mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-10-25 16:14:55 +08:00 
			
		
		
		
	Compare commits
	
		
			81 Commits
		
	
	
		
			whc/uneven
			...
			v0.3.0
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| af3964a872 | |||
| 1645546aa9 | |||
| 350fad8a22 | |||
| 565d183042 | |||
| 2ebda372f6 | |||
| 28b846c486 | |||
| 9622eaa6fa | |||
| db8154df32 | |||
| b6eeea343d | |||
| 1fe9991554 | |||
| 00118024f3 | |||
| 87edf5a349 | |||
| 20972878cc | |||
| 0d1128d25c | |||
| 81dc60493d | |||
| b18df1cedf | |||
| 3976d77509 | |||
| 09c83673bf | |||
| 5b9a8f918e | |||
| f20fb2c1a1 | |||
| 4e00120117 | |||
| 2b3f35daea | |||
| c580437342 | |||
| 455e788fe6 | |||
| c980fb359b | |||
| bae45bb106 | |||
| 34557d80f4 | |||
| 1e77879b2a | |||
| ff52d424b2 | |||
| 4b7aa13b30 | |||
| e1f2d0916e | |||
| 4b5b7e53f6 | |||
| db66fa9436 | |||
| 392c89ab6a | |||
| cddf501fc5 | |||
| d0907d2c34 | |||
| 448a85a8e0 | |||
| ea3138fd09 | |||
| b89c96fe58 | |||
| 088f47bb89 | |||
| ddb3804f87 | |||
| a896311d06 | |||
| 937b634b5d | |||
| 004dfdc7cc | |||
| f8aa5e2ed7 | |||
| 8a49309f81 | |||
| 14de24d89c | |||
| c7cccc250e | |||
| 1f694e9a6e | |||
| 1108bced80 | |||
| c36d452224 | |||
| 11955b86d2 | |||
| 9a6788202b | |||
| d58bad4073 | |||
| f95e252984 | |||
| b49f0f8154 | |||
| 269c25267b | |||
| fde471ee2a | |||
| eb24d2ff6e | |||
| f768068c3b | |||
| c456451915 | |||
| f282d1dc7c | |||
| 2a3cae0f3e | |||
| 3d9630abc2 | |||
| da7a5147db | |||
| 5df8e582cd | |||
| 5dff261598 | |||
| aa0c8920af | |||
| a3b658bf3b | |||
| 94e89f3911 | |||
| f0956ad9ec | |||
| 452ea78f43 | |||
| 3d5d66868e | |||
| cf373e25e2 | |||
| 91d764c781 | |||
| 524235bb71 | |||
| e035fa028b | |||
| 58a928c3b9 | |||
| 4f1eefa8ad | |||
| 4251c151e3 | |||
| c0931a3a4d | 
| @ -202,9 +202,9 @@ MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install | ||||
| Dockerfile is supplied to build images with cuda support and cudnn v6. Build as usual | ||||
| ``` | ||||
| docker build -t pytorch . | ||||
|  | ||||
| ``` | ||||
| Dockerfile to build with cuda 9 and cudnn v7 (with Volta support) is in tools/docker, the build command is | ||||
|  | ||||
| ``` | ||||
| docker build -t pytorch_cuda9 -f tools/docker/Dockerfile9 . | ||||
| ``` | ||||
| Alternatively, if you want to use a runtime image, you can use the pre-built one from Docker Hub and run with nvidia-docker: | ||||
|  | ||||
| @ -56,6 +56,12 @@ gradients are correct. | ||||
| Profiler | ||||
| -------- | ||||
|  | ||||
| Autograd includes a profiler that lets you inspect the cost of different | ||||
| operators inside your model - both on the CPU and GPU. There are two modes | ||||
| implemented at the moment - CPU-only using :class:`~torch.autograd.profiler.profile`. | ||||
| and nvprof based (registers both CPU and GPU activity) using | ||||
| :class:`~torch.autograd.profiler.emit_nvtx`. | ||||
|  | ||||
| .. autoclass:: torch.autograd.profiler.profile | ||||
|     :members: | ||||
|  | ||||
|  | ||||
| @ -37,6 +37,10 @@ Streams and events | ||||
| .. autoclass:: Event | ||||
|    :members: | ||||
|  | ||||
| Memory management | ||||
| ----------------- | ||||
| .. autofunction:: empty_cache | ||||
|  | ||||
| NVIDIA Tools Extension (NVTX) | ||||
| ----------------------------- | ||||
|  | ||||
|  | ||||
| @ -19,10 +19,10 @@ Probability distributions - torch.distributions | ||||
| .. autoclass:: Bernoulli | ||||
|     :members: | ||||
|  | ||||
| :hidden:`Multinomial` | ||||
| :hidden:`Categorical` | ||||
| ~~~~~~~~~~~~~~~~~~~~~~~ | ||||
|  | ||||
| .. autoclass:: Multinomial | ||||
| .. autoclass:: Categorical | ||||
|     :members: | ||||
|  | ||||
| :hidden:`Normal` | ||||
|  | ||||
| @ -3,18 +3,19 @@ | ||||
| CUDA semantics | ||||
| ============== | ||||
|  | ||||
| :mod:`torch.cuda` keeps track of currently selected GPU, and all CUDA tensors | ||||
| you allocate will be created on it. The selected device can be changed with a | ||||
| :mod:`torch.cuda` is used to set up and run CUDA operations. It keeps track of | ||||
| the currently selected GPU, and all CUDA tensors you allocate will by default be | ||||
| created on that device. The selected device can be changed with a | ||||
| :any:`torch.cuda.device` context manager. | ||||
|  | ||||
| However, once a tensor is allocated, you can do operations on it irrespectively | ||||
| of your selected device, and the results will be always placed in on the same | ||||
| However, once a tensor is allocated, you can do operations on it irrespective | ||||
| of the selected device, and the results will be always placed in on the same | ||||
| device as the tensor. | ||||
|  | ||||
| Cross-GPU operations are not allowed by default, with the only exception of | ||||
| :meth:`~torch.Tensor.copy_`. Unless you enable peer-to-peer memory accesses, | ||||
| any attempts to launch ops on tensors spread across different devices will | ||||
| raise an error. | ||||
| :meth:`~torch.Tensor.copy_`. Unless you enable peer-to-peer memory access, any | ||||
| attempts to launch ops on tensors spread across different devices will raise an | ||||
| error. | ||||
|  | ||||
| Below you can find a small example showcasing this:: | ||||
|  | ||||
| @ -41,6 +42,16 @@ Below you can find a small example showcasing this:: | ||||
|         d = torch.randn(2).cuda(2) | ||||
|         # d.get_device() == 2 | ||||
|  | ||||
| Memory management | ||||
| ----------------- | ||||
|  | ||||
| PyTorch use a caching memory allocator to speed up memory allocations. This | ||||
| allows fast memory deallocation without device synchronizations. However, the | ||||
| unused memory managed by the allocator will still show as if used in | ||||
| `nvidia-smi`. Calling :meth:`~torch.cuda.empty_cache` can release all unused | ||||
| cached memory from PyTorch so that those can be used by other GPU applications. | ||||
|  | ||||
|  | ||||
| Best practices | ||||
| -------------- | ||||
|  | ||||
| @ -52,10 +63,10 @@ device-agnostic (CPU or GPU) code; an example may be creating a new tensor as | ||||
| the initial hidden state of a recurrent neural network. | ||||
|  | ||||
| The first step is to determine whether the GPU should be used or not. A common | ||||
| pattern is to use Python's `argparse` module to read in user arguments, and | ||||
| pattern is to use Python's ``argparse`` module to read in user arguments, and | ||||
| have a flag that can be used to disable CUDA, in combination with | ||||
| `torch.cuda.is_available()`. In the following, `args.cuda` results in a flag | ||||
| that can be used to cast tensors and modules to CUDA if desired:: | ||||
| :meth:`~torch.cuda.is_available`. In the following, ``args.cuda`` results in a | ||||
| flag that can be used to cast tensors and modules to CUDA if desired:: | ||||
|  | ||||
|     import argparse | ||||
|     import torch | ||||
| @ -66,7 +77,7 @@ that can be used to cast tensors and modules to CUDA if desired:: | ||||
|     args = parser.parse_args() | ||||
|     args.cuda = not args.disable_cuda and torch.cuda.is_available() | ||||
|  | ||||
| If modules or tensors need to be sent to the GPU, `args.cuda` can be used as | ||||
| If modules or tensors need to be sent to the GPU, ``args.cuda`` can be used as | ||||
| follows:: | ||||
|  | ||||
|     x = torch.Tensor(8, 42) | ||||
| @ -84,9 +95,9 @@ dataloader would be as follows:: | ||||
|         x = Variable(x.type(dtype)) | ||||
|  | ||||
| When working with multiple GPUs on a system, you can use the | ||||
| `CUDA_VISIBLE_DEVICES` environment flag to manage which GPUs are available to | ||||
| PyTorch. To manually control which GPU a tensor is created on, the best practice | ||||
| is to use the `torch.cuda.device()` context manager:: | ||||
| ``CUDA_VISIBLE_DEVICES`` environment flag to manage which GPUs are available to | ||||
| PyTorch. As mentioned above, to manually control which GPU a tensor is created | ||||
| on, the best practice is to use a :any:`torch.cuda.device` context manager:: | ||||
|  | ||||
|     print("Outside device is 0")  # On device 0 (default in most scenarios) | ||||
|     with torch.cuda.device(1): | ||||
| @ -94,9 +105,10 @@ is to use the `torch.cuda.device()` context manager:: | ||||
|     print("Outside device is still 0")  # On device 0 | ||||
|  | ||||
| If you have a tensor and would like to create a new tensor of the same type on | ||||
| the same device, then you can use the `.new()` function, which acts the same as | ||||
| a normal tensor constructor. Whilst the previously mentioned methods depend on | ||||
| the current GPU context, `new()` preserves the device of the original tensor. | ||||
| the same device, then you can use the :meth:`~torch.Tensor.new` method, which | ||||
| acts the same as a normal tensor constructor. Whilst the previously mentioned | ||||
| methods depend on the current GPU context, :meth:`~torch.Tensor.new` preserves | ||||
| the device of the original tensor. | ||||
|  | ||||
| This is the recommended practice when creating modules in which new | ||||
| tensors/variables need to be created internally during the forward pass:: | ||||
| @ -110,8 +122,9 @@ tensors/variables need to be created internally during the forward pass:: | ||||
|     y_cpu_long = x_cpu_long.new([[1, 2, 3]]) | ||||
|  | ||||
| If you want to create a tensor of the same type and size of another tensor, and | ||||
| fill it with either ones or zeros, `torch.ones_like()` or `torch.zeros_like()` | ||||
| are provided as more convenient functions (which also preserve device):: | ||||
| fill it with either ones or zeros, :meth:`~torch.ones_like` or | ||||
| :meth:`~torch.zeros_like` are provided as convenient helper functions (which | ||||
| also preserve device):: | ||||
|  | ||||
|     x_cpu = torch.FloatTensor(1) | ||||
|     x_gpu = torch.cuda.FloatTensor(1) | ||||
| @ -145,9 +158,9 @@ pinned memory by passing ``pin_memory=True`` to its constructor. | ||||
| Use nn.DataParallel instead of multiprocessing | ||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ||||
|  | ||||
| Most use cases involving batched input and multiple GPUs should default to using | ||||
| :class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with the GIL, | ||||
| a single python process can saturate multiple GPUs. | ||||
| Most use cases involving batched inputs and multiple GPUs should default to | ||||
| using :class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with | ||||
| the GIL, a single Python process can saturate multiple GPUs. | ||||
|  | ||||
| As of version 0.1.9, large numbers of GPUs (8+) might not be fully utilized. | ||||
| However, this is a known issue that is under active development. As always, | ||||
|  | ||||
| @ -53,7 +53,7 @@ exporter to print out a human-readable representation of the network:: | ||||
| You can also verify the protobuf using the `onnx <https://github.com/onnx/onnx/>`_ library. | ||||
| You can install ``onnx`` with conda:: | ||||
|  | ||||
|     conda install -c ezyang onnx | ||||
|     conda install -c conda-forge onnx | ||||
|  | ||||
| Then, you can run:: | ||||
|  | ||||
| @ -75,10 +75,8 @@ To run the exported script with `caffe2 <https://caffe2.ai/>`_, you will need th | ||||
|  | ||||
| 2. You'll need `onnx-caffe2 <https://github.com/onnx/onnx-caffe2>`_, a | ||||
|    pure-Python library which provides a Caffe2 backend for ONNX.  You can install ``onnx-caffe2`` | ||||
|    with conda or pip:: | ||||
|    with pip:: | ||||
|  | ||||
|       conda install -c ezyang onnx-caffe2 | ||||
|       # OR | ||||
|       pip install onnx-caffe2 | ||||
|  | ||||
| Once these are installed, you can use the backend for Caffe2:: | ||||
| @ -122,34 +120,48 @@ Limitations | ||||
| Supported operators | ||||
| ------------------- | ||||
|  | ||||
| In this tech preview, only the following operators are supported: | ||||
| The following operators are supported: | ||||
|  | ||||
| * Add (inplace is discarded) | ||||
| * Sub (inplace is discarded) | ||||
| * Mul (inplace is discarded) | ||||
| * Negate (inplace is discarded) | ||||
| * Addmm (inplace is discarded, alpha and beta must be 1) | ||||
| * Tanh (inplace is discarded) | ||||
| * Sigmoid (inplace is discarded) | ||||
| * Transpose | ||||
| * View | ||||
| * Permute | ||||
| * Concat | ||||
| * Squeeze (inplace is discarded) | ||||
| * add (nonzero alpha not supported) | ||||
| * sub (nonzero alpha not supported) | ||||
| * mul | ||||
| * div | ||||
| * cat | ||||
| * mm | ||||
| * addmm | ||||
| * neg | ||||
| * tanh | ||||
| * sigmoid | ||||
| * mean | ||||
| * t | ||||
| * expand (only when used before a broadcasting ONNX operator; e.g., add) | ||||
| * transpose | ||||
| * view | ||||
| * split | ||||
| * squeeze | ||||
| * prelu (single weight shared among input channels not supported) | ||||
| * threshold (non-zero threshold/non-zero value not supported) | ||||
| * leaky_relu | ||||
| * glu | ||||
| * softmax | ||||
| * avg_pool2d (ceil_mode not supported) | ||||
| * log_softmax | ||||
| * unfold (experimental support with ATen-Caffe2 integration) | ||||
| * elu | ||||
| * Conv | ||||
| * BatchNorm | ||||
| * Convolution | ||||
| * Embedding (only optional argument that is supported is ``padding_idx``) | ||||
| * Slice (only integer indexing is supported) | ||||
| * Dropout (inplace is discarded) | ||||
| * Relu (inplace is discarded) | ||||
| * PReLU (inplace is discarded, sharing a single weight among all channels is not supported) | ||||
| * LeakyRelu (inplace is discarded) | ||||
| * MaxPool1d (ceil_mode must be False) | ||||
| * MaxPool2d (ceil_mode must be False) | ||||
| * AvgPool2d (ceil_mode must be False) | ||||
| * MaxPool1d (ceil_mode not supported) | ||||
| * MaxPool2d (ceil_mode not supported) | ||||
| * MaxPool3d (ceil_mode not supported) | ||||
| * Embedding (no optional arguments supported) | ||||
| * RNN | ||||
| * ConstantPadNd | ||||
| * Dropout | ||||
| * FeatureDropout (training mode not supported) | ||||
| * Index (constant integer and tuple indices supported) | ||||
| * Negate | ||||
|  | ||||
| We plan on expanding support to more operators; RNNs are high on our priority | ||||
| list.  The operator set above is sufficient to export the following models: | ||||
| The operator set above is sufficient to export the following models: | ||||
|  | ||||
| * AlexNet | ||||
| * DCGAN | ||||
|  | ||||
| @ -111,6 +111,8 @@ Algorithms | ||||
|     :members: | ||||
| .. autoclass:: Adam | ||||
|     :members: | ||||
| .. autoclass:: SparseAdam | ||||
|     :members: | ||||
| .. autoclass:: Adamax | ||||
|     :members: | ||||
| .. autoclass:: ASGD | ||||
|  | ||||
							
								
								
									
										16
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								setup.py
									
									
									
									
									
								
							| @ -542,7 +542,7 @@ if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux': | ||||
|     STDCPP_LIB = STDCPP_LIB[:-1] | ||||
|     if type(STDCPP_LIB) != str:  # python 3 | ||||
|         STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding) | ||||
|     main_link_args += [STDCPP_LIB] | ||||
|     extra_link_args += [STDCPP_LIB] | ||||
|     version_script = os.path.abspath("tools/pytorch.version") | ||||
|     extra_link_args += ['-Wl,--version-script=' + version_script] | ||||
|  | ||||
| @ -593,9 +593,11 @@ extensions.append(THNN) | ||||
| if WITH_CUDA: | ||||
|     thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')] | ||||
|     if platform.system() == 'Linux': | ||||
|         thnvrtc_link_flags = ['-Wl,--no-as-needed'] + thnvrtc_link_flags | ||||
|         thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed'] | ||||
|     # these have to be specified as -lcuda in link_flags because they | ||||
|     # have to come right after the `no-as-needed` option | ||||
|     thnvrtc_link_flags += ['-lcuda', '-lnvrtc'] | ||||
|     THNVRTC = Extension("torch._nvrtc", | ||||
|                         libraries=['nvrtc', 'cuda'], | ||||
|                         sources=['torch/csrc/nvrtc.cpp'], | ||||
|                         language='c++', | ||||
|                         include_dirs=include_dirs, | ||||
| @ -618,11 +620,13 @@ if WITH_CUDA: | ||||
|                        ) | ||||
|     extensions.append(THCUNN) | ||||
|  | ||||
| version = '0.2.0' | ||||
| version = '0.3.0b0' | ||||
| if os.getenv('PYTORCH_BUILD_VERSION'): | ||||
|     assert os.getenv('PYTORCH_BUILD_NUMBER') is not None | ||||
|     version = os.getenv('PYTORCH_BUILD_VERSION') \ | ||||
|         + '_' + os.getenv('PYTORCH_BUILD_NUMBER') | ||||
|     build_number = int(os.getenv('PYTORCH_BUILD_NUMBER')) | ||||
|     version = os.getenv('PYTORCH_BUILD_VERSION') | ||||
|     if build_number > 1: | ||||
|         version += '.post' + str(build_number) | ||||
| else: | ||||
|     try: | ||||
|         sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip() | ||||
|  | ||||
| @ -170,6 +170,9 @@ class TestCase(unittest.TestCase): | ||||
|         return x, y | ||||
|  | ||||
|     def assertEqual(self, x, y, prec=None, message=''): | ||||
|         if isinstance(prec, str) and message == '': | ||||
|             message = prec | ||||
|             prec = None | ||||
|         if prec is None: | ||||
|             prec = self.precision | ||||
|  | ||||
|  | ||||
| @ -246,6 +246,17 @@ module_tests = [ | ||||
| ] | ||||
|  | ||||
|  | ||||
| def kldivloss_reference(input, target, size_average=True, reduce=True): | ||||
|     safe_target = target * (target > 0).type_as(target) | ||||
|     safe_target_log = (safe_target + (target <= 0).type_as(target)).log() | ||||
|     result = safe_target * (safe_target_log - input) | ||||
|     if reduce and size_average: | ||||
|         return result.mean() | ||||
|     elif reduce: | ||||
|         return result.sum() | ||||
|     return result | ||||
|  | ||||
|  | ||||
| def nllloss2d_reference(input, target, weight=None, ignore_index=-100, | ||||
|                         size_average=True, reduce=True): | ||||
|     N, C, H, W = input.size() | ||||
| @ -309,6 +320,7 @@ def smoothl1loss_reference(input, target, size_average=True, reduce=True): | ||||
|  | ||||
|  | ||||
| loss_reference_fns = { | ||||
|     'KLDivLoss': kldivloss_reference, | ||||
|     'NLLLoss': nllloss_reference, | ||||
|     'NLLLoss2d': nllloss2d_reference, | ||||
|     'SmoothL1Loss': smoothl1loss_reference, | ||||
| @ -370,6 +382,8 @@ criterion_tests = [ | ||||
|         module_name='KLDivLoss', | ||||
|         input_fn=lambda: torch.rand(10, 10).log(), | ||||
|         target_fn=lambda: torch.rand(10, 10), | ||||
|         reference_fn=lambda i, t, m: | ||||
|             kldivloss_reference(i, t, get_size_average(m), reduce=True), | ||||
|         check_no_size_average=True, | ||||
|     ), | ||||
|     dict( | ||||
|  | ||||
| @ -995,6 +995,16 @@ class TestAutograd(TestCase): | ||||
|         self._test_setitem_tensor((5, 5), Variable(mask)) | ||||
|         self._test_setitem_tensor((5,), Variable(mask[0])) | ||||
|  | ||||
|     def test_select_sum(self): | ||||
|         # both select and sum return Scalars in ATen; ensure they work together. | ||||
|         x = Variable(torch.randn(10), requires_grad=True) | ||||
|  | ||||
|         def func(x): | ||||
|             return x.select(0, 1).sum() | ||||
|  | ||||
|         gradcheck(func, [x]) | ||||
|         gradgradcheck(func, [x]) | ||||
|  | ||||
|     def test_stack(self): | ||||
|         x = Variable(torch.randn(10, 10), requires_grad=True) | ||||
|         y = Variable(torch.randn(10, 10), requires_grad=True) | ||||
| @ -1006,6 +1016,43 @@ class TestAutograd(TestCase): | ||||
|         self.assertEqual(y.grad.data, grad[1]) | ||||
|         self.assertEqual(z.grad.data, grad[2]) | ||||
|  | ||||
|     def test_put(self): | ||||
|         root = Variable(torch.randn(4, 5), requires_grad=True) | ||||
|         values = Variable(torch.randn(6), requires_grad=True) | ||||
|         idx = Variable(torch.LongTensor([1, 2, 3, -1, -2, -3])) | ||||
|  | ||||
|         def func(root, values): | ||||
|             x = root.clone() | ||||
|             x.put_(idx, values) | ||||
|             return x | ||||
|  | ||||
|         gradcheck(func, [root, values]) | ||||
|         gradgradcheck(func, [root, values]) | ||||
|  | ||||
|     def test_put_accumulate(self): | ||||
|         root = Variable(torch.randn(4, 5), requires_grad=True) | ||||
|         values = Variable(torch.randn(6), requires_grad=True) | ||||
|         idx = Variable(torch.LongTensor([1, 2, 3, 1, 2, 3])) | ||||
|  | ||||
|         def func(root, values): | ||||
|             x = root.clone() | ||||
|             x.put_(idx, values, accumulate=True) | ||||
|             return x | ||||
|  | ||||
|         gradcheck(func, [root, values]) | ||||
|         gradgradcheck(func, [root, values]) | ||||
|  | ||||
|     def test_fill(self): | ||||
|         root = Variable(torch.randn(4, 5), requires_grad=True) | ||||
|  | ||||
|         def func(root): | ||||
|             x = root.clone() | ||||
|             x.fill_(2) | ||||
|             return x | ||||
|  | ||||
|         gradcheck(func, [root]) | ||||
|         gradgradcheck(func, [root]) | ||||
|  | ||||
|     def test_unused_output(self): | ||||
|         x = Variable(torch.randn(10, 10), requires_grad=True) | ||||
|         outputs = x.chunk(5) | ||||
| @ -1461,13 +1508,14 @@ class TestAutograd(TestCase): | ||||
|     def test_norm_subgradient(self): | ||||
|         def run_test(input_size, norm_deg): | ||||
|             input = Variable(torch.zeros(*input_size), requires_grad=True) | ||||
|             out = input.norm(norm_deg) | ||||
|             out.backward() | ||||
|             input.norm(norm_deg).backward() | ||||
|             self.assertEqual(input.grad.data.abs().sum(), 0) | ||||
|  | ||||
|         run_test((10,), 2) | ||||
|         run_test((10, 10), 2) | ||||
|         run_test((10,), 3) | ||||
|         run_test((10,), 1) | ||||
|         run_test((10,), 1.5) | ||||
|  | ||||
|     def test_profiler(self): | ||||
|         x = Variable(torch.randn(10, 10)) | ||||
| @ -1764,8 +1812,14 @@ method_tests = [ | ||||
|     ('addcdiv', (S, S), (0.5, (S, 1), (1, S)), 'scale_broadcast_rhs'), | ||||
|     ('addcdiv', (1,), (0.5, (S, S, 1), (1, S)), 'scale_broadcast_all'), | ||||
|     ('zero_', (S, S, S), ()), | ||||
|     ('norm', (S, S, S), (2,)), | ||||
|     ('norm', (S, S, S), (3,), '3'), | ||||
|     ('norm', (S, S), (2,)), | ||||
|     ('norm', (S, S), (0,), '0'), | ||||
|     ('norm', (S, S), (0.5,), '0_5'), | ||||
|     ('norm', (S, S), (1,), '1'), | ||||
|     ('norm', (S, S), (3,), '3'), | ||||
|     ('norm', (S, S), (-1,), 'neg_1'), | ||||
|     ('norm', (S, S), (-0.5,), 'neg_0_5'), | ||||
|     ('norm', (S, S), (-1.5,), 'neg_1_5'), | ||||
|     ('norm', torch.rand(S, S, S) + 5e-2, (1.5,), '1_5'), | ||||
|     ('norm', (S, S, S), (2, 1), '2_dim', [1]), | ||||
|     ('norm', (S, S, S), (3, 1), '3_dim', [1]), | ||||
| @ -1842,6 +1896,7 @@ method_tests = [ | ||||
|     ('squeeze', (S, 1, S, 1), ()), | ||||
|     ('squeeze', (S, 1, S, 1), (1,), '1_dim', [0]), | ||||
|     ('squeeze', (S, 1, S, 1), (2,), 'not_1_dim', [0]), | ||||
|     ('squeeze', (1,), (0,), '1d_dim0', [0]), | ||||
|     ('unsqueeze', (S, S, S), (0,), 'first', [0]), | ||||
|     ('unsqueeze', (S, S, S), (1,), 'middle', [0]), | ||||
|     ('unsqueeze', (S, S, S), (3,), 'last', [0]), | ||||
| @ -1875,6 +1930,7 @@ method_tests = [ | ||||
|     ('topk', (S, M, S), (3, 1), 'dim'), | ||||
|     ('topk', (S, M, S), (3, 1, True), 'dim_desc'), | ||||
|     ('topk', (S, M, S), (3, 1, True, True), 'dim_desc_sort'), | ||||
|     ('take', (S, S, S), (Variable(torch.LongTensor([[-3, 2], [20, 2]])),)), | ||||
|     ('__getitem__', torch.randn(S, S, S), (dont_convert([1, 2]),)), | ||||
|     ('__getitem__', torch.randn(S, S, S), (slice(0, 3),), 'slice'), | ||||
|     ('__getitem__', torch.randn(S, S, S), (dont_convert([slice(0, 3), 1]),), 'slice_index'), | ||||
|  | ||||
| @ -1,5 +1,6 @@ | ||||
| import math | ||||
| import tempfile | ||||
| import re | ||||
| import unittest | ||||
| from itertools import repeat | ||||
|  | ||||
| @ -16,6 +17,11 @@ if not torch.cuda.is_available(): | ||||
|     TestCase = object  # noqa: F811 | ||||
|     HAS_CUDA = False | ||||
|  | ||||
| HAS_MAGMA = HAS_CUDA | ||||
| if HAS_CUDA: | ||||
|     torch.ones(1).cuda()  # has_magma shows up after cuda is initialized | ||||
|     HAS_MAGMA = torch.cuda.has_magma | ||||
|  | ||||
|  | ||||
| def is_floating(t): | ||||
|     return type(t) in [torch.FloatTensor, torch.DoubleTensor, | ||||
| @ -968,6 +974,69 @@ class TestCuda(TestCase): | ||||
|     def test_tensor_scatterFill(self): | ||||
|         TestTorch._test_scatter_base(self, lambda t: t.cuda(), 'scatter_', True, test_bounds=False) | ||||
|  | ||||
|     def test_var(self): | ||||
|         cpu_tensor = torch.randn(2, 3, 3) | ||||
|         gpu_tensor = cpu_tensor.cuda() | ||||
|         self.assertEqual(gpu_tensor.var(), cpu_tensor.var()) | ||||
|         self.assertEqual(gpu_tensor.var(1), cpu_tensor.var(1)) | ||||
|         self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2)) | ||||
|         self.assertEqual(gpu_tensor.std(), cpu_tensor.std()) | ||||
|         self.assertEqual(gpu_tensor.std(1), cpu_tensor.std(1)) | ||||
|         self.assertEqual(gpu_tensor.var(2), cpu_tensor.var(2)) | ||||
|  | ||||
|         cpu_tensor = torch.randn(100) | ||||
|         gpu_tensor = cpu_tensor.cuda() | ||||
|         self.assertEqual(gpu_tensor.var(), cpu_tensor.var()) | ||||
|  | ||||
|     def test_var_unbiased(self): | ||||
|         tensor = torch.randn(100).cuda() | ||||
|         self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True)) | ||||
|         self.assertEqual(tensor.var(), tensor.var(unbiased=True)) | ||||
|         self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)[0]) | ||||
|  | ||||
|         tensor = torch.FloatTensor([1.0, 2.0]).cuda() | ||||
|         self.assertEqual(tensor.var(unbiased=True), 0.5) | ||||
|         self.assertEqual(tensor.var(unbiased=False), 0.25) | ||||
|  | ||||
|         tensor = torch.randn(100).cuda() | ||||
|         self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True)) | ||||
|         self.assertEqual(tensor.std(), tensor.std(unbiased=True)) | ||||
|         self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0]) | ||||
|  | ||||
|     def test_var_large_input(self): | ||||
|         # Large, not-nice input | ||||
|         tensor_cpu = torch.randn(2 * 32 * 1024 + 1, 2, 67) | ||||
|         tensor_cuda = tensor_cpu.cuda() | ||||
|  | ||||
|         self.assertEqual(tensor_cpu.var(2), tensor_cuda.var(2).cpu()) | ||||
|  | ||||
|     def test_var_stability(self): | ||||
|         tensor = torch.FloatTensor([2281.5, 2281.25]).cuda() | ||||
|  | ||||
|         # Stability for inner dim | ||||
|         self.assertEqual(tensor.var(0)[0], 0.03125) | ||||
|  | ||||
|         # General stability | ||||
|         self.assertEqual(tensor.var(), 0.03125) | ||||
|  | ||||
|         # Stability for outer dimensions | ||||
|         tensor = tensor.unsqueeze(1) | ||||
|         self.assertEqual(tensor.var(0)[0], 0.03125) | ||||
|  | ||||
|     @unittest.skipIf(not HAS_MAGMA, "no MAGMA library detected") | ||||
|     def test_symeig(self): | ||||
|         # Small case | ||||
|         tensor = torch.randn(3, 3).cuda() | ||||
|         tensor = torch.mm(tensor, tensor.t()) | ||||
|         eigval, eigvec = torch.symeig(tensor, eigenvectors=True) | ||||
|         self.assertEqual(tensor, torch.mm(torch.mm(eigvec, eigval.diag()), eigvec.t())) | ||||
|  | ||||
|         # Large case | ||||
|         tensor = torch.randn(257, 257).cuda() | ||||
|         tensor = torch.mm(tensor, tensor.t()) | ||||
|         eigval, eigvec = torch.symeig(tensor, eigenvectors=True) | ||||
|         self.assertEqual(tensor, torch.mm(torch.mm(eigvec, eigval.diag()), eigvec.t())) | ||||
|  | ||||
|     def test_arange(self): | ||||
|         for t in ['IntTensor', 'LongTensor', 'FloatTensor', 'DoubleTensor']: | ||||
|             a = torch.cuda.__dict__[t]() | ||||
|  | ||||
| @ -4,6 +4,7 @@ import torch | ||||
| import traceback | ||||
| import unittest | ||||
| from torch.utils.data import Dataset, TensorDataset, DataLoader, ConcatDataset | ||||
| from torch.utils.data.dataloader import default_collate | ||||
| from common import TestCase, run_tests, TEST_NUMPY | ||||
| from common_nn import TEST_CUDA | ||||
|  | ||||
| @ -276,6 +277,23 @@ class TestDataLoader(TestCase): | ||||
|             batch = next(iter(loader)) | ||||
|             self.assertIsInstance(batch, tt) | ||||
|  | ||||
|     @unittest.skipIf(not TEST_NUMPY, "numpy unavailable") | ||||
|     def test_default_colate_bad_numpy_types(self): | ||||
|         import numpy as np | ||||
|  | ||||
|         # Should be a no-op | ||||
|         arr = np.array(['a', 'b', 'c']) | ||||
|         default_collate(arr) | ||||
|  | ||||
|         arr = np.array([[['a', 'b', 'c']]]) | ||||
|         self.assertRaises(TypeError, lambda: default_collate(arr)) | ||||
|  | ||||
|         arr = np.array([object(), object(), object()]) | ||||
|         self.assertRaises(TypeError, lambda: default_collate(arr)) | ||||
|  | ||||
|         arr = np.array([[[object(), object(), object()]]]) | ||||
|         self.assertRaises(TypeError, lambda: default_collate(arr)) | ||||
|  | ||||
|  | ||||
| class StringDataset(Dataset): | ||||
|     def __init__(self): | ||||
|  | ||||
| @ -2,7 +2,7 @@ from common import TestCase, run_tests | ||||
| import math | ||||
| import torch | ||||
| from torch.autograd import Variable, gradcheck | ||||
| from torch.distributions import Bernoulli, Multinomial, Normal | ||||
| from torch.distributions import Bernoulli, Categorical, Normal | ||||
|  | ||||
|  | ||||
| class TestDistributions(TestCase): | ||||
| @ -47,22 +47,22 @@ class TestDistributions(TestCase): | ||||
|     def test_multinomial_1d(self): | ||||
|         p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) | ||||
|         # TODO: this should return a 0-dim tensor once we have Scalar support | ||||
|         self.assertEqual(Multinomial(p).sample().size(), (1,)) | ||||
|         self.assertEqual(Multinomial(p).sample_n(1).size(), (1, 1)) | ||||
|         self._gradcheck_log_prob(Multinomial, (p,)) | ||||
|         self.assertEqual(Categorical(p).sample().size(), (1,)) | ||||
|         self.assertEqual(Categorical(p).sample_n(1).size(), (1, 1)) | ||||
|         self._gradcheck_log_prob(Categorical, (p,)) | ||||
|  | ||||
|     def test_multinomial_2d(self): | ||||
|         probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] | ||||
|         p = Variable(torch.Tensor(probabilities), requires_grad=True) | ||||
|         self.assertEqual(Multinomial(p).sample().size(), (2,)) | ||||
|         self.assertEqual(Multinomial(p).sample_n(6).size(), (6, 2)) | ||||
|         self._gradcheck_log_prob(Multinomial, (p,)) | ||||
|         self.assertEqual(Categorical(p).sample().size(), (2,)) | ||||
|         self.assertEqual(Categorical(p).sample_n(6).size(), (6, 2)) | ||||
|         self._gradcheck_log_prob(Categorical, (p,)) | ||||
|  | ||||
|         def ref_log_prob(idx, val, log_prob): | ||||
|             sample_prob = p.data[idx][val] / p.data[idx].sum() | ||||
|             self.assertEqual(log_prob, math.log(sample_prob)) | ||||
|  | ||||
|         self._check_log_prob(Multinomial(p), ref_log_prob) | ||||
|         self._check_log_prob(Categorical(p), ref_log_prob) | ||||
|  | ||||
|     def test_normal(self): | ||||
|         mean = Variable(torch.randn(5, 5), requires_grad=True) | ||||
|  | ||||
| @ -15,6 +15,15 @@ try: | ||||
| except ImportError: | ||||
|     HAS_TORCHVISION = False | ||||
|  | ||||
| RUN_CUDA = torch.cuda.is_available() | ||||
| if torch.cuda.is_available(): | ||||
|     CUDA_VERSION = torch._C._cuda_getCompiledVersion() | ||||
|     for d in range(torch.cuda.device_count()): | ||||
|         major = torch.cuda.get_device_capability(d)[0] | ||||
|         if (CUDA_VERSION < 8000 and major >= 6) or (CUDA_VERSION < 9000 and major >= 7): | ||||
|             RUN_CUDA = False | ||||
|  | ||||
|  | ||||
| skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") | ||||
|  | ||||
|  | ||||
| @ -52,7 +61,7 @@ class TestJit(TestCase): | ||||
|         torch._C._jit_pass_lint(trace) | ||||
|         self.assertExpected(str(trace)) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_lstm_fusion(self): | ||||
|         input = Variable(torch.randn(3, 10).cuda()) | ||||
|         hx = Variable(torch.randn(3, 20).cuda()) | ||||
| @ -65,7 +74,7 @@ class TestJit(TestCase): | ||||
|         torch._C._jit_pass_lint(trace) | ||||
|         self.assertExpected(str(trace)) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_run_lstm_fusion(self): | ||||
|         input = Variable(torch.randn(3, 10).cuda()) | ||||
|         hx = Variable(torch.randn(3, 20).cuda()) | ||||
| @ -78,7 +87,7 @@ class TestJit(TestCase): | ||||
|         z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters(), _assert_compiled=True) | ||||
|         self.assertEqual(z, z2) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_run_lstm_fusion_concat(self): | ||||
|         input = Variable(torch.randn(3, 10).cuda()) | ||||
|         hx = Variable(torch.randn(3, 20).cuda()) | ||||
| @ -91,7 +100,7 @@ class TestJit(TestCase): | ||||
|         z2 = CompiledLSTMCell(input, (hx, cx), *module.parameters(), _assert_compiled=True) | ||||
|         self.assertEqual(z, z2) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_concat_fusion(self): | ||||
|         hx = Variable(torch.randn(3, 20).cuda()) | ||||
|         cx = Variable(torch.randn(3, 20).cuda()) | ||||
| @ -105,7 +114,7 @@ class TestJit(TestCase): | ||||
|         torch._C._jit_pass_lint(trace) | ||||
|         self.assertExpected(str(trace)) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_fusion_distribute(self): | ||||
|         def f(x, y): | ||||
|             z1, z2 = (x + y).chunk(2, dim=1) | ||||
| @ -146,7 +155,7 @@ class TestJit(TestCase): | ||||
|         self.assertEqual(z, torch.sigmoid(torch.tanh(x * (x + y)))) | ||||
|         self.assertEqual(z, z2) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "fuser requires CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") | ||||
|     def test_compile_addc(self): | ||||
|         x = Variable(torch.Tensor([0.4]), requires_grad=True).cuda() | ||||
|         y = Variable(torch.Tensor([0.7]), requires_grad=True).cuda() | ||||
| @ -613,7 +622,7 @@ class TestJit(TestCase): | ||||
|         assert(torch.equal(torch.ones([2, 2]), t_node.t("a"))) | ||||
|         self.assertExpected(str(g2)) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), "cpp tests require CUDA") | ||||
|     @unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA") | ||||
|     def test_cpp(self): | ||||
|         torch._C._jit_run_cpp_tests() | ||||
|  | ||||
|  | ||||
							
								
								
									
										153
									
								
								test/test_nn.py
									
									
									
									
									
								
							
							
						
						
									
										153
									
								
								test/test_nn.py
									
									
									
									
									
								
							| @ -2249,6 +2249,38 @@ class TestNN(NNTestCase): | ||||
|             weight_data[:] = 4 | ||||
|             self.assertEqual(weight_data, all_vars[4].data) | ||||
|  | ||||
|     @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') | ||||
|     def test_cudnn_weight_tying(self): | ||||
|         rnns = [ | ||||
|             nn.LSTM(10, 20, batch_first=True, bidirectional=True), | ||||
|             nn.GRU(10, 20, batch_first=True, bidirectional=True), | ||||
|             nn.RNN(10, 20, batch_first=True, bidirectional=True) | ||||
|         ] | ||||
|         for rnn in rnns: | ||||
|             rnn.bias_ih_l0_reverse = rnn.bias_ih_l0 | ||||
|             rnn.cuda() | ||||
|             input = Variable(torch.randn(5, 4, 10).cuda(), requires_grad=True) | ||||
|             hx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True) | ||||
|             all_vars = [input, hx] + list(rnn.parameters()) | ||||
|             opt = torch.optim.SGD(rnn.parameters(), lr=0.1) | ||||
|             opt.zero_grad() | ||||
|             if isinstance(rnn, nn.LSTM): | ||||
|                 cx = Variable(torch.randn(2, 5, 20).cuda(), requires_grad=True) | ||||
|                 all_vars[2:2] = [cx] | ||||
|                 hx = (hx, cx) | ||||
|  | ||||
|             with warnings.catch_warnings(record=True) as w: | ||||
|                 output = rnn(input, hx) | ||||
|             output[0].sum().backward() | ||||
|  | ||||
|             opt.step() | ||||
|             with warnings.catch_warnings(record=True) as w: | ||||
|                 output_cuda = rnn(input, hx) | ||||
|             rnn.cpu() | ||||
|             hx = (hx[0].cpu(), hx[1].cpu()) if isinstance(rnn, nn.LSTM) else hx.cpu() | ||||
|             output_cpu = rnn(input.cpu(), hx) | ||||
|             self.assertEqual(output_cuda, output_cpu) | ||||
|  | ||||
|     @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | ||||
|     def test_cuda_rnn_fused(self): | ||||
|         def copy_rnn(rnn1, rnn2): | ||||
| @ -2759,6 +2791,26 @@ class TestNN(NNTestCase): | ||||
|  | ||||
|         self.assertEqual(out1, out2) | ||||
|  | ||||
|     def test_elu_inplace_gradgrad(self): | ||||
|         v = Variable(torch.randn(8), requires_grad=True) | ||||
|  | ||||
|         def func(root): | ||||
|             x = root.clone() | ||||
|             return F.elu(x, inplace=True) | ||||
|  | ||||
|         gradcheck(func, [v]) | ||||
|         gradgradcheck(func, [v]) | ||||
|  | ||||
|     def test_hardtanh_inplace_gradgrad(self): | ||||
|         v = Variable(torch.randn(8), requires_grad=True) | ||||
|  | ||||
|         def func(root): | ||||
|             x = root.clone() | ||||
|             return F.hardtanh(x, inplace=True) | ||||
|  | ||||
|         gradcheck(func, [v]) | ||||
|         gradgradcheck(func, [v]) | ||||
|  | ||||
|     def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self): | ||||
|         input = Variable(torch.rand(2, 10)) | ||||
|         running_var = torch.rand(10) | ||||
| @ -2845,38 +2897,17 @@ class TestNN(NNTestCase): | ||||
|         self.assertTrue(gradcheck(lambda x, y: F.cosine_similarity(x, y, dim=-1), (input1, input2))) | ||||
|  | ||||
|     def test_grid_sample(self): | ||||
|         # test known input on CPU | ||||
|         input = Variable(torch.arange(1, 11).view(1, 1, 2, 5)) | ||||
|         grid = Variable(torch.Tensor( | ||||
|             [[-1, -0.5, 0, 0.2, 1], | ||||
|              [-1, -0.333, 0, 0.5, 1], | ||||
|              [-1, -0.5, 0, 0.3333, 1], | ||||
|              [-1, -0.2, 0, 0.2, 1]]).view(1, 2, 5, 2)) | ||||
|         output = F.grid_sample(input, grid) | ||||
|         groundtruth = torch.Tensor( | ||||
|             [[2.2500, 6.0000000000, 5.0000, 4.8340, 9.0000], | ||||
|              [2.2500, 6.333250045, 5.0000, 5.1000, 8.4000]]).view(1, 1, 2, 5) | ||||
|         self.assertEqual(output.data, groundtruth) | ||||
|         def test_cpu_against_cuda(N, C, H, W, padding_mode): | ||||
|             def test_shape(N, C, IH, IW, H, W, padding_mode): | ||||
|  | ||||
|         # do gradcheck | ||||
|         N = random.randint(1, 8) | ||||
|         C = random.randint(1, 8) | ||||
|         H = random.randint(1, 8) | ||||
|         W = random.randint(1, 8) | ||||
|         input = Variable(torch.randn(N, C, H, W), requires_grad=True) | ||||
|         grid = Variable(torch.randn(N, H, W, 2), requires_grad=True) | ||||
|         self.assertTrue(gradcheck(lambda inp, grid: F.grid_sample(inp, grid), (input, grid))) | ||||
|  | ||||
|         def test_cpu_against_cuda(N, C, H, W): | ||||
|             def test_shape(N, C, IH, IW, H, W): | ||||
|                 input_cpu = Variable(torch.randn(C, N, IH, IW).transpose(0, 1), requires_grad=True) | ||||
|                 grid_cpu = Variable(torch.randn(H, N, W, 2).transpose(0, 1), requires_grad=True) | ||||
|                 out_cpu = F.grid_sample(input_cpu, grid_cpu) | ||||
|                 out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode) | ||||
|                 self.assertTrue(out_cpu.size() == torch.Size([N, C, H, W])) | ||||
|  | ||||
|                 input_cuda = Variable(input_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | ||||
|                 grid_cuda = Variable(grid_cpu.data.transpose(0, 1).cuda().transpose(0, 1), requires_grad=True) | ||||
|                 out_cuda = F.grid_sample(input_cuda, grid_cuda) | ||||
|                 out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode) | ||||
|                 self.assertEqual(out_cpu, out_cuda) | ||||
|  | ||||
|                 gradients = out_cpu.data.new(out_cpu.size()).normal_() | ||||
| @ -2889,15 +2920,15 @@ class TestNN(NNTestCase): | ||||
|                 base_input = torch.randn(C, IH, IW) | ||||
|                 input_cpu = Variable(base_input.expand(input_cuda.size()), requires_grad=True) | ||||
|                 grid_cpu = Variable(torch.randn(N, H, W, 2), requires_grad=True) | ||||
|                 out_cpu = F.grid_sample(input_cpu, grid_cpu) | ||||
|                 out_cpu = F.grid_sample(input_cpu, grid_cpu, padding_mode=padding_mode) | ||||
|  | ||||
|                 input_cuda = Variable(base_input.cuda().expand(input_cuda.size()), requires_grad=True) | ||||
|                 grid_cuda = Variable(grid_cpu.data.cuda(), requires_grad=True) | ||||
|                 out_cuda = F.grid_sample(input_cuda, grid_cuda) | ||||
|                 out_cuda = F.grid_sample(input_cuda, grid_cuda, padding_mode=padding_mode) | ||||
|                 self.assertEqual(out_cpu, out_cuda) | ||||
|  | ||||
|             # test same size output | ||||
|             test_shape(N, C, H, W, H, W) | ||||
|             test_shape(N, C, H, W, H, W, padding_mode) | ||||
|  | ||||
|             # test larger output | ||||
|             N = random.randint(1, 8) | ||||
| @ -2906,7 +2937,7 @@ class TestNN(NNTestCase): | ||||
|             IW = random.randint(1, 8) | ||||
|             H = random.randint(IH + 1, 12) | ||||
|             W = random.randint(IH + 1, 12) | ||||
|             test_shape(N, C, IH, IW, H, W) | ||||
|             test_shape(N, C, IH, IW, H, W, padding_mode) | ||||
|  | ||||
|             # test smaller output | ||||
|             N = random.randint(1, 8) | ||||
| @ -2915,21 +2946,44 @@ class TestNN(NNTestCase): | ||||
|             IW = random.randint(1, 8) | ||||
|             H = random.randint(1, IH) | ||||
|             W = random.randint(1, IW) | ||||
|             test_shape(N, C, IH, IW, H, W) | ||||
|             test_shape(N, C, IH, IW, H, W, padding_mode) | ||||
|  | ||||
|         # test CUDNN against CPU | ||||
|         if TEST_CUDNN: | ||||
|             test_cpu_against_cuda(N, C, H, W) | ||||
|         # test known input on CPU | ||||
|         for padding_mode in ['zeros', 'border']: | ||||
|  | ||||
|         # test CUDA (without CUDNN) against CPU | ||||
|             input = Variable(torch.arange(1, 11).view(1, 1, 2, 5)) | ||||
|             grid = Variable(torch.Tensor( | ||||
|                 [[-0.9, -1.4, 0, 0.2, 1], | ||||
|                  [-1, -0.333, 0, 0.5, 1], | ||||
|                  [-1, -0.5, 0, 0.3333, 1], | ||||
|                  [-1, -0.2, 0, 1.1, 0.5]]).view(1, 2, 5, 2)) | ||||
|             output = F.grid_sample(input, grid, padding_mode=padding_mode) | ||||
|  | ||||
|             if padding_mode == 'zeros': | ||||
|                 groundtruth = torch.Tensor( | ||||
|                     [[0.9600, 6.0000000000, 5.0000, 4.8340, 9.0000], | ||||
|                      [2.2500, 6.333250045, 5.0000, 5.1000, 7.0000]]).view(1, 1, 2, 5) | ||||
|             else: | ||||
|                 groundtruth = torch.Tensor( | ||||
|                     [[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000], | ||||
|                      [2.2500, 6.333250045, 5.0000, 5.1000, 8.7500]]).view(1, 1, 2, 5) | ||||
|  | ||||
|             self.assertEqual(output.data, groundtruth) | ||||
|  | ||||
|             # do gradcheck | ||||
|             N = random.randint(1, 8) | ||||
|             C = random.randint(1, 8) | ||||
|             H = random.randint(1, 8) | ||||
|             W = random.randint(1, 8) | ||||
|             input = Variable(torch.randn(N, C, H, W), requires_grad=True) | ||||
|             grid = Variable(torch.randn(N, H, W, 2), requires_grad=True) | ||||
|             self.assertTrue(gradcheck( | ||||
|                 lambda inp, grid: F.grid_sample(inp, grid, padding_mode=padding_mode), | ||||
|                 (input, grid))) | ||||
|  | ||||
|             # test CUDA against CPU | ||||
|             if TEST_CUDA: | ||||
|  | ||||
|             # GridSampler will automatically use CUDNN if it is available | ||||
|             # so we disable CUDNN temporarily | ||||
|             original_cudnn_enabled = cudnn.enabled | ||||
|             cudnn.enabled = False | ||||
|             test_cpu_against_cuda(N, C, H, W) | ||||
|             cudnn.enabled = original_cudnn_enabled | ||||
|                 test_cpu_against_cuda(N, C, H, W, padding_mode) | ||||
|  | ||||
|     def test_affine_grid(self): | ||||
|         # test known input on CPU | ||||
| @ -3653,6 +3707,18 @@ new_criterion_tests = [ | ||||
| ] | ||||
|  | ||||
|  | ||||
| def kldivloss_no_reduce_test(): | ||||
|     t = Variable(torch.randn(10, 10)) | ||||
|     return dict( | ||||
|         fullname='KLDivLoss_no_reduce', | ||||
|         constructor=wrap_functional( | ||||
|             lambda i: F.kl_div(i, t.type_as(i), reduce=False)), | ||||
|         input_fn=lambda: torch.rand(10, 10).log(), | ||||
|         reference_fn=lambda i, _: | ||||
|             loss_reference_fns['KLDivLoss'](i, t.data.type_as(i), reduce=False), | ||||
|         pickle=False) | ||||
|  | ||||
|  | ||||
| def l1loss_no_reduce_test(): | ||||
|     t = Variable(torch.randn(2, 3, 4)) | ||||
|     return dict( | ||||
| @ -3811,6 +3877,7 @@ def smoothl1loss_no_reduce_test(): | ||||
|  | ||||
|  | ||||
| new_module_tests = [ | ||||
|     kldivloss_no_reduce_test(), | ||||
|     l1loss_no_reduce_test(), | ||||
|     mseloss_no_reduce_test(), | ||||
|     nllloss_no_reduce_test(), | ||||
| @ -4553,7 +4620,7 @@ new_module_tests = [ | ||||
|         desc='dim' | ||||
|     ), | ||||
|     dict( | ||||
|         constructor=wrap_functional(F.softmax, dim=1), | ||||
|         constructor=wrap_functional(F.softmax, dim=-1), | ||||
|         input_size=(2, 128),  # trigger the last-dim algo in CUDA | ||||
|         fullname='softmax_lastdim', | ||||
|         pickle=False, | ||||
| @ -4585,7 +4652,7 @@ new_module_tests = [ | ||||
|         pickle=False, | ||||
|     ), | ||||
|     dict( | ||||
|         constructor=wrap_functional(F.log_softmax, dim=1), | ||||
|         constructor=wrap_functional(F.log_softmax, dim=-1), | ||||
|         input_size=(2, 128),  # trigger the last-dim algo in CUDA | ||||
|         fullname='log_softmax_lastdim', | ||||
|         pickle=False, | ||||
|  | ||||
| @ -61,12 +61,13 @@ class TestOptim(TestCase): | ||||
|  | ||||
|         self.assertLessEqual(params.data.dist(solution), initial_dist) | ||||
|  | ||||
|     def _test_rosenbrock_sparse(self, constructor): | ||||
|     def _test_rosenbrock_sparse(self, constructor, sparse_only=False): | ||||
|         params_t = torch.Tensor([1.5, 1.5]) | ||||
|  | ||||
|         params = Variable(torch.Tensor([1.5, 1.5]), requires_grad=True) | ||||
|         params_c = Variable(torch.Tensor([1.5, 1.5]), requires_grad=True) | ||||
|         params = Variable(params_t, requires_grad=True) | ||||
|         optimizer = constructor([params]) | ||||
|         if not sparse_only: | ||||
|             params_c = Variable(params_t.clone(), requires_grad=True) | ||||
|             optimizer_c = constructor([params_c]) | ||||
|  | ||||
|         solution = torch.Tensor([1, 1]) | ||||
| @ -99,6 +100,7 @@ class TestOptim(TestCase): | ||||
|             # Do cyclic coordinate descent | ||||
|             w = i % 2 | ||||
|             optimizer.step(functools.partial(eval, params, True, w)) | ||||
|             if not sparse_only: | ||||
|                 optimizer_c.step(functools.partial(eval, params_c, False, w)) | ||||
|                 self.assertEqual(params.data, params_c.data) | ||||
|  | ||||
| @ -229,6 +231,11 @@ class TestOptim(TestCase): | ||||
|                 lr=1e-3) | ||||
|         ) | ||||
|  | ||||
|     def test_sgd_sparse(self): | ||||
|         self._test_rosenbrock_sparse( | ||||
|             lambda params: optim.SGD(params, lr=5e-3) | ||||
|         ) | ||||
|  | ||||
|     def test_adam(self): | ||||
|         self._test_rosenbrock( | ||||
|             lambda params: optim.Adam(params, lr=1e-2), | ||||
| @ -247,6 +254,12 @@ class TestOptim(TestCase): | ||||
|                 lr=1e-3) | ||||
|         ) | ||||
|  | ||||
|     def test_sparse_adam(self): | ||||
|         self._test_rosenbrock_sparse( | ||||
|             lambda params: optim.SparseAdam(params, lr=4e-2), | ||||
|             True | ||||
|         ) | ||||
|  | ||||
|     def test_adadelta(self): | ||||
|         self._test_rosenbrock( | ||||
|             lambda params: optim.Adadelta(params), | ||||
|  | ||||
| @ -71,6 +71,34 @@ class TestTorch(TestCase): | ||||
|                     res2[i, j] = v1[i] * v2[j] | ||||
|             self.assertEqual(res1, res2) | ||||
|  | ||||
|     def test_addr(self): | ||||
|         types = { | ||||
|             'torch.DoubleTensor': 1e-8, | ||||
|             'torch.FloatTensor': 1e-4, | ||||
|         } | ||||
|  | ||||
|         def run_test(m, v1, v2, m_transform=lambda x: x): | ||||
|             m = m_transform(m.clone()) | ||||
|             ref = m.clone() | ||||
|             torch.addr(m, v1, v2, out=m) | ||||
|             for i in range(m.size(0)): | ||||
|                 for j in range(m.size(1)): | ||||
|                     ref[i, j] += v1[i] * v2[j] | ||||
|             self.assertEqual(m, ref) | ||||
|  | ||||
|         for tname, _prec in types.items(): | ||||
|             for h, w in [(100, 110), (1, 20), (200, 2)]: | ||||
|                 m = torch.randn(h, w).type(tname) | ||||
|                 v1 = torch.randn(h).type(tname) | ||||
|                 v2 = torch.randn(w).type(tname) | ||||
|                 run_test(m, v1, v2) | ||||
|                 # test transpose | ||||
|                 run_test(m, v2, v1, lambda x: x.transpose(0, 1)) | ||||
|                 # test 0 strided | ||||
|                 v1 = torch.randn(1).type(tname).expand(h) | ||||
|                 run_test(m, v1, v2) | ||||
|                 run_test(m, v2, v1, lambda x: x.transpose(0, 1)) | ||||
|  | ||||
|     def test_addmv(self): | ||||
|         types = { | ||||
|             'torch.DoubleTensor': 1e-8, | ||||
| @ -408,6 +436,17 @@ class TestTorch(TestCase): | ||||
|         test((10,)) | ||||
|         test((5, 5)) | ||||
|  | ||||
|     def test_all_any_empty(self): | ||||
|         x = torch.ByteTensor() | ||||
|         self.assertTrue(x.all()) | ||||
|         self.assertFalse(x.any()) | ||||
|  | ||||
|     @unittest.skipIf(not torch.cuda.is_available(), 'no CUDA') | ||||
|     def test_all_any_empty_cuda(self): | ||||
|         x = torch.cuda.ByteTensor() | ||||
|         self.assertTrue(x.all()) | ||||
|         self.assertFalse(x.any()) | ||||
|  | ||||
|     def test_mv(self): | ||||
|         m1 = torch.randn(100, 100) | ||||
|         v1 = torch.randn(100) | ||||
| @ -1111,6 +1150,11 @@ class TestTorch(TestCase): | ||||
|         torch.arange(0, 1, out=res2) | ||||
|         self.assertEqual(res1, res2, 0) | ||||
|  | ||||
|         # Check arange with only one argument | ||||
|         res1 = torch.arange(10) | ||||
|         res2 = torch.arange(0, 10) | ||||
|         self.assertEqual(res1, res2, 0) | ||||
|  | ||||
|         # Check arange for non-contiguous tensors. | ||||
|         x = torch.zeros(2, 3) | ||||
|         torch.arange(0, 4, out=x.narrow(1, 1, 2)) | ||||
| @ -3643,6 +3687,11 @@ class TestTorch(TestCase): | ||||
|         self.assertEqual(tensor.std(), tensor.std(unbiased=True)) | ||||
|         self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0]) | ||||
|  | ||||
|     def test_var_stability(self): | ||||
|         tensor = torch.FloatTensor([2281.5, 2281.25]) | ||||
|         self.assertEqual(tensor.var(0)[0], 0.03125) | ||||
|         self.assertEqual(tensor.var(), 0.03125) | ||||
|  | ||||
|     def test_view(self): | ||||
|         tensor = torch.rand(15) | ||||
|         template = torch.rand(3, 5) | ||||
| @ -3709,7 +3758,7 @@ class TestTorch(TestCase): | ||||
|         self.assertEqual(result.size(), target, 'Error in repeat using result') | ||||
|         result = tensor.repeat(torchSize) | ||||
|         self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage') | ||||
|         self.assertEqual((result.mean(0).view(8, 4) - tensor).abs().max(), 0, 'Error in repeat (not equal)') | ||||
|         self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)') | ||||
|  | ||||
|     def test_is_same_size(self): | ||||
|         t1 = torch.Tensor(3, 4, 9, 10) | ||||
| @ -4511,6 +4560,19 @@ class TestTorch(TestCase): | ||||
|             for i in range(len(x)): | ||||
|                 self.assertEqual(geq2_x[i], geq2_array[i]) | ||||
|  | ||||
|     def test_error_msg_type_translation(self): | ||||
|         with self.assertRaisesRegex( | ||||
|                 RuntimeError, | ||||
|                 # message includes both torch.DoubleTensor and torch.LongTensor | ||||
|                 '(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'): | ||||
|  | ||||
|             # Calls model with a DoubleTensor input but LongTensor weights | ||||
|             input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double()) | ||||
|             weight = torch.zeros(1, 1, 1, 3).long() | ||||
|             model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False) | ||||
|             model.weight.data = weight | ||||
|             out = model(input) | ||||
|  | ||||
|     def test_comparison_ops(self): | ||||
|         x = torch.randn(5, 5) | ||||
|         y = torch.randn(5, 5) | ||||
|  | ||||
| @ -386,7 +386,7 @@ class TestONNXUtils(TestCase): | ||||
|         sizes = [2, 3, 4] | ||||
|         pad = [1, 2, 3, 4] | ||||
|         paddings = prepare_onnx_paddings(len(sizes), pad) | ||||
|         self.assertEqual(paddings, [0, 0, 3, 4, 1, 2]) | ||||
|         self.assertEqual(paddings, [0, 3, 1, 0, 4, 2]) | ||||
|  | ||||
|     def test_check_onnx_broadcast(self): | ||||
|  | ||||
|  | ||||
| @ -13,10 +13,10 @@ | ||||
|  | ||||
| - name: add(Tensor self, Tensor other, *, Scalar alpha=1) | ||||
|   self: grad | ||||
|   other: grad * alpha | ||||
|   other: maybe_multiply(grad, alpha) | ||||
|  | ||||
| - name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) | ||||
|   self: grad * beta | ||||
|   self: maybe_multiply(grad, beta) | ||||
|   batch1: grad.unsqueeze(0).expand({ batch1.size(0), batch1.size(1), batch2.size(2) }).bmm(batch2.transpose(1, 2)) * alpha | ||||
|   batch2: batch1.transpose(1, 2).bmm(grad.unsqueeze(0).expand({ batch1.size(0), batch1.size(1), batch2.size(2) })) * alpha | ||||
|  | ||||
| @ -36,12 +36,12 @@ | ||||
|   mat2: mm_mat2_backward(grad, mat1, mat2.sizes(), mat2.strides(), alpha) | ||||
|  | ||||
| - name: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) | ||||
|   self: grad * beta | ||||
|   self: maybe_multiply(grad, beta) | ||||
|   mat: grad.ger(vec) * alpha | ||||
|   vec: mat.t().mv(grad) * alpha | ||||
|  | ||||
| - name: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) | ||||
|   self: grad * beta | ||||
|   self: maybe_multiply(grad, beta) | ||||
|   vec1: grad.mv(vec2) * alpha | ||||
|   vec2: grad.t().mv(vec1) * alpha | ||||
|  | ||||
| @ -62,7 +62,7 @@ | ||||
|   other: grad * -self * ((self * self + other * other).reciprocal()) | ||||
|  | ||||
| - name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) | ||||
|   self: grad * beta | ||||
|   self: maybe_multiply(grad, beta) | ||||
|   batch1: grad.bmm(batch2.transpose(1, 2)) * alpha | ||||
|   batch2: batch1.transpose(1, 2).bmm(grad) * alpha | ||||
|  | ||||
| @ -108,8 +108,8 @@ | ||||
|   self: grad.diag(diagonal) | ||||
|  | ||||
| - name: dist(Tensor self, Tensor other, Scalar p=2) | ||||
|   self: norm_backward(grad, self - other, p) | ||||
|   other: -norm_backward(grad, self - other, p) | ||||
|   self: norm_backward(grad, self - other, p, result) | ||||
|   other: -norm_backward(grad, self - other, p, result) | ||||
|  | ||||
| - name: div(Tensor self, Scalar other) | ||||
|   self: grad / other | ||||
| @ -149,7 +149,8 @@ | ||||
|  | ||||
| - name: eye  # fallthrough | ||||
|  | ||||
| - name: fill(Tensor self, Scalar value)  # FIXME | ||||
| - name: fill(Tensor self, Scalar value) | ||||
|   self: zeros_like(grad) | ||||
|  | ||||
| - name: floor(Tensor self) | ||||
|   self: zeros_like(grad) | ||||
| @ -217,7 +218,6 @@ | ||||
|  | ||||
| - name: index_select(Tensor self, int64_t dim, Tensor index) | ||||
|   self: grad.type().zeros(self.sizes()).index_add_(dim, index, grad) | ||||
|   __view__: True | ||||
|  | ||||
| - name: inverse(Tensor self) | ||||
|   self: -at::mm(output.t(), at::mm(grad, output.t())) | ||||
| @ -348,10 +348,10 @@ | ||||
|   self: zeros_like(grad) | ||||
|  | ||||
| - name: norm(Tensor self, Scalar p=2) | ||||
|   self: norm_backward(grad, self, p) | ||||
|   self: norm_backward(grad, self, p, result) | ||||
|  | ||||
| - name: norm(Tensor self, Scalar p, int64_t dim, bool keepdim=False) | ||||
|   self: norm_backward(grad, self, p, dim, keepdim) | ||||
|   self: norm_backward(grad, self, p, destination, dim, keepdim) | ||||
|  | ||||
| - name: numel  # fallthrough | ||||
| - name: ones  # fallthrough | ||||
| @ -395,7 +395,7 @@ | ||||
|   self: not_implemented("pstrf") | ||||
|  | ||||
| - name: put(Tensor self, Tensor index, Tensor source, bool accumulate) | ||||
|   self: zeros_like(self).put_(index, source, accumulate) | ||||
|   self: grad.clone().put_(index, zeros_like(source), accumulate) | ||||
|   source: grad.take(index) | ||||
|  | ||||
| - name: qr(Tensor self) | ||||
| @ -468,7 +468,7 @@ | ||||
|   __view__: True | ||||
|  | ||||
| - name: squeeze(Tensor self, int64_t dim) | ||||
|   self: maybe_unsqueeze(grad, dim, self.size(dim) == 1) | ||||
|   self: maybe_unsqueeze(grad, dim, self.size(dim) == 1 && self.sizes().size() != 1) | ||||
|   __view__: True | ||||
|  | ||||
| - name: std | ||||
| @ -563,9 +563,9 @@ | ||||
|   grad_output: avg_pool3d(grad, kernel_size, stride, padding, ceil_mode, count_include_pad) | ||||
|   input: zeros_like(input) | ||||
|  | ||||
| - name: elu_backward(Tensor grad_output, Tensor input, Scalar alpha, bool inplace, Tensor output) | ||||
|   grad_output: elu_backward(grad, input, alpha, inplace, output) | ||||
|   input: grad * grad_input * (input < 0).toType(grad.type()) | ||||
| - name: elu_backward(Tensor grad_output, Scalar alpha, Tensor output) | ||||
|   grad_output: elu_backward(grad, alpha, output) | ||||
|   output: grad * grad_output * (output < 0).toType(grad.type()) | ||||
|  | ||||
| - name: glu_backward(Tensor grad_output, Tensor input, int64_t dim) | ||||
|   grad_output: glu_double_backward_grad_output(grad, input, dim) | ||||
| @ -575,11 +575,12 @@ | ||||
|   grad_output: hardshrink_backward(grad, input, lambd) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: hardtanh_backward(Tensor grad_output, Tensor input, Scalar min_val, Scalar max_val, bool inplace) | ||||
|   grad_output: hardtanh_backward(grad, input, min_val, max_val, false) | ||||
| - name: hardtanh_backward(Tensor grad_output, Tensor input, Scalar min_val, Scalar max_val) | ||||
|   grad_output: hardtanh_backward(grad, input, min_val, max_val) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: kl_div_backward(Tensor input, Tensor target, bool size_average) | ||||
| - name: kl_div_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce) | ||||
|   grad_output: kl_div_double_backward_grad_output(grad, input, target, size_average, reduce) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: l1_loss_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce) | ||||
| @ -594,8 +595,8 @@ | ||||
|   grad_output: grad - (grad * output.exp()).sum(dim, true) | ||||
|   input: log_softmax_double_backward(grad, grad_output, dim, output) | ||||
|  | ||||
| - name: leaky_relu_backward(Tensor grad_output, Tensor input, Scalar negative_slope, bool inplace) | ||||
|   grad_output: leaky_relu_backward(grad, input, negative_slope, false) | ||||
| - name: leaky_relu_backward(Tensor grad_output, Tensor input, Scalar negative_slope) | ||||
|   grad_output: leaky_relu_backward(grad, input, negative_slope) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: max_pool2d_backward(Tensor grad_output, Tensor input, IntList kernel_size, IntList stride, IntList padding, IntList dilation, bool ceil_mode, Tensor indices) | ||||
| @ -623,8 +624,8 @@ | ||||
|   input: zeros_like(input) | ||||
|   weight: zeros_like(weight) | ||||
|  | ||||
| - name: rrelu_backward(Tensor grad_output, Tensor input, Scalar lower, Scalar upper, bool training, bool inplace, Tensor noise) | ||||
|   grad_output: rrelu_backward(grad, input, lower, upper, training, false, noise) | ||||
| - name: rrelu_backward(Tensor grad_output, Tensor input, Scalar lower, Scalar upper, bool training, Tensor noise) | ||||
|   grad_output: rrelu_backward(grad, input, lower, upper, training, noise) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: smooth_l1_loss_backward(Tensor grad_output, Tensor input, Tensor target, bool size_average, bool reduce) | ||||
| @ -646,8 +647,8 @@ | ||||
|   grad_output: softshrink_backward(grad, input, lambd) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: threshold_backward(Tensor grad_output, Tensor input, Scalar threshold, Scalar value, bool inplace) | ||||
|   grad_output: threshold_backward(grad, input, threshold, value, false) | ||||
| - name: threshold_backward(Tensor grad_output, Tensor input, Scalar threshold, Scalar value) | ||||
|   grad_output: threshold_backward(grad, input, threshold, value) | ||||
|   input: zeros_like(grad) | ||||
|  | ||||
| - name: _sigmoid_backward(Tensor grad_output, Tensor output) | ||||
|  | ||||
| @ -49,6 +49,16 @@ PY_VARIABLE_METHOD_DEF = CodeTemplate("""\ | ||||
| UNPACK_SELF = "auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;" | ||||
|  | ||||
|  | ||||
| # XXX: if you got here because of an assertion failure, it doesn't mean | ||||
| # it's enough to just extend the list here. Before you do this, make sure | ||||
| # to add an appropriate wrap() overload in torch/csrc/autograd/utils/wrap_outputs.h. | ||||
| SUPPORTED_RETURN_TYPES = { | ||||
|     'Tensor', 'std::tuple<Tensor,Tensor>', | ||||
|     'std::tuple<Tensor,Tensor,Tensor>', 'std::vector<Tensor>', | ||||
|     'Scalar', 'bool', 'int64_t', 'void*' | ||||
| } | ||||
|  | ||||
|  | ||||
| def create_python_bindings( | ||||
|         python_functions, py_methods, py_method_defs, py_method_dispatch, | ||||
|         is_class): | ||||
| @ -80,6 +90,9 @@ def create_python_bindings( | ||||
|  | ||||
|     def emit_dispatch(i, function): | ||||
|         env = {} | ||||
|         simple_return_type = function['return_type'].replace(' &', '') | ||||
|         assert simple_return_type in SUPPORTED_RETURN_TYPES, \ | ||||
|             function['name'] + ' returns unsupported type: ' + simple_return_type | ||||
|  | ||||
|         actuals = [] | ||||
|         formal_args = [] | ||||
|  | ||||
| @ -39,7 +39,11 @@ return baseType->${method_prefix}${api_name}(${unpacked_args});""") | ||||
|  | ||||
| METHOD_DEFINITION_FALLTHROUGH_VARIABLE = CodeTemplate("""\ | ||||
| ${unpack_args} | ||||
| return as_variable(baseType->${method_prefix}${api_name}(${unpacked_args}));""") | ||||
| auto flags = compute_flags({ ${args_with_derivatives} }); | ||||
| auto var = as_variable(baseType->${method_prefix}${api_name}(${unpacked_args})); | ||||
| var.is_volatile() = flags.is_volatile; | ||||
| return var; | ||||
| """) | ||||
|  | ||||
| METHOD_DEFINITION_FALLTHROUGH_INPLACE = CodeTemplate("""\ | ||||
| ${unpack_args} | ||||
| @ -67,6 +71,7 @@ FUNCTION_DEFINITION = CodeTemplate("""\ | ||||
| variable_list ${op}::apply(const variable_list& grads) { | ||||
|   variable_list grad_inputs{${num_inputs}}; | ||||
|   ${body} | ||||
|   ensure_no_aten_scalars(grad_inputs); | ||||
|   return grad_inputs; | ||||
| } | ||||
| """) | ||||
| @ -682,11 +687,6 @@ def create_variable_type(top_env, aten_declarations): | ||||
|         if declaration['return_type'] in FALLTHROUGH_RETURN_TYPES: | ||||
|             body.extend(METHOD_DEFINITION_FALLTHROUGH.substitute(combined).split('\n')) | ||||
|             return body | ||||
|         elif declaration['name'] in FALLTHROUGH_FUNCTIONS: | ||||
|             tmpl = (METHOD_DEFINITION_FALLTHROUGH_INPLACE if declaration['inplace'] | ||||
|                     else METHOD_DEFINITION_FALLTHROUGH_VARIABLE) | ||||
|             body.extend(tmpl.substitute(combined).split('\n')) | ||||
|             return body | ||||
|  | ||||
|         arguments = declaration['arguments'] | ||||
|         tensor_args = [arg for arg in arguments if arg['simple_type'] in {'Tensor', 'TensorList'}] | ||||
| @ -752,6 +752,12 @@ def create_variable_type(top_env, aten_declarations): | ||||
|         elif is_view: | ||||
|             env['version_counter'] = 'take_version_counter(ret, self);' | ||||
|  | ||||
|         if declaration['name'] in FALLTHROUGH_FUNCTIONS: | ||||
|             tmpl = (METHOD_DEFINITION_FALLTHROUGH_INPLACE if declaration['inplace'] | ||||
|                     else METHOD_DEFINITION_FALLTHROUGH_VARIABLE) | ||||
|             body.extend(tmpl.substitute(combined).split('\n')) | ||||
|             return body | ||||
|  | ||||
|         base_call = BASE_CALL.substitute(combined) | ||||
|         if not declaration['inplace']: | ||||
|             base_call = 'auto ret = as_variable({})'.format(base_call) | ||||
|  | ||||
| @ -34,41 +34,44 @@ Tensor maybe_multiply(const Tensor & t, const Scalar & s) { | ||||
|   } | ||||
| } | ||||
|  | ||||
| Tensor norm_backward(const Tensor & grad, const Tensor & self, const Scalar & p_) { | ||||
|   auto p = p_.toDouble(); | ||||
|   auto norm = self.norm(p_); | ||||
|  | ||||
|   if (norm.toDouble() == 0.0) { | ||||
|     // handle case at 0 where we return a subgradient containing 0 | ||||
|     return zeros_like(self); | ||||
| // Don't expose ATen scalars to Variable API, because they are not supported yet. | ||||
| void ensure_no_aten_scalars(variable_list &vars) { | ||||
|   for (auto& v : vars) { | ||||
|     if (v.defined() && v.dim() == 0) { | ||||
|       v.data().as_strided_({1}, {1}); | ||||
|     } | ||||
|  | ||||
|   if (p == 2.0) { | ||||
|     return self * (grad / norm); | ||||
|   } else { | ||||
|     auto pow_ = self.abs().pow(p - 2); | ||||
|     auto scale_v = grad / norm.toTensor().pow(p - 1); | ||||
|     return self * pow_ * scale_v; | ||||
|   } | ||||
| } | ||||
|  | ||||
| Tensor norm_backward(Tensor grad, const Tensor & self, const Scalar & p_, int64_t dim, bool keepdim) { | ||||
|   if (!keepdim && self.dim() > 1) { | ||||
|     grad = grad.unsqueeze(dim); | ||||
|   } | ||||
|   auto p = p_.toDouble(); | ||||
|   auto norm = self.norm(p, dim, true); | ||||
|   Tensor grad_input; | ||||
|   if (p == 2.0) { | ||||
|     grad_input = self * (grad / norm); | ||||
| Tensor norm_backward(const Tensor & grad, const Tensor & self, const Scalar & p_, const Tensor & norm) { | ||||
|   double p = p_.toDouble(); | ||||
|   Tensor self_scaled; | ||||
|   Tensor scale_v; | ||||
|   if (p == 0.0) { | ||||
|     return zeros_like(self); | ||||
|   } else if (p == 1.0) { | ||||
|     return self.sign() * grad; | ||||
|   } else if (p < 2.0) { | ||||
|     self_scaled = self.sign() * self.abs().pow(p - 1); | ||||
|     scale_v = grad / norm.pow(p - 1); | ||||
|   } else if (p == 2.0) { | ||||
|     self_scaled = self; | ||||
|     scale_v = grad / norm; | ||||
|   } else { | ||||
|     auto pow_ = self.abs().pow(p - 2); | ||||
|     auto scale_v = grad / norm.pow(p - 1); | ||||
|     grad_input = self * pow_ * scale_v; | ||||
|     self_scaled = self * self.abs().pow(p - 2); | ||||
|     scale_v = grad / norm.pow(p - 1); | ||||
|   } | ||||
|   // handle case at 0 where we return a subgradient containing 0 | ||||
|   grad_input.masked_fill_(norm == 0, 0); | ||||
|   return grad_input; | ||||
|   scale_v.masked_fill_(norm == 0, 0); | ||||
|   return self_scaled * scale_v; | ||||
| } | ||||
|  | ||||
| Tensor norm_backward(Tensor grad, const Tensor & self, const Scalar & p_, Tensor norm, int64_t dim, bool keepdim) { | ||||
|   if (!keepdim && self.dim() > 1) { | ||||
|     grad = grad.unsqueeze(dim); | ||||
|     norm = norm.unsqueeze(dim); | ||||
|   } | ||||
|   return norm_backward(grad, self, p_, norm); | ||||
| } | ||||
|  | ||||
| Tensor reduce_to(const Tensor & grad, IntList sizes) { | ||||
| @ -300,6 +303,16 @@ Tensor glu_double_backward_grad_output(const Tensor & grad, const Tensor & input | ||||
|   return tmp.narrow(dim, 0, sizes[dim]) + tmp.narrow(dim, sizes[dim], sizes[dim]); | ||||
| } | ||||
|  | ||||
| Tensor kl_div_double_backward_grad_output(const Tensor & grad, const Tensor & input, const Tensor & target, bool size_average, bool reduce) { | ||||
|   auto result = kl_div_backward(grad, input, target, size_average, false); | ||||
|   if (reduce && size_average) { | ||||
|     return result.mean().toTensor(); | ||||
|   } else if (reduce) { | ||||
|     return result.sum().toTensor(); | ||||
|   } | ||||
|   return result; | ||||
| } | ||||
|  | ||||
| Tensor log_sigmoid_double_backward(const Tensor & grad, const Tensor & input) { | ||||
|   auto z = input.sigmoid(); | ||||
|   return grad * (z - 1) * z; | ||||
|  | ||||
| @ -25,7 +25,7 @@ RUN curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-la | ||||
|      /opt/conda/bin/conda create -y --name pytorch-py$PYTHON_VERSION python=$PYTHON_VERSION numpy pyyaml scipy ipython mkl&& \ | ||||
|      /opt/conda/bin/conda clean -ya  | ||||
| ENV PATH /opt/conda/envs/pytorch-py$PYTHON_VERSION/bin:$PATH | ||||
| #RUN conda install --name pytorch-py$PYTHON_VERSION -c soumith magma-cuda80 | ||||
| RUN conda install --name pytorch-py$PYTHON_VERSION -c soumith magma-cuda90 | ||||
| # This must be done before pip so that requirements.txt is available | ||||
| WORKDIR /opt/pytorch | ||||
| COPY . . | ||||
|  | ||||
							
								
								
									
										31
									
								
								tools/pytorch.version
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								tools/pytorch.version
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,31 @@ | ||||
| { | ||||
|      global: | ||||
|          _TH*; | ||||
|          __TH*; | ||||
|          TH*; | ||||
|          *THP*; | ||||
|          *THCP*; | ||||
|          PyInit*; | ||||
|          init*; | ||||
|          state; | ||||
| 	 _ZGVZN2at*; | ||||
|          _ZN2at*; | ||||
| 	 _ZNK2at*Type*; | ||||
| 	 _ZNK2at*Tensor*; | ||||
| 	 _ZNK2at*Storage*; | ||||
| 	 _ZNK2at*Scalar*; | ||||
| 	 _ZNK2at*CUDA*; | ||||
| 	 *2at7Context*; | ||||
| 	 _ZTIN2at*; | ||||
| 	 _ZTIZN2at*; | ||||
| 	 _ZTSN2at*; | ||||
| 	 _ZTSPN2at*; | ||||
| 	 _ZTSZN2at*; | ||||
| 	 _ZTVN2at*; | ||||
| 	 _ZZN2at*; | ||||
| 	 _Z*torch*; | ||||
| 	 _Z*Tensor*; | ||||
| 	 _Z*tensor*; | ||||
|      local: | ||||
|          *; | ||||
|  }; | ||||
| @ -322,10 +322,10 @@ It may be of a different data type or reside on a different device. | ||||
|  | ||||
| Args: | ||||
|     src (Tensor): Source tensor to copy | ||||
|     async (bool): If True and this copy is between CPU and GPU, then the copy | ||||
|     async (bool): If ``True`` and this copy is between CPU and GPU, then the copy | ||||
|         may occur asynchronously with respect to the host. For other | ||||
|         copies, this argument has no effect. | ||||
|     broadcast (bool): If True, :attr:`src` will be broadcast to the shape of | ||||
|     broadcast (bool): If ``True``, :attr:`src` will be broadcast to the shape of | ||||
|         the underlying tensor. | ||||
| """) | ||||
|  | ||||
|  | ||||
| @ -1244,7 +1244,7 @@ Computes the eigenvalues and eigenvectors of a real square matrix. | ||||
| Args: | ||||
|     a (Tensor): A square matrix for which the eigenvalues and eigenvectors will | ||||
|                 be computed | ||||
|     eigenvectors (bool): `True` to compute both eigenvalues and eigenvectors. | ||||
|     eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors. | ||||
|                          Otherwise, only eigenvalues will be computed. | ||||
|     out (tuple, optional): Output tensors | ||||
|  | ||||
| @ -1287,7 +1287,7 @@ add_docstr(torch._C.equal, | ||||
|            """ | ||||
| equal(tensor1, tensor2) -> bool | ||||
|  | ||||
| True if two tensors have the same size and elements, False otherwise. | ||||
| ``True`` if two tensors have the same size and elements, ``False`` otherwise. | ||||
|  | ||||
| Example:: | ||||
|  | ||||
| @ -1843,7 +1843,7 @@ If :attr:`dim` is not given, the last dimension of the `input` is chosen. | ||||
| A tuple of `(values, indices)` is returned, where the `indices` is the indices | ||||
| of the kth-smallest element in the original `input` Tensor in dimension `dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, both the :attr:`values` and :attr:`indices` Tensors | ||||
| If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` Tensors | ||||
| are the same size as :attr:`input`, except in the dimension :attr:`dim` where | ||||
| they are of size 1. Otherwise, :attr:`dim` is squeezed | ||||
| (see :func:`torch.squeeze`), resulting in both the :attr:`values` and | ||||
| @ -2230,7 +2230,7 @@ Returns the maximum value of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. The second return value is the index location of each | ||||
| maximum value found (argmax). | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensors are of the same size | ||||
| If :attr:`keepdim` is ``True``, the output Tensors are of the same size | ||||
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting | ||||
| in the output Tensors having 1 fewer dimension than :attr:`input`. | ||||
| @ -2341,7 +2341,7 @@ Example:: | ||||
| Returns the mean value of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensor is of the same size | ||||
| If :attr:`keepdim` is ``True``, the output Tensor is of the same size | ||||
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the | ||||
| output Tensor having 1 fewer dimension. | ||||
| @ -2411,7 +2411,7 @@ as a `LongTensor`. | ||||
|  | ||||
| By default, :attr:`dim` is the last dimension of the :attr:`input` Tensor. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensors are of the same size | ||||
| If :attr:`keepdim` is ``True``, the output Tensors are of the same size | ||||
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in | ||||
| the outputs Tensor having 1 fewer dimension than :attr:`input`. | ||||
| @ -2486,7 +2486,7 @@ Returns the minimum value of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. The second return value is the index location of each | ||||
| minimum value found (argmin). | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensors are of the same size as | ||||
| If :attr:`keepdim` is ``True``, the output Tensors are of the same size as | ||||
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in | ||||
| the output Tensors having 1 fewer dimension than :attr:`input`. | ||||
| @ -2608,7 +2608,7 @@ as a `LongTensor`. | ||||
|  | ||||
| By default, :attr:`dim` is the last dimension of the :attr:`input` Tensor. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensors are of the same size as | ||||
| If :attr:`keepdim` is ``True``, the output Tensors are of the same size as | ||||
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting | ||||
| in the output Tensors having 1 fewer dimension than :attr:`input`. | ||||
| @ -2756,7 +2756,7 @@ If :attr:`input` is a vector, :attr:`out` is a vector of size `num_samples`. | ||||
| If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape | ||||
| `m \u00D7 n`. | ||||
|  | ||||
| If replacement is `True`, samples are drawn with replacement. | ||||
| If replacement is ``True``, samples are drawn with replacement. | ||||
|  | ||||
| If not, they are drawn without replacement, which means that when a | ||||
| sample index is drawn for a row, it cannot be drawn again for that row. | ||||
| @ -2945,7 +2945,7 @@ Example:: | ||||
| Returns the p-norm of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensor is of the same size as | ||||
| If :attr:`keepdim` is ``True``, the output Tensor is of the same size as | ||||
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting | ||||
| in the output Tensor having 1 fewer dimension than :attr:`input`. | ||||
| @ -3156,9 +3156,9 @@ potrf(a, upper, out=None) | ||||
|  | ||||
| Computes the Cholesky decomposition of a positive semidefinite | ||||
| matrix :attr:`a`: returns matrix `u` | ||||
| If `upper` is True or not provided, `u` is upper triangular | ||||
| If `upper` is ``True`` or not provided, `u` is upper triangular | ||||
| such that :math:`a = u^T u`. | ||||
| If `upper` is False, `u` is lower triangular | ||||
| If `upper` is ``False``, `u` is lower triangular | ||||
| such that :math:`a = u u^T`. | ||||
|  | ||||
| Args: | ||||
| @ -3201,9 +3201,9 @@ potri(u, upper, out=None) | ||||
|  | ||||
| Computes the inverse of a positive semidefinite matrix given its | ||||
| Cholesky factor :attr:`u`: returns matrix `inv` | ||||
| If `upper` is True or not provided, `u` is upper triangular | ||||
| If `upper` is ``True`` or not provided, `u` is upper triangular | ||||
| such that :math:`inv = (u^T u)^{-1}`. | ||||
| If `upper` is False, `u` is lower triangular | ||||
| If `upper` is ``False``, `u` is lower triangular | ||||
| such that :math:`inv = (u u^T)^{-1}`. | ||||
|  | ||||
| Args: | ||||
| @ -3248,9 +3248,9 @@ potrs(b, u, upper, out=None) | ||||
| Solves a linear system of equations with a positive semidefinite | ||||
| matrix to be inverted given its given a Cholesky factor | ||||
| matrix :attr:`u`: returns matrix `c` | ||||
| If `upper` is True or not provided, `u` is and upper triangular | ||||
| If `upper` is ``True`` or not provided, `u` is and upper triangular | ||||
| such that :math:`c = (u^T u)^{-1} b`. | ||||
| If `upper` is False, `u` is and lower triangular | ||||
| If `upper` is ``False``, `u` is and lower triangular | ||||
| such that :math:`c = (u u^T)^{-1} b`. | ||||
|  | ||||
| .. note:: `b` is always a 2D `Tensor`, use `b.unsqueeze(1)` to convert a vector. | ||||
| @ -3424,7 +3424,7 @@ Example:: | ||||
| Returns the product of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensor is of the same size as | ||||
| If :attr:`keepdim` is ``True``, the output Tensor is of the same size as | ||||
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting | ||||
| in the output Tensor having 1 fewer dimension than :attr:`input`. | ||||
| @ -3463,9 +3463,9 @@ pstrf(a, upper, out=None) | ||||
|  | ||||
| Computes the pivoted Cholesky decomposition of a positive semidefinite | ||||
| matrix :attr:`a`: returns matrices `u` and `piv`. | ||||
| If `upper` is True or not provided, `u` is and upper triangular | ||||
| If `upper` is ``True`` or not provided, `u` is and upper triangular | ||||
| such that :math:`a = p^T u^T u p`, with `p` the permutation given by `piv`. | ||||
| If `upper` is False, `u` is and lower triangular | ||||
| If `upper` is ``False``, `u` is and lower triangular | ||||
| such that :math:`a = p^T u u^T p`. | ||||
|  | ||||
| Args: | ||||
| @ -3691,7 +3691,7 @@ Example:: | ||||
|  | ||||
| add_docstr(torch._C.arange, | ||||
|            """ | ||||
| arange(start, end, step=1, out=None) -> Tensor | ||||
| arange(start=0, end, step=1, out=None) -> Tensor | ||||
|  | ||||
| Returns a 1D Tensor of size :math:`floor((end - start) / step)` with values | ||||
| from the interval ``[start, end)`` taken with step :attr:`step` starting | ||||
| @ -3705,6 +3705,15 @@ Args: | ||||
|  | ||||
| Example:: | ||||
|  | ||||
|     >>> torch.arange(5) | ||||
|  | ||||
|      0 | ||||
|      1 | ||||
|      2 | ||||
|      3 | ||||
|      4 | ||||
|     [torch.FloatTensor of size 5] | ||||
|  | ||||
|     >>> torch.arange(1, 4) | ||||
|  | ||||
|      1 | ||||
| @ -3989,7 +3998,7 @@ in ascending order by value. | ||||
|  | ||||
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. | ||||
|  | ||||
| If :attr:`descending` is `True` then the elements are sorted in descending | ||||
| If :attr:`descending` is ``True`` then the elements are sorted in descending | ||||
| order by value. | ||||
|  | ||||
| A tuple of (sorted_tensor, sorted_indices) is returned, where the | ||||
| @ -4117,7 +4126,7 @@ add_docstr(torch._C.std, | ||||
|  | ||||
| Returns the standard-deviation of all elements in the :attr:`input` Tensor. | ||||
|  | ||||
| If :attr:`unbiased` is false, then the standard-deviation will be calculated via | ||||
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated via | ||||
| the biased estimator. Otherwise, Bessel's correction will be used. | ||||
|  | ||||
| Args: | ||||
| @ -4141,12 +4150,12 @@ Example:: | ||||
| Returns the standard-deviation of each row of the :attr:`input` Tensor in the | ||||
| given dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensor is of the same size as | ||||
| If :attr:`keepdim` is ``True``, the output Tensor is of the same size as | ||||
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting | ||||
| in the output Tensor having 1 fewer dimension than :attr:`input`. | ||||
|  | ||||
| If :attr:`unbiased` is false, then the standard-deviation will be calculated via | ||||
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated via | ||||
| the biased estimator. Otherwise, Bessel's correction will be used. | ||||
|  | ||||
| Args: | ||||
| @ -4203,7 +4212,7 @@ Example:: | ||||
| Returns the sum of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensor is of the same size | ||||
| If :attr:`keepdim` is ``True``, the output Tensor is of the same size | ||||
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in | ||||
| the output Tensor having 1 fewer dimension than :attr:`input`. | ||||
| @ -4325,13 +4334,13 @@ such that `input = V diag(e) V'` | ||||
| The boolean argument :attr:`eigenvectors` defines computation of | ||||
| eigenvectors or eigenvalues only. | ||||
|  | ||||
| If it is `False`, only eigenvalues are computed. If it is `True`, | ||||
| If it is ``False``, only eigenvalues are computed. If it is ``True``, | ||||
| both eigenvalues and eigenvectors are computed. | ||||
|  | ||||
| Since the input matrix `input` is supposed to be symmetric, | ||||
| only the upper triangular portion is used by default. | ||||
|  | ||||
| If :attr:`upper` is `False`, then lower triangular portion is used. | ||||
| If :attr:`upper` is ``False``, then lower triangular portion is used. | ||||
|  | ||||
| Note: Irrespective of the original strides, the returned matrix `V` will | ||||
| be transposed, i.e. with strides `(1, m)` instead of `(m, 1)`. | ||||
| @ -4493,12 +4502,12 @@ a given dimension. | ||||
|  | ||||
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. | ||||
|  | ||||
| If :attr:`largest` is `False` then the `k` smallest elements are returned. | ||||
| If :attr:`largest` is ``False`` then the `k` smallest elements are returned. | ||||
|  | ||||
| A tuple of `(values, indices)` is returned, where the `indices` are the indices | ||||
| of the elements in the original `input` Tensor. | ||||
|  | ||||
| The boolean option :attr:`sorted` if `True`, will make sure that the returned | ||||
| The boolean option :attr:`sorted` if ``True``, will make sure that the returned | ||||
| `k` elements are themselves sorted | ||||
|  | ||||
| Args: | ||||
| @ -4787,7 +4796,7 @@ add_docstr(torch._C.var, | ||||
|  | ||||
| Returns the variance of all elements in the :attr:`input` Tensor. | ||||
|  | ||||
| If :attr:`unbiased` is false, then the variance will be calculated via the | ||||
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the | ||||
| biased estimator. Otherwise, Bessel's correction will be used. | ||||
|  | ||||
| Args: | ||||
| @ -4811,12 +4820,12 @@ Example:: | ||||
| Returns the variance of each row of the :attr:`input` Tensor in the given | ||||
| dimension :attr:`dim`. | ||||
|  | ||||
| If :attr:`keepdim` is true, the output Tensors are of the same size | ||||
| If :attr:`keepdim` is ``True``, the output Tensors are of the same size | ||||
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. | ||||
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in | ||||
| the outputs Tensor having 1 fewer dimension than :attr:`input`. | ||||
|  | ||||
| If :attr:`unbiased` is false, then the variance will be calculated via the | ||||
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the | ||||
| biased estimator. Otherwise, Bessel's correction will be used. | ||||
|  | ||||
| Args: | ||||
|  | ||||
| @ -12,7 +12,7 @@ def _type(self, new_type=None, async=False): | ||||
|  | ||||
|     Args: | ||||
|         new_type (type or string): The desired type | ||||
|         async (bool): If True, and the source is in pinned memory and | ||||
|         async (bool): If ``True``, and the source is in pinned memory and | ||||
|                       destination is on the GPU or vice versa, the copy is | ||||
|                       performed asynchronously with respect to the host. | ||||
|                       Otherwise, the argument has no effect. | ||||
| @ -46,7 +46,7 @@ def _cuda(self, device=None, async=False): | ||||
|  | ||||
|     Args: | ||||
|         device (int): The destination GPU id. Defaults to the current device. | ||||
|         async (bool): If True and the source is in pinned memory, the copy will | ||||
|         async (bool): If ``True`` and the source is in pinned memory, the copy will | ||||
|                       be asynchronous with respect to the host. Otherwise, the | ||||
|                       argument has no effect. | ||||
|     """ | ||||
|  | ||||
| @ -63,16 +63,16 @@ def backward(variables, grad_variables=None, retain_graph=None, create_graph=Non | ||||
|         grad_variables (sequence of (Tensor, Variable or None)): Gradients w.r.t. | ||||
|             each element of corresponding variables.  Any tensors will be | ||||
|             automatically converted to Variables that are volatile unless | ||||
|             ``create_graph`` is True.  None values can be specified for scalar | ||||
|             ``create_graph`` is ``True``.  None values can be specified for scalar | ||||
|             Variables or ones that don't require grad. If a None value would | ||||
|             be acceptable for all grad_variables, then this argument is optional. | ||||
|         retain_graph (bool, optional): If False, the graph used to compute the grad | ||||
|             will be freed. Note that in nearly all cases setting this option to True | ||||
|         retain_graph (bool, optional): If ``False``, the graph used to compute the grad | ||||
|             will be freed. Note that in nearly all cases setting this option to ``True`` | ||||
|             is not needed and often can be worked around in a much more efficient | ||||
|             way. Defaults to the value of ``create_graph``. | ||||
|         create_graph (bool, optional): If true, graph of the derivative will | ||||
|         create_graph (bool, optional): If ``True``, graph of the derivative will | ||||
|             be constructed, allowing to compute higher order derivative products. | ||||
|             Defaults to False, unless ``grad_variables`` contains at least one | ||||
|             Defaults to ``False``, unless ``grad_variables`` contains at least one | ||||
|             non-volatile Variable. | ||||
|     """ | ||||
|     variables = (variables,) if isinstance(variables, Variable) else tuple(variables) | ||||
| @ -109,8 +109,8 @@ def grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=Non | ||||
|     Gradients can be given as Tensors when one doesn't need the graph of the | ||||
|     derivative, or as Variables, in which case the graph will be created. | ||||
|  | ||||
|     If ``only_inputs`` is True, the function will only return a list of gradients | ||||
|     w.r.t the specified inputs. If it's False, then gradient w.r.t. all remaining | ||||
|     If ``only_inputs`` is ``True``, the function will only return a list of gradients | ||||
|     w.r.t the specified inputs. If it's ``False``, then gradient w.r.t. all remaining | ||||
|     leaves will still be computed, and will be accumulated into their ``.grad`` | ||||
|     attribute. | ||||
|  | ||||
| @ -120,24 +120,24 @@ def grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=Non | ||||
|             returned (and not accumulated into ``.grad``). | ||||
|         grad_outputs (sequence of Tensor or Variable): Gradients w.r.t. each output. | ||||
|             Any tensors will be automatically converted to Variables that are | ||||
|             volatile unless ``create_graph`` is True.  None values can be | ||||
|             volatile unless ``create_graph`` is ``True``. None values can be | ||||
|             specified for scalar Variables or ones that don't require grad. | ||||
|             If a None value would be acceptable for all grad_variables, then | ||||
|             this argument is optional. | ||||
|         retain_graph (bool, optional): If False, the graph used to compute the grad | ||||
|             will be freed. Note that in nearly all cases setting this option to True | ||||
|         retain_graph (bool, optional): If ``False``, the graph used to compute the grad | ||||
|             will be freed. Note that in nearly all cases setting this option to ``True`` | ||||
|             is not needed and often can be worked around in a much more efficient | ||||
|             way. Defaults to the value of ``create_graph``. | ||||
|         create_graph (bool, optional): If True, graph of the derivative will | ||||
|         create_graph (bool, optional): If ``True``, graph of the derivative will | ||||
|             be constructed, allowing to compute higher order derivative products. | ||||
|             Defaults to False, unless ``grad_variables`` contains at least one | ||||
|             Defaults to ``False``, unless ``grad_variables`` contains at least one | ||||
|             non-volatile Variable. | ||||
|         only_inputs (bool, optional): If True, gradient w.r.t. leaves that are | ||||
|         only_inputs (bool, optional): If ``True``, gradient w.r.t. leaves that are | ||||
|             part of the graph, but don't appear in ``inputs`` won't be computed | ||||
|             and accumulated. Defaults to True. | ||||
|         allow_unused (bool, optional): If False, specifying inputs that were not | ||||
|             and accumulated. Defaults to ``True``. | ||||
|         allow_unused (bool, optional): If ``False``, specifying inputs that were not | ||||
|             used when computing outputs (and therefore their grad is always zero) | ||||
|             is an error. Default: False. | ||||
|             is an error. Defaults to ``False``. | ||||
|     """ | ||||
|  | ||||
|     outputs = (outputs,) if isinstance(outputs, Variable) else tuple(outputs) | ||||
|  | ||||
| @ -2,7 +2,7 @@ import torch | ||||
| from ..function import Function | ||||
|  | ||||
|  | ||||
| class Multinomial(Function): | ||||
| class Categorical(Function): | ||||
|     @staticmethod | ||||
|     def forward(ctx, probs, num_samples, with_replacement): | ||||
|         samples = probs.multinomial(num_samples, with_replacement) | ||||
|  | ||||
| @ -57,15 +57,14 @@ def maybe_unexpand_or_view(variable, old_size): | ||||
| #          The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ... | ||||
| def prepare_onnx_paddings(dim, pad): | ||||
|     assert isinstance(dim, int) | ||||
|     # The order of paddings is dim_0_begin, dim_0_end, dim_1_begin, ... , dim_n_end. | ||||
|     # The desired order of paddings is | ||||
|     # dim_0_begin, dim_1_begin, ... , dim_0_end, ..., dim_n_end. | ||||
|     # n is the dimension of input. | ||||
|     assert len(pad) <= dim * 2 | ||||
|     paddings = [] | ||||
|     # pad is guaranteed to have even elements. | ||||
|     for i, j in zip(pad[0::2], pad[1::2]): | ||||
|         paddings = [i, j] + paddings | ||||
|     while len(paddings) < 2 * dim: | ||||
|         paddings = [0, 0] + paddings | ||||
|     # assume zero-dimensions in the beginning | ||||
|     paddings = list(pad[:]) + [0] * (dim * 2 - len(pad)) | ||||
|     # reverse order and collate first beginnings and then ends | ||||
|     paddings = paddings[-2::-2] + paddings[-1::-2] | ||||
|     assert len(paddings) == dim * 2 | ||||
|     return paddings | ||||
|  | ||||
|  | ||||
| @ -203,7 +203,7 @@ def gradcheck(func, inputs, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True | ||||
|     return True | ||||
|  | ||||
|  | ||||
| def gradgradcheck(func, inputs, grad_outputs, eps=1e-6, atol=1e-5, rtol=1e-3): | ||||
| def gradgradcheck(func, inputs, grad_outputs=None, eps=1e-6, atol=1e-5, rtol=1e-3): | ||||
|     """Check gradients of gradients computed via small finite differences | ||||
|        against analytical gradients | ||||
|     This function checks that backpropagating through the gradients computed | ||||
| @ -216,17 +216,27 @@ def gradgradcheck(func, inputs, grad_outputs, eps=1e-6, atol=1e-5, rtol=1e-3): | ||||
|     is true for all elements of analytical gradient a and numerical gradient n. | ||||
|  | ||||
|     Args: | ||||
|         func: Python function that takes Variable inputs and returns | ||||
|         func (function): Python function that takes Variable inputs and returns | ||||
|             a tuple of Variables | ||||
|         inputs: tuple of Variables | ||||
|         grad_outputs: tuple of Variables | ||||
|         eps: perturbation for finite differences | ||||
|         atol: absolute tolerance | ||||
|         rtol: relative tolerance | ||||
|         inputs (tuple of Variable): inputs to the function | ||||
|         grad_outputs (tuple of Variable, optional): The gradients with respect to | ||||
|             the function's outputs. | ||||
|         eps (float, optional): perturbation for finite differences | ||||
|         atol (float, optional): absolute tolerance | ||||
|         rtol (float, optional): relative tolerance | ||||
|  | ||||
|     Returns: | ||||
|         True if all differences satisfy allclose condition | ||||
|         True if all differences satisfy allclose condition. Raises an exception | ||||
|         otherwise. | ||||
|     """ | ||||
|     if grad_outputs is None: | ||||
|         # If grad_outputs is not specified, create random variables of the same | ||||
|         # shape, type, and device as the outputs | ||||
|         def randn_like(x): | ||||
|             return Variable(x.data.new(x.size()).normal_(), requires_grad=True) | ||||
|         outputs = _as_tuple(func(*inputs)) | ||||
|         grad_outputs = [randn_like(x) for x in outputs] | ||||
|  | ||||
|     def new_func(*input_args): | ||||
|         input_args = input_args[:-len(grad_outputs)] | ||||
|         outputs = _differentiable_outputs(func(*input_args)) | ||||
|  | ||||
| @ -17,6 +17,17 @@ class EventList(list): | ||||
|         return self.table() | ||||
|  | ||||
|     def table(self, sort_by=None): | ||||
|         """Prints an EventList as a nicely formatted table. | ||||
|  | ||||
|         Arguments: | ||||
|             sort_by (str, optional): Attribute used to sort entries. By default | ||||
|                 they are printed in the same order as they were registered. | ||||
|                 Valid keys include: ``cpu_time``, ``cuda_time``, ``cpu_time_total``, | ||||
|                 ``cuda_time_total``, ``count``. | ||||
|  | ||||
|         Returns: | ||||
|             A string containing the table. | ||||
|         """ | ||||
|         return build_table(self, sort_by) | ||||
|  | ||||
|     def export_chrome_trace(self, path): | ||||
| @ -72,7 +83,7 @@ class profile(object): | ||||
|  | ||||
|     Arguments: | ||||
|         enabled (bool, optional): Setting this to False makes this context manager a no-op. | ||||
|             Default: True. | ||||
|             Default: ``True``. | ||||
|  | ||||
|     .. warning: | ||||
|         This context managers should not be called recursively, i.e. at most one | ||||
| @ -131,6 +142,12 @@ class profile(object): | ||||
|             return '<unfinished torch.autograd.profile>' | ||||
|         return str(self.function_events) | ||||
|  | ||||
|     def table(self, sort_by=None): | ||||
|         if self.function_events is None: | ||||
|             raise RuntimeError("can't export a trace that didn't finish running") | ||||
|         return self.function_events.table(sort_by) | ||||
|     table.__doc__ = EventList.table.__doc__ | ||||
|  | ||||
|     def export_chrome_trace(self, path): | ||||
|         if self.function_events is None: | ||||
|             raise RuntimeError("can't export a trace that didn't finish running") | ||||
| @ -153,18 +170,24 @@ class profile(object): | ||||
| class emit_nvtx(object): | ||||
|     """Context manager that makes every autograd operation emit an NVTX range. | ||||
|  | ||||
|     It is useful when running the program under nvprof. Unfortunately, there's no | ||||
|     way to force nvprof to flush the data it collected to disk, so for CUDA profiling | ||||
|     one has to use this context manager to annotate nvprof traces, and then use | ||||
|     :func:`torch.autograd.profiler.open_nvtx` to analyze the checkpoint. | ||||
|     It is useful when running the program under nvprof:: | ||||
|  | ||||
|         nvprof --profile-from-start off -o trace_name.prof -- <regular command here> | ||||
|  | ||||
|     Unfortunately, there's no way to force nvprof to flush the data it collected | ||||
|     to disk, so for CUDA profiling one has to use this context manager to annotate | ||||
|     nvprof traces and wait for the process to exit before inspecting them. | ||||
|     Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or | ||||
|     :func:`torch.autograd.profiler.load_nvprof` can load the results for inspection | ||||
|     e.g. in Python REPL. | ||||
|  | ||||
|     .. warning: | ||||
|         This context managers should not be called recursively, i.e. at most one | ||||
|         This context manager should not be called recursively, i.e. at most one | ||||
|         instance should be enabled at any given time. | ||||
|  | ||||
|     Arguments: | ||||
|         enabled (bool, optional): Setting this to False makes this context manager a no-op. | ||||
|             Default: True. | ||||
|             Default: ``True``. | ||||
|  | ||||
|     Example: | ||||
|         >>> with torch.cuda.profiler.profile(): | ||||
| @ -291,7 +314,7 @@ def demangle(name): | ||||
|     try: | ||||
|         with open(os.devnull, 'w') as devnull: | ||||
|             return subprocess.check_output(['c++filt', '-n', name], stderr=devnull).rstrip().decode("ascii") | ||||
|     except subprocess.CalledProcessError: | ||||
|     except (subprocess.CalledProcessError, OSError, FileNotFoundError) as e: | ||||
|         return name | ||||
|  | ||||
|  | ||||
|  | ||||
| @ -154,14 +154,14 @@ class Variable(_C._VariableBase): | ||||
|                 None values can be specified for scalar Variables or ones that | ||||
|                 don't require grad. If a None value would be acceptable then | ||||
|                 this argument is optional. | ||||
|             retain_graph (bool, optional): If False, the graph used to compute | ||||
|             retain_graph (bool, optional): If ``False``, the graph used to compute | ||||
|                 the grads will be freed. Note that in nearly all cases setting | ||||
|                 this option to True is not needed and often can be worked around | ||||
|                 in a much more efficient way. Defaults to the value of | ||||
|                 ``create_graph``. | ||||
|             create_graph (bool, optional): If true, graph of the derivative will | ||||
|             create_graph (bool, optional): If ``True``, graph of the derivative will | ||||
|                 be constructed, allowing to compute higher order derivative | ||||
|                 products. Defaults to False, unless ``gradient`` is a volatile | ||||
|                 products. Defaults to ``False``, unless ``gradient`` is a volatile | ||||
|                 Variable. | ||||
|         """ | ||||
|         torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables) | ||||
| @ -205,20 +205,31 @@ class Variable(_C._VariableBase): | ||||
|         return handle | ||||
|  | ||||
|     def reinforce(self, reward): | ||||
|         """Registers a reward obtained as a result of a stochastic process. | ||||
|         def trim(str): | ||||
|             return '\n'.join([line.strip() for line in str.split('\n')]) | ||||
|  | ||||
|         Differentiating stochastic nodes requires providing them with reward | ||||
|         value. If your graph contains any stochastic operations, you should | ||||
|         call this function on their outputs. Otherwise an error will be raised. | ||||
|         raise RuntimeError(trim(r"""reinforce() was removed. | ||||
|             Use torch.distributions instead. | ||||
|             See http://pytorch.org/docs/master/distributions.html | ||||
|  | ||||
|         Parameters: | ||||
|             reward(Tensor): Tensor with per-element rewards. It has to match | ||||
|                 the device location and shape of Variable's data. | ||||
|         """ | ||||
|         if not isinstance(self.grad_fn, StochasticFunction): | ||||
|             raise RuntimeError("reinforce() can be only called on outputs " | ||||
|                                "of stochastic functions") | ||||
|         self.grad_fn._reinforce(reward) | ||||
|             Instead of: | ||||
|  | ||||
|             probs = policy_network(state) | ||||
|             action = probs.multinomial() | ||||
|             next_state, reward = env.step(action) | ||||
|             action.reinforce(reward) | ||||
|             action.backward() | ||||
|  | ||||
|             Use: | ||||
|  | ||||
|             probs = policy_network(state) | ||||
|             # NOTE: categorical is equivalent to what used to be called multinomial | ||||
|             m = torch.distributions.Categorical(probs) | ||||
|             action = m.sample() | ||||
|             next_state, reward = env.step(action) | ||||
|             loss = -m.log_prob(action) * reward | ||||
|             loss.backward() | ||||
|         """)) | ||||
|  | ||||
|     def detach(self): | ||||
|         """Returns a new Variable, detached from the current graph. | ||||
| @ -422,7 +433,7 @@ class Variable(_C._VariableBase): | ||||
|         return self.expand(tensor.size()) | ||||
|  | ||||
|     def multinomial(self, num_samples=1, replacement=False): | ||||
|         return Multinomial.apply(self, num_samples, replacement) | ||||
|         return Categorical.apply(self, num_samples, replacement) | ||||
|  | ||||
|     def bernoulli(self): | ||||
|         return Bernoulli.apply(self) | ||||
|  | ||||
| @ -257,7 +257,8 @@ class RNNDescriptor(object): | ||||
|                 CUDNN_RNN_ALGO_STANDARD, | ||||
|                 datatype | ||||
|             )) | ||||
|         if version() >= 7000 and int(cuda[0]) >= 9: | ||||
|             if version() >= 7000 and int(cuda[0]) >= 9 and ( | ||||
|                     torch.cuda.get_device_capability(torch.cuda.current_device())[0] >= 7): | ||||
|                 lib.cudnnSetRNNMatrixMathType(self, CUDNN_DEFAULT_MATH) | ||||
|                 if datatype == CUDNN_DATA_HALF: | ||||
|                     lib.cudnnSetRNNMatrixMathType(self, CUDNN_TENSOR_OP_MATH) | ||||
|  | ||||
| @ -1,5 +1,8 @@ | ||||
| #include <Python.h> | ||||
|  | ||||
| #include <utility> | ||||
| #include <vector> | ||||
|  | ||||
| #include "THP.h" | ||||
|  | ||||
| PyObject *THPException_FatalError; | ||||
| @ -11,3 +14,61 @@ bool THPException_init(PyObject *module) | ||||
|   ASSERT_TRUE(PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0); | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| namespace torch { | ||||
|  | ||||
| void replaceAll(std::string & str, | ||||
|     const std::string & old_str, | ||||
|     const std::string & new_str) { | ||||
|   std::string::size_type pos = 0u; | ||||
|   while ((pos = str.find(old_str, pos)) != std::string::npos){ | ||||
|      str.replace(pos, old_str.length(), new_str); | ||||
|   } | ||||
| } | ||||
|  | ||||
| std::string processErrorMsg(std::string str) { | ||||
|  | ||||
|   // Translate Aten types to their respective pytorch ones | ||||
|   std::vector<std::pair<std::string, std::string>> changes { | ||||
|     {"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"}, | ||||
|     {"SparseCUDACharType", "torch.cuda.sparse.CharTensor"}, | ||||
|     {"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"}, | ||||
|     {"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"}, | ||||
|     {"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"}, | ||||
|     {"SparseCUDALongType", "torch.cuda.sparse.LongTensor"}, | ||||
|     {"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"}, | ||||
|     {"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"}, | ||||
|     {"SparseCPUByteType", "torch.sparse.ByteTensor"}, | ||||
|     {"SparseCPUCharType", "torch.sparse.CharTensor"}, | ||||
|     {"SparseCPUDoubleType", "torch.sparse.DoubleTensor"}, | ||||
|     {"SparseCPUFloatType", "torch.sparse.FloatTensor"}, | ||||
|     {"SparseCPUIntType", "torch.sparse.IntTensor"}, | ||||
|     {"SparseCPULongType", "torch.sparse.LongTensor"}, | ||||
|     {"SparseCPUShortType", "torch.sparse.ShortTensor"}, | ||||
|     {"SparseCPUHalfType", "torch.sparse.HalfTensor"}, | ||||
|     {"CUDAByteType", "torch.cuda.ByteTensor"}, | ||||
|     {"CUDACharType", "torch.cuda.CharTensor"}, | ||||
|     {"CUDADoubleType", "torch.cuda.DoubleTensor"}, | ||||
|     {"CUDAFloatType", "torch.cuda.FloatTensor"}, | ||||
|     {"CUDAIntType", "torch.cuda.IntTensor"}, | ||||
|     {"CUDALongType", "torch.cuda.LongTensor"}, | ||||
|     {"CUDAShortType", "torch.cuda.ShortTensor"}, | ||||
|     {"CUDAHalfType", "torch.cuda.HalfTensor"}, | ||||
|     {"CPUByteType", "torch.ByteTensor"}, | ||||
|     {"CPUCharType", "torch.CharTensor"}, | ||||
|     {"CPUDoubleType", "torch.DoubleTensor"}, | ||||
|     {"CPUFloatType", "torch.FloatTensor"}, | ||||
|     {"CPUIntType", "torch.IntTensor"}, | ||||
|     {"CPULongType", "torch.LongTensor"}, | ||||
|     {"CPUShortType", "torch.ShortTensor"}, | ||||
|     {"CPUHalfType", "torch.HalfTensor"}, | ||||
|   }; | ||||
|  | ||||
|   for (const auto & it : changes) { | ||||
|     replaceAll(str, it.first, it.second); | ||||
|   } | ||||
|  | ||||
|   return str; | ||||
| } | ||||
| } | ||||
|  | ||||
|  | ||||
| @ -14,7 +14,8 @@ | ||||
|   } catch (python_error &e) {                                                  \ | ||||
|     return retval;                                                             \ | ||||
|   } catch (std::exception &e) {                                                \ | ||||
|     PyErr_SetString(PyExc_RuntimeError, e.what());                             \ | ||||
|     auto msg = torch::processErrorMsg(e.what());                               \ | ||||
|     PyErr_SetString(PyExc_RuntimeError, msg.c_str());                          \ | ||||
|     return retval;                                                             \ | ||||
|   } | ||||
|  | ||||
| @ -68,4 +69,8 @@ struct python_error : public std::exception { | ||||
| bool THPException_init(PyObject *module); | ||||
| #endif | ||||
|  | ||||
| namespace torch { | ||||
| std::string processErrorMsg(std::string str); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| #define __STDC_FORMAT_MACROS | ||||
|  | ||||
| #include <Python.h> | ||||
| #include <structmember.h> | ||||
|  | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| #define __STDC_FORMAT_MACROS | ||||
|  | ||||
| #include <Python.h> | ||||
| #include <structmember.h> | ||||
|  | ||||
|  | ||||
| @ -164,7 +164,7 @@ auto BatchNormBackward::apply(const variable_list& grad_outputs) -> variable_lis | ||||
|   // Add saved variables used out of the pure autograd to inputs | ||||
|   variable_list all_inputs(grad_outputs); | ||||
|   all_inputs.push_back(input_var); | ||||
|   if (weight.get()) { | ||||
|   if (weight.defined()) { | ||||
|     all_inputs.push_back(weight_var); | ||||
|   } | ||||
|   auto outputs =  as_tensor_list(std::move(grad_input), | ||||
|  | ||||
| @ -727,7 +727,18 @@ auto ConvBackwardBackward::apply(const variable_list& grad_grad_inputs) -> varia | ||||
|       gI = apply_fn<Transpose>(0, 1)(gIt); | ||||
|     } | ||||
|   } | ||||
|   return {ggO, gI, gW}; | ||||
|  | ||||
|   if (should_compute_output(0) && !ggO.defined()) ggO = at::zeros_like(gO); | ||||
|   if (should_compute_output(1) && !gI.defined()) gI = at::zeros_like(input); | ||||
|   if (should_compute_output(2) && !gW.defined()) gW = at::zeros_like(weight); | ||||
|   bool is_volatile = std::any_of(grad_grad_inputs.begin(), grad_grad_inputs.end(), [](const Variable& v){ | ||||
|     return v.defined() && v.is_volatile(); | ||||
|   }); | ||||
|   auto results = variable_list({ggO, gI, gW}); | ||||
|   for (auto& result : results) { | ||||
|     result.is_volatile() |= is_volatile; | ||||
|   } | ||||
|   return results; | ||||
| } | ||||
|  | ||||
| auto ConvBackwardBackward::releaseVariables() -> void { | ||||
|  | ||||
| @ -9,7 +9,7 @@ namespace autograd { | ||||
| jit::node_list BatchNormForward::symbolic(SymbolicContext* ctx, jit::node_list inputs) { | ||||
|   auto & g = ctx->graph; | ||||
|   // X, Scale, Bias | ||||
|   auto bn = g->appendNode(g->create(jit::kSpatialBN,{inputs.at(0),inputs.at(1),inputs.at(2)})); | ||||
|   auto bn = g->appendNode(g->create(jit::kBatchNormalization, {inputs.at(0),inputs.at(1),inputs.at(2)})); | ||||
|   bn->addInput(jit::tracer::getBufferTrace(*ctx->buffer_map, running_mean)); | ||||
|   bn->addInput(jit::tracer::getBufferTrace(*ctx->buffer_map, running_var)); | ||||
|   bn->i_(jit::kis_test, !this->training); | ||||
|  | ||||
| @ -18,7 +18,7 @@ namespace torch { namespace autograd { | ||||
| jit::node_list ConvForward::symbolic(SymbolicContext* ctx, jit::node_list inputs) { | ||||
|   auto & g = ctx->graph; | ||||
|   // See Note [Caffe2ConvTranspose] | ||||
|   auto n = g->create(!transposed ? jit::kConv : jit::kCaffe2ConvTranspose, | ||||
|   auto n = g->create(!transposed ? jit::kConv : jit::kConvTranspose, | ||||
|                                    {inputs.at(0), inputs.at(1)}); | ||||
|  | ||||
|   // Irritatingly, Caffe2 requires us to specify kernels, | ||||
| @ -55,6 +55,8 @@ jit::node_list ConvForward::symbolic(SymbolicContext* ctx, jit::node_list inputs | ||||
|   n->i_(jit::kgroup,groups); | ||||
|  | ||||
|   // Not in ONNX? | ||||
|   // TODO: implement it once ConvTranspose in ONNX gets `adj` argument instead | ||||
|   // of providing `output_shape` | ||||
|   for (int p : output_padding) { | ||||
|     JIT_EXPECTM(p == 0, "output padding is not supported."); | ||||
|   } | ||||
|  | ||||
| @ -1,5 +1,6 @@ | ||||
| #include "torch/csrc/autograd/input_buffer.h" | ||||
|  | ||||
| #include "torch/csrc/assertions.h" | ||||
| #include "torch/csrc/autograd/functions/basic_ops.h" | ||||
| #include "torch/csrc/utils/auto_gpu.h" | ||||
|  | ||||
| @ -10,6 +11,7 @@ InputBuffer::InputBuffer(size_t size) | ||||
|   {} | ||||
|  | ||||
| void InputBuffer::add(size_t pos, Variable var) { | ||||
|   TORCH_ASSERT(pos >= 0 && pos < buffer.size()); | ||||
|   if (!var.defined()) { | ||||
|     return; | ||||
|   } | ||||
|  | ||||
| @ -43,6 +43,10 @@ PyObject * THPVariable_Wrap(Variable var) | ||||
|     Py_RETURN_NONE; | ||||
|   } | ||||
|  | ||||
|   if (var.dim() == 0) { | ||||
|     throw std::runtime_error("Variable API does not support Scalars"); | ||||
|   } | ||||
|  | ||||
|   if (auto obj = var.get()->pyobj) { | ||||
|     Py_INCREF(obj); | ||||
|     return obj; | ||||
|  | ||||
| @ -13,6 +13,10 @@ | ||||
| namespace torch { namespace autograd { namespace utils { | ||||
|  | ||||
| inline PyObject* wrap(at::Tensor tensor) { | ||||
|   if (tensor.defined() && tensor.dim() == 0) { | ||||
|     // don't expose 0-dim tensors to Variable API. | ||||
|     Variable(tensor).data().as_strided_({1}, {1}); | ||||
|   } | ||||
|   return THPVariable_Wrap(Variable(std::move(tensor))); | ||||
| } | ||||
|  | ||||
| @ -54,6 +58,10 @@ inline PyObject* wrap(int64_t value) { | ||||
|   return THPUtils_packInt64(value); | ||||
| } | ||||
|  | ||||
| inline PyObject* wrap(void* value) { | ||||
|   return THPUtils_packInt64(reinterpret_cast<intptr_t>(value)); | ||||
| } | ||||
|  | ||||
| inline PyObject* wrap(at::Scalar scalar) { | ||||
|   return wrap(scalar.toTensor()); | ||||
| } | ||||
|  | ||||
| @ -133,6 +133,18 @@ PyObject * THCPModule_getDeviceName_wrap(PyObject *self, PyObject *arg) | ||||
|   END_HANDLE_TH_ERRORS | ||||
| } | ||||
|  | ||||
| PyObject * THCPModule_getDeviceCapability_wrap(PyObject *self, PyObject *arg) | ||||
| { | ||||
|   HANDLE_TH_ERRORS | ||||
|   THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to getDeviceCapability"); | ||||
|   long device = THPUtils_unpackLong(arg); | ||||
|  | ||||
|   cudaDeviceProp prop; | ||||
|   THCudaCheck(cudaGetDeviceProperties(&prop, device)); | ||||
|   return Py_BuildValue("(ii)", prop.major, prop.minor); | ||||
|   END_HANDLE_TH_ERRORS | ||||
| } | ||||
|  | ||||
| PyObject * THCPModule_getCurrentStream_wrap(PyObject *self) | ||||
| { | ||||
|   HANDLE_TH_ERRORS | ||||
| @ -174,6 +186,11 @@ PyObject * THCPModule_getDriverVersion(PyObject *self) | ||||
|   return PyLong_FromLong((long) driverVersion); | ||||
| } | ||||
|  | ||||
| PyObject * THCPModule_getCompiledVersion(PyObject *self) | ||||
| { | ||||
|   return PyLong_FromLong((long) CUDA_VERSION); | ||||
| } | ||||
|  | ||||
| PyObject * THCPModule_getRNGState(PyObject *_unused) | ||||
| { | ||||
|   HANDLE_TH_ERRORS | ||||
| @ -297,6 +314,15 @@ PyObject * THCPModule_cudaUnlockMutex(PyObject *module) | ||||
|   Py_RETURN_NONE; | ||||
| } | ||||
|  | ||||
| PyObject * THCPModule_emptyCache(PyObject *_unused) | ||||
| { | ||||
|   HANDLE_TH_ERRORS | ||||
|   auto device_allocator = THCState_getDeviceAllocator(state); | ||||
|   THCudaCheck(device_allocator->emptyCache(device_allocator->state)); | ||||
|   END_HANDLE_TH_ERRORS | ||||
|   Py_RETURN_NONE; | ||||
| } | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| // Cuda module initialization | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
| @ -369,13 +395,16 @@ static struct PyMethodDef _THCPModule_methods[] = { | ||||
|   {"_cuda_getDevice",   (PyCFunction)THCPModule_getDevice_wrap,   METH_NOARGS,  NULL}, | ||||
|   {"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, NULL}, | ||||
|   {"_cuda_getDeviceName", (PyCFunction)THCPModule_getDeviceName_wrap, METH_O,   NULL}, | ||||
|   {"_cuda_getDeviceCapability", (PyCFunction)THCPModule_getDeviceCapability_wrap, METH_O,   NULL}, | ||||
|   {"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_NOARGS, NULL}, | ||||
|   {"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, NULL}, | ||||
|   {"_cuda_setStream",    (PyCFunction)THCPModule_setStream_wrap,  METH_O, NULL}, | ||||
|   {"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, NULL}, | ||||
|   {"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, NULL}, | ||||
|   {"_cuda_getCompiledVersion", (PyCFunction)THCPModule_getCompiledVersion, METH_NOARGS, NULL}, | ||||
|   {"_cuda_getRNGState", (PyCFunction)THCPModule_getRNGState,      METH_NOARGS,  NULL}, | ||||
|   {"_cuda_setRNGState", (PyCFunction)THCPModule_setRNGState,      METH_O,       NULL}, | ||||
|   {"_cuda_emptyCache", (PyCFunction) THCPModule_emptyCache,       METH_NOARGS,  NULL}, | ||||
|   {"_cuda_manualSeed",  (PyCFunction)THCPModule_manualSeed,       METH_O,       NULL}, | ||||
|   {"_cuda_manualSeedAll", (PyCFunction)THCPModule_manualSeedAll,  METH_O,       NULL}, | ||||
|   {"_cuda_seed",        (PyCFunction)THCPModule_seed,             METH_NOARGS,  NULL}, | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| #define __STDC_FORMAT_MACROS | ||||
|  | ||||
| #include <Python.h> | ||||
| #include <structmember.h> | ||||
|  | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| #define __STDC_FORMAT_MACROS | ||||
|  | ||||
| #include <Python.h> | ||||
| #include <structmember.h> | ||||
|  | ||||
|  | ||||
| @ -228,12 +228,12 @@ struct algorithm_search<cudnnConvolutionFwdAlgo_t> { | ||||
|         conv.cdesc.desc, | ||||
|         conv.odesc.desc, | ||||
|         out, | ||||
|         1, | ||||
|         n_algo, | ||||
|         &algoCount, | ||||
|         perfResults, | ||||
|         ws.data, | ||||
|         ws.size)); | ||||
|     return getBestAlgorithm<cudnnConvolutionFwdAlgoPerf_t>(perfResults, deterministic, n_algo); | ||||
|     return getBestAlgorithm<cudnnConvolutionFwdAlgoPerf_t>(perfResults, deterministic, algoCount); | ||||
|   } | ||||
|  | ||||
|   static void getAlgorithm( | ||||
| @ -302,12 +302,12 @@ struct algorithm_search<cudnnConvolutionBwdDataAlgo_t> { | ||||
|         conv.cdesc.desc, | ||||
|         conv.idesc.desc, | ||||
|         in, | ||||
|         1, | ||||
|         n_algo, | ||||
|         &algoCount, | ||||
|         perfResults, | ||||
|         ws.data, | ||||
|         ws.size)); | ||||
|     return getBestAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>(perfResults, deterministic, n_algo); | ||||
|     return getBestAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>(perfResults, deterministic, algoCount); | ||||
|   } | ||||
|  | ||||
|   static void getAlgorithm(cudnnHandle_t handle, const Convolution& conv, cudnnConvolutionBwdDataAlgo_t* algo) { | ||||
| @ -376,12 +376,12 @@ struct algorithm_search<cudnnConvolutionBwdFilterAlgo_t> { | ||||
|         conv.cdesc.desc, | ||||
|         conv.wdesc.desc, | ||||
|         wght, | ||||
|         1, | ||||
|         n_algo, | ||||
|         &algoCount, | ||||
|         perfResults, | ||||
|         ws.data, | ||||
|         ws.size)); | ||||
|     return getBestAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>(perfResults, deterministic, n_algo); | ||||
|     return getBestAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>(perfResults, deterministic, algoCount); | ||||
|   } | ||||
|  | ||||
|   static void getAlgorithm( | ||||
|  | ||||
| @ -761,6 +761,12 @@ PyObject * THPTensor_(stride)(PyObject *self, PyObject *args, PyObject *kwargs) | ||||
|         - accreal start | ||||
|         - accreal end | ||||
|         - CONSTANT 1 | ||||
|       - arguments: | ||||
|         - arg: THTensor* result | ||||
|           output: True | ||||
|         - CONSTANT 0 | ||||
|         - accreal end | ||||
|         - CONSTANT 1 | ||||
| ]] | ||||
|  | ||||
| [[ | ||||
|  | ||||
| @ -78,7 +78,7 @@ using GraphsAttr = VectorAttributeValue<std::shared_ptr<Graph>,AttributeKind::gs | ||||
|  | ||||
| // CRTP so that Node which inherits Attributes can be return for | ||||
| // method chaining e.g: | ||||
| // Node * n = g->create(kSelect)->set_i(kOffset,3)->set_f(kValue,3.5); | ||||
| // Node * n = g->create(kSelect)->i_(kOffset,3)->f_(kValue,3.5); | ||||
| // we return Derived* pointers because Nodes are normally held as pointers. | ||||
| template<typename Derived> | ||||
| struct Attributes { | ||||
|  | ||||
| @ -69,7 +69,8 @@ void encodeTensor(onnx::TensorProto * p, const at::Tensor & tensor) { | ||||
|       break; | ||||
|   } | ||||
|   p->set_data_type(onnx_type); | ||||
|   at::Tensor cont = tensor.toType(at::CPU(at_type)).contiguous(); | ||||
|   // CPU's HalfTensor doesn't have contiguous(), so first calling contiguous() | ||||
|   at::Tensor cont = tensor.contiguous().toType(at::CPU(at_type)); | ||||
|   p->set_raw_data(cont); | ||||
| } | ||||
|  | ||||
| @ -79,40 +80,50 @@ void addAttribute(onnx::NodeProto * n_p, jit::Node * n, jit::Symbol name) { | ||||
|   switch(n->kindOf(name)) { | ||||
|     case AttributeKind::f: | ||||
|       attr->set_f(n->f(name)); | ||||
|       attr->set_type(onnx::aFLOAT); | ||||
|       break; | ||||
|     case AttributeKind::fs: | ||||
|       attr->set_type(onnx::aFLOATS); | ||||
|       for(auto & v : n->fs(name)) | ||||
|         attr->add_floats(v); | ||||
|       break; | ||||
|     case AttributeKind::i: | ||||
|       attr->set_type(onnx::aINT); | ||||
|       attr->set_i(n->i(name)); | ||||
|       break; | ||||
|     case AttributeKind::is: | ||||
|       attr->set_type(onnx::aINTS); | ||||
|       for(auto & v : n->is(name)) | ||||
|         attr->add_ints(v); | ||||
|       break; | ||||
|     case AttributeKind::s: | ||||
|       attr->set_type(onnx::aSTRING); | ||||
|       attr->set_s(n->s(name)); | ||||
|       break; | ||||
|     case AttributeKind::ss: | ||||
|       attr->set_type(onnx::aSTRINGS); | ||||
|       for(auto & v : n->ss(name)) | ||||
|         attr->add_strings(v); | ||||
|       break; | ||||
|     case AttributeKind::t: { | ||||
|       attr->set_type(onnx::aTENSOR); | ||||
|       auto t = attr->mutable_t(); | ||||
|       encodeTensor(t, n->t(name)); | ||||
|     } break; | ||||
|     case AttributeKind::ts: | ||||
|       attr->set_type(onnx::aTENSORS); | ||||
|       for(auto & v : n->ts(name)) { | ||||
|         auto t = attr->add_tensors(); | ||||
|         encodeTensor(t, v); | ||||
|       } | ||||
|       break; | ||||
|     case AttributeKind::g: { | ||||
|       attr->set_type(onnx::aGRAPH); | ||||
|       auto g = attr->mutable_g(); | ||||
|       encodeGraph(g, n->g(name), {}); | ||||
|     } break; | ||||
|     case AttributeKind::gs: | ||||
|       attr->set_type(onnx::aGRAPHS); | ||||
|       for(auto & v : n->gs(name)) { | ||||
|         auto g = attr->add_graphs(); | ||||
|         encodeGraph(g, v, {}); | ||||
| @ -191,6 +202,9 @@ void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const | ||||
|       continue; | ||||
|     } | ||||
|     auto p_n = p_g->add_node(); | ||||
|     if (node->getSourceLocation()) { | ||||
|       p_n->set_doc_string(node->getSourceLocation()->python_traceback); | ||||
|     } | ||||
|     for(auto input : node->inputs()) { | ||||
|       p_n->add_input(node_name(input)); | ||||
|     } | ||||
| @ -256,11 +270,18 @@ void validateGraph(const std::shared_ptr<Graph>& graph) { | ||||
| } | ||||
|  | ||||
| std::string ExportGraph(const std::shared_ptr<Graph>& graph, | ||||
|                         const std::vector<at::Tensor> & initializers) { | ||||
|                         const std::vector<at::Tensor> & initializers, | ||||
|                         int64_t onnx_opset_version) { | ||||
|  | ||||
|   validateGraph(graph); | ||||
|  | ||||
|   onnx::ModelProto model_proto; | ||||
|   model_proto.set_producer_name("pytorch"); | ||||
|   model_proto.set_producer_version("0.3"); | ||||
|   auto* imp = model_proto.add_opset_import(); | ||||
|   // This is the version of ONNX operator set we are targeting | ||||
|   imp->set_version(onnx_opset_version); | ||||
|  | ||||
|   // Set up nanopb callbacks and compute the amount of space needed to store | ||||
|   // the resulting protobuf | ||||
|   encodeModel(&model_proto, graph, initializers); | ||||
|  | ||||
| @ -5,6 +5,7 @@ | ||||
| namespace torch { namespace jit { | ||||
|  | ||||
| std::string ExportGraph(const std::shared_ptr<Graph>& graph, | ||||
|                         const std::vector<at::Tensor> & initializers); | ||||
|                         const std::vector<at::Tensor> & initializers, | ||||
|                         int64_t onnx_opset_version); | ||||
|  | ||||
| }} | ||||
|  | ||||
| @ -261,6 +261,14 @@ CompiledFusionFunction::CompiledFusionFunction(const std::string & name, Annotat | ||||
|   , output_desc(agraph.output_desc) { | ||||
|   JIT_CUDA_CHECK(cudaGetDevice(&device)); | ||||
|   JIT_CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); | ||||
|   if ((prop.major >= 6 && CUDA_VERSION < 8000) || | ||||
|       (prop.major >= 7 && CUDA_VERSION < 9000)) { | ||||
|     std::stringstream err_string; | ||||
|     err_string << "PyTorch compiled with insufficient CUDA version: "  | ||||
| 	       << CUDA_VERSION << " for the current GPU device " << prop.name  | ||||
| 	       << " with device capability " << prop.major << "." << prop.minor; | ||||
|     throw std::runtime_error(err_string.str()); | ||||
|   } | ||||
|  | ||||
|   std::stringstream cu; | ||||
|   concat_desc = codegen::emitCompilationUnit(cu, name, agraph); | ||||
|  | ||||
| @ -43,9 +43,8 @@ _(split) \ | ||||
| _(Offset) \ | ||||
| _(value) \ | ||||
| _(Subgraph) \ | ||||
| _(SpatialBN) \ | ||||
| _(BatchNormalization) \ | ||||
| _(Conv) \ | ||||
| _(Caffe2ConvTranspose) \ | ||||
| _(ConvTranspose) \ | ||||
| _(is_test) \ | ||||
| _(epsilon) \ | ||||
| @ -75,6 +74,8 @@ _(shape) \ | ||||
| _(axes) \ | ||||
| _(group) \ | ||||
| _(inplace) \ | ||||
| _(transA) \ | ||||
| _(transB) \ | ||||
| _(other) | ||||
|  | ||||
| enum BuiltinSymbol { | ||||
|  | ||||
| @ -41,6 +41,7 @@ void printNodeRef(std::ostream & out, const Node * n) { | ||||
| template <typename T> | ||||
| std::ostream& operator<<(std::ostream & out, const std::vector<T> & nodes) { | ||||
|   out << at::ArrayRef<T>{nodes}; | ||||
|   return out; | ||||
| } | ||||
|  | ||||
| template <typename T> | ||||
|  | ||||
| @ -60,6 +60,15 @@ static inline bool operator==(const Use & a, const Use & b) { | ||||
| // Graph holds a list of parameters. | ||||
| struct Param; | ||||
|  | ||||
| // SourceLocation represents source code-level debug information for a node. | ||||
| // It contains a Python stack trace that represents the provenance of a given | ||||
| // node in the trace. | ||||
| struct SourceLocation { | ||||
|   SourceLocation(std::string python_traceback) | ||||
|   : python_traceback(std::move(python_traceback)) {} | ||||
|   std::string python_traceback; | ||||
| }; | ||||
|  | ||||
| // the list types are intentionally simple, but we type-def | ||||
| // them here so if we need to change them, refactoring will be easier | ||||
| using node_list = std::vector<Node*>; | ||||
| @ -113,6 +122,7 @@ private: | ||||
|   size_t unique_ = 0;          // unique id | ||||
|   size_t stage_ = 0;           // 0-forward, 1-backward, 2-double-backward,... | ||||
|   std::string debug_name_; | ||||
|   std::shared_ptr<SourceLocation> source_location_; | ||||
| protected: | ||||
|   TypePtr type_; | ||||
|   Node(Graph * graph_, NodeKind kind_); //defined after graph | ||||
| @ -150,6 +160,13 @@ public: | ||||
|   const std::string & debugName() const { | ||||
|     return debug_name_; | ||||
|   } | ||||
|   Node* setSourceLocation(std::shared_ptr<SourceLocation> sl) { | ||||
|     source_location_ = sl; | ||||
|     return this; | ||||
|   } | ||||
|   std::shared_ptr<SourceLocation> getSourceLocation() const { | ||||
|     return source_location_; | ||||
|   } | ||||
|   Graph * owningGraph() { | ||||
|     return graph_; | ||||
|   } | ||||
| @ -514,6 +531,7 @@ protected: | ||||
|   virtual void cloneFrom(Node * s) { | ||||
|     if (s->hasType()) setType(s->type()); | ||||
|     setDebugName(s->debugName()); | ||||
|     setSourceLocation(s->getSourceLocation()); | ||||
|     copyAttributes(*s); | ||||
|   } | ||||
| }; | ||||
|  | ||||
| @ -86,6 +86,9 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) { | ||||
|         if (!outputs[i]->hasType()) { | ||||
|           outputs[i]->setType(old->typeOption()); | ||||
|         } | ||||
|         // Copy over source location information to all nodes created by | ||||
|         // the symbolic | ||||
|         outputs[i]->setSourceLocation(node->getSourceLocation()); | ||||
|         env[old] = outputs[i]; | ||||
|       } else { | ||||
|         // Null output means that the ONNX op doesn't have outputs corresponding | ||||
| @ -121,6 +124,31 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) { | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   // Cast output of symbolic() python implementation | ||||
|   auto processSymbolicOutput = [&](const std::string& op_name, Node* n, const py::object& raw_output) { | ||||
|     if (raw_output.ptr() == Py_None) { | ||||
|       cloneNode(n); | ||||
|       return; | ||||
|     } | ||||
|     // Cast the outputs back to C++ and put them in the new graph | ||||
|     std::vector<Node*> outputs; | ||||
|     try { | ||||
|       if (py::isinstance<Node>(raw_output)) { | ||||
|         outputs = node_list{py::cast<Node*>(raw_output)}; | ||||
|       } else { | ||||
|         outputs = py::cast<std::vector<Node*>>(raw_output); | ||||
|       } | ||||
|     } catch (const std::exception& ex) { | ||||
|       std::ostringstream ss; | ||||
|       ss << "Error casting results of symbolic for " << op_name | ||||
|          << ": expected to return list of op nodes, instead received type ''" | ||||
|          << py::str(raw_output.get_type()) << "': " << py::str(raw_output); | ||||
|       throw std::runtime_error(ss.str()); | ||||
|     } | ||||
|  | ||||
|     setOutputs(op_name, n, outputs); | ||||
|   }; | ||||
|  | ||||
|   auto callPySymbolicFunction = [&](Node* n) { | ||||
|     // The idea is delegate as much of the actual argument massaging to | ||||
|     // Python as possible | ||||
| @ -133,19 +161,7 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) { | ||||
|  | ||||
|     py::object raw_output = onnx.attr("_run_symbolic_function")(ctx.graph, n, py_inputs); | ||||
|  | ||||
|     if (raw_output.ptr() == Py_None) { | ||||
|       cloneNode(n); | ||||
|     } else { | ||||
|       // Cast the outputs back to C++ and put them in the new graph | ||||
|       node_list outputs; | ||||
|       if (py::isinstance<Node>(raw_output)) { | ||||
|         outputs = node_list{py::cast<Node*>(raw_output)}; | ||||
|       } else { | ||||
|         outputs = py::cast<std::vector<Node*>>(raw_output); | ||||
|       } | ||||
|  | ||||
|       setOutputs(symbolToString(n->kind()), n, outputs); | ||||
|     } | ||||
|     processSymbolicOutput(symbolToString(n->kind()), n, raw_output); | ||||
|   }; | ||||
|  | ||||
|   auto callPySymbolicMethod = [&](PythonOp* op) { | ||||
| @ -184,20 +200,7 @@ void ToONNX(std::shared_ptr<tracer::TracingState>& state) { | ||||
|     // upon argument mismatch | ||||
|     py::object raw_output = onnx.attr("_run_symbolic_method")(op->name(), pyobj.attr("symbolic"), py_symbolic_args); | ||||
|  | ||||
|     if (raw_output.ptr() == Py_None) { | ||||
|       cloneNode(op); | ||||
|       return; | ||||
|     } | ||||
|  | ||||
|     // Cast the outputs back to C++ and put them in the new graph | ||||
|     std::vector<Node*> outputs; | ||||
|     if (py::isinstance<Node>(raw_output)) { | ||||
|       outputs = node_list{py::cast<Node*>(raw_output)}; | ||||
|     } else { | ||||
|       outputs = py::cast<std::vector<Node*>>(raw_output); | ||||
|     } | ||||
|  | ||||
|     setOutputs(op->name(), op, outputs); | ||||
|     processSymbolicOutput(op->name(), op, raw_output); | ||||
|   }; | ||||
|  | ||||
|   // Finally, visit all nodes in the graph | ||||
|  | ||||
| @ -15,24 +15,62 @@ std::unordered_set<NodeKind> broadcasting = { | ||||
|   kGemm, | ||||
| }; | ||||
|  | ||||
| bool isNopTranspose(const std::vector<int64_t> & perm) { | ||||
|   for (size_t i = 0; i < perm.size(); i++) | ||||
|     if (perm[i] != i) | ||||
|       return false; | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| // returns a vector `ret` such that transposing by `ret` is equivalent | ||||
| // to transposing by `t1` and then by `t2` | ||||
| std::vector<int64_t> composeTransposes(const std::vector<int64_t> & t1, | ||||
|                                        const std::vector<int64_t> & t2) { | ||||
|   JIT_ASSERT(t1.size() == t2.size()); | ||||
|   std::vector<int64_t> ret; | ||||
|   for (size_t i = 0; i < t1.size(); i++) { | ||||
|     JIT_ASSERT(   t1[i]  < t2.size()); | ||||
|     JIT_ASSERT(t2[t1[i]] < t2.size()); | ||||
|     ret.push_back(t2[t1[i]]); | ||||
|   } | ||||
|   return ret; | ||||
| } | ||||
|  | ||||
| bool isBroadcasting(Node *node) { | ||||
|   return broadcasting.count(node->kind()); | ||||
| } | ||||
|  | ||||
| // When iterating over the dimension sizes, starting at the trailing dimension, | ||||
| // the dimension sizes must either be equal, or one of them does not exist. | ||||
| // First iterate over the 'from' tensor sizes. Ignore all leading and trailing | ||||
| // dimensions that are simply one, since they can be trivially broadcasted. | ||||
| // When iterating over the dimension sizes (with reduced 'from' tensor), | ||||
| // starting at the trailing dimension, the dimension sizes must either be equal, | ||||
| // or one of them does not exist. | ||||
| // | ||||
| //  equivalently: | ||||
| // | ||||
| // Test that 'from' is a suffix of 'to'. | ||||
| // Note that this is NOT equivalent to numpy broadcasting semantics, and do | ||||
| // not represent that generalized broadcasting that Pytorch implements in | ||||
| // general. Rather, this is Caffe2-style broadcasting. | ||||
| bool fusibleExpandTo(at::IntList from, at::IntList to) { | ||||
|   auto f = from.rbegin(); | ||||
|   auto t = to.rbegin(); | ||||
|   for (; f != from.rend() && t != to.rend(); f++, t++) { | ||||
|     // TODO: if 1->n expansion is supported, adjust this conditional. | ||||
|     if (*f != *t) return false; | ||||
|   if (from.size() > to.size()) { | ||||
|     return false; | ||||
|   } | ||||
|   return f == from.rend(); | ||||
|   ssize_t from_dim_start = 0, from_dim_end = from.size() - 1; | ||||
|   while (from_dim_start < from.size() && from[from_dim_start] == 1) { | ||||
|     from_dim_start++; | ||||
|   } | ||||
|   while (from_dim_end > from_dim_start && from[from_dim_end] == 1) { | ||||
|     from_dim_end--; | ||||
|   } | ||||
|  | ||||
|   ssize_t f = from_dim_end; | ||||
|   ssize_t t = to.size() - 1; | ||||
|   for (; f >= from_dim_start && t >= 0; --f, --t) { | ||||
|     if (from[f] != to[t]) return false; | ||||
|   } | ||||
|  | ||||
|   // In the case that the 'to' tensor has leading ones in the same place that | ||||
|   // the 'from' tensor does, f will be less than from_dim_start rather than | ||||
|   // strictly equal. E.x.: to := [5, 1, 768] and from := [1, 1, 768] | ||||
|   return f <= from_dim_start; | ||||
| } | ||||
|  | ||||
| void fuseBroadcast(std::shared_ptr<Graph>& graph) { | ||||
| @ -76,6 +114,58 @@ void fuseBroadcast(std::shared_ptr<Graph>& graph) { | ||||
|   } | ||||
| } | ||||
|  | ||||
| void fuseConsecutiveTransposes(std::shared_ptr<Graph>& graph) { | ||||
|   for (auto it = graph->begin(); it != graph->end(); ++it) { | ||||
|     auto* n = *it; | ||||
|  | ||||
|     if (n->kind() == kTranspose && n->input()->kind() == kTranspose) { | ||||
|       auto origInput = n->input(); | ||||
|       n->is_(kperm, composeTransposes(origInput->is(kperm), n->is(kperm))); | ||||
|       n->replaceInput(0, origInput->input()); | ||||
|       if (origInput->uses().size() == 0) { | ||||
|         origInput->destroy(); | ||||
|       } | ||||
|       continue; | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| void eliminateNopTranspose(std::shared_ptr<Graph>& graph) { | ||||
|   for (auto it = graph->begin(); it != graph->end(); ++it) { | ||||
|     auto* n = *it; | ||||
|  | ||||
|     if (n->kind() == kTranspose) { | ||||
|       if (isNopTranspose(n->is(kperm))) { | ||||
|         n->replaceAllUsesWith(n->input()); | ||||
|         it.destroyCurrent(); | ||||
|         continue; | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| void fuseTransposeIntoGemm(std::shared_ptr<Graph>& graph) { | ||||
|   static const std::vector<int64_t> simpleTransPerm({1,0}); | ||||
|  | ||||
|   for (auto it = graph->begin(); it != graph->end(); ++it) { | ||||
|     auto* n = *it; | ||||
|  | ||||
|     if (n->kind() == kGemm) { | ||||
|       for (size_t i : {0,1}) { | ||||
|         auto inp = n->inputs()[i]; | ||||
|         auto trans = i == 0 ? ktransA : ktransB; | ||||
|         if (inp->kind() == kTranspose && inp->is(kperm) == simpleTransPerm) { | ||||
|           n->replaceInput(i, inp->input()); | ||||
|           n->i_(trans, n->hasAttribute(trans) ? !n->i(trans) : 1); | ||||
|           if (inp->uses().size() == 0) { | ||||
|             inp->destroy(); | ||||
|           } | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| // This optimization does ONNX-specific peephole optimizations. | ||||
| // | ||||
| // At the moment, here are the optimizations it does: | ||||
| @ -83,6 +173,9 @@ void fuseBroadcast(std::shared_ptr<Graph>& graph) { | ||||
| //    easier for non-strided backends to more efficiently do broadcasts if this is | ||||
| //    local information.  This optimization is not useful for PyTorch as 'expand' | ||||
| //    is free. | ||||
| //  - Fusing of consecutive transposes | ||||
| //  - Elimiation of NOP transposes | ||||
| //  - Fusing of transposes into Gemm | ||||
| // | ||||
| // Before you write an optimization here, ask yourself, "Could I do this | ||||
| // optimization on ATen operators"?  If so, you should seriously consider | ||||
| @ -94,6 +187,9 @@ void PeepholeOptimizeONNX(std::shared_ptr<Graph>& graph) { | ||||
|   // TODO: make it easier not to do O(k) iterations over the graph, where | ||||
|   // k is the number of distinct peephole optimizations | ||||
|   fuseBroadcast(graph); | ||||
|   fuseConsecutiveTransposes(graph); | ||||
|   eliminateNopTranspose(graph); | ||||
|   fuseTransposeIntoGemm(graph); | ||||
| } | ||||
|  | ||||
| }} | ||||
|  | ||||
| @ -13,6 +13,7 @@ void PeepholeOptimize(std::shared_ptr<Graph>& graph) { | ||||
|   for (auto it = graph->begin(); it != graph->end(); ++it) { | ||||
|     auto* n = *it; | ||||
|  | ||||
|     // eliminate redundant expand | ||||
|     if (n->kind() == kexpand) { | ||||
|       if (n->is(ksize) == n->input()->type()->expect<TensorType>()->sizes()) { | ||||
|         n->replaceAllUsesWith(n->input()); | ||||
|  | ||||
| @ -32,13 +32,9 @@ void initPythonTracerBindings(PyObject* module_) { | ||||
|       ss << *s.graph; | ||||
|       return ss.str(); | ||||
|     }) | ||||
|     .def("export", [](TracingState& s) { | ||||
|     .def("export", [](TracingState& s, const std::vector<at::Tensor>& initializers, int64_t onnx_opset_version) { | ||||
|       ASSERT_UNEXPIRED("export"); | ||||
|       return py::bytes(ExportGraph(s.graph, {})); | ||||
|     }) | ||||
|     .def("export", [](TracingState& s, const std::vector<at::Tensor>& initializers) { | ||||
|       ASSERT_UNEXPIRED("export"); | ||||
|       return py::bytes(ExportGraph(s.graph, initializers)); | ||||
|       return py::bytes(ExportGraph(s.graph, initializers, onnx_opset_version)); | ||||
|     }) | ||||
|     .def("graph", [](TracingState& s) { | ||||
|       return s.graph; | ||||
|  | ||||
| @ -4,6 +4,11 @@ | ||||
| #include "torch/csrc/autograd/function.h" | ||||
| #include "torch/csrc/autograd/python_engine.h" | ||||
| #include "torch/csrc/autograd/functions/special.h" | ||||
| #include "torch/csrc/utils/auto_gil.h" | ||||
| #include "torch/csrc/utils/python_strings.h" | ||||
|  | ||||
| #include <frameobject.h> | ||||
| #include <patchlevel.h> | ||||
|  | ||||
| namespace torch { namespace jit { namespace tracer { | ||||
|  | ||||
| @ -89,6 +94,28 @@ void nontraceableBackwardSubgraph(const variable_list& inputs, const variable_li | ||||
|   std::make_shared<autograd::Eval>()->replaceSubgraph(inputs, outputs); | ||||
| } | ||||
|  | ||||
| namespace { | ||||
| // Python interpreter retrieval routine adapted from | ||||
| // https://stackoverflow.com/a/8706144 | ||||
| std::string getPythonInterpreterStackTrace() { | ||||
|   std::stringstream stack_trace; | ||||
|   AutoGIL gil; | ||||
|   PyThreadState *tstate = PyThreadState_GET(); | ||||
|   if (NULL != tstate && NULL != tstate->frame) { | ||||
|     PyFrameObject *frame = tstate->frame; | ||||
|  | ||||
|     while (NULL != frame) { | ||||
|       int line = PyCode_Addr2Line(frame->f_code, frame->f_lasti); | ||||
|       std::string filename = THPUtils_unpackString(frame->f_code->co_filename); | ||||
|       std::string funcname = THPUtils_unpackString(frame->f_code->co_name); | ||||
|       stack_trace << filename << "(" << line << "): " << funcname << "\n"; | ||||
|       frame = frame->f_back; | ||||
|     } | ||||
|   } | ||||
|   return stack_trace.str(); | ||||
| } | ||||
| }  // namespace | ||||
|  | ||||
| Node* recordTrace(std::string op, // TODO: make this a Symbol | ||||
|                   at::ArrayRef<Variable> inputs, | ||||
|                   at::ArrayRef<Variable> outputs) { | ||||
| @ -99,6 +126,9 @@ Node* recordTrace(std::string op, // TODO: make this a Symbol | ||||
|   auto state_lock = state->lock(); | ||||
|  | ||||
|   Node *n = graph->create(stringToSymbol(op)); | ||||
|   auto sl = std::make_shared<SourceLocation>(getPythonInterpreterStackTrace()); | ||||
|   n->setSourceLocation(sl); | ||||
|  | ||||
|   for (Variable input : inputs) { | ||||
|     n->addInput(getValueTrace(state, input)); | ||||
|   } | ||||
|  | ||||
| @ -168,6 +168,21 @@ DEFINE_CONST(UINT64) | ||||
| DEFINE_CONST(COMPLEX64) | ||||
| DEFINE_CONST(COMPLEX128) | ||||
| #undef DEFINE_CONST | ||||
|  | ||||
| #define DEFINE_CONST(C) \ | ||||
| const auto a##C = onnx_AttributeProto_AttributeType_##C; | ||||
| DEFINE_CONST(FLOAT) | ||||
| DEFINE_CONST(INT) | ||||
| DEFINE_CONST(STRING) | ||||
| DEFINE_CONST(TENSOR) | ||||
| DEFINE_CONST(GRAPH) | ||||
| DEFINE_CONST(FLOATS) | ||||
| DEFINE_CONST(INTS) | ||||
| DEFINE_CONST(STRINGS) | ||||
| DEFINE_CONST(TENSORS) | ||||
| DEFINE_CONST(GRAPHS) | ||||
| #undef DEFINE_CONST | ||||
|  | ||||
| // C++ wrappers which simulate the Google C++ Protobuf API | ||||
| // | ||||
| // These are NOT COMPLETE wrappers. If you find something is missing, add it! | ||||
| @ -270,6 +285,7 @@ public: | ||||
|     proto.graphs  = list<GraphProto, onnx_GraphProto_fields>(&graphs); | ||||
|   } | ||||
|   void set_name(const std::string& s) { proto.name = string(&name, s); } | ||||
|   void set_type(onnx_AttributeProto_AttributeType t) { proto.has_type = true; proto.type = t; } | ||||
|   void set_f(float f) { proto.has_f = true; proto.f = f; } | ||||
|   void set_i(int64_t i) { proto.has_i = true; proto.i = i; } | ||||
|   void set_s(std::string s_) { proto.s = string(&s, s_); } | ||||
| @ -290,6 +306,7 @@ public: | ||||
| class NodeProto : public MicroProto<onnx_NodeProto> { | ||||
| private: | ||||
|   std::string op_type; | ||||
|   std::string doc_string; | ||||
|   unique_vector<std::string> inputs; | ||||
|   unique_vector<std::string> outputs; | ||||
|   unique_vector<AttributeProto> attributes; | ||||
| @ -309,6 +326,7 @@ public: | ||||
|     return ptr; | ||||
|   } | ||||
|   void set_op_type(const std::string& s) { proto.op_type= string(&op_type, s); } | ||||
|   void set_doc_string(const std::string& s) { proto.doc_string = string(&doc_string, s); } | ||||
| }; | ||||
|  | ||||
| class GraphProto : public MicroProto<onnx_GraphProto> { | ||||
| @ -349,6 +367,15 @@ public: | ||||
|   } | ||||
| }; | ||||
|  | ||||
| class OperatorSetIdProto : public MicroProto<onnx_OperatorSetIdProto> { | ||||
| private: | ||||
|   std::string domain; | ||||
| public: | ||||
|   OperatorSetIdProto() : MicroProto(onnx_OperatorSetIdProto_init_default) {} | ||||
|   void set_domain(const std::string& s) { proto.domain = string(&domain, s); } | ||||
|   void set_version(int64_t v) { proto.has_version = true; proto.version = v; } | ||||
| }; | ||||
|  | ||||
| class ModelProto : public MicroProto<onnx_ModelProto> { | ||||
| private: | ||||
|   std::string producer_name; | ||||
| @ -356,21 +383,26 @@ private: | ||||
|   std::string domain; | ||||
|   std::string doc_string; | ||||
|   std::unique_ptr<GraphProto> graph; | ||||
|   unique_vector<OperatorSetIdProto> opset_import; | ||||
| public: | ||||
|   ModelProto() : MicroProto(onnx_ModelProto_init_default) { | ||||
|     proto.has_ir_version = true; | ||||
|     proto.ir_version = onnx_Version_IR_VERSION; | ||||
|     proto.producer_name = string(&producer_name, "pytorch"); | ||||
|     // TODO: stop hard-coding this | ||||
|     proto.producer_version = string(&producer_version, "0.2"); | ||||
|     proto.domain = string(&domain, "com.facebook"); | ||||
|     proto.opset_import = list<OperatorSetIdProto, onnx_OperatorSetIdProto_fields>(&opset_import); | ||||
|   } | ||||
|   void set_model_version(int64_t i) { proto.has_model_version = true; proto.model_version = i; } | ||||
|   void set_doc_string(const std::string& s) { proto.doc_string = string(&doc_string, s); } | ||||
|   void set_producer_name(const std::string& s) { proto.producer_name = string(&producer_name, s); } | ||||
|   void set_producer_version(const std::string& s) { proto.producer_version = string(&producer_version, s); } | ||||
|   GraphProto* mutable_graph() { | ||||
|     proto.graph = msg<GraphProto, onnx_GraphProto_fields>(&graph); | ||||
|     return graph.get(); | ||||
|   } | ||||
|   OperatorSetIdProto* add_opset_import() { | ||||
|     auto ptr = new OperatorSetIdProto(); | ||||
|     opset_import.emplace_back(ptr); | ||||
|     return ptr; | ||||
|   } | ||||
| }; | ||||
|  | ||||
| }} // namespace torch::onnx | ||||
|  | ||||
| @ -10,7 +10,7 @@ | ||||
|  | ||||
|  | ||||
|  | ||||
| const pb_field_t onnx_AttributeProto_fields[12] = { | ||||
| const pb_field_t onnx_AttributeProto_fields[13] = { | ||||
|     PB_FIELD(  1, STRING  , OPTIONAL, CALLBACK, FIRST, onnx_AttributeProto, name, name, 0), | ||||
|     PB_FIELD(  2, FLOAT   , OPTIONAL, STATIC  , OTHER, onnx_AttributeProto, f, name, 0), | ||||
|     PB_FIELD(  3, INT64   , OPTIONAL, STATIC  , OTHER, onnx_AttributeProto, i, f, 0), | ||||
| @ -22,6 +22,7 @@ const pb_field_t onnx_AttributeProto_fields[12] = { | ||||
|     PB_FIELD(  9, BYTES   , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, strings, ints, 0), | ||||
|     PB_FIELD( 10, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, tensors, strings, &onnx_TensorProto_fields), | ||||
|     PB_FIELD( 11, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_AttributeProto, graphs, tensors, &onnx_GraphProto_fields), | ||||
|     PB_FIELD( 20, UENUM   , OPTIONAL, STATIC  , OTHER, onnx_AttributeProto, type, graphs, 0), | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
| @ -31,17 +32,18 @@ const pb_field_t onnx_ValueInfoProto_fields[3] = { | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
| const pb_field_t onnx_NodeProto_fields[7] = { | ||||
| const pb_field_t onnx_NodeProto_fields[8] = { | ||||
|     PB_FIELD(  1, STRING  , REPEATED, CALLBACK, FIRST, onnx_NodeProto, input, input, 0), | ||||
|     PB_FIELD(  2, STRING  , REPEATED, CALLBACK, OTHER, onnx_NodeProto, output, input, 0), | ||||
|     PB_FIELD(  3, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, name, output, 0), | ||||
|     PB_FIELD(  4, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, op_type, name, 0), | ||||
|     PB_FIELD(  5, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_NodeProto, attribute, op_type, &onnx_AttributeProto_fields), | ||||
|     PB_FIELD(  6, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, doc_string, attribute, 0), | ||||
|     PB_FIELD(  7, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_NodeProto, domain, doc_string, 0), | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
| const pb_field_t onnx_ModelProto_fields[8] = { | ||||
| const pb_field_t onnx_ModelProto_fields[9] = { | ||||
|     PB_FIELD(  1, INT64   , OPTIONAL, STATIC  , FIRST, onnx_ModelProto, ir_version, ir_version, 0), | ||||
|     PB_FIELD(  2, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, producer_name, ir_version, 0), | ||||
|     PB_FIELD(  3, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, producer_version, producer_name, 0), | ||||
| @ -49,6 +51,7 @@ const pb_field_t onnx_ModelProto_fields[8] = { | ||||
|     PB_FIELD(  5, INT64   , OPTIONAL, STATIC  , OTHER, onnx_ModelProto, model_version, domain, 0), | ||||
|     PB_FIELD(  6, STRING  , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, doc_string, model_version, 0), | ||||
|     PB_FIELD(  7, MESSAGE , OPTIONAL, CALLBACK, OTHER, onnx_ModelProto, graph, doc_string, &onnx_GraphProto_fields), | ||||
|     PB_FIELD(  8, MESSAGE , REPEATED, CALLBACK, OTHER, onnx_ModelProto, opset_import, graph, &onnx_OperatorSetIdProto_fields), | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
| @ -120,6 +123,13 @@ const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3] = { | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
| const pb_field_t onnx_OperatorSetIdProto_fields[3] = { | ||||
|     PB_FIELD(  1, STRING  , OPTIONAL, CALLBACK, FIRST, onnx_OperatorSetIdProto, domain, domain, 0), | ||||
|     PB_FIELD(  2, INT64   , OPTIONAL, STATIC  , OTHER, onnx_OperatorSetIdProto, version, domain, 0), | ||||
|     PB_LAST_FIELD | ||||
| }; | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @ -132,7 +142,7 @@ const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3] = { | ||||
|  * numbers or field sizes that are larger than what can fit in 8 or 16 bit | ||||
|  * field descriptors. | ||||
|  */ | ||||
| PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_membersize(onnx_SparseTensorProto, indices) < 65536 && pb_membersize(onnx_SparseTensorProto, values) < 65536 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 65536 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 65536), YOU_MUST_DEFINE_PB_FIELD_32BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto) | ||||
| PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_membersize(onnx_SparseTensorProto, indices) < 65536 && pb_membersize(onnx_SparseTensorProto, values) < 65536 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 65536 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 65536), YOU_MUST_DEFINE_PB_FIELD_32BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto_onnx_OperatorSetIdProto) | ||||
| #endif | ||||
|  | ||||
| #if !defined(PB_FIELD_16BIT) && !defined(PB_FIELD_32BIT) | ||||
| @ -143,7 +153,7 @@ PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 65536 && pb_members | ||||
|  * numbers or field sizes that are larger than what can fit in the default | ||||
|  * 8 bit descriptors. | ||||
|  */ | ||||
| PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 256 && pb_membersize(onnx_SparseTensorProto, indices) < 256 && pb_membersize(onnx_SparseTensorProto, values) < 256 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 256 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 256), YOU_MUST_DEFINE_PB_FIELD_16BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto) | ||||
| PB_STATIC_ASSERT((pb_membersize(onnx_TensorProto, segment) < 256 && pb_membersize(onnx_SparseTensorProto, indices) < 256 && pb_membersize(onnx_SparseTensorProto, values) < 256 && pb_membersize(onnx_TypeProto, sparse_tensor_type) < 256 && pb_membersize(onnx_TypeProto_SparseTensorTypeProto, shape) < 256), YOU_MUST_DEFINE_PB_FIELD_16BIT_FOR_MESSAGES_onnx_AttributeProto_onnx_ValueInfoProto_onnx_NodeProto_onnx_ModelProto_onnx_GraphProto_onnx_TensorProto_onnx_TensorProto_Segment_onnx_SparseTensorProto_onnx_TypeProto_onnx_TypeProto_TensorShapeProto_onnx_TypeProto_TensorShapeProto_Dimension_onnx_TypeProto_TensorTypeProto_onnx_TypeProto_SparseTensorTypeProto_onnx_OperatorSetIdProto) | ||||
| #endif | ||||
|  | ||||
|  | ||||
|  | ||||
| @ -16,12 +16,31 @@ extern "C" { | ||||
|  | ||||
| /* Enum definitions */ | ||||
| typedef enum _onnx_Version { | ||||
|     onnx_Version_IR_VERSION = 1 | ||||
|     onnx_Version__START_VERSION = 0, | ||||
|     onnx_Version_IR_VERSION_2017_10_10 = 1, | ||||
|     onnx_Version_IR_VERSION = 2 | ||||
| } onnx_Version; | ||||
| #define _onnx_Version_MIN onnx_Version_IR_VERSION | ||||
| #define _onnx_Version_MIN onnx_Version__START_VERSION | ||||
| #define _onnx_Version_MAX onnx_Version_IR_VERSION | ||||
| #define _onnx_Version_ARRAYSIZE ((onnx_Version)(onnx_Version_IR_VERSION+1)) | ||||
|  | ||||
| typedef enum _onnx_AttributeProto_AttributeType { | ||||
|     onnx_AttributeProto_AttributeType_UNDEFINED = 0, | ||||
|     onnx_AttributeProto_AttributeType_FLOAT = 1, | ||||
|     onnx_AttributeProto_AttributeType_INT = 2, | ||||
|     onnx_AttributeProto_AttributeType_STRING = 3, | ||||
|     onnx_AttributeProto_AttributeType_TENSOR = 4, | ||||
|     onnx_AttributeProto_AttributeType_GRAPH = 5, | ||||
|     onnx_AttributeProto_AttributeType_FLOATS = 6, | ||||
|     onnx_AttributeProto_AttributeType_INTS = 7, | ||||
|     onnx_AttributeProto_AttributeType_STRINGS = 8, | ||||
|     onnx_AttributeProto_AttributeType_TENSORS = 9, | ||||
|     onnx_AttributeProto_AttributeType_GRAPHS = 10 | ||||
| } onnx_AttributeProto_AttributeType; | ||||
| #define _onnx_AttributeProto_AttributeType_MIN onnx_AttributeProto_AttributeType_UNDEFINED | ||||
| #define _onnx_AttributeProto_AttributeType_MAX onnx_AttributeProto_AttributeType_GRAPHS | ||||
| #define _onnx_AttributeProto_AttributeType_ARRAYSIZE ((onnx_AttributeProto_AttributeType)(onnx_AttributeProto_AttributeType_GRAPHS+1)) | ||||
|  | ||||
| typedef enum _onnx_TensorProto_DataType { | ||||
|     onnx_TensorProto_DataType_UNDEFINED = 0, | ||||
|     onnx_TensorProto_DataType_FLOAT = 1, | ||||
| @ -63,6 +82,7 @@ typedef struct _onnx_NodeProto { | ||||
|     pb_callback_t op_type; | ||||
|     pb_callback_t attribute; | ||||
|     pb_callback_t doc_string; | ||||
|     pb_callback_t domain; | ||||
| /* @@protoc_insertion_point(struct:onnx_NodeProto) */ | ||||
| } onnx_NodeProto; | ||||
|  | ||||
| @ -91,6 +111,8 @@ typedef struct _onnx_AttributeProto { | ||||
|     pb_callback_t strings; | ||||
|     pb_callback_t tensors; | ||||
|     pb_callback_t graphs; | ||||
|     bool has_type; | ||||
|     onnx_AttributeProto_AttributeType type; | ||||
| /* @@protoc_insertion_point(struct:onnx_AttributeProto) */ | ||||
| } onnx_AttributeProto; | ||||
|  | ||||
| @ -104,9 +126,17 @@ typedef struct _onnx_ModelProto { | ||||
|     int64_t model_version; | ||||
|     pb_callback_t doc_string; | ||||
|     pb_callback_t graph; | ||||
|     pb_callback_t opset_import; | ||||
| /* @@protoc_insertion_point(struct:onnx_ModelProto) */ | ||||
| } onnx_ModelProto; | ||||
|  | ||||
| typedef struct _onnx_OperatorSetIdProto { | ||||
|     pb_callback_t domain; | ||||
|     bool has_version; | ||||
|     int64_t version; | ||||
| /* @@protoc_insertion_point(struct:onnx_OperatorSetIdProto) */ | ||||
| } onnx_OperatorSetIdProto; | ||||
|  | ||||
| typedef struct _onnx_TensorProto_Segment { | ||||
|     bool has_begin; | ||||
|     int64_t begin; | ||||
| @ -173,10 +203,10 @@ typedef struct _onnx_SparseTensorProto { | ||||
| /* Default values for struct fields */ | ||||
|  | ||||
| /* Initializer values for message structs */ | ||||
| #define onnx_AttributeProto_init_default         {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_AttributeProto_init_default         {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, (onnx_AttributeProto_AttributeType)0} | ||||
| #define onnx_ValueInfoProto_init_default         {{{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_NodeProto_init_default              {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_ModelProto_init_default             {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_NodeProto_init_default              {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_ModelProto_init_default             {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_GraphProto_init_default             {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_TensorProto_init_default            {{{NULL}, NULL}, false, (onnx_TensorProto_DataType)0, false, onnx_TensorProto_Segment_init_default, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_TensorProto_Segment_init_default    {false, 0, false, 0} | ||||
| @ -186,10 +216,11 @@ typedef struct _onnx_SparseTensorProto { | ||||
| #define onnx_TypeProto_TensorShapeProto_Dimension_init_default {false, 0, {{NULL}, NULL}} | ||||
| #define onnx_TypeProto_TensorTypeProto_init_default {false, (onnx_TensorProto_DataType)0, {{NULL}, NULL}} | ||||
| #define onnx_TypeProto_SparseTensorTypeProto_init_default {false, (onnx_TensorProto_DataType)0, false, onnx_TypeProto_TensorShapeProto_init_default} | ||||
| #define onnx_AttributeProto_init_zero            {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_OperatorSetIdProto_init_default     {{{NULL}, NULL}, false, 0} | ||||
| #define onnx_AttributeProto_init_zero            {{{NULL}, NULL}, false, 0, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, (onnx_AttributeProto_AttributeType)0} | ||||
| #define onnx_ValueInfoProto_init_zero            {{{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_NodeProto_init_zero                 {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_ModelProto_init_zero                {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_NodeProto_init_zero                 {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_ModelProto_init_zero                {false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, false, 0, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_GraphProto_init_zero                {{{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_TensorProto_init_zero               {{{NULL}, NULL}, false, (onnx_TensorProto_DataType)0, false, onnx_TensorProto_Segment_init_zero, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}, {{NULL}, NULL}} | ||||
| #define onnx_TensorProto_Segment_init_zero       {false, 0, false, 0} | ||||
| @ -199,6 +230,7 @@ typedef struct _onnx_SparseTensorProto { | ||||
| #define onnx_TypeProto_TensorShapeProto_Dimension_init_zero {false, 0, {{NULL}, NULL}} | ||||
| #define onnx_TypeProto_TensorTypeProto_init_zero {false, (onnx_TensorProto_DataType)0, {{NULL}, NULL}} | ||||
| #define onnx_TypeProto_SparseTensorTypeProto_init_zero {false, (onnx_TensorProto_DataType)0, false, onnx_TypeProto_TensorShapeProto_init_zero} | ||||
| #define onnx_OperatorSetIdProto_init_zero        {{{NULL}, NULL}, false, 0} | ||||
|  | ||||
| /* Field tags (for use in manual encoding/decoding) */ | ||||
| #define onnx_GraphProto_node_tag                 1 | ||||
| @ -212,12 +244,14 @@ typedef struct _onnx_SparseTensorProto { | ||||
| #define onnx_NodeProto_output_tag                2 | ||||
| #define onnx_NodeProto_name_tag                  3 | ||||
| #define onnx_NodeProto_op_type_tag               4 | ||||
| #define onnx_NodeProto_domain_tag                7 | ||||
| #define onnx_NodeProto_attribute_tag             5 | ||||
| #define onnx_NodeProto_doc_string_tag            6 | ||||
| #define onnx_TypeProto_TensorShapeProto_dim_tag  1 | ||||
| #define onnx_ValueInfoProto_name_tag             1 | ||||
| #define onnx_ValueInfoProto_type_tag             2 | ||||
| #define onnx_AttributeProto_name_tag             1 | ||||
| #define onnx_AttributeProto_type_tag             20 | ||||
| #define onnx_AttributeProto_f_tag                2 | ||||
| #define onnx_AttributeProto_i_tag                3 | ||||
| #define onnx_AttributeProto_s_tag                4 | ||||
| @ -229,12 +263,15 @@ typedef struct _onnx_SparseTensorProto { | ||||
| #define onnx_AttributeProto_tensors_tag          10 | ||||
| #define onnx_AttributeProto_graphs_tag           11 | ||||
| #define onnx_ModelProto_ir_version_tag           1 | ||||
| #define onnx_ModelProto_opset_import_tag         8 | ||||
| #define onnx_ModelProto_producer_name_tag        2 | ||||
| #define onnx_ModelProto_producer_version_tag     3 | ||||
| #define onnx_ModelProto_domain_tag               4 | ||||
| #define onnx_ModelProto_model_version_tag        5 | ||||
| #define onnx_ModelProto_doc_string_tag           6 | ||||
| #define onnx_ModelProto_graph_tag                7 | ||||
| #define onnx_OperatorSetIdProto_domain_tag       1 | ||||
| #define onnx_OperatorSetIdProto_version_tag      2 | ||||
| #define onnx_TensorProto_Segment_begin_tag       1 | ||||
| #define onnx_TensorProto_Segment_end_tag         2 | ||||
| #define onnx_TypeProto_SparseTensorTypeProto_elem_type_tag 1 | ||||
| @ -261,10 +298,10 @@ typedef struct _onnx_SparseTensorProto { | ||||
| #define onnx_SparseTensorProto_values_tag        3 | ||||
|  | ||||
| /* Struct field encoding specification for nanopb */ | ||||
| extern const pb_field_t onnx_AttributeProto_fields[12]; | ||||
| extern const pb_field_t onnx_AttributeProto_fields[13]; | ||||
| extern const pb_field_t onnx_ValueInfoProto_fields[3]; | ||||
| extern const pb_field_t onnx_NodeProto_fields[7]; | ||||
| extern const pb_field_t onnx_ModelProto_fields[8]; | ||||
| extern const pb_field_t onnx_NodeProto_fields[8]; | ||||
| extern const pb_field_t onnx_ModelProto_fields[9]; | ||||
| extern const pb_field_t onnx_GraphProto_fields[8]; | ||||
| extern const pb_field_t onnx_TensorProto_fields[12]; | ||||
| extern const pb_field_t onnx_TensorProto_Segment_fields[3]; | ||||
| @ -274,6 +311,7 @@ extern const pb_field_t onnx_TypeProto_TensorShapeProto_fields[2]; | ||||
| extern const pb_field_t onnx_TypeProto_TensorShapeProto_Dimension_fields[3]; | ||||
| extern const pb_field_t onnx_TypeProto_TensorTypeProto_fields[3]; | ||||
| extern const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3]; | ||||
| extern const pb_field_t onnx_OperatorSetIdProto_fields[3]; | ||||
|  | ||||
| /* Maximum encoded size of messages (where known) */ | ||||
| /* onnx_AttributeProto_size depends on runtime parameters */ | ||||
| @ -289,6 +327,7 @@ extern const pb_field_t onnx_TypeProto_SparseTensorTypeProto_fields[3]; | ||||
| /* onnx_TypeProto_TensorShapeProto_Dimension_size depends on runtime parameters */ | ||||
| /* onnx_TypeProto_TensorTypeProto_size depends on runtime parameters */ | ||||
| #define onnx_TypeProto_SparseTensorTypeProto_size (8 + onnx_TypeProto_TensorShapeProto_size) | ||||
| /* onnx_OperatorSetIdProto_size depends on runtime parameters */ | ||||
|  | ||||
| /* Message IDs (where set with "msgid" option) */ | ||||
| #ifdef PB_MSGID | ||||
|  | ||||
| @ -14,6 +14,7 @@ import ctypes | ||||
| import os | ||||
| import torch | ||||
| import traceback | ||||
| import warnings | ||||
| from torch._six import raise_from | ||||
| from multiprocessing.util import register_after_fork as _register_after_fork | ||||
|  | ||||
| @ -65,11 +66,29 @@ http://www.nvidia.com/Download/index.aspx""") | ||||
| The NVIDIA driver on your system is too old (found version {}). | ||||
| Please update your GPU driver by downloading and installing a new | ||||
| version from the URL: http://www.nvidia.com/Download/index.aspx | ||||
| Alternatively, go to: https://pytorch.org/binaries to install | ||||
| Alternatively, go to: http://pytorch.org to install | ||||
| a PyTorch version that has been compiled with your version | ||||
| of the CUDA driver.""".format(str(torch._C._cuda_getDriverVersion()))) | ||||
|  | ||||
|  | ||||
| def _check_capability(): | ||||
|     error_str = """ | ||||
|     Found GPU%d %s which requires CUDA_VERSION >= %d for | ||||
|      optimal performance and fast startup time, but your PyTorch was compiled | ||||
|      with CUDA_VERSION %d. Please install the correct PyTorch binary | ||||
|      using instructions from http://pytorch.org | ||||
|     """ | ||||
|  | ||||
|     CUDA_VERSION = torch._C._cuda_getCompiledVersion() | ||||
|     for d in range(device_count()): | ||||
|         major = get_device_capability(d)[0] | ||||
|         name = get_device_name(d) | ||||
|         if CUDA_VERSION < 8000 and major >= 6: | ||||
|             warnings.warn(error_str % (d, name, 8000, CUDA_VERSION)) | ||||
|         elif CUDA_VERSION < 9000 and major >= 7: | ||||
|             warnings.warn(error_str % (d, name, 8000, CUDA_VERSION)) | ||||
|  | ||||
|  | ||||
| def _lazy_call(callable): | ||||
|     if _initialized: | ||||
|         callable() | ||||
| @ -77,6 +96,8 @@ def _lazy_call(callable): | ||||
|         # Don't store the actual traceback to avoid memory cycle | ||||
|         _queued_calls.append((callable, traceback.format_stack())) | ||||
|  | ||||
| _lazy_call(_check_capability) | ||||
|  | ||||
|  | ||||
| class DeferredCudaCallError(Exception): | ||||
|     pass | ||||
| @ -213,6 +234,19 @@ def get_device_name(device): | ||||
|         return torch._C._cuda_getDeviceName(device) | ||||
|  | ||||
|  | ||||
| def get_device_capability(device): | ||||
|     """Gets the cuda capability of a device. | ||||
|  | ||||
|     Arguments: | ||||
|         device (int): device for which to return the name. This function is a | ||||
|             no-op if this argument is negative. | ||||
|     Returns: | ||||
|         tuple(int, int): the major and minor cuda capability of the device | ||||
|     """ | ||||
|     if device >= 0: | ||||
|         return torch._C._cuda_getDeviceCapability(device) | ||||
|  | ||||
|  | ||||
| @contextlib.contextmanager | ||||
| def stream(stream): | ||||
|     """Context-manager that selects a given stream. | ||||
| @ -267,6 +301,13 @@ def current_blas_handle(): | ||||
|     return torch._C._cuda_getCurrentBlasHandle() | ||||
|  | ||||
|  | ||||
| def empty_cache(): | ||||
|     """Releases all unoccupied cached memory currently held by the caching | ||||
|     allocator so that those can be used in other GPU application and visible in | ||||
|     `nvidia-smi`.""" | ||||
|     return torch._C._cuda_emptyCache() | ||||
|  | ||||
|  | ||||
| def _host_allocator(): | ||||
|     _lazy_init() | ||||
|     return torch._C._cuda_cudaHostAllocator() | ||||
|  | ||||
| @ -107,10 +107,10 @@ class Event(object): | ||||
|  | ||||
|     Arguments: | ||||
|         enable_timing (bool): indicates if the event should measure time | ||||
|             (default: False) | ||||
|         blocking (bool): if true, :meth:`wait` will be blocking (default: False) | ||||
|         interprocess (bool): if true, the event can be shared between processes | ||||
|             (default: False) | ||||
|             (default: ``False``) | ||||
|         blocking (bool): if ``True``, :meth:`wait` will be blocking (default: ``False``) | ||||
|         interprocess (bool): if ``True``, the event can be shared between processes | ||||
|             (default: ``False``) | ||||
|     """ | ||||
|  | ||||
|     DEFAULT = 0x0 | ||||
|  | ||||
| @ -1,17 +1,32 @@ | ||||
| """ | ||||
| r""" | ||||
| The ``distributions`` package contains parameterizable probability distributions | ||||
| and sampling functions. | ||||
|  | ||||
| The :meth:`log_prob` method is useful for policy gradient based methods. If the | ||||
| parameters of the distribution are differentiable, then the result of ``log_prob`` | ||||
| is also differentiable. | ||||
| Policy gradient methods can be implemented using the | ||||
| :meth:`~torch.distributions.Distribution.log_prob` method, when the probability | ||||
| density function is differentiable with respect to its parameters. A basic | ||||
| method is the REINFORCE rule: | ||||
|  | ||||
| Example:: | ||||
| .. math:: | ||||
|  | ||||
|     probs = network(input) | ||||
|     m = Multinomial(probs) | ||||
|     \Delta\theta  = \alpha r \frac{\partial\log p(a|\pi^\theta(s))}{\partial\theta} | ||||
|  | ||||
| where :math:`\theta` are the parameters, :math:`\alpha` is the learning rate, | ||||
| :math:`r` is the reward and :math:`p(a|\pi^\theta(s))` is the probability of | ||||
| taking action :math:`a` in state :math:`s` given policy :math:`\pi^\theta`. | ||||
|  | ||||
| In practice we would sample an action from the output of a network, apply this | ||||
| action in an environment, and then use ``log_prob`` to construct an equivalent | ||||
| loss function. Note that we use a negative because optimisers use gradient | ||||
| descent, whilst the rule above assumes gradient ascent. With a categorical | ||||
| policy, the code for implementing REINFORCE would be as follows:: | ||||
|  | ||||
|     probs = policy_network(state) | ||||
|     # NOTE: this is equivalent to what used to be called multinomial | ||||
|     m = Categorical(probs) | ||||
|     action = m.sample() | ||||
|     loss = -m.log_prob(action) * get_reward(env, action) | ||||
|     next_state, reward = env.step(action) | ||||
|     loss = -m.log_prob(action) * reward | ||||
|     loss.backward() | ||||
| """ | ||||
| import math | ||||
| @ -19,7 +34,7 @@ from numbers import Number | ||||
| import torch | ||||
|  | ||||
|  | ||||
| __all__ = ['Distribution', 'Bernoulli', 'Multinomial', 'Normal'] | ||||
| __all__ = ['Distribution', 'Bernoulli', 'Categorical', 'Normal'] | ||||
|  | ||||
|  | ||||
| class Distribution(object): | ||||
| @ -87,9 +102,12 @@ class Bernoulli(Distribution): | ||||
|         return log_pmf.gather(0, value.unsqueeze(0).long()).squeeze(0) | ||||
|  | ||||
|  | ||||
| class Multinomial(Distribution): | ||||
| class Categorical(Distribution): | ||||
|     r""" | ||||
|     Creates a multinomial distribution parameterized by `probs`. | ||||
|     Creates a categorical distribution parameterized by `probs`. | ||||
|  | ||||
|     .. note:: | ||||
|         It is equivalent to the distribution that ``multinomial()`` samples from. | ||||
|  | ||||
|     Samples are integers from `0 ... K-1` where `K` is probs.size(-1). | ||||
|  | ||||
| @ -102,7 +120,7 @@ class Multinomial(Distribution): | ||||
|  | ||||
|     Example:: | ||||
|  | ||||
|         >>> m = Multinomial(torch.Tensor([ 0.25, 0.25, 0.25, 0.25 ])) | ||||
|         >>> m = Categorical(torch.Tensor([ 0.25, 0.25, 0.25, 0.25 ])) | ||||
|         >>> m.sample()  # equal probability of 0, 1, 2, 3 | ||||
|          3 | ||||
|         [torch.LongTensor of size 1] | ||||
|  | ||||
| @ -69,10 +69,10 @@ def compile(arg=None, **kwargs): | ||||
|             (as we always wait to see all derivatives before compiling.) | ||||
|             Default: 1 (i.e., we will compile forwards and backwards, but not | ||||
|             double-backwards). | ||||
|         optimize (bool, optional): whether or not to apply optimizations.  Default: True. | ||||
|         optimize (bool, optional): whether or not to apply optimizations.  Default: ``True``. | ||||
|  | ||||
|     Debug arguments: | ||||
|         time (bool, optional): if True, whenever we execute the model in question, we | ||||
|         time (bool, optional): if ``True``, whenever we execute the model in question, we | ||||
|             will also print out some timing information for how long the model | ||||
|             took to execute.  At the moment, there are three types of timings we | ||||
|             emit: | ||||
| @ -87,10 +87,10 @@ def compile(arg=None, **kwargs): | ||||
|                 - optimized: the time it took to execute the optimized model. | ||||
|  | ||||
|             At the moment, all of these timings are for the forward pass only. | ||||
|             Default: False. | ||||
|         enabled (bool, optional): if False, compilation is disabled and you | ||||
|             Default: ``False``. | ||||
|         enabled (bool, optional): if ``False``, compilation is disabled and you | ||||
|             will get back your original model.  This is a convenient way to | ||||
|             disable tracing without having to delete the annotation. Default: True. | ||||
|             disable tracing without having to delete the annotation. Default: ``True``. | ||||
|  | ||||
|     Example: Compile as class decorator. | ||||
|  | ||||
| @ -396,6 +396,10 @@ class _CompiledMixin(object): | ||||
|         # TODO: Figure out how to call parent destructor, if there is one. | ||||
|         # Apparently, this is buggy: | ||||
|         #     https://stackoverflow.com/questions/22972720/python-cant-invoke-parent-class-destructor-with-super | ||||
|         # NB: Have to mangle this by hand! | ||||
|         if not (hasattr(self, '_CompiledMixin__misses') and hasattr(self, '_CompiledMixin___hits')): | ||||
|             # Probably died during construction | ||||
|             return | ||||
|         if self.__misses != 0 and self.__hits == 0: | ||||
|             warnings.warn("{} was marked with JIT and invoked {} times, " | ||||
|                           "but we never successfully used compiled code." | ||||
|  | ||||
| @ -18,18 +18,22 @@ class DistKLDivCriterion(Criterion): | ||||
|             input, | ||||
|             target, | ||||
|             self.output_tensor, | ||||
|             self.sizeAverage | ||||
|             self.sizeAverage, | ||||
|             True,  # reduce | ||||
|         ) | ||||
|         self.output = self.output_tensor[0] | ||||
|         return self.output | ||||
|  | ||||
|     def updateGradInput(self, input, target): | ||||
|         assert input.is_same_size(target) | ||||
|         implicit_gradOutput = torch.ones(1).type_as(input) | ||||
|         self._backend.DistKLDivCriterion_updateGradInput( | ||||
|             self._backend.library_state, | ||||
|             input, | ||||
|             target, | ||||
|             implicit_gradOutput, | ||||
|             self.gradInput, | ||||
|             self.sizeAverage | ||||
|             self.sizeAverage, | ||||
|             True,  # reduce | ||||
|         ) | ||||
|         return self.gradInput | ||||
|  | ||||
| @ -29,7 +29,6 @@ class ELU(Module): | ||||
|     def updateGradInput(self, input, gradOutput): | ||||
|         self._backend.ELU_updateGradInput( | ||||
|             self._backend.library_state, | ||||
|             input, | ||||
|             gradOutput, | ||||
|             self.gradInput, | ||||
|             self.output, | ||||
|  | ||||
| @ -66,6 +66,7 @@ IF ($ENV{TH_BINARY_BUILD}) | ||||
|   IF (UNIX AND NOT APPLE) | ||||
|     # hiding statically linked library symbols, this flag is not available for the linker under MACOSX | ||||
|     SET(CMAKE_CXX_FLAGS "-Wl,--exclude-libs,libstdc++.a ${CMAKE_CXX_FLAGS}") | ||||
|     set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--version-script=${CMAKE_CURRENT_SOURCE_DIR}/../../../tools/pytorch.version") | ||||
|   ENDIF(UNIX AND NOT APPLE) | ||||
| ENDIF() | ||||
|  | ||||
|  | ||||
| @ -17,8 +17,15 @@ public: | ||||
|   Type & getType(Backend p, ScalarType s) { | ||||
|     initCUDAIfNeeded(p); | ||||
|     auto & type = type_registry[static_cast<int>(p)][static_cast<int>(s)]; | ||||
|     if(!type) | ||||
|  | ||||
|     if(!type) { | ||||
|       // there is only a single Undefined Type. | ||||
|       if (p == Backend::Undefined || s == ScalarType::Undefined) { | ||||
|         auto & undef = type_registry[static_cast<int>(Backend::Undefined)][static_cast<int>(ScalarType::Undefined)]; | ||||
|         if (undef) return *undef; | ||||
|       } | ||||
|       runtime_error("%s%sType is not enabled.",toString(p),toString(s)); | ||||
|     } | ||||
|     return *type; | ||||
|   } | ||||
|   Generator & defaultGenerator(Backend p) { | ||||
|  | ||||
| @ -36,6 +36,8 @@ static DLDataType getDLDataType(const Type& type) { | ||||
|     case ScalarType::Half: | ||||
|       dtype.code = DLDataTypeCode::kFloat; | ||||
|       break; | ||||
|     case ScalarType::Undefined: | ||||
|       throw std::logic_error("Undefined is not a valid ScalarType"); | ||||
|     case ScalarType::NumOptions: | ||||
|       throw std::logic_error("NumOptions is not a valid ScalarType"); | ||||
|   } | ||||
|  | ||||
| @ -579,6 +579,8 @@ | ||||
|     - CPU | ||||
|     - CUDA | ||||
|   return: argument 0 | ||||
|   options: | ||||
|     - cname: arange | ||||
|       arguments: | ||||
|         - arg: THTensor* result | ||||
|           output: True | ||||
| @ -586,6 +588,13 @@ | ||||
|         - accreal end | ||||
|         - arg: accreal step | ||||
|           default: 1 | ||||
|     - cname: arange | ||||
|       arguments: | ||||
|         - arg: THTensor* result | ||||
|           output: True | ||||
|         - CONSTANT 0 | ||||
|         - accreal end | ||||
|         - CONSTANT 1 | ||||
| ]] | ||||
| [[ | ||||
|   name: scatter_ | ||||
|  | ||||
| @ -1,10 +1,20 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "ATen/Tensor.h" | ||||
| #include <functional> | ||||
| #include <sstream> | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| // avoid copy-construction of Tensor by using a reference_wrapper. | ||||
| inline void check_defined(std::initializer_list<std::reference_wrapper<const Tensor>> tensors, const char *api_name) { | ||||
|   for (auto& t : tensors) { | ||||
|     if (!t.get().defined()) { | ||||
|       runtime_error("%s(...) called with an undefined Tensor", api_name); | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand) { | ||||
|   if (tensor.sizes().equals(to_expand.sizes())) { | ||||
|     return std::make_tuple(to_expand); | ||||
| @ -13,6 +23,11 @@ inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_ | ||||
|   return std::make_tuple(to_expand.expand(tensor.sizes())); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand, const char *api_name) { | ||||
|   check_defined({tensor, to_expand}, api_name); | ||||
|   return expand_inplace(tensor, to_expand); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2) { | ||||
|   if (tensor.sizes().equals(to_expand1.sizes()) && tensor.sizes().equals((to_expand2.sizes()))) { | ||||
|     return std::make_tuple(to_expand1, to_expand2); | ||||
| @ -21,6 +36,12 @@ inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Ten | ||||
|   return std::make_tuple(to_expand1.expand(tensor.sizes()), to_expand2.expand(tensor.sizes())); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2, | ||||
|                                                  const char *api_name) { | ||||
|   check_defined({tensor, to_expand1, to_expand2}, api_name); | ||||
|   return expand_inplace(tensor, to_expand1, to_expand2); | ||||
| } | ||||
|  | ||||
| inline std::vector<int64_t> infer_size2(IntList a, IntList b) { | ||||
|   auto dimsA = a.size(); | ||||
|   auto dimsB = b.size(); | ||||
| @ -55,7 +76,12 @@ inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, cons | ||||
|   return std::make_tuple(to_expand1.expand(expanded_size), to_expand2.expand(expanded_size)); | ||||
| } | ||||
|  | ||||
| std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1, | ||||
| inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, const Tensor &to_expand2, const char *api_name) { | ||||
|   check_defined({to_expand1, to_expand2}, api_name); | ||||
|   return expand_outplace(to_expand1, to_expand2); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1, | ||||
|                                                           const Tensor &to_expand2, | ||||
|                                                           const Tensor &to_expand3) { | ||||
|   if (to_expand1.sizes().equals(to_expand2.sizes()) && to_expand1.sizes().equals(to_expand3.sizes())) { | ||||
| @ -67,6 +93,14 @@ std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1, | ||||
|   return std::make_tuple(to_expand1.expand(expanded_size), to_expand2.expand(expanded_size), to_expand3.expand(expanded_size)); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1, | ||||
|                                                           const Tensor &to_expand2, | ||||
|                                                           const Tensor &to_expand3, | ||||
|                                                           const char *api_name) { | ||||
|   check_defined({to_expand1, to_expand2, to_expand3}, api_name); | ||||
|   return expand_outplace(to_expand1, to_expand2, to_expand3); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes) { | ||||
|   if(to_expand.sizes().equals(sizes)) { | ||||
|     return std::make_tuple(to_expand); | ||||
| @ -75,4 +109,9 @@ inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes) { | ||||
|   return std::make_tuple(to_expand.expand(sizes)); | ||||
| } | ||||
|  | ||||
| inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntList sizes, const char *api_name) { | ||||
|   check_defined({to_expand}, api_name); | ||||
|   return expand_size(to_expand, sizes); | ||||
| } | ||||
|  | ||||
| } | ||||
|  | ||||
| @ -128,6 +128,24 @@ | ||||
|     ${THTensor}_setStorage(${state,}result_->tensor, self_->tensor->storage, self_->tensor->storageOffset, size_, stride_); | ||||
| ]] | ||||
|  | ||||
| [[ | ||||
|   name: as_strided_ | ||||
|   variants: [method,function] | ||||
|   return: argument 0 | ||||
|   arguments: | ||||
|     - THTensor* self | ||||
|     - THSize* size | ||||
|     - THStride* stride | ||||
|     - arg: int64_t storage_offset | ||||
|       default: -1 | ||||
|   aten_custom_call: | | ||||
|     if (storage_offset == -1) { | ||||
|       storage_offset = self_->tensor->storageOffset; | ||||
|     } | ||||
|     ${THTensor}_setStorage(${state,}self_->tensor, self_->tensor->storage, storage_offset, size_, stride_); | ||||
|     self_->maybeScalar(size.size() == 0); | ||||
| ]] | ||||
|  | ||||
| [[ | ||||
|   name: cat | ||||
|   cname: catArray | ||||
|  | ||||
| @ -23,7 +23,7 @@ public: | ||||
|  | ||||
|   explicit Scalar(const detail::TensorBase & t) | ||||
|   : tag(Tag::HAS_t), t(t) { | ||||
|     AT_ASSERT(t.pImpl, "Attempting to create a Scalar from an undefined tensor"); | ||||
|     AT_ASSERT(t.defined(), "Attempting to create a Scalar from an undefined tensor"); | ||||
|     AT_ASSERT(t.dim() == 0, "Attempting to create a Scalar from a %d dim tensor", t.dim()); | ||||
|   } | ||||
|  | ||||
|  | ||||
| @ -23,6 +23,7 @@ enum class ScalarType { | ||||
|   n, | ||||
|   AT_FORALL_SCALAR_TYPES(DEFINE_ENUM) | ||||
| #undef DEFINE_ENUM | ||||
|   Undefined, | ||||
|   NumOptions | ||||
| }; | ||||
|  | ||||
| @ -31,6 +32,7 @@ enum class Backend { | ||||
|   CUDA, | ||||
|   SparseCPU, | ||||
|   SparseCUDA, | ||||
|   Undefined, | ||||
|   NumOptions | ||||
| }; | ||||
|  | ||||
| @ -62,7 +64,7 @@ static inline const char * toString(ScalarType t) { | ||||
|   switch(t) { | ||||
|     AT_FORALL_SCALAR_TYPES(DEFINE_CASE) | ||||
|     default: | ||||
|       return "UNKNOWN_SCALAR_TYPE"; | ||||
|       return "UNKNOWN_SCALAR"; | ||||
|   } | ||||
| #undef DEFINE_CASE | ||||
| } | ||||
|  | ||||
| @ -1,29 +1,32 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "ATen/TensorImpl.h" | ||||
| #include "ATen/UndefinedTensor.h" | ||||
|  | ||||
| namespace at { namespace detail { | ||||
|  | ||||
| // TensorBase is the base class for Tensor which handles the reference counting | ||||
| struct TensorBase { | ||||
|   TensorBase() | ||||
|   : pImpl(nullptr) {} | ||||
|   TensorBase(): TensorBase(UndefinedTensor::singleton(), false) {} | ||||
|   TensorBase(TensorImpl * self, bool retain) | ||||
|   : pImpl(self) { | ||||
|     if(pImpl != nullptr && retain) | ||||
|     if (pImpl == nullptr) { | ||||
|       throw std::runtime_error("TensorBase with nullptr not supported"); | ||||
|     } | ||||
|     if(retain && pImpl != UndefinedTensor::singleton()) | ||||
|       pImpl->retain(); | ||||
|   } | ||||
|   TensorBase(const TensorBase & rhs) | ||||
|   : pImpl(rhs.pImpl) { | ||||
|     if(pImpl != nullptr) | ||||
|     if (pImpl != UndefinedTensor::singleton()) | ||||
|       pImpl->retain(); | ||||
|   } | ||||
|   TensorBase(TensorBase && rhs) noexcept | ||||
|   : pImpl(rhs.pImpl) { | ||||
|     rhs.pImpl = nullptr; | ||||
|     rhs.pImpl = UndefinedTensor::singleton(); | ||||
|   } | ||||
|   ~TensorBase() { | ||||
|     if(pImpl != nullptr) | ||||
|     if (pImpl != UndefinedTensor::singleton()) | ||||
|       pImpl->release(); | ||||
|   } | ||||
|   TensorBase & operator=(TensorBase && rhs) & { | ||||
| @ -48,6 +51,9 @@ struct TensorBase { | ||||
|   TensorImpl * get() const { | ||||
|     return pImpl; | ||||
|   } | ||||
|   bool defined() const { | ||||
|     return pImpl != UndefinedTensor::singleton(); | ||||
|   } | ||||
|  | ||||
|   friend struct Type; | ||||
|  | ||||
|  | ||||
| @ -11,6 +11,7 @@ inline Tensor & Tensor::operator=(Scalar v) && { | ||||
|   return assign_(v); | ||||
| } | ||||
| inline Tensor & Tensor::assign_(Scalar v) { | ||||
|   AT_ASSERT(defined(), "attempting to assign a scalar to an undefined tensor"); | ||||
|   AT_ASSERT(dim() == 0, "attempting to assign a scalar to %d dim tensor", dim()); | ||||
|   pImpl->assign_(v); | ||||
|   return *this; | ||||
|  | ||||
							
								
								
									
										42
									
								
								torch/lib/ATen/UndefinedTensor.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								torch/lib/ATen/UndefinedTensor.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,42 @@ | ||||
| #include "ATen/UndefinedTensor.h" | ||||
| #include "ATen/Context.h" | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| // should this use the globalContext?  Can it get a context passed in somehow? | ||||
| UndefinedTensor::UndefinedTensor() | ||||
| : TensorImpl(&(globalContext().getType(Backend::Undefined,ScalarType::Undefined))) { | ||||
| } | ||||
|  | ||||
| const char * UndefinedTensor::toString() const { | ||||
|   return "UndefinedTensor"; | ||||
| } | ||||
|  | ||||
| IntList UndefinedTensor::sizes() const { | ||||
|   runtime_error("sizes() called on undefined Tensor"); | ||||
| } | ||||
|  | ||||
| int64_t UndefinedTensor::dim() const { | ||||
|   runtime_error("dim() called on undefined Tensor"); | ||||
| } | ||||
|  | ||||
| const char * UndefinedTensor::typeString() { | ||||
|   return "UndefinedType"; | ||||
| } | ||||
| void * UndefinedTensor::unsafeGetTH(bool retain) { | ||||
|   runtime_error("unsafeGetTH(bool retain) called on undefined Tensor"); | ||||
| } | ||||
|  | ||||
| IntList UndefinedTensor::strides() const { | ||||
|   runtime_error("strides() called on undefined Tensor"); | ||||
| } | ||||
| Scalar UndefinedTensor::localScalar() { | ||||
|   runtime_error("localScalar() called on undefined Tensor"); | ||||
| } | ||||
| void UndefinedTensor::assign_(Scalar s) { | ||||
|   runtime_error("assign_() called on undefined Tensor"); | ||||
| } | ||||
|  | ||||
| UndefinedTensor UndefinedTensor::_singleton; | ||||
|  | ||||
| } | ||||
							
								
								
									
										28
									
								
								torch/lib/ATen/UndefinedTensor.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								torch/lib/ATen/UndefinedTensor.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,28 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "ATen/TensorImpl.h" | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| struct UndefinedTensor final : public TensorImpl { | ||||
| public: | ||||
|   static inline UndefinedTensor * singleton() { | ||||
|     return &_singleton; | ||||
|   } | ||||
|   virtual ~UndefinedTensor() {} | ||||
|   virtual const char * toString() const override; | ||||
|   virtual IntList sizes() const override; | ||||
|   virtual IntList strides() const override; | ||||
|   virtual int64_t dim() const override; | ||||
|   virtual Scalar localScalar() override; | ||||
|   virtual void assign_(Scalar s) override; | ||||
|   virtual void * unsafeGetTH(bool retain) override; | ||||
|   static const char * typeString(); | ||||
| private: | ||||
|   UndefinedTensor(); | ||||
|   static UndefinedTensor _singleton; | ||||
| public: | ||||
|   friend struct UndefinedType; | ||||
| }; | ||||
|  | ||||
| } // namespace at | ||||
							
								
								
									
										65
									
								
								torch/lib/ATen/UndefinedType.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								torch/lib/ATen/UndefinedType.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,65 @@ | ||||
| #include "ATen/UndefinedType.h" | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| UndefinedType::UndefinedType(Context* context) | ||||
| : Type(context) {} | ||||
| ScalarType UndefinedType::scalarType() const { | ||||
|   return ScalarType::Undefined; | ||||
| } | ||||
| Backend UndefinedType::backend() const { | ||||
|   return Backend::Undefined; | ||||
| } | ||||
| bool UndefinedType::isCuda() const { return false; } | ||||
| bool UndefinedType::isSparse() const { return false; } | ||||
| bool UndefinedType::isDistributed() const { return false; } | ||||
|  | ||||
| std::unique_ptr<Storage> UndefinedType::storage() const { | ||||
|   runtime_error("storage not defined for UndefinedType"); | ||||
| } | ||||
| std::unique_ptr<Storage> UndefinedType::storage(size_t size) const { | ||||
|   runtime_error("storage(size_t) not defined for UndefinedType"); | ||||
| } | ||||
| std::unique_ptr<Storage> UndefinedType::storageFromBlob(void * data, int64_t size, const std::function<void(void*)> & deleter) const { | ||||
|   runtime_error("storageFromBlob not defined for UndefinedType"); | ||||
| } | ||||
| Tensor UndefinedType::unsafeTensorFromTH(void * th_pointer, bool retain) const { | ||||
|   runtime_error("unsafeTensorFromTH not defined for UndefinedType"); | ||||
| } | ||||
| std::unique_ptr<Generator> UndefinedType::generator() const { | ||||
|   runtime_error("generator not defined for UndefinedType"); | ||||
| } | ||||
|  | ||||
| const char * UndefinedType::toString() const { | ||||
|   return UndefinedType::typeString(); | ||||
| } | ||||
| TypeID UndefinedType::ID() const { | ||||
|   return TypeID::Undefined; | ||||
| } | ||||
|  | ||||
| std::size_t UndefinedType::elementSizeInBytes() const { | ||||
|   runtime_error("elementSizeInBytes not defined for UndefinedType"); | ||||
| } | ||||
|  | ||||
| Type & UndefinedType::toBackend(Backend b) const { | ||||
|   if (b == Backend::Undefined) { | ||||
|     return Type::toBackend(b); | ||||
|   } | ||||
|   runtime_error("toBackend not implemented for UndefinedType to non-UndefinedType"); | ||||
| } | ||||
| Type & UndefinedType::toScalarType(ScalarType s) const { | ||||
|   if (s == ScalarType::Undefined) { | ||||
|     return Type::toScalarType(s); | ||||
|   } | ||||
|   runtime_error("toScalarType not implemented for UndefinedType to non-UndefinedType"); | ||||
| } | ||||
|  | ||||
| const char * UndefinedType::typeString() { | ||||
|   return "UndefinedType"; | ||||
| } | ||||
|  | ||||
| void UndefinedType::s_copy(const Tensor & src, Tensor & dst) const { | ||||
|   runtime_error("s_copy not defined for UndefinedType"); | ||||
| } | ||||
|  | ||||
| } | ||||
							
								
								
									
										37
									
								
								torch/lib/ATen/UndefinedType.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								torch/lib/ATen/UndefinedType.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,37 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "ATen/Type.h" | ||||
| #include "ATen/Context.h" | ||||
| #include "ATen/CheckGenerator.h" | ||||
|  | ||||
| #ifdef _MSC_VER | ||||
| #ifdef Type | ||||
| #undef Type | ||||
| #endif | ||||
| #endif | ||||
|  | ||||
| namespace at { | ||||
|  | ||||
| struct UndefinedType final : public Type { | ||||
|   explicit UndefinedType(Context* context); | ||||
|   virtual ScalarType scalarType() const override; | ||||
|   virtual Backend backend() const override; | ||||
|   virtual bool isCuda() const override; | ||||
|   virtual bool isSparse() const override; | ||||
|   virtual bool isDistributed() const override; | ||||
|   virtual std::unique_ptr<Storage> storage() const override; | ||||
|   virtual std::unique_ptr<Storage> storage(size_t size) const override; | ||||
|   virtual std::unique_ptr<Storage> storageFromBlob(void * data, int64_t size, const std::function<void(void*)> & deleter) const override; | ||||
|   virtual std::unique_ptr<Generator> generator() const override; | ||||
|   virtual const char * toString() const override; | ||||
|   virtual std::size_t elementSizeInBytes() const override; | ||||
|   virtual Type & toBackend(Backend b) const; | ||||
|   virtual Type & toScalarType(ScalarType s) const; | ||||
|   virtual TypeID ID() const override; | ||||
|   static const char * typeString(); | ||||
|   Tensor unsafeTensorFromTH(void * th_pointer, bool retain) const override; | ||||
|  | ||||
|   virtual void s_copy(const Tensor & src, Tensor & dst) const override; | ||||
| }; | ||||
|  | ||||
| } // namespace at | ||||
| @ -2,6 +2,7 @@ | ||||
|  | ||||
| #include "ArrayRef.h" | ||||
| #include "ATenGeneral.h" | ||||
| #include "UndefinedTensor.h" | ||||
| #include <algorithm> | ||||
| #include <sstream> | ||||
| #include <typeinfo> | ||||
| @ -14,13 +15,17 @@ namespace at { | ||||
| AT_API void runtime_error(const char *format, ...); | ||||
|  | ||||
| template <typename T, typename Base> | ||||
| static inline T* checked_cast(Base* expr, const char * name, int pos, bool allowNull) { | ||||
|   if(!expr) { | ||||
|     if (allowNull) { | ||||
|       return (T*) expr; | ||||
|     } | ||||
|     runtime_error("Expected a Tensor of type %s but found an undefined Tensor for argument #%d '%s'", | ||||
|       T::typeString(),pos,name); | ||||
| static inline T* checked_cast_storage(Base* expr, const char * name, int pos) { | ||||
|   if (typeid(*expr) != typeid(T)) | ||||
|     runtime_error("Expected object of type %s but found type %s for argument #%d '%s'", | ||||
|       T::typeString(),expr->type().toString(),pos,name); | ||||
|   return static_cast<T*>(expr); | ||||
| } | ||||
|  | ||||
| template <typename T, typename Base> | ||||
| inline T* checked_cast_tensor(Base* expr, const char * name, int pos, bool allowNull) { | ||||
|   if(allowNull && expr == UndefinedTensor::singleton()) { | ||||
|     return nullptr; | ||||
|   } | ||||
|   if (typeid(*expr) != typeid(T)) | ||||
|     runtime_error("Expected object of type %s but found type %s for argument #%d '%s'", | ||||
| @ -34,11 +39,6 @@ static inline std::vector<TH*> tensor_list_checked_cast(ArrayRef<TBase> tensors, | ||||
|   std::vector<TH*> casted(tensors.size()); | ||||
|   for (unsigned int i = 0; i < tensors.size(); ++i) { | ||||
|     auto *expr = tensors[i].pImpl; | ||||
|     if (!expr) { | ||||
|       runtime_error("Expected a Tensor of type %s but found an undefined Tensor for sequence element %u " | ||||
|                     " in sequence argument at position #%d '%s'", | ||||
|                     T::typeString(),i,pos,name); | ||||
|     } | ||||
|     auto result = dynamic_cast<T*>(expr); | ||||
|     if (result) { | ||||
|       casted[i] = result->tensor; | ||||
|  | ||||
| @ -25,7 +25,7 @@ case ${src_id}: | ||||
| FUNCTION = CodeTemplate("""\ | ||||
| void ${Type}::s_copy(const Tensor & src, Tensor & dst) const { | ||||
|   // code generated by function_wrapper | ||||
|   auto dst_ = checked_cast<${Tensor}>(dst.pImpl,"dst",0,false); | ||||
|   auto dst_ = checked_cast_tensor<${Tensor}>(dst.pImpl,"dst",0,false); | ||||
|   (void) dst_; //silence unused warning | ||||
|   switch(src.type().ID()) { | ||||
|     ${copy_body} | ||||
|  | ||||
| @ -19,7 +19,7 @@ ${return_type} ${method_prefix}${api_name}(${formals_with_defaults}) const; | ||||
| TYPE_METHOD_DEFINITION_BROADCAST = CodeTemplate("""\ | ||||
| ${return_type} Type::${method_prefix}${api_name}(${formals}) const { | ||||
|     Tensor ${broadcast_returns}; | ||||
|     std::tie(${broadcast_returns}) = ${broadcast_function}(${broadcast_actuals}); | ||||
|     std::tie(${broadcast_returns}) = ${broadcast_function}(${broadcast_actuals}, "${api_name}"); | ||||
|     return ${method_prefix_derived}${api_name}(${broadcast_modified_actuals}); | ||||
| } | ||||
| """) | ||||
| @ -142,20 +142,22 @@ TYPE_RETURN = { | ||||
| } | ||||
|  | ||||
| CHECKED_CAST = { | ||||
|     'THTensor*': CodeTemplate('checked_cast<${Tensor}>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THTensor*': | ||||
|         CodeTemplate( | ||||
|             'checked_cast_tensor<${Tensor}>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THSTensor*': | ||||
|     CodeTemplate( | ||||
|         'checked_cast<Sparse${Tensor}>(${arg_name}.tref.pImpl,"${arg_name}",${arg_pos},false)'), | ||||
|         'checked_cast_tensor<Sparse${Tensor}>(${arg_name}.tref.pImpl,"${arg_name}",${arg_pos},false)'), | ||||
|     'THBoolTensor*': | ||||
|         CodeTemplate( | ||||
|             'checked_cast<${Backend}ByteTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|             'checked_cast_tensor<${Backend}ByteTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THIndexTensor*': | ||||
|         CodeTemplate( | ||||
|             'checked_cast<${Backend}LongTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|             'checked_cast_tensor<${Backend}LongTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THIntegerTensor*': | ||||
|         CodeTemplate( | ||||
|             'checked_cast<${Backend}IntTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THStorage*': CodeTemplate('checked_cast<${Storage}>(&${arg_name},"${arg_name}",${arg_pos}, false)'), | ||||
|             'checked_cast_tensor<${Backend}IntTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), | ||||
|     'THStorage*': CodeTemplate('checked_cast_storage<${Storage}>(&${arg_name},"${arg_name}",${arg_pos})'), | ||||
|     'THGenerator*': | ||||
|         CodeTemplate( | ||||
|             'check_generator<${Backend}Generator>(${arg_name}, &context->defaultGenerator(backend()))'), | ||||
| @ -720,11 +722,14 @@ def create_derived(backend_type_env, declarations): | ||||
|     def allocate_arg(env, arg, output_count): | ||||
|         name = arg['name'] | ||||
|         allocation = CodeTemplate(ALLOC_WRAP[arg['type']]).substitute(env) | ||||
|         tensor_arg = '{}_'.format(name) | ||||
|         if arg.get('mask', False): | ||||
|             allocation = 'output_mask[{}] ? {} : nullptr'.format(output_count, allocation) | ||||
|             tensor_arg = ('{}_ == nullptr ? (TensorImpl*)UndefinedTensor::singleton() : (TensorImpl*){}_' | ||||
|                           .format(name, name)) | ||||
|         return [ | ||||
|             'auto {}_ = {};'.format(name, allocation), | ||||
|             'auto {} = Tensor({}_,false);'.format(name, name), | ||||
|             'auto {} = Tensor({}, false);'.format(name, tensor_arg), | ||||
|         ] | ||||
|  | ||||
|     def resize_arg(arg): | ||||
|  | ||||
| @ -3,7 +3,7 @@ | ||||
| - name: binary_cross_entropy(Tensor input, Tensor target, Tensor weight={}, bool size_average=true) | ||||
|   cname: BCECriterion | ||||
|  | ||||
| - name: kl_div(Tensor input, Tensor target, bool size_average=true) | ||||
| - name: kl_div(Tensor input, Tensor target, bool size_average=true, bool reduce=true) | ||||
|   cname: DistKLDivCriterion | ||||
|  | ||||
| - name: l1_loss(Tensor input, Tensor target, bool size_average=true, bool reduce=True) | ||||
| @ -58,6 +58,8 @@ | ||||
|  | ||||
| - name: log_softmax(Tensor input, int64_t dim) | ||||
|   cname: LogSoftMax | ||||
|   wrap_dim: | ||||
|     dim: input | ||||
|  | ||||
| - name: prelu(Tensor input, Tensor weight) | ||||
|   cname: PReLU | ||||
| @ -68,6 +70,8 @@ | ||||
|  | ||||
| - name: softmax(Tensor input, int64_t dim) | ||||
|   cname: SoftMax | ||||
|   wrap_dim: | ||||
|     dim: input | ||||
|  | ||||
| - name: softplus(Tensor input, Scalar beta=1, Scalar threshold=20) | ||||
|   cname: SoftPlus | ||||
|  | ||||
| @ -171,6 +171,8 @@ def get_thnn_args(thnn_function, params): | ||||
|             thnn_args.append(arg_expr(name[0], name[1:])) | ||||
|         elif name == 'scale': | ||||
|             thnn_args.append({'type': 'EXPRESSION', 'name': '1'}) | ||||
|         elif name == 'inplace': | ||||
|             thnn_args.append({'type': 'EXPRESSION', 'name': 'false'}) | ||||
|         else: | ||||
|             raise RuntimeError("{}: can't find binding for '{}'" | ||||
|                                .format(thnn_function.name, name)) | ||||
| @ -261,7 +263,8 @@ def backward_declaration(base, thnn_functions): | ||||
|  | ||||
|     arguments = [] | ||||
|     arguments.append({'type': 'THTensor*', 'name': 'grad_output'}) | ||||
|     arguments += [copy.deepcopy(arg) for arg in base['arguments']] | ||||
|     arguments += [copy.deepcopy(arg) for arg in base['arguments'] | ||||
|                   if arg['name'] != 'inplace'] | ||||
|     arguments += base['buffers'] | ||||
|  | ||||
|     for arg in arguments: | ||||
|  | ||||
| @ -70,9 +70,6 @@ struct Tensor : public detail::TensorBase { | ||||
|     pImpl = nullptr; | ||||
|     return ret; | ||||
|   } | ||||
|   bool defined() const { | ||||
|     return pImpl != nullptr; | ||||
|   } | ||||
|   void swap(Tensor & rhs) { | ||||
|     TensorImpl * tmp = pImpl; | ||||
|     pImpl = rhs.pImpl; | ||||
|  | ||||
| @ -5,6 +5,7 @@ | ||||
| #include "ATen/SparseTensorRef.h" | ||||
| #include "ATen/ExpandUtils.h" | ||||
| #include "ATen/NativeFunctions.h" | ||||
| #include "ATen/UndefinedType.h" | ||||
|  | ||||
| #include <iostream> | ||||
| ${type_headers} | ||||
| @ -13,15 +14,17 @@ namespace at { | ||||
|  | ||||
| void Type::registerAll(Context * context) { | ||||
|   ${type_registrations} | ||||
|   context->type_registry[static_cast<int>(Backend::Undefined)][static_cast<int>(ScalarType::Undefined)].reset(new UndefinedType(context)); | ||||
| } | ||||
|  | ||||
| void Type::copy(const Tensor & src, Tensor & dst) const { | ||||
|   Tensor b_src; | ||||
|   std::tie(b_src) = expand_inplace(dst, src); | ||||
|   std::tie(b_src) = expand_inplace(dst, src, "copy"); | ||||
|   s_copy(b_src, dst); | ||||
| } | ||||
|  | ||||
| Tensor Type::copy(const Tensor & src) const { | ||||
|   AT_ASSERT(src.defined(), "attempt to copy an undefined tensor"); | ||||
|   Tensor r = this->tensor(src.sizes()); | ||||
|   r.copy_(src); | ||||
|   return r; | ||||
|  | ||||
| @ -56,6 +56,7 @@ static inline void noop_deleter(void*) {} | ||||
|  | ||||
| enum class TypeID { | ||||
|   ${type_ids} | ||||
|   Undefined, | ||||
|   NumOptions | ||||
| }; | ||||
|  | ||||
|  | ||||
| @ -9,6 +9,7 @@ | ||||
| #include "ATen/Utils.h" | ||||
| #include "ATen/WrapDimUtils.h" | ||||
| #include "ATen/THLongStorageView.h" | ||||
| #include "ATen/UndefinedTensor.h" | ||||
| #include <iostream> | ||||
| #include <sstream> | ||||
|  | ||||
|  | ||||
| @ -18,3 +18,6 @@ target_link_libraries(dlconvertor_test ATen) | ||||
|  | ||||
| add_executable(native_test native_test.cpp) | ||||
| target_link_libraries(native_test ATen) | ||||
|  | ||||
| add_executable(undefined_tensor_test undefined_tensor_test.cpp) | ||||
| target_link_libraries(undefined_tensor_test ATen) | ||||
|  | ||||
							
								
								
									
										60
									
								
								torch/lib/ATen/test/undefined_tensor_test.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								torch/lib/ATen/test/undefined_tensor_test.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,60 @@ | ||||
| #include "ATen/ATen.h" | ||||
| #include "ATen/UndefinedTensor.h" | ||||
| #include <string> | ||||
| #include "test_assert.h" | ||||
|  | ||||
|  | ||||
| using namespace at; | ||||
|  | ||||
| #define ASSERT_THROWS(fn, message)                                  \ | ||||
| try {                                                               \ | ||||
|   fn;                                                               \ | ||||
|   ASSERT(false);                                                    \ | ||||
| } catch(std::runtime_error &e) {                                    \ | ||||
|   ASSERT(std::string(e.what()).find(message) != std::string::npos); \ | ||||
| } | ||||
|  | ||||
|  | ||||
| int main() { | ||||
|   // mainly test ops on undefined tensors don't segfault and give a reasonable errror message. | ||||
|   Tensor und; | ||||
|   Tensor ft = CPU(kFloat).ones({1}); | ||||
|  | ||||
|   std::cout << und << std::endl; | ||||
|   ASSERT(!und.defined()); | ||||
|   ASSERT(std::string("UndefinedTensor") == und.toString()); | ||||
|  | ||||
|   ASSERT_THROWS(und.strides(), "strides"); | ||||
|   ASSERT_THROWS(und.dim(), "dim"); | ||||
|   ASSERT_THROWS(und.assign_(Scalar(5)), "assign"); | ||||
|   ASSERT_THROWS(und.unsafeGetTH(true), "unsafeGetTH"); | ||||
|   ASSERT_THROWS(und.add(und), "add"); | ||||
|   ASSERT_THROWS(und.add(ft), "add"); | ||||
|   ASSERT_THROWS(ft.add(und), "add"); | ||||
|   ASSERT_THROWS(und.add(5), "add"); | ||||
|   ASSERT_THROWS(und.mm(und), "mm"); | ||||
|  | ||||
|   und.toType(und.type()); | ||||
|   ASSERT_THROWS(und.toType(ft.type()), "attempt to copy an undefined tensor"); | ||||
|   ASSERT_THROWS(ft.toType(und.type()), "UndefinedType"); | ||||
|   und.toType(ScalarType::Undefined); | ||||
|   ASSERT_THROWS(und.toType(ScalarType::Float), "toScalarType"); | ||||
|   ASSERT_THROWS(ft.toType(ScalarType::Undefined), "UndefinedType"); | ||||
|  | ||||
|   // copy_ | ||||
|   ASSERT_THROWS(und.copy_(und), "copy"); | ||||
|   ASSERT_THROWS(und.copy_(ft), "copy"); | ||||
|   ASSERT_THROWS(ft.copy_(und), "copy"); | ||||
|  | ||||
|   und.toBackend(Backend::Undefined); | ||||
|   ASSERT_THROWS(und.toBackend(Backend::CPU), "toBackend"); | ||||
|   ASSERT_THROWS(ft.toBackend(Backend::Undefined), "UndefinedType"); | ||||
|  | ||||
|   Tensor to_move = CPU(kFloat).ones({1}); | ||||
|   Tensor m(std::move(to_move)); | ||||
|   ASSERT(!to_move.defined()); | ||||
|   ASSERT(to_move.get() == UndefinedTensor::singleton()); | ||||
|  | ||||
|   return 0; | ||||
| } | ||||
|  | ||||
| @ -306,6 +306,9 @@ IF(BLAS_FOUND) | ||||
|   IF ($ENV{TH_BINARY_BUILD}) | ||||
|     MESSAGE(STATUS "TH_BINARY_BUILD detected. Enabling special linkage.") | ||||
|     TARGET_LINK_LIBRARIES(TH "${BLAS_LIBRARIES};${BLAS_LIBRARIES};${BLAS_LIBRARIES}") | ||||
|     IF (UNIX AND NOT APPLE) | ||||
|       set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--version-script=${CMAKE_CURRENT_SOURCE_DIR}/../../../tools/pytorch.version") | ||||
|     ENDIF(UNIX AND NOT APPLE) | ||||
|   ELSE ($ENV{TH_BINARY_BUILD}) | ||||
|     TARGET_LINK_LIBRARIES(TH ${BLAS_LIBRARIES}) | ||||
|   ENDIF ($ENV{TH_BINARY_BUILD}) | ||||
|  | ||||
| @ -2,6 +2,10 @@ | ||||
| #include "THDiskFile.h" | ||||
| #include "THFilePrivate.h" | ||||
|  | ||||
| #ifndef _WIN32 | ||||
| #include <sys/types.h> | ||||
| #endif | ||||
|  | ||||
| #include <stdint.h> | ||||
| #ifndef LLONG_MAX | ||||
| #define LLONG_MAX 9223372036854775807LL | ||||
|  | ||||
| @ -2,6 +2,10 @@ | ||||
| #include "THFilePrivate.h" | ||||
| #include "stdint.h" | ||||
|  | ||||
| #ifndef _WIN32 | ||||
| #include <sys/types.h> | ||||
| #endif | ||||
|  | ||||
| typedef struct THMemoryFile__ | ||||
| { | ||||
|     THFile file; | ||||
|  | ||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user
	