# mypy: allow-untyped-defs # Owner(s): ["oncall: distributed"] import contextlib import os import re import sys import time import unittest import warnings from abc import ABC, abstractmethod from contextlib import nullcontext from copy import deepcopy from enum import auto, Enum from functools import wraps from typing import Any, Callable, cast, no_type_check, Optional, Union from unittest import mock import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from torch.distributed._composable import checkpoint from torch.distributed.device_mesh import DeviceMesh from torch.distributed.fsdp import ( CPUOffload, fully_shard, FullyShardedDataParallel as FSDP, ) from torch.distributed.fsdp._common_utils import TrainingState from torch.distributed.fsdp._fully_shard._fsdp_param_group import ( FSDPParamGroup, RegisterPostBackwardFunction, ) from torch.distributed.fsdp._init_utils import NO_RESHARD_AFTER_FORWARD_STRATEGIES from torch.distributed.fsdp.fully_sharded_data_parallel import ( BackwardPrefetch, MixedPrecision, ShardingStrategy, ) from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler from torch.distributed.fsdp.wrap import always_wrap_policy, ModuleWrapPolicy, wrap from torch.distributed.tensor import distribute_tensor, DTensor, Shard from torch.distributed.tensor.parallel import ( ColwiseParallel, parallelize_module, RowwiseParallel, SequenceParallel, ) from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.testing._internal.common_distributed import ( MultiProcessTestCase, MultiThreadedTestCase, run_subtests, TEST_SKIPS, ) from torch.testing._internal.common_utils import ( FILE_SCHEMA, get_cycles_per_ms, TEST_CUDA, TEST_HPU, TEST_XPU, ) from torch.utils._triton import has_triton DEVICE_COUNT = 4 # default if TEST_CUDA: DEVICE_TYPE = "cuda" DISTRIBUTED_BACKEND = "nccl" DEVICE_COUNT = torch.cuda.device_count() elif TEST_HPU: DEVICE_TYPE = "hpu:0" DISTRIBUTED_BACKEND = "hccl" elif TEST_XPU: DEVICE_TYPE = "xpu" DISTRIBUTED_BACKEND = "xccl" DEVICE_COUNT = torch.xpu.device_count() else: DEVICE_TYPE = "cpu" DISTRIBUTED_BACKEND = "gloo" DEVICE_COUNT = 1 class FSDPInitMode(Enum): # No FSDP wrapping NO_FSDP = auto() # FSDP recursive wrapping RECURSIVE = auto() # TODO: FSDP non-recursive wrapping # NONRECURSIVE = auto() class DEVICEInitMode(Enum): # Move model to DEVICE before passing to the FSDP constructor DEVICE_BEFORE = auto() # Move model to DEVICE after passing to the FSDP constructor DEVICE_AFTER = auto() # Keep on CPU DEVICE_NEVER = auto() class FSDPTestModel(nn.Module, ABC): """This defines the interface expected from all models used commonly for FSDP unit tests.""" @abstractmethod def get_input(self, device) -> tuple[torch.Tensor, ...]: """Returns an input for the model as as tuple.""" ... @abstractmethod def get_loss(self, input, output) -> torch.Tensor: """Returns the loss given the input and output.""" ... @abstractmethod def run_backward(self, loss) -> None: """Runs the backward pass (e.g. including ``loss.backward()``).""" ... @staticmethod @abstractmethod def init(*args: Any, **kwargs: Any) -> nn.Module: """Initializes an instance of this model.""" ... def _assert_module_states( model: nn.Module, process_group: dist.ProcessGroup, assert_fn: Callable, ): """ All-gathers module states across ranks and calls ``assert_fn`` on each pair of corresponding states from rank 0 and a nonzero rank. For example, if ``assert_fn`` is ``self.assertEqual()``, then this checks that all module states are equal across ranks. """ # Include names for debugging convenience named_module_states = [ (param_name, param.detach().cpu()) for param_name, param in model.named_parameters() ] named_module_states += [ (buffer_name, buffer.detach().cpu()) for buffer_name, buffer in model.named_buffers() ] world_size = dist.get_world_size(process_group) olist = [None for _ in range(world_size)] dist.all_gather_object(olist, named_module_states, group=process_group) rank0_states = olist[0] assert rank0_states is not None # mypy for state in olist[1:]: assert state is not None # mypy for (_, p1), (_, p2) in zip(rank0_states, state): assert_fn(p1, p2) def get_devtype(): return torch.device(DEVICE_TYPE) def _zero_model( model: nn.Module, zero_buffers: bool = False, summon_full=True, ): """Zeros the parameters and optionally buffers of ``model`` in place.""" ctx = FSDP.summon_full_params(model) if summon_full else nullcontext() with ctx: for param in model.parameters(): with torch.no_grad(): param.zero_() if zero_buffers: for buffer in model.buffers(): with torch.no_grad(): buffer.zero_() def _get_state_dict(model, cpu_offload=False, half=False): if not cpu_offload: model = model.to(DEVICE_TYPE) if half: model.half() return model.state_dict() def subtest_name(test_name_mapping, *args): return "_".join( [test_name_mapping[str(s)] if s is not None else "none" for s in args] ) def _broadcast_state_dict(rank, state_dict): # For non-FSDP roots, some parts of the model state on rank 0 may # not be on CPU, so we move everything to CPU to avoid issues like: # https://github.com/pytorch/pytorch/issues/77113. for param_name, param in state_dict.items(): if param.device != torch.device("cpu"): state_dict[param_name] = param.cpu() olist = [state_dict if rank == 0 else None] dist.broadcast_object_list(olist) state_dict = cast(dict[str, torch.Tensor], olist[0]) # Ensure that the state is on DEVICE for param_name in state_dict.keys(): state_dict[param_name] = state_dict[param_name].to(DEVICE_TYPE) return state_dict def get_full_params(model: nn.Module, recurse: bool = True): """ Returns the full unsharded parameters of ``model``. Any FSDP-managed parameters offloaded to CPU are moved to GPU in the returned list. Args: recurse (bool): If ``False``, only unshards the parameters immediate to ``model``; if ``True``, recurses through the module hierarchy rooted at ``model``. """ with FSDP.summon_full_params(model, recurse=recurse): return deepcopy(list(model.parameters())) def _move_to_device(model: nn.Module, move_to_device: bool): return model.to(DEVICE_TYPE) if move_to_device else model def _maybe_wrap_fsdp(model: nn.Module, wrap_fsdp: bool, *args, **kwargs): return model if not wrap_fsdp else FSDP(model, *args, **kwargs) class DummyProcessGroup: def __init__(self, rank: int, size: int): self._rank = rank self._size = size def rank(self) -> int: return self._rank def size(self) -> int: return self._size def allreduce(self, *args, **kwargs): dist_wait = mock.Mock() def get_future(): future: torch.futures.Future = torch.futures.Future() future.set_result(1) return future dist_wait.get_future = get_future return dist_wait class TransformerWithSharedParams(FSDPTestModel): def __init__( self, group: dist.ProcessGroup, device_init_mode: DEVICEInitMode, add_bn: bool, deterministic: bool, ): super().__init__() self.rank = group.rank() self.world_size = group.size() if deterministic: torch.manual_seed(0) d_vocab = 23 d_model = 16 self.embed_tokens = nn.Embedding(d_vocab, d_model) self.transformer = nn.Transformer( d_model=d_model, num_encoder_layers=2, num_decoder_layers=2, dim_feedforward=8, dropout=0.1, ) self.output_proj = nn.Linear(d_model, d_vocab) # share the embedding and output projection weights self.output_proj.weight = self.embed_tokens.weight self.register_buffer( "vocab_bias", self.embed_tokens.weight.new_ones((d_model,)) ) self.register_buffer( "long_buffer", torch.zeros_like(self.vocab_bias, dtype=torch.long), # type: ignore[arg-type] ) # type: ignore[arg-type] self.bs = 2 self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity() if device_init_mode == DEVICEInitMode.DEVICE_BEFORE: self = self.to(DEVICE_TYPE) if deterministic: self.eval() def get_input(self, device): torch.manual_seed(1 + self.rank) # keep everything deterministic src = torch.arange(12, device=device).view(6, self.bs) # T x B tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B return (src, tgt) def forward(self, src_ids, tgt_ids): src = self.embed_tokens(src_ids) src = src + self.vocab_bias + self.long_buffer.type_as(src) # type: ignore[operator] tgt = self.embed_tokens(tgt_ids) tgt = self.bn(tgt) x = self.transformer(src, tgt) return self.output_proj(x) def get_loss(self, input, output): _, tgt = input return nn.functional.cross_entropy( output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum" ) def run_backward(self, loss): loss.backward() @staticmethod def init( group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, add_bn: bool = True, ) -> Union[nn.Module, FSDP]: """ Initializes a :class:`TransformerWithSharedParams` instance. Args: fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap any modules with FSDP. If ``RECURSIVE``, then wraps with top-level FSDP. By default, the top-level FSDP uses the ``ModuleWrapPolicy`` for encoder and decoder layers, but a different auto wrap policy may be specified via ``fsdp_kwargs``. device_init_mode (DEVICEInitMode): Determines model movement to DEVICE. fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments forwarded to the FSDP constructor. deterministic (bool): Whether to make the model deterministic across constructions. add_bn (bool): Whether to include batch norm in the model. """ if fsdp_kwargs is None: fsdp_kwargs = {} if fsdp_init_mode == FSDPInitMode.NO_FSDP: if isinstance(group, tuple): pg = group[0] else: pg = group return TransformerWithSharedParams( pg, device_init_mode, add_bn, deterministic ) elif fsdp_init_mode == FSDPInitMode.RECURSIVE: # Default to the `ModuleWrapPolicy` if "auto_wrap_policy" not in fsdp_kwargs: auto_wrap_policy = ModuleWrapPolicy( { TransformerEncoderLayer, TransformerDecoderLayer, } ) else: auto_wrap_policy = fsdp_kwargs.pop("auto_wrap_policy") if ( "sharding_strategy" in fsdp_kwargs and fsdp_kwargs["sharding_strategy"] in {ShardingStrategy.HYBRID_SHARD, ShardingStrategy._HYBRID_SHARD_ZERO2} and not isinstance(group, tuple) ): fsdp_pg = None else: fsdp_pg = group if isinstance(group, tuple): tformer_pg = group[0] else: tformer_pg = group m = TransformerWithSharedParams( tformer_pg, device_init_mode, add_bn, deterministic ) fsdp_model = FSDP( m, fsdp_pg, auto_wrap_policy=auto_wrap_policy, **fsdp_kwargs, ) if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) return fsdp_model raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}") def get_ignored_modules(self): return [self.transformer] class NestedWrappedModule(FSDPTestModel): def __init__( self, group: dist.ProcessGroup, wrap_fsdp: bool, device_init_mode: DEVICEInitMode, deterministic: bool, **fsdp_kwargs, ): super().__init__() self.rank = group.rank() self.world_size = group.size() move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE def _maybe_wrap(layer): if wrap_fsdp: return FSDP(layer, group, **fsdp_kwargs) return layer if deterministic: torch.manual_seed(0) self.module = nn.Sequential( _move_to_device(nn.Linear(8, 4), move_to_device), _maybe_wrap( nn.Sequential( _maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)), _move_to_device(nn.Linear(16, 16), move_to_device), ), ), _maybe_wrap(_move_to_device(nn.Linear(16, 4), move_to_device)), _move_to_device(nn.Linear(4, 8), move_to_device), ) def get_input(self, device): torch.manual_seed(1 + self.rank) # keep everything deterministic return (torch.rand(4, 8, device=device),) def forward(self, x): return self.module(x) def get_loss(self, input, output): loss = output.sum() return loss def run_backward(self, loss): loss.backward() @staticmethod def init( group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, ) -> nn.Module: """ Initializes a :class:`NestedWrappedModule` instance. Args: fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap any modules with FSDP. If ``RECURSIVE``, then wraps some nested modules with FSDP but not the top-level module. The model may later be wrapped with a top-level FSDP external to this method if desired. device_init_mode (DEVICEInitMode): Determines model movement to DEVICE. fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments forwarded to the FSDP constructor. deterministic (bool): Whether to make the model deterministic across constructions. """ if fsdp_kwargs is None: fsdp_kwargs = {} if fsdp_init_mode == FSDPInitMode.NO_FSDP: return NestedWrappedModule( group, wrap_fsdp=False, device_init_mode=device_init_mode, deterministic=deterministic, ) elif fsdp_init_mode == FSDPInitMode.RECURSIVE: # Does not wrap with top-level FSDP fsdp_model = NestedWrappedModule( group, wrap_fsdp=True, device_init_mode=device_init_mode, deterministic=deterministic, **fsdp_kwargs, ) if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) return fsdp_model raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}") class AlwaysWrapNestedWrappedModule(NestedWrappedModule): @staticmethod def init( group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, ): """ Initializes a :class:`NestedWrappedModule` instance, but unlike :meth:`NestedWrappedModule.init`, for the ``RECURSIVE`` init mode, this wraps with top-level FSDP and the ``always_wrap_policy()`` auto wrap policy. """ model = super( AlwaysWrapNestedWrappedModule, AlwaysWrapNestedWrappedModule ).init( group=group, fsdp_init_mode=FSDPInitMode.NO_FSDP, device_init_mode=device_init_mode, fsdp_kwargs=fsdp_kwargs, deterministic=deterministic, ) if fsdp_init_mode == FSDPInitMode.NO_FSDP: return model elif fsdp_init_mode == FSDPInitMode.RECURSIVE: fsdp_kwargs = fsdp_kwargs or {} fsdp_model = FSDP(model, auto_wrap_policy=always_wrap_policy, **fsdp_kwargs) if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) return fsdp_model class NonUniformReqGradNWM(NestedWrappedModule): def __init__( self, group: dist.ProcessGroup, wrap_fsdp: bool, device_init_mode: DEVICEInitMode, deterministic: bool, **fsdp_kwargs, ): super(NestedWrappedModule, self).__init__() # This `__init__` only differs from `NestedWrappedModule.__init__` in that # the last two `nn.Linear` layers are FSDP wrapped in a `nn.Sequential` # container. This arrangement results in all elements of the last two parameters # residing on a single rank. Freezing all parameters except those two allows us # to verify that `ShardedGradScaler` accommodates situations where some ranks # have no (non-zero sized) parameter shards. self.rank = group.rank() self.world_size = group.size() move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE def _maybe_wrap(layer): if wrap_fsdp: return FSDP(layer, group, **fsdp_kwargs) return layer if deterministic: torch.manual_seed(0) self.module = nn.Sequential( _move_to_device(nn.Linear(8, 4), move_to_device), _maybe_wrap( nn.Sequential( _maybe_wrap(_move_to_device(nn.Linear(4, 16), move_to_device)), _move_to_device(nn.Linear(16, 16), move_to_device), ), ), _maybe_wrap( nn.Sequential( _move_to_device(nn.Linear(16, 4), move_to_device), _move_to_device(nn.Linear(4, 8), move_to_device), ), ), ) @staticmethod def _set_nonuniform_req_grad(model, req_grad_mask) -> None: for n, p in model.named_parameters(): if not re.match(req_grad_mask, n): p.requires_grad_(False) @staticmethod def init( group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, ): """ Initializes a :class:`NestedWrappedModule` instance, but unlike :meth:`NestedWrappedModule.init`, it wraps a second :class:`torch.nn.Sequential` container to enable the desired non-uniform ``requires_grad`` ``use_orig_params=True`` tests. For both ``RECURSIVE`` and ``NO_FSDP`` init modes, freezes all parameters except the last two to validate ``ShardedGradScaler`` support for ranks with no (non-zero sized) local shards in FSDP ``use_orig_params=True`` mode. """ # The parameters that should remain unfrozen are in `module.2.1`. The regex # pattern below matches the relevant parameter names both with and without # an interstitial FSDP module indicator (`_fsdp_wrapped_module`) present. req_grad_pattern = re.compile(r"module\.2.*\.1.*") if fsdp_init_mode == FSDPInitMode.NO_FSDP: ddp_model = NonUniformReqGradNWM( group, wrap_fsdp=False, device_init_mode=device_init_mode, deterministic=deterministic, ) NonUniformReqGradNWM._set_nonuniform_req_grad(ddp_model, req_grad_pattern) return ddp_model elif fsdp_init_mode == FSDPInitMode.RECURSIVE: if fsdp_kwargs is None: fsdp_kwargs = {} fsdp_model = NonUniformReqGradNWM( group, wrap_fsdp=True, device_init_mode=device_init_mode, deterministic=deterministic, **fsdp_kwargs, ) if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) NonUniformReqGradNWM._set_nonuniform_req_grad(fsdp_model, req_grad_pattern) return fsdp_model raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}") class ModuleWithDelay(FSDPTestModel): """This class wraps a :class:`FSDPTestModel` to optionally add a delay after computing the loss and/or before the gradient reduction.""" def __init__( self, module: nn.Module, delay_after_loss_ms: int, delay_before_reduction_ms: int, ): super().__init__() self.delay_after_loss_ms = delay_after_loss_ms self.delay_before_reduction_ms = delay_before_reduction_ms self.module = module def get_input(self, device): return self.module.get_input(device) # type: ignore[operator] def forward(self, x): return self.module(x) def get_loss(self, input, output): loss = self.module.get_loss(input, output) # type: ignore[operator] if self.delay_after_loss_ms > 0: if TEST_HPU or TEST_XPU: time.sleep(self.delay_after_loss_ms / 1000) elif TEST_CUDA: torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms())) return loss def run_backward(self, loss): orig_reduce_scatter = torch.distributed.reduce_scatter_tensor def _delayed_reduce_scatter(*args, **kwargs): if self.delay_before_reduction_ms > 0: if TEST_CUDA: torch.cuda._sleep( int(self.delay_before_reduction_ms * get_cycles_per_ms()) ) elif TEST_HPU or TEST_XPU: time.sleep(self.delay_before_reduction_ms / 1000) return orig_reduce_scatter(*args, **kwargs) with mock.patch( "torch.distributed.reduce_scatter_tensor", _delayed_reduce_scatter ): self.module.run_backward(loss) # type: ignore[operator] @staticmethod def init( module_class: type[FSDPTestModel], *model_args: Any, delay_after_loss_ms: int, delay_before_reduction_ms: int, **model_kwargs: Any, ): """ Args: module_class (Type[FSDPTestModel]): Wrapped module class to which to add delays. model_args: Positional arguments forwarded to the ``module_class`` ``init()``. delay_after_loss_ms (int): Delay after computing the loss/before the optimizer step (in ms). delay_before_reduction_ms (int): Delay before reduce-scattering gradients (in ms). model_kwargs: Keyword arguments forwarded to the ``module_class`` ``init()``. """ return ModuleWithDelay( module_class.init(*model_args, **model_kwargs), delay_after_loss_ms, delay_before_reduction_ms, ) class NestedWrappedModuleWithDelay(ModuleWithDelay): @staticmethod def init( # type: ignore[override] group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode = DEVICEInitMode.DEVICE_AFTER, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, delay_after_loss_ms: int = 0, delay_before_reduction_ms: int = 0, ): return ModuleWithDelay.init( NestedWrappedModule, group=group, fsdp_init_mode=fsdp_init_mode, device_init_mode=device_init_mode, fsdp_kwargs=fsdp_kwargs, deterministic=deterministic, delay_after_loss_ms=delay_after_loss_ms, delay_before_reduction_ms=delay_before_reduction_ms, ) class DummyDDP(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, *args, **kwargs): return self.module(*args, **kwargs) class MixtureOfExperts(NestedWrappedModule): def __init__( self, group: dist.ProcessGroup, wrap_fsdp: bool, device_init_mode: DEVICEInitMode, delay_before_free_ms: int, deterministic: bool, **fsdp_kwargs, ): super().__init__( group=group, wrap_fsdp=wrap_fsdp, device_init_mode=device_init_mode, deterministic=deterministic, ) self.group = group self.delay_before_free_ms = delay_before_free_ms self.wrap_fsdp = wrap_fsdp self.move_to_device = device_init_mode == DEVICEInitMode.DEVICE_BEFORE if deterministic: # Give each rank different expert parameters torch.manual_seed(42 + self.rank) d_expert = 23 d_shared = 12 d_input = 8 expert = _move_to_device(nn.Linear(d_expert, d_shared), self.move_to_device) self.num_expert_params = sum(p.numel() for p in expert.parameters()) for p in expert.parameters(): p.expert = True # type: ignore[attr-defined] if deterministic: # Keep all other parameters the same across ranks torch.manual_seed(0) shared = _move_to_device(nn.Linear(d_shared, d_expert), self.move_to_device) if wrap_fsdp: # we create a process group of size 1 for the expert params expert_group = torch.distributed.new_group( [group.rank()] ) # world size 1 means no shard expert = FSDP(expert, expert_group, **fsdp_kwargs) # type: ignore[assignment] shared = FSDP(shared, group, **fsdp_kwargs) # type: ignore[assignment] self.module = nn.Sequential( _move_to_device(nn.Linear(d_input, d_shared), self.move_to_device), shared, expert, _move_to_device(nn.Linear(d_shared, d_input), self.move_to_device), ) def forward(self, x): if self.delay_before_free_ms > 0: expert = self.module[2] if isinstance(expert, FSDP): orig_reshard = torch.distributed.fsdp._runtime_utils._reshard def _delayed_reshard(*args, **kwargs): if TEST_CUDA: torch.cuda._sleep( int(self.delay_before_free_ms * get_cycles_per_ms()) ) elif TEST_HPU or TEST_XPU: time.sleep(self.delay_before_free_ms / 1000) return orig_reshard(*args, **kwargs) # This patch covers any `import torch..._reshard` uses. with mock.patch( "torch.distributed.fsdp._runtime_utils._reshard", _delayed_reshard ): return self.module(x) return self.module(x) def run_backward(self, loss): loss.backward() # Manually reduce gradients if not wrapped in FullyShardedDataParallel if not self.wrap_fsdp: with torch.no_grad(): for p in self.parameters(): if hasattr(p, "expert"): continue # these params don't need grad reduction if p.grad is not None: p.grad.div_(self.world_size) torch.distributed.all_reduce(p.grad, group=self.group) @staticmethod def init( group: dist.ProcessGroup, fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, fsdp_kwargs: Optional[dict[str, Any]] = None, deterministic: bool = False, delay_before_free_ms: int = 0, ): """ Initializes a :class:`MixtureOfExperts` instance. Args: fsdp_init_mode (FSDPInitMode): If ``NO_FSDP``, then does not wrap any modules with FSDP. If ``RECURSIVE``, then wraps some nested modules with FSDP, including the expert and shared layers, but not the top-level module. The model may later be wrapped with a top-level FSDP external to this method if desired. device_init_mode (DEVICEInitMode): Determines model movement to DEVICE. fsdp_kwargs (Optional[Dict[str, Any]]): Optional keyword arguments forwarded to the FSDP constructor. deterministic (bool): Whether to make the model deterministic across constructions. delay_before_free_ms (int): Delay before resharding expert parameters in the forward pass (in ms). """ if fsdp_kwargs is None: fsdp_kwargs = {} if fsdp_init_mode == FSDPInitMode.NO_FSDP: return MixtureOfExperts( group, wrap_fsdp=False, device_init_mode=device_init_mode, delay_before_free_ms=delay_before_free_ms, deterministic=deterministic, ) elif fsdp_init_mode == FSDPInitMode.RECURSIVE: # Does not wrap with top-level FSDP fsdp_model = MixtureOfExperts( group, wrap_fsdp=True, device_init_mode=device_init_mode, delay_before_free_ms=delay_before_free_ms, deterministic=deterministic, **fsdp_kwargs, ) if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) return fsdp_model raise ValueError(f"Unsupported FSDP init mode: {fsdp_init_mode}") class MLP(nn.Module): def __init__( self, dim: int, device: Optional[torch.device] = None, *, bias: bool = True, with_buffer: bool = False, dim_multiplier: int = 4, ): super().__init__() self.in_proj = nn.Linear(dim, dim_multiplier * dim, device=device, bias=bias) self.out_proj = nn.Linear(dim_multiplier * dim, dim, device=device, bias=bias) if with_buffer: self.register_buffer("buffer", torch.randn((dim,), device=device)) else: self.buffer = None def forward(self, x: torch.Tensor) -> torch.Tensor: z = self.in_proj(x) z = F.relu(z) z = self.out_proj(z) z = F.relu(z) if self.buffer is not None: z = z + self.buffer return z def reset_parameters(self): if self.buffer is not None: torch.nn.init.normal_(self.buffer) class MLPStack(nn.Sequential): def __init__(self, mlp_dim: int, *, with_seq_parallel: bool = False): modules: list[nn.Module] = [ # Use multiplier of 3 to exercise uneven case MLP(mlp_dim, dim_multiplier=3), MLP(mlp_dim), MLP(mlp_dim, dim_multiplier=3), ] if with_seq_parallel: modules.append(nn.LayerNorm(mlp_dim, bias=False)) super().__init__(*modules) self.with_seq_parallel = with_seq_parallel def parallelize( self, tp_mesh: DeviceMesh, dp_mesh: DeviceMesh, use_activation_checkpointing: bool, **fsdp_kwargs, ) -> "MLPStack": parallelize_plan = { # Pass `use_local_output=False` to keep as DTensor to preserve # uneven activation dims "0.in_proj": ColwiseParallel(use_local_output=False), "0.out_proj": RowwiseParallel(use_local_output=False), "1.in_proj": ColwiseParallel(use_local_output=False), "1.out_proj": RowwiseParallel(use_local_output=False), "2.in_proj": ColwiseParallel(use_local_output=False), "2.out_proj": RowwiseParallel(output_layouts=Shard(1)) if self.with_seq_parallel else RowwiseParallel(), } if self.with_seq_parallel: parallelize_plan["3"] = SequenceParallel(sequence_dim=1) parallelize_module(self, device_mesh=tp_mesh, parallelize_plan=parallelize_plan) for module in self: if isinstance(module, nn.LayerNorm): continue if use_activation_checkpointing: checkpoint(module) fully_shard(module, mesh=dp_mesh, **fsdp_kwargs) fully_shard(self, mesh=dp_mesh, **fsdp_kwargs) return self class DoubleLinear(nn.Module): """ This can be used for returning multiple outputs from a module (``use_second_linear=True``) or for having an unused module (``False``). """ def __init__(self, dim: int, use_second_linear: bool = True): super().__init__() self.lin1 = nn.Linear(dim, dim) self.lin2 = nn.Linear(dim, dim) self.relu = nn.ReLU() self.use_second_linear = use_second_linear def forward( self, x: torch.Tensor ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: if self.use_second_linear: return self.relu(self.lin1(x)), self.relu(self.lin2(x)) return self.relu(self.lin1(x)) # NOTE: For these patch methods, if we want safety under multi-threading (e.g. # when using multi-threaded process group), then we want: # (1) a barrier immediately after reading the original value to ensure that all # threads see the same original value # (2) a barrier immediately before restoring the original value to ensure that # all threads use the patched value inside the context @contextlib.contextmanager def patch_all_gather(new_all_gather_into_tensor: Callable): orig_all_gather = dist.all_gather_into_tensor dist.barrier() dist.all_gather_into_tensor = new_all_gather_into_tensor try: yield finally: dist.barrier() dist.all_gather_into_tensor = orig_all_gather @contextlib.contextmanager def patch_reduce_scatter(new_reduce_scatter_tensor: Callable): orig_reduce_scatter = dist.reduce_scatter_tensor dist.barrier() dist.reduce_scatter_tensor = new_reduce_scatter_tensor try: yield finally: dist.barrier() dist.reduce_scatter_tensor = orig_reduce_scatter @contextlib.contextmanager def patch_all_reduce(new_all_reduce: Callable): orig_all_reduce = dist.all_reduce dist.barrier() dist.all_reduce = new_all_reduce try: yield finally: dist.barrier() dist.all_reduce = orig_all_reduce @no_type_check @contextlib.contextmanager def patch_unshard(new_unshard: Callable): orig_unshard = FSDPParamGroup.unshard dist.barrier() FSDPParamGroup.unshard = new_unshard try: yield finally: dist.barrier() FSDPParamGroup.unshard = orig_unshard @no_type_check @contextlib.contextmanager def patch_reshard(new_reshard: Callable): orig_reshard = FSDPParamGroup.reshard dist.barrier() FSDPParamGroup.reshard = new_reshard try: yield finally: dist.barrier() FSDPParamGroup.reshard = orig_reshard @no_type_check @contextlib.contextmanager def patch_post_backward(new_post_backward: Callable): orig_post_backward = FSDPParamGroup.post_backward dist.barrier() FSDPParamGroup.post_backward = new_post_backward try: yield finally: dist.barrier() FSDPParamGroup.post_backward = orig_post_backward @no_type_check @contextlib.contextmanager def patch_register_post_backward_hook_backward(new_backward: Callable): orig_backward = RegisterPostBackwardFunction.backward dist.barrier() RegisterPostBackwardFunction.backward = new_backward try: yield finally: dist.barrier() RegisterPostBackwardFunction.backward = orig_backward def reduce_scatter_with_assert( cls, orig_reduce_scatter: Callable, assert_fn: Callable, # `assert_fn(output: Tensor)` *args: Any, **kwargs: Any, ): if len(args) > 0: output = args[0] elif "output" in kwargs: output = kwargs["output"] else: raise AssertionError( f"Cannot get reduce-scatter output from\nargs: {args}\nkwargs: {kwargs}" ) assert_fn(output) return orig_reduce_scatter(*args, **kwargs) def check_sharded_parity( cls, # unit test class replicated_module: nn.Module, sharded_module: nn.Module, prefixes_to_ignore: tuple[str, ...] = (), ): for (replicated_name, replicated_param), (sharded_name, sharded_param) in zip( replicated_module.named_parameters(), sharded_module.named_parameters() ): clean_sharded_name = sharded_name for prefix in prefixes_to_ignore: clean_sharded_name = clean_sharded_name.replace(prefix, "") cls.assertEqual(replicated_name, clean_sharded_name) cls.assertIsInstance(sharded_param, DTensor) assert isinstance(sharded_param, DTensor) # mypy mesh, placements = sharded_param.device_mesh, sharded_param.placements if tuple(placements) == (Shard(0), Shard(0)): raise AssertionError( "FSDP's (Shard(0), Shard(0)) layout differs from distribute_tensor(), " "so we cannot check for equality using it" ) sharded_ref_param = distribute_tensor(replicated_param, mesh, placements) cls.assertEqual(sharded_param.to_local(), sharded_ref_param.to_local()) if replicated_param.grad is None: cls.assertIsNone(sharded_param.grad) continue cls.assertIsNotNone(sharded_param.grad) sharded_ref_grad = distribute_tensor(replicated_param.grad, mesh, placements) cls.assertIsInstance(sharded_param.grad, DTensor) assert isinstance(sharded_param.grad, DTensor) # mypy cls.assertEqual(sharded_param.grad.to_local(), sharded_ref_grad.to_local()) @unittest.skipIf(TEST_XPU, "not-support-multithread") class FSDPTestMultiThread(MultiThreadedTestCase): @property def world_size(self): return DEVICE_COUNT def setUp(self): super().setUp() self._spawn_threads() def run_subtests(self, *args, **kwargs): return run_subtests(self, *args, **kwargs) def perThreadSetUp(self): torch._dynamo.reset() def perThreadTearDown(self): torch._dynamo.reset() class FSDPTest(MultiProcessTestCase): def setUp(self): super().setUp() # Set TORCH_NCCL_DESYNC_DEBUG=0 to disable the NCCL `workCleanupLoop()`, # which can cause unit test flakiness: # https://github.com/pytorch/pytorch/issues/90848 os.environ["TORCH_NCCL_DESYNC_DEBUG"] = "0" self._spawn_processes() @property def world_size(self): return DEVICE_COUNT @property def process_group(self): return dist.distributed_c10d._get_default_group() @property def destroy_pg_upon_exit(self) -> bool: # Overriding base test class: do not auto destroy PG upon exit. return False @property def init_method(self): return f"{FILE_SCHEMA}{self.file_name}" def _check_cpu_offload(self, fsdp_model, cpu_offload): self.assertEqual(cpu_offload, fsdp_model.cpu_offload) def _check_backward_prefetch(self, fsdp_model, backward_prefetch): self.assertEqual(backward_prefetch, fsdp_model.backward_prefetch) def _check_forward_prefetch(self, fsdp_model, forward_prefetch): self.assertEqual(forward_prefetch, fsdp_model.forward_prefetch) def run_subtests(self, *args, **kwargs): return run_subtests(self, *args, **kwargs) @classmethod def _run(cls, rank, test_name, file_name, pipe, **kwargs): # type: ignore[override] self = cls(test_name) self.rank = rank self.file_name = file_name fake_pg = kwargs.get("fake_pg", False) print(f"dist init r={self.rank}, world={self.world_size}") if torch.accelerator.device_count() < self.world_size: sys.exit(TEST_SKIPS[f"multi-gpu-{self.world_size}"].exit_code) # Specify gloo backend to make 'init_process_group()' succeed, # Actual tests will be skipped if there is no enough GPUs. try: if fake_pg: store = torch.testing._internal.distributed.fake_pg.FakeStore() dist.init_process_group( backend="fake", world_size=self.world_size, rank=rank, store=store, ) else: dist.init_process_group( init_method=self.init_method, backend=DISTRIBUTED_BACKEND, world_size=int(self.world_size), rank=self.rank, ) except RuntimeError as e: if "recompile" in e.args[0]: sys.exit(TEST_SKIPS["backend_unavailable"].exit_code) raise device_ids = None device_id = self.rank % DEVICE_COUNT if TEST_CUDA or TEST_XPU: torch.accelerator.set_device_index(device_id) device_ids = [device_id] # Execute barrier prior to running test to ensure that every process # has finished initialization and that the following test # immediately exiting due to a skip doesn't cause flakiness. dist.barrier(device_ids=device_ids) torch._dynamo.reset() self.run_test(test_name, pipe) torch._dynamo.reset() dist.barrier(device_ids=device_ids) dist.destroy_process_group() def _train_for_several_steps( self, model: nn.Module, num_steps: int, autocast: bool, lr: float = 0.01, fsdp_cpu_offload: Optional[CPUOffload] = None, save_model: bool = False, mixed_precision: Optional[MixedPrecision] = None, enable_sharded_grad_scaler: bool = False, use_pure_fp16: bool = False, sharded_grad_scaler_kwargs: Optional[dict[str, Any]] = None, ): cpu_offload_params = fsdp_cpu_offload and fsdp_cpu_offload.offload_params model_device = next(model.parameters()).device if sharded_grad_scaler_kwargs is None: sharded_grad_scaler_kwargs = {} sharded_grad_scaler = ShardedGradScaler( enabled=enable_sharded_grad_scaler, **sharded_grad_scaler_kwargs ) # use SGD with momentum instead of Adam, since Adam is scale invariant # and this makes it bad for tests optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9) for _ in range(num_steps): optim.zero_grad() with torch.amp.autocast(DEVICE_TYPE, enabled=autocast): # Inputs always cuda regardless of cpu offloading, or model.device input = model.module.get_input(torch.device(DEVICE_TYPE)) # type: ignore[operator, union-attr] if use_pure_fp16 or (mixed_precision and not isinstance(model, FSDP)): if isinstance(input, torch.Tensor): input = input.half() else: input = tuple(x.half() for x in input) output = model(*input) # Post-forward, if CPU offloading model param should be on CPU. if ( cpu_offload_params and isinstance(model, FSDP) # If not resharding after forward, the parameters are still # exposed as unsharded views into the GPU flat parameter and model.sharding_strategy not in NO_RESHARD_AFTER_FORWARD_STRATEGIES ): for p in model.parameters(): # Params should always be on CPU self.assertEqual(p.device, torch.device("cpu")) loss = model.module.get_loss(input, output).to(model_device) # type: ignore[operator, union-attr] loss = sharded_grad_scaler.scale(loss) if not mixed_precision and not use_pure_fp16: assert loss.dtype == torch.float32, ( "loss data type should be float32, as the original \ parameter data type is float32." ) else: if use_pure_fp16: self.assertEqual(loss.dtype, torch.float16) # FSDP loss is fp16, DDP AMP loss is fp32 elif isinstance(model, FSDP): assert mixed_precision is not None # mypy self.assertEqual(loss.dtype, mixed_precision.param_dtype) else: self.assertEqual(loss.dtype, torch.float32) model.module.run_backward(loss) # type: ignore[operator, union-attr] # Post-backward, if CPU offloading model params should be on CPU. if cpu_offload_params and isinstance(model, FSDP): for p in model.parameters(): # Params should always be on CPU self.assertEqual(p.device, torch.device("cpu")) # Unscale the gradients and step sharded_grad_scaler.step(optim) # Update the scale factor sharded_grad_scaler.update() # if save_model, simulate save + load. if save_model: state_dict = {k: v.clone() for k, v in model.state_dict().items()} # Zero params, if save/load state_dict did not work properly, this # would break the parity test with DDP. _zero_model(model) model.load_state_dict(state_dict) if isinstance(model, FSDP): model._assert_state(TrainingState.IDLE) return loss.detach() # type: ignore[possibly-undefined] def _test_fsdp_parity( self, model_class: type[FSDPTestModel], fsdp_init_mode: FSDPInitMode, device_init_mode: DEVICEInitMode, ref_init_fn: Optional[Callable] = None, num_iters: int = 2, save_model: bool = True, cpu_offload: CPUOffload = CPUOffload(), backward_prefetch: Optional[BackwardPrefetch] = None, sharding_strategy: Optional[ShardingStrategy] = None, mixed_precision: Optional[MixedPrecision] = None, forward_prefetch: bool = False, use_orig_params: bool = False, enable_sharded_grad_scaler: bool = False, use_pure_fp16: bool = False, init_kwargs: Optional[dict[str, Any]] = None, sharded_grad_scaler_kwargs: Optional[dict[str, Any]] = None, **fsdp_kwargs, ): """ Tests FSDP training against a reference, which defaults to DDP but may be customized with ``ref_init_fn``. Args: model_class (Type[FSDPTestModel]): A model class that inherits from ``FSDPTestModel``, which defines the expected interface. fsdp_init_mode (FSDPInitMode): The mode to initialize the FSDP-wrapped model. This should not be ``NO_FSDP``. ref_init_fn (Optional[Callable]): A callable to invoke that wraps a non-wrapped model to construct the reference model, where this wrapper should provide data parallel semantics. If ``None``, then the callable defaults to the DDP constructor. """ assert fsdp_init_mode != FSDPInitMode.NO_FSDP, ( "Expects an FSDP init mode that wraps with FSDP" ) if init_kwargs is None: init_kwargs = {} lr = 1e-2 rank = self.process_group.rank() # Establish reference behavior with DDP model = model_class.init( self.process_group, FSDPInitMode.NO_FSDP, DEVICEInitMode.DEVICE_BEFORE, deterministic=True, **init_kwargs, ) if ref_init_fn is None: if TEST_HPU: ref_model = DDP( model, device_ids=[DEVICE_TYPE], output_device=DEVICE_TYPE ) else: ref_model = DDP(model, device_ids=[rank], output_device=rank) else: ref_model = ref_init_fn(model) if use_pure_fp16: ref_model = ref_model.half() ref_loss = self._train_for_several_steps( ref_model, num_iters, autocast=mixed_precision is not None, lr=lr, fsdp_cpu_offload=cpu_offload, mixed_precision=mixed_precision, enable_sharded_grad_scaler=enable_sharded_grad_scaler, use_pure_fp16=use_pure_fp16, sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs, ) ddp_params = list(ref_model.parameters()) # Check against FSDP behavior fsdp_kwargs.update( { "cpu_offload": cpu_offload, "backward_prefetch": backward_prefetch, "sharding_strategy": sharding_strategy, "mixed_precision": mixed_precision, "forward_prefetch": forward_prefetch, "use_orig_params": use_orig_params, } ) try: fsdp_model = model_class.init( self.process_group, fsdp_init_mode, device_init_mode, fsdp_kwargs, deterministic=True, **init_kwargs, ) except Exception as e: raise ValueError(f"Initializing {model_class} raised error {str(e)}") from e if not isinstance(fsdp_model, FSDP): # Enforce that we wrap with top-level FSDP since we are comparing # assuming a data parallel reference and some test models may not # do so in their `init()` method fsdp_model = FSDP(fsdp_model, self.process_group, **fsdp_kwargs) if use_pure_fp16: # Change the model parameter dtype after FSDP initialization fsdp_model = fsdp_model.half() if device_init_mode == DEVICEInitMode.DEVICE_AFTER: fsdp_model = fsdp_model.to(DEVICE_TYPE) offload_params = cpu_offload is not None and cpu_offload.offload_params # Offloading parameters with `DEVICE_AFTER` should raise an error during # lazy initialization due to the parameter devices not being CPU; # otherwise, all parameter devices should be CPU expects_device_error = ( offload_params and device_init_mode == DEVICEInitMode.DEVICE_AFTER ) expects_cpu_device = ( offload_params and device_init_mode != DEVICEInitMode.DEVICE_AFTER ) if expects_cpu_device: cpu_device = torch.device("cpu") for param in fsdp_model.parameters(): self.assertEqual(param.device, cpu_device) context = ( self.assertRaisesRegex( RuntimeError, "An FSDP-managed module with parameter CPU offloading enabled " f"has parameters on {DEVICE_TYPE}", ) if expects_device_error else nullcontext() ) with context: fsdp_loss = self._train_for_several_steps( fsdp_model, num_iters, autocast=False, lr=lr, fsdp_cpu_offload=cpu_offload, save_model=save_model, mixed_precision=mixed_precision, enable_sharded_grad_scaler=enable_sharded_grad_scaler, use_pure_fp16=use_pure_fp16, sharded_grad_scaler_kwargs=sharded_grad_scaler_kwargs, ) # No need to check for parameter and loss parity if expecting an error if expects_device_error: return # Check parameter devices are CPU if offloading to CPU before calling # `get_full_params()`, which will cast the parameters to FP32 if offload_params: cpu_device = torch.device("cpu") for param in fsdp_model.parameters(): self.assertEqual(param.device, cpu_device) fsdp_loss = fsdp_loss.to(DEVICE_TYPE) fsdp_unsharded_params = get_full_params(fsdp_model) # Do not check dtype since the reference DDP loss may not be the same # dtype as the FSDP loss in the case of mixed precision torch.testing.assert_close(ref_loss, fsdp_loss, check_dtype=False) # Do not check for parameter parity if using mixed precision since (1) # the DDP parameters are in FP16 (from `half()`) while the FSDP # parameters are in FP32 (from `summon_full_params()`) and (2) DDP runs # the optimizer in FP16 while FSDP runs it in FP32 # TODO: Disable checking the parameters for pure FP16 due to floating # point inaccuracy. Note that this means that the backward pass is not # checked: https://github.com/pytorch/pytorch/issues/90784 if mixed_precision is None and not use_pure_fp16: self.assertEqual( ddp_params, fsdp_unsharded_params, exact_device=True, msg="FSDP did not match DDP", ) def compiled_fsdp_test(compile_compute_on_module: Optional[type] = None): def fully_shard_with_compiled_compute(*args, **kwargs): torch.distributed.fsdp.fully_shard(*args, **kwargs) # type: ignore[operator] if compile_compute_on_module is None or isinstance( args[0], compile_compute_on_module ): args[0].compile() class FullyShardMode(Enum): EAGER = auto() COMPILED_COMPUTE = auto() def decorator(func): @wraps(func) def wrapper(*args, **kwargs): original_fully_shard: Any = torch.distributed.fsdp.fully_shard for mode in FullyShardMode: if mode != FullyShardMode.EAGER and not has_triton(): warnings.warn("Inductor on GPU needs Triton and recent GPU arch") continue # barrier to ensure thread reading the same value original_skip_fsdp_hooks = torch._dynamo.config.skip_fsdp_hooks original_compile_threads = torch._inductor.config.compile_threads torch.distributed.barrier() if mode == FullyShardMode.EAGER: fully_shard_patch = original_fully_shard elif mode == FullyShardMode.COMPILED_COMPUTE: torch._dynamo.config.skip_fsdp_hooks = True torch._inductor.config.compile_threads = 1 fully_shard_patch = fully_shard_with_compiled_compute # type: ignore[assignment] else: raise NotImplementedError( f"Need to implement FullyShardMode={mode}" ) # fully_shard is imported as a global # through `from ... import fully_shard` func.__globals__[original_fully_shard.__name__] = fully_shard_patch func(*args, **kwargs) # other threads use patched func before this thread restores torch.distributed.barrier() func.__globals__[original_fully_shard.__name__] = original_fully_shard torch._dynamo.config.skip_fsdp_hooks = original_skip_fsdp_hooks torch._inductor.config.compile_threads = original_compile_threads return wrapper return decorator class SkipModule(nn.Module): def __init__(self) -> None: super().__init__() self.lin = nn.Linear(10, 10, bias=False) def forward(self, x): return self.lin(x) class NestedLinear(nn.Module): def __init__(self, fsdp_wrap): super().__init__() if fsdp_wrap: self.nested_linear = wrap(nn.Linear(10, 10, bias=False).to(DEVICE_TYPE)) else: self.nested_linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE) def forward(self, x): return self.nested_linear(x) class SkipModel(nn.Module): def __init__(self, double_nest): super().__init__() self.linear = nn.Linear(10, 10, bias=False).to(DEVICE_TYPE) self.linear_skip = SkipModule().to(DEVICE_TYPE) self.nested_linear = wrap( NestedLinear(fsdp_wrap=double_nest), device_id=DEVICE_TYPE ) def forward(self, x): x = self.linear(x) x = self.linear_skip(x) x = self.nested_linear(x) return x