mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-18 09:34:57 +08:00
Compare commits
1 Commits
whc/shardi
...
bf/combo-d
| Author | SHA1 | Date | |
|---|---|---|---|
| 0ad356fa6c |
@ -129,7 +129,7 @@ function install_129 {
|
||||
}
|
||||
|
||||
function install_128 {
|
||||
CUDNN_VERSION=9.10.2.21
|
||||
CUDNN_VERSION=9.8.0.87
|
||||
echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
|
||||
# install CUDA 12.8.1 in the same container
|
||||
install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux
|
||||
|
||||
@ -272,18 +272,6 @@ def smoke_test_cuda(
|
||||
torch_cudnn_version = cudnn_to_version_str(torch.backends.cudnn.version())
|
||||
print(f"Torch cuDNN version: {torch_cudnn_version}")
|
||||
|
||||
torch_cudnn_compile_version = torch._C._cudnn.getCompileVersion()
|
||||
print(f"Torch cuDNN compile-time version: {torch_cudnn_compile_version}")
|
||||
torch_cudnn_runtime_version = tuple(
|
||||
[int(x) for x in torch_cudnn_version.split(".")]
|
||||
)
|
||||
if torch_cudnn_runtime_version != torch_cudnn_compile_version:
|
||||
raise RuntimeError(
|
||||
"cuDNN runtime version doesn't match comple version. "
|
||||
f"Loaded: {torch_cudnn_runtime_version} "
|
||||
f"Expected: {torch_cudnn_compile_version}"
|
||||
)
|
||||
|
||||
if sys.platform in ["linux", "linux2"]:
|
||||
torch_nccl_version = ".".join(str(v) for v in torch.cuda.nccl.version())
|
||||
print(f"Torch nccl; version: {torch_nccl_version}")
|
||||
|
||||
@ -337,7 +337,7 @@ test_python() {
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
time python test/run_test.py --include test_matmul_cuda test_scaled_matmul_cuda inductor/test_fp8 inductor/test_max_autotune inductor/test_cutedsl_grouped_mm $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
|
||||
4
.github/workflows/_rocm-test.yml
vendored
4
.github/workflows/_rocm-test.yml
vendored
@ -97,8 +97,8 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
ngpu=$(rocminfo | grep -c -E 'Name:.*\sgfx')
|
||||
if [[ $ngpu -lt 2 ]]; then #We are temporarily reducing this down to 2 from 4 so that we can run tests on nodes with less gpus.
|
||||
echo "Error: only $ngpu GPU(s) detected, at least 2 GPUs are needed for distributed jobs"
|
||||
if [[ $ngpu -lt 4 ]]; then
|
||||
echo "Error: only $ngpu GPU(s) detected, at least 4 GPUs are needed for distributed jobs"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@ -127,6 +127,7 @@ torch/test/
|
||||
torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h
|
||||
torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h
|
||||
torch/version.py
|
||||
torch/_inductor/kernel/vendored_templates/*
|
||||
minifier_launcher.py
|
||||
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_fwd_d*
|
||||
aten/src/ATen/native/transformers/hip/flash_attn/ck/fmha_bwd_d*
|
||||
|
||||
20
SECURITY.md
20
SECURITY.md
@ -1,7 +1,7 @@
|
||||
# Security Policy
|
||||
|
||||
- [**Reporting a Vulnerability**](#reporting-a-vulnerability)
|
||||
- [**Using PyTorch Securely**](#using-pytorch-securely)
|
||||
- [**Using Pytorch Securely**](#using-pytorch-securely)
|
||||
- [Untrusted models](#untrusted-models)
|
||||
- [TorchScript models](#torchscript-models)
|
||||
- [Untrusted inputs](#untrusted-inputs)
|
||||
@ -10,28 +10,28 @@
|
||||
- [**CI/CD security principles**](#cicd-security-principles)
|
||||
## Reporting Security Issues
|
||||
|
||||
Beware that none of the topics under [Using PyTorch Securely](#using-pytorch-securely) are considered vulnerabilities of PyTorch.
|
||||
Beware that none of the topics under [Using Pytorch Securely](#using-pytorch-securely) are considered vulnerabilities of Pytorch.
|
||||
|
||||
However, if you believe you have found a security vulnerability in PyTorch, we encourage you to let us know right away. We will investigate all legitimate reports and do our best to quickly fix the problem.
|
||||
|
||||
Please report security issues using https://github.com/pytorch/pytorch/security/advisories/new
|
||||
|
||||
All reports submitted through the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
|
||||
All reports submitted thru the security advisories mechanism would **either be made public or dismissed by the team within 90 days of the submission**. If advisory has been closed on the grounds that it is not a security issue, please do not hesitate to create an [new issue](https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml) as it is still likely a valid issue within the framework.
|
||||
|
||||
Please refer to the following page for our responsible disclosure policy, reward guidelines, and those things that should not be reported:
|
||||
|
||||
https://www.facebook.com/whitehat
|
||||
|
||||
|
||||
## Using PyTorch Securely
|
||||
**PyTorch models are programs**, so treat its security seriously -- running untrusted models is equivalent to running untrusted code. In general we recommend that model weights and the python code for the model are distributed independently. That said, be careful about where you get the python code from and who wrote it (preferentially check for a provenance or checksums, do not run any pip installed package).
|
||||
## Using Pytorch Securely
|
||||
**Pytorch models are programs**, so treat its security seriously -- running untrusted models is equivalent to running untrusted code. In general we recommend that model weights and the python code for the model are distributed independently. That said, be careful about where you get the python code from and who wrote it (preferentially check for a provenance or checksums, do not run any pip installed package).
|
||||
|
||||
### Untrusted models
|
||||
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources[^data-poisoning-sources].
|
||||
|
||||
**Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing).
|
||||
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [Safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
|
||||
Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs.
|
||||
|
||||
@ -43,7 +43,7 @@ Important Note: The trustworthiness of a model is not binary. You must always de
|
||||
|
||||
### TorchScript models
|
||||
|
||||
TorchScript models should be treated the same way as locally executable code from an unknown source. Only run TorchScript models if you trust the provider. Please note, that tools for introspecting TorchScript models (such as `torch.utils.model_dump`) may also execute partial or full code stored in those models, therefore they should be used only if you trust the provider of the binary you are about to load.
|
||||
TorchScript models should treated the same way as locally executable code from an unknown source. Only run TorchScript models if you trust the provider. Please note, that tools for introspecting TorchScript models (such as `torch.utils.model_dump`) may also execute partial or full code stored in those models, therefore they should be used only if you trust the provider of the binary you are about to load.
|
||||
|
||||
### Untrusted inputs during training and prediction
|
||||
|
||||
@ -59,9 +59,9 @@ If applicable, prepare your model against bad inputs and prompt injections. Some
|
||||
|
||||
### Data privacy
|
||||
|
||||
**Take special security measures if you train your models with sensitive data**. Prioritize [sandboxing](https://developers.google.com/code-sandboxing) your models and:
|
||||
- Do not feed sensitive data to an untrusted model (even if runs in a sandboxed environment)
|
||||
- If you consider publishing a model that was partially trained with sensitive data, be aware that data can potentially be recovered from the trained weights (especially if the model overfits).
|
||||
**Take special security measures if your model if you train models with sensitive data**. Prioritize [sandboxing](https://developers.google.com/code-sandboxing) your models and:
|
||||
- Do not feed sensitive data to untrusted model (even if runs in a sandboxed environment)
|
||||
- If you consider publishing a model that was partially trained with sensitive data, be aware that data can potentially be recovered from the trained weights (especially if model overfits).
|
||||
|
||||
### Using distributed features
|
||||
|
||||
|
||||
34
setup.py
34
setup.py
@ -630,6 +630,37 @@ def mirror_files_into_torchgen() -> None:
|
||||
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
|
||||
|
||||
|
||||
def mirror_inductor_external_kernels() -> None:
|
||||
"""
|
||||
Copy external kernels into Inductor so they are importable.
|
||||
"""
|
||||
paths = [
|
||||
(
|
||||
CWD / "torch/_inductor/kernel/vendored_templates/cutedsl_grouped_gemm.py",
|
||||
CWD
|
||||
/ "third_party/cutlass/examples/python/CuTeDSL/blackwell/grouped_gemm.py",
|
||||
),
|
||||
]
|
||||
for new_path, orig_path in paths:
|
||||
# Create the dirs involved in new_path if they don't exist
|
||||
if not new_path.exists():
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Copy the files from the orig location to the new location
|
||||
if orig_path.is_file():
|
||||
shutil.copyfile(orig_path, new_path)
|
||||
continue
|
||||
if orig_path.is_dir():
|
||||
if new_path.exists():
|
||||
# copytree fails if the tree exists already, so remove it.
|
||||
shutil.rmtree(new_path)
|
||||
shutil.copytree(orig_path, new_path)
|
||||
continue
|
||||
raise RuntimeError(
|
||||
"Check the file paths in `mirror_inductor_external_kernels()`"
|
||||
)
|
||||
|
||||
|
||||
# ATTENTION: THIS IS AI SLOP
|
||||
def extract_variant_from_version(version: str) -> str:
|
||||
"""Extract variant from version string, defaulting to 'cpu'."""
|
||||
@ -1616,6 +1647,8 @@ def main() -> None:
|
||||
if RUN_BUILD_DEPS:
|
||||
build_deps()
|
||||
|
||||
mirror_inductor_external_kernels()
|
||||
|
||||
(
|
||||
ext_modules,
|
||||
cmdclass,
|
||||
@ -1649,6 +1682,7 @@ def main() -> None:
|
||||
"_inductor/codegen/aoti_runtime/*.cpp",
|
||||
"_inductor/script.ld",
|
||||
"_inductor/kernel/flex/templates/*.jinja",
|
||||
"_inductor/kernel/templates/*.jinja",
|
||||
"_export/serde/*.yaml",
|
||||
"_export/serde/*.thrift",
|
||||
"share/cmake/ATen/*.cmake",
|
||||
|
||||
@ -32,7 +32,6 @@ from torch.distributed.tensor._ops._einsum_strategy import (
|
||||
)
|
||||
from torch.distributed.tensor._ops.utils import (
|
||||
register_op_strategy,
|
||||
register_single_dim_strategy,
|
||||
replicate_op_strategy,
|
||||
)
|
||||
from torch.distributed.tensor.debug import CommDebugMode
|
||||
@ -656,202 +655,5 @@ TestStrategyHashingWithLocalTensor = create_local_tensor_test_class(
|
||||
TestStrategyHashing,
|
||||
)
|
||||
|
||||
|
||||
class TestSingleDimStrategy(DTensorTestBase):
|
||||
@with_comms
|
||||
def test_register_single_dim_strategy_replaces_existing_rule(self):
|
||||
"""
|
||||
Test that calling register_single_dim_strategy works and replaces an existing registered rule.
|
||||
"""
|
||||
from torch.distributed.tensor._ops._matrix_ops import (
|
||||
_mm_like_strategy,
|
||||
gen_single_dim_einsum_strategies,
|
||||
)
|
||||
|
||||
mesh = self.build_device_mesh()
|
||||
|
||||
# Create test inputs
|
||||
lhs_tensor = torch.randn(6, 8)
|
||||
rhs_tensor = torch.randn(8, 12)
|
||||
lhs_tensor_meta = extract_tensor_meta(lhs_tensor)
|
||||
rhs_tensor_meta = extract_tensor_meta(rhs_tensor)
|
||||
|
||||
# Test a specific input sharding combination
|
||||
lhs_placement = (Shard(1),)
|
||||
rhs_placement = (Shard(0),)
|
||||
lhs_spec = DTensorSpec(mesh, lhs_placement, lhs_tensor_meta)
|
||||
rhs_spec = DTensorSpec(mesh, rhs_placement, rhs_tensor_meta)
|
||||
|
||||
# Create the OpSchema for mm operation
|
||||
op_schema = OpSchema(
|
||||
torch.ops.aten.mm.default,
|
||||
(
|
||||
OpStrategy([OpSpec(lhs_spec)]),
|
||||
OpStrategy([OpSpec(rhs_spec)]),
|
||||
),
|
||||
{},
|
||||
)
|
||||
|
||||
# Get the strategies from the old mm_like_strategy (what was used before)
|
||||
old_style_strategy = _mm_like_strategy("mk,kn->mn", mesh, op_schema)
|
||||
|
||||
# Get the strategies from the new register_single_dim_strategy approach
|
||||
# First, we need to get the single dim strategy function
|
||||
def mm_single_dim_strategy_func(op_schema: OpSchema):
|
||||
return gen_single_dim_einsum_strategies("mk,kn->mn", mesh)
|
||||
|
||||
# Now expand it to full strategy using the same logic as register_single_dim_strategy
|
||||
single_dim_strategies = mm_single_dim_strategy_func(op_schema)
|
||||
all_mesh_dim_strategies = [single_dim_strategies] * mesh.ndim
|
||||
strategy_combs = itertools.product(*all_mesh_dim_strategies)
|
||||
all_strategies = []
|
||||
for strategy_comb in strategy_combs:
|
||||
spec_list = [
|
||||
DTensorSpec(mesh, tuple(specs)) for specs in zip(*strategy_comb)
|
||||
]
|
||||
all_strategies.append(
|
||||
OpSpec(output_specs=spec_list[0], input_specs=spec_list[1:])
|
||||
)
|
||||
new_style_strategy = OpStrategy(all_strategies)
|
||||
|
||||
# Verify that both strategies produce the same set of shardings
|
||||
old_strategy_set = {str(strategy) for strategy in old_style_strategy.strategies}
|
||||
new_strategy_set = {str(strategy) for strategy in new_style_strategy.strategies}
|
||||
|
||||
self.assertEqual(
|
||||
old_strategy_set,
|
||||
new_strategy_set,
|
||||
"Old and new strategies should produce the same shardings",
|
||||
)
|
||||
|
||||
# Verify that the registration actually works by checking the propagator
|
||||
propagator = DTensor._op_dispatcher.sharding_propagator
|
||||
|
||||
# Save the original strategy if it exists
|
||||
original_strategy = None
|
||||
if torch.ops.aten.mm.default in propagator.op_strategy_funcs:
|
||||
original_strategy = propagator.op_strategy_funcs[torch.ops.aten.mm.default]
|
||||
|
||||
try:
|
||||
# Register a custom single-dim strategy
|
||||
@register_single_dim_strategy(torch.ops.aten.mm.default)
|
||||
def custom_mm_single_dim_strategy(op_schema: OpSchema):
|
||||
return gen_single_dim_einsum_strategies("mk,kn->mn", mesh)
|
||||
|
||||
# Verify the strategy was registered
|
||||
self.assertIn(
|
||||
torch.ops.aten.mm.default,
|
||||
propagator.op_strategy_funcs,
|
||||
"Strategy should be registered after calling register_single_dim_strategy",
|
||||
)
|
||||
|
||||
# Verify it replaced any existing rule
|
||||
registered_func = propagator.op_strategy_funcs[torch.ops.aten.mm.default]
|
||||
self.assertIsNotNone(
|
||||
registered_func, "Registered strategy function should not be None"
|
||||
)
|
||||
|
||||
# Test that the registered strategy produces valid output
|
||||
result_strategy = registered_func(op_schema)
|
||||
self.assertIsInstance(
|
||||
result_strategy, OpStrategy, "Result should be an OpStrategy"
|
||||
)
|
||||
self.assertGreater(
|
||||
len(result_strategy.strategies),
|
||||
0,
|
||||
"Strategy should contain at least one OpSpec",
|
||||
)
|
||||
|
||||
finally:
|
||||
# Restore original strategy if it existed
|
||||
if original_strategy is not None:
|
||||
propagator.op_strategy_funcs[torch.ops.aten.mm.default] = (
|
||||
original_strategy
|
||||
)
|
||||
else:
|
||||
if torch.ops.aten.mm.default in propagator.op_strategy_funcs:
|
||||
del propagator.op_strategy_funcs[torch.ops.aten.mm.default]
|
||||
# Clear the cache
|
||||
propagator.propagate_op_sharding.cache.cache_clear()
|
||||
|
||||
@with_comms
|
||||
def test_single_dim_strategy_shardings_match_full_strategy(self):
|
||||
"""
|
||||
Verify that the shardings produced by a single-dim strategy match those produced
|
||||
by the full strategy implementation.
|
||||
"""
|
||||
from torch.distributed.tensor._ops._matrix_ops import (
|
||||
gen_single_dim_einsum_strategies,
|
||||
)
|
||||
|
||||
mesh = self.build_device_mesh()
|
||||
|
||||
# Create test inputs
|
||||
lhs_tensor = torch.randn(6, 8)
|
||||
rhs_tensor = torch.randn(8, 12)
|
||||
lhs_tensor_meta = extract_tensor_meta(lhs_tensor)
|
||||
rhs_tensor_meta = extract_tensor_meta(rhs_tensor)
|
||||
|
||||
# Test multiple input sharding combinations
|
||||
mm_combs = (
|
||||
(Shard(0), Replicate()),
|
||||
(Replicate(), Shard(1)),
|
||||
(Shard(1), Shard(0)),
|
||||
(Replicate(), Replicate()),
|
||||
)
|
||||
|
||||
for lhs_placement, rhs_placement in mm_combs:
|
||||
lhs_spec = DTensorSpec(mesh, (lhs_placement,), lhs_tensor_meta)
|
||||
rhs_spec = DTensorSpec(mesh, (rhs_placement,), rhs_tensor_meta)
|
||||
|
||||
op_schema = OpSchema(
|
||||
torch.ops.aten.mm.default,
|
||||
(
|
||||
OpStrategy([OpSpec(lhs_spec)]),
|
||||
OpStrategy([OpSpec(rhs_spec)]),
|
||||
),
|
||||
{},
|
||||
)
|
||||
|
||||
# Get single-dim strategies
|
||||
single_dim_strategies = gen_single_dim_einsum_strategies("mk,kn->mn", mesh)
|
||||
|
||||
# Expand to full strategy (mimicking what register_single_dim_strategy does)
|
||||
all_mesh_dim_strategies = [single_dim_strategies] * mesh.ndim
|
||||
strategy_combs = itertools.product(*all_mesh_dim_strategies)
|
||||
expanded_strategies = []
|
||||
for strategy_comb in strategy_combs:
|
||||
spec_list = [
|
||||
DTensorSpec(mesh, tuple(specs)) for specs in zip(*strategy_comb)
|
||||
]
|
||||
expanded_strategies.append(
|
||||
OpSpec(output_specs=spec_list[0], input_specs=spec_list[1:])
|
||||
)
|
||||
|
||||
# Verify that for the given input shardings, we can find a matching strategy
|
||||
# with zero redistribute cost
|
||||
found_zero_cost_strategy = False
|
||||
for strategy in expanded_strategies:
|
||||
if strategy.input_specs == (lhs_spec, rhs_spec):
|
||||
# This strategy should have zero redistribute cost since inputs match
|
||||
found_zero_cost_strategy = True
|
||||
# In a real strategy, redistribute costs would be computed
|
||||
# Here we just verify the structure is correct
|
||||
self.assertEqual(
|
||||
len(strategy.input_specs),
|
||||
2,
|
||||
"MM should have exactly 2 input specs",
|
||||
)
|
||||
self.assertIsNotNone(
|
||||
strategy.output_specs, "Output spec should not be None"
|
||||
)
|
||||
break
|
||||
|
||||
self.assertTrue(
|
||||
found_zero_cost_strategy,
|
||||
f"Should find a strategy matching input shardings {lhs_placement}, {rhs_placement}",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
|
||||
@ -167,14 +167,6 @@ def _pack_fp8_wrap(x):
|
||||
if not x.dtype.is_floating_point:
|
||||
return x
|
||||
|
||||
if type(x) is not torch.Tensor:
|
||||
# Check only during compilation
|
||||
# Test calls hooks to get reference output
|
||||
ctx = torch._functorch._aot_autograd.graph_compile._get_saved_tensor_hook_context()
|
||||
assert ctx["_fw_graph"] is not None
|
||||
assert ctx["_bw_graph"] is not None
|
||||
assert ctx["_node"] is not None
|
||||
|
||||
return (x.dtype, x.to(torch.float8_e5m2))
|
||||
|
||||
|
||||
@ -184,13 +176,6 @@ def _unpack_fp8_wrap(x):
|
||||
return x
|
||||
|
||||
dtype, tensor = x
|
||||
if type(tensor) is not torch.Tensor:
|
||||
# Check only during compilation
|
||||
# Test calls hooks to get reference output
|
||||
ctx = torch._functorch._aot_autograd.graph_compile._get_saved_tensor_hook_context()
|
||||
assert ctx["_fw_graph"] is not None
|
||||
assert ctx["_bw_graph"] is not None
|
||||
assert ctx["_node"] is not None
|
||||
return tensor.to(dtype)
|
||||
|
||||
|
||||
|
||||
154
test/inductor/test_cutedsl_grouped_mm.py
Normal file
154
test/inductor/test_cutedsl_grouped_mm.py
Normal file
@ -0,0 +1,154 @@
|
||||
# Owner(s): ["module: inductor"]
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch._inductor import config
|
||||
from torch._inductor.codegen.cuda.cuda_env import is_datacenter_blackwell_arch
|
||||
from torch._inductor.test_case import run_tests, TestCase as InductorTestCase
|
||||
from torch._inductor.utils import ensure_cute_available
|
||||
from torch.testing._internal.common_utils import (
|
||||
instantiate_parametrized_tests,
|
||||
parametrize,
|
||||
)
|
||||
|
||||
|
||||
@unittest.skipIf(
|
||||
not (ensure_cute_available() and is_datacenter_blackwell_arch()),
|
||||
"CuTeDSL library or Blackwell device not available",
|
||||
)
|
||||
@instantiate_parametrized_tests
|
||||
class TestCuTeDSLGroupedGemm(InductorTestCase):
|
||||
def _get_inputs(
|
||||
self,
|
||||
group_size: int,
|
||||
M_hint: int,
|
||||
K: int,
|
||||
N: int,
|
||||
device: str,
|
||||
dtype: torch.dtype,
|
||||
alignment: int = 16,
|
||||
) -> tuple[Tensor, Tensor, Tensor]:
|
||||
# --- Random, tile-aligned M sizes ---
|
||||
M_sizes = (
|
||||
torch.randint(1, (M_hint // alignment) + 1, (group_size,), dtype=torch.int)
|
||||
* alignment
|
||||
)
|
||||
|
||||
M_total = torch.sum(M_sizes).item()
|
||||
|
||||
# --- Construct input tensors ---
|
||||
A = torch.randn(int(M_total), K, dtype=dtype, device=device) * 0.1
|
||||
B = torch.randn((group_size, K, N), dtype=dtype, device=device) * 0.01
|
||||
|
||||
# --- Build offsets (no leading zero, strictly increasing) ---
|
||||
offsets = torch.cumsum(M_sizes, dim=0).to(dtype=torch.int32, device=device)
|
||||
|
||||
return (A, B, offsets)
|
||||
|
||||
@parametrize("group_size", (2, 8))
|
||||
@parametrize("M_hint", (256, 1024))
|
||||
@parametrize("K", (64, 128))
|
||||
@parametrize("N", (128, 256))
|
||||
def test_grouped_gemm_basic(self, group_size: int, M_hint: int, K: int, N: int):
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
A, B, offsets = self._get_inputs(group_size, M_hint, K, N, device, dtype)
|
||||
|
||||
def grouped_gemm_fn(A_packed, B_batched, offs):
|
||||
return torch._grouped_mm(A_packed, B_batched, offs=offs)
|
||||
|
||||
# Eager execution
|
||||
c_eager = grouped_gemm_fn(A, B, offsets)
|
||||
|
||||
# Test with Cute backend
|
||||
with config.patch(
|
||||
{
|
||||
"max_autotune": True,
|
||||
"max_autotune_gemm_backends": "CUTEDSL",
|
||||
"test_configs.autotune_choice_name_regex": "cutedsl",
|
||||
"autotune_fallback_to_aten": False,
|
||||
}
|
||||
):
|
||||
grouped_gemm_compiled = torch.compile(
|
||||
grouped_gemm_fn, backend="inductor", dynamic=False
|
||||
)
|
||||
c_compiled = grouped_gemm_compiled(A, B, offsets)
|
||||
|
||||
self.assertEqual(c_eager.dtype, dtype)
|
||||
self.assertEqual(c_compiled.dtype, dtype)
|
||||
torch.testing.assert_close(c_eager, c_compiled)
|
||||
|
||||
@parametrize("layout_A", ("contiguous", "offset", "padded", "view"))
|
||||
@parametrize("layout_B", ("contiguous", "broadcasted"))
|
||||
def test_grouped_gemm_assorted_layouts(
|
||||
self,
|
||||
layout_A: str,
|
||||
layout_B: str,
|
||||
):
|
||||
device = "cuda"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
G, K, N = 8, 64, 128
|
||||
M_sizes = [128] * G
|
||||
sum_M = sum(M_sizes)
|
||||
offsets = torch.tensor(
|
||||
[sum(M_sizes[: i + 1]) for i in range(G)], dtype=torch.int32, device=device
|
||||
)
|
||||
|
||||
A_base = torch.randn(sum_M, K, device=device, dtype=dtype)
|
||||
A = A_base
|
||||
|
||||
if layout_A == "offset":
|
||||
# allocate bigger buffer than needed, use nonzero storage offset
|
||||
storage = torch.randn(sum_M * K + 512, device=device, dtype=dtype)
|
||||
offset = 128 # skip first 128 elements
|
||||
A = torch.as_strided(storage[offset:], (sum_M, K), (K, 1))
|
||||
elif layout_A == "padded":
|
||||
# simulate row pitch > K (row_stride = K + pad)
|
||||
row_pitch = K + 8
|
||||
storage = torch.randn(sum_M * row_pitch, device=device, dtype=dtype)
|
||||
A = torch.as_strided(storage, (sum_M, K), (row_pitch, 1))
|
||||
elif layout_A == "view":
|
||||
A_storage = torch.randn(sum_M * K, device=device, dtype=dtype)
|
||||
A = A_storage.view(sum_M, K)
|
||||
assert A._base is not None
|
||||
assert A.shape == (sum_M, K)
|
||||
|
||||
B = torch.randn((G, K, N), dtype=dtype, device=device) * 0.01
|
||||
|
||||
if layout_B == "broadcasted":
|
||||
# Broadcast B across groups (zero stride along G)
|
||||
B = B[0].expand(G, K, N)
|
||||
assert B.stride(0) == 0
|
||||
|
||||
def grouped_gemm_fn(A_packed, B_batched, offs):
|
||||
return torch._grouped_mm(A_packed, B_batched, offs=offs)
|
||||
|
||||
# --- eager ---
|
||||
c_eager = grouped_gemm_fn(A, B, offsets)
|
||||
|
||||
# --- compiled (CUTE backend) ---
|
||||
with config.patch(
|
||||
{
|
||||
"max_autotune": True,
|
||||
"max_autotune_gemm_backends": "CUTEDSL",
|
||||
"test_configs.autotune_choice_name_regex": "cutedsl",
|
||||
"autotune_fallback_to_aten": False,
|
||||
}
|
||||
):
|
||||
grouped_gemm_compiled = torch.compile(
|
||||
grouped_gemm_fn, backend="inductor", dynamic=False
|
||||
)
|
||||
c_compiled = grouped_gemm_compiled(A, B, offsets)
|
||||
|
||||
self.assertEqual(c_eager.dtype, dtype)
|
||||
self.assertEqual(c_compiled.dtype, dtype)
|
||||
torch.testing.assert_close(c_eager, c_compiled)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_tests()
|
||||
@ -117,22 +117,6 @@ class MixOrderReductionTest(TestBase):
|
||||
metrics.codegen_mix_order_reduction,
|
||||
)
|
||||
|
||||
@inductor_config.patch(coordinate_descent_tuning=True)
|
||||
def test_XBLOCK_coordest_tuning(self):
|
||||
"""
|
||||
We should skip XBLOCK coordinate descent tuning for
|
||||
mix order reduction.
|
||||
"""
|
||||
if not inductor_config.triton.mix_order_reduction:
|
||||
self.skipTest("Mix order reduction not enabled")
|
||||
|
||||
def f(x):
|
||||
return x.sum(dim=-1), x.sum(dim=0)
|
||||
|
||||
x = torch.randn(32768, 256, dtype=torch.float, device=GPU_TYPE)
|
||||
self.check_numeric(f, (x,))
|
||||
self.assertEqual(metrics.codegen_mix_order_reduction, 1)
|
||||
|
||||
@inductor_config.patch(unroll_reductions_threshold=1)
|
||||
def test_3layer_split_reduction(self):
|
||||
"""
|
||||
|
||||
@ -25,9 +25,6 @@ from typing import Any, Optional, TYPE_CHECKING, Union
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
import threading
|
||||
from contextlib import contextmanager
|
||||
|
||||
import torch
|
||||
import torch.utils._pytree as pytree
|
||||
import torch.utils.dlpack
|
||||
@ -100,43 +97,6 @@ from .utils import (
|
||||
)
|
||||
|
||||
|
||||
_thread_local = threading.local()
|
||||
|
||||
|
||||
# Saved tensor hooks context
|
||||
# Compiled saved tensor hooks are convenient way to inline some logic in the graphs
|
||||
# for saved nodes from forward to backward. (E.g. activations quantization)
|
||||
# In base implementation user does not have any additional information about saved value
|
||||
# in the hook, except FakeTensor shape, dtype, device etc.
|
||||
# _get_saved_tensor_hook_context gives additional graph information about that saved value,
|
||||
# that can be used to make a decisions which pack/unpack to apply for particular saved value.
|
||||
# This allows user to reuse saved tensors hooks api to apply selective pack/unpack in
|
||||
# graph aware way.
|
||||
# Alternative to this will be making user to write a custom pass that mucks with forward outputs,
|
||||
# backward input metadata, which requires significantly more effort.
|
||||
#
|
||||
# As for now in context we expose forward graph, backward graph and current saved node,
|
||||
# which contains node.meta with additional information about that fx.Node.
|
||||
# Warning: This API may change without backward compatibility.
|
||||
@contextmanager
|
||||
def _saved_tensor_hook_context(state: dict[str, Any]):
|
||||
previous_state = getattr(_thread_local, "state", None)
|
||||
try:
|
||||
_thread_local.state = state
|
||||
yield
|
||||
finally:
|
||||
# Clean up: restore previous state or remove attribute
|
||||
if previous_state is not None:
|
||||
_thread_local.state = previous_state
|
||||
else:
|
||||
if hasattr(_thread_local, "state"):
|
||||
delattr(_thread_local, "state")
|
||||
|
||||
|
||||
def _get_saved_tensor_hook_context() -> dict[str, Any] | None:
|
||||
return getattr(_thread_local, "state", None)
|
||||
|
||||
|
||||
zip = strict_zip
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
@ -1137,10 +1097,6 @@ def maybe_inline_graph_saved_tensors_hooks(
|
||||
if not isinstance(val, torch.Tensor):
|
||||
continue
|
||||
|
||||
def _get_extra_info() -> dict[str, Any]:
|
||||
return {"_fw_graph": fw_g, "_bw_graph": bw_g, "_node": saved}
|
||||
|
||||
with _saved_tensor_hook_context(_get_extra_info()):
|
||||
pack_out_val = pack_hook_gm(val)
|
||||
|
||||
requires_sc_handling = any(
|
||||
@ -1153,7 +1109,6 @@ def maybe_inline_graph_saved_tensors_hooks(
|
||||
" in the pack hook, and reconstructing the subclass in the unpack hook"
|
||||
)
|
||||
|
||||
with _saved_tensor_hook_context(_get_extra_info()):
|
||||
pack_gm = prepare_hook_gm(aot_config, pack_hook_gm, (val,))
|
||||
pack_g = pack_gm.graph
|
||||
maybe_log_graph(
|
||||
@ -1233,7 +1188,6 @@ def maybe_inline_graph_saved_tensors_hooks(
|
||||
# Install unpack hook graph as a prologue of backward graph
|
||||
# Saved tensors inputs are replaced with packed tensors and packed sym scalars.
|
||||
# The saved tensors inputs usages in the graph are replaced with unpack hook graph outputs.
|
||||
with _saved_tensor_hook_context(_get_extra_info()):
|
||||
unpack_gm = prepare_hook_gm(aot_config, unpack_hook_gm, (pack_out_val,))
|
||||
unpack_g = unpack_gm.graph
|
||||
maybe_log_graph(
|
||||
|
||||
@ -498,7 +498,6 @@ def generate_ttir(
|
||||
# pyrefly: ignore # missing-attribute
|
||||
codegen_fns = backend.get_codegen_implementation(*codegen_args)
|
||||
module_map = backend.get_module_map()
|
||||
# pyrefly: ignore[missing-argument,bad-argument-type]
|
||||
ttir_module = src.make_ir(options, codegen_fns, module_map, context)
|
||||
else:
|
||||
codegen_args = [options] if get_codegen_implementation_sig_params == 1 else []
|
||||
|
||||
@ -98,7 +98,7 @@ def _default_custom_combo_kernel_horizontal_partition(
|
||||
]
|
||||
short_reduction = [n for n in reduction if n not in long_reduction]
|
||||
if long_reduction:
|
||||
log.warning(
|
||||
log.debug(
|
||||
"ComboKernels: %d long reduction nodes are separated",
|
||||
len(long_reduction),
|
||||
)
|
||||
@ -112,7 +112,7 @@ def _default_custom_combo_kernel_horizontal_partition(
|
||||
]
|
||||
if large_pointwise:
|
||||
# TODO benchmark the performance when large pointwise nodes combining with others
|
||||
log.warning(
|
||||
log.debug(
|
||||
"ComboKernels: %d large pointwise nodes are separated",
|
||||
len(large_pointwise),
|
||||
)
|
||||
|
||||
@ -546,6 +546,10 @@ max_autotune_flex_search_space: Literal["DEFAULT", "EXHAUSTIVE"] = os.environ.ge
|
||||
"TORCHINDUCTOR_MAX_AUTOTUNE_FLEX_SEARCH_SPACE", "DEFAULT"
|
||||
).upper() # type: ignore[assignment]
|
||||
|
||||
cutedsl_enable_autotuning: bool = (
|
||||
os.environ.get("CUTEDSL_ENABLE_AUTOTUNING", "0") == "1"
|
||||
)
|
||||
|
||||
# DEPRECATED. This setting is ignored.
|
||||
autotune_fallback_to_aten = False
|
||||
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
# mypy: allow-untyped-defs
|
||||
import logging
|
||||
from collections.abc import Sequence
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
@ -12,6 +14,7 @@ from torch.fx.experimental.symbolic_shapes import has_free_unbacked_symbols
|
||||
from .. import config
|
||||
from ..codegen.wrapper import PythonWrapperCodegen
|
||||
from ..ir import _IntLike, Layout, TensorBox
|
||||
from ..utils import load_template
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
@ -254,3 +257,7 @@ def is_batch_stride_largest_or_zero(mat1, mat2, layout) -> bool:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
_KERNEL_TEMPLATE_DIR = Path(__file__).parent / "templates"
|
||||
load_kernel_template = partial(load_template, template_dir=_KERNEL_TEMPLATE_DIR)
|
||||
|
||||
@ -1,10 +1,11 @@
|
||||
# mypy: allow-untyped-defs
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import asdict, dataclass
|
||||
from typing import Any, Optional
|
||||
|
||||
import torch
|
||||
from torch._dynamo.utils import counters
|
||||
from torch._inductor.codegen.cutedsl.cutedsl_template import CuteDSLTemplate
|
||||
from torch._inductor.runtime.triton_compat import tl
|
||||
from torch._inductor.virtualized import V
|
||||
from torch.utils._triton import has_triton
|
||||
@ -18,19 +19,25 @@ from ..select_algorithm import (
|
||||
TritonTemplate,
|
||||
)
|
||||
from ..utils import (
|
||||
ensure_cute_available,
|
||||
get_gpu_shared_memory,
|
||||
get_num_sms,
|
||||
has_free_symbols,
|
||||
use_aten_gemm_kernels,
|
||||
use_blackwell_cutedsl_grouped_mm,
|
||||
use_triton_template,
|
||||
)
|
||||
from .mm_common import (
|
||||
_is_static_problem,
|
||||
check_supported_striding,
|
||||
load_kernel_template,
|
||||
persistent_grouped_mm_grid,
|
||||
)
|
||||
|
||||
|
||||
if ensure_cute_available():
|
||||
from torch._inductor.template_heuristics.cutedsl import get_groupgemm_configs
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
aten = torch.ops.aten
|
||||
|
||||
@ -513,6 +520,11 @@ triton_scaled_grouped_mm_template = TritonTemplate(
|
||||
source=triton_grouped_mm_source,
|
||||
)
|
||||
|
||||
cutedsl_grouped_mm_template = CuteDSLTemplate(
|
||||
name="grouped_gemm_cutedsl",
|
||||
source=load_kernel_template("cutedsl_mm_grouped"),
|
||||
)
|
||||
|
||||
|
||||
def grouped_mm_args(
|
||||
mat1: TensorBox,
|
||||
@ -714,12 +726,6 @@ def _tuned_grouped_mm_common(
|
||||
# Checking only for the equality of corresponding dims of
|
||||
# multiplicands here, relying on meta function checks for
|
||||
# everything else.
|
||||
if (
|
||||
is_nonzero
|
||||
and use_triton_template(layout)
|
||||
and can_use_triton_kernel(mat_a, mat_b, offs, bias, scale_result)
|
||||
):
|
||||
scaled = scale_a is not None
|
||||
if len(m1_size) == 2:
|
||||
if len(m2_size) == 2:
|
||||
m, k1 = m1_size
|
||||
@ -752,6 +758,13 @@ def _tuned_grouped_mm_common(
|
||||
V.graph.sizevars.check_equals(k1, k2)
|
||||
a_is_2d, b_is_2d = False, False
|
||||
|
||||
if (
|
||||
is_nonzero
|
||||
and use_triton_template(layout)
|
||||
and can_use_triton_kernel(mat_a, mat_b, offs, bias, scale_result)
|
||||
):
|
||||
scaled = scale_a is not None
|
||||
|
||||
a_is_k_major = mat_a.get_stride()[-1] == 1
|
||||
b_is_k_major = mat_b.get_stride()[-2] == 1
|
||||
|
||||
@ -788,6 +801,22 @@ def _tuned_grouped_mm_common(
|
||||
**config.kwargs,
|
||||
)
|
||||
|
||||
if use_blackwell_cutedsl_grouped_mm(
|
||||
mat_a, mat_b, layout, a_is_2d, b_is_2d, offs, bias, scale_result
|
||||
):
|
||||
for config in get_groupgemm_configs():
|
||||
kwargs = dict(
|
||||
ACC_DTYPE="cutlass.Float32",
|
||||
)
|
||||
|
||||
cutedsl_grouped_mm_template.maybe_append_choice(
|
||||
choices,
|
||||
input_nodes=input_nodes,
|
||||
layout=layout,
|
||||
**kwargs,
|
||||
**asdict(config),
|
||||
)
|
||||
|
||||
input_gen_fns = {
|
||||
4: lambda x: create_offsets(
|
||||
x, m1_size, m2_size, offs.get_size() if offs is not None else None
|
||||
|
||||
333
torch/_inductor/kernel/templates/cutedsl_mm_grouped.py.jinja
Normal file
333
torch/_inductor/kernel/templates/cutedsl_mm_grouped.py.jinja
Normal file
@ -0,0 +1,333 @@
|
||||
import functools
|
||||
from torch._inductor.runtime.runtime_utils import ceildiv
|
||||
from cutlass.utils import TensorMapUpdateMode
|
||||
{{gen_defines()}}
|
||||
# ---- Import GroupedGemm implementation, copied on PyTorch build from Cutlass repository: cutlass/examples/python/CuTeDSL/blackwell/grouped_gemm.py ----
|
||||
from torch._inductor.kernel.vendored_templates.cutedsl_grouped_gemm import (
|
||||
GroupedGemmKernel,
|
||||
)
|
||||
|
||||
|
||||
# Note about caching:
|
||||
# Each instantiated CuTeDSL grouped GEMM kernel file generated by Inductor
|
||||
# maintains its own local caching system. At this stage, all compile-time
|
||||
# constexprs (e.g., TILE_M, TILE_N, CLUSTER_M/N, USE_2_CTA) and the kernel
|
||||
# name itself ({{kernel_name}}) are permanently baked into the file, so they
|
||||
# do not need to be included in any cache key.
|
||||
#
|
||||
# The caching mechanism is split into two levels:
|
||||
#
|
||||
# 1. prep_cache
|
||||
# Caches the compiled executor for build_group_ptrs_from_bases(). This
|
||||
# kernel depends only on the tensor shapes, strides, and dtypes of A/B/C,
|
||||
# and can therefore be safely reused across runs with different group
|
||||
# partitioning (`offs`).
|
||||
#
|
||||
# 2. gemm_cache
|
||||
# Caches the compiled Grouped GEMM executor. Its key extends the prep
|
||||
# cache key with hardware- and grid-specific parameters:
|
||||
# (prep_cache_key, max_active_clusters, total_num_clusters).
|
||||
# This is necessary because different `offs` tensors can change the
|
||||
# per-group problem sizes and thus alter `total_num_clusters`, which in
|
||||
# turn changes the grid shape and persistent scheduler configuration.
|
||||
# Kernels compiled for one grid cannot be safely reused for another.
|
||||
#
|
||||
#
|
||||
# Additionally, note the @lru_cache decorator on get_hardware_info(). Empirically,
|
||||
# hw.get_max_active_clusters() triggers significant MLIR recompilation overhead,
|
||||
# despite depending only on the GPU type. We cache this function to mitigate
|
||||
# redundant recompiles even when shape/stride/dtype cache misses force kernel
|
||||
# regeneration. A follow-up study will investigate the root cause.
|
||||
|
||||
prep_cache = {}
|
||||
gemm_cache = {}
|
||||
|
||||
|
||||
@functools.lru_cache
|
||||
def get_hardware_info():
|
||||
hw = cutlass.utils.HardwareInfo()
|
||||
sm_count = hw.get_max_active_clusters(1)
|
||||
max_active_clusters = hw.get_max_active_clusters(CLUSTER_M * CLUSTER_N)
|
||||
|
||||
return (sm_count, max_active_clusters)
|
||||
|
||||
|
||||
def get_prep_cache_key(input_a, input_b, output):
|
||||
"""
|
||||
Returns a tuple key for caching the preprocessing kernel executor based on kernel name,
|
||||
shapes, strides, and dtypes of input/output tensors.
|
||||
"""
|
||||
return (
|
||||
tuple(input_a.shape),
|
||||
tuple(input_a.stride()),
|
||||
input_a.dtype,
|
||||
tuple(input_b.shape),
|
||||
tuple(input_b.stride()),
|
||||
input_b.dtype,
|
||||
tuple(output.shape),
|
||||
tuple(output.stride()),
|
||||
output.dtype,
|
||||
)
|
||||
|
||||
|
||||
def get_gemm_cache_key(prep_cache_key, max_active_clusters, total_num_clusters):
|
||||
"""
|
||||
Returns a tuple key for caching the gemm kernel executor by extending the
|
||||
prep cache key with hardware- and grid-specific parameters.
|
||||
"""
|
||||
return (
|
||||
prep_cache_key,
|
||||
max_active_clusters,
|
||||
total_num_clusters,
|
||||
)
|
||||
|
||||
|
||||
@cute.kernel
|
||||
def build_group_ptrs_from_bases_kernel(
|
||||
base_A_u64: cutlass.Int64, # device addr of input_a (bytes)
|
||||
base_B_u64: cutlass.Int64, # device addr of input_b (bytes)
|
||||
base_C_u64: cutlass.Int64, # device addr of Output (bytes)
|
||||
offs: cute.Tensor, # [G], cutlass.Int32/64 cumulative
|
||||
K: cutlass.Constexpr,
|
||||
N: cutlass.Constexpr,
|
||||
sizeof_element: cutlass.Int32, # bytes
|
||||
# -------- STRIDES (in ELEMENTS) --------
|
||||
stride_A_m_elems: cutlass.Constexpr, # A.stride(0)
|
||||
stride_A_k_elems: cutlass.Constexpr, # A.stride(1)
|
||||
stride_B0_elems: cutlass.Constexpr, # B.stride(0)
|
||||
stride_Bk_elems: cutlass.Constexpr, # B.stride(1)
|
||||
stride_Bn_elems: cutlass.Constexpr, # B.stride(2)
|
||||
stride_C_m_elems: cutlass.Constexpr, # C.stride(0)
|
||||
stride_C_n_elems: cutlass.Constexpr, # C.stride(1)
|
||||
# -------- OUTPUTS --------
|
||||
out_ptrs: cute.Tensor, # [G,3] cutlass.Int64: (A_ptr, B_ptr, C_ptr)
|
||||
out_problem: cute.Tensor, # [G,4] cutlass.Int32: (m_g, n, k, 1)
|
||||
out_strides_abc: cute.Tensor, # [G,3,2] cutlass.Int32 [[A_m,A_k],[B_n,B_k],[C_m,C_n]]
|
||||
):
|
||||
tidx, _, _ = cute.arch.thread_idx()
|
||||
g = tidx
|
||||
|
||||
m_beg_i32 = 0
|
||||
if g > 0:
|
||||
m_beg_i32 = offs[g - 1]
|
||||
m_end_i32 = offs[g]
|
||||
m_g_i32 = m_end_i32 - m_beg_i32
|
||||
|
||||
a_byte_off = (
|
||||
cutlass.Int64(m_beg_i32) * stride_A_m_elems * cutlass.Int64(sizeof_element)
|
||||
)
|
||||
c_byte_off = (
|
||||
cutlass.Int64(m_beg_i32) * stride_C_m_elems * cutlass.Int64(sizeof_element)
|
||||
)
|
||||
b_byte_off = cutlass.Int64(g) * stride_B0_elems * cutlass.Int64(sizeof_element)
|
||||
|
||||
# ---- pointers ----
|
||||
out_ptrs[g, 0] = base_A_u64 + a_byte_off
|
||||
out_ptrs[g, 1] = base_B_u64 + b_byte_off
|
||||
out_ptrs[g, 2] = base_C_u64 + c_byte_off
|
||||
|
||||
# ---- (m, n, k, 1) ----
|
||||
out_problem[g, 0] = m_g_i32
|
||||
out_problem[g, 1] = N
|
||||
out_problem[g, 2] = K
|
||||
out_problem[g, 3] = cutlass.Int32(1)
|
||||
|
||||
# ---- strides ----
|
||||
out_strides_abc[g, 0, 0] = cutlass.Int32(stride_A_m_elems)
|
||||
out_strides_abc[g, 0, 1] = cutlass.Int32(stride_A_k_elems)
|
||||
out_strides_abc[g, 1, 0] = cutlass.Int32(stride_Bn_elems)
|
||||
out_strides_abc[g, 1, 1] = cutlass.Int32(stride_Bk_elems)
|
||||
out_strides_abc[g, 2, 0] = cutlass.Int32(stride_C_m_elems)
|
||||
out_strides_abc[g, 2, 1] = cutlass.Int32(stride_C_n_elems)
|
||||
|
||||
|
||||
@cute.jit
|
||||
def launch_build_group_ptrs_from_bases(
|
||||
base_A_u64: cutlass.Int64,
|
||||
base_B_u64: cutlass.Int64,
|
||||
base_C_u64: cutlass.Int64,
|
||||
offs: cute.Tensor,
|
||||
G: cutlass.Constexpr,
|
||||
K: cutlass.Constexpr,
|
||||
N: cutlass.Constexpr,
|
||||
sizeof_element: cutlass.Constexpr,
|
||||
stride_A_m_elems: cutlass.Constexpr,
|
||||
stride_A_k_elems: cutlass.Constexpr,
|
||||
stride_B0_elems: cutlass.Constexpr,
|
||||
stride_Bk_elems: cutlass.Constexpr,
|
||||
stride_Bn_elems: cutlass.Constexpr,
|
||||
stride_C_m_elems: cutlass.Constexpr,
|
||||
stride_C_n_elems: cutlass.Constexpr,
|
||||
out_ptrs: cute.Tensor, # [G,3] cutlass.Int64
|
||||
out_problem: cute.Tensor, # [G,4] cutlass.Int32
|
||||
out_strides_abc: cute.Tensor, # [3,2] cutlass.Int32
|
||||
stream: cuda.CUstream,
|
||||
):
|
||||
build_group_ptrs_from_bases_kernel(
|
||||
base_A_u64,
|
||||
base_B_u64,
|
||||
base_C_u64,
|
||||
offs,
|
||||
K,
|
||||
N,
|
||||
sizeof_element,
|
||||
stride_A_m_elems,
|
||||
stride_A_k_elems,
|
||||
stride_B0_elems,
|
||||
stride_Bk_elems,
|
||||
stride_Bn_elems,
|
||||
stride_C_m_elems,
|
||||
stride_C_n_elems,
|
||||
out_ptrs,
|
||||
out_problem,
|
||||
out_strides_abc,
|
||||
).launch(grid=(1, 1, 1), block=(G, 1, 1), stream=stream)
|
||||
|
||||
|
||||
{{def_kernel("input_a", "input_b", "input_a_offs")}}
|
||||
stream = cuda.CUstream(stream)
|
||||
|
||||
input_b = input_b.transpose(1, 2)
|
||||
|
||||
sumM, K = input_a.shape
|
||||
G, N, Kb = input_b.shape
|
||||
|
||||
dev = input_a.device
|
||||
|
||||
base_A_u64 = int(input_a.data_ptr())
|
||||
base_B_u64 = int(input_b.data_ptr())
|
||||
base_C_u64 = int({{get_output()}}.data_ptr())
|
||||
|
||||
ptrs_t = torch.empty((G, 3), device=dev, dtype=torch.int64)
|
||||
probs_t = torch.empty((G, 4), device=dev, dtype=torch.int32)
|
||||
strides_t = torch.empty((G, 3, 2), device=dev, dtype=torch.int32)
|
||||
ptrs = from_dlpack(ptrs_t)
|
||||
probs = from_dlpack(probs_t)
|
||||
strides = from_dlpack(strides_t)
|
||||
|
||||
prep_cache_key = get_prep_cache_key(input_a, input_b, {{get_output()}})
|
||||
prep_executor = prep_cache.get(prep_cache_key)
|
||||
|
||||
if prep_executor is None:
|
||||
sizeof_element = int(input_a.element_size())
|
||||
sA_m, sA_k = map(int, input_a.stride())
|
||||
sB_0, sB_n, sB_k = map(int, input_b.stride())
|
||||
sC_m, sC_n = map(int, {{get_output()}}.stride())
|
||||
|
||||
prep_executor = cute.compile(
|
||||
launch_build_group_ptrs_from_bases,
|
||||
base_A_u64=base_A_u64,
|
||||
base_B_u64=base_B_u64,
|
||||
base_C_u64=base_C_u64,
|
||||
offs=from_dlpack(input_a_offs),
|
||||
G=int(G),
|
||||
K=int(K),
|
||||
N=int(N),
|
||||
sizeof_element=sizeof_element,
|
||||
stride_A_m_elems=sA_m,
|
||||
stride_A_k_elems=sA_k,
|
||||
stride_B0_elems=sB_0,
|
||||
stride_Bk_elems=sB_k,
|
||||
stride_Bn_elems=sB_n,
|
||||
stride_C_m_elems=sC_m,
|
||||
stride_C_n_elems=sC_n,
|
||||
out_ptrs=ptrs,
|
||||
out_problem=probs,
|
||||
out_strides_abc=strides,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
prep_cache[prep_cache_key] = prep_executor
|
||||
|
||||
prep_executor(
|
||||
base_A_u64=base_A_u64,
|
||||
base_B_u64=base_B_u64,
|
||||
base_C_u64=base_C_u64,
|
||||
offs=from_dlpack(input_a_offs),
|
||||
out_ptrs=ptrs,
|
||||
out_problem=probs,
|
||||
out_strides_abc=strides,
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
# --- Tensormap workspace per SM ---
|
||||
num_tensormap_buffers, max_active_clusters = get_hardware_info()
|
||||
tensormap_shape = (
|
||||
num_tensormap_buffers,
|
||||
GroupedGemmKernel.num_tensormaps,
|
||||
GroupedGemmKernel.bytes_per_tensormap // 8,
|
||||
)
|
||||
tensormap_workspace_t = torch.empty(tensormap_shape, device=dev, dtype=torch.int64)
|
||||
tensormap_workspace = from_dlpack(tensormap_workspace_t)
|
||||
|
||||
# --- Total clusters ---
|
||||
def compute_total_num_clusters(
|
||||
problem_sizes_mnkl,
|
||||
cluster_tile_shape_mn,
|
||||
):
|
||||
total_num_clusters = 0
|
||||
for m, n, _, _ in problem_sizes_mnkl:
|
||||
num_clusters_mn = tuple(
|
||||
ceildiv(x, y) for x, y in zip((m, n), cluster_tile_shape_mn)
|
||||
)
|
||||
total_num_clusters += functools.reduce(lambda x, y: x * y, num_clusters_mn)
|
||||
return total_num_clusters
|
||||
|
||||
# Compute cluster tile shape
|
||||
def compute_cluster_tile_shape(
|
||||
mma_tiler_mn,
|
||||
cluster_shape_mn,
|
||||
use_2cta_instrs,
|
||||
):
|
||||
cta_tile_shape_mn = list(mma_tiler_mn)
|
||||
if use_2cta_instrs:
|
||||
cta_tile_shape_mn[0] = cta_tile_shape_mn[0] // 2
|
||||
return tuple(x * y for x, y in zip(cta_tile_shape_mn, cluster_shape_mn))
|
||||
|
||||
cluster_tile_shape_mn = compute_cluster_tile_shape(
|
||||
(TILE_M, TILE_N), (CLUSTER_M, CLUSTER_N), bool(USE_2_CTA)
|
||||
)
|
||||
|
||||
total_num_clusters = int(compute_total_num_clusters(probs_t, cluster_tile_shape_mn))
|
||||
|
||||
gemm_cache_key = get_gemm_cache_key(
|
||||
prep_cache_key, max_active_clusters, total_num_clusters
|
||||
)
|
||||
gemm_executor = gemm_cache.get(gemm_cache_key)
|
||||
|
||||
if gemm_executor is None:
|
||||
grouped_gemm = GroupedGemmKernel(
|
||||
acc_dtype=ACC_DTYPE,
|
||||
use_2cta_instrs=USE_2_CTA,
|
||||
mma_tiler_mn=(TILE_M, TILE_N),
|
||||
cluster_shape_mn=(CLUSTER_M, CLUSTER_N),
|
||||
tensormap_update_mode=TENSORMAP_UPDATE_MODE,
|
||||
)
|
||||
|
||||
gemm_executor = cute.compile(
|
||||
grouped_gemm,
|
||||
from_dlpack(input_a.unsqueeze(-1), assumed_align=16),
|
||||
from_dlpack(input_b[0].unsqueeze(-1), assumed_align=16),
|
||||
from_dlpack({{get_output()}}.unsqueeze(-1), assumed_align=16),
|
||||
G,
|
||||
probs,
|
||||
strides,
|
||||
ptrs,
|
||||
total_num_clusters,
|
||||
tensormap_workspace,
|
||||
max_active_clusters,
|
||||
stream,
|
||||
)
|
||||
|
||||
gemm_cache[gemm_cache_key] = gemm_executor
|
||||
|
||||
gemm_executor(
|
||||
from_dlpack(input_a.unsqueeze(-1), assumed_align=16),
|
||||
from_dlpack(input_b[0].unsqueeze(-1), assumed_align=16),
|
||||
from_dlpack({{get_output()}}.unsqueeze(-1), assumed_align=16),
|
||||
probs,
|
||||
strides,
|
||||
ptrs,
|
||||
tensormap_workspace,
|
||||
stream,
|
||||
)
|
||||
@ -5,8 +5,6 @@ import logging
|
||||
from collections.abc import Callable
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from torch.utils._ordered_set import OrderedSet
|
||||
|
||||
from .hints import TRITON_MAX_BLOCK
|
||||
from .runtime_utils import red_text, triton_config_to_hashable
|
||||
|
||||
@ -56,7 +54,6 @@ class CoordescTuner:
|
||||
name="unknown",
|
||||
size_hints=None,
|
||||
inductor_meta=None,
|
||||
frozen_fields=None,
|
||||
):
|
||||
self.is_mm = is_mm # we will tune num_stages for mm
|
||||
|
||||
@ -69,9 +66,6 @@ class CoordescTuner:
|
||||
self.name = name
|
||||
self.size_hints = size_hints
|
||||
self.inductor_meta = inductor_meta or {}
|
||||
self.frozen_fields: OrderedSet[str] = (
|
||||
OrderedSet(frozen_fields) if frozen_fields is not None else OrderedSet()
|
||||
)
|
||||
|
||||
def get_config_max(self, prefix: str) -> int:
|
||||
max_block = TRITON_MAX_BLOCK[prefix.upper()]
|
||||
@ -123,7 +117,7 @@ class CoordescTuner:
|
||||
out.append("num_stages")
|
||||
out.remove("ZBLOCK") # ZBLOCK=1 always in native matmul
|
||||
|
||||
return [f for f in out if f not in self.frozen_fields]
|
||||
return out
|
||||
|
||||
def value_too_large(self, name: str, val: int) -> bool:
|
||||
block_suffix = "BLOCK"
|
||||
|
||||
@ -336,7 +336,6 @@ class CachingAutotuner(KernelInterface):
|
||||
name=self.fn.__name__,
|
||||
size_hints=size_hints,
|
||||
inductor_meta=self.inductor_meta,
|
||||
frozen_fields=self.get_coordesc_frozen_fields(),
|
||||
)
|
||||
self.filename = filename
|
||||
|
||||
@ -366,13 +365,6 @@ class CachingAutotuner(KernelInterface):
|
||||
# Mode for launch grid calculation
|
||||
self.grid_mode: Literal["python", "cpp"] = "python"
|
||||
|
||||
def get_coordesc_frozen_fields(self) -> OrderedSet[str]:
|
||||
out: OrderedSet[str] = OrderedSet()
|
||||
if self.inductor_meta.get("RSPLIT_SIZE"):
|
||||
# We fix XBLOCK for mix order reduction
|
||||
out.add("XBLOCK")
|
||||
return out
|
||||
|
||||
def is_statically_launchable(self):
|
||||
"""
|
||||
Checks if every compiled kernel is statically launchable, which
|
||||
|
||||
141
torch/_inductor/template_heuristics/cutedsl.py
Normal file
141
torch/_inductor/template_heuristics/cutedsl.py
Normal file
@ -0,0 +1,141 @@
|
||||
from dataclasses import dataclass
|
||||
from enum import auto, Enum
|
||||
from itertools import product
|
||||
|
||||
import torch._inductor.config as config
|
||||
|
||||
|
||||
class TensorMapUpdateMode(Enum):
|
||||
"""Enum mirroring cutlass.utils.TensorMapUpdateMode to decouple this file from a cutlass dependency."""
|
||||
|
||||
SMEM = auto()
|
||||
GMEM = auto()
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CuTeGemmConfig:
|
||||
TILE_M: int = 128
|
||||
TILE_N: int = 192
|
||||
CLUSTER_M: int = 2
|
||||
CLUSTER_N: int = 1
|
||||
USE_2_CTA: bool = False
|
||||
TENSORMAP_UPDATE_MODE: TensorMapUpdateMode = TensorMapUpdateMode.SMEM
|
||||
|
||||
|
||||
def get_exhaustive_groupgemm_configs() -> list[CuTeGemmConfig]:
|
||||
"""
|
||||
Returns the exhaustive configuration set for the Blackwell CuTeDSL Grouped GEMM kernel.
|
||||
For information regarding valid config sets, see:
|
||||
https://github.com/NVIDIA/cutlass/blob/main/examples/python/CuTeDSL/blackwell/grouped_gemm.py
|
||||
"""
|
||||
|
||||
# Tile_n is always the same regardless of 2cta
|
||||
tile_n_vals = [32, 64, 96, 128, 160, 192, 224, 256]
|
||||
|
||||
# Valid clusters
|
||||
clusters_no_2cta = [
|
||||
(1, 1),
|
||||
(1, 2),
|
||||
(1, 4),
|
||||
(1, 8),
|
||||
(1, 16),
|
||||
(2, 1),
|
||||
(2, 2),
|
||||
(2, 4),
|
||||
(2, 8),
|
||||
(4, 1),
|
||||
(4, 2),
|
||||
(4, 4),
|
||||
(8, 1),
|
||||
(8, 2),
|
||||
(16, 1),
|
||||
]
|
||||
clusters_2cta = [
|
||||
(2, 1),
|
||||
(2, 2),
|
||||
(2, 4),
|
||||
(2, 8),
|
||||
(4, 1),
|
||||
(4, 2),
|
||||
(4, 4),
|
||||
(8, 1),
|
||||
(8, 2),
|
||||
(16, 1),
|
||||
]
|
||||
|
||||
configs: list[CuTeGemmConfig] = []
|
||||
|
||||
for use_2cta, cluster_set, tile_m_range in [
|
||||
(False, clusters_no_2cta, [64, 128]),
|
||||
(True, clusters_2cta, [128, 256]),
|
||||
]:
|
||||
for tensormap_update_mode, tile_m, tile_n, (cluster_m, cluster_n) in product(
|
||||
[TensorMapUpdateMode.SMEM, TensorMapUpdateMode.GMEM],
|
||||
tile_m_range,
|
||||
tile_n_vals,
|
||||
cluster_set,
|
||||
):
|
||||
configs.append(
|
||||
CuTeGemmConfig(
|
||||
tile_m,
|
||||
tile_n,
|
||||
cluster_m,
|
||||
cluster_n,
|
||||
USE_2_CTA=use_2cta,
|
||||
TENSORMAP_UPDATE_MODE=tensormap_update_mode,
|
||||
)
|
||||
)
|
||||
|
||||
return configs
|
||||
|
||||
|
||||
def get_default_groupgemm_configs() -> list[CuTeGemmConfig]:
|
||||
"""
|
||||
Returns the default configuration set for the Blackwell CuTeDSL Grouped GEMM kernel.
|
||||
"""
|
||||
|
||||
config_tuples = [
|
||||
(128, 256, 2, 1, False, TensorMapUpdateMode.SMEM),
|
||||
(256, 160, 2, 1, True, TensorMapUpdateMode.GMEM),
|
||||
(256, 256, 2, 1, True, TensorMapUpdateMode.GMEM),
|
||||
(64, 32, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(64, 256, 1, 2, False, TensorMapUpdateMode.SMEM),
|
||||
(128, 256, 1, 2, False, TensorMapUpdateMode.SMEM),
|
||||
(256, 256, 2, 2, True, TensorMapUpdateMode.GMEM),
|
||||
(128, 256, 1, 2, False, TensorMapUpdateMode.GMEM),
|
||||
(64, 32, 1, 1, False, TensorMapUpdateMode.SMEM),
|
||||
(256, 256, 2, 1, True, TensorMapUpdateMode.SMEM),
|
||||
(128, 256, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(256, 256, 8, 1, True, TensorMapUpdateMode.GMEM),
|
||||
(64, 32, 1, 2, False, TensorMapUpdateMode.SMEM),
|
||||
(256, 192, 2, 1, True, TensorMapUpdateMode.GMEM),
|
||||
(256, 256, 2, 2, True, TensorMapUpdateMode.SMEM),
|
||||
(128, 96, 1, 2, False, TensorMapUpdateMode.SMEM),
|
||||
(64, 192, 1, 1, False, TensorMapUpdateMode.SMEM),
|
||||
(64, 64, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(64, 192, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(128, 64, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(64, 160, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
(64, 256, 1, 1, False, TensorMapUpdateMode.GMEM),
|
||||
]
|
||||
|
||||
return [CuTeGemmConfig(*args) for args in config_tuples]
|
||||
|
||||
|
||||
def get_groupgemm_configs() -> list[CuTeGemmConfig]:
|
||||
"""
|
||||
Returns the configuration set for the Blackwell CuTeDSL Grouped GEMM kernel.
|
||||
|
||||
Note: CuTeDSL autotuning is still experimental — enabling it may trigger kernel launch failures
|
||||
or unstable results. By default, autotuning is disabled and we return only
|
||||
a single baseline config.
|
||||
"""
|
||||
if (
|
||||
config.cutedsl_enable_autotuning
|
||||
and config.max_autotune_gemm_search_space == "EXHAUSTIVE"
|
||||
):
|
||||
return get_exhaustive_groupgemm_configs()
|
||||
elif config.cutedsl_enable_autotuning:
|
||||
return get_default_groupgemm_configs()
|
||||
else:
|
||||
return [get_default_groupgemm_configs()[0]]
|
||||
@ -1975,6 +1975,77 @@ def use_triton_blackwell_tma_template(
|
||||
return has_triton_tensor_descriptor_host_tma() and is_datacenter_blackwell_arch()
|
||||
|
||||
|
||||
@functools.lru_cache(maxsize=1)
|
||||
def ensure_cute_available() -> bool:
|
||||
"""Check if CuTeDSL is importable; cache the result for reuse.
|
||||
|
||||
Call ensure_cute_available.cache_clear() after installing CuTeDSL
|
||||
in the same interpreter to retry the import.
|
||||
"""
|
||||
try:
|
||||
return importlib.util.find_spec("cutlass.cute") is not None
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
|
||||
def use_blackwell_cutedsl_grouped_mm(
|
||||
mat_a: Any,
|
||||
mat_b: Any,
|
||||
layout: Layout,
|
||||
a_is_2d: bool,
|
||||
b_is_2d: bool,
|
||||
offs: Optional[Any],
|
||||
bias: Optional[Any],
|
||||
scale_result: Optional[Any],
|
||||
) -> bool:
|
||||
"""
|
||||
Returns True if we can use the blackwell kernel for grouped mm.
|
||||
Required conditions:
|
||||
1. CuTeDSL is available
|
||||
2. We are on a blackwell arch
|
||||
3. The dtype is bf16
|
||||
4. Max autotune or max autotune gemm is enabled
|
||||
6. A, B, and the output are 16B aligned
|
||||
7. We are not using dynamic shapes
|
||||
8. A is 2d
|
||||
9. B is 3d
|
||||
10. Offsets are provided
|
||||
11. Bias and Scale are not provided
|
||||
"""
|
||||
if not ensure_cute_available():
|
||||
return False
|
||||
|
||||
from .codegen.cuda.cuda_env import is_datacenter_blackwell_arch
|
||||
|
||||
if not is_gpu(layout.device.type) and is_datacenter_blackwell_arch():
|
||||
return False
|
||||
|
||||
layout_dtypes = [torch.bfloat16]
|
||||
if not _use_template_for_gpu(layout, layout_dtypes):
|
||||
return False
|
||||
|
||||
if not (config.max_autotune or config.max_autotune_gemm):
|
||||
return False
|
||||
|
||||
# Checks for 16B ptr and stride alignment
|
||||
if not can_use_tma(mat_a, mat_b, output_layout=layout):
|
||||
return False
|
||||
|
||||
if any(is_dynamic(x) for x in [mat_a, mat_b]):
|
||||
return False
|
||||
|
||||
if not a_is_2d or b_is_2d:
|
||||
return False
|
||||
|
||||
if offs is None:
|
||||
return False
|
||||
|
||||
if bias is not None or scale_result is not None:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def use_cutlass_template(layout: Layout, m: int, n: int, k: int) -> bool:
|
||||
from .virtualized import V
|
||||
|
||||
|
||||
@ -1228,7 +1228,7 @@ def _get_pynvml_handler(device: "Device" = None):
|
||||
"nvidia-ml-py does not seem to be installed or it can't be imported."
|
||||
# pyrefly: ignore [invalid-inheritance]
|
||||
) from _PYNVML_ERR
|
||||
# pyrefly: ignore [import-error,missing-module-attribute]
|
||||
# pyrefly: ignore [import-error]
|
||||
from pynvml import NVMLError_DriverNotLoaded
|
||||
|
||||
try:
|
||||
|
||||
@ -828,7 +828,7 @@ def list_gpu_processes(device: "Device" = None) -> str:
|
||||
import pynvml # type: ignore[import]
|
||||
except ModuleNotFoundError:
|
||||
return "pynvml module not found, please install nvidia-ml-py"
|
||||
# pyrefly: ignore [import-error,missing-module-attribute]
|
||||
# pyrefly: ignore [import-error]
|
||||
from pynvml import NVMLError_DriverNotLoaded
|
||||
|
||||
try:
|
||||
|
||||
@ -23,7 +23,6 @@ from torch.distributed.tensor._ops.utils import (
|
||||
map_placements_after_broadcast,
|
||||
prod,
|
||||
register_op_strategy,
|
||||
register_single_dim_strategy,
|
||||
)
|
||||
from torch.distributed.tensor._utils import (
|
||||
compute_local_shape_and_global_offset,
|
||||
@ -238,130 +237,10 @@ def dot_strategy(op_schema: OpSchema) -> OpStrategy:
|
||||
return _mm_like_strategy("i,i->", mesh, op_schema)
|
||||
|
||||
|
||||
# @register_op_strategy(aten.mm.default)
|
||||
# def mm_strategy(op_schema: OpSchema) -> OpStrategy:
|
||||
# mesh = op_schema.get_mesh_from_args()
|
||||
# return _mm_like_strategy("mk,kn->mn", mesh, op_schema)
|
||||
|
||||
|
||||
from ._einsum_strategy import EinsumDims
|
||||
|
||||
|
||||
def gen_single_dim_einsum_strategies(
|
||||
equation: str,
|
||||
mesh: DeviceMesh,
|
||||
*,
|
||||
linearity: bool = False,
|
||||
) -> list[Placement]:
|
||||
"""
|
||||
Generate a strategy list for the ops that follow einsum style notation.
|
||||
|
||||
In principle, each mesh dim is independent of other device mesh dim when we
|
||||
generate strategies. So we generate strategy over each device mesh dim and
|
||||
do product combination on all mesh dims. We basically follow the below rule
|
||||
for each device mesh dim:
|
||||
|
||||
1. Shard on contracting dim: When both inputs shard on contracting dim over
|
||||
the same device dim. The result will be Partial over that device dim.
|
||||
|
||||
2. Shard on noncontracting dim:
|
||||
2.1: Shard on batch dim: output, both inputs all should shard on batch
|
||||
dim.
|
||||
2.2: Shard on lhs only dim or rhs only dim: both output and lhs or rhs
|
||||
input should shard on this free dim.
|
||||
|
||||
3. Linearity (Partial): If enabled, set Partial on output and inputs over
|
||||
the same device mesh dim.
|
||||
"""
|
||||
# parse einop equation and extract dims
|
||||
input_dims, output_dim = EinsumDims.parse_equation(equation)
|
||||
edims = EinsumDims.parse_dims(input_dims, output_dim)
|
||||
all_mesh_dim_strategies = []
|
||||
|
||||
# generate strategies for each mesh dim and do cartesian product for final strategy. E.g., for a 2D mesh, we can have [P(),R,R]
|
||||
strategies_over_one_mesh_dim = []
|
||||
|
||||
# placement list stores placements of [output, input1, input2, ...]
|
||||
# first we always have replicate all for inputs and output
|
||||
placement_list: list[Placement] = [Replicate()] * (len(input_dims) + 1)
|
||||
strategies_over_one_mesh_dim.append(placement_list)
|
||||
|
||||
# split batch dim
|
||||
for batch_dim in edims.batch_dims:
|
||||
output_batch_dim = output_dim.index(batch_dim)
|
||||
placement_list = [Shard(output_batch_dim)]
|
||||
for input_dim in input_dims:
|
||||
input_batch_dim = input_dim.index(batch_dim)
|
||||
placement_list.append(Shard(input_batch_dim))
|
||||
|
||||
strategies_over_one_mesh_dim.append(placement_list)
|
||||
|
||||
# split contracting dim
|
||||
for contracting_dim in edims.contracting_dims:
|
||||
# Contracting dim can shard on same device axis for both inputs. This
|
||||
# results in the output being Partial on that device axis. For example:
|
||||
# bmk_{x},k_{x}n -> bmn{Ux} (becomes partial over device axis x)
|
||||
placement_list = [Partial()]
|
||||
for input_dim in input_dims:
|
||||
input_contracting_dim = input_dim.index(contracting_dim)
|
||||
placement_list.append(Shard(input_contracting_dim))
|
||||
|
||||
strategies_over_one_mesh_dim.append(placement_list)
|
||||
|
||||
# split lhs free dim
|
||||
for lhs_dim in edims.lhs_out_only_dims:
|
||||
lhs_free_dim_output = output_dim.index(lhs_dim)
|
||||
lhs_free_dim_input = input_dims[0].index(lhs_dim)
|
||||
# this means split the lhs input and output
|
||||
# i.e. S(0), R -> S(0)
|
||||
lhs_placement_list: list[Placement] = [
|
||||
Shard(lhs_free_dim_output),
|
||||
Shard(lhs_free_dim_input),
|
||||
Replicate(),
|
||||
]
|
||||
strategies_over_one_mesh_dim.append(lhs_placement_list)
|
||||
|
||||
# split rhs free dim
|
||||
for rhs_dim in edims.rhs_out_only_dims:
|
||||
rhs_free_dim_output = output_dim.index(rhs_dim)
|
||||
rhs_free_dim_input = input_dims[1].index(rhs_dim)
|
||||
rhs_placement_list: list[Placement] = [
|
||||
Shard(rhs_free_dim_output),
|
||||
Replicate(),
|
||||
Shard(rhs_free_dim_input),
|
||||
]
|
||||
strategies_over_one_mesh_dim.append(rhs_placement_list)
|
||||
|
||||
# linearity strategy
|
||||
if linearity:
|
||||
linearity_placement_list: list[Placement] = [Partial()]
|
||||
for _ in input_dims:
|
||||
linearity_placement_list.append(Partial())
|
||||
strategies_over_one_mesh_dim.append(linearity_placement_list)
|
||||
|
||||
# generate strategies for entire mesh
|
||||
# all_mesh_dim_strategies = [strategies_over_one_mesh_dim] * mesh.ndim
|
||||
# strategy_combs = itertools.product(*all_mesh_dim_strategies)
|
||||
# all_strategies = []
|
||||
# for strategy_comb in strategy_combs:
|
||||
# spec_list = [DTensorSpec(mesh, tuple(specs)) for specs in zip(*strategy_comb)]
|
||||
# strat = OpSpec(output_specs=spec_list[0], input_specs=spec_list[1:])
|
||||
# all_strategies.append(strat)
|
||||
|
||||
# return OpStrategy(all_strategies)
|
||||
return strategies_over_one_mesh_dim
|
||||
|
||||
|
||||
@register_single_dim_strategy(aten.mm.default)
|
||||
def mm_single_dim_strategy(op_schema: OpSchema) -> list[Placement]:
|
||||
self_strategy, mat2_strategy = op_schema.args_schema
|
||||
if not isinstance(self_strategy, OpStrategy):
|
||||
raise AssertionError(f"Expected OpStrategy, got {type(self_strategy)}")
|
||||
if not isinstance(mat2_strategy, OpStrategy):
|
||||
raise AssertionError(f"Expected OpStrategy, got {type(mat2_strategy)}")
|
||||
# generate all possible strategies for mm
|
||||
@register_op_strategy(aten.mm.default)
|
||||
def mm_strategy(op_schema: OpSchema) -> OpStrategy:
|
||||
mesh = op_schema.get_mesh_from_args()
|
||||
return gen_single_dim_einsum_strategies("mk,kn->mn", mesh)
|
||||
return _mm_like_strategy("mk,kn->mn", mesh, op_schema)
|
||||
|
||||
|
||||
@register_op_strategy(aten.addmm.default)
|
||||
|
||||
@ -41,8 +41,6 @@ from torch.distributed.tensor.placement_types import (
|
||||
aten = torch.ops.aten
|
||||
|
||||
|
||||
# WHC- i think anywhere this is used, we can replace it with a corresponding single-dim passthrough strategy
|
||||
# (anyshard, replicate, partial can all pass through- and then expand that to the mesh dims later)
|
||||
def propagate_single_input_strategy(op_schema: OpSchema) -> StrategyType:
|
||||
# For ops with a single tensor input, we perform a 1:1 mapping such that
|
||||
# for each strategy that the input supports, we create a corresponding strategy.
|
||||
@ -99,28 +97,6 @@ register_op_strategy(
|
||||
)(propagate_single_input_strategy)
|
||||
|
||||
|
||||
"""
|
||||
WHC- equal_strategy is an example baking an optimization into the sharding rule.
|
||||
|
||||
The unoptimized equal strategy (for one mesh dim) should look like this
|
||||
S, S -> S
|
||||
R, R -> R
|
||||
P, P -> P * - this could work, i think, if we supported a Partial of boolean and reduction?
|
||||
And this should be expanded to the full mesh.
|
||||
|
||||
But what this rule actually does is
|
||||
- compare the two tensor args to equal- look at the strategies for each, which represent the I-O sharding relationship for the
|
||||
op that produced those tensor args. Pick the one that has the strategy (OpSpec) with the most Shard() placements in it.
|
||||
Why? becuase converting the other arg from R->S is cheaper than converting S->R
|
||||
|
||||
- start with the assumption that the 'equal' op has the same strategy as the op that produced its max-shard input
|
||||
- then adjust the placements from partial to replicate since we don't support partial in equal
|
||||
- finally, produce an OpSpec that only populates the 'output_specs' of OpSpec
|
||||
|
||||
TODO: why is it ok to populate only the output_specs of an OpSpec? Is it defined to mean that all input specs are the same as the output spec?
|
||||
"""
|
||||
|
||||
|
||||
@register_op_strategy(
|
||||
[
|
||||
aten.equal.default,
|
||||
@ -164,19 +140,6 @@ def equal_strategy(op_schema: OpSchema) -> StrategyType:
|
||||
return equal_strategy
|
||||
|
||||
|
||||
"""
|
||||
WHC
|
||||
seems like we could replace this with single-mesh strategy
|
||||
S->S
|
||||
R->R
|
||||
P->R
|
||||
|
||||
The P->R thing is odd, but makes sense:
|
||||
* can't support P->P since it would be incorrect to create a new 'partial' tensor from ones, which would no longer be ones if we replicated them
|
||||
* don't want to omit the support for input Partial becuase we'd force a replication on the input which would be wasteful
|
||||
"""
|
||||
|
||||
|
||||
@register_op_strategy(
|
||||
[
|
||||
aten.empty_like.default,
|
||||
@ -518,19 +481,6 @@ def replicate_tensor_dim(
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
WHC- example of a complicated 'follow your inputs' strategy that would be useful to try out as a simple rule
|
||||
|
||||
seems very simple to write this way
|
||||
|
||||
assert input, src same ndim
|
||||
for i in range(input.ndim):
|
||||
if i != slice_dim:
|
||||
Shard(i), Shard(i) -> Shard(i)
|
||||
|
||||
"""
|
||||
|
||||
|
||||
@register_op_strategy(aten.slice_scatter.default, schema_info=RuntimeSchemaInfo(2))
|
||||
def gen_slice_scatter_strategy(op_schema: OpSchema) -> StrategyType:
|
||||
# 1. number of dimensions in input and src need to match.
|
||||
|
||||
@ -4,7 +4,8 @@ import functools
|
||||
import itertools
|
||||
import operator
|
||||
from collections.abc import Callable, Iterable, Sequence
|
||||
from typing import cast, Optional, Union
|
||||
from typing import cast, Optional, TypeVar, Union
|
||||
from typing_extensions import ParamSpec
|
||||
|
||||
import torch
|
||||
from torch._prims_common import DimsSequenceType, DimsType
|
||||
@ -29,6 +30,10 @@ from torch.distributed.tensor.placement_types import (
|
||||
)
|
||||
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_P = ParamSpec("_P")
|
||||
|
||||
|
||||
# convenient wrapper to register sharding propagation rules
|
||||
def register_prop_rule(
|
||||
op: Union[torch._ops.OpOverload, list[torch._ops.OpOverload]],
|
||||
@ -49,61 +54,11 @@ def register_prop_rule(
|
||||
return wrapper
|
||||
|
||||
|
||||
def register_single_dim_strategy(
|
||||
op: Union[torch._ops.OpOverload, list[torch._ops.OpOverload]],
|
||||
schema_info: Optional[RuntimeSchemaInfo] = None,
|
||||
) -> Callable[
|
||||
[Callable[[OpSchema], list[Placement]]], Callable[[OpSchema], StrategyType]
|
||||
]:
|
||||
"""
|
||||
Registers a simplified op strategy that only considers a single mesh dim, taking care to expand it
|
||||
to cover all the mesh dims present in the runtime inputs.
|
||||
"""
|
||||
|
||||
def expanded_registration_wrapper(
|
||||
single_dim_strategy: Callable[[OpSchema], list[Placement]],
|
||||
) -> Callable[[OpSchema], StrategyType]:
|
||||
def _expanded_strategy(op_schema: OpSchema) -> StrategyType:
|
||||
"""
|
||||
Expands the single_mesh_dim impl across all mesh dims, and expands ShardingPlacholder into all
|
||||
sharding types used by inputs.
|
||||
"""
|
||||
inputs_strategy = op_schema.args_strategy
|
||||
mesh = inputs_strategy[0].mesh
|
||||
strategies_over_one_mesh_dim = single_dim_strategy(op_schema)
|
||||
|
||||
# TODO: handle 'ShardingPlaceholder' expansion (doesn't exist yet)
|
||||
# TODO: filter out 'invalid' placements
|
||||
# - ShardVar needs to say whether 'even sharding' is required or not
|
||||
|
||||
# copied from einsum strategy..
|
||||
# TODO: identify differences between this and 'expand_' util
|
||||
all_mesh_dim_strategies = [strategies_over_one_mesh_dim] * mesh.ndim
|
||||
strategy_combs = itertools.product(*all_mesh_dim_strategies)
|
||||
all_strategies = []
|
||||
for strategy_comb in strategy_combs:
|
||||
spec_list = [
|
||||
DTensorSpec(mesh, tuple(specs)) for specs in zip(*strategy_comb)
|
||||
]
|
||||
all_strategies.append(
|
||||
OpSpec(output_specs=spec_list[0], input_specs=spec_list[1:])
|
||||
)
|
||||
|
||||
return OpStrategy(all_strategies)
|
||||
|
||||
# register_op_strategy returns another wrapper that actually does the strategy registration,
|
||||
# we just add another layer of wrapping that expands the single_dim_strategy into a strategy that's
|
||||
# compatible with register_op_strategy
|
||||
register_op_strategy(op, schema_info)(_expanded_strategy)
|
||||
return _expanded_strategy
|
||||
|
||||
return expanded_registration_wrapper
|
||||
|
||||
|
||||
def register_op_strategy(
|
||||
op: Union[torch._ops.OpOverload, list[torch._ops.OpOverload]],
|
||||
schema_info: Optional[RuntimeSchemaInfo] = None,
|
||||
) -> Callable[[Callable[[OpSchema], StrategyType]], Callable[[OpSchema], StrategyType]]:
|
||||
op, schema_info=None
|
||||
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
|
||||
# pyre-fixme[2]: Parameter must be annotated.
|
||||
|
||||
# For every ATen op that accepts any args in this list,
|
||||
# the arg itself can impact the strides (and potentially the sharding strategy)
|
||||
# of the output tensor.
|
||||
@ -113,9 +68,7 @@ def register_op_strategy(
|
||||
"memory_format",
|
||||
]
|
||||
|
||||
def wrapper(
|
||||
impl: Callable[[OpSchema], StrategyType],
|
||||
) -> Callable[[OpSchema], StrategyType]:
|
||||
def wrapper(impl):
|
||||
if isinstance(op, list):
|
||||
overloads = op
|
||||
else:
|
||||
@ -206,10 +159,7 @@ def prod(xs: Iterable[int]) -> int:
|
||||
|
||||
|
||||
def is_tensor_shardable(shape: Sequence[int], spec: DTensorSpec) -> bool:
|
||||
"""Check if the spec matches these criteria:
|
||||
* any Shard placements in spec refer to valid tensor dims
|
||||
* no empty local tensors (uneven sharding OK, as long as last rank has >0 size)
|
||||
"""
|
||||
"""Check if the shape is shardable according to the spec."""
|
||||
# number of shards in each tensor dimension
|
||||
shards_map = [1] * len(shape)
|
||||
for i, placement in enumerate(spec.placements):
|
||||
|
||||
@ -17,5 +17,230 @@ def is_stdlib_module(module: str) -> bool:
|
||||
|
||||
|
||||
def _get_stdlib_modules():
|
||||
assert sys.version_info >= (3, 10)
|
||||
return sys.stdlib_module_names
|
||||
if sys.version_info.major == 3: # noqa: UP036
|
||||
if sys.version_info.minor == 9:
|
||||
return stdlib3_9
|
||||
if sys.version_info.minor >= 10: # noqa: YTT204
|
||||
return sys.stdlib_module_names # type: ignore[attr-defined]
|
||||
elif sys.version_info.major > 3: # noqa: UP036
|
||||
return sys.stdlib_module_names # type: ignore[attr-defined]
|
||||
|
||||
raise RuntimeError(f"Unsupported Python version: {sys.version_info}")
|
||||
|
||||
|
||||
stdlib3_9 = {
|
||||
"_thread",
|
||||
"abc",
|
||||
"aifc",
|
||||
"argparse",
|
||||
"array",
|
||||
"ast",
|
||||
"asynchat",
|
||||
"asyncio",
|
||||
"asyncore",
|
||||
"atexit",
|
||||
"audioop",
|
||||
"base64",
|
||||
"bdb",
|
||||
"binascii",
|
||||
"binhex",
|
||||
"bisect",
|
||||
"builtins",
|
||||
"bz2",
|
||||
"cProfile",
|
||||
"calendar",
|
||||
"cgi",
|
||||
"cgitb",
|
||||
"chunk",
|
||||
"cmath",
|
||||
"cmd",
|
||||
"code",
|
||||
"codecs",
|
||||
"codeop",
|
||||
"collections",
|
||||
"colorsys",
|
||||
"compileall",
|
||||
"concurrent",
|
||||
"configparser",
|
||||
"contextlib",
|
||||
"contextvars",
|
||||
"copy",
|
||||
"copyreg",
|
||||
"crypt",
|
||||
"csv",
|
||||
"ctypes",
|
||||
"curses",
|
||||
"dataclasses",
|
||||
"datetime",
|
||||
"dbm",
|
||||
"decimal",
|
||||
"difflib",
|
||||
"dis",
|
||||
"distutils",
|
||||
"doctest",
|
||||
"email",
|
||||
"encodings",
|
||||
"ensurepip",
|
||||
"enum",
|
||||
"errno",
|
||||
"faulthandler",
|
||||
"fcntl",
|
||||
"filecmp",
|
||||
"fileinput",
|
||||
"fnmatch",
|
||||
"formatter",
|
||||
"fractions",
|
||||
"ftplib",
|
||||
"functools",
|
||||
"gc",
|
||||
"getopt",
|
||||
"getpass",
|
||||
"gettext",
|
||||
"glob",
|
||||
"graphlib",
|
||||
"grp",
|
||||
"gzip",
|
||||
"hashlib",
|
||||
"heapq",
|
||||
"hmac",
|
||||
"html",
|
||||
"http",
|
||||
"imaplib",
|
||||
"imghdr",
|
||||
"imp",
|
||||
"importlib",
|
||||
"inspect",
|
||||
"io",
|
||||
"ipaddress",
|
||||
"itertools",
|
||||
"json",
|
||||
"keyword",
|
||||
"lib2to3",
|
||||
"linecache",
|
||||
"locale",
|
||||
"logging",
|
||||
"lzma",
|
||||
"mailbox",
|
||||
"mailcap",
|
||||
"marshal",
|
||||
"math",
|
||||
"mimetypes",
|
||||
"mmap",
|
||||
"modulefinder",
|
||||
"msilib",
|
||||
"msvcrt",
|
||||
"multiprocessing",
|
||||
"netrc",
|
||||
"nis",
|
||||
"nntplib",
|
||||
"ntpath",
|
||||
"numbers",
|
||||
"operator",
|
||||
"optparse",
|
||||
"os",
|
||||
"ossaudiodev",
|
||||
"parser",
|
||||
"pathlib",
|
||||
"pdb",
|
||||
"pickle",
|
||||
"pickletools",
|
||||
"pipes",
|
||||
"pkgutil",
|
||||
"platform",
|
||||
"plistlib",
|
||||
"poplib",
|
||||
"posix",
|
||||
"posixpath",
|
||||
"pprint",
|
||||
"profile",
|
||||
"pstats",
|
||||
"pty",
|
||||
"pwd",
|
||||
"py_compile",
|
||||
"pyclbr",
|
||||
"pydoc",
|
||||
"queue",
|
||||
"quopri",
|
||||
"random",
|
||||
"re",
|
||||
"readline",
|
||||
"reprlib",
|
||||
"resource",
|
||||
"rlcompleter",
|
||||
"runpy",
|
||||
"sched",
|
||||
"secrets",
|
||||
"select",
|
||||
"selectors",
|
||||
"shelve",
|
||||
"shlex",
|
||||
"shutil",
|
||||
"signal",
|
||||
"site",
|
||||
"smtpd",
|
||||
"smtplib",
|
||||
"sndhdr",
|
||||
"socket",
|
||||
"socketserver",
|
||||
"spwd",
|
||||
"sqlite3",
|
||||
"sre",
|
||||
"sre_compile",
|
||||
"sre_constants",
|
||||
"sre_parse",
|
||||
"ssl",
|
||||
"stat",
|
||||
"statistics",
|
||||
"string",
|
||||
"stringprep",
|
||||
"struct",
|
||||
"subprocess",
|
||||
"sunau",
|
||||
"symbol",
|
||||
"symtable",
|
||||
"sys",
|
||||
"sysconfig",
|
||||
"syslog",
|
||||
"tabnanny",
|
||||
"tarfile",
|
||||
"telnetlib",
|
||||
"tempfile",
|
||||
"termios",
|
||||
"test",
|
||||
"textwrap",
|
||||
"threading",
|
||||
"time",
|
||||
"timeit",
|
||||
"tkinter",
|
||||
"token",
|
||||
"tokenize",
|
||||
"trace",
|
||||
"traceback",
|
||||
"tracemalloc",
|
||||
"tty",
|
||||
"turtle",
|
||||
"turtledemo",
|
||||
"types",
|
||||
"typing",
|
||||
"unicodedata",
|
||||
"unittest",
|
||||
"urllib",
|
||||
"uu",
|
||||
"uuid",
|
||||
"venv",
|
||||
"warnings",
|
||||
"wave",
|
||||
"weakref",
|
||||
"webbrowser",
|
||||
"winreg",
|
||||
"winsound",
|
||||
"wsgiref",
|
||||
"xdrlib",
|
||||
"xml",
|
||||
"xmlrpc",
|
||||
"zipapp",
|
||||
"zipfile",
|
||||
"zipimport",
|
||||
"zlib",
|
||||
"zoneinfo",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user