lambda i, t, il, tl, m: ctcloss_reference(i, t, il, tl, blank=14, reduction=get_reduction(m)), check_sum_reduction=True, check_gradgrad=False, check_half=False, ), dict( module_name='CTCLoss', desc='1d_target', constructor_args=(14,), # blank=14 extra_args=([50, 50, 50], [30, 25, 20]), # input_lengths, target_lengths input_fn=lambda: torch.randn(50, 3, 15).log_softmax(2), target_fn=lambda: torch.randint(0, 14, (3, 30), dtype=torch.long), reference_fn=lambda i, t, il, tl, m: ctcloss_reference(i, t, il, tl, blank=14, reduction=get_reduction(m)), check_sum_reduction=True, check_gradgrad=False, check_half=False, ), dict( module_name='CTCLoss', desc='2d_int_target', constructor_args=(0,), # blank=0 extra_args=([50, 50, 50], [30, 25, 20]), # input_lengths, target_lengths input_fn=lambda: torch.randn(50, 3, 15).log_softmax(2), target_fn=lambda: torch.randint(1, 15, (3, 30), dtype=torch.int), reference_fn=lambda i, t, il, tl, m: ctcloss_reference(i, t, il, tl, blank=0, reduction=get_reduction(m)), check_sum_reduction=True, check_gradgrad=False, check_half=False, convert_target=False, ), dict( module_name='CTCLoss', desc='2d_lengths_tensors', constructor_args=(0,), # blank=0 extra_args=(torch.tensor([50, 50, 50]), torch.tensor([30, 25, 20])), # input_lengths, target_lengths input_fn=lambda: torch.randn(50, 3, 15).log_softmax(2), target_fn=lambda: torch.randint(1, 15, (3, 30), dtype=torch.int), reference_fn=lambda i, t, il, tl, m: ctcloss_reference(i, t, il, tl, blank=0, reduction=get_reduction(m)), check_sum_reduction=True, check_gradgrad=False, check_half=False, convert_target=False, ), ] def poissonnllloss_no_reduce_test(): t = torch.randn(10, 10) return dict( fullname='PoissonNLLLLoss_no_reduce', constructor=wrap_functional( lambda i: F.poisson_nll_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(10, 10), pickle=False) def bceloss_no_reduce_test(): t = Variable(torch.randn(15, 10).gt(0).double()) return dict( fullname='BCELoss_no_reduce', constructor=wrap_functional( lambda i: F.binary_cross_entropy(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()), check_gradgrad=False, pickle=False) def bceloss_no_reduce_scalar_test(): t = torch.randn(()).gt(0).double() return dict( fullname='BCELoss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.binary_cross_entropy(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()), check_gradgrad=False, pickle=False) def bceloss_weights_no_reduce_test(): t = Variable(torch.randn(15, 10).gt(0).double()) weights = torch.rand(10) return dict( fullname='BCELoss_weights_no_reduce', constructor=wrap_functional( lambda i: F.binary_cross_entropy(i, t.type_as(i), weight=weights.type_as(i), reduction='none')), input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights, check_gradgrad=False, pickle=False ) def bceloss_weights_no_reduce_scalar_test(): t = torch.randn(()).double() weights = torch.rand(()) return dict( fullname='BCELoss_weights_no_reduce_scalar', constructor=wrap_functional( lambda i: F.binary_cross_entropy(i, t.type_as(i), weight=weights.type_as(i), reduction='none')), input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights, check_gradgrad=False, pickle=False ) def bce_with_logistic_legacy_enum_test(): t = Variable(torch.randn(15, 10).gt(0).double()) sigmoid = nn.Sigmoid() return dict( fullname='BCEWithLogitsLoss_legacy_enum', constructor=wrap_functional( lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduce=False)), input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()), check_gradgrad=False, pickle=False, ) def bce_with_logistic_no_reduce_test(): t = Variable(torch.randn(15, 10).gt(0).double()) sigmoid = nn.Sigmoid() return dict( fullname='BCEWithLogitsLoss_no_reduce', constructor=wrap_functional( lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()), check_gradgrad=False, pickle=False, ) def bce_with_logistic_no_reduce_scalar_test(): t = torch.randn(()).gt(0).double() sigmoid = nn.Sigmoid() return dict( fullname='BCEWithLogitsLoss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.binary_cross_entropy_with_logits(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(()).clamp_(2.8e-2, 1 - 2.8e-2), reference_fn=lambda i, m: -(t * sigmoid(i).log() + (1 - t) * (1 - sigmoid(i)).log()), check_gradgrad=False, pickle=False, decorator=skipIfRocm ) def kldivloss_with_target_no_reduce_test(): i = torch.rand(10, 10).log() return dict( fullname='KLDivLoss_with_target_no_reduce', constructor=wrap_functional( lambda t: F.kl_div(i.type_as(t), t, reduction='none')), input_fn=lambda: torch.rand(10, 10), reference_fn=lambda t, _: loss_reference_fns['KLDivLoss'](i.type_as(t), t, reduction='none'), pickle=False) def kldivloss_no_reduce_test(): t = torch.randn(10, 10) return dict( fullname='KLDivLoss_no_reduce', constructor=wrap_functional( lambda i: F.kl_div(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(10, 10).log(), reference_fn=lambda i, _: loss_reference_fns['KLDivLoss'](i, t.type_as(i), reduction='none'), pickle=False, ) def kldivloss_no_reduce_scalar_test(): t = torch.randn(()) return dict( fullname='KLDivLoss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.kl_div(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.rand(()).log(), reference_fn=lambda i, _: loss_reference_fns['KLDivLoss'](i, t.type_as(i), reduction='none'), pickle=False) def l1loss_no_reduce_test(): t = torch.randn(2, 3, 4) return dict( fullname='L1Loss_no_reduce', constructor=wrap_functional( lambda i: F.l1_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(2, 3, 4), reference_fn=lambda i, m: (i - t.type_as(i)).abs(), pickle=False) def l1loss_no_reduce_scalar_test(): t = torch.randn(()) return dict( fullname='L1Loss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.l1_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(()), reference_fn=lambda i, m: (i - t.type_as(i)).abs(), pickle=False) def mseloss_no_reduce_test(): input_size = (2, 3, 4, 5) target = torch.randn(*input_size) return dict( fullname='MSELoss_no_reduce', constructor=wrap_functional( lambda i: F.mse_loss(i, target.type_as(i), reduction='none')), input_size=input_size, reference_fn=lambda i, m: (i - target).pow(2), pickle=False) def mseloss_no_reduce_scalar_test(): input_size = () target = torch.randn(input_size) return dict( fullname='MSELoss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.mse_loss(i, target.type_as(i), reduction='none')), input_size=input_size, reference_fn=lambda i, m: (i - target).pow(2), pickle=False) def nllloss_no_reduce_test(): t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long()) kwargs = {'reduction': 'none'} return dict( fullname='NLLLoss_no_reduce', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(15, 10).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs), pickle=False) def nllloss_no_reduce_ignore_index_test(): t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long()) kwargs = {'ignore_index': 2, 'reduction': 'none'} return dict( fullname='NLLLoss_no_reduce_ignore_index', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(15, 10).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs), pickle=False) def nllloss_no_reduce_weights_test(): t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long()) weight = torch.rand(10) def kwargs(i): return {'weight': weight.type_as(i), 'reduction': 'none'} return dict( fullname='NLLLoss_no_reduce_weights', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))), input_fn=lambda: torch.rand(15, 10).add(1e-2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)), pickle=False) def nllloss_no_reduce_weights_ignore_index_test(): t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long()) weight = torch.rand(10) def kwargs(i): return {'weight': weight.type_as(i), 'reduction': 'none', 'ignore_index': 2} return dict( fullname='NLLLoss_no_reduce_weights_ignore_index', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i.data))), input_fn=lambda: torch.rand(15, 10).add(1e-2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)), pickle=False) def nllloss_no_reduce_weights_ignore_index_neg_test(): t = Variable(torch.Tensor(15).uniform_().mul(10).floor().long()) weight = torch.rand(10) def kwargs(i): return {'weight': weight.type_as(i), 'reduction': 'none', 'ignore_index': -1} return dict( fullname='NLLLoss_no_reduce_weights_ignore_index_neg', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))), input=torch.rand(15, 10).add(1e-2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLoss'](i, t.type_as(i).long(), **kwargs(i)), pickle=False) def nllloss2d_no_reduce_test(): t = Variable(torch.rand(2, 5, 5).mul(3).floor().long()) kwargs = {'reduction': 'none'} return dict( fullname='NLLLoss2d_no_reduce', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(2, 3, 5, 5).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs), pickle=False) def nllloss2d_no_reduce_ignore_index_test(): t = Variable(torch.rand(2, 5, 5).mul(3).floor().long()) kwargs = {'ignore_index': 1, 'reduction': 'none'} return dict( fullname='NLLLoss2d_no_reduce_ignore_index', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(2, 3, 5, 5).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs), pickle=False) def nllloss2d_no_reduce_weights_test(): t = Variable(torch.rand(2, 5, 5).mul(3).floor().long()) weight = torch.rand(3) def kwargs(i): return {'weight': weight.type_as(i), 'reduction': 'none'} return dict( fullname='NLLLoss2d_no_reduce_weights', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))), input_fn=lambda: torch.rand(2, 3, 5, 5).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)), pickle=False) def nlllossNd_no_reduce_test(): t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long()) kwargs = {'reduction': 'none'} return dict( fullname='NLLLossNd_no_reduce', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs), pickle=False) def nlllossNd_no_reduce_ignore_index_test(): t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long()) kwargs = {'ignore_index': 1, 'reduction': 'none'} return dict( fullname='NLLLossNd_no_reduce_ignore_index', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs)), input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs), pickle=False) def nlllossNd_no_reduce_weights_test(): t = Variable(torch.rand(2, 5, 5, 2, 2).mul(3).floor().long()) weight = torch.rand(3) def kwargs(i): return {'weight': weight.type_as(i), 'reduction': 'none'} return dict( fullname='NLLLossNd_no_reduce_weights', constructor=wrap_functional( lambda i: F.nll_loss(i, t.type_as(i).long(), **kwargs(i))), input_fn=lambda: torch.rand(2, 3, 5, 5, 2, 2).log(), reference_fn=lambda i, _: loss_reference_fns['NLLLossNd'](i, t.type_as(i).long(), **kwargs(i)), pickle=False) def smoothl1loss_no_reduce_test(): t = torch.randn(2, 3, 4) return dict( fullname='SmoothL1Loss_no_reduce', constructor=wrap_functional( lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(2, 3, 4), reference_fn=lambda i, _: loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none'), pickle=False) def smoothl1loss_no_reduce_scalar_test(): t = torch.randn(()) return dict( fullname='SmoothL1Loss_no_reduce_scalar', constructor=wrap_functional( lambda i: F.smooth_l1_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(()), reference_fn=lambda i, _: loss_reference_fns['SmoothL1Loss'](i, t.type_as(i), reduction='none'), pickle=False) def multilabelmarginloss_1d_no_reduce_test(): t = Variable(torch.rand(10).mul(10).floor().long()) return dict( fullname='MultiLabelMarginLoss_1d_no_reduce', constructor=wrap_functional( lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')), input_fn=lambda: torch.randn(10), reference_fn=lambda i, _: loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multilabelmarginloss_index_neg_test(): t = Variable(torch.clamp(torch.rand(5, 10).add(-.5).mul(20).floor().long(), min=-1)) return dict( fullname='MultiLabelMarginLoss_index_neg', constructor=wrap_functional( lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, _: loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multilabelmarginloss_no_reduce_test(): t = Variable(torch.rand(5, 10).mul(10).floor().long()) return dict( fullname='MultiLabelMarginLoss_no_reduce', constructor=wrap_functional( lambda i: F.multilabel_margin_loss(i, t.type_as(i).long(), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, _: loss_reference_fns['MultiLabelMarginLoss'](i, t.data.type_as(i).long(), reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def hingeembeddingloss_no_reduce_test(): t = Variable(torch.randn(10).gt(0).double().mul_(2).sub(1)) return dict( fullname='HingeEmbeddingLoss_no_reduce', constructor=wrap_functional( lambda i: F.hinge_embedding_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(10), reference_fn=lambda i, _: loss_reference_fns['HingeEmbeddingLoss'](i, t.type_as(i), reduction='none'), check_sum_reduction=True, pickle=False) def hingeembeddingloss_margin_no_reduce_test(): t = Variable(torch.randn(10).gt(0).double().mul_(2).sub(1)) return dict( fullname='HingeEmbeddingLoss_margin_no_reduce', constructor=wrap_functional( lambda i: F.hinge_embedding_loss(i, t.type_as(i), margin=0.5, reduction='none')), input_fn=lambda: torch.randn(10), reference_fn=lambda i, _: loss_reference_fns['HingeEmbeddingLoss'](i, t.type_as(i), margin=0.5, reduction='none'), check_sum_reduction=True, pickle=False) def softmarginloss_no_reduce_test(): t = torch.randn(5, 5) return dict( fullname='SoftMarginLoss_no_reduce', constructor=wrap_functional( lambda i: F.soft_margin_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(5, 5), reference_fn=lambda i, _: loss_reference_fns['SoftMarginLoss'](i, t.type_as(i), reduction='none'), pickle=False) def multilabelsoftmarginloss_no_reduce_test(): t = torch.rand(5, 10).mul(2).floor() return dict( fullname='MultiLabelSoftMarginLoss_no_reduce', constructor=wrap_functional( lambda i: F.multilabel_soft_margin_loss(i, t.type_as(i), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, m: (-(t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log())).sum(dim=1) / i.size(1), check_gradgrad=False, pickle=False) def multilabelsoftmarginloss_weights_no_reduce_test(): t = torch.rand(5, 10).mul(2).floor() weights = torch.rand(10) return dict( fullname='MultiLabelSoftMarginLoss_weights_no_reduce', constructor=wrap_functional( lambda i: F.multilabel_soft_margin_loss(i, t.type_as(i), weight=weights.type_as(i), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, m: (-(t * i.sigmoid().log() + (1 - t) * (-i).sigmoid().log()) * weights).sum(dim=1) / i.size(1), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multimarginloss_no_reduce_test(): t = torch.rand(5).mul(8).floor().long() return dict( fullname='MultiMarginLoss_no_reduce', constructor=wrap_functional( lambda i: F.multi_margin_loss(i, t.type_as(i).long(), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, _: loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multimarginloss_1d_no_reduce_test(): t = torch.rand(1).mul(8).floor().long() return dict( fullname='MultiMarginLoss_1d_no_reduce', constructor=wrap_functional( lambda i: F.multi_margin_loss(i, t.type_as(i).long(), reduction='none')), input_fn=lambda: torch.randn(10), reference_fn=lambda i, _: loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multimarginloss_p_no_reduce_test(): t = torch.rand(5).mul(8).floor().long() return dict( fullname='MultiMarginLoss_p_no_reduce', constructor=wrap_functional( lambda i: F.multi_margin_loss(i, t.type_as(i).long(), p=2, reduction='none')), input_fn=lambda: torch.randn(5, 10).clamp_(1e-2, 1 - 1e-2), reference_fn=lambda i, _: loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), p=2, reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multimarginloss_margin_no_reduce_test(): t = torch.rand(5).mul(8).floor().long() return dict( fullname='MultiMarginLoss_margin_no_reduce', constructor=wrap_functional( lambda i: F.multi_margin_loss(i, t.type_as(i).long(), margin=0.5, reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, _: loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), margin=0.5, reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) def multimarginloss_weights_no_reduce_test(): t = torch.rand(5).mul(8).floor().long() weights = torch.rand(10) return dict( fullname='MultiMarginLoss_weights_no_reduce', constructor=wrap_functional( lambda i: F.multi_margin_loss(i, t.type_as(i).long(), weight=weights.type_as(i), reduction='none')), input_fn=lambda: torch.randn(5, 10), reference_fn=lambda i, _: loss_reference_fns['MultiMarginLoss'](i, t.data.type_as(i).long(), weight=weights, reduction='none'), check_sum_reduction=True, check_gradgrad=False, pickle=False) new_module_tests = [ poissonnllloss_no_reduce_test(), bceloss_no_reduce_test(), bceloss_weights_no_reduce_test(), bce_with_logistic_legacy_enum_test(), bce_with_logistic_no_reduce_test(), bceloss_no_reduce_scalar_test(), bceloss_weights_no_reduce_scalar_test(), bce_with_logistic_no_reduce_scalar_test(), kldivloss_with_target_no_reduce_test(), kldivloss_no_reduce_test(), kldivloss_no_reduce_scalar_test(), l1loss_no_reduce_test(), l1loss_no_reduce_scalar_test(), mseloss_no_reduce_test(), mseloss_no_reduce_scalar_test(), nllloss_no_reduce_test(), nllloss_no_reduce_ignore_index_test(), nllloss_no_reduce_weights_test(), nllloss_no_reduce_weights_ignore_index_test(), nllloss_no_reduce_weights_ignore_index_neg_test(), nllloss2d_no_reduce_test(), nllloss2d_no_reduce_weights_test(), nllloss2d_no_reduce_ignore_index_test(), nlllossNd_no_reduce_test(), nlllossNd_no_reduce_weights_test(), nlllossNd_no_reduce_ignore_index_test(), smoothl1loss_no_reduce_test(), smoothl1loss_no_reduce_scalar_test(), multilabelmarginloss_1d_no_reduce_test(), multilabelmarginloss_index_neg_test(), multilabelmarginloss_no_reduce_test(), hingeembeddingloss_no_reduce_test(), hingeembeddingloss_margin_no_reduce_test(), softmarginloss_no_reduce_test(), multilabelsoftmarginloss_no_reduce_test(), multilabelsoftmarginloss_weights_no_reduce_test(), multimarginloss_no_reduce_test(), multimarginloss_1d_no_reduce_test(), multimarginloss_p_no_reduce_test(), multimarginloss_margin_no_reduce_test(), multimarginloss_weights_no_reduce_test(), dict( module_name='BatchNorm1d', constructor_args=(10,), input_size=(4, 10), cudnn=True, check_eval=True, desc='affine', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm1d', constructor_args=(5,), input_size=(4, 5, 3), cudnn=True, check_eval=True, desc='3d_input', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm1d', constructor_args=(10, 1e-3, None), input_size=(4, 10), cudnn=True, check_eval=True, desc='affine_simple_average', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm1d', constructor_args=(10, 1e-3, 0.3, False), input_size=(4, 10), cudnn=True, check_eval=True, desc='not_affine', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm1d', constructor_args=(10, 1e-3, 0.3, True, False), input_size=(4, 10), cudnn=True, check_eval=True, desc='not_tracking_stats', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm1d', constructor_args=(5, 1e-3, 0.3, False), input_size=(4, 5, 3), cudnn=True, check_eval=True, desc='3d_input_not_affine', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm2d', constructor_args=(3,), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm2d', constructor_args=(3, 1e-3, None), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, desc='2d_simple_average', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm2d', constructor_args=(3, 1e-3, 0.8), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, desc='momentum', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm2d', constructor_args=(3, 1e-3, 0.8, False), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, desc='not_affine', skip_double=TEST_WITH_ROCM, ), dict( module_name='BatchNorm2d', constructor_args=(3, 1e-3, 0.8, True, False), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, desc='not_tracking_stats', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='BatchNorm3d', constructor_args=(3,), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, decorator=skipIfRocm, ), dict( module_name='BatchNorm3d', constructor_args=(3, 1e-3, None), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, desc='3d_simple_average', decorator=skipIfRocm, ), dict( module_name='BatchNorm3d', constructor_args=(3, 1e-3, 0.7), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, desc='momentum', decorator=skipIfRocm, ), dict( module_name='BatchNorm3d', constructor_args=(3, 1e-3, 0.7, False), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, desc='not_affine', ), dict( module_name='BatchNorm3d', constructor_args=(3, 1e-3, 0.7, True, False), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, desc='not_tracking_stats', decorator=skipIfRocm, ), dict( module_name='InstanceNorm1d', constructor_args=(3, 1e-3, 0.3), input_size=(4, 3, 15), cudnn=True, check_eval=True, test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='InstanceNorm1d', constructor_args=(3, 1e-3, 0.3, False, True), input_size=(4, 3, 15), cudnn=True, check_eval=True, desc='tracking_stats', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='InstanceNorm2d', constructor_args=(3, 1e-3, 0.3), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, ), dict( module_name='InstanceNorm2d', constructor_args=(3, 1e-3, 0.3, False, True), input_size=(2, 3, 6, 6), cudnn=True, check_eval=True, desc='tracking_stats', ), dict( module_name='InstanceNorm3d', constructor_args=(3, 1e-3, 0.3), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, ), dict( module_name='InstanceNorm3d', constructor_args=(3, 1e-3, 0.3, False, True), input_size=(2, 3, 4, 4, 4), cudnn=True, check_eval=True, desc='tracking_stats', ), dict( module_name='LayerNorm', constructor_args=([5], 1e-3), input_size=(4, 5, 5), cudnn=True, check_eval=True, desc='1d_elementwise_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='LayerNorm', constructor_args=([5], 1e-3, False), input_size=(4, 5, 5), cudnn=True, check_eval=True, desc='1d_no_elementwise_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='LayerNorm', constructor_args=([2, 2, 5], 1e-3), input_size=(4, 2, 2, 5), cudnn=True, check_eval=True, desc='3d_elementwise_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='LayerNorm', constructor_args=([2, 2, 5], 1e-3, False), input_size=(4, 2, 2, 5), cudnn=True, check_eval=True, desc='3d_no_elementwise_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(3, 6, 1e-3), input_size=(4, 6, 5), cudnn=True, check_eval=True, desc='1d_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(5, 5, 1e-3, False), input_size=(4, 5, 5), cudnn=True, check_eval=True, desc='1d_no_affine_IN', # this setting is equivalent with InstanceNormi test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(1, 5, 1e-3, False), input_size=(4, 5, 5), cudnn=True, check_eval=True, desc='1d_no_affine_LN', # this setting is equivalent with LayerNorm test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(3, 6, 1e-3), input_size=(4, 6, 2, 3), cudnn=True, check_eval=True, desc='2d_affine', test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(3, 3, 1e-3, False), input_size=(4, 3, 2, 3), cudnn=True, check_eval=True, desc='2d_no_affine_IN', # this setting is equivalent with InstanceNorm test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='GroupNorm', constructor_args=(1, 3, 1e-3, False), input_size=(4, 3, 2, 3), cudnn=True, check_eval=True, desc='2d_no_affine_LN', # this setting is equivalent with LayerNorm test_cuda=(not TEST_WITH_ROCM) ), dict( module_name='Conv1d', constructor_args=(4, 5, 3), input_size=(2, 4, 10), cudnn=True, skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv1d', constructor_args=(4, 5, 3, 2), input_size=(2, 4, 10), cudnn=True, desc='stride', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv1d', constructor_args=(4, 5, 3, 1, 1), input_size=(2, 4, 10), cudnn=True, desc='pad1', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv1d', constructor_args=(4, 5, 5, 1, 2), input_size=(2, 4, 10), cudnn=True, desc='pad2', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv1d', constructor_args=(4, 4, 3, 1, 1), input_size=(1, 4, 1), cudnn=True, desc='pad1size1', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv1d', constructor_args=(4, 4, 5, 1, 2), input_size=(1, 4, 1), cudnn=True, desc='pad2size1', skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv1d_dilated', constructor=lambda: nn.Conv1d(4, 5, kernel_size=3, dilation=2), input_size=(2, 4, 10), skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv1d_groups', constructor=lambda: nn.Conv1d(4, 6, kernel_size=3, groups=2), input_size=(2, 4, 6), cudnn=True, skip_double=TEST_WITH_ROCM, test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='ConvTranspose1d', constructor=lambda: nn.ConvTranspose1d(3, 4, kernel_size=3, stride=(3,), padding=1, output_padding=(1,)), cudnn=True, input_size=(1, 3, 7), test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose1d', constructor_args=(3, 4, 3, 2, 1, 1, 1, False), input_size=(1, 3, 6), cudnn=True, desc='no_bias', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose1d', constructor_args=(3, 4, 3, 2, 1, 1, 1, True, 2), input_size=(1, 3, 6), cudnn=True, desc='dilated', test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='ConvTranspose1d_groups', constructor=lambda: nn.ConvTranspose1d(4, 6, 3, stride=(3,), padding=1, output_padding=(1,), groups=2), cudnn=True, input_size=(2, 4, 7), test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='MaxPool1d', constructor_args=(4,), input_size=(2, 10, 4), ), dict( module_name='MaxPool1d', constructor_args=(4, 4), input_size=(2, 10, 4), desc='stride', ), dict( module_name='Conv2d', constructor_args=(3, 4, (3, 2)), input_size=(2, 3, 7, 5), cudnn=True, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv2d', constructor_args=(3, 4, (3, 3), (2, 2)), input_size=(2, 3, 6, 6), cudnn=True, desc='strided', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv2d', constructor_args=(3, 4, (3, 3), (2, 2), (1, 1)), input_size=(2, 3, 6, 6), cudnn=True, desc='padding', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv2d', constructor_args=(3, 2, (3, 3), (2, 2), (1, 1), (2, 2)), input_size=(2, 3, 8, 8), cudnn=True, desc='dilated', decorator=skipIfRocm, ), dict( module_name='Conv2d', constructor_args=(3, 4, (3, 2), 1, 0, 1, 1, False), input_size=(2, 3, 6, 5), cudnn=True, desc='no_bias', decorator=skipIfRocm, ), dict( fullname='Conv2d_groups', constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2), input_size=(2, 4, 6, 5), cudnn=True, decorator=skipIfRocm, ), dict( fullname='Conv2d_groups_thnn', constructor=lambda: nn.Conv2d(4, 6, (3, 2), groups=2), input_size=(2, 4, 6, 5), decorator=skipIfRocm, ), dict( module_name='ConvTranspose2d', constructor_args=(3, 4, 3, (3, 2), 1, (1, 1)), cudnn=True, input_size=(1, 3, 7, 6), test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose2d', constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False, (2, 2)), input_size=(1, 3, 6, 7), cudnn=True, desc='dilated', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose2d', constructor_args=(3, 4, 3, (2, 3), 1, (1, 1), 1, False), input_size=(1, 3, 6, 7), cudnn=True, desc='no_bias', test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='ConvTranspose2d_groups', constructor=lambda: nn.ConvTranspose2d(2, 4, (2, 3), groups=2), input_size=(1, 2, 4, 5), cudnn=True, test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv2d_depthwise', constructor=lambda: nn.Conv2d(4, 4, (3, 3), groups=4), input_size=(2, 4, 6, 6), ), dict( fullname='Conv2d_depthwise_with_multiplier', constructor=lambda: nn.Conv2d(4, 8, (3, 3), groups=4), input_size=(2, 4, 6, 6), ), dict( fullname='Conv2d_depthwise_strided', constructor=lambda: nn.Conv2d(4, 4, (3, 3), stride=(2, 2), groups=4), input_size=(2, 4, 6, 6), ), dict( fullname='Conv2d_depthwise_padded', constructor=lambda: nn.Conv2d(4, 4, (3, 3), padding=(1, 1), groups=4), input_size=(2, 4, 6, 6), ), dict( fullname='Conv2d_depthwise_dilated', constructor=lambda: nn.Conv2d(4, 4, (2, 2), dilation=(2, 2), groups=4), input_size=(2, 4, 5, 5), ), dict( module_name='MaxPool2d', constructor_args=((3, 3), (2, 2), (1, 1)), input_size=(1, 3, 7, 7), ), dict( module_name='AvgPool1d', constructor_args=(2,), input_size=(2, 3, 6), ), dict( module_name='AvgPool1d', constructor_args=((2,), (2,)), input_size=(2, 3, 6), desc='stride', ), dict( module_name='AvgPool1d', constructor_args=(2, 2, 1), input_size=(2, 3, 6), desc='stride_pad', ), dict( module_name='AvgPool2d', constructor_args=((2, 2),), input_size=(2, 3, 6, 6), ), dict( module_name='AvgPool2d', constructor_args=((2, 2), (2, 2)), input_size=(2, 3, 6, 6), desc='stride', ), dict( module_name='AvgPool2d', constructor_args=((2, 2), (2, 2), (1, 1)), input_size=(2, 3, 6, 6), desc='stride_pad', ), dict( module_name='LPPool2d', constructor_args=(2, (2, 2), 2), input_size=(1, 3, 7, 7), ), dict( module_name='LPPool2d', constructor_args=(1.5, 2), input_fn=lambda: torch.rand(1, 3, 7, 7), desc='norm', ), dict( module_name='LPPool1d', constructor_args=(1.5, 2), input_fn=lambda: torch.rand(1, 3, 7), desc='norm', ), dict( module_name='LPPool1d', constructor_args=(2, 2, 3), input_size=(1, 3, 7), ), dict( module_name='LocalResponseNorm', constructor_args=(3, ), input_size=(1, 5, 7), desc='1d', ), dict( module_name='LocalResponseNorm', constructor_args=(2, ), input_size=(1, 5, 7, 7), desc='2d_uneven_pad', ), dict( module_name='LocalResponseNorm', constructor_args=(1, 1, 0.5, 2), input_size=(1, 5, 7, 7, 7), desc='3d_custom_params', ), dict( module_name='ReflectionPad1d', constructor_args=((1, 2),), input_size=(2, 3, 8), ), dict( module_name='ReflectionPad2d', constructor_args=((1, 2, 3, 4),), input_size=(2, 3, 8, 8), ), dict( module_name='ReplicationPad1d', constructor_args=((1, 2),), input_size=(2, 3, 4), ), dict( module_name='ReplicationPad2d', constructor_args=((1, 2, 3, 4),), input_size=(2, 3, 4, 4), ), dict( module_name='ZeroPad2d', constructor_args=((1, 2, 3, 4),), input_size=(2, 3, 4, 4) ), dict( module_name='ZeroPad2d', constructor_args=((-1, -1, -1, -2),), input_size=(2, 3, 4, 4), desc='negative_dims' ), dict( module_name='ConstantPad1d', constructor_args=((1, 2), 2), input_size=(2, 3, 4) ), dict( module_name='ConstantPad2d', constructor_args=((1, 2, 3, 4), 2), input_size=(2, 3, 4, 4) ), dict( module_name='ConstantPad3d', constructor_args=((1, 2, 3, 4, 1, 0), 2), input_size=(2, 3, 4, 4, 5) ), dict( module_name='Conv3d', constructor_args=(3, 4, (2, 3, 4)), input_size=(2, 3, 3, 4, 5), cudnn=True, test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv3d', constructor_args=(3, 4, (2, 3, 4), 1, 0, 1, 1, False), input_size=(2, 3, 3, 4, 5), cudnn=True, desc='no_bias', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv3d', constructor_args=(3, 4, 2, 2), input_size=(2, 3, 5, 5, 5), cudnn=True, desc='stride', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='Conv3d', constructor_args=(3, 4, 2, 2, 1), input_size=(2, 3, 5, 5, 5), cudnn=True, desc='stride_padding', test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv3d_groups', constructor=lambda: nn.Conv3d(4, 6, kernel_size=3, groups=2), input_size=(2, 4, 4, 5, 4), cudnn=True, test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv3d_dilated', constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2), input_size=(2, 3, 5, 5, 5), test_cuda=(not TEST_WITH_ROCM), ), dict( fullname='Conv3d_dilated_strided', constructor=lambda: nn.Conv3d(3, 4, kernel_size=2, dilation=2, stride=2), input_size=(2, 3, 5, 5, 5), test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose3d', constructor_args=(2, 3, (2, 3, 2)), cudnn=True, input_size=(1, 2, 4, 5, 4), test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='ConvTranspose3d', constructor_args=(2, 3, (2, 3, 2), 1, 0, 0, 1, True, (2, 2, 2)), cudnn=True, input_size=(1, 2, 4, 5, 4), desc='dilated', test_cuda=(not TEST_WITH_ROCM), ), dict( module_name='MaxPool3d', constructor_args=((2, 2, 2),), input_size=(2, 3, 5, 5, 5), ), dict( module_name='MaxPool3d', constructor_args=(2, (2, 2, 2)), input_size=(2, 3, 5, 5, 5), desc='stride', ), dict( module_name='MaxPool3d', constructor_args=(2, 2, (1, 1, 1)), input_size=(2, 3, 5, 5, 5), desc='stride_padding', ), dict( module_name='AvgPool3d', constructor_args=((2, 2, 2),), input_size=(2, 3, 4, 4, 4), ), dict( module_name='AvgPool3d', constructor_args=(2, (2, 2, 2)), input_size=(2, 3, 5, 5, 5), desc='stride', ), dict( module_name='AvgPool3d', constructor_args=(2, 2, (1, 1, 1)), input_size=(2, 3, 5, 5, 5), desc='stride_pad', ), dict( module_name='AvgPool3d', constructor_args=(4, 2, (1, 2, 1)), input_size=(2, 3, 5, 5, 5), desc='stride_pad_gpu_fixedkw_output', ), dict( module_name='AvgPool3d', constructor_args=((2, 4, 8), 1, (1, 1, 2)), input_size=(2, 3, 2, 4, 8), desc='stride_pad_gpu_general_output', ), dict( module_name='AvgPool3d', constructor_args=(3, 1, 0), input_size=(2, 3, 4, 4, 4), desc='stride1_pad0_gpu_input', ), dict( module_name='AvgPool3d', constructor_args=(2, 2, (1, 1, 1)), input_size=(2, 3, 4, 4, 4), desc='stride_pad_gpu_input_nooverlap', ), dict( module_name='ReplicationPad3d', constructor_args=((1, 2, 3, 4, 5, 6),), input_size=(2, 3, 5, 5, 5), ), dict( module_name='Embedding', constructor_args=(4, 3), input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4), jacobian_input=False, check_gradgrad=False, ), dict( module_name='EmbeddingBag', constructor_args=(4, 3), input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4), jacobian_input=False, check_gradgrad=False, desc='mean', test_cuda=(not TEST_WITH_ROCM), decorator=skipIfRocm ), dict( module_name='EmbeddingBag', constructor_args=(4, 3, None, 2, False, 'sum'), input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4), jacobian_input=False, check_gradgrad=False, desc='sum', test_cuda=(not TEST_WITH_ROCM), decorator=skipIfRocm ), dict( module_name='EmbeddingBag', constructor_args=(4, 3, None, 2, False, 'max'), input_fn=lambda: torch.empty(2, 3, dtype=torch.long).random_(4), jacobian_input=False, check_gradgrad=False, desc='max', ), dict( fullname='EmbeddingBag_sparse', constructor=lambda: nn.EmbeddingBag(4, 3, sparse=True), input_fn=lambda: torch.randperm(2).repeat(1, 2), jacobian_input=False, check_gradgrad=False, decorator=skipIfRocm, test_cuda=(not TEST_WITH_ROCM) ), dict( constructor=lambda: nn.Embedding(4, 3, sparse=True), input_fn=lambda: torch.randperm(2).repeat(1, 2), jacobian_input=False, fullname='Embedding_sparse', check_gradgrad=False, test_cuda=(not TEST_WITH_ROCM) ), dict( constructor=lambda: nn.FractionalMaxPool2d( 2, output_ratio=0.5, _random_samples=torch.DoubleTensor(1, 3, 2).uniform_()), input_size=(1, 3, 5, 5), fullname='FractionalMaxPool2d_ratio', ), dict( constructor=lambda: nn.FractionalMaxPool2d((2, 2), output_size=( 4, 4), _random_samples=torch.DoubleTensor(1, 3, 2).uniform_()), input_size=(1, 3, 7, 7), fullname='FractionalMaxPool2d_size', test_cuda=False, ), dict( module_name='PixelShuffle', constructor_args=(3,), input_size=(1, 9, 4, 4), ), dict( module_name='Upsample', constructor_args=(12, None, 'nearest'), input_size=(1, 2, 4), desc='nearest_1d', ), dict( module_name='Upsample', constructor_args=((12, ), None, 'nearest'), input_size=(1, 2, 3), desc='nearest_tuple_1d', ), dict( module_name='Upsample', constructor_args=(None, 4, 'nearest'), input_size=(1, 2, 4), desc='nearest_scale_1d', ), dict( module_name='Upsample', constructor_args=(12, None, 'linear', False), input_size=(1, 2, 4), desc='linear_1d', ), dict( module_name='Upsample', constructor_args=((4, ), None, 'linear', False), input_size=(1, 2, 3), desc='linear_tuple_1d', ), dict( module_name='Upsample', constructor_args=(None, 4, 'linear', False), input_size=(1, 2, 4), desc='linear_scale_1d', ), dict( module_name='Upsample', constructor_args=(12, None, 'linear', True), input_size=(1, 2, 4), desc='linear_1d_align_corners', ), dict( module_name='Upsample', constructor_args=(None, 4, 'linear', True), input_size=(1, 2, 4), desc='linear_scale_1d_align_corners', ), dict( module_name='Upsample', constructor_args=(12, None, 'nearest'), input_size=(1, 2, 4, 4), desc='nearest_2d', ), dict( module_name='Upsample', constructor_args=((12, 16), None, 'nearest'), input_size=(1, 2, 3, 4), desc='nearest_tuple_2d', ), dict( module_name='Upsample', constructor_args=(None, 4, 'nearest'), input_size=(1, 2, 4, 4), desc='nearest_scale_2d', ), dict( module_name='Upsample', constructor_args=(12, None, 'bilinear', False), input_size=(1, 2, 4, 4), desc='bilinear_2d', ), dict( module_name='Upsample', constructor_args=((4, 6), None, 'bilinear', False), input_size=(1, 2, 2, 3), desc='bilinear_tuple_2d', ), dict( module_name='Upsample', constructor_args=(None, 4, 'bilinear', False), input_size=(1, 2, 4, 4), desc='bilinear_scale_2d', ), dict( module_name='Upsample', constructor_args=(None, (2, 2), 'bilinear', False), input_size=(1, 2, 4, 4), desc='bilinear_scale_tuple_shared_2d', ), dict( module_name='Upsample', constructor_args=(None, (2, 1), 'bilinear', False), input_size=(1, 2, 4, 4), desc='bilinear_scale_tuple_skewed_2d', ), dict( module_name='Upsample', constructor_args=((4, 6), None, 'bilinear', True), input_size=(1, 2, 4, 4), desc='bilinear_tuple_2d_align_corners', ), dict( module_name='Upsample', constructor_args=(None, (2, 1), 'bilinear', True), input_size=(1, 2, 4, 4), desc='bilinear_scale_tuple_skewed_2d_align_corners', ), dict( module_name='Upsample', constructor_args=(12, None, 'nearest'), input_size=(1, 2, 4, 4, 4), desc='nearest_3d', ), dict( module_name='Upsample', constructor_args=((12, 16, 16), None, 'nearest'), input_size=(1, 2, 3, 4, 4), desc='nearest_tuple_3d', ), dict( module_name='Upsample', constructor_args=(None, 4, 'nearest'), input_size=(1, 2, 4, 4, 4), desc='nearest_scale_3d', ), dict( module_name='Upsample', constructor_args=(12, None, 'trilinear', False), input_size=(1, 2, 4, 4, 4), desc='trilinear_3d', ), dict( module_name='Upsample', constructor_args=((4, 6, 6), None, 'trilinear', False), input_size=(1, 2, 2, 3, 3), desc='trilinear_tuple_3d', ), dict( module_name='Upsample', constructor_args=(None, 3, 'trilinear', False), input_size=(1, 2, 3, 4, 4), desc='trilinear_scale_3d', # See https://github.com/pytorch/pytorch/issues/5006 precision=3e-4, ), dict( module_name='Upsample', constructor_args=((4, 6, 6), None, 'trilinear', True), input_size=(1, 2, 2, 3, 3), desc='trilinear_tuple_3d_align_corners', ), dict( module_name='Upsample', constructor_args=(None, 3, 'trilinear', True), input_size=(1, 2, 3, 4, 4), desc='trilinear_scale_3d_align_corners', # See https://github.com/pytorch/pytorch/issues/5006 precision=3e-4, ), dict( module_name='AdaptiveMaxPool1d', constructor_args=(3,), input_fn=lambda: _rand_tensor_non_equal(1, 3, 5), ), dict( module_name='AdaptiveMaxPool2d', constructor_args=(3,), input_fn=lambda: _rand_tensor_non_equal(1, 3, 5, 6), desc='single', ), dict( module_name='AdaptiveMaxPool2d', constructor_args=((3, 4),), input_fn=lambda: _rand_tensor_non_equal(1, 3, 5, 6), desc='tuple', ), dict( module_name='AdaptiveMaxPool2d', constructor_args=((3, None),), input_fn=lambda: _rand_tensor_non_equal(1, 3, 5, 6), desc='tuple_none', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=(3,), input_fn=lambda: _rand_tensor_non_equal(2, 3, 5, 6, 7), desc='single', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=((3, 4, 5),), input_fn=lambda: _rand_tensor_non_equal(2, 3, 5, 6, 7), desc='tuple', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=((3, None, 5),), input_fn=lambda: _rand_tensor_non_equal(2, 3, 5, 6, 7), desc='tuple_none', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=(3,), input_fn=lambda: _rand_tensor_non_equal(2, 3, 12, 9, 3), desc='single_nonatomic', ), dict( module_name='AdaptiveMaxPool3d', constructor_args=((3, 4, 5),), input_fn=lambda: _rand_tensor_non_equal(2, 3, 6, 4, 10), desc='tuple_nonatomic', ), dict( module_name='AdaptiveAvgPool1d', constructor_args=(3,), input_fn=lambda: torch.rand(1, 3, 5), ), dict( module_name='AdaptiveAvgPool2d', constructor_args=(3,), input_fn=lambda: torch.rand(1, 3, 5, 6), desc='single', ), dict( module_name='AdaptiveAvgPool2d', constructor_args=((3, 4),), input_fn=lambda: torch.rand(1, 3, 5, 6), desc='tuple', ), dict( module_name='AdaptiveAvgPool2d', constructor_args=((3, None),), input_fn=lambda: torch.rand(1, 3, 5, 6), desc='tuple_none', ), dict( module_name='AdaptiveAvgPool3d', constructor_args=(3,), input_fn=lambda: torch.rand(2, 3, 5, 2, 7), desc='single', ), dict( module_name='AdaptiveAvgPool3d', constructor_args=((3, 4, 5),), input_fn=lambda: torch.rand(2, 3, 5, 3, 7), desc='tuple', ), dict( module_name='AdaptiveAvgPool3d', constructor_args=((None, 4, 5),), input_fn=lambda: torch.rand(2, 3, 5, 3, 7), desc='tuple_none', ), dict( module_name='SELU', input_size=(3, 2, 5), check_inplace=True ), dict( module_name='SELU', input_size=(), check_inplace=True, desc='scalar' ), dict( module_name='CELU', input_size=(3, 2, 5), constructor_args=(2.,), check_inplace=True, reference_fn=lambda x, _: torch.where(x >= 0, x, 2. * ((.5 * x).exp() - 1)), ), dict( module_name='CELU', input_size=(), constructor_args=(2.,), check_inplace=True, reference_fn=lambda x, _: torch.where(x >= 0, x, 2. * ((.5 * x).exp() - 1)), desc='scalar' ), dict( module_name='GLU', input_size=(5, 6), ), dict( module_name='GLU', constructor_args=(1,), input_size=(5, 6, 7), desc='dim', ), dict( constructor=wrap_functional(F.softmax, dim=-1), input_size=(2, 128), # trigger the last-dim algo in CUDA fullname='softmax_lastdim', pickle=False, ), dict( constructor=wrap_functional(F.softmax, dim=1, dtype=torch.float64), input_size=(2, 128), fullname='softmax_lastdim_dtype', pickle=False, test_cuda=False ), dict( constructor=wrap_functional(F.softmax, dim=1), input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo fullname='softmax_spatial_special', pickle=False, test_cuda=(not TEST_WITH_ROCM) ), dict( constructor=wrap_functional(F.softmax, dim=1), input_size=(2, 2, 4, 4), # regular spatial algorithm fullname='softmax_spatial', pickle=False, ), dict( constructor=wrap_functional(F.softmax, dim=1, dtype=torch.float64), input_size=(2, 2, 4, 4), # regular spatial algorithm fullname='softmax_spatial_dtype', pickle=False, test_cuda=False ), dict( constructor=wrap_functional(F.softmax, dim=0), input_size=(2, 3, 4, 5), fullname='softmax_functional_dim0', test_cuda=False, pickle=False, ), dict( constructor=wrap_functional(F.softmax, dim=3), input_size=(2, 3, 4, 5), fullname='softmax_functional_dim3', test_cuda=False, pickle=False, ), dict( constructor=wrap_functional(F.softmax, dim=-1), input_size=(), fullname='softmax_functional_scalar', test_cuda=False, pickle=False, ), dict( constructor=wrap_functional(F.log_softmax, dim=-1), input_size=(2, 128), # trigger the last-dim algo in CUDA fullname='log_softmax_lastdim', pickle=False, ), dict( constructor=wrap_functional(F.log_softmax, dim=1), input_size=(2, 128, 2, 2), # trigger special case of spatial CUDA algo fullname='log_softmax_spatial_special', pickle=False, test_cuda=(not TEST_WITH_ROCM) ), dict( constructor=wrap_functional(F.log_softmax, dim=1), input_size=(2, 2, 4, 4), # regular spatial algorithm fullname='log_softmax_spatial', pickle=False, ), dict( constructor=wrap_functional(F.log_softmax, dim=0), input_size=(2, 3, 4, 5), fullname='log_softmax_dim0', pickle=False, ), dict( constructor=wrap_functional(F.log_softmax, dim=3), input_size=(2, 3, 4, 5), fullname='log_softmax_dim3', pickle=False, ), dict( constructor=wrap_functional(F.log_softmax, dim=0), input_size=(), fullname='log_softmax_scalar', pickle=False, ), dict( fullname='Unfold', constructor=lambda: nn.Unfold((2, 2), (1, 1), (0, 0), (1, 1)), input_size=(2, 4, 3, 3), check_gradgrad=False, test_cuda=True, ), dict( fullname='Fold', constructor=lambda: nn.Fold((3, 3), (2, 2), (1, 1), (0, 0), (1, 1)), input_size=(2, 16, 4), check_gradgrad=False, test_cuda=True, ), dict( fullname='Unfold_int_input', constructor=lambda: nn.Unfold(2, 1, 0, 1), input_size=(2, 4, 3, 3), check_gradgrad=False, test_cuda=True, ), dict( fullname='Fold_int_input', constructor=lambda: nn.Fold(3, 2, 1, 0, 1), input_size=(2, 16, 4), check_gradgrad=False, test_cuda=True, ), dict( module_name='Threshold', constructor_args=(2, 1), input_size=(), check_inplace=True, desc='threshold_value_scalar' ), dict( module_name='ReLU', input_size=(), check_inplace=True, desc='scalar' ), dict( module_name='ReLU6', input_size=(), check_inplace=True, desc='scalar' ), dict( module_name='RReLU', constructor_args=(0.1, 0.9), input_size=(), desc='with_up_down_scalar', test_cuda=False, ), dict( module_name='Hardtanh', input_size=(), reference_fn=lambda i, _: i.clamp(-1, 1), desc='scalar' ), dict( module_name='Sigmoid', input_size=(), desc='scalar', ), dict( module_name='Tanh', input_size=(), desc='scalar', ), dict( module_name='Softmax', constructor_args=(0,), input_size=(), reference_fn=lambda i, _: torch.exp(i).div(torch.exp(i).sum(0, True)), desc='scalar', ), dict( module_name='LogSoftmax', constructor_args=(0,), input_size=(), reference_fn=lambda i, _: torch.exp(i).div_(torch.exp(i).sum(0, False)).log_(), desc='multiparam_scalar', ), dict( module_name='ELU', constructor_args=(2.,), input_size=(), desc='scalar', ), dict( module_name='Hardshrink', constructor_args=(2.,), input_size=(), desc='scalar', ), dict( module_name='LeakyReLU', constructor_args=(0.5,), input_size=(), check_inplace=True, desc='with_negval_scalar' ), dict( module_name='LogSigmoid', input_size=(), reference_fn=lambda i, _: i.sigmoid().log(), desc='scalar' ), dict( module_name='Softplus', constructor_args=(2, -100), input_size=(), reference_fn=(lambda i, _: ((i * 2) > -100).type_as(i) * i + ((i * 2) <= -100).type_as(i) * 1. / 2. * torch.log(1 + torch.exp(2 * i))), desc='beta_threshold_scalar', ), dict( module_name='Softshrink', constructor_args=(1,), input_size=(), desc='lambda_scalar', ), dict( module_name='PReLU', input_size=(), reference_fn=lambda i, p: torch.clamp(i, min=0) + torch.clamp(i, max=0) * p[0][0], desc='scalar', ), dict( module_name='Softsign', input_size=(), reference_fn=lambda i, _: i.div(1 + torch.abs(i)), desc='scalar', ), dict( module_name='Softmin', constructor_args=(0,), input_size=(), desc='scalar', ), dict( module_name='Tanhshrink', input_size=(), desc='scalar', ), ] for test_params in module_tests + new_module_tests: # TODO: CUDA is not implemented yet if 'constructor' not in test_params: name = test_params.pop('module_name') test_params['constructor'] = getattr(nn, name) decorator = test_params.pop('decorator', None) test = NewModuleTest(**test_params) add_test(test, decorator) if 'check_eval' in test_params: # create a new test that is identical but that sets module.training to False desc = test_params.get('desc', None) test_params['desc'] = 'eval' if desc is None else desc + '_eval' def gen_eval_constructor(constructor): def eval_constructor(*args, **kwargs): cons = constructor(*args, **kwargs) cons.training = False return cons eval_constructor.__name__ = constructor.__name__ return eval_constructor test_params['constructor'] = gen_eval_constructor(test_params['constructor']) test = NewModuleTest(**test_params) add_test(test, decorator) for test_params in criterion_tests + new_criterion_tests: name = test_params.pop('module_name') test_params['constructor'] = getattr(nn, name) test = NewCriterionTest(**test_params) decorator = test_params.pop('decorator', None) add_test(test, decorator) if 'check_sum_reduction' in test_params: desc = test_params.get('desc', None) test_params['desc'] = 'sum_reduction' if desc is None else desc + '_sum_reduction' def gen_sum_reduction_constructor(constructor): def sum_reduction_constructor(*args, **kwargs): cons = constructor(*args, reduction='sum', **kwargs) return cons sum_reduction_constructor.__name__ = constructor.__name__ return sum_reduction_constructor test_params['constructor'] = gen_sum_reduction_constructor(test_params['constructor']) test = NewCriterionTest(**test_params) add_test(test, decorator) class UnpoolingNet(nn.Module): def __init__(self, pool, unpool): super(UnpoolingNet, self).__init__() self.pool = pool self.unpool = unpool def forward(self, input): return self.unpool(*self.pool(input)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool1d(2, return_indices=True), nn.MaxUnpool1d(2)), input_size=(1, 1, 4), fullname='MaxUnpool1d_net',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool2d(2, return_indices=True), nn.MaxUnpool2d(2)), input_size=(1, 1, 2, 4), fullname='MaxUnpool2d_net',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool3d(2, return_indices=True), nn.MaxUnpool3d(2)), input_size=(1, 1, 2, 4, 6), fullname='MaxUnpool3d_net', check_gradgrad=False,)) class _AdaptiveLogSoftmaxWithLoss(nn.AdaptiveLogSoftmaxWithLoss): def __call__(self, input): t = torch.tensor([0, 1, 4, 8]).to(input.device) return nn.AdaptiveLogSoftmaxWithLoss.__call__(self, input, t).output add_test(NewModuleTest( constructor=lambda: _AdaptiveLogSoftmaxWithLoss(16, 10, [2, 6]), input_size=(4, 16), fullname='AdaptiveLogSoftmax'), decorator=skipIfRocm) # The following are helpers for TestNN.test_affine_* if torch.cuda.is_available(): def device_(): return ['cpu', 'cuda'] else: def device_(): return ['cpu'] def angle_rad_(): return [r * math.pi * 2 for r in [0.0, 0.5, 0.25, 0.125, random.random()]] def axis_vector_(): t = (random.random(), random.random(), random.random()) l = sum(x ** 2 for x in t) ** 0.5 return [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), tuple(x / l for x in t)] def input_size2d_(): return [[1, 1, 3, 5], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 3, 4]] def output_size2d_(): return [[1, 1, 5, 3], [1, 1, 3, 5], [1, 1, 4, 3], [1, 1, 5, 5], [1, 1, 6, 6]] def input_size2dsq_(): return [[1, 1, 2, 2], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 6, 6]] def output_size2dsq_(): return [[1, 1, 2, 2], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 5, 5], [1, 1, 6, 6]] def input_size3d_(): return [[1, 1, 2, 2, 2], [1, 1, 2, 3, 4], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 3, 4, 5]] def input_size3dsq_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 6, 6, 6]] def output_size3dsq_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 5, 5, 5], [1, 1, 6, 6, 6]] def output_size3d_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 3, 4, 5], [1, 1, 4, 3, 2], [1, 1, 5, 5, 5], [1, 1, 6, 6, 6]] def _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad): input_center = [(x - 1) / 2.0 for x in input_size] output_center = [(x - 1) / 2.0 for x in output_size] s = math.sin(angle_rad) c = math.cos(angle_rad) intrans_ary = np.array([ [1, 0, input_center[2]], [0, 1, input_center[3]], [0, 0, 1], ], dtype=np.float64) inscale_ary = np.array([ [input_center[2], 0, 0], [0, input_center[3], 0], [0, 0, 1], ], dtype=np.float64) rotation_ary = np.array([ [c, -s, 0], [s, c, 0], [0, 0, 1], ], dtype=np.float64) outscale_ary = np.array([ [1.0 / output_center[2], 0, 0], [0, 1.0 / output_center[3], 0], [0, 0, 1], ], dtype=np.float64) outtrans_ary = np.array([ [1, 0, -output_center[2]], [0, 1, -output_center[3]], [0, 0, 1], ], dtype=np.float64) reorder_ary = np.array([ [0, 1, 0], [1, 0, 0], [0, 0, 1], ], dtype=np.float64) transform_ary = np.dot(np.dot(np.dot(np.dot( intrans_ary, inscale_ary), rotation_ary.T), outscale_ary), outtrans_ary) grid_ary = np.dot(np.dot(np.dot(reorder_ary, rotation_ary.T), outscale_ary), outtrans_ary) transform_tensor = torch.from_numpy((rotation_ary)).to(device, torch.float32) transform_tensor = transform_tensor[:2].unsqueeze(0) return transform_tensor, transform_ary, grid_ary def _buildEquivalentAffineTransforms3d(device, input_size, output_size, angle_rad, axis_vector): input_center = [(x - 1) / 2.0 for x in input_size] output_center = [(x - 1) / 2.0 for x in output_size] s = math.sin(angle_rad) c = math.cos(angle_rad) c1 = 1 - c intrans_ary = np.array([ [1, 0, 0, input_center[2]], [0, 1, 0, input_center[3]], [0, 0, 1, input_center[4]], [0, 0, 0, 1], ], dtype=np.float64) inscale_ary = np.array([ [input_center[2], 0, 0, 0], [0, input_center[3], 0, 0], [0, 0, input_center[4], 0], [0, 0, 0, 1], ], dtype=np.float64) l, m, n = axis_vector scipyRotation_ary = np.array([ [l * l * c1 + c, m * l * c1 - n * s, n * l * c1 + m * s, 0], [l * m * c1 + n * s, m * m * c1 + c, n * m * c1 - l * s, 0], [l * n * c1 - m * s, m * n * c1 + l * s, n * n * c1 + c, 0], [0, 0, 0, 1], ], dtype=np.float64) z, y, x = axis_vector torchRotation_ary = np.array([ [x * x * c1 + c, y * x * c1 - z * s, z * x * c1 + y * s, 0], [x * y * c1 + z * s, y * y * c1 + c, z * y * c1 - x * s, 0], [x * z * c1 - y * s, y * z * c1 + x * s, z * z * c1 + c, 0], [0, 0, 0, 1], ], dtype=np.float64) outscale_ary = np.array([ [1.0 / output_center[2], 0, 0, 0], [0, 1.0 / output_center[3], 0, 0], [0, 0, 1.0 / output_center[4], 0], [0, 0, 0, 1], ], dtype=np.float64) outtrans_ary = np.array([ [1, 0, 0, -output_center[2]], [0, 1, 0, -output_center[3]], [0, 0, 1, -output_center[4]], [0, 0, 0, 1], ], dtype=np.float64) reorder_ary = np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], ], dtype=np.float64) transform_ary = np.dot(np.dot(np.dot(np.dot( intrans_ary, inscale_ary), np.linalg.inv(scipyRotation_ary)), outscale_ary), outtrans_ary) grid_ary = np.dot(np.dot(np.dot(reorder_ary, np.linalg.inv(scipyRotation_ary)), outscale_ary), outtrans_ary) transform_tensor = torch.from_numpy((torchRotation_ary)).to(device, torch.float32) transform_tensor = transform_tensor[:3].unsqueeze(0) return transform_tensor, transform_ary, grid_ary # end TestNN.test_affine_* helpers if __name__ == '__main__': run_tests()