Compare commits

..

1 Commits

Author SHA1 Message Date
73c49ee963 Speed up fx graph iteration by implementing it in C++
ghstack-source-id: af7493f6f73baf00e30a6d5790a601729bd9c900
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128288
2024-06-08 17:12:47 -07:00
4329 changed files with 96064 additions and 163400 deletions

View File

@ -1,4 +1,4 @@
# Docker images for GitHub CI and CD
# Docker images for GitHub CI
This directory contains everything needed to build the Docker images
that are used in our CI.
@ -12,7 +12,7 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
## Docker CI builds
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
@ -21,12 +21,6 @@ See `build.sh` for valid build environments (it's the giant switch).
* `ubuntu-rocm` -- Dockerfile for Ubuntu image with ROCm support
* `ubuntu-xpu` -- Dockerfile for Ubuntu image with XPU support
### Docker CD builds
* `conda` - Dockerfile and build.sh to build Docker images used in nightly conda builds
* `manywheel` - Dockerfile and build.sh to build Docker images used in nightly manywheel builds
* `libtorch` - Dockerfile and build.sh to build Docker images used in nightly libtorch builds
## Usage
```bash

View File

@ -1,5 +0,0 @@
0.6b
manylinux_2_17
rocm6.1
7f07e8a1cb1f99627eb6d77f5c0e9295c775f3c7
77c29fa3f3b614e187d7213d745e989a92708cee2bc6020419ab49019af399d1

View File

@ -373,13 +373,6 @@ case "$image" in
CONDA_CMAKE=yes
EXECUTORCH=yes
;;
pytorch-linux-jammy-py3.12-halide)
CUDA_VERSION=12.4
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
CONDA_CMAKE=yes
HALIDE=yes
;;
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
@ -407,22 +400,6 @@ case "$image" in
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
# snadampal: skipping sccache due to the following issue
# https://github.com/pytorch/pytorch/issues/121559
SKIP_SCCACHE_INSTALL=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
INDUCTOR_BENCHMARKS=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
@ -513,7 +490,6 @@ docker build \
--build-arg "DOCS=${DOCS}" \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "HALIDE=${HALIDE}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \

View File

@ -113,18 +113,18 @@ COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-rocm.txt triton_version.txt
# Install AOTriton (Early fail)
COPY ./aotriton_version.txt aotriton_version.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN ["/bin/bash", "-c", "./install_aotriton.sh /opt/rocm && rm -rf install_aotriton.sh aotriton_version.txt common_utils.sh"]
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Install AOTriton
COPY ci_commit_pins/aotriton.txt aotriton.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm/aotriton && rm -rf install_aotriton.sh aotriton aotriton.txt common_utils.sh
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}

View File

@ -0,0 +1 @@
24a3fe9cb57e5cda3c923df29743f9767194cc27

View File

@ -1 +1 @@
91298923a0076c1b41059efb6dad2876426e4b03
d4b3e5cc607e97afdba79dc90f8ef968142f347c

View File

@ -1 +0,0 @@
340136fec6d3ebc73e7a19eba1663e9b0ba8ab2d

View File

@ -1 +1 @@
21eae954efa5bf584da70324b640288c3ee7aede
01cbe5045a6898c9a925f01435c8277b2fe6afcc

View File

@ -1 +1 @@
1b2f15840e0d70eec50d84c7a0575cb835524def
b8c64f64c18d8cac598b3adb355c21e7439c21de

View File

@ -1 +1 @@
dedb7bdf339a3546896d4820366ca562c586bfa0
45fff310c891f5a92d55445adf8cc9d29df5841e

View File

@ -1,5 +0,0 @@
0.6b
manylinux_2_17
rocm6.1
04b5df8c8123f90cba3ede7e971e6fbc6040d506
77c29fa3f3b614e187d7213d745e989a92708cee2bc6020419ab49019af399d1

31
.ci/docker/common/install_aotriton.sh Executable file → Normal file
View File

@ -4,20 +4,21 @@ set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
TARBALL='aotriton.tar.bz2'
# This read command alwasy returns with exit code 1
read -d "\n" VER MANYLINUX ROCMBASE PINNED_COMMIT SHA256 < aotriton_version.txt || true
ARCH=$(uname -m)
AOTRITON_DIR="aotriton"
AOTRITON_PINNED_NAME="aotriton" # No .txt extension
AOTRITON_PINNED_COMMIT=$(get_pinned_commit ${AOTRITON_PINNED_NAME})
AOTRITON_INSTALL_PREFIX="$1"
AOTRITON_URL="https://github.com/ROCm/aotriton/releases/download/${VER}/aotriton-${VER}-${MANYLINUX}_${ARCH}-${ROCMBASE}-shared.tar.bz2"
cd "${AOTRITON_INSTALL_PREFIX}"
# Must use -L to follow redirects
curl -L --retry 3 -o "${TARBALL}" "${AOTRITON_URL}"
ACTUAL_SHA256=$(sha256sum "${TARBALL}" | cut -d " " -f 1)
if [ "${SHA256}" != "${ACTUAL_SHA256}" ]; then
echo -n "Error: The SHA256 of downloaded tarball is ${ACTUAL_SHA256},"
echo " which does not match the expected value ${SHA256}."
exit
fi
tar xf "${TARBALL}" && rm -rf "${TARBALL}"
git clone https://github.com/ROCm/aotriton.git "${AOTRITON_DIR}"
cd "${AOTRITON_DIR}"
git checkout "${AOTRITON_PINNED_COMMIT}"
git submodule sync --recursive
git submodule update --init --recursive --force --depth 1
mkdir build
cd build
cmake .. -G Ninja -DCMAKE_INSTALL_PREFIX=./install_dir -DCMAKE_BUILD_TYPE=Release -DAOTRITON_COMPRESS_KERNEL=OFF -DAOTRITON_NO_PYTHON=ON -DAOTRITON_NO_SHARED=ON
ninja install
mkdir -p "${AOTRITON_INSTALL_PREFIX}"
cp -r install_dir/* "${AOTRITON_INSTALL_PREFIX}"
find /tmp/ -mindepth 1 -delete
rm -rf ~/.triton

View File

@ -85,7 +85,7 @@ fi
else
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2021.4.0 mkl-include=2021.4.0 setuptools"
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.12" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.13" ]; then
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.12" ]; then
conda_install numpy=1.26.0 ${CONDA_COMMON_DEPS}
else
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}

View File

@ -1,20 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
# Anaconda
# Latest anaconda is using openssl-3 which is incompatible with all currently published versions of git
# Which are using openssl-1.1.1, see https://anaconda.org/anaconda/git/files?version=2.40.1 for example
MINICONDA_URL=https://repo.anaconda.com/miniconda/Miniconda3-py311_23.5.2-0-Linux-x86_64.sh
wget -q $MINICONDA_URL
# NB: Manually invoke bash per https://github.com/conda/conda/issues/10431
bash $(basename "$MINICONDA_URL") -b -p /opt/conda
rm $(basename "$MINICONDA_URL")
export PATH=/opt/conda/bin:$PATH
# See https://github.com/pytorch/builder/issues/1473
# Pin conda to 23.5.2 as it's the last one compatible with openssl-1.1.1
conda install -y conda=23.5.2 conda-build anaconda-client git ninja
# The cmake version here needs to match with the minimum version of cmake
# supported by PyTorch (3.18). There is only 3.18.2 on anaconda
/opt/conda/bin/pip3 install cmake==3.18.2
conda remove -y --force patchelf

View File

@ -1,95 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.8.1 3.9.0 3.10.1 3.11.0 3.12.0 3.13.0"}
function check_var {
if [ -z "$1" ]; then
echo "required variable not defined"
exit 1
fi
}
function do_cpython_build {
local py_ver=$1
local py_folder=$2
check_var $py_ver
check_var $py_folder
tar -xzf Python-$py_ver.tgz
pushd $py_folder
local prefix="/opt/_internal/cpython-${py_ver}"
mkdir -p ${prefix}/lib
if [[ -n $(which patchelf) ]]; then
local shared_flags="--enable-shared"
else
local shared_flags="--disable-shared"
fi
if [[ -z "${WITH_OPENSSL+x}" ]]; then
local openssl_flags=""
else
local openssl_flags="--with-openssl=${WITH_OPENSSL} --with-openssl-rpath=auto"
fi
# -Wformat added for https://bugs.python.org/issue17547 on Python 2.6
CFLAGS="-Wformat" ./configure --prefix=${prefix} ${openssl_flags} ${shared_flags} > /dev/null
make -j40 > /dev/null
make install > /dev/null
if [[ "${shared_flags}" == "--enable-shared" ]]; then
patchelf --set-rpath '$ORIGIN/../lib' ${prefix}/bin/python3
fi
popd
rm -rf $py_folder
# Some python's install as bin/python3. Make them available as
# bin/python.
if [ -e ${prefix}/bin/python3 ]; then
ln -s python3 ${prefix}/bin/python
fi
${prefix}/bin/python get-pip.py
if [ -e ${prefix}/bin/pip3 ] && [ ! -e ${prefix}/bin/pip ]; then
ln -s pip3 ${prefix}/bin/pip
fi
${prefix}/bin/pip install wheel==0.34.2
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -s ${prefix} /opt/python/${abi_tag}
}
function build_cpython {
local py_ver=$1
check_var $py_ver
check_var $PYTHON_DOWNLOAD_URL
local py_ver_folder=$py_ver
if [ "$py_ver" = "3.13.0" ]; then
PY_VER_SHORT="3.13"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PY_VER_SHORT
else
wget -q $PYTHON_DOWNLOAD_URL/$py_ver_folder/Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_ver
fi
rm -f Python-$py_ver.tgz
}
function build_cpythons {
check_var $GET_PIP_URL
curl -sLO $GET_PIP_URL
for py_ver in $@; do
build_cpython $py_ver
done
rm -f get-pip.py
}
mkdir -p /opt/python
mkdir -p /opt/_internal
build_cpythons $CPYTHON_VERSIONS

View File

@ -1,239 +0,0 @@
#!/bin/bash
set -ex
NCCL_VERSION=v2.21.5-1
CUDNN_VERSION=9.1.0.70
function install_cusparselt_040 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.4.0.7-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.4.0.7-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.4.0.7-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.4.0.7-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_cusparselt_052 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.5.2.1-archive.tar.xz
tar xf libcusparse_lt-linux-x86_64-0.5.2.1-archive.tar.xz
cp -a libcusparse_lt-linux-x86_64-0.5.2.1-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-x86_64-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_118 {
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.4.0"
rm -rf /usr/local/cuda-11.8 /usr/local/cuda
# install CUDA 11.8.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
chmod +x cuda_11.8.0_520.61.05_linux.run
./cuda_11.8.0_520.61.05_linux.run --toolkit --silent
rm -f cuda_11.8.0_520.61.05_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-11.8 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda11-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_040
ldconfig
}
function install_121 {
echo "Installing CUDA 12.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.5.2"
rm -rf /usr/local/cuda-12.1 /usr/local/cuda
# install CUDA 12.1.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
chmod +x cuda_12.1.1_530.30.02_linux.run
./cuda_12.1.1_530.30.02_linux.run --toolkit --silent
rm -f cuda_12.1.1_530.30.02_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.1 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_052
ldconfig
}
function install_124 {
echo "Installing CUDA 12.4 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.5.2"
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
# install CUDA 12.4.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run
chmod +x cuda_12.4.0_550.54.14_linux.run
./cuda_12.4.0_550.54.14_linux.run --toolkit --silent
rm -f cuda_12.4.0_550.54.14_linux.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.4 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
tar xf cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive.tar.xz
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-x86_64-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b $NCCL_VERSION --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_052
ldconfig
}
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
function prune_121 {
echo "Pruning CUDA 12.1"
#####################################################################################
# CUDA 12.1 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.1/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.1/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.1 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.1/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2023.1.0 $CUDA_BASE/nsight-systems-2023.1.2/
}
function prune_124 {
echo "Pruning CUDA 12.4"
#####################################################################################
# CUDA 12.4 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.4/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.4/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.1 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.4/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
11.8) install_118; prune_118
;;
12.1) install_121; prune_121
;;
12.4) install_124; prune_124
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -1,93 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
NCCL_VERSION=v2.21.5-1
function install_cusparselt_052 {
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && pushd tmp_cusparselt
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz
tar xf libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz
cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/include/* /usr/local/cuda/include/
cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cusparselt
}
function install_124 {
echo "Installing CUDA 12.4 and cuDNN 9.1 and NCCL ${NCCL_VERSION} and cuSparseLt-0.5.2"
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
# install CUDA 12.4.0 in the same container
wget -q https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux_sbsa.run
chmod +x cuda_12.4.0_550.54.14_linux_sbsa.run
./cuda_12.4.0_550.54.14_linux_sbsa.run --toolkit --silent
rm -f cuda_12.4.0_550.54.14_linux_sbsa.run
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.4 /usr/local/cuda
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz -O cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz
tar xf cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz
cp -a cudnn-linux-sbsa-9.1.0.70_cuda12-archive/include/* /usr/local/cuda/include/
cp -a cudnn-linux-sbsa-9.1.0.70_cuda12-archive/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cudnn
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
git clone -b ${NCCL_VERSION} --depth 1 https://github.com/NVIDIA/nccl.git
cd nccl && make -j src.build
cp -a build/include/* /usr/local/cuda/include/
cp -a build/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf nccl
install_cusparselt_052
ldconfig
}
function prune_124 {
echo "Pruning CUDA 12.4"
#####################################################################################
# CUDA 12.4 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.4/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.4/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.1 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.4/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
}
# idiomatic parameter and option handling in sh
while test $# -gt 0
do
case "$1" in
12.4) install_124; prune_124
;;
*) echo "bad argument $1"; exit 1
;;
esac
shift
done

View File

@ -37,9 +37,6 @@ install_conda_dependencies() {
install_pip_dependencies() {
pushd executorch/.ci/docker
# Install PyTorch CPU build beforehand to avoid installing the much bigger CUDA
# binaries later, ExecuTorch only needs CPU
pip_install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
# Install all Python dependencies
pip_install -r requirements-ci.txt
popd
@ -47,14 +44,13 @@ install_pip_dependencies() {
setup_executorch() {
pushd executorch
# Setup swiftshader and Vulkan SDK which are required to build the Vulkan delegate
as_jenkins bash .ci/scripts/setup-vulkan-linux-deps.sh
source .ci/scripts/utils.sh
export PYTHON_EXECUTABLE=python
export EXECUTORCH_BUILD_PYBIND=ON
export CMAKE_ARGS="-DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
install_flatc_from_source
pip_install .
as_jenkins .ci/scripts/setup-linux.sh cmake
# Make sure that all the newly generate files are owned by Jenkins
chown -R jenkins .
popd
}

View File

@ -1,46 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
COMMIT=$(get_pinned_commit halide)
test -n "$COMMIT"
# activate conda to populate CONDA_PREFIX
test -n "$ANACONDA_PYTHON_VERSION"
eval "$(conda shell.bash hook)"
conda activate py_$ANACONDA_PYTHON_VERSION
if [ -n "${UBUNTU_VERSION}" ];then
apt update
apt-get install -y lld liblld-15-dev libpng-dev libjpeg-dev libgl-dev \
libopenblas-dev libeigen3-dev libatlas-base-dev libzstd-dev
fi
conda_install numpy scipy imageio cmake ninja
git clone --depth 1 --branch release/16.x --recursive https://github.com/llvm/llvm-project.git
cmake -DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="clang" \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX" \
-DLLVM_ENABLE_TERMINFO=OFF -DLLVM_ENABLE_ASSERTIONS=ON \
-DLLVM_ENABLE_EH=ON -DLLVM_ENABLE_RTTI=ON -DLLVM_BUILD_32_BITS=OFF \
-S llvm-project/llvm -B llvm-build -G Ninja
cmake --build llvm-build
cmake --install llvm-build --prefix llvm-install
export LLVM_ROOT=`pwd`/llvm-install
export LLVM_CONFIG=$LLVM_ROOT/bin/llvm-config
git clone https://github.com/halide/Halide.git
pushd Halide
git checkout ${COMMIT} && git submodule update --init --recursive
pip_install -r requirements.txt
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release -S . -B build
cmake --build build
test -e ${CONDA_PREFIX}/lib/python3 || ln -s python${ANACONDA_PYTHON_VERSION} ${CONDA_PREFIX}/lib/python3
cmake --install build --prefix ${CONDA_PREFIX}
chown -R jenkins ${CONDA_PREFIX}
popd
rm -rf Halide llvm-build llvm-project llvm-install
python -c "import halide" # check for errors

View File

@ -1,23 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
LIBPNG_VERSION=1.6.37
mkdir -p libpng
pushd libpng
wget http://download.sourceforge.net/libpng/libpng-$LIBPNG_VERSION.tar.gz
tar -xvzf libpng-$LIBPNG_VERSION.tar.gz
pushd libpng-$LIBPNG_VERSION
./configure
make
make install
popd
popd
rm -rf libpng

View File

@ -1,29 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
MAGMA_VERSION="2.5.2"
function do_install() {
cuda_version=$1
cuda_version_nodot=${1/./}
MAGMA_VERSION="2.6.1"
magma_archive="magma-cuda${cuda_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
cuda_dir="/usr/local/cuda-${cuda_version}"
(
set -x
tmp_dir=$(mktemp -d)
pushd ${tmp_dir}
curl -OLs https://anaconda.org/pytorch/magma-cuda${cuda_version_nodot}/${MAGMA_VERSION}/download/linux-64/${magma_archive}
tar -xvf "${magma_archive}"
mkdir -p "${cuda_dir}/magma"
mv include "${cuda_dir}/magma/include"
mv lib "${cuda_dir}/magma/lib"
popd
)
}
do_install $1

View File

@ -1,134 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
ROCM_VERSION=$1
if [[ -z $ROCM_VERSION ]]; then
echo "missing ROCM_VERSION"
exit 1;
fi
# To make version comparison easier, create an integer representation.
save_IFS="$IFS"
IFS=. ROCM_VERSION_ARRAY=(${ROCM_VERSION})
IFS="$save_IFS"
if [[ ${#ROCM_VERSION_ARRAY[@]} == 2 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=0
elif [[ ${#ROCM_VERSION_ARRAY[@]} == 3 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=${ROCM_VERSION_ARRAY[2]}
else
echo "Unhandled ROCM_VERSION ${ROCM_VERSION}"
exit 1
fi
ROCM_INT=$(($ROCM_VERSION_MAJOR * 10000 + $ROCM_VERSION_MINOR * 100 + $ROCM_VERSION_PATCH))
# Install custom MIOpen + COMgr for ROCm >= 4.0.1
if [[ $ROCM_INT -lt 40001 ]]; then
echo "ROCm version < 4.0.1; will not install custom MIOpen"
exit 0
fi
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Build custom MIOpen to use comgr for offline compilation.
## Need a sanitized ROCM_VERSION without patchlevel; patchlevel version 0 must be added to paths.
ROCM_DOTS=$(echo ${ROCM_VERSION} | tr -d -c '.' | wc -c)
if [[ ${ROCM_DOTS} == 1 ]]; then
ROCM_VERSION_NOPATCH="${ROCM_VERSION}"
ROCM_INSTALL_PATH="/opt/rocm-${ROCM_VERSION}.0"
else
ROCM_VERSION_NOPATCH="${ROCM_VERSION%.*}"
ROCM_INSTALL_PATH="/opt/rocm-${ROCM_VERSION}"
fi
# MIOPEN_USE_HIP_KERNELS is a Workaround for COMgr issues
MIOPEN_CMAKE_COMMON_FLAGS="
-DMIOPEN_USE_COMGR=ON
-DMIOPEN_BUILD_DRIVER=OFF
"
# Pull MIOpen repo and set DMIOPEN_EMBED_DB based on ROCm version
if [[ $ROCM_INT -ge 60100 ]] && [[ $ROCM_INT -lt 60200 ]]; then
echo "ROCm 6.1 MIOpen does not need any patches, do not build from source"
exit 0
elif [[ $ROCM_INT -ge 60000 ]] && [[ $ROCM_INT -lt 60100 ]]; then
echo "ROCm 6.0 MIOpen does not need any patches, do not build from source"
exit 0
elif [[ $ROCM_INT -ge 50700 ]] && [[ $ROCM_INT -lt 60000 ]]; then
echo "ROCm 5.7 MIOpen does not need any patches, do not build from source"
exit 0
elif [[ $ROCM_INT -ge 50600 ]] && [[ $ROCM_INT -lt 50700 ]]; then
MIOPEN_BRANCH="release/rocm-rel-5.6-staging"
elif [[ $ROCM_INT -ge 50500 ]] && [[ $ROCM_INT -lt 50600 ]]; then
MIOPEN_BRANCH="release/rocm-rel-5.5-gfx11"
elif [[ $ROCM_INT -ge 50400 ]] && [[ $ROCM_INT -lt 50500 ]]; then
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
MIOPEN_BRANCH="release/rocm-rel-5.4-staging"
elif [[ $ROCM_INT -ge 50300 ]] && [[ $ROCM_INT -lt 50400 ]]; then
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
MIOPEN_BRANCH="release/rocm-rel-5.3-staging"
elif [[ $ROCM_INT -ge 50200 ]] && [[ $ROCM_INT -lt 50300 ]]; then
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
MIOPEN_BRANCH="release/rocm-rel-5.2-staging"
elif [[ $ROCM_INT -ge 50100 ]] && [[ $ROCM_INT -lt 50200 ]]; then
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36"
MIOPEN_BRANCH="release/rocm-rel-5.1-staging"
elif [[ $ROCM_INT -ge 50000 ]] && [[ $ROCM_INT -lt 50100 ]]; then
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36"
MIOPEN_BRANCH="release/rocm-rel-5.0-staging"
else
echo "Unhandled ROCM_VERSION ${ROCM_VERSION}"
exit 1
fi
yum remove -y miopen-hip
git clone https://github.com/ROCm/MIOpen -b ${MIOPEN_BRANCH}
pushd MIOpen
# remove .git to save disk space since CI runner was running out
rm -rf .git
# Don't build MLIR to save docker build time
# since we are disabling MLIR backend for MIOpen anyway
if [[ $ROCM_INT -ge 50400 ]] && [[ $ROCM_INT -lt 50500 ]]; then
sed -i '/rocMLIR/d' requirements.txt
elif [[ $ROCM_INT -ge 50200 ]] && [[ $ROCM_INT -lt 50400 ]]; then
sed -i '/llvm-project-mlir/d' requirements.txt
fi
## MIOpen minimum requirements
cmake -P install_deps.cmake --minimum
# clean up since CI runner was running out of disk space
rm -rf /tmp/*
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
## Build MIOpen
mkdir -p build
cd build
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig CXX=${ROCM_INSTALL_PATH}/llvm/bin/clang++ cmake .. \
${MIOPEN_CMAKE_COMMON_FLAGS} \
${MIOPEN_CMAKE_DB_FLAGS} \
-DCMAKE_PREFIX_PATH="${ROCM_INSTALL_PATH}/hip;${ROCM_INSTALL_PATH}"
make MIOpen -j $(nproc)
# Build MIOpen package
make -j $(nproc) package
# clean up since CI runner was running out of disk space
rm -rf /usr/local/cget
yum install -y miopen-*.rpm
popd
rm -rf MIOpen

View File

@ -1,16 +0,0 @@
#!/bin/bash
set -ex
# MKL
MKL_VERSION=2024.2.0
MKLROOT=/opt/intel
mkdir -p ${MKLROOT}
pushd /tmp
python3 -mpip install wheel
python3 -mpip download -d . mkl-static==${MKL_VERSION}
python3 -m wheel unpack mkl_static-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
python3 -m wheel unpack mkl_include-${MKL_VERSION}-py2.py3-none-manylinux1_x86_64.whl
mv mkl_static-${MKL_VERSION}/mkl_static-${MKL_VERSION}.data/data/lib ${MKLROOT}
mv mkl_include-${MKL_VERSION}/mkl_include-${MKL_VERSION}.data/data/include ${MKLROOT}

View File

@ -1,13 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
mkdir -p /usr/local/mnist/
cd /usr/local/mnist
for img in train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz; do
wget -q https://ossci-datasets.s3.amazonaws.com/mnist/$img
gzip -d $img
done

View File

@ -33,9 +33,7 @@ pip_install coloredlogs packaging
pip_install onnxruntime==1.18
pip_install onnx==1.16.0
# pip_install "onnxscript@git+https://github.com/microsoft/onnxscript@3e869ef8ccf19b5ebd21c10d3e9c267c9a9fa729" --no-deps
pip_install onnxscript==0.1.0.dev20240613 --no-deps
# required by onnxscript
pip_install ml_dtypes
pip_install onnxscript==0.1.0.dev20240523 --no-deps
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -1,22 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.25 --depth 1 --shallow-submodules
OPENBLAS_BUILD_FLAGS="
NUM_THREADS=128
USE_OPENMP=1
NO_SHARED=0
DYNAMIC_ARCH=1
TARGET=ARMV8
CFLAGS=-O3
"
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -1,16 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
set -ex
# Pin the version to latest release 0.17.2, building newer commit starts
# to fail on the current image
git clone -b 0.17.2 --single-branch https://github.com/NixOS/patchelf
cd patchelf
sed -i 's/serial/parallel/g' configure.ac
./bootstrap.sh
./configure
make
make install
cd ..
rm -rf patchelf

View File

@ -1,150 +0,0 @@
#!/bin/bash
# Script used only in CD pipeline
###########################
### prereqs
###########################
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
apt-get update -y
apt-get install -y libpciaccess-dev pkg-config
apt-get clean
;;
centos)
yum install -y libpciaccess-devel pkgconfig
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
python3 -m pip install meson ninja
###########################
### clone repo
###########################
GIT_SSL_NO_VERIFY=true git clone https://gitlab.freedesktop.org/mesa/drm.git
pushd drm
###########################
### patch
###########################
patch -p1 <<'EOF'
diff --git a/amdgpu/amdgpu_asic_id.c b/amdgpu/amdgpu_asic_id.c
index a5007ffc..13fa07fc 100644
--- a/amdgpu/amdgpu_asic_id.c
+++ b/amdgpu/amdgpu_asic_id.c
@@ -22,6 +22,13 @@
*
*/
+#define _XOPEN_SOURCE 700
+#define _LARGEFILE64_SOURCE
+#define _FILE_OFFSET_BITS 64
+#include <ftw.h>
+#include <link.h>
+#include <limits.h>
+
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
@@ -34,6 +41,19 @@
#include "amdgpu_drm.h"
#include "amdgpu_internal.h"
+static char *amdgpuids_path = NULL;
+static const char* amdgpuids_path_msg = NULL;
+
+static int check_for_location_of_amdgpuids(const char *filepath, const struct stat *info, const int typeflag, struct FTW *pathinfo)
+{
+ if (typeflag == FTW_F && strstr(filepath, "amdgpu.ids")) {
+ amdgpuids_path = strdup(filepath);
+ return 1;
+ }
+
+ return 0;
+}
+
static int parse_one_line(struct amdgpu_device *dev, const char *line)
{
char *buf, *saveptr;
@@ -113,10 +133,46 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
int line_num = 1;
int r = 0;
+ // attempt to find typical location for amdgpu.ids file
fp = fopen(AMDGPU_ASIC_ID_TABLE, "r");
+
+ // if it doesn't exist, search
+ if (!fp) {
+
+ char self_path[ PATH_MAX ];
+ ssize_t count;
+ ssize_t i;
+
+ count = readlink( "/proc/self/exe", self_path, PATH_MAX );
+ if (count > 0) {
+ self_path[count] = '\0';
+
+ // remove '/bin/python' from self_path
+ for (i=count; i>0; --i) {
+ if (self_path[i] == '/') break;
+ self_path[i] = '\0';
+ }
+ self_path[i] = '\0';
+ for (; i>0; --i) {
+ if (self_path[i] == '/') break;
+ self_path[i] = '\0';
+ }
+ self_path[i] = '\0';
+
+ if (1 == nftw(self_path, check_for_location_of_amdgpuids, 5, FTW_PHYS)) {
+ fp = fopen(amdgpuids_path, "r");
+ amdgpuids_path_msg = amdgpuids_path;
+ }
+ }
+
+ }
+ else {
+ amdgpuids_path_msg = AMDGPU_ASIC_ID_TABLE;
+ }
+
+ // both hard-coded location and search have failed
if (!fp) {
- fprintf(stderr, "%s: %s\n", AMDGPU_ASIC_ID_TABLE,
- strerror(errno));
+ fprintf(stderr, "amdgpu.ids: No such file or directory\n");
return;
}
@@ -132,7 +188,7 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
continue;
}
- drmMsg("%s version: %s\n", AMDGPU_ASIC_ID_TABLE, line);
+ drmMsg("%s version: %s\n", amdgpuids_path_msg, line);
break;
}
@@ -150,7 +206,7 @@ void amdgpu_parse_asic_ids(struct amdgpu_device *dev)
if (r == -EINVAL) {
fprintf(stderr, "Invalid format: %s: line %d: %s\n",
- AMDGPU_ASIC_ID_TABLE, line_num, line);
+ amdgpuids_path_msg, line_num, line);
} else if (r && r != -EAGAIN) {
fprintf(stderr, "%s: Cannot parse ASIC IDs: %s\n",
__func__, strerror(-r));
EOF
###########################
### build
###########################
meson builddir --prefix=/opt/amdgpu
pushd builddir
ninja install
popd
popd

View File

@ -1,11 +1,7 @@
#!/bin/bash
# Script used in CI and CD pipeline
set -ex
MKLROOT=${MKLROOT:-/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION}
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
@ -15,10 +11,7 @@ git checkout a1625ff4d9bc362906bd01f805dbbe12612953f6
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
if [[ -f "${MKLROOT}/lib/libmkl_core.a" ]]; then
echo 'LIB = -Wl,--start-group -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -Wl,--end-group -lpthread -lstdc++ -lm -lgomp -lhipblas -lhipsparse' >> make.inc
fi
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib -ldl' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
@ -32,7 +25,7 @@ done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT="${MKLROOT}"
make testing/testing_dgemm -j $(nproc) MKLROOT="${MKLROOT}"
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION
popd
mv magma /opt/rocm

View File

@ -1,6 +1,6 @@
#!/bin/bash
set -xe
# Script used in CI and CD pipeline
# Intel® software for general purpose GPU capabilities.
# Refer to https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
@ -8,23 +8,19 @@ set -xe
# Users should update to the latest version as it becomes available
function install_ubuntu() {
. /etc/os-release
if [[ ! " jammy " =~ " ${VERSION_CODENAME} " ]]; then
echo "Ubuntu version ${VERSION_CODENAME} not supported"
exit
fi
apt-get update -y
apt-get install -y gpg-agent wget
# To add the online network package repository for the GPU Driver LTS releases
# Set up the repository. To do this, download the key to the system keyring
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key \
| gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
| gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
wget -qO - https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor --output /usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg
# Add the signed entry to APT sources and configure the APT client to use the Intel repository
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] \
https://repositories.intel.com/gpu/ubuntu ${VERSION_CODENAME}/lts/2350 unified" \
| tee /etc/apt/sources.list.d/intel-gpu-${VERSION_CODENAME}.list
# To add the online network network package repository for the Intel Support Packages
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor > /usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg
https://repositories.intel.com/gpu/ubuntu jammy/lts/2350 unified" \
| tee /etc/apt/sources.list.d/intel-gpu-jammy.list
echo "deb [signed-by=/usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg] \
https://apt.repos.intel.com/intel-for-pytorch-gpu-dev all main" \
| tee /etc/apt/sources.list.d/intel-for-pytorch-gpu-dev.list
@ -101,86 +97,6 @@ EOF
rm -rf /var/lib/yum/history
}
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.6 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.6"
fi
dnf install -y 'dnf-command(config-manager)'
# To add the online network package repository for the GPU Driver LTS releases
dnf config-manager --add-repo \
https://repositories.intel.com/gpu/rhel/${VERSION_ID}/lts/2350/unified/intel-gpu-${VERSION_ID}.repo
# To add the online network network package repository for the Intel Support Packages
tee > /etc/yum.repos.d/intel-for-pytorch-gpu-dev.repo << EOF
[intel-for-pytorch-gpu-dev]
name=Intel for Pytorch GPU dev repository
baseurl=https://yum.repos.intel.com/intel-for-pytorch-gpu-dev
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
# The xpu-smi packages
dnf install -y xpu-smi
# Compute and Media Runtimes
dnf install -y \
intel-opencl intel-media intel-mediasdk libmfxgen1 libvpl2\
level-zero intel-level-zero-gpu mesa-dri-drivers mesa-vulkan-drivers \
mesa-vdpau-drivers libdrm mesa-libEGL mesa-libgbm mesa-libGL \
mesa-libxatracker libvpl-tools intel-metrics-discovery \
intel-metrics-library intel-igc-core intel-igc-cm \
libva libva-utils intel-gmmlib libmetee intel-gsc intel-ocloc
# Development packages
dnf install -y --refresh \
intel-igc-opencl-devel level-zero-devel intel-gsc-devel libmetee-devel \
level-zero-devel
# Install Intel Support Packages
yum install -y intel-for-pytorch-gpu-dev intel-pti-dev
# Cleanup
dnf clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
function install_sles() {
. /etc/os-release
VERSION_SP=${VERSION_ID//./sp}
if [[ ! " 15sp4 15sp5 " =~ " ${VERSION_SP} " ]]; then
echo "SLES version ${VERSION_ID} not supported"
exit
fi
# To add the online network package repository for the GPU Driver LTS releases
zypper addrepo -f -r \
https://repositories.intel.com/gpu/sles/${VERSION_SP}/lts/2350/unified/intel-gpu-${VERSION_SP}.repo
rpm --import https://repositories.intel.com/gpu/intel-graphics.key
# To add the online network network package repository for the Intel Support Packages
zypper addrepo https://yum.repos.intel.com/intel-for-pytorch-gpu-dev intel-for-pytorch-gpu-dev
rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
# The xpu-smi packages
zypper install -y lsb-release flex bison xpu-smi
# Compute and Media Runtimes
zypper install -y intel-level-zero-gpu level-zero intel-gsc intel-opencl intel-ocloc \
intel-media-driver libigfxcmrt7 libvpl2 libvpl-tools libmfxgen1 libmfx1
# Development packages
zypper install -y libigdfcl-devel intel-igc-cm libigfxcmrt-devel level-zero-devel
# Install Intel Support Packages
zypper install -y intel-for-pytorch-gpu-dev intel-pti-dev
}
# The installation depends on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
@ -191,12 +107,6 @@ case "$ID" in
centos)
install_centos
;;
rhel|almalinux)
install_rhel
;;
sles)
install_sles
;;
*)
echo "Unable to determine OS..."
exit 1

View File

@ -1,101 +0,0 @@
ARG CUDA_VERSION=10.2
ARG BASE_TARGET=cuda${CUDA_VERSION}
FROM centos:7 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=9
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum update -y
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which unzip
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
# EPEL for cmake
RUN wget http://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm && \
rpm -ivh epel-release-latest-7.noarch.rpm && \
rm -f epel-release-latest-7.noarch.rpm
# cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
RUN yum install -y autoconf aclocal automake make sudo
RUN rm -rf /usr/local/cuda-*
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh && cp $(which patchelf) /patchelf
FROM base as openssl
# Install openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
FROM base as conda
# Install Anaconda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install CUDA
FROM base as cuda
ARG CUDA_VERSION=10.2
RUN rm -rf /usr/local/cuda-*
ADD ./common/install_cuda.sh install_cuda.sh
ENV CUDA_HOME=/usr/local/cuda-${CUDA_VERSION}
# Preserve CUDA_VERSION for the builds
ENV CUDA_VERSION=${CUDA_VERSION}
# Make things in our path by default
ENV PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
ENV DESIRED_CUDA=11.8
FROM cuda as cuda12.1
RUN bash ./install_cuda.sh 12.1
ENV DESIRED_CUDA=12.1
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
ENV DESIRED_CUDA=12.4
# Install MNIST test data
FROM base as mnist
ADD ./common/install_mnist.sh install_mnist.sh
RUN bash ./install_mnist.sh
FROM base as all_cuda
COPY --from=cuda11.8 /usr/local/cuda-11.8 /usr/local/cuda-11.8
COPY --from=cuda12.1 /usr/local/cuda-12.1 /usr/local/cuda-12.1
COPY --from=cuda12.4 /usr/local/cuda-12.4 /usr/local/cuda-12.4
# Final step
FROM ${BASE_TARGET} as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=patchelf /patchelf /usr/local/bin/patchelf
COPY --from=conda /opt/conda /opt/conda
# Add jni.h for java host build.
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
ENV PATH /opt/conda/bin:$PATH
COPY --from=mnist /usr/local/mnist /usr/local/mnist
RUN rm -rf /usr/local/cuda
RUN chmod o+rw /usr/local
RUN touch /.condarc && \
chmod o+rw /.condarc && \
chmod -R o+rw /opt/conda

View File

@ -1,76 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE_NAME="pytorch/${image}"
export DOCKER_BUILDKIT=1
TOPDIR=$(git rev-parse --show-toplevel)
CUDA_VERSION=${CUDA_VERSION:-12.1}
case ${CUDA_VERSION} in
cpu)
BASE_TARGET=base
DOCKER_TAG=cpu
;;
all)
BASE_TARGET=all_cuda
DOCKER_TAG=latest
;;
*)
BASE_TARGET=cuda${CUDA_VERSION}
DOCKER_TAG=cuda${CUDA_VERSION}
;;
esac
(
set -x
docker build \
--target final \
--progress plain \
--build-arg "BASE_TARGET=${BASE_TARGET}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=9" \
-t ${DOCKER_IMAGE_NAME} \
$@ \
-f "${TOPDIR}/.ci/docker/conda/Dockerfile" \
${TOPDIR}/.ci/docker/
)
if [[ "${DOCKER_TAG}" =~ ^cuda* ]]; then
# Test that we're using the right CUDA compiler
(
set -x
docker run --rm "${DOCKER_IMAGE_NAME}" nvcc --version | grep "cuda_${CUDA_VERSION}"
)
fi
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE_NAME}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE_NAME}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH:-}" == true ]]; then
(
set -x
docker push "${DOCKER_IMAGE_NAME}"
if [[ -n ${GITHUB_REF} ]]; then
docker tag ${DOCKER_IMAGE_NAME} ${DOCKER_IMAGE_BRANCH_TAG}
docker tag ${DOCKER_IMAGE_NAME} ${DOCKER_IMAGE_SHA_TAG}
docker push "${DOCKER_IMAGE_BRANCH_TAG}"
docker push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,107 +0,0 @@
ARG BASE_TARGET=base
ARG GPU_IMAGE=ubuntu:20.04
FROM ${GPU_IMAGE} as base
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get clean && apt-get update
RUN apt-get install -y curl locales g++ git-all autoconf automake make cmake wget unzip sudo
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
RUN locale-gen en_US.UTF-8
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
# Install openssl
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
ADD common/install_cpython.sh install_cpython.sh
RUN apt-get update -y && \
apt-get install build-essential gdb lcov libbz2-dev libffi-dev \
libgdbm-dev liblzma-dev libncurses5-dev libreadline6-dev \
libsqlite3-dev libssl-dev lzma lzma-dev tk-dev uuid-dev zlib1g-dev -y && \
bash ./install_cpython.sh && \
rm install_cpython.sh && \
apt-get clean
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
FROM base as cpu
# Install Anaconda
COPY --from=conda /opt/conda /opt/conda
# Install python
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
ENV PATH=/opt/conda/bin:/usr/local/cuda/bin:$PATH
# Install MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM cpu as cuda
ADD ./common/install_cuda.sh install_cuda.sh
ADD ./common/install_magma.sh install_magma.sh
ENV CUDA_HOME /usr/local/cuda
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
RUN bash ./install_magma.sh 11.8
RUN ln -sf /usr/local/cuda-11.8 /usr/local/cuda
FROM cuda as cuda12.1
RUN bash ./install_cuda.sh 12.1
RUN bash ./install_magma.sh 12.1
RUN ln -sf /usr/local/cuda-12.1 /usr/local/cuda
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
RUN bash ./install_magma.sh 12.4
RUN ln -sf /usr/local/cuda-12.4 /usr/local/cuda
FROM cpu as rocm
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ENV MKLROOT /opt/intel
# Adding ROCM_PATH env var so that LoadHip.cmake (even with logic updated for ROCm6.0)
# find HIP works for ROCm5.7. Not needed for ROCm6.0 and above.
# Remove below when ROCm5.7 is not in support matrix anymore.
ENV ROCM_PATH /opt/rocm
# No need to install ROCm as base docker image should have full ROCm install
#ADD ./common/install_rocm.sh install_rocm.sh
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
# gfortran and python needed for building magma from source for ROCm
RUN apt-get update -y && \
apt-get install gfortran -y && \
apt-get install python -y && \
apt-get clean
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
# Install AOTriton
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/aotriton_version.txt aotriton_version.txt
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm && rm install_aotriton.sh aotriton_version.txt
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
FROM ${BASE_TARGET} as final
COPY --from=openssl /opt/openssl /opt/openssl
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
# Install Anaconda
COPY --from=conda /opt/conda /opt/conda
# Install python
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
ENV PATH=/opt/conda/bin:/usr/local/cuda/bin:$PATH

View File

@ -1,93 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE="pytorch/${image}"
TOPDIR=$(git rev-parse --show-toplevel)
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
WITH_PUSH=${WITH_PUSH:-}
DOCKER=${DOCKER:-docker}
case ${GPU_ARCH_TYPE} in
cpu)
BASE_TARGET=cpu
DOCKER_TAG=cpu
GPU_IMAGE=ubuntu:20.04
DOCKER_GPU_BUILD_ARG=""
;;
cuda)
BASE_TARGET=cuda${GPU_ARCH_VERSION}
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=ubuntu:20.04
DOCKER_GPU_BUILD_ARG=""
;;
rocm)
BASE_TARGET=rocm
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
GPU_IMAGE=rocm/dev-ubuntu-20.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100"
ROCM_REGEX="([0-9]+)\.([0-9]+)[\.]?([0-9]*)"
if [[ $GPU_ARCH_VERSION =~ $ROCM_REGEX ]]; then
ROCM_VERSION_INT=$((${BASH_REMATCH[1]}*10000 + ${BASH_REMATCH[2]}*100 + ${BASH_REMATCH[3]:-0}))
else
echo "ERROR: rocm regex failed"
exit 1
fi
if [[ $ROCM_VERSION_INT -ge 60000 ]]; then
PYTORCH_ROCM_ARCH+=";gfx942"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)
echo "ERROR: Unrecognized GPU_ARCH_TYPE: ${GPU_ARCH_TYPE}"
exit 1
;;
esac
(
set -x
DOCKER_BUILDKIT=1 ${DOCKER} build \
--target final \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--build-arg "BASE_TARGET=${BASE_TARGET}" \
-t "${DOCKER_IMAGE}" \
$@ \
-f "${TOPDIR}/.ci/docker/libtorch/Dockerfile" \
"${TOPDIR}/.ci/docker/"
)
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH}" == true ]]; then
(
set -x
${DOCKER} push "${DOCKER_IMAGE}"
if [[ -n ${GITHUB_REF} ]]; then
${DOCKER} tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_BRANCH_TAG}
${DOCKER} tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_SHA_TAG}
${DOCKER} push "${DOCKER_IMAGE_BRANCH_TAG}"
${DOCKER} push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,203 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG ROCM_VERSION=3.7
ARG BASE_CUDA_VERSION=11.8
ARG GPU_IMAGE=centos:7
FROM centos:7 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=9
# Note: This is required patch since CentOS have reached EOL
# otherwise any yum install setp will fail
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which perl zlib-devel
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
# Note: After running yum-config-manager --enable rhel-server-rhscl-7-rpms
# patch is required once again. Somehow this steps adds mirror.centos.org
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
RUN wget http://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm && \
rpm -ivh epel-release-latest-7.noarch.rpm && \
rm -f epel-release-latest-7.noarch.rpm
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
RUN yum install -y autoconf aclocal automake make sudo
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# EPEL for cmake
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM patchelf as python
# build python
COPY manywheel/build_scripts /build_scripts
ADD ./common/install_cpython.sh /build_scripts/install_cpython.sh
RUN bash build_scripts/build.sh && rm -r build_scripts
FROM base as cuda
ARG BASE_CUDA_VERSION=10.2
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum install -y \
aclocal \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
FROM common as cpu_final
ARG BASE_CUDA_VERSION=10.1
ARG DEVTOOLSET_VERSION=9
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# cmake is already installed inside the rocm base image, so remove if present
RUN rpm -e cmake || true
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake
# ninja
RUN yum install -y ninja-build
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH
FROM cpu_final as rocm_final
ARG ROCM_VERSION=3.7
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Adding ROCM_PATH env var so that LoadHip.cmake (even with logic updated for ROCm6.0)
# find HIP works for ROCm5.7. Not needed for ROCm6.0 and above.
# Remove below when ROCm5.7 is not in support matrix anymore.
ENV ROCM_PATH /opt/rocm
ENV MKLROOT /opt/intel
# No need to install ROCm as base docker image should have full ROCm install
#ADD ./common/install_rocm.sh install_rocm.sh
#RUN ROCM_VERSION=${ROCM_VERSION} bash ./install_rocm.sh && rm install_rocm.sh
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
# cmake3 is needed for the MIOpen build
RUN ln -sf /usr/local/bin/cmake /usr/bin/cmake3
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
# Install AOTriton
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/aotriton_version.txt aotriton_version.txt
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm && rm install_aotriton.sh aotriton_version.txt
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton

View File

@ -1,152 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG ROCM_VERSION=3.7
ARG BASE_CUDA_VERSION=10.2
ARG GPU_IMAGE=nvidia/cuda:${BASE_CUDA_VERSION}-devel-centos7
FROM quay.io/pypa/manylinux2014_x86_64 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which perl zlib-devel
RUN yum install -y yum-utils centos-release-scl sudo
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN yum install -y devtoolset-7-gcc devtoolset-7-gcc-c++ devtoolset-7-gcc-gfortran devtoolset-7-binutils
ENV PATH=/opt/rh/devtoolset-7/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-7/root/usr/lib64:/opt/rh/devtoolset-7/root/usr/lib:$LD_LIBRARY_PATH
# cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION=10.2
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum install -y \
aclocal \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=base /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
FROM common as cpu_final
ARG BASE_CUDA_VERSION=10.2
RUN yum install -y yum-utils centos-release-scl
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
RUN yum install -y devtoolset-7-gcc devtoolset-7-gcc-c++ devtoolset-7-gcc-gfortran devtoolset-7-binutils
ENV PATH=/opt/rh/devtoolset-7/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-7/root/usr/lib64:/opt/rh/devtoolset-7/root/usr/lib:$LD_LIBRARY_PATH
# cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
# ninja
RUN yum install -y http://repo.okay.com.mx/centos/7/x86_64/release/okay-release-1-1.noarch.rpm
RUN yum install -y ninja-build
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
FROM common as rocm_final
ARG ROCM_VERSION=3.7
# Install ROCm
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh ${ROCM_VERSION} && rm install_rocm.sh
# cmake is already installed inside the rocm base image, but both 2 and 3 exist
# cmake3 is needed for the later MIOpen custom build, so that step is last.
RUN yum install -y cmake3 && \
rm -f /usr/bin/cmake && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh

View File

@ -1,153 +0,0 @@
# syntax = docker/dockerfile:experimental
ARG ROCM_VERSION=3.7
ARG BASE_CUDA_VERSION=11.8
ARG GPU_IMAGE=amd64/almalinux:8
FROM quay.io/pypa/manylinux_2_28_x86_64 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ARG DEVTOOLSET_VERSION=11
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel yum-utils gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake3
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION=11.8
# Install CUDA
ADD ./common/install_cuda.sh install_cuda.sh
RUN bash ./install_cuda.sh ${BASE_CUDA_VERSION} && rm install_cuda.sh
FROM base as intel
# MKL
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as magma
ARG BASE_CUDA_VERSION=10.2
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as jni
# Install java jni header
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
# Install libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM ${GPU_IMAGE} as common
ARG DEVTOOLSET_VERSION=11
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
gcc-toolset-${DEVTOOLSET_VERSION}-toolchain \
glibc-langpack-en
RUN yum install -y \
https://repo.ius.io/ius-release-el7.rpm \
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
RUN yum swap -y git git236-core
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel
COPY --from=base /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
FROM common as cpu_final
ARG BASE_CUDA_VERSION=11.8
ARG DEVTOOLSET_VERSION=11
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# cmake-3.18.4 from pip
RUN yum install -y python3-pip && \
python3 -mpip install cmake==3.18.4 && \
ln -s /usr/local/bin/cmake /usr/bin/cmake3
FROM cpu_final as cuda_final
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
FROM common as rocm_final
ARG ROCM_VERSION=3.7
# Install ROCm
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh ${ROCM_VERSION} && rm install_rocm.sh
# cmake is already installed inside the rocm base image, but both 2 and 3 exist
# cmake3 is needed for the later MIOpen custom build, so that step is last.
RUN yum install -y cmake3 && \
rm -f /usr/bin/cmake && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
ADD ./common/install_miopen.sh install_miopen.sh
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
FROM cpu_final as xpu_final
# cmake-3.28.4 from pip
RUN python3 -m pip install --upgrade pip && \
python3 -mpip install cmake==3.28.4
ADD ./common/install_xpu.sh install_xpu.sh
RUN bash ./install_xpu.sh && rm install_xpu.sh
RUN pushd /opt/_internal && tar -xJf static-libs-for-embedding-only.tar.xz && popd

View File

@ -1,57 +0,0 @@
FROM quay.io/pypa/manylinux_2_28_aarch64 as base
# Graviton needs GCC 10 or above for the build. GCC12 is the default version in almalinux-8.
ARG GCCTOOLSET_VERSION=11
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
less \
libffi-devel \
libgomp \
make \
openssl-devel \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
zstd \
sudo \
gcc-toolset-${GCCTOOLSET_VERSION}-toolchain
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
FROM base as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6

View File

@ -1,94 +0,0 @@
FROM quay.io/pypa/manylinux2014_aarch64 as base
# Graviton needs GCC 10 for the build
ARG DEVTOOLSET_VERSION=10
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
less \
zstd \
libgomp \
sudo \
devtoolset-${DEVTOOLSET_VERSION}-gcc \
devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ \
devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran \
devtoolset-${DEVTOOLSET_VERSION}-binutils
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
###############################################################################
# libglfortran.a hack
#
# libgfortran.a from quay.io/pypa/manylinux2014_aarch64 is not compiled with -fPIC.
# This causes __stack_chk_guard@@GLIBC_2.17 on pytorch build. To solve, get
# ubuntu's libgfortran.a which is compiled with -fPIC
# NOTE: Need a better way to get this library as Ubuntu's package can be removed by the vender, or changed
###############################################################################
RUN cd ~/ \
&& curl -L -o ~/libgfortran-10-dev.deb http://ports.ubuntu.com/ubuntu-ports/pool/universe/g/gcc-10/libgfortran-10-dev_10.5.0-1ubuntu1_arm64.deb \
&& ar x ~/libgfortran-10-dev.deb \
&& tar --use-compress-program=unzstd -xvf data.tar.zst -C ~/ \
&& cp -f ~/usr/lib/gcc/aarch64-linux-gnu/10/libgfortran.a /opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/
# install cmake
RUN yum install -y cmake3 && \
ln -s /usr/bin/cmake3 /usr/bin/cmake
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM base as openblas
# Install openblas
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM openssl as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH

View File

@ -1,91 +0,0 @@
FROM quay.io/pypa/manylinux_2_28_aarch64 as base
# Cuda ARM build needs gcc 11
ARG DEVTOOLSET_VERSION=11
# Language variables
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
RUN yum -y update
RUN yum install -y \
autoconf \
automake \
bison \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz \
yasm \
less \
zstd \
libgomp \
sudo \
gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
# Ensure the expected devtoolset is used
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM openssl as final
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
FROM base as cuda
ARG BASE_CUDA_VERSION
# Install CUDA
ADD ./common/install_cuda_aarch64.sh install_cuda_aarch64.sh
RUN bash ./install_cuda_aarch64.sh ${BASE_CUDA_VERSION} && rm install_cuda_aarch64.sh
FROM base as magma
ARG BASE_CUDA_VERSION
# Install magma
ADD ./common/install_magma.sh install_magma.sh
RUN bash ./install_magma.sh ${BASE_CUDA_VERSION} && rm install_magma.sh
FROM base as openblas
# Install openblas
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM final as cuda_final
ARG BASE_CUDA_VERSION
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH

View File

@ -1,71 +0,0 @@
FROM centos:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ENV PATH /opt/rh/gcc-toolset-11/root/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# change to a valid repo
RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-*.repo
# enable to install ninja-build
RUN sed -i 's|enabled=0|enabled=1|g' /etc/yum.repos.d/CentOS-Linux-PowerTools.repo
RUN yum -y update
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which zlib-devel sudo
RUN yum install -y autoconf automake make cmake gdb gcc-toolset-11-gcc-c++
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
RUN yum install -y openssl-devel zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel
ADD common/install_cpython.sh install_cpython.sh
RUN bash ./install_cpython.sh && rm install_cpython.sh
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN /opt/conda/bin/conda install -y cmake
FROM base as intel
# Install MKL
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=conda /opt/conda /opt/conda
ENV PATH=/opt/conda/bin:$PATH
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM base as jni
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM base as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=intel /opt/intel /opt/intel
COPY --from=conda /opt/conda /opt/conda
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
RUN yum install -y ninja-build

View File

@ -1,73 +0,0 @@
FROM --platform=linux/s390x docker.io/ubuntu:24.04 as base
# Language variables
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
ENV LANGUAGE=C.UTF-8
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN apt update ; apt upgrade -y
RUN apt install -y \
build-essential \
autoconf \
automake \
bzip2 \
curl \
diffutils \
file \
git \
make \
patch \
perl \
unzip \
util-linux \
wget \
which \
xz-utils \
less \
zstd \
cmake \
python3 \
python3-dev \
python3-setuptools \
python3-yaml \
python3-typing-extensions \
libblas-dev \
libopenblas-dev \
liblapack-dev \
libatlas-base-dev
# git236+ would refuse to run git commands in repos owned by other users
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
# Override this behaviour by treating every folder as safe
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
RUN git config --global --add safe.directory "*"
FROM base as openssl
# Install openssl (this must precede `build python` step)
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# EPEL for cmake
FROM base as patchelf
# Install patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM patchelf as python
# build python
COPY manywheel/build_scripts /build_scripts
ADD ./common/install_cpython.sh /build_scripts/install_cpython.sh
RUN bash build_scripts/build.sh && rm -r build_scripts
FROM openssl as final
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf

View File

@ -1,154 +0,0 @@
#!/usr/bin/env bash
# Script used only in CD pipeline
set -eou pipefail
TOPDIR=$(git rev-parse --show-toplevel)
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
DOCKER_IMAGE="pytorch/${image}"
DOCKER_REGISTRY="${DOCKER_REGISTRY:-docker.io}"
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
WITH_PUSH=${WITH_PUSH:-}
case ${GPU_ARCH_TYPE} in
cpu)
TARGET=cpu_final
DOCKER_TAG=cpu
GPU_IMAGE=centos:7
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
;;
cpu-manylinux_2_28)
TARGET=cpu_final
DOCKER_TAG=cpu
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
cpu-aarch64)
TARGET=final
DOCKER_TAG=cpu-aarch64
GPU_IMAGE=arm64v8/centos:7
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=10"
MANY_LINUX_VERSION="aarch64"
;;
cpu-aarch64-2_28)
TARGET=final
DOCKER_TAG=cpu-aarch64
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28_aarch64"
;;
cpu-cxx11-abi)
TARGET=final
DOCKER_TAG=cpu-cxx11-abi
GPU_IMAGE=""
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
MANY_LINUX_VERSION="cxx11-abi"
;;
cpu-s390x)
TARGET=final
DOCKER_TAG=cpu-s390x
GPU_IMAGE=redhat/ubi9
DOCKER_GPU_BUILD_ARG=""
MANY_LINUX_VERSION="s390x"
;;
cuda)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
# Keep this up to date with the minimum version of CUDA we currently support
GPU_IMAGE=centos:7
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=9"
;;
cuda-manylinux_2_28)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
cuda-aarch64)
TARGET=cuda_final
DOCKER_TAG=cuda${GPU_ARCH_VERSION}
GPU_IMAGE=arm64v8/centos:7
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="aarch64"
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
rocm)
TARGET=rocm_final
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
GPU_IMAGE=rocm/dev-centos-7:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100"
ROCM_REGEX="([0-9]+)\.([0-9]+)[\.]?([0-9]*)"
if [[ $GPU_ARCH_VERSION =~ $ROCM_REGEX ]]; then
ROCM_VERSION_INT=$((${BASH_REMATCH[1]}*10000 + ${BASH_REMATCH[2]}*100 + ${BASH_REMATCH[3]:-0}))
else
echo "ERROR: rocm regex failed"
exit 1
fi
if [[ $ROCM_VERSION_INT -ge 60000 ]]; then
PYTORCH_ROCM_ARCH+=";gfx942"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=9"
;;
xpu)
TARGET=xpu_final
DOCKER_TAG=xpu
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
MANY_LINUX_VERSION="2_28"
;;
*)
echo "ERROR: Unrecognized GPU_ARCH_TYPE: ${GPU_ARCH_TYPE}"
exit 1
;;
esac
IMAGES=''
if [[ -n ${MANY_LINUX_VERSION} && -z ${DOCKERFILE_SUFFIX} ]]; then
DOCKERFILE_SUFFIX=_${MANY_LINUX_VERSION}
fi
(
set -x
DOCKER_BUILDKIT=1 docker build \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--target "${TARGET}" \
-t "${DOCKER_IMAGE}" \
$@ \
-f "${TOPDIR}/.ci/docker/manywheel/Dockerfile${DOCKERFILE_SUFFIX}" \
"${TOPDIR}/.ci/docker/"
)
GITHUB_REF=${GITHUB_REF:-$(git symbolic-ref -q HEAD || git describe --tags --exact-match)}
GIT_BRANCH_NAME=${GITHUB_REF##*/}
GIT_COMMIT_SHA=${GITHUB_SHA:-$(git rev-parse HEAD)}
DOCKER_IMAGE_BRANCH_TAG=${DOCKER_IMAGE}-${GIT_BRANCH_NAME}
DOCKER_IMAGE_SHA_TAG=${DOCKER_IMAGE}-${GIT_COMMIT_SHA}
if [[ "${WITH_PUSH}" == true ]]; then
(
set -x
docker push "${DOCKER_IMAGE}"
if [[ -n ${GITHUB_REF} ]]; then
docker tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_BRANCH_TAG}
docker tag ${DOCKER_IMAGE} ${DOCKER_IMAGE_SHA_TAG}
docker push "${DOCKER_IMAGE_BRANCH_TAG}"
docker push "${DOCKER_IMAGE_SHA_TAG}"
fi
)
fi

View File

@ -1,131 +0,0 @@
#!/bin/bash
# Top-level build script called from Dockerfile
# Script used only in CD pipeline
# Stop at any error, show all commands
set -ex
# openssl version to build, with expected sha256 hash of .tar.gz
# archive
OPENSSL_ROOT=openssl-1.1.1l
OPENSSL_HASH=0b7a3e5e59c34827fe0c3a74b7ec8baef302b98fa80088d7f9153aa16fa76bd1
DEVTOOLS_HASH=a8ebeb4bed624700f727179e6ef771dafe47651131a00a78b342251415646acc
PATCHELF_HASH=d9afdff4baeacfbc64861454f368b7f2c15c44d245293f7587bbf726bfe722fb
CURL_ROOT=curl-7.73.0
CURL_HASH=cf34fe0b07b800f1c01a499a6e8b2af548f6d0e044dca4a29d88a4bee146d131
AUTOCONF_ROOT=autoconf-2.69
AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
# Get build utilities
MY_DIR=$(dirname "${BASH_SOURCE[0]}")
source $MY_DIR/build_utils.sh
if [ "$(uname -m)" != "s390x" ] ; then
# Dependencies for compiling Python that we want to remove from
# the final image after compiling Python
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel libffi-devel"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
# Development tools and libraries
yum -y install bzip2 make git patch unzip bison yasm diffutils \
automake which file cmake28 \
kernel-devel-`uname -r` \
${PYTHON_COMPILE_DEPS}
else
# Dependencies for compiling Python that we want to remove from
# the final image after compiling Python
PYTHON_COMPILE_DEPS="zlib1g-dev libbz2-dev libncurses-dev libsqlite3-dev libdb-dev libpcap-dev liblzma-dev libffi-dev"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS="libglib2.0-dev libX11-dev libncurses-dev"
# Development tools and libraries
apt install -y bzip2 make git patch unzip diffutils \
automake which file cmake \
linux-headers-virtual \
${PYTHON_COMPILE_DEPS}
fi
# Install newest autoconf
build_autoconf $AUTOCONF_ROOT $AUTOCONF_HASH
autoconf --version
# Compile the latest Python releases.
# (In order to have a proper SSL module, Python is compiled
# against a recent openssl [see env vars above], which is linked
# statically. We delete openssl afterwards.)
build_openssl $OPENSSL_ROOT $OPENSSL_HASH
/build_scripts/install_cpython.sh
PY39_BIN=/opt/python/cp39-cp39/bin
# Our openssl doesn't know how to find the system CA trust store
# (https://github.com/pypa/manylinux/issues/53)
# And it's not clear how up-to-date that is anyway
# So let's just use the same one pip and everyone uses
$PY39_BIN/pip install certifi
ln -s $($PY39_BIN/python -c 'import certifi; print(certifi.where())') \
/opt/_internal/certs.pem
# If you modify this line you also have to modify the versions in the
# Dockerfiles:
export SSL_CERT_FILE=/opt/_internal/certs.pem
# Install newest curl
build_curl $CURL_ROOT $CURL_HASH
rm -rf /usr/local/include/curl /usr/local/lib/libcurl* /usr/local/lib/pkgconfig/libcurl.pc
hash -r
curl --version
curl-config --features
# Install patchelf (latest with unreleased bug fixes)
curl -sLOk https://nixos.org/releases/patchelf/patchelf-0.10/patchelf-0.10.tar.gz
# check_sha256sum patchelf-0.9njs2.tar.gz $PATCHELF_HASH
tar -xzf patchelf-0.10.tar.gz
(cd patchelf-0.10 && ./configure && make && make install)
rm -rf patchelf-0.10.tar.gz patchelf-0.10
# Install latest pypi release of auditwheel
$PY39_BIN/pip install auditwheel
ln -s $PY39_BIN/auditwheel /usr/local/bin/auditwheel
# Clean up development headers and other unnecessary stuff for
# final image
if [ "$(uname -m)" != "s390x" ] ; then
yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \
avahi freetype bitstream-vera-fonts \
${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
yum -y install ${MANYLINUX1_DEPS}
yum -y clean all > /dev/null 2>&1
yum list installed
else
apt purge -y ${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
fi
# we don't need libpython*.a, and they're many megabytes
find /opt/_internal -name '*.a' -print0 | xargs -0 rm -f
# Strip what we can -- and ignore errors, because this just attempts to strip
# *everything*, including non-ELF files:
find /opt/_internal -type f -print0 \
| xargs -0 -n1 strip --strip-unneeded 2>/dev/null || true
# We do not need the Python test suites, or indeed the precompiled .pyc and
# .pyo files. Partially cribbed from:
# https://github.com/docker-library/python/blob/master/3.4/slim/Dockerfile
find /opt/_internal \
\( -type d -a -name test -o -name tests \) \
-o \( -type f -a -name '*.pyc' -o -name '*.pyo' \) \
-print0 | xargs -0 rm -f
for PYTHON in /opt/python/*/bin/python; do
# Smoke test to make sure that our Pythons work, and do indeed detect as
# being manylinux compatible:
$PYTHON $MY_DIR/manylinux1-check.py
# Make sure that SSL cert checking works
$PYTHON $MY_DIR/ssl-check.py
done
# Fix libc headers to remain compatible with C99 compilers.
find /usr/include/ -type f -exec sed -i 's/\bextern _*inline_*\b/extern __inline __attribute__ ((__gnu_inline__))/g' {} +
# Now we can delete our built SSL
rm -rf /usr/local/ssl

View File

@ -1,91 +0,0 @@
#!/bin/bash
# Helper utilities for build
# Script used only in CD pipeline
OPENSSL_DOWNLOAD_URL=https://www.openssl.org/source/old/1.1.1/
CURL_DOWNLOAD_URL=https://curl.askapache.com/download
AUTOCONF_DOWNLOAD_URL=https://ftp.gnu.org/gnu/autoconf
function check_var {
if [ -z "$1" ]; then
echo "required variable not defined"
exit 1
fi
}
function do_openssl_build {
./config no-ssl2 no-shared -fPIC --prefix=/usr/local/ssl > /dev/null
make > /dev/null
make install > /dev/null
}
function check_sha256sum {
local fname=$1
check_var ${fname}
local sha256=$2
check_var ${sha256}
echo "${sha256} ${fname}" > ${fname}.sha256
sha256sum -c ${fname}.sha256
rm -f ${fname}.sha256
}
function build_openssl {
local openssl_fname=$1
check_var ${openssl_fname}
local openssl_sha256=$2
check_var ${openssl_sha256}
check_var ${OPENSSL_DOWNLOAD_URL}
curl -sLO ${OPENSSL_DOWNLOAD_URL}/${openssl_fname}.tar.gz
check_sha256sum ${openssl_fname}.tar.gz ${openssl_sha256}
tar -xzf ${openssl_fname}.tar.gz
(cd ${openssl_fname} && do_openssl_build)
rm -rf ${openssl_fname} ${openssl_fname}.tar.gz
}
function do_curl_build {
LIBS=-ldl ./configure --with-ssl --disable-shared > /dev/null
make > /dev/null
make install > /dev/null
}
function build_curl {
local curl_fname=$1
check_var ${curl_fname}
local curl_sha256=$2
check_var ${curl_sha256}
check_var ${CURL_DOWNLOAD_URL}
curl -sLO ${CURL_DOWNLOAD_URL}/${curl_fname}.tar.bz2
check_sha256sum ${curl_fname}.tar.bz2 ${curl_sha256}
tar -jxf ${curl_fname}.tar.bz2
(cd ${curl_fname} && do_curl_build)
rm -rf ${curl_fname} ${curl_fname}.tar.bz2
}
function do_standard_install {
./configure > /dev/null
make > /dev/null
make install > /dev/null
}
function build_autoconf {
local autoconf_fname=$1
check_var ${autoconf_fname}
local autoconf_sha256=$2
check_var ${autoconf_sha256}
check_var ${AUTOCONF_DOWNLOAD_URL}
curl -sLO ${AUTOCONF_DOWNLOAD_URL}/${autoconf_fname}.tar.gz
check_sha256sum ${autoconf_fname}.tar.gz ${autoconf_sha256}
tar -zxf ${autoconf_fname}.tar.gz
(cd ${autoconf_fname} && do_standard_install)
rm -rf ${autoconf_fname} ${autoconf_fname}.tar.gz
}

View File

@ -1,60 +0,0 @@
# Logic copied from PEP 513
def is_manylinux1_compatible():
# Only Linux, and only x86-64 / i686
from distutils.util import get_platform
if get_platform() not in ["linux-x86_64", "linux-i686", "linux-s390x"]:
return False
# Check for presence of _manylinux module
try:
import _manylinux
return bool(_manylinux.manylinux1_compatible)
except (ImportError, AttributeError):
# Fall through to heuristic check below
pass
# Check glibc version. CentOS 5 uses glibc 2.5.
return have_compatible_glibc(2, 5)
def have_compatible_glibc(major, minimum_minor):
import ctypes
process_namespace = ctypes.CDLL(None)
try:
gnu_get_libc_version = process_namespace.gnu_get_libc_version
except AttributeError:
# Symbol doesn't exist -> therefore, we are not linked to
# glibc.
return False
# Call gnu_get_libc_version, which returns a string like "2.5".
gnu_get_libc_version.restype = ctypes.c_char_p
version_str = gnu_get_libc_version()
# py2 / py3 compatibility:
if not isinstance(version_str, str):
version_str = version_str.decode("ascii")
# Parse string and check against requested version.
version = [int(piece) for piece in version_str.split(".")]
assert len(version) == 2
if major != version[0]:
return False
if minimum_minor > version[1]:
return False
return True
import sys
if is_manylinux1_compatible():
print(f"{sys.executable} is manylinux1 compatible")
sys.exit(0)
else:
print(f"{sys.executable} is NOT manylinux1 compatible")
sys.exit(1)

View File

@ -1,35 +0,0 @@
# cf. https://github.com/pypa/manylinux/issues/53
GOOD_SSL = "https://google.com"
BAD_SSL = "https://self-signed.badssl.com"
import sys
print("Testing SSL certificate checking for Python:", sys.version)
if sys.version_info[:2] < (2, 7) or sys.version_info[:2] < (3, 4):
print("This version never checks SSL certs; skipping tests")
sys.exit(0)
if sys.version_info[0] >= 3:
from urllib.request import urlopen
EXC = OSError
else:
from urllib import urlopen
EXC = IOError
print(f"Connecting to {GOOD_SSL} should work")
urlopen(GOOD_SSL)
print("...it did, yay.")
print(f"Connecting to {BAD_SSL} should fail")
try:
urlopen(BAD_SSL)
# If we get here then we failed:
print("...it DIDN'T!!!!!11!!1one!")
sys.exit(1)
except EXC:
print("...it did, yay.")

View File

@ -85,10 +85,10 @@ librosa>=0.6.2 ; python_version < "3.11"
#Pinned versions:
#test that import:
mypy==1.10.0
mypy==1.9.0
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 1.10.0
#Pinned versions: 1.9.0
#test that import: test_typing.py, test_type_hints.py
networkx==2.8.8
@ -134,9 +134,9 @@ opt-einsum==3.3
#Pinned versions: 3.3
#test that import: test_linalg.py
optree==0.12.1
optree==0.11.0
#Description: A library for tree manipulation
#Pinned versions: 0.12.1
#Pinned versions: 0.11.0
#test that import: test_vmap.py, test_aotdispatch.py, test_dynamic_shapes.py,
#test_pytree.py, test_ops.py, test_control_flow.py, test_modules.py,
#common_utils.py, test_eager_transforms.py, test_python_dispatch.py,
@ -306,7 +306,7 @@ pywavelets==1.5.0 ; python_version >= "3.12"
#Pinned versions: 1.4.1
#test that import:
lxml==5.0.0
lxml==5.0.0.
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries

View File

@ -103,14 +103,6 @@ COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH

View File

@ -105,18 +105,18 @@ COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-rocm.txt triton_version.txt
# Install AOTriton
COPY ./aotriton_version.txt aotriton_version.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN ["/bin/bash", "-c", "./install_aotriton.sh /opt/rocm && rm -rf install_aotriton.sh aotriton_version.txt common_utils.sh"]
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Install AOTriton
COPY ci_commit_pins/aotriton.txt aotriton.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm/aotriton && rm -rf install_aotriton.sh aotriton aotriton.txt common_utils.sh
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}

View File

@ -155,14 +155,6 @@ COPY ci_commit_pins/executorch.txt executorch.txt
RUN if [ -n "${EXECUTORCH}" ]; then bash ./install_executorch.sh; fi
RUN rm install_executorch.sh common_utils.sh executorch.txt
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./

View File

@ -1 +1,42 @@
This directory contains scripts for our continuous integration.
One important thing to keep in mind when reading the scripts here is
that they are all based off of Docker images, which we build for each of
the various system configurations we want to run on Jenkins. This means
it is very easy to run these tests yourself:
1. Figure out what Docker image you want. The general template for our
images look like:
``registry.pytorch.org/pytorch/pytorch-$BUILD_ENVIRONMENT:$DOCKER_VERSION``,
where ``$BUILD_ENVIRONMENT`` is one of the build environments
enumerated in
[pytorch-dockerfiles](https://github.com/pytorch/pytorch/blob/master/.ci/docker/build.sh). The dockerfile used by jenkins can be found under the `.ci` [directory](https://github.com/pytorch/pytorch/blob/master/.ci/docker)
2. Run ``docker run -it -u jenkins $DOCKER_IMAGE``, clone PyTorch and
run one of the scripts in this directory.
The Docker images are designed so that any "reasonable" build commands
will work; if you look in [build.sh](build.sh) you will see that it is a
very simple script. This is intentional. Idiomatic build instructions
should work inside all of our Docker images. You can tweak the commands
however you need (e.g., in case you want to rebuild with DEBUG, or rerun
the build with higher verbosity, etc.).
We have to do some work to make this so. Here is a summary of the
mechanisms we use:
- We install binaries to directories like `/usr/local/bin` which
are automatically part of your PATH.
- We add entries to the PATH using Docker ENV variables (so
they apply when you enter Docker) and `/etc/environment` (so they
continue to apply even if you sudo), instead of modifying
`PATH` in our build scripts.
- We use `/etc/ld.so.conf.d` to register directories containing
shared libraries, instead of modifying `LD_LIBRARY_PATH` in our
build scripts.
- We reroute well known paths like `/usr/bin/gcc` to alternate
implementations with `update-alternatives`, instead of setting
`CC` and `CXX` in our implementations.

View File

@ -230,10 +230,6 @@ if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
export CMAKE_BUILD_TYPE=RelWithAssert
fi
# Do not change workspace permissions for ROCm CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
@ -288,26 +284,12 @@ else
# Which should be backward compatible with Numpy-1.X
python -mpip install --pre numpy==2.0.0rc1
fi
WERROR=1 python setup.py clean
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 python setup.py bdist_wheel
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 python setup.py bdist_wheel --cmake
else
WERROR=1 python setup.py bdist_wheel
fi
WERROR=1 python setup.py bdist_wheel
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "USE_SPLIT_BUILD cannot be used with xla or rocm"
exit 1
else
python setup.py bdist_wheel
fi
python setup.py bdist_wheel
fi
pip_install_whl "$(echo dist/*.whl)"
@ -346,10 +328,9 @@ else
CUSTOM_OP_TEST="$PWD/test/custom_operator"
python --version
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$CUSTOM_OP_BUILD"
pushd "$CUSTOM_OP_BUILD"
cmake "$CUSTOM_OP_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch;$SITE_PACKAGES" -DPython_EXECUTABLE="$(which python)" \
cmake "$CUSTOM_OP_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
@ -362,7 +343,7 @@ else
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$JIT_HOOK_BUILD"
pushd "$JIT_HOOK_BUILD"
cmake "$JIT_HOOK_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch;$SITE_PACKAGES" -DPython_EXECUTABLE="$(which python)" \
cmake "$JIT_HOOK_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
@ -374,7 +355,7 @@ else
python --version
mkdir -p "$CUSTOM_BACKEND_BUILD"
pushd "$CUSTOM_BACKEND_BUILD"
cmake "$CUSTOM_BACKEND_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch;$SITE_PACKAGES" -DPython_EXECUTABLE="$(which python)" \
cmake "$CUSTOM_BACKEND_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd

View File

@ -56,29 +56,9 @@ function assert_git_not_dirty() {
function pip_install_whl() {
# This is used to install PyTorch and other build artifacts wheel locally
# without using any network connection
# Convert the input arguments into an array
local args=("$@")
# Check if the first argument contains multiple paths separated by spaces
if [[ "${args[0]}" == *" "* ]]; then
# Split the string by spaces into an array
IFS=' ' read -r -a paths <<< "${args[0]}"
# Loop through each path and install individually
for path in "${paths[@]}"; do
echo "Installing $path"
python3 -mpip install --no-index --no-deps "$path"
done
else
# Loop through each argument and install individually
for path in "${args[@]}"; do
echo "Installing $path"
python3 -mpip install --no-index --no-deps "$path"
done
fi
python3 -mpip install --no-index --no-deps "$@"
}
function pip_install() {
# retry 3 times
# old versions of pip don't have the "--progress-bar" flag
@ -208,6 +188,28 @@ function clone_pytorch_xla() {
fi
}
function checkout_install_torchdeploy() {
local commit
commit=$(get_pinned_commit multipy)
pushd ..
git clone --recurse-submodules https://github.com/pytorch/multipy.git
pushd multipy
git checkout "${commit}"
python multipy/runtime/example/generate_examples.py
BUILD_CUDA_TESTS=1 pip install -e .
popd
popd
}
function test_torch_deploy(){
pushd ..
pushd multipy
./multipy/runtime/build/test_deploy
./multipy/runtime/build/test_deploy_gpu
popd
popd
}
function checkout_install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
@ -222,8 +224,6 @@ function checkout_install_torchbench() {
# to install and test other models
python install.py --continue_on_fail
fi
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}

View File

@ -6,7 +6,6 @@ from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID
temp_dir = mkdtemp()
print(temp_dir)

View File

@ -18,9 +18,8 @@ time python test/run_test.py --verbose -i distributed/test_c10d_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
time python test/run_test.py --verbose -i distributed/test_cuda_p2p
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
# FSDP tests
@ -55,9 +54,6 @@ time python test/run_test.py --verbose -i distributed/_composable/fsdp/test_full
# Pipelining composability tests
time python test/run_test.py --verbose -i distributed/pipelining/test_composability.py
# ND composability tests
time python test/run_test.py --verbose -i distributed/_composable/test_composability/test_2d_composability
# Other tests
time python test/run_test.py --verbose -i test_cuda_primary_ctx
time python test/run_test.py --verbose -i test_optim -- -k test_forloop_goes_right_direction_multigpu

View File

@ -3,7 +3,6 @@ import json
import math
import sys
parser = argparse.ArgumentParser()
parser.add_argument(
"--test-name", dest="test_name", action="store", required=True, help="test name"

View File

@ -3,7 +3,6 @@ import sys
import numpy
sample_data_list = sys.argv[1:]
sample_data_list = [float(v.strip()) for v in sample_data_list]

View File

@ -1,7 +1,6 @@
import json
import sys
data_file_path = sys.argv[1]
commit_hash = sys.argv[2]

View File

@ -1,6 +1,5 @@
import sys
log_file_path = sys.argv[1]
with open(log_file_path) as f:

View File

@ -249,7 +249,9 @@ fi
# This tests that the debug asserts are working correctly.
if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
echo "We are in debug mode: $BUILD_ENVIRONMENT. Expect the python assertion to fail"
(cd test && ! get_exit_code python -c "import torch; torch._C._crash_if_debug_asserts_fail(424242)")
# TODO: Enable the check after we setup the build to run debug asserts without having
# to do a full (and slow) debug build
# (cd test && ! get_exit_code python -c "import torch; torch._C._crash_if_debug_asserts_fail(424242)")
elif [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
# Noop when debug is disabled. Skip bazel jobs because torch isn't available there yet.
echo "We are not in debug mode: $BUILD_ENVIRONMENT. Expect the assertion to pass"
@ -262,6 +264,18 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
# temp workarounds for https://github.com/pytorch/pytorch/issues/126692, remove when fixed
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
pushd test
CUDA_VERSION=$(python -c "import torch; print(torch.version.cuda)")
if [ "$CUDA_VERSION" == "12.4" ]; then
ISCUDA124="cu124"
else
ISCUDA124=""
fi
popd
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -275,9 +289,6 @@ test_python_shard() {
# Bare --include flag is not supported and quoting for lint ends up with flag not being interpreted correctly
# shellcheck disable=SC2086
# modify LD_LIBRARY_PATH to ensure it has the conda env.
# This set of tests has been shown to be buggy without it for the split-build
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION
assert_git_not_dirty
@ -320,10 +331,10 @@ test_inductor_distributed() {
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_comm.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_multi_group --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_with_activation_checkpointing --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_2d_mlp --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_hsdp --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_2d_transformer_checkpoint_resume --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_gradient_accumulation --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_state_dict.py -k test_dp_state_dict_save_load --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_frozen.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_compute_dtype --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_reduce_dtype --verbose
@ -336,31 +347,17 @@ test_inductor_distributed() {
assert_git_not_dirty
}
test_inductor_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
exit 1
fi
test_inductor() {
python tools/dynamo/verify_dynamo.py
python test/run_test.py --inductor \
--include test_modules test_ops test_ops_gradients test_torch \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor --include test_modules test_ops test_ops_gradients test_torch --verbose
# Do not add --inductor for the following inductor unit tests, otherwise we will fail because of nested dynamo state
python test/run_test.py \
--include inductor/test_torchinductor inductor/test_torchinductor_opinfo inductor/test_aot_inductor \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
}
python test/run_test.py --include inductor/test_torchinductor inductor/test_torchinductor_opinfo inductor/test_aot_inductor --verbose
test_inductor_aoti() {
# docker build uses bdist_wheel which does not work with test_aot_inductor
# TODO: need a faster way to build
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
fi
}
@ -379,7 +376,7 @@ test_inductor_cpp_wrapper_abi_compatible() {
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_timm_training.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_timm_training.csv"
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -404,7 +401,7 @@ if [[ "${TEST_CONFIG}" == *dynamic* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--dynamic-shapes --dynamic-batch-only)
fi
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
else
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
@ -428,18 +425,6 @@ test_perf_for_dashboard() {
# TODO: All the accuracy tests can be skipped once the CI accuracy checking is stable enough
local targets=(accuracy performance)
local device=cuda
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
device=cpu_x86
elif [[ "${TEST_CONFIG}" == *cpu_aarch64* ]]; then
device=cpu_aarch64
fi
test_inductor_set_cpu_affinity
elif [[ "${TEST_CONFIG}" == *cuda_a10g* ]]; then
device=cuda_a10g
fi
for mode in "${modes[@]}"; do
if [[ "$mode" == "inference" ]]; then
dtype=bfloat16
@ -455,56 +440,56 @@ test_perf_for_dashboard() {
fi
if [[ "$DASHBOARD_TAG" == *default-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
--output "$TEST_REPORTS_DIR/${backend}_no_cudagraphs_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_no_cudagraphs_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *cudagraphs-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" \
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *dynamic-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --dynamic-shapes \
--dynamic-batch-only "$@" \
--output "$TEST_REPORTS_DIR/${backend}_dynamic_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_dynamic_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *cppwrapper-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_CPP_WRAPPER=1 $TASKSET python "benchmarks/dynamo/$suite.py" \
TORCHINDUCTOR_CPP_WRAPPER=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
--output "$TEST_REPORTS_DIR/${backend}_cpp_wrapper_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_cpp_wrapper_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *freezing_cudagraphs-true* ]] && [[ "$mode" == "inference" ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" --freezing \
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *freeze_autotune_cudagraphs-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_MAX_AUTOTUNE=1 $TASKSET python "benchmarks/dynamo/$suite.py" \
TORCHINDUCTOR_MAX_AUTOTUNE=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" --freezing \
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_autotune_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_autotune_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *aotinductor-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_ABI_COMPATIBLE=1 $TASKSET python "benchmarks/dynamo/$suite.py" \
TORCHINDUCTOR_ABI_COMPATIBLE=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --export-aot-inductor --disable-cudagraphs "$@" \
--output "$TEST_REPORTS_DIR/${backend}_aot_inductor_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_aot_inductor_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *maxautotune-true* ]]; then
TORCHINDUCTOR_MAX_AUTOTUNE=1 $TASKSET python "benchmarks/dynamo/$suite.py" \
TORCHINDUCTOR_MAX_AUTOTUNE=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" \
--output "$TEST_REPORTS_DIR/${backend}_max_autotune_${suite}_${dtype}_${mode}_${device}_${target}.csv"
--output "$TEST_REPORTS_DIR/${backend}_max_autotune_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *cudagraphs_low_precision-true* ]] && [[ "$mode" == "inference" ]]; then
# TODO: This has a new dtype called quant and the benchmarks script needs to be updated to support this.
# The tentative command is as follows. It doesn't work now, but it's ok because we only need mock data
# to fill the dashboard.
$TASKSET python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --quant --backend "$backend" "$@" \
--output "$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_${device}_${target}.csv" || true
--output "$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_cuda_${target}.csv" || true
# Copy cudagraph results as mock data, easiest choice?
cp "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_${suite}_${dtype}_${mode}_${device}_${target}.csv" \
"$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_${device}_${target}.csv"
cp "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_${suite}_${dtype}_${mode}_cuda_${target}.csv" \
"$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_cuda_${target}.csv"
fi
done
done
@ -541,16 +526,11 @@ test_single_dynamo_benchmark() {
test_perf_for_dashboard "$suite" \
"${DYNAMO_BENCHMARK_FLAGS[@]}" "$@" "${partition_flags[@]}"
else
if [[ "${TEST_CONFIG}" == *aot_inductor* && "${TEST_CONFIG}" != *cpu_aot_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
# Test AOTInductor with the ABI-compatible mode on CI
# This can be removed once the ABI-compatible mode becomes default.
# For CPU device, we perfer non ABI-compatible mode on CI when testing AOTInductor.
export TORCHINDUCTOR_ABI_COMPATIBLE=1
fi
if [[ "${TEST_CONFIG}" == *_avx2* ]]; then
TEST_CONFIG=${TEST_CONFIG::-5}
fi
python "benchmarks/dynamo/$suite.py" \
--ci --accuracy --timing --explain \
"${DYNAMO_BENCHMARK_FLAGS[@]}" \
@ -558,10 +538,10 @@ test_single_dynamo_benchmark() {
--output "$TEST_REPORTS_DIR/${name}_${suite}.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
python benchmarks/dynamo/check_graph_breaks.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
fi
}
@ -570,11 +550,6 @@ test_inductor_micro_benchmark() {
python benchmarks/gpt_fast/benchmark.py --output "${TEST_REPORTS_DIR}/gpt_fast_benchmark.csv"
}
test_inductor_halide() {
python test/run_test.py --include inductor/test_halide.py --verbose
assert_git_not_dirty
}
test_dynamo_benchmark() {
# Usage: test_dynamo_benchmark huggingface 0
TEST_REPORTS_DIR=$(pwd)/test/test-reports
@ -589,15 +564,11 @@ test_dynamo_benchmark() {
elif [[ "${TEST_CONFIG}" == *perf* ]]; then
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
else
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
local dt="float32"
if [[ "${TEST_CONFIG}" == *amp* ]]; then
dt="amp"
fi
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *freezing* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --"$dt" --freezing "$@"
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 --freezing "$@"
else
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --"$dt" "$@"
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 "$@"
fi
elif [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --bfloat16 "$@"
@ -621,7 +592,7 @@ test_inductor_torchbench_smoketest_perf() {
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_torchbench_inference.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_torchbench_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
@ -636,8 +607,13 @@ test_inductor_torchbench_smoketest_perf() {
# https://github.com/pytorch/pytorch/actions/runs/7158691360/job/19491437314,
# and thus we lower its threshold to reduce flakiness. If this continues to be a problem,
# we switch to use some other model.
# lowering threshold from 4.9 to 4.7 for cu124. Will bump it up after cuda 12.4.0->12.4.1 update
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv" -t 4.7
# Use 4.7 for cuda 12.4, change back to 4.9 after fixing https://github.com/pytorch/pytorch/issues/126692
if [ "$CUDA_VERSION" == "12.4" ]; then
THRESHOLD=4.7
else
THRESHOLD=4.9
fi
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv" -t $THRESHOLD
# Check memory compression ratio for a few models
for test in hf_Albert timm_vision_transformer; do
@ -656,77 +632,52 @@ test_inductor_torchbench_smoketest_perf() {
--only $test --output "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_huggingface_training.csv"
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_huggingface_training.csv"
done
}
test_inductor_get_core_number() {
if [[ "${TEST_CONFIG}" == *aarch64 ]]; then
echo "$(($(lscpu | grep 'Cluster(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per cluster:' | awk '{print $4}')))"
else
echo "$(($(lscpu | grep 'Socket(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per socket:' | awk '{print $4}')))"
fi
}
test_inductor_set_cpu_affinity(){
#set jemalloc
JEMALLOC_LIB="$(find /usr/lib -name libjemalloc.so.2)"
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
export LD_PRELOAD="$JEMALLOC_LIB":"$IOMP_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
cores=$(test_inductor_get_core_number)
export OMP_NUM_THREADS=$cores
end_core=$((cores-1))
export TASKSET="taskset -c 0-$end_core"
}
test_inductor_torchbench_cpu_smoketest_perf(){
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
test_inductor_set_cpu_affinity
#set jemalloc
JEMALLOC_LIB="/usr/lib/x86_64-linux-gnu/libjemalloc.so.2"
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
export LD_PRELOAD="$JEMALLOC_LIB":"$IOMP_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
CORES=$(lscpu | grep Core | awk '{print $4}')
export OMP_NUM_THREADS=$CORES
end_core=$(( CORES-1 ))
MODELS_SPEEDUP_TARGET=benchmarks/dynamo/expected_ci_speedup_inductor_torchbench_cpu.csv
grep -v '^ *#' < "$MODELS_SPEEDUP_TARGET" | while IFS=',' read -r -a model_cfg
do
local model_name=${model_cfg[0]}
local data_type=${model_cfg[2]}
# local speedup_target=${model_cfg[5]}
local backend=${model_cfg[1]}
if [[ ${model_cfg[4]} == "cpp" ]]; then
local data_type=${model_cfg[1]}
local speedup_target=${model_cfg[4]}
if [[ ${model_cfg[3]} == "cpp" ]]; then
export TORCHINDUCTOR_CPP_WRAPPER=1
else
unset TORCHINDUCTOR_CPP_WRAPPER
fi
local output_name="$TEST_REPORTS_DIR/inductor_inference_${model_cfg[0]}_${model_cfg[1]}_${model_cfg[2]}_${model_cfg[3]}_cpu_smoketest.csv"
if [[ ${model_cfg[3]} == "dynamic" ]]; then
$TASKSET python benchmarks/dynamo/torchbench.py \
if [[ ${model_cfg[2]} == "dynamic" ]]; then
taskset -c 0-"$end_core" python benchmarks/dynamo/torchbench.py \
--inference --performance --"$data_type" -dcpu -n50 --only "$model_name" --dynamic-shapes \
--dynamic-batch-only --freezing --timeout 9000 --"$backend" --output "$output_name"
--dynamic-batch-only --freezing --timeout 9000 --backend=inductor --output "$output_name"
else
$TASKSET python benchmarks/dynamo/torchbench.py \
taskset -c 0-"$end_core" python benchmarks/dynamo/torchbench.py \
--inference --performance --"$data_type" -dcpu -n50 --only "$model_name" \
--freezing --timeout 9000 --"$backend" --output "$output_name"
--freezing --timeout 9000 --backend=inductor --output "$output_name"
fi
cat "$output_name"
# The threshold value needs to be actively maintained to make this check useful.
# TODO: re-enable this after https://github.com/pytorch/pytorch/pull/131812 lands
# python benchmarks/dynamo/check_perf_csv.py -f "$output_name" -t "$speedup_target"
python benchmarks/dynamo/check_perf_csv.py -f "$output_name" -t "$speedup_target"
done
# Add a few ABI-compatible accuracy tests for CPU. These can be removed once we turn on ABI-compatible as default.
TORCHINDUCTOR_ABI_COMPATIBLE=1 python benchmarks/dynamo/timm_models.py --device cpu --accuracy \
--bfloat16 --inference --export-aot-inductor --disable-cudagraphs --only adv_inception_v3 \
--output "$TEST_REPORTS_DIR/aot_inductor_smoke_test.csv"
TORCHINDUCTOR_ABI_COMPATIBLE=1 python benchmarks/dynamo/timm_models.py --device cpu --accuracy \
--bfloat16 --inference --export-aot-inductor --disable-cudagraphs --only beit_base_patch16_224 \
--output "$TEST_REPORTS_DIR/aot_inductor_smoke_test.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/aot_inductor_smoke_test.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/aot_inductor_timm_inference.csv"
}
test_torchbench_gcp_smoketest(){
@ -1218,21 +1169,15 @@ test_executorch() {
pushd /executorch
export PYTHON_EXECUTABLE=python
export EXECUTORCH_BUILD_PYBIND=ON
export CMAKE_ARGS="-DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
# NB: We need to rebuild ExecuTorch runner here because it depends on PyTorch
# from the PR
# NB: We need to build ExecuTorch runner here and not inside the Docker image
# because it depends on PyTorch
# shellcheck disable=SC1091
source .ci/scripts/setup-linux.sh cmake
echo "Run ExecuTorch unit tests"
pytest -v -n auto
# shellcheck disable=SC1091
LLVM_PROFDATA=llvm-profdata-12 LLVM_COV=llvm-cov-12 bash test/run_oss_cpp_tests.sh
source .ci/scripts/utils.sh
build_executorch_runner "cmake"
echo "Run ExecuTorch regression tests for some models"
# NB: This is a sample model, more can be added here
export PYTHON_EXECUTABLE=python
# TODO(huydhn): Add more coverage here using ExecuTorch's gather models script
# shellcheck disable=SC1091
source .ci/scripts/test.sh mv3 cmake xnnpack-quantization-delegation ''
@ -1270,7 +1215,7 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
(cd test && python -c "import torch; print(torch.__config__.show())")
(cd test && python -c "import torch; print(torch.__config__.parallel_info())")
fi
if [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
test_linux_aarch64
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
test_forward_backward_compatibility
@ -1292,10 +1237,11 @@ elif [[ "$TEST_CONFIG" == distributed ]]; then
if [[ "${SHARD_NUMBER}" == 1 ]]; then
test_rpc
fi
elif [[ "$TEST_CONFIG" == deploy ]]; then
checkout_install_torchdeploy
test_torch_deploy
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
test_inductor_halide
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
test_inductor_micro_benchmark
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
@ -1307,14 +1253,13 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchtext
install_torchvision
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install git+https://github.com/pytorch/ao.git
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
@ -1324,7 +1269,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor_torchbench_cpu_smoketest_perf* ]]; then
checkout_install_torchbench timm_vision_transformer phlippe_densenet basic_gnn_gcn \
llama_v2_7b_16h resnet50 timm_efficientnet mobilenet_v3_large timm_resnest \
shufflenet_v2_x1_0 hf_GPT2 yolov3 mobilenet_v2 resnext50_32x4d hf_T5_base
shufflenet_v2_x1_0 hf_GPT2
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_cpu_smoketest_perf
elif [[ "${TEST_CONFIG}" == *torchbench_gcp_smoketest* ]]; then
checkout_install_torchbench
@ -1333,7 +1278,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
if [[ "${TEST_CONFIG}" != *cpu_inductor* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
@ -1341,22 +1286,17 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper_abi_compatible* ]]; then
install_torchvision
test_inductor_cpp_wrapper_abi_compatible
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor* && "${SHARD_NUMBER}" == 1 ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
if [[ "${BUILD_ENVIRONMENT}" != linux-jammy-py3.8-gcc11-build ]]; then
# Temporarily skip test_inductor_aoti due to https://github.com/pytorch/pytorch/issues/130311
test_inductor_aoti
test_inductor_distributed
fi
fi
elif [[ "${TEST_CONFIG}" == *dynamo* ]]; then
test_inductor
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *dynamo* && "${SHARD_NUMBER}" == 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_dynamo_shard 1
test_aten
elif [[ "${TEST_CONFIG}" == *dynamo* && $SHARD_NUMBER -gt 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_dynamo_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
test_aten
fi
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* && -n "$TESTS_TO_INCLUDE" ]]; then
install_torchvision
test_python_shard "$SHARD_NUMBER"

View File

@ -4,7 +4,6 @@ import os
import subprocess
import sys
COMMON_TESTS = [
(
"Checking that torch is available",

View File

@ -5,7 +5,6 @@ import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], ".."))

View File

@ -46,12 +46,14 @@ if [[ "\$python_nodot" = *310* ]]; then
PROTOBUF_PACKAGE="protobuf>=3.19.0"
fi
if [[ "\$python_nodot" = *39* ]]; then
if [[ "\$python_nodot" = *39* ]]; then
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.20"
fi
# Move debug wheels out of the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
@ -81,7 +83,7 @@ if [[ "$PACKAGE_TYPE" == conda ]]; then
"numpy\${NUMPY_PIN}" \
mkl>=2018 \
ninja \
sympy>=1.12 \
sympy \
typing-extensions \
${PROTOBUF_PACKAGE}
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
@ -95,16 +97,8 @@ if [[ "$PACKAGE_TYPE" == conda ]]; then
)
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
if [[ "\$BUILD_ENVIRONMENT" != *s390x* ]]; then
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pkg_no_python="$(ls -1 /final_pkgs/torch_no_python* | sort |tail -1)"
pkg_torch="$(ls -1 /final_pkgs/torch-* | sort |tail -1)"
# todo: after folder is populated use the pypi_pkg channel instead
pip install "\$pkg_no_python" "\$pkg_torch" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}_pypi_pkg"
retry pip install -q numpy protobuf typing-extensions
else
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
fi
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
else
pip install "\$pkg"
retry pip install -q numpy protobuf typing-extensions
@ -116,18 +110,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
cd /tmp/libtorch
fi
if [[ "$GPU_ARCH_TYPE" == xpu ]]; then
# Workaround for __mkl_tmp_MOD unbound variable issue, refer https://github.com/pytorch/pytorch/issues/130543
set +u
source /opt/intel/oneapi/pytorch-gpu-dev-0.5/oneapi-vars.sh
fi
# Test the package
/builder/check_binary.sh
# Clean temp files
cd /builder && git clean -ffdx
# =================== The above code will be executed inside Docker container ===================
EOL
echo

View File

@ -33,9 +33,9 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="pytorch/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="pytorch/manylinux:cpu"
export DOCKER_IMAGE="pytorch/manylinux-cpu"
else
export DOCKER_IMAGE="pytorch/manylinux-builder:${DESIRED_CUDA:2}"
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
fi
fi
@ -75,9 +75,9 @@ export PYTORCH_BUILD_NUMBER=1
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64' and python_version < '3.13'"
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
# Only linux Python < 3.13 are supported wheels for triton
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64' and python_version < '3.13'"
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton.txt)
@ -87,11 +87,11 @@ if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:
fi
# Set triton via PYTORCH_EXTRA_INSTALL_REQUIREMENTS for triton rocm package
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*rocm.* && $(uname) == "Linux" ]]; then
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*rocm.* && $(uname) == "Linux" && "$DESIRED_PYTHON" != "3.12" ]]; then
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton-rocm.txt)
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}+${TRITON_SHORTHASH}; ${TRITON_CONSTRAINT}"
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}+${TRITON_SHORTHASH}"
fi
if [[ -z "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${TRITON_REQUIREMENT}"
@ -100,18 +100,30 @@ if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_B
fi
fi
# Set triton via PYTORCH_EXTRA_INSTALL_REQUIREMENTS for triton xpu package
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*xpu.* && $(uname) == "Linux" ]]; then
TRITON_REQUIREMENT="pytorch-triton-xpu==${TRITON_VERSION}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton-xpu.txt)
TRITON_REQUIREMENT="pytorch-triton-xpu==${TRITON_VERSION}+${TRITON_SHORTHASH}"
fi
if [[ -z "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${TRITON_REQUIREMENT}"
else
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS} | ${TRITON_REQUIREMENT}"
JAVA_HOME=
BUILD_JNI=OFF
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/pytorch/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/pytorch/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
break
fi
done
if [ -z "$JAVA_HOME" ]; then
echo "Did not find jni.h"
fi
fi
cat >"$envfile" <<EOL
@ -124,7 +136,6 @@ export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
export USE_SPLIT_BUILD="${USE_SPLIT_BUILD:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
@ -148,6 +159,8 @@ export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export ANACONDA_USER='pytorch'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"

View File

@ -25,15 +25,6 @@ if [[ "${DRY_RUN}" = "disabled" ]]; then
AWS_S3_CP="aws s3 cp"
fi
if [[ "${USE_SPLIT_BUILD:-false}" == "true" ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_pypi_pkg"
fi
# this is special build with all dependencies packaged
if [[ ${BUILD_NAME} == *-full* ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_full"
fi
# Sleep 2 minutes between retries for conda upload
retry () {
"$@" || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@")

View File

@ -8,7 +8,6 @@ import time
import requests
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
PIPELINE_ID = "911"

View File

@ -62,6 +62,4 @@ readability-string-compare,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'
CheckOptions:
misc-header-include-cycle.IgnoredFilesList: 'format.h;ivalue.h;custom_class.h;Dict.h;List.h'
...

View File

@ -5,7 +5,7 @@ git submodule sync
git submodule update --init --recursive
# This takes some time
make setup-lint
make setup_lint
# Add CMAKE_PREFIX_PATH to bashrc
echo 'export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}' >> ~/.bashrc

View File

@ -2,7 +2,7 @@
# NOTE: **Mirror any changes** to this file the [tool.ruff] config in pyproject.toml
# before we can fully move to use ruff
enable-extensions = G
select = B,C,E,F,G,P,SIM1,SIM911,T4,W,B9,TOR0,TOR1,TOR2,TOR9
select = B,C,E,F,G,P,SIM1,T4,W,B9,TOR0,TOR1,TOR2,TOR9
max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead

View File

@ -40,7 +40,3 @@ e6ec0efaf87703c5f889cfc20b29be455885d58d
a53cda1ddc15336dc1ff0ce1eff2a49cdc5f882e
# 2024-01-02 clangformat: fused adam #116583
9dc68d1aa9e554d09344a10fff69f7b50b2d23a0
# 2024-06-28 enable UFMT in `torch/storage.py`
d80939e5e9337e8078f11489afefec59fd42f93b
# 2024-06-28 enable UFMT in `torch.utils.data`
7cf0b90e49689d45be91aa539fdf54cf2ea8a9a3

View File

@ -9,17 +9,14 @@ self-hosted-runner:
- linux.large
- linux.2xlarge
- linux.4xlarge
- linux.9xlarge.ephemeral
- linux.12xlarge
- linux.12xlarge.ephemeral
- linux.24xlarge
- linux.arm64.2xlarge
- linux.arm64.m7g.4xlarge
- linux.4xlarge.nvidia.gpu
- linux.8xlarge.nvidia.gpu
- linux.16xlarge.nvidia.gpu
- linux.g5.4xlarge.nvidia.gpu
# Pytorch/pytorch AWS Linux Runners on Linux Foundation account
# Organization-wide AWS Linux Runners on Linux Foundation account
- lf.linux.large
- lf.linux.2xlarge
- lf.linux.4xlarge
@ -30,29 +27,6 @@ self-hosted-runner:
- lf.linux.8xlarge.nvidia.gpu
- lf.linux.16xlarge.nvidia.gpu
- lf.linux.g5.4xlarge.nvidia.gpu
# Organization-wide AWS Linux Runners with new Amazon 2023 AMI
- amz2023.linux.large
- amz2023.linux.2xlarge
- amz2023.linux.4xlarge
- amz2023.linux.12xlarge
- amz2023.linux.24xlarge
- amz2023.linux.arm64.2xlarge
- amz2023.linux.arm64.m7g.4xlarge
- amz2023.linux.4xlarge.nvidia.gpu
- amz2023.linux.8xlarge.nvidia.gpu
- amz2023.linux.16xlarge.nvidia.gpu
- amz2023.linux.g5.4xlarge.nvidia.gpu
# Pytorch/pytorch AWS Linux Runners with the new Amazon 2023 AMI on Linux Foundation account
- amz2023.lf.linux.large
- amz2023.lf.linux.2xlarge
- amz2023.lf.linux.4xlarge
- amz2023.lf.linux.12xlarge
- amz2023.lf.linux.24xlarge
- amz2023.lf.linux.arm64.2xlarge
- amz2023.lf.linux.4xlarge.nvidia.gpu
- amz2023.lf.linux.8xlarge.nvidia.gpu
- amz2023.lf.linux.16xlarge.nvidia.gpu
- amz2023.lf.linux.g5.4xlarge.nvidia.gpu
# Repo-specific IBM hosted S390x runner
- linux.s390x
# Organization wide AWS Windows runners
@ -73,5 +47,3 @@ self-hosted-runner:
- macos-latest-xlarge
- macos-13-xlarge
- macos-14-xlarge
# Organization-wide Intel hosted XPU runners
- linux.idc.xpu

View File

@ -14,14 +14,12 @@ runs:
- name: Cleans up diskspace
shell: bash
run: |
set -ex
diskspace_cutoff=${{ inputs.diskspace-cutoff }}
docker_root_dir=$(docker info -f '{{.DockerRootDir}}')
diskspace=$(df -H --output=pcent ${docker_root_dir} | sed -n 2p | sed 's/%//' | sed 's/ //')
diskspace=$(df -H / --output=pcent | sed -n 2p | sed 's/%//' | sed 's/ //')
msg="Please file an issue on pytorch/pytorch reporting the faulty runner. Include a link to the runner logs so the runner can be identified"
if [[ "$diskspace" -ge "$diskspace_cutoff" ]] ; then
docker system prune -af
diskspace_new=$(df -H --output=pcent ${docker_root_dir} | sed -n 2p | sed 's/%//' | sed 's/ //')
diskspace_new=$(df -H / --output=pcent | sed -n 2p | sed 's/%//' | sed 's/ //')
if [[ "$diskspace_new" -gt "$diskspace_cutoff" ]] ; then
echo "Error: Available diskspace is less than $diskspace_cutoff percent. Not enough diskspace."
echo "$msg"

View File

@ -41,9 +41,6 @@ outputs:
ci-verbose-test-logs:
description: True if ci-verbose-test-logs label was on PR or [ci-verbose-test-logs] in PR body.
value: ${{ steps.filter.outputs.ci-verbose-test-logs }}
ci-test-showlocals:
description: True if ci-test-showlocals label was on PR or [ci-test-showlocals] in PR body.
value: ${{ steps.filter.outputs.ci-test-showlocals }}
ci-no-test-timeout:
description: True if ci-no-test-timeout label was on PR or [ci-no-test-timeout] in PR body.
value: ${{ steps.filter.outputs.ci-no-test-timeout }}

207
.github/actions/linux-build/action.yml vendored Normal file
View File

@ -0,0 +1,207 @@
name: linux-build
inputs:
build-environment:
required: true
description: Top-level label for what's being built/tested.
docker-image-name:
required: true
description: Name of the base docker image to build with.
build-generates-artifacts:
required: false
default: "true"
description: If set, upload generated build artifacts.
build-with-debug:
required: false
default: "false"
description: If set, build in debug mode.
sync-tag:
required: false
default: ""
description: |
If this is set, our linter will use this to make sure that every other
job with the same `sync-tag` is identical.
cuda-arch-list:
required: false
default: "5.2"
description: Runner label to select worker type
runner:
required: false
default: "linux.2xlarge"
description: |
List of CUDA architectures CI build should target.
test-matrix:
required: false
type: string
description: |
An option JSON description of what test configs to run later on. This
is moved here from the Linux test workflow so that we can apply filter
logic using test-config labels earlier and skip unnecessary builds
s3-bucket:
description: S3 bucket to download artifact
required: false
default: "gha-artifacts"
aws-role-to-assume:
description: role to assume for downloading artifacts
required: false
default: ""
GITHUB_TOKEN:
description: GitHub token
required: true
HUGGING_FACE_HUB_TOKEN:
description: Hugging Face Hub token
required: false
default: ""
outputs:
docker-image:
value: ${{ steps.calculate-docker-image.outputs.docker-image }}
description: The docker image containing the built PyTorch.
test-matrix:
value: ${{ steps.filter.outputs.test-matrix }}
description: An optional JSON description of what test configs to run later on.
runs:
using: composite
steps:
- name: Setup Linux
uses: ./.github/actions/setup-linux
- name: configure aws credentials
uses: aws-actions/configure-aws-credentials@v3
if: ${{ inputs.aws-role-to-assume != '' }}
with:
role-to-assume: ${{ inputs.aws-role-to-assume }}
role-session-name: gha-linux-build
role-duration-seconds: 10800
aws-region: us-east-1
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-image-name: ${{ inputs.docker-image-name }}
- name: Use following to pull public copy of the image
id: print-ghcr-mirror
env:
ECR_DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
shell: bash
run: |
tag=${ECR_DOCKER_IMAGE##*/}
echo "docker pull ghcr.io/pytorch/ci-image:${tag/:/-}"
- name: Pull docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Parse ref
id: parse-ref
shell: bash
run: .github/scripts/parse_ref.py
- name: Get workflow job id
id: get-job-id
uses: ./.github/actions/get-workflow-job-id
if: always()
with:
github-token: ${{ inputs.GITHUB_TOKEN }}
# Apply the filter logic to the build step too if the test-config label is already there
- name: Select all requested test configurations (if the test matrix is available)
id: filter
uses: ./.github/actions/filter-test-configs
with:
github-token: ${{ inputs.GITHUB_TOKEN }}
test-matrix: ${{ inputs.test-matrix }}
job-name: ${{ steps.get-job-id.outputs.job-name }}
- name: Download pytest cache
uses: ./.github/actions/pytest-cache-download
continue-on-error: true
with:
cache_dir: .pytest_cache
job_identifier: ${{ github.workflow }}_${{ inputs.build-environment }}
s3_bucket: ${{ inputs.s3-bucket }}
- name: Build
if: steps.filter.outputs.is-test-matrix-empty == 'False' || inputs.test-matrix == ''
id: build
env:
BUILD_ENVIRONMENT: ${{ inputs.build-environment }}
BRANCH: ${{ steps.parse-ref.outputs.branch }}
# TODO duplicated
AWS_DEFAULT_REGION: us-east-1
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_S3_KEY_PREFIX: ${{ github.workflow }}
XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla
PR_LABELS: ${{ toJson(github.event.pull_request.labels.*.name) }}
TORCH_CUDA_ARCH_LIST: ${{ inputs.cuda-arch-list }}
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
DEBUG: ${{ inputs.build-with-debug == 'true' && '1' || '0' }}
OUR_GITHUB_JOB_ID: ${{ steps.get-job-id.outputs.job-id }}
HUGGING_FACE_HUB_TOKEN: ${{ inputs.HUGGING_FACE_HUB_TOKEN }}
shell: bash
run: |
# detached container should get cleaned up by teardown_ec2_linux
container_name=$(docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e AWS_DEFAULT_REGION \
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
-e SCCACHE_BUCKET \
-e SCCACHE_S3_KEY_PREFIX \
-e XLA_CUDA \
-e XLA_CLANG_CACHE_S3_BUCKET_NAME \
-e SKIP_SCCACHE_INITIALIZATION=1 \
-e TORCH_CUDA_ARCH_LIST \
-e PR_LABELS \
-e OUR_GITHUB_JOB_ID \
-e HUGGING_FACE_HUB_TOKEN \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--detach \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}"
)
docker exec -t "${container_name}" sh -c '.ci/pytorch/build.sh'
- name: Archive artifacts into zip
if: inputs.build-generates-artifacts == 'true' && steps.build.outcome != 'skipped'
shell: bash
run: |
zip -1 -r artifacts.zip dist/ build/custom_test_artifacts build/lib build/bin .additional_ci_files
- name: Store PyTorch Build Artifacts on S3
uses: seemethere/upload-artifact-s3@v5
if: inputs.build-generates-artifacts == 'true' && steps.build.outcome != 'skipped'
with:
name: ${{ inputs.build-environment }}
retention-days: 14
if-no-files-found: error
path: artifacts.zip
s3-bucket: ${{ inputs.s3-bucket }}
- name: Upload sccache stats
if: steps.build.outcome != 'skipped'
uses: seemethere/upload-artifact-s3@v5
with:
s3-prefix: |
${{ github.repository }}/${{ github.run_id }}/${{ github.run_attempt }}/artifact
retention-days: 365
if-no-files-found: warn
path: sccache-stats-*.json
s3-bucket: ${{ inputs.s3-bucket }}
- name: Teardown Linux
uses: pytorch/test-infra/.github/actions/teardown-linux@main
if: always()

View File

@ -167,7 +167,6 @@ runs:
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}
TEST_SHOWLOCALS: ${{ steps.keep-going.outputs.ci-test-showlocals }}
NO_TEST_TIMEOUT: ${{ steps.keep-going.outputs.ci-no-test-timeout }}
NO_TD: ${{ steps.keep-going.outputs.ci-no-td }}
TD_DISTRIBUTED: ${{ steps.keep-going.outputs.ci-td-distributed }}

View File

@ -26,7 +26,6 @@ runs:
-e PYTORCH_FINAL_PACKAGE_DIR \
-e PYTORCH_ROOT \
-e SKIP_ALL_TESTS \
-e USE_SPLIT_BUILD \
--tty \
--detach \
-v "${GITHUB_WORKSPACE}/pytorch:/pytorch" \
@ -36,8 +35,7 @@ runs:
"${DOCKER_IMAGE}"
)
echo "CONTAINER_NAME=${container_name}" >> "$GITHUB_ENV"
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" && "${GPU_ARCH_TYPE}" != "xpu" ]]; then
if [[ "${GPU_ARCH_TYPE}" != "rocm" && "${BUILD_ENVIRONMENT}" != "linux-aarch64-binary-manywheel" && "${BUILD_ENVIRONMENT}" != "linux-s390x-binary-manywheel" ]]; then
# Propagate download.pytorch.org IP to container. This is only needed on Linux non aarch64 runner
grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" bash -c "/bin/cat >> /etc/hosts"
fi
@ -48,9 +46,10 @@ runs:
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash -x /run.sh"
- name: Cleanup docker
if: always() && (env.BUILD_ENVIRONMENT == 'linux-s390x-binary-manywheel' || env.GPU_ARCH_TYPE == 'xpu')
if: always() && env.BUILD_ENVIRONMENT == 'linux-s390x-binary-manywheel'
shell: bash
run: |
# on s390x or xpu stop the container for clean worker stop
# on s390x stop the container for clean worker stop
# ignore expansion of "docker ps -q" since it could be empty
# shellcheck disable=SC2046
docker stop "${{ env.CONTAINER_NAME }}" || true
docker stop $(docker ps -q) || true

View File

@ -1 +1 @@
b3f6f511f2a1082bd56b13a3f6794e7fc3ba4862
1980f8af5bcd0bb2ce51965cf79d8d4c25dad8a0

View File

@ -1 +1 @@
23512dbebd44a11eb84afbf53c3c071dd105297e
d6015d42d9a1834bc7595c4bd6852562fb80b30b

View File

@ -1 +1 @@
5ea4535f0699f366adb554183a65ebf7dc34a8be
6f0b61e5d782913a0fc7743812f2a8e522189111

View File

@ -1,23 +1,13 @@
# This file is generated by .github/scripts/validate_scale_config.py in test-infra
# It defines runner types that will be provisioned by by LF Self-hosted runners
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
# Defines runner types that will be provisioned by by LF Self-hosted
# runners for pytorch/pytorch-canary and their labels.
#
# NOTE (Apr, 5, 2021): Linux runners are currently all an amazonlinux2
# Runners listed here will be available as self hosted runners.
# Configuration is directly pulled from the main branch.
#
# NOTE (Jan 5, 2021): Linux runners are all non-ephemeral to reduce the amount of CreateInstaces calls
# to avoid RequestLimitExceeded issues
#
# TODO: Add some documentation on how the auto-scaling works
#
# NOTE: Default values,
# Default values:
#
# runner_types:
# runner_label:
# runner_label: # label to specify in the Github Actions workflow
# instance_type: m4.large
# os: linux
# max_available: 20
@ -31,29 +21,17 @@ runner_types:
is_ephemeral: false
max_available: 1000
os: linux
lf.c.linux.10xlarge.avx2:
disk_size: 200
instance_type: m4.10xlarge
is_ephemeral: false
max_available: 60
os: linux
lf.c.linux.24xl.spr-metal:
disk_size: 200
instance_type: c7i.metal-24xl
is_ephemeral: false
max_available: 150
max_available: 30
os: linux
lf.c.linux.16xlarge.spr:
disk_size: 200
instance_type: c7i.16xlarge
is_ephemeral: false
max_available: 150
os: linux
lf.c.linux.9xlarge.ephemeral:
disk_size: 200
instance_type: c5.9xlarge
is_ephemeral: true
max_available: 20
max_available: 30
os: linux
lf.c.linux.12xlarge.ephemeral:
disk_size: 200
@ -65,7 +43,7 @@ runner_types:
disk_size: 150
instance_type: g3.16xlarge
is_ephemeral: false
max_available: 150
max_available: 30
os: linux
lf.c.linux.24xlarge:
disk_size: 150
@ -89,7 +67,7 @@ runner_types:
disk_size: 150
instance_type: g3.4xlarge
is_ephemeral: false
max_available: 1000
max_available: 520
os: linux
lf.c.linux.8xlarge.nvidia.gpu:
disk_size: 150
@ -101,19 +79,19 @@ runner_types:
disk_size: 150
instance_type: g4dn.12xlarge
is_ephemeral: false
max_available: 250
max_available: 50
os: linux
lf.c.linux.g4dn.metal.nvidia.gpu:
disk_size: 150
instance_type: g4dn.metal
is_ephemeral: false
max_available: 300
max_available: 30
os: linux
lf.c.linux.g5.48xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.48xlarge
is_ephemeral: false
max_available: 200
max_available: 20
os: linux
lf.c.linux.g5.12xlarge.nvidia.gpu:
disk_size: 150
@ -125,16 +103,9 @@ runner_types:
disk_size: 150
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 2400
os: linux
lf.c.linux.g6.4xlarge.experimental.nvidia.gpu:
disk_size: 150
instance_type: g6.4xlarge
is_ephemeral: false
max_available: 30
max_available: 1200
os: linux
lf.c.linux.large:
max_available: 1200
disk_size: 15
instance_type: c5.large
is_ephemeral: false
@ -145,17 +116,11 @@ runner_types:
is_ephemeral: false
max_available: 200
os: linux
lf.c.linux.arm64.m7g.4xlarge:
lf.c.linux.arm64.m7g.2xlarge:
disk_size: 256
instance_type: m7g.4xlarge
instance_type: m7g.2xlarge
is_ephemeral: false
max_available: 200
os: linux
lf.c.linux.arm64.m7g.metal:
disk_size: 256
instance_type: m7g.metal
is_ephemeral: false
max_available: 100
max_available: 20
os: linux
lf.c.windows.4xlarge:
disk_size: 256
@ -173,7 +138,7 @@ runner_types:
disk_size: 256
instance_type: p3.2xlarge
is_ephemeral: true
max_available: 300
max_available: 150
os: windows
lf.c.windows.8xlarge.nvidia.gpu.nonephemeral:
disk_size: 256
@ -187,159 +152,3 @@ runner_types:
is_ephemeral: false
max_available: 250
os: windows
### Setup runner types to test the Amazon Linux 2023 AMI
lf.c.amz2023.linux.12xlarge:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.10xlarge.avx2:
disk_size: 200
instance_type: m4.10xlarge
is_ephemeral: false
max_available: 60
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.24xl.spr-metal:
disk_size: 200
instance_type: c7i.metal-24xl
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.16xlarge.spr:
disk_size: 200
instance_type: c7i.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.9xlarge.ephemeral:
disk_size: 200
instance_type: c5.9xlarge
is_ephemeral: true
max_available: 20
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.12xlarge.ephemeral:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: true
max_available: 300
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.16xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.24xlarge:
disk_size: 150
instance_type: c5.24xlarge
is_ephemeral: false
max_available: 250
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.2xlarge:
disk_size: 150
instance_type: c5.2xlarge
is_ephemeral: false
max_available: 3120
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.4xlarge:
disk_size: 150
instance_type: c5.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.8xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.8xlarge
is_ephemeral: false
max_available: 400
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g4dn.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g4dn.12xlarge
is_ephemeral: false
max_available: 250
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g4dn.metal.nvidia.gpu:
disk_size: 150
instance_type: g4dn.metal
is_ephemeral: false
max_available: 300
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g5.48xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.48xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g5.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.12xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g5.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 2400
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.g6.4xlarge.experimental.nvidia.gpu:
disk_size: 150
instance_type: g6.4xlarge
is_ephemeral: false
max_available: 30
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.large:
max_available: 1200
disk_size: 15
instance_type: c5.large
is_ephemeral: false
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.c.amz2023.linux.arm64.2xlarge:
disk_size: 256
instance_type: t4g.2xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64
lf.c.amz2023.linux.arm64.m7g.4xlarge:
disk_size: 256
instance_type: m7g.4xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64
lf.c.amz2023.linux.arm64.m7g.metal:
disk_size: 256
instance_type: m7g.metal
is_ephemeral: false
max_available: 100
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64

View File

@ -1,23 +1,13 @@
# This file is generated by .github/scripts/validate_scale_config.py in test-infra
# It defines runner types that will be provisioned by by LF Self-hosted runners
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
# Defines runner types that will be provisioned by by LF Self-hosted
# runners for pytorch/pytorch and their labels.
#
# NOTE (Apr, 5, 2021): Linux runners are currently all an amazonlinux2
# Runners listed here will be available as self hosted runners.
# Configuration is directly pulled from the main branch.
#
# NOTE (Jan 5, 2021): Linux runners are all non-ephemeral to reduce the amount of CreateInstaces calls
# to avoid RequestLimitExceeded issues
#
# TODO: Add some documentation on how the auto-scaling works
#
# NOTE: Default values,
# Default values:
#
# runner_types:
# runner_label:
# runner_label: # label to specify in the Github Actions workflow
# instance_type: m4.large
# os: linux
# max_available: 20
@ -31,29 +21,17 @@ runner_types:
is_ephemeral: false
max_available: 1000
os: linux
lf.linux.10xlarge.avx2:
disk_size: 200
instance_type: m4.10xlarge
is_ephemeral: false
max_available: 60
os: linux
lf.linux.24xl.spr-metal:
disk_size: 200
instance_type: c7i.metal-24xl
is_ephemeral: false
max_available: 150
max_available: 30
os: linux
lf.linux.16xlarge.spr:
disk_size: 200
instance_type: c7i.16xlarge
is_ephemeral: false
max_available: 150
os: linux
lf.linux.9xlarge.ephemeral:
disk_size: 200
instance_type: c5.9xlarge
is_ephemeral: true
max_available: 20
max_available: 30
os: linux
lf.linux.12xlarge.ephemeral:
disk_size: 200
@ -65,7 +43,7 @@ runner_types:
disk_size: 150
instance_type: g3.16xlarge
is_ephemeral: false
max_available: 150
max_available: 30
os: linux
lf.linux.24xlarge:
disk_size: 150
@ -89,7 +67,7 @@ runner_types:
disk_size: 150
instance_type: g3.4xlarge
is_ephemeral: false
max_available: 1000
max_available: 520
os: linux
lf.linux.8xlarge.nvidia.gpu:
disk_size: 150
@ -101,19 +79,19 @@ runner_types:
disk_size: 150
instance_type: g4dn.12xlarge
is_ephemeral: false
max_available: 250
max_available: 50
os: linux
lf.linux.g4dn.metal.nvidia.gpu:
disk_size: 150
instance_type: g4dn.metal
is_ephemeral: false
max_available: 300
max_available: 30
os: linux
lf.linux.g5.48xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.48xlarge
is_ephemeral: false
max_available: 200
max_available: 20
os: linux
lf.linux.g5.12xlarge.nvidia.gpu:
disk_size: 150
@ -125,16 +103,9 @@ runner_types:
disk_size: 150
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 2400
os: linux
lf.linux.g6.4xlarge.experimental.nvidia.gpu:
disk_size: 150
instance_type: g6.4xlarge
is_ephemeral: false
max_available: 30
max_available: 1200
os: linux
lf.linux.large:
max_available: 1200
disk_size: 15
instance_type: c5.large
is_ephemeral: false
@ -145,17 +116,11 @@ runner_types:
is_ephemeral: false
max_available: 200
os: linux
lf.linux.arm64.m7g.4xlarge:
lf.linux.arm64.m7g.2xlarge:
disk_size: 256
instance_type: m7g.4xlarge
instance_type: m7g.2xlarge
is_ephemeral: false
max_available: 200
os: linux
lf.linux.arm64.m7g.metal:
disk_size: 256
instance_type: m7g.metal
is_ephemeral: false
max_available: 100
max_available: 20
os: linux
lf.windows.4xlarge:
disk_size: 256
@ -173,7 +138,7 @@ runner_types:
disk_size: 256
instance_type: p3.2xlarge
is_ephemeral: true
max_available: 300
max_available: 150
os: windows
lf.windows.8xlarge.nvidia.gpu.nonephemeral:
disk_size: 256
@ -187,159 +152,3 @@ runner_types:
is_ephemeral: false
max_available: 250
os: windows
### Setup runner types to test the Amazon Linux 2023 AMI
lf.amz2023.linux.12xlarge:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.10xlarge.avx2:
disk_size: 200
instance_type: m4.10xlarge
is_ephemeral: false
max_available: 60
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.24xl.spr-metal:
disk_size: 200
instance_type: c7i.metal-24xl
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.16xlarge.spr:
disk_size: 200
instance_type: c7i.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.9xlarge.ephemeral:
disk_size: 200
instance_type: c5.9xlarge
is_ephemeral: true
max_available: 20
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.12xlarge.ephemeral:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: true
max_available: 300
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.16xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.24xlarge:
disk_size: 150
instance_type: c5.24xlarge
is_ephemeral: false
max_available: 250
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.2xlarge:
disk_size: 150
instance_type: c5.2xlarge
is_ephemeral: false
max_available: 3120
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.4xlarge:
disk_size: 150
instance_type: c5.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.8xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.8xlarge
is_ephemeral: false
max_available: 400
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g4dn.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g4dn.12xlarge
is_ephemeral: false
max_available: 250
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g4dn.metal.nvidia.gpu:
disk_size: 150
instance_type: g4dn.metal
is_ephemeral: false
max_available: 300
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g5.48xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.48xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g5.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.12xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g5.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 2400
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.g6.4xlarge.experimental.nvidia.gpu:
disk_size: 150
instance_type: g6.4xlarge
is_ephemeral: false
max_available: 30
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.large:
max_available: 1200
disk_size: 15
instance_type: c5.large
is_ephemeral: false
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-x86_64
lf.amz2023.linux.arm64.2xlarge:
disk_size: 256
instance_type: t4g.2xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64
lf.amz2023.linux.arm64.m7g.4xlarge:
disk_size: 256
instance_type: m7g.4xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64
lf.amz2023.linux.arm64.m7g.metal:
disk_size: 256
instance_type: m7g.metal
is_ephemeral: false
max_available: 100
os: linux
ami: al2023-ami-2023.5.20240701.0-kernel-6.1-arm64

View File

@ -27,9 +27,11 @@
- third_party/onnx
- caffe2/python/onnx/**
approved_by:
- BowenBao
- justinchuby
- liqunfu
- shubhambhokare1
- thiagocrepaldi
- titaiwangms
- wschin
- xadupre
@ -242,7 +244,6 @@
- torch/csrc/xpu/**
- torch/xpu/**
- test/xpu/**
- test/test_xpu.py
- third_party/xpu.txt
- .ci/docker/ci_commit_pins/triton-xpu.txt
approved_by:
@ -286,7 +287,6 @@
- test/cpp/dist_autograd/**
- test/cpp/rpc/**
approved_by:
- wconstab
- mrshenli
- pritamdamania87
- zhaojuanmao
@ -313,25 +313,6 @@
- Lint
- pull
- name: DCP
patterns:
- torch/distributed/checkpoint/**
approved_by:
- LucasLLC
- fegin
- wz337
- saumishr
- daulet-askarov
- pradeepdfb
- kirtiteja
- mhorowitz
- saiteja64
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: IDEEP
patterns:
- third_party/ideep
@ -395,21 +376,13 @@
- name: CPU inductor
patterns:
- torch/_inductor/mkldnn_ir.py
- torch/_inductor/mkldnn_lowerings.py
- torch/_inductor/fx_passes/mkldnn_fusion.py
- torch/_inductor/fx_passes/quantization.py
- torch/_inductor/codegen/cpp_prefix.h
- torch/_inductor/codegen/cpp.py
- torch/_inductor/codegen/cpp_utils.py
- torch/_inductor/codegen/cpp_micro_gemm.py
- torch/_inductor/codegen/cpp_template_kernel.py
- torch/_inductor/codegen/cpp_template.py
- torch/_inductor/codegen/cpp_gemm_template.py
- test/inductor/test_mkldnn_pattern_matcher.py
- test/inductor/test_cpu_repro.py
- test/inductor/test_cpu_repo.py
- test/inductor/test_cpu_cpp_wrapper.py
- test/inductor/test_cpu_select_algorithm.py
- aten/src/ATen/cpu/**
- aten/src/ATen/native/quantized/cpu/**
- test/quantization/core/test_quantized_op.py

View File

@ -6,7 +6,6 @@ ciflow_push_tags:
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
- ciflow/inductor
- ciflow/inductor-rocm
- ciflow/inductor-perf-compare
- ciflow/inductor-micro-benchmark
- ciflow/inductor-cu124
@ -27,4 +26,3 @@ retryable_workflows:
- windows-binary
labeler_config: labeler.yml
label_to_label_config: label_to_label.yml
mergebot: True

View File

@ -1,4 +1,4 @@
# iOS simulator requirements
coremltools==5.0b5
protobuf==3.20.2
optree==0.12.1
optree==0.11.0

View File

@ -17,16 +17,16 @@ pytest-xdist==3.3.1
pytest-rerunfailures==10.3
pytest-flakefinder==1.1.0
scipy==1.10.1
sympy==1.12.1 ; python_version == "3.8"
sympy>=1.13.0 ; python_version >= "3.9"
sympy==1.11.1
unittest-xml-reporting<=3.2.0,>=2.0.0
xdoctest==1.1.0
filelock==3.6.0
sympy==1.11.1
pytest-cpp==2.3.0
rockset==1.0.3
z3-solver==4.12.2.0
tensorboard==2.13.0
optree==0.12.1
optree==0.11.0
# NB: test_hparams_* from test_tensorboard is failing with protobuf 5.26.0 in
# which the stringify metadata is wrong when escaping double quote
protobuf==3.20.2

View File

@ -93,8 +93,6 @@ done
# Copy Include Files
cp -r $ROCM_HOME/include/hip $TRITON_ROCM_DIR/include
cp -r $ROCM_HOME/include/roctracer $TRITON_ROCM_DIR/include
cp -r $ROCM_HOME/include/hsa $TRITON_ROCM_DIR/include
# Copy linker
mkdir -p $TRITON_ROCM_DIR/llvm/bin

View File

@ -1,5 +1,4 @@
#!/usr/bin/env python3
import os
import shutil
import sys
@ -8,17 +7,12 @@ from subprocess import check_call
from tempfile import TemporaryDirectory
from typing import Optional
SCRIPT_DIR = Path(__file__).parent
REPO_DIR = SCRIPT_DIR.parent.parent
def read_triton_pin(device: str = "cuda") -> str:
triton_file = "triton.txt"
if device == "rocm":
triton_file = "triton-rocm.txt"
elif device == "xpu":
triton_file = "triton-xpu.txt"
def read_triton_pin(rocm_hash: bool = False) -> str:
triton_file = "triton.txt" if not rocm_hash else "triton-rocm.txt"
with open(REPO_DIR / ".ci" / "docker" / "ci_commit_pins" / triton_file) as f:
return f.read().strip()
@ -55,7 +49,7 @@ def build_triton(
version: str,
commit_hash: str,
build_conda: bool = False,
device: str = "cuda",
build_rocm: bool = False,
py_version: Optional[str] = None,
release: bool = False,
) -> Path:
@ -75,14 +69,11 @@ def build_triton(
triton_basedir = Path(tmpdir) / "triton"
triton_pythondir = triton_basedir / "python"
triton_repo = "https://github.com/openai/triton"
if device == "rocm":
if build_rocm:
triton_pkg_name = "pytorch-triton-rocm"
elif device == "xpu":
triton_pkg_name = "pytorch-triton-xpu"
triton_repo = "https://github.com/intel/intel-xpu-backend-for-triton"
else:
triton_pkg_name = "pytorch-triton"
check_call(["git", "clone", triton_repo, "triton"], cwd=tmpdir)
check_call(["git", "clone", triton_repo], cwd=tmpdir)
if release:
ver, rev, patch = version.split(".")
check_call(
@ -149,7 +140,7 @@ def build_triton(
expected_version=None,
)
if device == "rocm":
if build_rocm:
check_call(
[f"{SCRIPT_DIR}/amd/package_triton_wheel.sh"],
cwd=triton_basedir,
@ -164,7 +155,7 @@ def build_triton(
whl_path = next(iter((triton_pythondir / "dist").glob("*.whl")))
shutil.copy(whl_path, Path.cwd())
if device == "rocm":
if build_rocm:
check_call(
[f"{SCRIPT_DIR}/amd/patch_triton_wheel.sh", Path.cwd()],
cwd=triton_basedir,
@ -179,19 +170,17 @@ def main() -> None:
parser = ArgumentParser("Build Triton binaries")
parser.add_argument("--release", action="store_true")
parser.add_argument("--build-conda", action="store_true")
parser.add_argument(
"--device", type=str, default="cuda", choices=["cuda", "rocm", "xpu"]
)
parser.add_argument("--build-rocm", action="store_true")
parser.add_argument("--py-version", type=str)
parser.add_argument("--commit-hash", type=str)
parser.add_argument("--triton-version", type=str, default=read_triton_version())
args = parser.parse_args()
build_triton(
device=args.device,
build_rocm=args.build_rocm,
commit_hash=args.commit_hash
if args.commit_hash
else read_triton_pin(args.device),
else read_triton_pin(args.build_rocm),
version=args.triton_version,
build_conda=args.build_conda,
py_version=args.py_version,

View File

@ -5,6 +5,7 @@ import sys
from typing import Any
from github_utils import gh_delete_comment, gh_post_pr_comment
from gitutils import get_git_remote_name, get_git_repo_dir, GitRepo
from label_utils import has_required_labels, is_label_err_comment, LABEL_ERR_MSG
from trymerge import GitHubPR

View File

@ -3,10 +3,12 @@
import json
import os
import re
from typing import Any, cast, Dict, List, Optional
from typing import Any, Optional
from urllib.error import HTTPError
from github_utils import gh_fetch_url, gh_post_pr_comment, gh_query_issues_by_labels
from github_utils import gh_fetch_url, gh_post_pr_comment
from gitutils import get_git_remote_name, get_git_repo_dir, GitRepo
from trymerge import get_pr_commit_sha, GitHubPR
@ -17,7 +19,6 @@ REQUIRES_ISSUE = {
"critical",
"fixnewfeature",
}
RELEASE_BRANCH_REGEX = re.compile(r"release/(?P<version>.+)")
def parse_args() -> Any:
@ -57,33 +58,6 @@ def get_merge_commit_sha(repo: GitRepo, pr: GitHubPR) -> Optional[str]:
return commit_sha if pr.is_closed() else None
def get_release_version(onto_branch: str) -> Optional[str]:
"""
Return the release version if the target branch is a release branch
"""
m = re.match(RELEASE_BRANCH_REGEX, onto_branch)
return m.group("version") if m else ""
def get_tracker_issues(
org: str, project: str, onto_branch: str
) -> List[Dict[str, Any]]:
"""
Find the tracker issue from the repo. The tracker issue needs to have the title
like [VERSION] Release Tracker following the convention on PyTorch
"""
version = get_release_version(onto_branch)
if not version:
return []
tracker_issues = gh_query_issues_by_labels(org, project, labels=["release tracker"])
if not tracker_issues:
return []
# Figure out the tracker issue from the list by looking at the title
return [issue for issue in tracker_issues if version in issue.get("title", "")]
def cherry_pick(
github_actor: str,
repo: GitRepo,
@ -103,49 +77,17 @@ def cherry_pick(
)
try:
org, project = repo.gh_owner_and_name()
cherry_pick_pr = ""
if not dry_run:
org, project = repo.gh_owner_and_name()
cherry_pick_pr = submit_pr(repo, pr, cherry_pick_branch, onto_branch)
tracker_issues_comments = []
tracker_issues = get_tracker_issues(org, project, onto_branch)
for issue in tracker_issues:
issue_number = int(str(issue.get("number", "0")))
if not issue_number:
continue
msg = f"The cherry pick PR is at {cherry_pick_pr}"
if fixes:
msg += f" and it is linked with issue {fixes}"
elif classification in REQUIRES_ISSUE:
msg += f" and it is recommended to link a {classification} cherry pick PR with an issue"
res = cast(
Dict[str, Any],
post_tracker_issue_comment(
org,
project,
issue_number,
pr.pr_num,
cherry_pick_pr,
classification,
fixes,
dry_run,
),
)
comment_url = res.get("html_url", "")
if comment_url:
tracker_issues_comments.append(comment_url)
msg = f"The cherry pick PR is at {cherry_pick_pr}"
if fixes:
msg += f" and it is linked with issue {fixes}."
elif classification in REQUIRES_ISSUE:
msg += f" and it is recommended to link a {classification} cherry pick PR with an issue."
if tracker_issues_comments:
msg += " The following tracker issues are updated:\n"
for tracker_issues_comment in tracker_issues_comments:
msg += f"* {tracker_issues_comment}\n"
post_pr_comment(org, project, pr.pr_num, msg, dry_run)
post_comment(org, project, pr.pr_num, msg)
finally:
if current_branch:
@ -217,9 +159,7 @@ def submit_pr(
raise RuntimeError(msg) from error
def post_pr_comment(
org: str, project: str, pr_num: int, msg: str, dry_run: bool = False
) -> List[Dict[str, Any]]:
def post_comment(org: str, project: str, pr_num: int, msg: str) -> None:
"""
Post a comment on the PR itself to point to the cherry picking PR when success
or print the error when failure
@ -242,35 +182,7 @@ def post_pr_comment(
comment = "\n".join(
(f"### Cherry picking #{pr_num}", f"{msg}", "", f"{internal_debugging}")
)
return gh_post_pr_comment(org, project, pr_num, comment, dry_run)
def post_tracker_issue_comment(
org: str,
project: str,
issue_num: int,
pr_num: int,
cherry_pick_pr: str,
classification: str,
fixes: str,
dry_run: bool = False,
) -> List[Dict[str, Any]]:
"""
Post a comment on the tracker issue (if any) to record the cherry pick
"""
comment = "\n".join(
(
"Link to landed trunk PR (if applicable):",
f"* https://github.com/{org}/{project}/pull/{pr_num}",
"",
"Link to release branch PR:",
f"* {cherry_pick_pr}",
"",
"Criteria Category:",
" - ".join((classification.capitalize(), fixes.capitalize())),
)
)
return gh_post_pr_comment(org, project, issue_num, comment, dry_run)
gh_post_pr_comment(org, project, pr_num, comment)
def main() -> None:
@ -302,7 +214,7 @@ def main() -> None:
except RuntimeError as error:
if not args.dry_run:
post_pr_comment(org, project, pr_num, str(error))
post_comment(org, project, pr_num, str(error))
else:
raise error

View File

@ -10,7 +10,6 @@ import requests
import rockset # type: ignore[import]
from gitutils import retries_decorator
LOGS_QUERY = """
with
shas as (

View File

@ -1,12 +1,10 @@
#!/usr/bin/env python3
import sys
from pathlib import Path
from typing import Any, cast, Dict, List, Set
import yaml
GITHUB_DIR = Path(__file__).parent.parent

View File

@ -1,6 +1,7 @@
import json
import subprocess
import sys
from enum import Enum
from pathlib import Path
from typing import NamedTuple, Optional

View File

@ -9,7 +9,6 @@ from typing import Any, Callable, Dict, List, Set
from github_utils import gh_fetch_json_dict, gh_graphql
from gitutils import GitRepo
SEC_IN_DAY = 24 * 60 * 60
CLOSED_PR_RETENTION = 30 * SEC_IN_DAY
NO_PR_RETENTION = 1.5 * 365 * SEC_IN_DAY

Binary file not shown.

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python3
import sys
from pathlib import Path
import yaml

View File

@ -14,6 +14,7 @@ import json
from typing import Any
import boto3 # type: ignore[import]
from label_utils import gh_get_labels

View File

@ -15,7 +15,6 @@ from urllib.request import Request, urlopen
import yaml
REENABLE_TEST_REGEX = "(?i)(Close(d|s)?|Resolve(d|s)?|Fix(ed|es)?) (#|https://github.com/pytorch/pytorch/issues/)([0-9]+)"
PREFIX = "test-config/"
@ -505,9 +504,6 @@ def perform_misc_tasks(
"ci-verbose-test-logs",
check_for_setting(labels, pr_body, "ci-verbose-test-logs"),
)
set_output(
"ci-test-showlocals", check_for_setting(labels, pr_body, "ci-test-showlocals")
)
set_output(
"ci-no-test-timeout", check_for_setting(labels, pr_body, "ci-no-test-timeout")
)

View File

@ -8,13 +8,11 @@ architectures:
* CPU
* Latest CUDA
* Latest ROCM
* Latest XPU
"""
import os
from typing import Dict, List, Optional, Tuple
CUDA_ARCHES = ["11.8", "12.1", "12.4"]
@ -26,7 +24,6 @@ CUDA_ARCHES_CUDNN_VERSION = {"11.8": "9", "12.1": "9", "12.4": "9"}
ROCM_ARCHES = ["6.0", "6.1"]
XPU_ARCHES = ["xpu"]
CPU_CXX11_ABI_ARCH = ["cpu-cxx11-abi"]
@ -51,7 +48,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu11==10.3.0.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu11==11.4.1.48; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu11==11.7.5.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu11==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu11==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu11==11.8.86; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.1": (
@ -64,7 +61,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu12==10.3.2.106; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.4.5.107; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.1.0.106; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.1.105; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
"12.4": (
@ -77,7 +74,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-curand-cu12==10.3.5.119; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusolver-cu12==11.6.0.99; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.3.0.142; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.21.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.20.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.4.99; platform_system == 'Linux' and platform_machine == 'x86_64'"
),
@ -135,8 +132,6 @@ def arch_type(arch_version: str) -> str:
return "cuda"
elif arch_version in ROCM_ARCHES:
return "rocm"
elif arch_version in XPU_ARCHES:
return "xpu"
elif arch_version in CPU_CXX11_ABI_ARCH:
return "cpu-cxx11-abi"
elif arch_version in CPU_AARCH64_ARCH:
@ -161,7 +156,6 @@ WHEEL_CONTAINER_IMAGES = {
gpu_arch: f"pytorch/manylinux-builder:rocm{gpu_arch}-{DEFAULT_TAG}"
for gpu_arch in ROCM_ARCHES
},
"xpu": f"pytorch/manylinux2_28-builder:xpu-{DEFAULT_TAG}",
"cpu": f"pytorch/manylinux-builder:cpu-{DEFAULT_TAG}",
"cpu-cxx11-abi": f"pytorch/manylinuxcxx11-abi-builder:cpu-cxx11-abi-{DEFAULT_TAG}",
"cpu-aarch64": f"pytorch/manylinuxaarch64-builder:cpu-aarch64-{DEFAULT_TAG}",
@ -227,7 +221,6 @@ def translate_desired_cuda(gpu_arch_type: str, gpu_arch_version: str) -> str:
"cuda": f"cu{gpu_arch_version.replace('.', '')}",
"cuda-aarch64": "cu124",
"rocm": f"rocm{gpu_arch_version}",
"xpu": "xpu",
}.get(gpu_arch_type, gpu_arch_version)
@ -332,13 +325,13 @@ def generate_wheels_matrix(
package_type = "manywheel"
if python_versions is None:
python_versions = FULL_PYTHON_VERSIONS + ["3.13"]
python_versions = FULL_PYTHON_VERSIONS
if arches is None:
# Define default compute archivectures
arches = ["cpu"]
if os == "linux":
arches += CPU_CXX11_ABI_ARCH + CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
arches += CPU_CXX11_ABI_ARCH + CUDA_ARCHES + ROCM_ARCHES
elif os == "windows":
arches += CUDA_ARCHES
elif os == "linux-aarch64":
@ -354,6 +347,10 @@ def generate_wheels_matrix(
for python_version in python_versions:
for arch_version in arches:
gpu_arch_type = arch_type(arch_version)
# Disable py3.12 builds for ROCm because of triton dependency
# on llnl-hatchet, which doesn't have py3.12 wheels available
if gpu_arch_type == "rocm" and python_version == "3.12":
continue
gpu_arch_version = (
""
if arch_version == "cpu"
@ -361,16 +358,9 @@ def generate_wheels_matrix(
or arch_version == "cpu-aarch64"
or arch_version == "cpu-s390x"
or arch_version == "cuda-aarch64"
or arch_version == "xpu"
else arch_version
)
# TODO: Enable python 3.13 on rocm, xpu, aarch64, windows
if (
gpu_arch_type in ["rocm", "xpu"] or os != "linux"
) and python_version == "3.13":
continue
# 12.1 linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
if (
arch_version in ["12.4", "12.1", "11.8"]
@ -400,49 +390,6 @@ def generate_wheels_matrix(
),
}
)
if arch_version != "cuda-aarch64":
ret.append(
{
"python_version": python_version,
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": gpu_arch_version,
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "True",
"devtoolset": "",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,
"pytorch_extra_install_requirements": (
PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version] # fmt: skip
if os != "linux-aarch64"
else ""
),
"build_name": f"{package_type}-py{python_version}-{gpu_arch_type}{gpu_arch_version}-split".replace( # noqa: B950
".", "_"
),
}
)
# Special build building to use on Colab. PyThon 3.10 for 12.1 CUDA
if python_version == "3.10" and arch_version == "12.1":
ret.append(
{
"python_version": python_version,
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": gpu_arch_version,
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "False",
"devtoolset": "",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,
"pytorch_extra_install_requirements": "",
"build_name": f"{package_type}-py{python_version}-{gpu_arch_type}{gpu_arch_version}-full".replace( # noqa: B950
".", "_"
),
}
)
else:
ret.append(
{
@ -453,9 +400,7 @@ def generate_wheels_matrix(
gpu_arch_type, gpu_arch_version
),
"devtoolset": (
"cxx11-abi"
if arch_version in ["cpu-cxx11-abi", "xpu"]
else ""
"cxx11-abi" if arch_version == "cpu-cxx11-abi" else ""
),
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
"package_type": package_type,

View File

@ -8,8 +8,8 @@ from typing import Dict, Iterable, List, Literal, Set
from typing_extensions import TypedDict # Python 3.11+
import generate_binary_build_matrix # type: ignore[import]
import jinja2
import jinja2
Arch = Literal["windows", "linux", "macos"]

Some files were not shown because too many files have changed in this diff Show More