# mypy: allow-untyped-defs import copy import dataclasses import functools import io import json import logging import os import re import sys import types import warnings import weakref import zipfile from collections import OrderedDict from contextlib import contextmanager from functools import lru_cache from typing import Any, Optional, TYPE_CHECKING, Union from collections.abc import Callable from unittest.mock import patch import torch import torch.fx import torch.utils._pytree as pytree from torch._dispatch.python import enable_python_dispatcher from torch._guards import compile_context from torch._utils_internal import log_export_usage from torch.export._tree_utils import reorder_kwargs from torch.export.graph_signature import ( ArgumentSpec, ConstantArgument, ExportGraphSignature, InputKind, InputSpec, OutputKind, OutputSpec, SymIntArgument, SymBoolArgument, SymFloatArgument, TensorArgument, ) from torch.fx import traceback as fx_traceback from torch.fx._compatibility import compatibility from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo from .wrappers import _wrap_submodules from .utils import _materialize_cpp_cia_ops from . import config if TYPE_CHECKING: from torch._C._aoti import AOTIModelContainerRunner log = logging.getLogger(__name__) @dataclasses.dataclass class ExportDynamoConfig: """ Manage Export-specific configurations of Dynamo. """ allow_rnn: bool = True # We only want to print this once to avoid flooding logs in workflows where aot_compile_warning # is called multiple times. @lru_cache def aot_compile_warning(): log.warning("+============================+") log.warning("| !!! WARNING !!! |") log.warning("+============================+") log.warning( "torch._export.aot_compile()/torch._export.aot_load() is being deprecated, please switch to " "directly calling torch._inductor.aoti_compile_and_package(torch.export.export())/" "torch._inductor.aoti_load_package() instead.") def aot_compile( f: Callable, args: tuple[Any], kwargs: Optional[dict[str, Any]] = None, *, dynamic_shapes: Optional[dict[str, Any]] = None, options: Optional[dict[str, Any]] = None, remove_runtime_assertions: bool = False, disable_constraint_solver: bool = False, same_signature: bool = True, ) -> Union[list[Any], str]: """ Note: this function is not stable yet Traces either an nn.Module's forward function or just a callable with PyTorch operations inside, generates executable cpp code from the program, and returns the path to the generated shared library Args: f: the `nn.Module` or callable to trace. args: example positional inputs. kwargs: optional example keyword inputs. dynamic_shapes: Should either be: 1) a dict from argument names of ``f`` to their dynamic shape specifications, 2) a tuple that specifies dynamic shape specifications for each input in original order. If you are specifying dynamism on keyword args, you will need to pass them in the order that is defined in the original function signature. The dynamic shape of a tensor argument can be specified as either (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is not required to include static dimension indices in this dict, but when they are, they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None, where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions are denoted by None. Arguments that are dicts or tuples / lists of tensors are recursively specified by using mappings or sequences of contained specifications. options: A dictionary of options to control inductor disable_constraint_solver: Whether the dim constraint solver must be disabled. Returns: Path to the generated shared library """ from torch.export._trace import _export_to_torch_ir from torch._inductor.decomposition import select_decomp_table from torch._inductor import config as inductor_config aot_compile_warning() if inductor_config.is_predispatch: gm = torch.export._trace._export(f, args, kwargs, dynamic_shapes, pre_dispatch=True).module() else: # We want to export to Torch IR here to utilize the pre_grad passes in # inductor, which run on Torch IR. with torch._export.config.patch(use_new_tracer_experimental=True): gm = _export_to_torch_ir( f, args, kwargs, dynamic_shapes, disable_constraint_solver=disable_constraint_solver, same_signature=same_signature, # Disabling this flag, because instead we can rely on the mapping # dynamo_flat_name_to_original_fqn which is coming from Dynamo. restore_fqn=False, ) with torch.no_grad(): so_path = torch._inductor.aot_compile(gm, args, kwargs, options=options) # type: ignore[arg-type] assert isinstance(so_path, (str, list)) return so_path def aot_load(so_path: str, device: str) -> Callable: """ Loads a shared library generated by aot_compile and returns a callable Args: so_path: Path to the shared library Returns: A callable """ aot_compile_warning() if device == "cpu": runner: AOTIModelContainerRunner = torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1) elif device == "cuda" or device.startswith("cuda:"): runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device) elif device == "xpu" or device.startswith("xpu:"): runner = torch._C._aoti.AOTIModelContainerRunnerXpu(so_path, 1, device) elif device == "mps" or device.startswith("mps:"): runner = torch._C._aoti.AOTIModelContainerRunnerMps(so_path, 1) else: raise RuntimeError("Unsupported device " + device) def optimized(*args, **kwargs): call_spec = runner.get_call_spec() in_spec = pytree.treespec_loads(call_spec[0]) out_spec = pytree.treespec_loads(call_spec[1]) flat_inputs = pytree.tree_flatten((args, reorder_kwargs(kwargs, in_spec)))[0] flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)] flat_outputs = runner.run(flat_inputs) return pytree.tree_unflatten(flat_outputs, out_spec) return optimized