mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 23:04:52 +08:00
Compare commits
17 Commits
viable/str
...
main-enabl
Author | SHA1 | Date | |
---|---|---|---|
e752a29afd | |||
36b622bb72 | |||
83a04f38a4 | |||
6579829bee | |||
2b856676f3 | |||
5746261c97 | |||
b3c94fd0fc | |||
6fd366b2c7 | |||
fe25f6ab59 | |||
ca89e5732f | |||
f12cb265d4 | |||
7dc6bf5377 | |||
e5ba464808 | |||
7d95185044 | |||
77fb3c1cac | |||
11a3d1d87b | |||
8c6d9feb26 |
@ -113,7 +113,6 @@ case "$tag" in
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
TRITON=yes
|
||||
INSTALL_MINGW=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11)
|
||||
CUDA_VERSION=13.0.0
|
||||
@ -362,7 +361,6 @@ docker build \
|
||||
--build-arg "OPENBLAS=${OPENBLAS:-}" \
|
||||
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
|
||||
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
|
||||
--build-arg "INSTALL_MINGW=${INSTALL_MINGW:-}" \
|
||||
-f $(dirname ${DOCKERFILE})/Dockerfile \
|
||||
-t "$tmp_tag" \
|
||||
"$@" \
|
||||
|
@ -83,6 +83,10 @@ function build_cpython {
|
||||
py_suffix=${py_ver::-1}
|
||||
py_folder=$py_suffix
|
||||
fi
|
||||
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
|
||||
if [ "$py_suffix" == "3.14.0" ]; then
|
||||
py_suffix="3.14.0rc2"
|
||||
fi
|
||||
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
|
||||
do_cpython_build $py_ver Python-$py_suffix
|
||||
|
||||
|
@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
# Install MinGW-w64 for Windows cross-compilation
|
||||
apt-get update
|
||||
apt-get install -y g++-mingw-w64-x86-64-posix
|
||||
|
||||
echo "MinGW-w64 installed successfully"
|
||||
x86_64-w64-mingw32-g++ --version
|
@ -19,8 +19,8 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.1
|
||||
pip_install onnxscript==0.5.4
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxscript==0.5.3
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
|
||||
|
@ -39,13 +39,9 @@ case ${DOCKER_TAG_PREFIX} in
|
||||
DOCKER_GPU_BUILD_ARG=""
|
||||
;;
|
||||
rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
BASE_TARGET=rocm
|
||||
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
|
||||
|
@ -75,13 +75,9 @@ case ${image} in
|
||||
DOCKERFILE_SUFFIX="_cuda_aarch64"
|
||||
;;
|
||||
manylinux2_28-builder:rocm*)
|
||||
# we want the patch version of 7.0 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
# we want the patch version of 6.4 instead
|
||||
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.4"
|
||||
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
|
||||
fi
|
||||
TARGET=rocm_final
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
|
@ -334,12 +334,12 @@ sympy==1.13.3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnx==1.19.1
|
||||
onnx==1.18.0
|
||||
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.4
|
||||
onnxscript==0.5.3
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
@ -103,11 +103,6 @@ COPY ci_commit_pins/torchbench.txt torchbench.txt
|
||||
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
|
||||
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
|
||||
|
||||
ARG INSTALL_MINGW
|
||||
COPY ./common/install_mingw.sh install_mingw.sh
|
||||
RUN if [ -n "${INSTALL_MINGW}" ]; then bash ./install_mingw.sh; fi
|
||||
RUN rm install_mingw.sh
|
||||
|
||||
ARG TRITON
|
||||
ARG TRITON_CPU
|
||||
|
||||
|
@ -57,8 +57,8 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
|
||||
logger.info("Successfully cloned %s", target)
|
||||
return r, commit
|
||||
|
||||
except GitCommandError:
|
||||
logger.exception("Git operation failed")
|
||||
except GitCommandError as e:
|
||||
logger.error("Git operation failed: %s", e)
|
||||
raise
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.9.5"
|
||||
"uv==0.8.6"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
@ -485,22 +485,6 @@ test_inductor_aoti() {
|
||||
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
|
||||
}
|
||||
|
||||
test_inductor_aoti_cross_compile_for_windows() {
|
||||
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
# Set WINDOWS_CUDA_HOME environment variable
|
||||
WINDOWS_CUDA_HOME="$(pwd)/win-torch-wheel-extracted"
|
||||
export WINDOWS_CUDA_HOME
|
||||
|
||||
echo "WINDOWS_CUDA_HOME is set to: $WINDOWS_CUDA_HOME"
|
||||
echo "Contents:"
|
||||
ls -lah "$(pwd)/win-torch-wheel-extracted/lib/x64/" || true
|
||||
|
||||
python test/inductor/test_aoti_cross_compile_windows.py -k compile --package-dir "$TEST_REPORTS_DIR" --win-torch-lib-dir "$(pwd)/win-torch-wheel-extracted/torch/lib"
|
||||
}
|
||||
|
||||
test_inductor_cpp_wrapper_shard() {
|
||||
if [[ -z "$NUM_TEST_SHARDS" ]]; then
|
||||
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
|
||||
@ -916,7 +900,7 @@ test_inductor_set_cpu_affinity(){
|
||||
export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD"
|
||||
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
|
||||
|
||||
if [[ "$(uname -m)" != "aarch64" ]]; then
|
||||
if [[ "${TEST_CONFIG}" != *aarch64* ]]; then
|
||||
# Use Intel OpenMP for x86
|
||||
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
|
||||
export LD_PRELOAD="$IOMP_LIB":"$LD_PRELOAD"
|
||||
@ -930,7 +914,7 @@ test_inductor_set_cpu_affinity(){
|
||||
cores=$((cpus / thread_per_core))
|
||||
|
||||
# Set number of cores to 16 on aarch64 for performance runs
|
||||
if [[ "$(uname -m)" == "aarch64" && $cores -gt 16 ]]; then
|
||||
if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then
|
||||
cores=16
|
||||
fi
|
||||
export OMP_NUM_THREADS=$cores
|
||||
@ -1631,7 +1615,6 @@ test_operator_benchmark() {
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
TEST_DIR=$(pwd)
|
||||
ARCH=$(uname -m)
|
||||
|
||||
test_inductor_set_cpu_affinity
|
||||
|
||||
@ -1646,7 +1629,7 @@ test_operator_benchmark() {
|
||||
pip_install pandas
|
||||
python check_perf_csv.py \
|
||||
--actual "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
|
||||
--expected "${ARCH}_expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
|
||||
}
|
||||
|
||||
test_operator_microbenchmark() {
|
||||
@ -1683,7 +1666,7 @@ if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
|
||||
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
|
||||
fi
|
||||
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
|
||||
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" == 'default' ]]; then
|
||||
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
|
||||
test_linux_aarch64
|
||||
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
|
||||
test_forward_backward_compatibility
|
||||
@ -1734,8 +1717,6 @@ elif [[ "${TEST_CONFIG}" == *inductor-triton-cpu* ]]; then
|
||||
test_inductor_triton_cpu
|
||||
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
|
||||
test_inductor_micro_benchmark
|
||||
elif [[ "${TEST_CONFIG}" == *aoti_cross_compile_for_windows* ]]; then
|
||||
test_inductor_aoti_cross_compile_for_windows
|
||||
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
|
||||
install_torchvision
|
||||
id=$((SHARD_NUMBER-1))
|
||||
|
@ -163,13 +163,8 @@ if [[ "$(uname)" != Darwin ]]; then
|
||||
MEMORY_LIMIT_MAX_JOBS=12
|
||||
NUM_CPUS=$(( $(nproc) - 2 ))
|
||||
|
||||
if [[ "$(uname)" == Linux ]]; then
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
else
|
||||
# For other builds
|
||||
export MAX_JOBS=${NUM_CPUS}
|
||||
fi
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
|
||||
cat >>"$envfile" <<EOL
|
||||
export MAX_JOBS="${MAX_JOBS}"
|
||||
|
6
.flake8
6
.flake8
@ -7,12 +7,16 @@ max-line-length = 120
|
||||
# C408 ignored because we like the dict keyword argument syntax
|
||||
# E501 is not flexible enough, we're using B950 instead
|
||||
ignore =
|
||||
E203,E305,E402,E501,E704,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
|
||||
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
|
||||
# to line this up with executable bit
|
||||
EXE001,
|
||||
# these ignores are from flake8-bugbear; please fix!
|
||||
B007,B008,B017,B019,B023,B028,B903,B905,B906,B907,B908,B910
|
||||
# these ignores are from flake8-comprehensions; please fix!
|
||||
C407,
|
||||
# these ignores are from flake8-logging-format; please fix!
|
||||
G100,G101,G200
|
||||
# these ignores are from flake8-simplify. please fix or ignore with commented reason
|
||||
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
|
||||
# SIM104 is already covered by pyupgrade ruff
|
||||
|
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
69bbe7363897764f9e758d851cd0340147d27f94
|
||||
1b013f5b5a87a1882eb143c26d79d091150d6a37
|
||||
|
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
1752fe6809b74921644866275ab80244b96e80bc
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
|
29
.github/labeler.yml
vendored
29
.github/labeler.yml
vendored
@ -133,32 +133,3 @@
|
||||
|
||||
"ciflow/vllm":
|
||||
- .github/ci_commit_pins/vllm.txt
|
||||
|
||||
"ciflow/b200":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/h100":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/**/*cublas*
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
||||
"ciflow/rocm":
|
||||
- test/test_matmul_cuda.py
|
||||
- test/test_scaled_matmul_cuda.py
|
||||
- test/inductor/test_fp8.py
|
||||
- aten/src/ATen/native/cuda/Blas.cpp
|
||||
- torch/_inductor/kernel/mm.py
|
||||
- test/inductor/test_max_autotune.py
|
||||
- third_party/fbgemm
|
||||
|
1
.github/pytorch-probot.yml
vendored
1
.github/pytorch-probot.yml
vendored
@ -33,7 +33,6 @@ ciflow_push_tags:
|
||||
- ciflow/rocm
|
||||
- ciflow/rocm-mi300
|
||||
- ciflow/rocm-mi355
|
||||
- ciflow/rocm-navi31
|
||||
- ciflow/s390
|
||||
- ciflow/slow
|
||||
- ciflow/torchbench
|
||||
|
42
.github/scripts/generate_binary_build_matrix.py
vendored
42
.github/scripts/generate_binary_build_matrix.py
vendored
@ -79,21 +79,21 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
),
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'"
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
@ -241,11 +241,7 @@ def generate_libtorch_matrix(
|
||||
arches += CUDA_ARCHES
|
||||
arches += ROCM_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches
|
||||
arches += CUDA_ARCHES
|
||||
if libtorch_variants is None:
|
||||
libtorch_variants = [
|
||||
"shared-with-deps",
|
||||
@ -309,11 +305,7 @@ def generate_wheels_matrix(
|
||||
if os == "linux":
|
||||
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
|
||||
elif os == "windows":
|
||||
# TODO (huydhn): Only build CUDA 12.9 for Linux. This logic is to be cleaned up
|
||||
# in 2.10
|
||||
windows_cuda_arches = CUDA_ARCHES.copy()
|
||||
windows_cuda_arches.remove("12.9")
|
||||
arches += windows_cuda_arches + XPU_ARCHES
|
||||
arches += CUDA_ARCHES + XPU_ARCHES
|
||||
elif os == "linux-aarch64":
|
||||
# Separate new if as the CPU type is different and
|
||||
# uses different build/test scripts
|
||||
|
2
.github/scripts/trymerge.py
vendored
2
.github/scripts/trymerge.py
vendored
@ -1092,7 +1092,7 @@ class GitHubPR:
|
||||
editor = node["editor"]
|
||||
return GitHubComment(
|
||||
body_text=node["bodyText"],
|
||||
created_at=node.get("createdAt", ""),
|
||||
created_at=node["createdAt"] if "createdAt" in node else "",
|
||||
author_login=node["author"]["login"],
|
||||
author_url=node["author"].get("url", None),
|
||||
author_association=node["authorAssociation"],
|
||||
|
@ -26,8 +26,9 @@ name: !{{ build_environment }}
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "!{{ py_ver.strip('t') + ('.4' if '3.14' not in py_ver else '.0') }}"
|
||||
python-version: "!{{ (py_ver.strip('t') + '.4') if '3.14' not in py_ver else '3.14.0-rc.2' }}"
|
||||
freethreaded: !{{ "true" if py_ver.endswith('t') else "false" }}
|
||||
{%- endmacro %}
|
||||
|
||||
|
@ -79,9 +79,9 @@ jobs:
|
||||
runs-on: "windows-11-arm64-preview"
|
||||
{%- else %}
|
||||
{%- if branches == "nightly" %}
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
{%- else %}
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge.nonephemeral"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
{%- endif %}
|
||||
{%- endif %}
|
||||
timeout-minutes: !{{ common.timeout_minutes_windows_binary }}
|
||||
|
2
.github/workflows/_linux-build.yml
vendored
2
.github/workflows/_linux-build.yml
vendored
@ -37,7 +37,7 @@ on:
|
||||
runner:
|
||||
required: false
|
||||
type: string
|
||||
default: "linux.c7i.2xlarge"
|
||||
default: "linux.2xlarge"
|
||||
description: |
|
||||
Label of the runner this job should run on.
|
||||
test-matrix:
|
||||
|
40
.github/workflows/_linux-test.yml
vendored
40
.github/workflows/_linux-test.yml
vendored
@ -224,46 +224,6 @@ jobs:
|
||||
continue-on-error: true
|
||||
uses: ./.github/actions/download-td-artifacts
|
||||
|
||||
- name: Download Windows torch wheel for cross-compilation
|
||||
if: matrix.win_torch_wheel_artifact != ''
|
||||
uses: seemethere/download-artifact-s3@1da556a7aa0a088e3153970611f6c432d58e80e6 # v4.2.0
|
||||
with:
|
||||
name: ${{ matrix.win_torch_wheel_artifact }}
|
||||
path: win-torch-wheel
|
||||
|
||||
- name: Extract Windows wheel and setup CUDA libraries
|
||||
if: matrix.win_torch_wheel_artifact != ''
|
||||
shell: bash
|
||||
run: |
|
||||
set -x
|
||||
|
||||
# Find the wheel file
|
||||
WHEEL_FILE=$(find win-torch-wheel -name "*.whl" -type f | head -n 1)
|
||||
if [ -z "$WHEEL_FILE" ]; then
|
||||
echo "Error: No wheel file found in win-torch-wheel directory"
|
||||
exit 1
|
||||
fi
|
||||
echo "Found wheel file: $WHEEL_FILE"
|
||||
|
||||
# Unzip the wheel file
|
||||
unzip -q "$WHEEL_FILE" -d win-torch-wheel-extracted
|
||||
echo "Extracted wheel contents"
|
||||
|
||||
# Setup CUDA libraries (cuda.lib and cudart.lib) directory
|
||||
mkdir -p win-torch-wheel-extracted/lib/x64
|
||||
if [ -f "win-torch-wheel/cuda.lib" ]; then
|
||||
mv win-torch-wheel/cuda.lib win-torch-wheel-extracted/lib/x64/
|
||||
echo "Moved cuda.lib to win-torch-wheel-extracted/lib/x64/"
|
||||
fi
|
||||
if [ -f "win-torch-wheel/cudart.lib" ]; then
|
||||
mv win-torch-wheel/cudart.lib win-torch-wheel-extracted/lib/x64/
|
||||
echo "Moved cudart.lib to win-torch-wheel-extracted/lib/x64/"
|
||||
fi
|
||||
|
||||
# Verify CUDA libraries are present
|
||||
echo "CUDA libraries:"
|
||||
ls -la win-torch-wheel-extracted/lib/x64/ || echo "No CUDA libraries found"
|
||||
|
||||
- name: Parse ref
|
||||
id: parse-ref
|
||||
run: .github/scripts/parse_ref.py
|
||||
|
25
.github/workflows/_win-build.yml
vendored
25
.github/workflows/_win-build.yml
vendored
@ -168,31 +168,6 @@ jobs:
|
||||
run: |
|
||||
.ci/pytorch/win-build.sh
|
||||
|
||||
# Collect Windows torch libs and CUDA libs for cross-compilation
|
||||
- name: Collect Windows CUDA libs for cross-compilation
|
||||
if: steps.build.outcome != 'skipped' && inputs.cuda-version != 'cpu'
|
||||
shell: bash
|
||||
run: |
|
||||
set -ex
|
||||
|
||||
# Create directory structure if does not exist
|
||||
mkdir -p /c/${{ github.run_id }}/build-results
|
||||
|
||||
# Copy CUDA libs
|
||||
CUDA_PATH="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ inputs.cuda-version }}"
|
||||
|
||||
if [ -f "${CUDA_PATH}/lib/x64/cuda.lib" ]; then
|
||||
cp "${CUDA_PATH}/lib/x64/cuda.lib" /c/${{ github.run_id }}/build-results/
|
||||
fi
|
||||
|
||||
if [ -f "${CUDA_PATH}/lib/x64/cudart.lib" ]; then
|
||||
cp "${CUDA_PATH}/lib/x64/cudart.lib" /c/${{ github.run_id }}/build-results/
|
||||
fi
|
||||
|
||||
# List collected files
|
||||
echo "Collected CUDA libs:"
|
||||
ls -lah /c/${{ github.run_id }}/build-results/*.lib
|
||||
|
||||
# Upload to github so that people can click and download artifacts
|
||||
- name: Upload artifacts to s3
|
||||
if: steps.build.outcome != 'skipped'
|
||||
|
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -224,7 +224,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -473,7 +473,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -722,7 +722,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -971,7 +971,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1220,7 +1220,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1469,7 +1469,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1718,7 +1718,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_9
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
14
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -259,7 +259,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_9-test: # Testing
|
||||
@ -925,7 +925,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_9-test: # Testing
|
||||
@ -1591,7 +1591,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_9-test: # Testing
|
||||
@ -2257,7 +2257,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_9-test: # Testing
|
||||
@ -2923,7 +2923,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_9-test: # Testing
|
||||
@ -3589,7 +3589,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_9-test: # Testing
|
||||
@ -4255,7 +4255,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_9
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_9-test: # Testing
|
||||
|
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
1
.github/workflows/generated-macos-arm64-binary-libtorch-release-nightly.yml
generated
vendored
@ -63,6 +63,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
|
11
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
11
.github/workflows/generated-macos-arm64-binary-wheel-nightly.yml
generated
vendored
@ -59,6 +59,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.10.4"
|
||||
freethreaded: false
|
||||
@ -168,6 +169,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.11.4"
|
||||
freethreaded: false
|
||||
@ -277,6 +279,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.12.4"
|
||||
freethreaded: false
|
||||
@ -386,6 +389,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: false
|
||||
@ -495,6 +499,7 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.13.4"
|
||||
freethreaded: true
|
||||
@ -604,8 +609,9 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0"
|
||||
python-version: "3.14.0-rc.2"
|
||||
freethreaded: false
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
@ -713,8 +719,9 @@ jobs:
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
# TODO: Removeme once 3.14 is out
|
||||
# .4 version is min minor for 3.10, and also no-gil version of 3.13 needs at least 3.13.3
|
||||
python-version: "3.14.0"
|
||||
python-version: "3.14.0-rc.2"
|
||||
freethreaded: true
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
|
258
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
258
.github/workflows/generated-windows-binary-libtorch-debug-nightly.yml
generated
vendored
@ -44,7 +44,7 @@ jobs:
|
||||
libtorch-cpu-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -291,7 +291,7 @@ jobs:
|
||||
libtorch-cuda12_6-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -541,7 +541,7 @@ jobs:
|
||||
libtorch-cuda12_8-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -788,10 +788,260 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-debug-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-debug-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-debug
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
|
258
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
258
.github/workflows/generated-windows-binary-libtorch-release-nightly.yml
generated
vendored
@ -44,7 +44,7 @@ jobs:
|
||||
libtorch-cpu-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -291,7 +291,7 @@ jobs:
|
||||
libtorch-cuda12_6-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -541,7 +541,7 @@ jobs:
|
||||
libtorch-cuda12_8-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
@ -788,10 +788,260 @@ jobs:
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda12_9-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cuda12_9-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cuda12_9-shared-with-deps-release
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
needs: libtorch-cuda12_9-shared-with-deps-release-test
|
||||
with:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu129
|
||||
GPU_ARCH_VERSION: "12.9"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
build_name: libtorch-cuda12_9-shared-with-deps-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
uses: ./.github/workflows/_binary-upload.yml
|
||||
libtorch-cuda13_0-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
|
1736
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
1736
.github/workflows/generated-windows-binary-wheel-nightly.yml
generated
vendored
File diff suppressed because it is too large
Load Diff
@ -88,27 +88,27 @@ jobs:
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_huggingface_perf_rocm_mi355", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 1, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 2, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 3, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 4, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 5, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 6, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_timm_perf_rocm_mi355", shard: 7, num_shards: 7, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 1, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 2, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 3, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 4, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 5, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 6, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 7, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 8, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "inductor_torchbench_perf_rocm_mi355", shard: 9, num_shards: 9, runner: "linux.rocm.gpu.mi355.2" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
4
.github/workflows/lint.yml
vendored
4
.github/workflows/lint.yml
vendored
@ -118,9 +118,9 @@ jobs:
|
||||
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
|
||||
echo "Running all other linters"
|
||||
if [ "$CHANGED_FILES" = '*' ]; then
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY --all-files" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT --all-files" .github/scripts/lintrunner.sh
|
||||
else
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT,PYREFLY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY,MYPYSTRICT ${CHANGED_FILES}" .github/scripts/lintrunner.sh
|
||||
fi
|
||||
|
||||
quick-checks:
|
||||
|
38
.github/workflows/operator_benchmark.yml
vendored
38
.github/workflows/operator_benchmark.yml
vendored
@ -30,9 +30,9 @@ permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
x86-opbenchmark-build:
|
||||
opbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: x86-opbenchmark-build
|
||||
name: opbenchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
@ -43,36 +43,12 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
x86-opbenchmark-test:
|
||||
name: x86-opbenchmark-test
|
||||
opbenchmark-test:
|
||||
name: opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: x86-opbenchmark-build
|
||||
needs: opbenchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-py3.10-gcc11-build
|
||||
docker-image: ${{ needs.x86-opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.x86-opbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
aarch64-opbenchmark-build:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: aarch64-opbenchmark-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-aarch64-py3.10
|
||||
runner: linux.arm64.m7g.4xlarge
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-aarch64-py3.10-gcc11
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "cpu_operator_benchmark_short", shard: 1, num_shards: 1, runner: "linux.arm64.m8g.4xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
aarch64-opbenchmark-test:
|
||||
name: aarch64-opbenchmark-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: aarch64-opbenchmark-build
|
||||
with:
|
||||
build-environment: linux-jammy-aarch64-py3.10
|
||||
docker-image: ${{ needs.aarch64-opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.aarch64-opbenchmark-build.outputs.test-matrix }}
|
||||
docker-image: ${{ needs.opbenchmark-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.opbenchmark-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
15
.github/workflows/periodic.yml
vendored
15
.github/workflows/periodic.yml
vendored
@ -147,16 +147,15 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.9
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
12
.github/workflows/rocm-mi355.yml
vendored
12
.github/workflows/rocm-mi355.yml
vendored
@ -45,12 +45,12 @@ jobs:
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "default", shard: 2, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "default", shard: 3, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "default", shard: 4, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "default", shard: 5, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
{ config: "default", shard: 6, num_shards: 6, runner: "linux.rocm.gpu.mi355.2" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
63
.github/workflows/rocm-navi31.yml
vendored
63
.github/workflows/rocm-navi31.yml
vendored
@ -1,63 +0,0 @@
|
||||
name: rocm-navi31
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/rocm-navi31/*
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
|
||||
# Also run less frequently on weekends.
|
||||
- cron: 45 */2 * * 1-5
|
||||
- cron: 45 4,12 * * 0,6
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions: read-all
|
||||
|
||||
jobs:
|
||||
target-determination:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: before-test
|
||||
uses: ./.github/workflows/target_determination.yml
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: >-
|
||||
${{ github.event_name == 'schedule' && 'test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune' || '' }}
|
||||
secrets: inherit
|
26
.github/workflows/rocm.yml
vendored
26
.github/workflows/rocm.yml
vendored
@ -59,3 +59,29 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-gfx1100-test:
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3_10-gfx1100
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx1100" },
|
||||
]}
|
||||
tests-to-include: >
|
||||
test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs
|
||||
test_autograd inductor/test_torchinductor inductor/test_kernel_benchmark
|
||||
inductor/test_pad_mm inductor/test_benchmark_fusion inductor/test_aot_inductor
|
||||
inductor/test_torchinductor inductor/test_decompose_mem_bound_mm
|
||||
inductor/test_flex_attention inductor/test_max_autotune
|
||||
secrets: inherit
|
||||
|
149
.github/workflows/trunk-tagging.yml
vendored
149
.github/workflows/trunk-tagging.yml
vendored
@ -58,10 +58,8 @@ jobs:
|
||||
else
|
||||
COMMIT_SHA="${{ github.sha }}"
|
||||
fi
|
||||
{
|
||||
echo "sha=${COMMIT_SHA}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Validate commit SHA
|
||||
run: |
|
||||
@ -89,7 +87,7 @@ jobs:
|
||||
echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)"
|
||||
fi
|
||||
|
||||
- name: Create and push tag(s) with retry
|
||||
- name: Create and push tag with retry
|
||||
id: check_tag
|
||||
env:
|
||||
TAG_NAME: ${{ steps.commit.outputs.tag_name }}
|
||||
@ -114,23 +112,14 @@ jobs:
|
||||
return 1
|
||||
}
|
||||
|
||||
# Counters for summary reporting
|
||||
created_count=0
|
||||
skipped_count=0
|
||||
failed_count=0
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
echo "exists=true" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Always write outputs once on exit
|
||||
finish() {
|
||||
set +e
|
||||
if [ -n "${GITHUB_OUTPUT:-}" ]; then
|
||||
{
|
||||
echo "created_count=${created_count}"
|
||||
echo "skipped_count=${skipped_count}"
|
||||
echo "failed_count=${failed_count}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
fi
|
||||
}
|
||||
trap finish EXIT
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
# Retry configuration
|
||||
MAX_RETRIES=5
|
||||
@ -205,111 +194,31 @@ jobs:
|
||||
}
|
||||
}
|
||||
|
||||
# New behavior for push events: enumerate commits in the push and tag each one.
|
||||
# For workflow_dispatch, retain existing single-SHA behavior.
|
||||
|
||||
# Always fetch tags once up front to improve idempotency in loops
|
||||
git fetch origin --tags --quiet || true
|
||||
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
BEFORE_SHA="${{ github.event.before }}"
|
||||
AFTER_SHA="${{ github.sha }}" # same as event.after
|
||||
|
||||
# List commits introduced by this push (old..new), oldest first for stable ordering
|
||||
commits_file="$(mktemp)"
|
||||
git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}"
|
||||
|
||||
if [ ! -s "${commits_file}" ]; then
|
||||
echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag."
|
||||
rm -f "${commits_file}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
commit_count="$(wc -l < "${commits_file}" | tr -d ' ')"
|
||||
echo "Found ${commit_count} commit(s) to tag for push:"
|
||||
while IFS= read -r sha; do
|
||||
printf ' %s\n' "${sha}"
|
||||
done < "${commits_file}"
|
||||
|
||||
while IFS= read -r sha; do
|
||||
TAG_NAME="trunk/${sha}"
|
||||
COMMIT_SHA="${sha}"
|
||||
|
||||
# If tag already exists locally or remotely, skip (idempotent)
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag ${TAG_NAME} already exists - skipping"
|
||||
skipped_count=$((skipped_count + 1))
|
||||
continue
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=$((created_count + 1))
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts for ${TAG_NAME}"
|
||||
failed_count=$((failed_count + 1))
|
||||
fi
|
||||
done < "${commits_file}"
|
||||
|
||||
rm -f "${commits_file}"
|
||||
|
||||
if [ "${failed_count}" -gt 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
# Execute with retry
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
echo "exists=false" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
else
|
||||
# workflow_dispatch path (single SHA tagging preserved)
|
||||
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
skipped_count=1
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=1
|
||||
exit 0
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
failed_count=1
|
||||
exit 1
|
||||
fi
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Tag creation summary
|
||||
if: always()
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
echo "Trigger: push on main"
|
||||
echo "Created: ${{ steps.check_tag.outputs.created_count }}"
|
||||
echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}"
|
||||
echo "Failed: ${{ steps.check_tag.outputs.failed_count }}"
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
else
|
||||
echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
fi
|
||||
if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
elif [ "${{ job.status }}" = "success" ]; then
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
else
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
else
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
else
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
|
51
.github/workflows/trunk.yml
vendored
51
.github/workflows/trunk.yml
vendored
@ -190,40 +190,6 @@ jobs:
|
||||
runner: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
{ config: "default", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-rocm-py3_10-test:
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/trunk') }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_rocm-test.yml
|
||||
needs:
|
||||
- linux-jammy-rocm-py3_10-build
|
||||
- target-determination
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
|
||||
tests-to-include: "test_nn test_torch test_cuda test_ops test_unary_ufuncs test_binary_ufuncs test_autograd inductor/test_torchinductor"
|
||||
secrets: inherit
|
||||
|
||||
inductor-build:
|
||||
name: inductor-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
@ -234,23 +200,6 @@ jobs:
|
||||
cuda-arch-list: '8.0'
|
||||
secrets: inherit
|
||||
|
||||
# Test cross-compiled models with Windows libs extracted from wheel
|
||||
cross-compile-linux-test:
|
||||
name: cross-compile-linux-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs:
|
||||
- linux-jammy-cuda12_8-py3_10-gcc11-build
|
||||
- get-label-type
|
||||
- win-vs2022-cuda12_8-py3-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.docker-image }}
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "aoti_cross_compile_for_windows", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", win_torch_wheel_artifact: "win-vs2022-cuda12.8-py3" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
verify-cachebench-cpu-build:
|
||||
name: verify-cachebench-cpu-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -374,7 +374,6 @@ third_party/ruy/
|
||||
third_party/glog/
|
||||
|
||||
# Virtualenv
|
||||
.venv/
|
||||
venv/
|
||||
|
||||
# Log files
|
||||
|
@ -209,46 +209,6 @@ command = [
|
||||
'@{{PATHSFILE}}'
|
||||
]
|
||||
|
||||
|
||||
[[linter]]
|
||||
code = 'PYREFLY'
|
||||
include_patterns = [
|
||||
'torch/**/*.py',
|
||||
'torch/**/*.pyi',
|
||||
'torchgen/**/*.py',
|
||||
'torchgen/**/*.pyi',
|
||||
'functorch/**/*.py',
|
||||
'functorch/**/*.pyi',
|
||||
]
|
||||
exclude_patterns = []
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pyrefly_linter.py',
|
||||
'--config=pyrefly.toml',
|
||||
]
|
||||
init_command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/pip_init.py',
|
||||
'--dry-run={{DRYRUN}}',
|
||||
'numpy==2.1.0 ; python_version >= "3.12"',
|
||||
'expecttest==0.3.0',
|
||||
'pyrefly==0.36.2',
|
||||
'sympy==1.13.3',
|
||||
'types-requests==2.27.25',
|
||||
'types-pyyaml==6.0.2',
|
||||
'types-tabulate==0.8.8',
|
||||
'types-protobuf==5.29.1.20250403',
|
||||
'types-setuptools==79.0.0.20250422',
|
||||
'types-jinja2==2.11.9',
|
||||
'types-colorama==0.4.6',
|
||||
'filelock==3.18.0',
|
||||
'junitparser==2.1.1',
|
||||
'rich==14.1.0',
|
||||
'optree==0.17.0',
|
||||
'types-openpyxl==3.1.5.20250919',
|
||||
'types-python-dateutil==2.9.0.20251008'
|
||||
]
|
||||
|
||||
[[linter]]
|
||||
code = 'CLANGTIDY'
|
||||
include_patterns = [
|
||||
|
14
CODEOWNERS
14
CODEOWNERS
@ -201,17 +201,3 @@ torch/backends/cudnn/ @eqy @syed-ahmed @Aidyn-A
|
||||
/torch/csrc/stable/ @janeyx99 @mikaylagawarecki
|
||||
/torch/headeronly/ @janeyx99
|
||||
/torch/header_only_apis.txt @janeyx99
|
||||
|
||||
# FlexAttention
|
||||
/torch/nn/attention/flex_attention.py @drisspg
|
||||
/torch/_higher_order_ops/flex_attention.py @drisspg
|
||||
/torch/_inductor/kernel/flex/ @drisspg
|
||||
/torch/_inductor/codegen/cpp_flex_attention_template.py @drisspg
|
||||
/test/inductor/test_flex_attention.py @drisspg
|
||||
/test/inductor/test_flex_decoding.py @drisspg
|
||||
|
||||
# Low Precision GEMMs
|
||||
/aten/src/ATen/native/cuda/Blas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.cpp @drisspg @slayton58
|
||||
/aten/src/ATen/cuda/CUDABlas.h @drisspg @slayton58
|
||||
/test/test_scaled_matmul_cuda.py @drisspg @slayton58
|
||||
|
@ -289,15 +289,14 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
set(fbgemm_genai_cuh
|
||||
set(fbgemm_genai_mx8mx8bf16_grouped
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
"${FBGEMM_GENAI_SRCS}/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_cuh}
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
@ -314,14 +313,13 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
# Add additional HIPCC compiler flags for performance
|
||||
set(FBGEMM_GENAI_EXTRA_HIPCC_FLAGS
|
||||
-mllvm
|
||||
-amdgpu-coerce-illegal-types=1
|
||||
-mllvm
|
||||
-enable-post-misched=0
|
||||
-mllvm
|
||||
-greedy-reverse-local-assignment=1
|
||||
-fhip-new-launch-api)
|
||||
if(DEFINED ROCM_VERSION_DEV AND ROCM_VERSION_DEV VERSION_LESS "7.2.0")
|
||||
list(PREPEND FBGEMM_GENAI_EXTRA_HIPCC_FLAGS -mllvm -amdgpu-coerce-illegal-types=1)
|
||||
endif()
|
||||
|
||||
# Only compile for gfx942 for now.
|
||||
# This is rather hacky, I could not figure out a clean solution :(
|
||||
|
@ -825,14 +825,6 @@ void Context::setDisplayVmapFallbackWarnings(bool enabled) {
|
||||
display_vmap_fallback_warnings_ = enabled;
|
||||
}
|
||||
|
||||
bool Context::warnOnAccumulateGradStreamMismatch() const {
|
||||
return warn_on_accumulate_grad_stream_mismatch_;
|
||||
}
|
||||
|
||||
void Context::setWarnOnAccumulateGradStreamMismatch(bool enabled) {
|
||||
warn_on_accumulate_grad_stream_mismatch_ = enabled;
|
||||
}
|
||||
|
||||
bool Context::isDefaultMobileCPUAllocatorSet() {
|
||||
return prev_allocator_ptr_ != nullptr;
|
||||
}
|
||||
|
@ -401,9 +401,6 @@ class TORCH_API Context {
|
||||
void setDisplayVmapFallbackWarnings(bool enabled);
|
||||
bool areVmapFallbackWarningsEnabled() const;
|
||||
|
||||
void setWarnOnAccumulateGradStreamMismatch(bool enabled);
|
||||
bool warnOnAccumulateGradStreamMismatch() const;
|
||||
|
||||
bool isDefaultMobileCPUAllocatorSet();
|
||||
void setDefaultMobileCPUAllocator();
|
||||
void unsetDefaultMobileCPUAllocator();
|
||||
@ -494,7 +491,6 @@ class TORCH_API Context {
|
||||
bool release_original_weights = false;
|
||||
#endif
|
||||
bool display_vmap_fallback_warnings_ = false;
|
||||
bool warn_on_accumulate_grad_stream_mismatch_ = true;
|
||||
std::atomic<at::QEngine> quantized_engine = at::QEngine::NoQEngine;
|
||||
bool enable_sparse_tensor_invariant_checks = false;
|
||||
bool allow_fp16_reduction_cpu = false;
|
||||
|
@ -39,7 +39,7 @@ struct HostBlock {
|
||||
};
|
||||
|
||||
template <typename B>
|
||||
struct alignas(hardware_destructive_interference_size) FreeBlockList {
|
||||
struct alignas(64) FreeBlockList {
|
||||
std::mutex mutex_;
|
||||
std::deque<B*> list_;
|
||||
};
|
||||
@ -122,7 +122,7 @@ struct TORCH_API HostStats {
|
||||
// Struct containing memory allocator summary statistics for host, as they
|
||||
// are staged for reporting. This is a temporary struct that is used to
|
||||
// avoid locking the allocator while collecting stats.
|
||||
struct alignas(hardware_destructive_interference_size) HostStatsStaged {
|
||||
struct alignas(64) HostStatsStaged {
|
||||
std::mutex timing_mutex_;
|
||||
// COUNT: total allocations (active + free)
|
||||
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
|
||||
@ -669,7 +669,7 @@ struct CachingHostAllocatorImpl {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for query_event");
|
||||
}
|
||||
|
||||
alignas(hardware_destructive_interference_size) std::mutex blocks_mutex_;
|
||||
alignas(64) std::mutex blocks_mutex_;
|
||||
ska::flat_hash_set<B*> blocks_; // block list
|
||||
ska::flat_hash_map<void*, B*> ptr_to_block_;
|
||||
|
||||
@ -677,17 +677,17 @@ struct CachingHostAllocatorImpl {
|
||||
// size. This allows us to quickly find a free block of the right size.
|
||||
// We use deque to store per size free list and guard the list with its own
|
||||
// mutex.
|
||||
alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>> free_list_ =
|
||||
alignas(64) std::vector<FreeBlockList<B>> free_list_ =
|
||||
std::vector<FreeBlockList<B>>(MAX_SIZE_INDEX);
|
||||
|
||||
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
|
||||
alignas(64) std::mutex events_mutex_;
|
||||
std::deque<std::pair<E, B*>> events_; // event queue paired with block
|
||||
|
||||
// Indicates whether the object is active.
|
||||
// Set to false in the destructor to signal background threads to stop.
|
||||
std::atomic<bool> active_{true};
|
||||
protected:
|
||||
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
|
||||
alignas(64) HostStatsStaged stats_;
|
||||
};
|
||||
|
||||
struct TORCH_API HostAllocator : public at::Allocator {
|
||||
|
@ -59,7 +59,9 @@ struct TORCH_API Generator {
|
||||
|
||||
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
|
||||
: impl_(std::move(gen_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const Generator& rhs) const {
|
||||
|
@ -229,10 +229,10 @@ private:
|
||||
}
|
||||
|
||||
|
||||
static constexpr uint32_t kPhilox10A = 0x9E3779B9;
|
||||
static constexpr uint32_t kPhilox10B = 0xBB67AE85;
|
||||
static constexpr uint32_t kPhiloxSA = 0xD2511F53;
|
||||
static constexpr uint32_t kPhiloxSB = 0xCD9E8D57;
|
||||
static const uint32_t kPhilox10A = 0x9E3779B9;
|
||||
static const uint32_t kPhilox10B = 0xBB67AE85;
|
||||
static const uint32_t kPhiloxSA = 0xD2511F53;
|
||||
static const uint32_t kPhiloxSB = 0xCD9E8D57;
|
||||
};
|
||||
|
||||
typedef philox_engine Philox4_32;
|
||||
|
@ -111,7 +111,9 @@ class TORCH_API TensorBase {
|
||||
explicit TensorBase(
|
||||
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
|
||||
: impl_(std::move(tensor_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("TensorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
TensorBase(const TensorBase&) = default;
|
||||
TensorBase(TensorBase&&) noexcept = default;
|
||||
|
@ -68,7 +68,11 @@ Symbol InternedStrings::_symbol(const std::string& s) {
|
||||
return it->second;
|
||||
|
||||
auto pos = s.find("::");
|
||||
TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s);
|
||||
if (pos == std::string::npos) {
|
||||
std::stringstream ss;
|
||||
ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
Symbol ns = _symbol("namespaces::" + s.substr(0, pos));
|
||||
|
||||
Symbol sym(sym_to_info_.size());
|
||||
@ -117,7 +121,12 @@ std::string Symbol::domainString() const {
|
||||
}
|
||||
|
||||
Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) {
|
||||
TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'");
|
||||
if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) {
|
||||
std::ostringstream ss;
|
||||
ss << "Symbol: domain string is expected to be prefixed with '"
|
||||
<< domain_prefix() << "', e.g. 'org.pytorch.aten'";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
std::string qualString = d.substr(domain_prefix().size()) + "::" + s;
|
||||
return fromQualString(qualString);
|
||||
}
|
||||
|
@ -7,7 +7,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <ATen/core/stack.h>
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
@ -413,7 +412,7 @@ size_t IValue::hash(const IValue& v) {
|
||||
case Tag::Enum:
|
||||
case Tag::Stream:
|
||||
case Tag::Uninitialized:
|
||||
TORCH_CHECK(false,
|
||||
throw std::runtime_error(
|
||||
"unhashable type: '" + v.type()->repr_str() + "'");
|
||||
}
|
||||
// the above switch should be exhaustive
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <ATen/core/qualified_name.h>
|
||||
#include <c10/util/TypeList.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <c10/core/SymFloat.h>
|
||||
#include <c10/core/SymBool.h>
|
||||
@ -117,8 +116,10 @@ struct SingleElementType : public SharedType {
|
||||
|
||||
protected:
|
||||
SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) {
|
||||
TORCH_CHECK(this->elem, c10::str(
|
||||
if (!this->elem) {
|
||||
throw std::runtime_error(c10::str(
|
||||
"Can not create ", typeKindToString(Kind), " with None type"));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -415,12 +416,16 @@ struct TORCH_API SymbolicShape {
|
||||
}
|
||||
|
||||
ShapeSymbol operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
ShapeSymbol at(size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -515,7 +520,9 @@ struct VaryingShape {
|
||||
}
|
||||
|
||||
const std::optional<T> &operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -950,7 +957,9 @@ struct TORCH_API DictType : public SharedType {
|
||||
|
||||
TypePtr createWithContained(
|
||||
std::vector<TypePtr> contained_types) const override {
|
||||
TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types");
|
||||
if (contained_types.size() != 2) {
|
||||
throw std::runtime_error("Expected 2 contained types");
|
||||
}
|
||||
return create(std::move(contained_types.at(0)), std::move(contained_types.at(1)));
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <array>
|
||||
@ -827,7 +826,9 @@ TupleType::TupleType(
|
||||
: NamedType(TypeKind::TupleType, std::move(name)),
|
||||
elements_(std::move(elements)),
|
||||
has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) {
|
||||
TORCH_CHECK(v, "Can not create tuple with None type");
|
||||
if (!v) {
|
||||
throw std::runtime_error("Can not create tuple with None type");
|
||||
}
|
||||
return v->hasFreeVariables();
|
||||
})), schema_(std::move(schema)) {
|
||||
|
||||
|
@ -8,8 +8,6 @@
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
@ -354,47 +354,9 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
Vectorized frac() const;
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
Vectorized<c10::BFloat16> neg() const {
|
||||
return -values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> reciprocal() const {
|
||||
return 1.0f / values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> operator==(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values == other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator!=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values != other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values < other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values <= other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values > other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values >= other.values;
|
||||
}
|
||||
#else
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
|
||||
@ -402,7 +364,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
|
||||
#endif
|
||||
|
||||
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
@ -451,52 +412,28 @@ template <>
|
||||
Vectorized<c10::BFloat16> inline operator+(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x + y;
|
||||
#else
|
||||
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator-(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x - y;
|
||||
#else
|
||||
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator*(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x * y;
|
||||
#else
|
||||
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator/(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x / y;
|
||||
#else
|
||||
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
@ -607,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y + z;
|
||||
#else
|
||||
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
|
||||
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
|
||||
// elements, not the bottom and top half, so they don't seem
|
||||
// particularly useful here. Ideally we would include dot product in
|
||||
// the Vectorized interface...
|
||||
return a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -627,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y + z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -643,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -659,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
@ -1,794 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
#define VEC_INT_NEON_TEMPLATE(vl, bit) \
|
||||
template <> \
|
||||
struct is_vec_specialized_for<int##bit##_t> : std::bool_constant<true> {}; \
|
||||
\
|
||||
template <> \
|
||||
class Vectorized<int##bit##_t> { \
|
||||
using neon_type = int##bit##x##vl##_t; \
|
||||
\
|
||||
private: \
|
||||
neon_type values; \
|
||||
\
|
||||
public: \
|
||||
using value_type = int##bit##_t; \
|
||||
using size_type = int; \
|
||||
static constexpr size_type size() { \
|
||||
return vl; \
|
||||
} \
|
||||
Vectorized() { \
|
||||
values = vdupq_n_s##bit(0); \
|
||||
} \
|
||||
Vectorized(neon_type v) : values(v) {} \
|
||||
Vectorized(int##bit##_t val); \
|
||||
template < \
|
||||
typename... Args, \
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
|
||||
Vectorized(Args... vals) { \
|
||||
__at_align__ int##bit##_t buffer[size()] = {vals...}; \
|
||||
values = vld1q_s##bit(buffer); \
|
||||
} \
|
||||
operator neon_type() const { \
|
||||
return values; \
|
||||
} \
|
||||
static Vectorized<int##bit##_t> loadu( \
|
||||
const void* ptr, \
|
||||
int64_t count = size()); \
|
||||
void store(void* ptr, int64_t count = size()) const; \
|
||||
template <int64_t mask> \
|
||||
static Vectorized<int##bit##_t> blend( \
|
||||
const Vectorized<int##bit##_t>& a, \
|
||||
const Vectorized<int##bit##_t>& b); \
|
||||
static Vectorized<int##bit##_t> blendv( \
|
||||
const Vectorized<int##bit##_t>& a, \
|
||||
const Vectorized<int##bit##_t>& b, \
|
||||
const Vectorized<int##bit##_t>& mask_) { \
|
||||
return vbslq_s##bit(vreinterpretq_u##bit##_s##bit(mask_.values), b, a); \
|
||||
} \
|
||||
template <typename step_t> \
|
||||
static Vectorized<int##bit##_t> arange( \
|
||||
value_type base = 0, \
|
||||
step_t step = static_cast<step_t>(1)); \
|
||||
static Vectorized<int##bit##_t> set( \
|
||||
const Vectorized<int##bit##_t>& a, \
|
||||
const Vectorized<int##bit##_t>& b, \
|
||||
int64_t count = size()); \
|
||||
const int##bit##_t& operator[](int idx) const = delete; \
|
||||
int##bit##_t& operator[](int idx) = delete; \
|
||||
Vectorized<int##bit##_t> abs() const { \
|
||||
return vabsq_s##bit(values); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> real() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<int##bit##_t> imag() const { \
|
||||
return vdupq_n_s##bit(0); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> conj() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<int##bit##_t> neg() const { \
|
||||
return vnegq_s##bit(values); \
|
||||
} \
|
||||
int##bit##_t reduce_add() const { \
|
||||
return vaddvq_s##bit(values); \
|
||||
} \
|
||||
int##bit##_t reduce_max() const; \
|
||||
Vectorized<int##bit##_t> operator==( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>( \
|
||||
vreinterpretq_s##bit##_u##bit(vceqq_s##bit(values, other.values))); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> operator!=( \
|
||||
const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> operator<( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>( \
|
||||
vreinterpretq_s##bit##_u##bit(vcltq_s##bit(values, other.values))); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> operator<=( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>( \
|
||||
vreinterpretq_s##bit##_u##bit(vcleq_s##bit(values, other.values))); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> operator>( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>( \
|
||||
vreinterpretq_s##bit##_u##bit(vcgtq_s##bit(values, other.values))); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> operator>=( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>( \
|
||||
vreinterpretq_s##bit##_u##bit(vcgeq_s##bit(values, other.values))); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> eq(const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> ne(const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> gt(const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> ge(const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> lt(const Vectorized<int##bit##_t>& other) const; \
|
||||
Vectorized<int##bit##_t> le(const Vectorized<int##bit##_t>& other) const; \
|
||||
}; \
|
||||
template <> \
|
||||
Vectorized<int##bit##_t> inline operator+( \
|
||||
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
|
||||
return vaddq_s##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<int##bit##_t> inline operator-( \
|
||||
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
|
||||
return vsubq_s##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<int##bit##_t> inline operator&( \
|
||||
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
|
||||
return vandq_s##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<int##bit##_t> inline operator|( \
|
||||
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
|
||||
return vorrq_s##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<int##bit##_t> inline operator^( \
|
||||
const Vectorized<int##bit##_t>& a, const Vectorized<int##bit##_t>& b) { \
|
||||
return veorq_s##bit(a, b); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::eq( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this == other) & Vectorized<int##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ne( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this != other) & Vectorized<int##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::gt( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this > other) & Vectorized<int##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::ge( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this >= other) & Vectorized<int##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::lt( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this < other) & Vectorized<int##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<int##bit##_t> inline Vectorized<int##bit##_t>::le( \
|
||||
const Vectorized<int##bit##_t>& other) const { \
|
||||
return (*this <= other) & Vectorized<int##bit##_t>(1); \
|
||||
}
|
||||
|
||||
VEC_INT_NEON_TEMPLATE(2, 64)
|
||||
VEC_INT_NEON_TEMPLATE(4, 32)
|
||||
VEC_INT_NEON_TEMPLATE(8, 16)
|
||||
VEC_INT_NEON_TEMPLATE(16, 8)
|
||||
|
||||
inline int32_t Vectorized<int32_t>::reduce_max() const {
|
||||
return vmaxvq_s32(values);
|
||||
}
|
||||
|
||||
inline int16_t Vectorized<int16_t>::reduce_max() const {
|
||||
return vmaxvq_s16(values);
|
||||
}
|
||||
|
||||
inline int8_t Vectorized<int8_t>::reduce_max() const {
|
||||
return vmaxvq_s8(values);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline operator*(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
return vmulq_s32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline operator*(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
return vmulq_s16(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline operator*(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
return vmulq_s8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<int64_t> operator~(const Vectorized<int64_t>& a) {
|
||||
int64x2_t val = a;
|
||||
return ~val;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<int32_t> operator~(const Vectorized<int32_t>& a) {
|
||||
return vmvnq_s32(a);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<int16_t> operator~(const Vectorized<int16_t>& a) {
|
||||
return vmvnq_s16(a);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<int8_t> operator~(const Vectorized<int8_t>& a) {
|
||||
return vmvnq_s8(a);
|
||||
}
|
||||
|
||||
inline Vectorized<int64_t> Vectorized<int64_t>::operator!=(
|
||||
const Vectorized<int64_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
inline Vectorized<int32_t> Vectorized<int32_t>::operator!=(
|
||||
const Vectorized<int32_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
inline Vectorized<int16_t> Vectorized<int16_t>::operator!=(
|
||||
const Vectorized<int16_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
inline Vectorized<int8_t> Vectorized<int8_t>::operator!=(
|
||||
const Vectorized<int8_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline minimum(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
return vminq_s32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline minimum(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
return vminq_s16(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline minimum(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
return vminq_s8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline maximum(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
return vmaxq_s32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline maximum(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
return vmaxq_s16(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline maximum(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
return vmaxq_s8(a, b);
|
||||
}
|
||||
|
||||
template <int64_t mask>
|
||||
Vectorized<int64_t> Vectorized<int64_t>::blend(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint64x2_t maskArray = {
|
||||
(mask & 1LL) ? 0xFFFFFFFFFFFFFFFF : 0,
|
||||
(mask & 2LL) ? 0xFFFFFFFFFFFFFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s64(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
template <int64_t mask>
|
||||
Vectorized<int32_t> Vectorized<int32_t>::blend(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint32x4_t maskArray = {
|
||||
(mask & 1LL) ? 0xFFFFFFFF : 0,
|
||||
(mask & 2LL) ? 0xFFFFFFFF : 0,
|
||||
(mask & 4LL) ? 0xFFFFFFFF : 0,
|
||||
(mask & 8LL) ? 0xFFFFFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s32(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
template <int64_t mask>
|
||||
Vectorized<int16_t> Vectorized<int16_t>::blend(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint16x8_t maskArray = {
|
||||
(mask & 1LL) ? 0xFFFF : 0,
|
||||
(mask & 2LL) ? 0xFFFF : 0,
|
||||
(mask & 4LL) ? 0xFFFF : 0,
|
||||
(mask & 8LL) ? 0xFFFF : 0,
|
||||
(mask & 16LL) ? 0xFFFF : 0,
|
||||
(mask & 32LL) ? 0xFFFF : 0,
|
||||
(mask & 64LL) ? 0xFFFF : 0,
|
||||
(mask & 128LL) ? 0xFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s16(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
template <int64_t mask>
|
||||
Vectorized<int8_t> Vectorized<int8_t>::blend(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
(mask & 1LL) ? 0xFF : 0,
|
||||
(mask & 2LL) ? 0xFF : 0,
|
||||
(mask & 4LL) ? 0xFF : 0,
|
||||
(mask & 8LL) ? 0xFF : 0,
|
||||
(mask & 16LL) ? 0xFF : 0,
|
||||
(mask & 32LL) ? 0xFF : 0,
|
||||
(mask & 64LL) ? 0xFF : 0,
|
||||
(mask & 128LL) ? 0xFF : 0,
|
||||
(mask & 256LL) ? 0xFF : 0,
|
||||
(mask & 512LL) ? 0xFF : 0,
|
||||
(mask & 1024LL) ? 0xFF : 0,
|
||||
(mask & 2048LL) ? 0xFF : 0,
|
||||
(mask & 4096LL) ? 0xFF : 0,
|
||||
(mask & 8192LL) ? 0xFF : 0,
|
||||
(mask & 16384LL) ? 0xFF : 0,
|
||||
(mask & 32768LL) ? 0xFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s8(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
#define VEC_INT_NEON_OPS(vl, bit) \
|
||||
inline Vectorized<int##bit##_t>::Vectorized(int##bit##_t val) { \
|
||||
values = vdupq_n_s##bit(val); \
|
||||
} \
|
||||
inline Vectorized<int##bit##_t> Vectorized<int##bit##_t>::loadu( \
|
||||
const void* ptr, int64_t count) { \
|
||||
if (count == size()) { \
|
||||
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(ptr)); \
|
||||
} else { \
|
||||
__at_align__ int##bit##_t tmp_values[size()]; \
|
||||
for (const auto i : c10::irange(size())) { \
|
||||
tmp_values[i] = 0; \
|
||||
} \
|
||||
std::memcpy( \
|
||||
tmp_values, \
|
||||
reinterpret_cast<const int##bit##_t*>(ptr), \
|
||||
count * sizeof(int##bit##_t)); \
|
||||
return vld1q_s##bit(reinterpret_cast<const int##bit##_t*>(tmp_values)); \
|
||||
} \
|
||||
} \
|
||||
inline void Vectorized<int##bit##_t>::store(void* ptr, int64_t count) \
|
||||
const { \
|
||||
if (count == size()) { \
|
||||
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(ptr), values); \
|
||||
} else { \
|
||||
int##bit##_t tmp_values[size()]; \
|
||||
vst1q_s##bit(reinterpret_cast<int##bit##_t*>(tmp_values), values); \
|
||||
std::memcpy(ptr, tmp_values, count * sizeof(int##bit##_t)); \
|
||||
} \
|
||||
}
|
||||
|
||||
VEC_INT_NEON_OPS(2, 64)
|
||||
VEC_INT_NEON_OPS(4, 32)
|
||||
VEC_INT_NEON_OPS(8, 16)
|
||||
VEC_INT_NEON_OPS(16, 8)
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline operator*(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t x = a;
|
||||
int64x2_t y = b;
|
||||
return x * y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline operator/(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t x = a;
|
||||
int64x2_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline operator/(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
int32x4_t x = a;
|
||||
int32x4_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
inline int64_t Vectorized<int64_t>::reduce_max() const {
|
||||
return std::max(values[0], values[1]);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline minimum(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t x = a;
|
||||
int64x2_t y = b;
|
||||
return {std::min(x[0], y[0]), std::min(x[1], y[1])};
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline maximum(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t x = a;
|
||||
int64x2_t y = b;
|
||||
return {std::max(x[0], y[0]), std::max(x[1], y[1])};
|
||||
}
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<int64_t> Vectorized<int64_t>::arange(
|
||||
int64_t base,
|
||||
step_t step) {
|
||||
const Vectorized<int64_t> base_vec(base);
|
||||
const Vectorized<int64_t> step_vec(step);
|
||||
const int64x2_t step_sizes = {0, 1};
|
||||
return base_vec.values + step_sizes * step_vec.values;
|
||||
}
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<int32_t> Vectorized<int32_t>::arange(
|
||||
int32_t base,
|
||||
step_t step) {
|
||||
const Vectorized<int32_t> base_vec(base);
|
||||
const Vectorized<int32_t> step_vec(step);
|
||||
const int32x4_t step_sizes = {0, 1, 2, 3};
|
||||
return vmlaq_s32(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<int16_t> Vectorized<int16_t>::arange(
|
||||
int16_t base,
|
||||
step_t step) {
|
||||
const Vectorized<int16_t> base_vec(base);
|
||||
const Vectorized<int16_t> step_vec(step);
|
||||
const int16x8_t step_sizes = {0, 1, 2, 3, 4, 5, 6, 7};
|
||||
return vmlaq_s16(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<int8_t> Vectorized<int8_t>::arange(int8_t base, step_t step) {
|
||||
const Vectorized<int8_t> base_vec(base);
|
||||
const Vectorized<int8_t> step_vec(step);
|
||||
const int8x16_t step_sizes = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
return vmlaq_s8(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline operator>>(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t x = a;
|
||||
int64x2_t y = b;
|
||||
uint64x2_t u = vreinterpretq_u64_s64(y);
|
||||
uint64x2_t z = {std::min(u[0], (uint64_t)63), std::min(u[1], (uint64_t)63)};
|
||||
return x >> vreinterpretq_s64_u64(z);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline operator>>(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
int32x4_t x = a;
|
||||
int32x4_t y = b;
|
||||
uint32x4_t bound = vdupq_n_u32(31);
|
||||
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
|
||||
return x >> vreinterpretq_s32_u32(z);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline operator>>(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
int16x8_t x = a;
|
||||
int16x8_t y = b;
|
||||
uint16x8_t bound = vdupq_n_u16(15);
|
||||
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
|
||||
return x >> vreinterpretq_s16_u16(z);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline operator>>(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
int8x16_t x = a;
|
||||
int8x16_t y = b;
|
||||
uint8x16_t bound = vdupq_n_u8(7);
|
||||
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
|
||||
return x >> z;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline operator<<(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b) {
|
||||
int64x2_t y = b;
|
||||
uint64x2_t u = vreinterpretq_u64_s64(y);
|
||||
uint64x2_t z = {std::min(u[0], (uint64_t)64), std::min(u[1], (uint64_t)64)};
|
||||
return vshlq_s64(a, vreinterpretq_s64_u64(z));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline operator<<(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b) {
|
||||
int32x4_t y = b;
|
||||
uint32x4_t bound = vdupq_n_u32(32);
|
||||
uint32x4_t z = vminq_u32(vreinterpretq_u32_s32(y), bound);
|
||||
return vshlq_s32(a, vreinterpretq_s32_u32(z));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline operator<<(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
int16x8_t y = b;
|
||||
uint16x8_t bound = vdupq_n_u16(16);
|
||||
uint16x8_t z = vminq_u16(vreinterpretq_u16_s16(y), bound);
|
||||
return vshlq_s16(a, vreinterpretq_s16_u16(z));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline operator<<(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
int8x16_t y = b;
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
int8x16_t z = vreinterpretq_s8_u8(vminq_u8(vreinterpretq_u8_s8(y), bound));
|
||||
return vshlq_s8(a, z);
|
||||
}
|
||||
|
||||
inline Vectorized<int64_t> Vectorized<int64_t>::set(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b,
|
||||
int64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 2) {
|
||||
return b;
|
||||
} else {
|
||||
int64x2_t c = {b.values[0], a.values[1]};
|
||||
return c;
|
||||
}
|
||||
}
|
||||
|
||||
inline Vectorized<int32_t> Vectorized<int32_t>::set(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b,
|
||||
int64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 4) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint32x4_t maskArray = {
|
||||
(count >= 1LL) ? 0xFFFFFFFF : 0,
|
||||
(count >= 2LL) ? 0xFFFFFFFF : 0,
|
||||
(count >= 3LL) ? 0xFFFFFFFF : 0,
|
||||
0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s32(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
inline Vectorized<int16_t> Vectorized<int16_t>::set(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b,
|
||||
int64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 8) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint16x8_t maskArray = {
|
||||
static_cast<uint16_t>((count >= 1LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 2LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 3LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 4LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 5LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 6LL) ? 0xFFFF : 0),
|
||||
static_cast<uint16_t>((count >= 7LL) ? 0xFFFF : 0),
|
||||
0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s16(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
inline Vectorized<int8_t> Vectorized<int8_t>::set(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b,
|
||||
int64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 16) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
|
||||
0};
|
||||
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_s8(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline operator/(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b) {
|
||||
Vectorized<int32_t> highBitsA = vmovl_high_s16(a);
|
||||
Vectorized<int32_t> highBitsB = vmovl_high_s16(b);
|
||||
Vectorized<int32_t> lowBitsA = vmovl_s16(vget_low_s16(a));
|
||||
Vectorized<int32_t> lowBitsB = vmovl_s16(vget_low_s16(b));
|
||||
int32x4_t highBitsResult = highBitsA / highBitsB;
|
||||
int32x4_t lowBitsResult = lowBitsA / lowBitsB;
|
||||
return vuzp1q_s16(
|
||||
vreinterpretq_s16_s32(lowBitsResult),
|
||||
vreinterpretq_s16_s32(highBitsResult));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline operator/(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& b) {
|
||||
Vectorized<int16_t> highBitsA = vmovl_high_s8(a);
|
||||
Vectorized<int16_t> highBitsB = vmovl_high_s8(b);
|
||||
Vectorized<int16_t> lowBitsA = vmovl_s8(vget_low_s8(a));
|
||||
Vectorized<int16_t> lowBitsB = vmovl_s8(vget_low_s8(b));
|
||||
int16x8_t highBitsResult = highBitsA / highBitsB;
|
||||
int16x8_t lowBitsResult = lowBitsA / lowBitsB;
|
||||
return vuzp1q_s8(
|
||||
vreinterpretq_s8_s16(lowBitsResult),
|
||||
vreinterpretq_s8_s16(highBitsResult));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline clamp(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& min,
|
||||
const Vectorized<int64_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline clamp(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& min,
|
||||
const Vectorized<int32_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline clamp(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& min,
|
||||
const Vectorized<int16_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline clamp(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& min,
|
||||
const Vectorized<int8_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline clamp_max(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline clamp_max(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline clamp_max(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline clamp_max(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int64_t> inline clamp_min(
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int32_t> inline clamp_min(
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int16_t> inline clamp_min(
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<int8_t> inline clamp_min(
|
||||
const Vectorized<int8_t>& a,
|
||||
const Vectorized<int8_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
@ -1,378 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
#define VEC_UINT_NEON_TEMPLATE(vl, bit) \
|
||||
template <> \
|
||||
struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \
|
||||
\
|
||||
template <> \
|
||||
class Vectorized<uint##bit##_t> { \
|
||||
using neon_type = uint##bit##x##vl##_t; \
|
||||
\
|
||||
private: \
|
||||
neon_type values; \
|
||||
\
|
||||
public: \
|
||||
using value_type = uint##bit##_t; \
|
||||
using size_type = int; \
|
||||
static constexpr size_type size() { \
|
||||
return vl; \
|
||||
} \
|
||||
Vectorized() { \
|
||||
values = vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized(neon_type v) : values(v) {} \
|
||||
Vectorized(uint##bit##_t val); \
|
||||
template < \
|
||||
typename... Args, \
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
|
||||
Vectorized(Args... vals) { \
|
||||
__at_align__ uint##bit##_t buffer[size()] = {vals...}; \
|
||||
values = vld1q_u##bit(buffer); \
|
||||
} \
|
||||
operator neon_type() const { \
|
||||
return values; \
|
||||
} \
|
||||
static Vectorized<uint##bit##_t> loadu( \
|
||||
const void* ptr, \
|
||||
uint64_t count = size()); \
|
||||
void store(void* ptr, uint64_t count = size()) const; \
|
||||
template <uint64_t mask> \
|
||||
static Vectorized<uint##bit##_t> blend( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b); \
|
||||
static Vectorized<uint##bit##_t> blendv( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
const Vectorized<uint##bit##_t>& mask_) { \
|
||||
return vbslq_u##bit(mask_.values, b, a); \
|
||||
} \
|
||||
template <typename step_t> \
|
||||
static Vectorized<uint##bit##_t> arange( \
|
||||
value_type base = 0, \
|
||||
step_t step = static_cast<step_t>(1)); \
|
||||
static Vectorized<uint##bit##_t> set( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
uint64_t count = size()); \
|
||||
const uint##bit##_t& operator[](uint idx) const = delete; \
|
||||
uint##bit##_t& operator[](uint idx) = delete; \
|
||||
Vectorized<uint##bit##_t> abs() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> real() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> imag() const { \
|
||||
return vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> conj() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> neg() const { \
|
||||
return vreinterpretq_u##bit##_s##bit( \
|
||||
vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values))); \
|
||||
} \
|
||||
uint##bit##_t reduce_add() const { \
|
||||
return vaddvq_u##bit(values); \
|
||||
} \
|
||||
uint##bit##_t reduce_max() const; \
|
||||
Vectorized<uint##bit##_t> operator==( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vceqq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator!=( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> operator<( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcltq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator<=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcleq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgtq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgeq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> le( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
}; \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator+( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vaddq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator-( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vsubq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator&( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vandq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator|( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vorrq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator^( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return veorq_u##bit(a, b); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this == other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this != other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this > other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this >= other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this < other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this <= other) & Vectorized<uint##bit##_t>(1); \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_TEMPLATE(16, 8)
|
||||
|
||||
inline uint8_t Vectorized<uint8_t>::reduce_max() const {
|
||||
return vmaxvq_u8(values);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator*(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmulq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
|
||||
return vmvnq_u8(a);
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=(
|
||||
const Vectorized<uint8_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline minimum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vminq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline maximum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmaxq_u8(a, b);
|
||||
}
|
||||
|
||||
template <uint64_t mask>
|
||||
Vectorized<uint8_t> Vectorized<uint8_t>::blend(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
(mask & 1LL) ? 0xFF : 0,
|
||||
(mask & 2LL) ? 0xFF : 0,
|
||||
(mask & 4LL) ? 0xFF : 0,
|
||||
(mask & 8LL) ? 0xFF : 0,
|
||||
(mask & 16LL) ? 0xFF : 0,
|
||||
(mask & 32LL) ? 0xFF : 0,
|
||||
(mask & 64LL) ? 0xFF : 0,
|
||||
(mask & 128LL) ? 0xFF : 0,
|
||||
(mask & 256LL) ? 0xFF : 0,
|
||||
(mask & 512LL) ? 0xFF : 0,
|
||||
(mask & 1024LL) ? 0xFF : 0,
|
||||
(mask & 2048LL) ? 0xFF : 0,
|
||||
(mask & 4096LL) ? 0xFF : 0,
|
||||
(mask & 8192LL) ? 0xFF : 0,
|
||||
(mask & 16384LL) ? 0xFF : 0,
|
||||
(mask & 32768LL) ? 0xFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
#define VEC_UINT_NEON_OPS(vl, bit) \
|
||||
inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) { \
|
||||
values = vdupq_n_u##bit(val); \
|
||||
} \
|
||||
inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu( \
|
||||
const void* ptr, uint64_t count) { \
|
||||
if (count == size()) { \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr)); \
|
||||
} else { \
|
||||
__at_align__ uint##bit##_t tmp_values[size()]; \
|
||||
for (const auto i : c10::irange(size())) { \
|
||||
tmp_values[i] = 0; \
|
||||
} \
|
||||
std::memcpy( \
|
||||
tmp_values, \
|
||||
reinterpret_cast<const uint##bit##_t*>(ptr), \
|
||||
count * sizeof(uint##bit##_t)); \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \
|
||||
} \
|
||||
} \
|
||||
inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count) \
|
||||
const { \
|
||||
if (count == size()) { \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values); \
|
||||
} else { \
|
||||
uint##bit##_t tmp_values[size()]; \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values); \
|
||||
std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t)); \
|
||||
} \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_OPS(16, 8)
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::arange(
|
||||
uint8_t base,
|
||||
step_t step) {
|
||||
const Vectorized<uint8_t> base_vec(base);
|
||||
const Vectorized<uint8_t> step_vec(step);
|
||||
const uint8x16_t step_sizes = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
return vmlaq_u8(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator>>(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return x >> z;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator<<(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return vshlq_u8(a, vreinterpretq_s8_u8(z));
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::set(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b,
|
||||
uint64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 16) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
|
||||
0};
|
||||
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator/(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_max(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_min(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
@ -1377,7 +1377,7 @@ Vectorized<c10::quint8> inline maximum(
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
auto s8x8 = vget_low_s8(src);
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
|
||||
@ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
@ -1402,7 +1402,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
auto s8x8 = vget_low_s8(src);
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
|
||||
@ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
|
||||
|
@ -16,8 +16,6 @@
|
||||
#include <c10/util/irange.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
|
||||
#include <ATen/cuda/detail/BLASConstants.h>
|
||||
|
||||
#ifdef USE_ROCM
|
||||
#include <c10/cuda/CUDAStream.h>
|
||||
#include <hipblaslt/hipblaslt-ext.hpp>
|
||||
@ -1956,15 +1954,13 @@ void scaled_gemm(
|
||||
const void *result_scale_ptr,
|
||||
int64_t result_ld,
|
||||
ScalarType result_dtype,
|
||||
bool use_fast_accum,
|
||||
const std::optional<Tensor>& alpha) {
|
||||
bool use_fast_accum) {
|
||||
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
|
||||
// of input arguments to this function.
|
||||
const auto computeType = CUBLAS_COMPUTE_32F;
|
||||
const auto scaleType = CUDA_R_32F;
|
||||
// Note: alpha_val may change later depending on user-passed argument
|
||||
float alpha_val = 1.0;
|
||||
float beta_val = 0.0;
|
||||
const float alpha_val = 1.0;
|
||||
const float beta_val = 0.0;
|
||||
CuBlasLtMatmulDescriptor computeDesc(computeType, scaleType);
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, _cublasOpFromChar(transa));
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, _cublasOpFromChar(transb));
|
||||
@ -2035,33 +2031,6 @@ void scaled_gemm(
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_EPILOGUE, CUBLASLT_EPILOGUE_BIAS);
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE, ScalarTypeToCudaDataType(bias_dtype));
|
||||
}
|
||||
|
||||
// Handle user-passed alpha
|
||||
float *alpha_ptr = &alpha_val;
|
||||
float *beta_ptr = &beta_val;
|
||||
|
||||
if (alpha.has_value()) {
|
||||
auto& a = alpha.value();
|
||||
|
||||
// if device-tensor
|
||||
if (a.is_cuda()) {
|
||||
// NOTE: there are lifetime requirements on device-side pointers for alpha/beta -- the value must be
|
||||
// valid & correct until the cublas call finishes (not is scheduled like host-side values). Thus
|
||||
// we need to use allocations for alpha/beta that have some guarantees on lifetime - a statically
|
||||
// managed 4B buffer for alpha that we'll copy the passed alpha value into, and constant memory
|
||||
// for beta respectively.
|
||||
float *user_alpha_ptr = at::cuda::detail::get_user_alpha_ptr();
|
||||
at::Tensor user_alpha = at::from_blob(user_alpha_ptr, {1}, TensorOptions().device(kCUDA).dtype(kFloat));
|
||||
user_alpha.copy_(a);
|
||||
// Tell cublasLt we're using device-side pointers for alpha/beta
|
||||
auto pointer_mode = CUBLASLT_POINTER_MODE_DEVICE;
|
||||
computeDesc.setAttribute(CUBLASLT_MATMUL_DESC_POINTER_MODE, pointer_mode);
|
||||
alpha_ptr = user_alpha.data_ptr<float>();
|
||||
beta_ptr = at::cuda::detail::get_cublas_device_zero();
|
||||
} else {
|
||||
alpha_val = a.item<float>();
|
||||
}
|
||||
}
|
||||
// For other data types, use the get_scale_mode function based on scaling type
|
||||
// The SCALE_MODE attrs only exist in cuBLAS 12.8+/ROCm 7.0 or in recent hipblaslt,
|
||||
// but we must invoke get_scale_mode anyways to trigger the version checks.
|
||||
@ -2079,7 +2048,6 @@ void scaled_gemm(
|
||||
cublasLtMatmulHeuristicResult_t heuristicResult = {};
|
||||
int returnedResult = 0;
|
||||
cublasLtHandle_t ltHandle = at::cuda::getCurrentCUDABlasLtHandle();
|
||||
|
||||
TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic(
|
||||
ltHandle,
|
||||
computeDesc.descriptor(),
|
||||
@ -2120,10 +2088,10 @@ void scaled_gemm(
|
||||
auto is_valid_status = hipblaslt_ext::matmulIsAlgoSupported(
|
||||
ltHandle,
|
||||
computeDesc.descriptor(),
|
||||
alpha_ptr,
|
||||
&alpha_val,
|
||||
Adesc.descriptor(),
|
||||
Bdesc.descriptor(),
|
||||
beta_ptr,
|
||||
&beta_val,
|
||||
Cdesc.descriptor(),
|
||||
Ddesc.descriptor(),
|
||||
all_algos[i].algo,
|
||||
@ -2142,14 +2110,17 @@ void scaled_gemm(
|
||||
cublasStatus_t cublasStatus = cublasLtMatmul(
|
||||
ltHandle,
|
||||
computeDesc.descriptor(),
|
||||
alpha_ptr,
|
||||
&alpha_val,
|
||||
mat1_ptr,
|
||||
Adesc.descriptor(),
|
||||
mat2_ptr,
|
||||
Bdesc.descriptor(),
|
||||
beta_ptr,
|
||||
// NOTE: always use result_ptr here, because cuBLASLt w/device beta=0 can't handle nullptr either
|
||||
&beta_val,
|
||||
#ifdef USE_ROCM
|
||||
result_ptr, // unused, since beta_val is 0, but hipblaslt can't handle nullptr
|
||||
#else
|
||||
nullptr,
|
||||
#endif // ifdef USE_ROCM
|
||||
Cdesc.descriptor(),
|
||||
result_ptr,
|
||||
Ddesc.descriptor(),
|
||||
|
@ -161,8 +161,7 @@ void scaled_gemm(
|
||||
const void* result_scale_ptr,
|
||||
int64_t result_ld,
|
||||
ScalarType result_dtype,
|
||||
bool use_fast_accum,
|
||||
const std::optional<Tensor>& alpha);
|
||||
bool use_fast_accum);
|
||||
|
||||
#define CUDABLAS_BGEMM_ARGTYPES(Dtype) CUDABLAS_BGEMM_ARGTYPES_AND_C_DTYPE(Dtype, Dtype)
|
||||
|
||||
|
@ -325,9 +325,9 @@ uint64_t CUDAGeneratorImpl::seed() {
|
||||
*/
|
||||
c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
|
||||
// The RNG state comprises the seed, and an offset used for Philox.
|
||||
constexpr size_t seed_size = sizeof(uint64_t);
|
||||
constexpr size_t offset_size = sizeof(int64_t);
|
||||
constexpr size_t total_size = seed_size + offset_size;
|
||||
static const size_t seed_size = sizeof(uint64_t);
|
||||
static const size_t offset_size = sizeof(int64_t);
|
||||
static const size_t total_size = seed_size + offset_size;
|
||||
|
||||
auto state_tensor = at::detail::empty_cpu({(int64_t)total_size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
|
||||
auto rng_state = state_tensor.data_ptr<uint8_t>();
|
||||
@ -346,9 +346,9 @@ c10::intrusive_ptr<c10::TensorImpl> CUDAGeneratorImpl::get_state() const {
|
||||
* and size of the internal state.
|
||||
*/
|
||||
void CUDAGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
|
||||
constexpr size_t seed_size = sizeof(uint64_t);
|
||||
constexpr size_t offset_size = sizeof(int64_t);
|
||||
constexpr size_t total_size = seed_size + offset_size;
|
||||
static const size_t seed_size = sizeof(uint64_t);
|
||||
static const size_t offset_size = sizeof(int64_t);
|
||||
static const size_t total_size = seed_size + offset_size;
|
||||
|
||||
detail::check_rng_state(new_state);
|
||||
|
||||
|
@ -1,192 +0,0 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
namespace at::cuda {
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
|
||||
cudaFree(0);
|
||||
}
|
||||
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
std::unique_ptr<GreenContext> GreenContext::create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (!device_id.has_value()) {
|
||||
device_id = at::cuda::current_device();
|
||||
}
|
||||
return std::make_unique<GreenContext>(device_id.value(), num_sms);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Implement move operations
|
||||
GreenContext::GreenContext(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (this != &other) {
|
||||
// Clean up current resources
|
||||
if (green_ctx_) {
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (current == context_) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"attempting to overwrite current green ctx "
|
||||
"when it is active!");
|
||||
}
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
}
|
||||
|
||||
// Take ownership of other's resources
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
}
|
||||
return *this;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext::~GreenContext() noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext GreenContext::getContext() const {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
return context_;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx GreenContext::getGreenContext() const {
|
||||
return green_ctx_;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void GreenContext::setContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
auto current_stream = c10::cuda::getCurrentCUDAStream();
|
||||
parent_stream_ = current_stream.stream();
|
||||
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(current_stream);
|
||||
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (!current) {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_));
|
||||
} else {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_));
|
||||
}
|
||||
// currently hardcodes the new green context to use the default stream
|
||||
// TODO(eqy): consider creating a new stream if e.g., it allows interop
|
||||
// with CUDA Graph captures etc.
|
||||
auto default_stream = c10::cuda::getDefaultCUDAStream();
|
||||
ev.block(default_stream);
|
||||
c10::cuda::setCurrentCUDAStream(default_stream);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
void GreenContext::popContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
// see above note about stream being hardcoded to the default stream
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(c10::cuda::getCurrentCUDAStream());
|
||||
CUcontext popped;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped));
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
popped == context_, "expected popped context to be the current ctx");
|
||||
ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
} // namespace at::cuda
|
@ -1,53 +0,0 @@
|
||||
#pragma once
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <cuda.h>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define CUDA_HAS_GREEN_CONTEXT 1
|
||||
#else
|
||||
#define CUDA_HAS_GREEN_CONTEXT 0
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
class TORCH_CUDA_CPP_API GreenContext {
|
||||
public:
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
|
||||
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
|
||||
|
||||
// Delete copy constructor and assignment
|
||||
GreenContext(const GreenContext&) = delete;
|
||||
GreenContext& operator=(const GreenContext&) = delete;
|
||||
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
~GreenContext() noexcept;
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext getContext() const;
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx getGreenContext() const;
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void setContext();
|
||||
|
||||
void popContext();
|
||||
|
||||
private:
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int32_t device_id_ = -1;
|
||||
CUgreenCtx green_ctx_ = nullptr;
|
||||
CUcontext context_ = nullptr;
|
||||
cudaStream_t parent_stream_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
} // namespace at::cuda
|
@ -183,6 +183,11 @@ struct CUDACachingHostAllocatorImpl
|
||||
return true;
|
||||
}
|
||||
|
||||
bool pinned_use_background_threads() override {
|
||||
return c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
|
||||
pinned_use_background_threads();
|
||||
}
|
||||
|
||||
EventPool::Event create_event_internal(DeviceIndex idx) {
|
||||
// Leak the event pool to avoid shutdown issue.
|
||||
static auto* event_pool = new EventPool();
|
||||
|
@ -70,7 +70,11 @@
|
||||
#define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max()
|
||||
#endif
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
namespace at_cuda_detail {
|
||||
#endif
|
||||
|
||||
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
|
||||
|
||||
@ -92,6 +96,10 @@ template <>
|
||||
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
|
||||
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
} // namespace at_cuda_detail
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -113,7 +121,7 @@ struct cuda_type<c10::Half> {
|
||||
using type = __half;
|
||||
};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
|
||||
|
||||
template<>
|
||||
struct cuda_type<c10::BFloat16> {
|
||||
@ -169,6 +177,7 @@ inline void segmented_sort_pairs(
|
||||
}
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
|
||||
inline void unique_by_key(
|
||||
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
|
||||
@ -184,6 +193,7 @@ inline void unique_by_key(
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
|
||||
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace impl {
|
||||
|
||||
@ -195,6 +205,36 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera
|
||||
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
template<typename ValueT, typename InputIteratorT>
|
||||
struct chained_iterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using value_type = ValueT;
|
||||
using pointer = ValueT*;
|
||||
using reference = ValueT&;
|
||||
|
||||
InputIteratorT iter;
|
||||
ValueT *first;
|
||||
difference_type offset = 0;
|
||||
|
||||
__device__ ValueT operator[](difference_type i) {
|
||||
i += offset;
|
||||
if (i == 0) {
|
||||
return *first;
|
||||
} else {
|
||||
return ValueT(iter[i - 1]);
|
||||
}
|
||||
}
|
||||
__device__ chained_iterator operator+(difference_type i) {
|
||||
return chained_iterator{iter, first, i};
|
||||
}
|
||||
__device__ ValueT operator*() {
|
||||
return (*this)[0];
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
||||
// so split at int_max/2
|
||||
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
|
||||
@ -239,6 +279,25 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
|
||||
using tuple = typename ArgIndexInputIterator::value_type;
|
||||
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
|
||||
if (x.key == 0) {
|
||||
return *first_elem_ptr;
|
||||
} else {
|
||||
return x.value;
|
||||
}
|
||||
};
|
||||
auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)(
|
||||
ArgIndexInputIterator(input + i), input_iter_transform);
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i + 1,
|
||||
output + i,
|
||||
@ -246,6 +305,7 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -497,6 +557,16 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
|
||||
input + i, first_elem_ptr};
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i,
|
||||
output + i,
|
||||
@ -504,10 +574,12 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
|
||||
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
|
||||
@ -535,6 +607,7 @@ inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
|
||||
void unique(InputIteratorT input, OutputIteratorT output,
|
||||
|
@ -10,6 +10,14 @@
|
||||
#define CUB_VERSION 200001
|
||||
#endif
|
||||
|
||||
// cub sort support for __nv_bfloat16 is added to cub 1.13 in:
|
||||
// https://github.com/NVIDIA/cub/pull/306
|
||||
#if CUB_VERSION >= 101300
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() false
|
||||
#endif
|
||||
|
||||
// cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in:
|
||||
// https://github.com/NVIDIA/cub/pull/326
|
||||
// CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake
|
||||
@ -20,6 +28,30 @@
|
||||
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
|
||||
#endif
|
||||
|
||||
// cub support for UniqueByKey is added to cub 1.16 in:
|
||||
// https://github.com/NVIDIA/cub/pull/405
|
||||
#if CUB_VERSION >= 101600
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_UNIQUE_BY_KEY() false
|
||||
#endif
|
||||
|
||||
// cub support for scan by key is added to cub 1.15
|
||||
// in https://github.com/NVIDIA/cub/pull/376
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 1
|
||||
#else
|
||||
#define CUB_SUPPORTS_SCAN_BY_KEY() 0
|
||||
#endif
|
||||
|
||||
// cub support for cub::FutureValue is added to cub 1.15 in:
|
||||
// https://github.com/NVIDIA/cub/pull/305
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() false
|
||||
#endif
|
||||
|
||||
// There were many bc-breaking changes in major version release of CCCL v3.0.0
|
||||
// Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html
|
||||
#if CUB_VERSION >= 200800
|
||||
|
@ -1,54 +0,0 @@
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/Tensor.h>
|
||||
#include <ATen/cuda/Exceptions.h>
|
||||
|
||||
#include <mutex>
|
||||
|
||||
namespace at {
|
||||
namespace cuda {
|
||||
namespace detail {
|
||||
|
||||
__device__ __constant__ float cublas_one_device;
|
||||
__device__ __constant__ float cublas_zero_device;
|
||||
|
||||
float *get_cublas_device_one() {
|
||||
static c10::once_flag init_flag;
|
||||
|
||||
c10::call_once(init_flag, []() {
|
||||
const float one = 1.f;
|
||||
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
|
||||
});
|
||||
|
||||
float *ptr;
|
||||
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
float *get_cublas_device_zero() {
|
||||
static c10::once_flag init_flag;
|
||||
|
||||
c10::call_once(init_flag, []() {
|
||||
const float zero = 0.f;
|
||||
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
|
||||
});
|
||||
|
||||
float *ptr;
|
||||
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
|
||||
return ptr;
|
||||
}
|
||||
|
||||
float *get_user_alpha_ptr() {
|
||||
static float *alpha_ptr;
|
||||
|
||||
static c10::once_flag init_flag;
|
||||
|
||||
c10::call_once(init_flag, []() {
|
||||
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
|
||||
});
|
||||
|
||||
return alpha_ptr;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
} // namespace cuda
|
||||
} // namespace at
|
@ -1,11 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/core/TensorBase.h>
|
||||
|
||||
namespace at::cuda::detail {
|
||||
|
||||
float *get_cublas_device_one();
|
||||
float *get_cublas_device_zero();
|
||||
float *get_user_alpha_ptr();
|
||||
|
||||
} // namespace at::cuda::detail
|
@ -109,8 +109,7 @@ class DefaultScaledGemmOp : public Callable<ScaledGemmParams<T>> {
|
||||
params->c_scale_ptr,
|
||||
params->ldc,
|
||||
params->c_dtype,
|
||||
params->use_fast_accum,
|
||||
std::nullopt /* alpha */);
|
||||
params->use_fast_accum);
|
||||
return OK;
|
||||
}
|
||||
};
|
||||
|
@ -160,10 +160,6 @@ constexpr DispatchKeySet kKeysToPropagateToWrapper({
|
||||
DispatchKey::CUDA,
|
||||
DispatchKey::CPU,
|
||||
DispatchKey::PrivateUse1,
|
||||
DispatchKey::SparseCPU,
|
||||
DispatchKey::SparseCUDA,
|
||||
DispatchKey::SparseCsrCPU,
|
||||
DispatchKey::SparseCsrCUDA,
|
||||
});
|
||||
|
||||
inline DispatchKeySet getKeysToPropagateToWrapper(const Tensor& tensor, DispatchKeySet to_propagate=kKeysToPropagateToWrapper) {
|
||||
|
@ -240,8 +240,8 @@ TORCH_META_FUNC(gelu_backward) (
|
||||
|
||||
namespace at::native {
|
||||
|
||||
static constexpr double SELU_ALPHA = 1.6732632423543772848170429916717;
|
||||
static constexpr double SELU_SCALE = 1.0507009873554804934193349852946;
|
||||
static const double SELU_ALPHA = 1.6732632423543772848170429916717;
|
||||
static const double SELU_SCALE = 1.0507009873554804934193349852946;
|
||||
|
||||
DEFINE_DISPATCH(elu_stub);
|
||||
DEFINE_DISPATCH(elu_backward_stub);
|
||||
|
@ -286,7 +286,7 @@ template void scal_fast_path<scalar_t>(int *n, scalar_t *a, scalar_t *x, int *in
|
||||
#if AT_BUILD_WITH_BLAS()
|
||||
template <>
|
||||
bool scal_use_fast_path<double>(int64_t n, int64_t incx) {
|
||||
auto constexpr intmax = std::numeric_limits<int>::max();
|
||||
auto intmax = std::numeric_limits<int>::max();
|
||||
return n <= intmax && incx <= intmax;
|
||||
}
|
||||
|
||||
@ -315,7 +315,7 @@ bool gemv_use_fast_path<float>(
|
||||
int64_t incx,
|
||||
[[maybe_unused]] float beta,
|
||||
int64_t incy) {
|
||||
auto constexpr intmax = std::numeric_limits<int>::max();
|
||||
auto intmax = std::numeric_limits<int>::max();
|
||||
return (m <= intmax) && (n <= intmax) && (lda <= intmax) &&
|
||||
(incx > 0) && (incx <= intmax) && (incy > 0) && (incy <= intmax);
|
||||
}
|
||||
|
@ -658,7 +658,6 @@ static void check_shape_forward(const at::Tensor& input,
|
||||
TORCH_CHECK(!params.is_output_padding_neg(), "negative output_padding is not supported");
|
||||
TORCH_CHECK(!params.is_stride_nonpos(), "non-positive stride is not supported");
|
||||
TORCH_CHECK(!params.is_dilation_neg(), "dilation should be greater than zero");
|
||||
TORCH_CHECK(groups > 0, "expected groups to be greater than 0, but got groups=", groups);
|
||||
|
||||
TORCH_CHECK(weight_dim == k,
|
||||
"Expected ", weight_dim, "-dimensional input for ", weight_dim,
|
||||
|
@ -1,6 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <ATen/native/Math.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/MathConstants.h>
|
||||
@ -128,7 +127,7 @@ C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, unifor
|
||||
|
||||
template<typename scalar_t>
|
||||
C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
|
||||
constexpr static scalar_t kTailValues[] = {
|
||||
const static scalar_t kTailValues[] = {
|
||||
0.0810614667953272,
|
||||
0.0413406959554092,
|
||||
0.0276779256849983,
|
||||
@ -140,7 +139,7 @@ C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
|
||||
0.00925546218271273,
|
||||
0.00833056343336287
|
||||
};
|
||||
if (k < std::size(kTailValues)) {
|
||||
if (k <= 9) {
|
||||
return kTailValues[static_cast<size_t>(k)];
|
||||
}
|
||||
scalar_t kp1sq = (k + 1) * (k + 1);
|
||||
|
@ -3620,7 +3620,7 @@ Tensor& _int_mm_out_cpu(const Tensor& self, const Tensor& mat2, Tensor& result)
|
||||
try {
|
||||
mkldnn_matmul_i8i8i32(self, mat2, result);
|
||||
dispatched = true;
|
||||
} catch ([[maybe_unused]] const std::exception& e) {
|
||||
} catch (const std::exception& e) {
|
||||
TORCH_WARN(func_name, " failed, switching to BLAS gemm: ", e.what());
|
||||
}
|
||||
}
|
||||
|
@ -581,7 +581,7 @@ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
|
||||
template <typename scalar_t>
|
||||
static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
|
||||
// lanczos approximation
|
||||
static constexpr scalar_t lanczos_sum_expg_scaled_num[13] = {
|
||||
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
|
||||
0.006061842346248906525783753964555936883222,
|
||||
0.5098416655656676188125178644804694509993,
|
||||
19.51992788247617482847860966235652136208,
|
||||
@ -596,7 +596,7 @@ static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
|
||||
103794043.1163445451906271053616070238554,
|
||||
56906521.91347156388090791033559122686859
|
||||
};
|
||||
static constexpr scalar_t lanczos_sum_expg_scaled_denom[13] = {
|
||||
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
|
||||
1.,
|
||||
66.,
|
||||
1925.,
|
||||
@ -712,7 +712,7 @@ static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
|
||||
template <typename scalar_t>
|
||||
static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
|
||||
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
|
||||
static constexpr scalar_t d[25][25] =
|
||||
static const scalar_t d[25][25] =
|
||||
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
|
||||
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
|
||||
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,
|
||||
|
@ -62,7 +62,7 @@
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
static constexpr int MIOPEN_DIM_MAX = 5;
|
||||
static const int MIOPEN_DIM_MAX = 5;
|
||||
|
||||
namespace at::meta {
|
||||
|
||||
|
@ -11,8 +11,6 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto
|
||||
"pixel_shuffle expects a positive upscale_factor, but got ",
|
||||
upscale_factor);
|
||||
int64_t c = self.size(-3);
|
||||
TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor,
|
||||
"upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor);
|
||||
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
|
||||
TORCH_CHECK(c % upscale_factor_squared == 0,
|
||||
"pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "
|
||||
|
@ -1906,9 +1906,11 @@ Tensor& index_fill_(
|
||||
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
|
||||
}
|
||||
|
||||
TORCH_CHECK(
|
||||
self.is_complex() || !source.isComplex(),
|
||||
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
|
||||
if (!self.is_complex() && source.isComplex()) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"index_fill_(): Converting complex Scalar to non-complex type is not supported");
|
||||
}
|
||||
|
||||
// Handle the case when `self` is 0-dim
|
||||
Tensor self_nonzero_dim = (self.dim() == 0) ? self.unsqueeze(-1) : self;
|
||||
|
@ -77,7 +77,7 @@ inline AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) {
|
||||
// next broadcast all index tensors together
|
||||
try {
|
||||
indices = expand_outplace(indices);
|
||||
} catch (std::exception&) {
|
||||
} catch (std::exception& e) {
|
||||
TORCH_CHECK_INDEX(
|
||||
false,
|
||||
"shape mismatch: indexing tensors could not be broadcast together"
|
||||
|
@ -259,20 +259,11 @@ inline void winograd_f2k3_input_transform_inplace__rvv(
|
||||
const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4);
|
||||
const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4);
|
||||
const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround:
|
||||
* Avoid single-statement read-modify-write on MEM_REF like:
|
||||
* *input_tile_val =
|
||||
* __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
* This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin)
|
||||
* with -march=rv64gcv. Use a temporary then write back.
|
||||
* Do NOT refactor into the single-statement form. Clang is unaffected.
|
||||
*/
|
||||
vfloat32m1x4_t tmp_input_tile_val = *input_tile_val;
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3);
|
||||
*input_tile_val = tmp_input_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3);
|
||||
}
|
||||
|
||||
inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
@ -286,15 +277,9 @@ inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4);
|
||||
const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4);
|
||||
const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_output_tile_val = *input_tile_val;
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0);
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1);
|
||||
*input_tile_val = tmp_output_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1);
|
||||
}
|
||||
|
||||
inline vfloat32m1_t
|
||||
@ -315,17 +300,11 @@ inline void winograd_f2k3_kernel_transform__rvv(
|
||||
const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4);
|
||||
const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4);
|
||||
vfloat32m1_t half_g0_plus_g2 = __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_transform = *transform;
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0);
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2);
|
||||
*transform = tmp_transform;
|
||||
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0);
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2);
|
||||
}
|
||||
|
||||
inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) {
|
||||
|
@ -1038,7 +1038,7 @@ struct HelperInterpNearest : public HelperInterpBase {
|
||||
// We keep this structure for BC and consider as deprecated.
|
||||
// See HelperInterpNearestExact as replacement
|
||||
|
||||
static constexpr int interp_size = 1;
|
||||
static const int interp_size = 1;
|
||||
|
||||
static inline void init_indices_weights(
|
||||
at::ScalarType output_type,
|
||||
@ -1155,7 +1155,7 @@ struct HelperInterpNearestExact : public HelperInterpNearest {
|
||||
|
||||
struct HelperInterpLinear : public HelperInterpBase {
|
||||
|
||||
static constexpr int interp_size = 2;
|
||||
static const int interp_size = 2;
|
||||
|
||||
// Compute indices and weights for each interpolated dimension
|
||||
// indices_weights = {
|
||||
@ -1275,7 +1275,7 @@ struct HelperInterpLinear : public HelperInterpBase {
|
||||
|
||||
struct HelperInterpCubic : public HelperInterpBase {
|
||||
|
||||
static constexpr int interp_size = 4;
|
||||
static const int interp_size = 4;
|
||||
|
||||
// Compute indices and weights for each interpolated dimension
|
||||
// indices_weights = {
|
||||
|
@ -272,110 +272,28 @@ cuda::blas::GEMMAndBiasActivationEpilogue activation_to_gemm_and_blas_arg(Activa
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks whether DISABLE_ADDMM_CUDA_LT is set.
|
||||
* Additionally, for ROCM we test whether the architecture supports the Lt.
|
||||
*/
|
||||
static bool isGloballyDisabledAddmmCudaLt(const at::Device& device) {
|
||||
// When hipBLASLt is not supported on the architecture, return true
|
||||
#ifdef USE_ROCM
|
||||
static const std::vector<std::string> archs = {
|
||||
static bool getDisableAddmmCudaLt() {
|
||||
static const auto env_value = c10::utils::get_env("DISABLE_ADDMM_CUDA_LT");
|
||||
if (env_value == "1") {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
static bool isSupportedHipLtROCmArch(int index) {
|
||||
static const std::vector<std::string> archs = {
|
||||
"gfx90a", "gfx942",
|
||||
#if ROCM_VERSION >= 60300
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1100", "gfx1101", "gfx1200", "gfx1201", "gfx908",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 70000
|
||||
#endif
|
||||
#if ROCM_VERSION >= 70000
|
||||
"gfx950", "gfx1150", "gfx1151"
|
||||
#endif
|
||||
};
|
||||
const auto is_hipblas_lt_arch_supported = at::detail::getCUDAHooks().isGPUArch(archs, device.index());
|
||||
if (!is_hipblas_lt_arch_supported) {
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Check whether it is disabled in the env
|
||||
static const auto is_addmm_cuda_lt_disabled = c10::utils::get_env("DISABLE_ADDMM_CUDA_LT");
|
||||
if (is_addmm_cuda_lt_disabled == "1") {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check whether for the given input we want to enable the Lt interface
|
||||
*/
|
||||
static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha) {
|
||||
// Implies 2D bias which we currently not send through Lt.
|
||||
// TODO: this check is done pre col-major input preparation,
|
||||
// so, this condition can be ralexed in cases when a col-major
|
||||
// copy of result is needed.
|
||||
if (result.is_same(self)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#if defined(USE_ROCM) && ROCM_VERSION == 60400
|
||||
// hipblaslt TT fp32 regression on ROCm 6.4, cannot use
|
||||
const auto args = cublasCommonArgs(mat1, mat2, result);
|
||||
if (args.transa == 't' && args.transb == 't') {
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
const auto mat1_sizes = mat1.sizes();
|
||||
const auto mat2_sizes = mat2.sizes();
|
||||
#if defined(CUDA_VERSION) || defined(USE_ROCM)
|
||||
const auto scalar_type = mat1.scalar_type();
|
||||
return (beta.toComplexDouble() == 1.0
|
||||
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
|
||||
// is to use lt interface only when self is bias.
|
||||
&& self.dim() == 1 && self.sizes()[0] == mat2_sizes[1] && self.is_contiguous()
|
||||
&& result.dim() == 2 && result.is_contiguous()
|
||||
&& ( // some dtype restrictions
|
||||
#ifndef USE_ROCM
|
||||
scalar_type == at::ScalarType::Double ||
|
||||
#endif
|
||||
scalar_type == at::ScalarType::Float ||
|
||||
scalar_type == at::ScalarType::Half ||
|
||||
scalar_type == at::ScalarType::BFloat16
|
||||
)
|
||||
&& ( // some shape/stride restrictions
|
||||
// Strangely, if mat2 has only 1 row or column, we get
|
||||
// CUBLAS_STATUS_INVALID_VALUE error from cublasLtMatmulAlgoGetHeuristic.
|
||||
// NOTE: extension to mat1 because mat1/mat2 can be swapped based off
|
||||
// their row-/col-majorness.
|
||||
mat1_sizes[0] > 1 && mat1_sizes[1] > 1 &&
|
||||
mat2_sizes[0] > 1 && mat2_sizes[1] > 1
|
||||
// The last conditions is to skip 16b transA and non-trans-B having
|
||||
// leading dim >> rows when they are sliced from a large tensor
|
||||
// see fbcode/caffe2/test/test_linalg.py:test_corner_cases_of_cublasltmatmul
|
||||
#if !(defined(CUDA_VERSION) && CUDA_VERSION >= 12010 || defined(USE_ROCM))
|
||||
// Related to avoiding the leading stride >> leading dim problematic case
|
||||
// with 16b dtypes described above. For such dtypes we only allow inputs
|
||||
// which are either row- or col-major (i.e. non-overlapping, compact memory layout).
|
||||
// In that case the leading stride will be equal to the outer dim len.
|
||||
// Why do we catch this case here? The following `prepare_matrix_for_cublas` method
|
||||
// does not modify inputs as long as there is a stride of length 1
|
||||
// and the leading stride is at least max(1, other dim length), so we might
|
||||
// end up with contiguous cols but not rows (i.e. holes between different rows)
|
||||
// and vice versa.
|
||||
mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 &&
|
||||
mat1_sizes[0] < 65535 * 32 && mat1_sizes[1] < 65535 * 32 &&
|
||||
&& (
|
||||
// filter by dtype
|
||||
(scalar_type != at::ScalarType::Half && scalar_type != at::ScalarType::BFloat16) ||
|
||||
// check mat1/mat2 is row-/col-major
|
||||
(mat1.is_non_overlapping_and_dense() && mat2.is_non_overlapping_and_dense())
|
||||
)
|
||||
#endif
|
||||
)
|
||||
);
|
||||
#endif
|
||||
|
||||
// no compliance by default
|
||||
return false;
|
||||
#endif
|
||||
};
|
||||
return at::detail::getCUDAHooks().isGPUArch(archs, index);
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename scalar_t>
|
||||
void launchTunableGemmAndBias(cublasCommonArgs &args, const Scalar& alpha, const scalar_t* bias, cuda::blas::GEMMAndBiasActivationEpilogue activation) {
|
||||
@ -417,70 +335,7 @@ void launchTunableGemmAndBias(cublasCommonArgs &args, const Scalar& alpha, const
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename res_scalar_t = scalar_t>
|
||||
bool launchGemmAndBiasCublasLt(
|
||||
// args contains result which is modified
|
||||
cublasCommonArgs& args,
|
||||
const Tensor& self,
|
||||
const Scalar& alpha,
|
||||
Activation activation = Activation::None
|
||||
) {
|
||||
const auto* self_ptr = self.const_data_ptr<scalar_t>();
|
||||
|
||||
const auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
// TODO: maybe also return some success state?
|
||||
launchTunableGemmAndBias<scalar_t>(
|
||||
args, alpha, self_ptr, activation_to_gemm_and_blas_arg(activation)
|
||||
);
|
||||
return true;
|
||||
}
|
||||
|
||||
return at::cuda::blas::gemm_and_bias<scalar_t, res_scalar_t>(
|
||||
args.transa == 't',
|
||||
args.transb == 't',
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha.to<at::opmath_type<scalar_t>>(),
|
||||
args.mata->const_data_ptr<scalar_t>(),
|
||||
args.lda,
|
||||
args.matb->const_data_ptr<scalar_t>(),
|
||||
args.ldb,
|
||||
self_ptr,
|
||||
args.result->data_ptr<res_scalar_t>(),
|
||||
args.result_ld,
|
||||
activation_to_gemm_and_blas_arg(activation)
|
||||
);
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename res_scalar_t = scalar_t>
|
||||
bool launchGemmCublas(
|
||||
// args contains result which is modified
|
||||
cublasCommonArgs& args,
|
||||
const Scalar& alpha,
|
||||
const Scalar& beta
|
||||
) {
|
||||
at::cuda::blas::gemm<scalar_t, res_scalar_t>(
|
||||
args.transa,
|
||||
args.transb,
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha.to<at::opmath_type<scalar_t>>(),
|
||||
args.mata->const_data_ptr<scalar_t>(),
|
||||
args.lda,
|
||||
args.matb->const_data_ptr<scalar_t>(),
|
||||
args.ldb,
|
||||
beta.to<at::opmath_type<scalar_t>>(),
|
||||
args.result->data_ptr<res_scalar_t>(),
|
||||
args.result_ld
|
||||
);
|
||||
return true; // success!
|
||||
}
|
||||
|
||||
Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Activation activation=Activation::None, bool disable_addmm_cuda_lt_override=false) {
|
||||
// Shape checks {
|
||||
// Make sure to keep addmm_cuda below in sync with this code; it
|
||||
// preflights a check to try to avoid actually needing to call
|
||||
// expand().
|
||||
@ -490,62 +345,105 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
"expected mat1 and mat2 to have the same dtype, but got: ", mat1.dtype(), " != ", mat2.dtype()
|
||||
)
|
||||
|
||||
if (result.is_same(self)) {
|
||||
TORCH_CHECK(result.dim() == 2, "tensors must be 2-D");
|
||||
TORCH_CHECK(self.sizes()[0] == mat1.sizes()[0], "self dim 0 must match mat1 dim 0");
|
||||
TORCH_CHECK(self.sizes()[1] == mat2.sizes()[1], "self dim 1 must match mat2 dim 1");
|
||||
}
|
||||
// } Shape checks
|
||||
|
||||
// NOLINTNEXTLINE(*c-array*)
|
||||
TensorArg targs[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}};
|
||||
checkAllSameGPU(__func__, targs);
|
||||
|
||||
// Handle whether to use the Lt interface {
|
||||
static bool persistent_disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device());
|
||||
IntArrayRef mat1_sizes = mat1.sizes();
|
||||
IntArrayRef mat2_sizes = mat2.sizes();
|
||||
IntArrayRef self__sizes;
|
||||
bool useLtInterface = false;
|
||||
#if defined(USE_ROCM)
|
||||
// When hipBLASLt is not supported on the architecture,
|
||||
// disable_addmm_cuda_lt will always be to set to true
|
||||
static bool disable_addmm_cuda_lt =
|
||||
!isSupportedHipLtROCmArch(self.device().index()) || getDisableAddmmCudaLt();
|
||||
#else
|
||||
static bool disable_addmm_cuda_lt = getDisableAddmmCudaLt();
|
||||
#endif
|
||||
// if lt path fails, we recurse back into this function here and force the lt path to off
|
||||
// we cannot update varible disable_addmm_cuda_lt from above since it is static and would be permanent
|
||||
bool disable_addmm_cuda_lt = persistent_disable_addmm_cuda_lt || disable_addmm_cuda_lt_override;
|
||||
#ifdef USE_ROCM
|
||||
// Conditioned on the device index, which is not persistent
|
||||
disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device()) || disable_addmm_cuda_lt;
|
||||
#endif
|
||||
// Condition on the input
|
||||
disable_addmm_cuda_lt = !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha) || disable_addmm_cuda_lt;
|
||||
// }
|
||||
|
||||
bool disable_addmm_cuda_lt_final = disable_addmm_cuda_lt || disable_addmm_cuda_lt_override;
|
||||
#if defined(USE_ROCM) && ROCM_VERSION == 60400
|
||||
// hipblaslt TT fp32 regression on ROCm 6.4, cannot use
|
||||
cublasCommonArgs _args(mat1, mat2, result);
|
||||
if (_args.transa == 't' && _args.transb == 't') {
|
||||
disable_addmm_cuda_lt_final = true;
|
||||
}
|
||||
#endif
|
||||
at::ScalarType scalar_type = mat1.scalar_type();
|
||||
bool is_float_output_with_half_input = (scalar_type == at::ScalarType::Half || scalar_type == at::ScalarType::BFloat16) && result.scalar_type() == at::ScalarType::Float;
|
||||
c10::MaybeOwned<Tensor> self_;
|
||||
if (&result != &self) {
|
||||
#if defined(CUDA_VERSION) || defined(USE_ROCM)
|
||||
// Strangely, if mat2 has only 1 row or column, we get
|
||||
// CUBLAS_STATUS_INVALID_VALUE error from cublasLtMatmulAlgoGetHeuristic.
|
||||
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
|
||||
// is to use lt interface only when self is bias.
|
||||
// for cuda 11.4, cublasLtMatmul is activated
|
||||
// the last two conditions is to skip 16b transA and non-trans-B having
|
||||
// leading dim >> rows when they are sliced from a large tensor
|
||||
// see fbcode/caffe2/test/test_linalg.py:test_corner_cases_of_cublasltmatmul
|
||||
if (!disable_addmm_cuda_lt_final) {
|
||||
useLtInterface = beta.toComplexDouble() == 1.0 && self.dim() == 1 &&
|
||||
result.dim() == 2 && self.sizes()[0] == mat2_sizes[1] &&
|
||||
self.is_contiguous() && result.is_contiguous() &&
|
||||
#ifdef USE_ROCM
|
||||
(scalar_type == at::ScalarType::Float ||
|
||||
scalar_type == at::ScalarType::Half ||
|
||||
scalar_type == at::ScalarType::BFloat16) &&
|
||||
#else
|
||||
(scalar_type == at::ScalarType::Double ||
|
||||
scalar_type == at::ScalarType::Float ||
|
||||
scalar_type == at::ScalarType::Half ||
|
||||
scalar_type == at::ScalarType::BFloat16) &&
|
||||
#endif
|
||||
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12010 || defined(USE_ROCM))
|
||||
mat2_sizes[0] > 1 && mat2_sizes[1] > 1;
|
||||
#else
|
||||
mat2_sizes[0] > 1 && mat2_sizes[1] > 1 &&
|
||||
mat2_sizes[0] < 65535 * 32 && mat2_sizes[1] < 65535 * 32 &&
|
||||
mat1_sizes[0] < 65535 * 32 && mat1_sizes[1] < 65535 * 32 &&
|
||||
// avoid leading dim >> rows bugs
|
||||
((mat1.strides()[0] == 1 && mat1.strides()[1] == mat1_sizes[0]) ||
|
||||
(mat1.strides()[1] == 1 && mat1.strides()[0] == mat1_sizes[1]) ||
|
||||
(scalar_type != at::ScalarType::Half &&
|
||||
scalar_type != at::ScalarType::BFloat16)) &&
|
||||
((mat2.strides()[0] == 1 && mat2.strides()[1] == mat2_sizes[0]) ||
|
||||
(mat2.strides()[1] == 1 && mat2.strides()[0] == mat2_sizes[1]) ||
|
||||
(scalar_type != at::ScalarType::Half &&
|
||||
scalar_type != at::ScalarType::BFloat16));
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
if (!useLtInterface) {
|
||||
self_ = expand_size(self, {mat1_sizes[0], mat2_sizes[1]}, "addmm");
|
||||
}
|
||||
self__sizes = self_->sizes();
|
||||
} else {
|
||||
self_ = c10::MaybeOwned<Tensor>::borrowed(self);
|
||||
self__sizes = self_->sizes();
|
||||
TORCH_CHECK(result.dim() == 2, "tensors must be 2-D");
|
||||
TORCH_CHECK(self__sizes[0] == mat1_sizes[0], "self_ dim 0 must match mat1 dim 0");
|
||||
TORCH_CHECK(self__sizes[1] == mat2_sizes[1], "self_ dim 1 must match mat2 dim 1");
|
||||
}
|
||||
|
||||
// Handle result/self shapes
|
||||
if (!result.is_same(self)) {
|
||||
at::native::resize_output(result, {mat1.sizes()[0], mat2.sizes()[1]});
|
||||
|
||||
const auto self_maybe_expanded = [&]() -> c10::MaybeOwned<Tensor> {
|
||||
if (disable_addmm_cuda_lt) {
|
||||
// When in non-Lt path we do expand self even before
|
||||
// check for beta != 0.0 to make sure that
|
||||
// test_sparse_csr.py::TestSparseCSRCUDA::test_addmm_errors_*
|
||||
// runs green.
|
||||
return expand_size(self, result.sizes(), "addmm");
|
||||
}
|
||||
// copy next, should broadcast
|
||||
return c10::MaybeOwned<Tensor>::borrowed(self);
|
||||
}();
|
||||
// We copy bias when in the non-Lt path
|
||||
if (beta.toComplexDouble() != 0.0 && disable_addmm_cuda_lt) {
|
||||
// NOTE: self should broadcast over result
|
||||
at::native::copy_(result, *self_maybe_expanded);
|
||||
if (&result != &self) {
|
||||
at::native::resize_output(result, {mat1_sizes[0], mat2_sizes[1]});
|
||||
if (beta.toComplexDouble() != 0.0 && !useLtInterface) {
|
||||
at::native::copy_(result, *self_);
|
||||
}
|
||||
}
|
||||
|
||||
// Short circuit on empty result
|
||||
if (result.numel() == 0) {
|
||||
|
||||
IntArrayRef result_sizes = result.sizes();
|
||||
if ((result_sizes[0] == 0) || (result_sizes[1] == 0)) {
|
||||
return result;
|
||||
}
|
||||
|
||||
// Short circuit if the reduction dim is empty
|
||||
if (mat1.sizes()[1] == 0) {
|
||||
cublasCommonArgs args(mat1, mat2, result);
|
||||
|
||||
if (mat1.numel() == 0) {
|
||||
// By definition, when beta==0, values in self should be ignored. nans and infs
|
||||
// should not propagate
|
||||
if (beta.toComplexDouble() == 0.) {
|
||||
@ -557,64 +455,158 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
result,
|
||||
self.expand(result.sizes()),
|
||||
at::native::scalar_tensor(
|
||||
beta,
|
||||
self.scalar_type(),
|
||||
std::nullopt /* layout */,
|
||||
at::kCPU,
|
||||
std::nullopt /* pin_memory */
|
||||
)
|
||||
);
|
||||
beta,
|
||||
self.scalar_type(),
|
||||
std::nullopt /* layout */,
|
||||
at::kCPU,
|
||||
std::nullopt /* pin_memory */));
|
||||
}
|
||||
|
||||
cublasCommonArgs args(mat1, mat2, result);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!args.result->is_conj());
|
||||
|
||||
// The Lt path
|
||||
if (!disable_addmm_cuda_lt) {
|
||||
bool lt_success = false;
|
||||
if (useLtInterface) {
|
||||
#if defined(USE_ROCM)
|
||||
bool okay = true;
|
||||
if (is_float_output_with_half_input) {
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK(false, "float output with half input is not enabled for ROCm");
|
||||
#else
|
||||
if (at::cuda::tunable::getTuningContext()->IsTunableOpEnabled()) {
|
||||
TORCH_CHECK(false, "Tunable GEMM is not supported for float output with reduced float input");
|
||||
}
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t, float>(args, self, alpha, activation);
|
||||
}
|
||||
);
|
||||
#endif
|
||||
} else {
|
||||
// !is_float_output_with_half_input
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::ScalarType::Half,
|
||||
at::ScalarType::BFloat16,
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t>(args, self, alpha, activation);
|
||||
auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
launchTunableGemmAndBias<scalar_t>(
|
||||
args,
|
||||
alpha,
|
||||
(&result != &self) ? self.const_data_ptr<scalar_t>() : nullptr,
|
||||
activation_to_gemm_and_blas_arg(activation));
|
||||
} else {
|
||||
okay = at::cuda::blas::gemm_and_bias<scalar_t>(
|
||||
args.transa == 't',
|
||||
args.transb == 't',
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha.to<at::opmath_type<scalar_t>>(),
|
||||
args.mata->const_data_ptr<scalar_t>(),
|
||||
args.lda,
|
||||
args.matb->const_data_ptr<scalar_t>(),
|
||||
args.ldb,
|
||||
// This condition is needed for mm case on ROCm for hipblasLt path.
|
||||
// Passing the bias ptr as null to avoid accuracy issues for mm case.
|
||||
(&result != &self) ? self.const_data_ptr<scalar_t>() : nullptr,
|
||||
args.result->data_ptr<scalar_t>(),
|
||||
args.result_ld,
|
||||
activation_to_gemm_and_blas_arg(activation)
|
||||
);
|
||||
}
|
||||
);
|
||||
} // end is_float_output_with_half_input
|
||||
|
||||
if (!lt_success) {
|
||||
// lt path failed; recurse but disable lt path
|
||||
});
|
||||
}
|
||||
if (!okay) {
|
||||
// lt path failed; recurse but disable lt path
|
||||
return addmm_out_cuda_impl(result, self, mat1, mat2, beta, alpha, activation, true);
|
||||
}
|
||||
// end Lt path
|
||||
} else {
|
||||
// No Lt, we use a GEMM instead
|
||||
#else
|
||||
auto activation_epilogue = activation_to_gemm_and_blas_arg(activation);
|
||||
bool okay = true;
|
||||
if (is_float_output_with_half_input) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
TORCH_CHECK(false, "Tunable GEMM is not supported for float output with reduced float input");
|
||||
}
|
||||
else {
|
||||
okay = at::cuda::blas::gemm_and_bias<scalar_t, float>(
|
||||
args.transa == 't',
|
||||
args.transb == 't',
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha.to<at::opmath_type<scalar_t>>(),
|
||||
args.mata->const_data_ptr<scalar_t>(),
|
||||
args.lda,
|
||||
args.matb->const_data_ptr<scalar_t>(),
|
||||
args.ldb,
|
||||
self.const_data_ptr<scalar_t>(),
|
||||
args.result->data_ptr<float>(),
|
||||
args.result_ld,
|
||||
activation_epilogue
|
||||
);
|
||||
}});
|
||||
} else {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::ScalarType::Half,
|
||||
at::ScalarType::BFloat16,
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
launchTunableGemmAndBias<scalar_t>(
|
||||
args,
|
||||
alpha,
|
||||
self.const_data_ptr<scalar_t>(),
|
||||
activation_epilogue);
|
||||
}
|
||||
else {
|
||||
okay = at::cuda::blas::gemm_and_bias<scalar_t>(
|
||||
args.transa == 't',
|
||||
args.transb == 't',
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha.to<at::opmath_type<scalar_t>>(),
|
||||
args.mata->const_data_ptr<scalar_t>(),
|
||||
args.lda,
|
||||
args.matb->const_data_ptr<scalar_t>(),
|
||||
args.ldb,
|
||||
self.const_data_ptr<scalar_t>(),
|
||||
args.result->data_ptr<scalar_t>(),
|
||||
args.result_ld,
|
||||
activation_epilogue
|
||||
);
|
||||
}});
|
||||
}
|
||||
if (!okay) {
|
||||
// lt path failed; recurse but disable lt path
|
||||
return addmm_out_cuda_impl(result, self, mat1, mat2, beta, alpha, activation, true);
|
||||
}
|
||||
#endif
|
||||
} else
|
||||
{
|
||||
if (is_float_output_with_half_input) {
|
||||
AT_DISPATCH_REDUCED_FLOATING_TYPES(
|
||||
scalar_type,
|
||||
"addmm_cuda",
|
||||
[&] {
|
||||
launchGemmCublas<scalar_t, float>(args, alpha, beta);
|
||||
}
|
||||
);
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
opmath_t alpha_val = alpha.to<opmath_t>();
|
||||
opmath_t beta_val = beta.to<opmath_t>();
|
||||
const scalar_t* mat1_ptr = args.mata->const_data_ptr<scalar_t>();
|
||||
const scalar_t* mat2_ptr = args.matb->const_data_ptr<scalar_t>();
|
||||
|
||||
float* result_ptr = args.result->mutable_data_ptr<float>();
|
||||
at::cuda::blas::gemm<scalar_t, float>(
|
||||
args.transa,
|
||||
args.transb,
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha_val,
|
||||
mat1_ptr,
|
||||
args.lda,
|
||||
mat2_ptr,
|
||||
args.ldb,
|
||||
beta_val,
|
||||
result_ptr,
|
||||
args.result_ld);
|
||||
});
|
||||
} else {
|
||||
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
|
||||
at::ScalarType::Half,
|
||||
@ -622,12 +614,28 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
scalar_type,
|
||||
"addmm_cuda",
|
||||
[&] {
|
||||
launchGemmCublas<scalar_t>(args, alpha, beta);
|
||||
}
|
||||
);
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
opmath_t alpha_val = alpha.to<opmath_t>();
|
||||
opmath_t beta_val = beta.to<opmath_t>();
|
||||
const scalar_t* mat1_ptr = args.mata->const_data_ptr<scalar_t>();
|
||||
const scalar_t* mat2_ptr = args.matb->const_data_ptr<scalar_t>();
|
||||
scalar_t* result_ptr = args.result->mutable_data_ptr<scalar_t>();
|
||||
at::cuda::blas::gemm<scalar_t>(
|
||||
args.transa,
|
||||
args.transb,
|
||||
args.m,
|
||||
args.n,
|
||||
args.k,
|
||||
alpha_val,
|
||||
mat1_ptr,
|
||||
args.lda,
|
||||
mat2_ptr,
|
||||
args.ldb,
|
||||
beta_val,
|
||||
result_ptr,
|
||||
args.result_ld);
|
||||
});
|
||||
}
|
||||
|
||||
// Apply epilogue
|
||||
switch (activation) {
|
||||
case Activation::RELU:
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
||||
@ -639,14 +647,14 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
break;
|
||||
default: break;
|
||||
}
|
||||
} // end GEMM path
|
||||
}
|
||||
|
||||
// Preprocessor gate here needs to match the inverse of the check
|
||||
// gating activation_to_gemm_and_blas_arg above; here we are manually
|
||||
// performing a post-GELU because we weren't able to use the GELU
|
||||
// epilogue above.
|
||||
#if !defined(CUDA_VERSION) && !defined(USE_ROCM)
|
||||
if (!disable_addmm_cuda_lt && activation == Activation::GELU) {
|
||||
if (useLtInterface && activation == Activation::GELU) {
|
||||
at::gelu_(const_cast<Tensor&>(*args.result), "tanh");
|
||||
}
|
||||
#endif
|
||||
@ -1351,8 +1359,7 @@ _scaled_gemm(
|
||||
const ScalingType scaling_choice_a, const ScalingType scaling_choice_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out,
|
||||
const std::optional<Tensor>& alpha = std::nullopt) {
|
||||
Tensor& out) {
|
||||
cublasCommonArgs args(mat1, mat2, out, scale_a, scale_b, std::nullopt, scaling_choice_a, scaling_choice_b);
|
||||
const auto out_dtype_ = args.result->scalar_type();
|
||||
TORCH_CHECK(args.transa == 't' && args.transb == 'n', "Only multiplication of row-major and column-major matrices is supported by cuBLASLt");
|
||||
@ -1403,8 +1410,7 @@ _scaled_gemm(
|
||||
args.scale_result_ptr,
|
||||
args.result_ld,
|
||||
out_dtype_,
|
||||
use_fast_accum,
|
||||
alpha);
|
||||
use_fast_accum);
|
||||
return out;
|
||||
}
|
||||
}
|
||||
@ -1753,7 +1759,6 @@ enum class ScaledGemmImplementation {
|
||||
MXFP8_MXFP8 = 6,
|
||||
NVFP4_NVFP4 = 7,
|
||||
NVFP4_NVFP4_SINGLE_SCALE = 8,
|
||||
MXFP4_MXFP4 = 9,
|
||||
};
|
||||
|
||||
/**
|
||||
@ -1950,39 +1955,10 @@ bool check_mxfp8_recipe(c10::ScalarType type_a,
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp4
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
|
||||
using namespace std::placeholders;
|
||||
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 9> scale_kernel_dispatch = {{
|
||||
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 8> scale_kernel_dispatch = {{
|
||||
{ "tensorwise_tensorwise", check_tensorwise_recipe, ScaledGemmImplementation::TENSORWISE_TENSORWISE },
|
||||
{ "rowwise_rowwise", check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
|
||||
{ "block_1x128_128x128", std::bind(check_deepseek_recipe, ScalingType::BlockWise1x128, ScalingType::BlockWise128x128, _1, _2, _3, _4, _5, _6),
|
||||
@ -1993,8 +1969,7 @@ std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 9>
|
||||
ScaledGemmImplementation::BLOCK_1x128_1x128},
|
||||
{ "nvfp4_nvfp4", check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4},
|
||||
{ "nvfp4_nvfp4_single_scale", check_nvfp4_recipe_single_scale, ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE },
|
||||
{ "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8},
|
||||
{ "mxfp4_mxfp4", check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4}}};
|
||||
{ "mxfp8_mxfp8", check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8}}};
|
||||
|
||||
Tensor&
|
||||
_scaled_tensorwise_tensorwise(
|
||||
@ -2212,22 +2187,15 @@ _scaled_mxfp8_mxfp8(
|
||||
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
|
||||
mat_a.scalar_type(), mat_b.scalar_type());
|
||||
|
||||
#ifdef USE_ROCM
|
||||
auto scale_a_elems = ceil_div<int64_t>(mat_a.size(0), 32) * mat_a.size(1);
|
||||
auto scale_b_elems = ceil_div<int64_t>(mat_b.size(1), 32) * mat_b.size(0);
|
||||
#else
|
||||
auto scale_a_elems = round_up<int64_t>(mat_a.size(0), 128) * round_up<int64_t>(ceil_div<int64_t>(mat_a.size(1), 32), 4);
|
||||
auto scale_b_elems = round_up<int64_t>(mat_b.size(1), 128) * round_up<int64_t>(ceil_div<int64_t>(mat_b.size(0), 32), 4);
|
||||
#endif
|
||||
TORCH_CHECK_VALUE(scale_a_elems == scale_a.numel(),
|
||||
"For Blockwise scaling scale_a should have ", scale_a_elems, " elements, got: ", scale_a.numel());
|
||||
TORCH_CHECK_VALUE(scale_b_elems == scale_b.numel(),
|
||||
"For Blockwise scaling scale_b should have ", scale_b_elems, " elements, got: ", scale_b.numel());
|
||||
|
||||
#ifndef USE_ROCM
|
||||
TORCH_CHECK_VALUE(swizzle_a == SwizzleType::SWIZZLE_32_4_4, "scale_a must be swizzled to SWIZZLE_32_4_4 format");
|
||||
TORCH_CHECK_VALUE(swizzle_b == SwizzleType::SWIZZLE_32_4_4, "scale_b must be swizzled to SWIZZLE_32_4_4 format");
|
||||
#endif
|
||||
|
||||
TORCH_CHECK_VALUE(scale_a.is_contiguous() && scale_b.is_contiguous(),
|
||||
"For Blockwise scaling both scales should be contiguous");
|
||||
@ -2257,56 +2225,6 @@ _scaled_mxfp8_mxfp8(
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
|
||||
Tensor&
|
||||
_scaled_mxfp4_mxfp4(
|
||||
const Tensor& mat_a, const Tensor& mat_b,
|
||||
const Tensor& scale_a, const SwizzleType swizzle_a,
|
||||
const Tensor& scale_b, const SwizzleType swizzle_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const c10::ScalarType out_dtype,
|
||||
Tensor& out) {
|
||||
#ifndef USE_ROCM
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "MXFP4 scaling supported on ROCM only");
|
||||
#endif
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
TORCH_CHECK_VALUE(mat_a.scalar_type() == at::kFloat4_e2m1fn_x2 && mat_b.scalar_type() == at::kFloat4_e2m1fn_x2, "mat_a and mat_b must be fp4 types, got: ",
|
||||
mat_a.scalar_type(), mat_b.scalar_type());
|
||||
|
||||
auto scale_a_elems = ceil_div<int64_t>(2 * mat_a.size(0), 32) * mat_a.size(1);
|
||||
auto scale_b_elems = ceil_div<int64_t>(2 * mat_b.size(1), 32) * mat_b.size(0);
|
||||
TORCH_CHECK_VALUE(scale_a_elems == scale_a.numel(),
|
||||
"For Blockwise scaling scale_a should have ", scale_a_elems, " elements, got: ", scale_a.numel());
|
||||
TORCH_CHECK_VALUE(scale_b_elems == scale_b.numel(),
|
||||
"For Blockwise scaling scale_b should have ", scale_b_elems, " elements, got: ", scale_b.numel());
|
||||
|
||||
TORCH_CHECK_VALUE(scale_a.is_contiguous() && scale_b.is_contiguous(),
|
||||
"For Blockwise scaling both scales should be contiguous");
|
||||
|
||||
TORCH_CHECK_VALUE(out.scalar_type() == out_dtype, "expected out.scalar_type() to be ", out_dtype, ", but got ", out_dtype);
|
||||
|
||||
auto scaling_choice_a = ScalingType::BlockWise1x32;
|
||||
auto scaling_choice_b = ScalingType::BlockWise1x32;
|
||||
|
||||
#if ROCM_VERSION >= 70000
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(at::detail::getCUDAHooks().isGPUArch({"gfx950"}),
|
||||
"Block-wise scaling for Float8_e8m0fnu is only supported on gfx950");
|
||||
|
||||
TORCH_CHECK_VALUE(mat_a.size(0) % 32 == 0 && mat_a.size(1) % 32 == 0 &&
|
||||
mat_b.size(0) % 32 == 0 && mat_b.size(1) % 32 == 0,
|
||||
"Matrix dimensions must be multiples of 32 for block-wise scaling");
|
||||
|
||||
TORCH_CHECK_VALUE(out.scalar_type() == ScalarType::BFloat16 ||
|
||||
out.scalar_type() == ScalarType::Half,
|
||||
"Block-wise scaling only supports BFloat16 or Half output types");
|
||||
#else
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "Block-wise scaling for Float8_e8m0fnu requires ROCm 7.0 or later");
|
||||
#endif
|
||||
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
Tensor&
|
||||
_scaled_nvfp4_nvfp4(
|
||||
const Tensor& mat_a, const Tensor& mat_b,
|
||||
@ -2314,23 +2232,12 @@ _scaled_nvfp4_nvfp4(
|
||||
const Tensor& scale_b, const SwizzleType swizzle_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const c10::ScalarType out_dtype,
|
||||
Tensor& out,
|
||||
const std::optional<Tensor>& global_scale_a = std::nullopt,
|
||||
const std::optional<Tensor>& global_scale_b = std::nullopt) {
|
||||
const bool single_scale,
|
||||
Tensor& out) {
|
||||
#ifdef USE_ROCM
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "NVFP4 scaling not supported on ROCM");
|
||||
#endif
|
||||
std::optional<Tensor> alpha = std::nullopt;
|
||||
// Note: "Or" here means that if only one scale is passed, we check for the other. Otherwise,
|
||||
// if this is "And" we would silently do nothing in the case where one global scale is
|
||||
// passed and not the other.
|
||||
if (global_scale_a.has_value() || global_scale_b.has_value()) {
|
||||
TORCH_CHECK_VALUE(global_scale_a.has_value(),
|
||||
"For two-level-scaled NVFP4, global_scale_a must have a value");
|
||||
TORCH_CHECK_VALUE(global_scale_b.has_value(),
|
||||
"For two-level-scaled NVFP4, global_scale_b must have a value");
|
||||
alpha = global_scale_a.value().mul(global_scale_b.value());
|
||||
}
|
||||
TORCH_CHECK_VALUE(single_scale, "Only single-scaled NVFP4 currently supported");
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
// Scales must be swizzled
|
||||
@ -2352,7 +2259,7 @@ _scaled_nvfp4_nvfp4(
|
||||
|
||||
auto scaling_choice_a = ScalingType::BlockWise1x16;
|
||||
auto scaling_choice_b = ScalingType::BlockWise1x16;
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out, alpha);
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
|
||||
@ -2558,12 +2465,9 @@ _scaled_mm_cuda_v2_out(
|
||||
} else if (gemm_impl == ScaledGemmImplementation::MXFP8_MXFP8) {
|
||||
return _scaled_mxfp8_mxfp8(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4) {
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out,
|
||||
scale_a[1], scale_b[1]);
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "Only single-scale NVFP4 currently supported");
|
||||
} else if (gemm_impl == ScaledGemmImplementation::NVFP4_NVFP4_SINGLE_SCALE) {
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
} else if (gemm_impl == ScaledGemmImplementation::MXFP4_MXFP4) {
|
||||
return _scaled_mxfp4_mxfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, out);
|
||||
return _scaled_nvfp4_nvfp4(mat_a, mat_b, scale_a[0], swizzle_a_enum[0], scale_b[0], swizzle_b_enum[0], bias, out_dtype_, true /* single_scale */, out);
|
||||
} else {
|
||||
TORCH_CHECK_VALUE(false, "Invalid state - found an implementation, but not really");
|
||||
}
|
||||
|
@ -38,41 +38,12 @@ __device__ inline int min(int a, int b) {
|
||||
#define BLOCK_STRIDE_BWD 2 // increasing block_stride to lower # of blocks launched
|
||||
#endif
|
||||
|
||||
template <typename index_t>
|
||||
static __device__ inline index_t p_start(index_t size, int pad, int kernel, int dilation, int stride) {
|
||||
const auto kernel_extent = static_cast<index_t>((kernel - 1) * dilation + 1);
|
||||
return (size + pad < kernel_extent) ? index_t(0) : (size + pad - kernel_extent) / stride + 1;
|
||||
static __device__ inline int p_start(int size, int pad, int kernel, int dilation, int stride) {
|
||||
return (size + pad < ((kernel - 1) * dilation + 1)) ? 0 : (size + pad - ((kernel - 1) * dilation + 1)) / stride + 1;
|
||||
}
|
||||
|
||||
template <typename index_t>
|
||||
static __device__ inline index_t p_end(index_t size, int pad, index_t pooled_size, int stride) {
|
||||
return std::min((size + pad) / stride + 1, pooled_size);
|
||||
}
|
||||
|
||||
static inline bool can_use_int32_nhwc(
|
||||
int64_t nbatch, int64_t channels,
|
||||
int64_t height, int64_t width,
|
||||
int64_t pooled_height, int64_t pooled_width,
|
||||
int64_t in_stride_n, int64_t in_stride_c,
|
||||
int64_t in_stride_h, int64_t in_stride_w)
|
||||
{
|
||||
constexpr int64_t int_max = std::numeric_limits<int>::max();
|
||||
|
||||
int64_t max_intra_batch =
|
||||
(height ? (height - 1) * in_stride_h : 0) +
|
||||
(width ? (width - 1) * in_stride_w : 0) +
|
||||
(channels? (channels - 1) * in_stride_c : 0);
|
||||
|
||||
int64_t max_input_offset = (nbatch ? (nbatch - 1) * in_stride_n : 0) + max_intra_batch;
|
||||
|
||||
if (max_input_offset > int_max) return false;
|
||||
|
||||
int64_t out_batch_stride = pooled_height * pooled_width * channels;
|
||||
if ((nbatch ? (nbatch - 1) * out_batch_stride : 0) > int_max) return false;
|
||||
|
||||
if (height * width > int_max) return false;
|
||||
|
||||
return true;
|
||||
static __device__ inline int p_end(int size, int pad, int pooled_size, int stride) {
|
||||
return min((size + pad) / stride + 1, pooled_size);
|
||||
}
|
||||
|
||||
// kernels borrowed from Caffe
|
||||
@ -114,25 +85,21 @@ __global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t, typename index_t>
|
||||
template <typename scalar_t>
|
||||
C10_LAUNCH_BOUNDS_1(CUDA_MAX_THREADS)
|
||||
__global__ void max_pool_forward_nhwc(
|
||||
const scalar_t* bottom_data,
|
||||
const int nbatch,
|
||||
const index_t channels, const index_t height, const index_t width,
|
||||
const index_t pooled_height, const index_t pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const index_t in_stride_n, const index_t in_stride_c,
|
||||
const index_t in_stride_h, const index_t in_stride_w,
|
||||
const int kernel_stride_C, const int kernel_size_C,
|
||||
scalar_t* top_data, int64_t* top_mask) {
|
||||
|
||||
extern __shared__ unsigned char smem_raw[];
|
||||
index_t *out_mask_cached = reinterpret_cast<index_t*>(smem_raw);
|
||||
scalar_t *out_cached = reinterpret_cast<scalar_t*>(
|
||||
out_mask_cached + kernel_size_C*blockDim.x*blockDim.y*blockDim.z);
|
||||
__global__ void max_pool_forward_nhwc(const scalar_t* bottom_data, const int nbatch,
|
||||
const int64_t channels, const int64_t height,
|
||||
const int64_t width, const int pooled_height, const int pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int in_stride_n, const int in_stride_c,
|
||||
const int in_stride_h, const int in_stride_w,
|
||||
const int kernel_stride_C, const int kernel_size_C,
|
||||
scalar_t* top_data, int64_t* top_mask) {
|
||||
extern __shared__ int smem[];
|
||||
int *out_mask_cached = smem;
|
||||
scalar_t *out_cached = reinterpret_cast<scalar_t*>(&out_mask_cached[kernel_size_C*blockDim.x*blockDim.y*blockDim.z]);
|
||||
|
||||
// flattening cta for pre-computation & smem initialization;
|
||||
int thread_id = threadIdx.x + blockDim.x * (threadIdx.y + blockDim.y * threadIdx.z);
|
||||
@ -151,26 +118,26 @@ __global__ void max_pool_forward_nhwc(
|
||||
int channel_id = blockIdx.x / nbatch;
|
||||
int channel_offset = threadIdx.x + channel_id * blockDim.x;
|
||||
|
||||
top_data = top_data + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
|
||||
top_mask = top_mask + static_cast<index_t>(batch_id) * (pooled_height * pooled_width * channels);
|
||||
bottom_data = bottom_data + static_cast<index_t>(batch_id) * in_stride_n;
|
||||
top_data = top_data + batch_id * pooled_height * pooled_width * channels;
|
||||
top_mask = top_mask + batch_id * pooled_height * pooled_width * channels;
|
||||
bottom_data = bottom_data + batch_id * in_stride_n;
|
||||
|
||||
out_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
|
||||
out_mask_cached += (threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x;
|
||||
out_cached = &out_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
|
||||
out_mask_cached = &out_mask_cached[(threadIdx.z * blockDim.y + threadIdx.y) * kernel_size_C*blockDim.x];
|
||||
|
||||
int oH = (static_cast<int>(pooled_height) + gridDim.z - 1) / gridDim.z;
|
||||
int oW = (static_cast<int>(pooled_width) + gridDim.y - 1) / gridDim.y;
|
||||
int oH = (pooled_height + gridDim.z-1) / gridDim.z;
|
||||
int oW = (pooled_width + gridDim.y-1) / gridDim.y;
|
||||
int ostartH = threadIdx.z + blockIdx.z*oH;
|
||||
int oendH = ::min(ostartH+oH, static_cast<int>(pooled_height));
|
||||
int oendH = ::min(ostartH+oH, pooled_height);
|
||||
int ostartW = threadIdx.y + blockIdx.y*oW;
|
||||
int oendW = ::min(ostartW+oW, static_cast<int>(pooled_width));
|
||||
int oendW = ::min(ostartW+oW, pooled_width);
|
||||
|
||||
for (int oh = ostartH; oh < oendH; oh+=blockDim.z) {
|
||||
index_t hstart = static_cast<index_t>(oh) * stride_h - pad_h;
|
||||
index_t hend = std::min(hstart + static_cast<index_t>((kernel_h - 1) * dilation_h + 1), height);
|
||||
int hstart = oh * stride_h - pad_h;
|
||||
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
for (int ow = ostartW; ow < oendW; ow+=blockDim.y) {
|
||||
index_t wstart = static_cast<index_t>(ow) * stride_w - pad_w;
|
||||
index_t wend = std::min(wstart + static_cast<index_t>((kernel_w - 1) * dilation_w + 1), width);
|
||||
int wstart = ow * stride_w - pad_w;
|
||||
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
while(hstart < 0)
|
||||
hstart += dilation_h;
|
||||
while(wstart < 0)
|
||||
@ -218,12 +185,12 @@ __global__ void max_pool_forward_nhwc(
|
||||
// Else do it Non-Prefetch...
|
||||
else
|
||||
#endif
|
||||
for (index_t ih = hstart; ih < hend; ih += dilation_h) {
|
||||
for (index_t iw = wstart; iw < wend; iw += dilation_w) {
|
||||
for (int ih = hstart; ih < hend; ih += dilation_h) {
|
||||
for (int iw = wstart; iw < wend; iw += dilation_w) {
|
||||
int cached_index = threadIdx.x;
|
||||
const scalar_t *ptr_input = bottom_data + ih * in_stride_h + iw * in_stride_w;
|
||||
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
|
||||
scalar_t val = ptr_input[c * in_stride_c];
|
||||
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
|
||||
scalar_t val = ptr_input[c*in_stride_c];
|
||||
if ((val > out_cached[cached_index]) || at::_isnan(val)) {
|
||||
out_cached[cached_index] = val;
|
||||
out_mask_cached[cached_index] = ih * width + iw;
|
||||
@ -233,15 +200,15 @@ __global__ void max_pool_forward_nhwc(
|
||||
}
|
||||
}
|
||||
|
||||
scalar_t *ptr_output_data = top_data + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
|
||||
int64_t *ptr_output_mask = top_mask + (static_cast<index_t>(oh) * pooled_width + ow) * channels;
|
||||
scalar_t *ptr_output_data = top_data + (oh * pooled_width + ow) * channels;
|
||||
int64_t *ptr_output_mask = top_mask + (oh * pooled_width + ow) * channels;
|
||||
|
||||
int cached_index = threadIdx.x;
|
||||
for (index_t c = channel_offset; c < channels; c += static_cast<index_t>(blockDim.x) * kernel_stride_C) {
|
||||
for(int c = channel_offset; c < channels; c+= blockDim.x*kernel_stride_C) {
|
||||
ptr_output_data[c] = out_cached[cached_index];
|
||||
ptr_output_mask[c] = static_cast<int64_t>(out_mask_cached[cached_index]);
|
||||
ptr_output_mask[c] = out_mask_cached[cached_index];
|
||||
out_cached[cached_index] = at::numeric_limits<scalar_t>::lower_bound();
|
||||
out_mask_cached[cached_index] = index_t(0);
|
||||
out_mask_cached[cached_index] = 0;
|
||||
cached_index += blockDim.x;
|
||||
}
|
||||
}
|
||||
@ -249,7 +216,7 @@ __global__ void max_pool_forward_nhwc(
|
||||
}
|
||||
|
||||
|
||||
static constexpr int BLOCK_THREADS = 256;
|
||||
static const int BLOCK_THREADS = 256;
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
#if defined (USE_ROCM)
|
||||
@ -495,11 +462,6 @@ const Tensor& indices) {
|
||||
maxThreadsDim[0], std::min<int>(lastPow2(nInputPlane), max_threads / block_y / block_z));
|
||||
const dim3 block(block_x, block_y, block_z);
|
||||
|
||||
bool use_int32 = can_use_int32_nhwc(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth,
|
||||
outputHeight, outputWidth,
|
||||
in_stride_n, in_stride_c, in_stride_h, in_stride_w);
|
||||
|
||||
int kernel_stride_C = ceil_div(
|
||||
safe_downcast<int, int64_t>(nInputPlane), block_x * 4);
|
||||
int kernel_size_C = ceil_div(
|
||||
@ -514,41 +476,18 @@ const Tensor& indices) {
|
||||
ceil_div(safe_downcast<int, int64_t>(outputHeight), block_z*BLOCK_STRIDE_FWD));
|
||||
const dim3 grid(grid_x, grid_y, grid_z);
|
||||
|
||||
size_t shmem_size;
|
||||
size_t mask_elems = static_cast<size_t>(kernel_size_C) * block_x * block_y * block_z;
|
||||
size_t shmem_size = (kernel_size_C * block_x*block_y*block_z) * (sizeof(int) + sizeof(scalar_t));
|
||||
AT_ASSERT(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock);
|
||||
|
||||
if (use_int32) {
|
||||
shmem_size = mask_elems * (sizeof(int32_t) + sizeof(scalar_t));
|
||||
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
|
||||
"shared memory too small");
|
||||
max_pool_forward_nhwc<scalar_t, int32_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, static_cast<int>(nbatch),
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
static_cast<int32_t>(in_stride_n),
|
||||
static_cast<int32_t>(in_stride_c),
|
||||
static_cast<int32_t>(in_stride_h),
|
||||
static_cast<int32_t>(in_stride_w),
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
} else {
|
||||
shmem_size = mask_elems * (sizeof(int64_t) + sizeof(scalar_t));
|
||||
TORCH_CHECK(shmem_size <= at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock,
|
||||
"shared memory too small");
|
||||
max_pool_forward_nhwc<scalar_t, int64_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, static_cast<int>(nbatch),
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
in_stride_n, in_stride_c, in_stride_h, in_stride_w,
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
}
|
||||
max_pool_forward_nhwc<scalar_t>
|
||||
<<<grid, block, shmem_size, at::cuda::getCurrentCUDAStream()>>>(
|
||||
input_data, nbatch,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
in_stride_n, in_stride_c,
|
||||
in_stride_h, in_stride_w,
|
||||
kernel_stride_C, kernel_size_C,
|
||||
output_data, indices_data);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
|
@ -15,7 +15,9 @@
|
||||
#include <ATen/native/cuda/block_reduce.cuh>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -34,9 +36,9 @@ namespace at::native {
|
||||
namespace {
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
static constexpr int BLOCKDIMY = 16;
|
||||
static const int BLOCKDIMY = 16;
|
||||
#else
|
||||
static constexpr int BLOCKDIMY = 32;
|
||||
static const int BLOCKDIMY = 32;
|
||||
#endif
|
||||
|
||||
template
|
||||
@ -238,6 +240,10 @@ __global__ void renorm_kernel(
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices_,
|
||||
int64_t num_weights, int64_t padding_idx,
|
||||
@ -300,6 +306,7 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -326,6 +333,11 @@ Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indice
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_dense_backward_cuda", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices,
|
||||
|
@ -10,7 +10,9 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -194,9 +196,18 @@ __global__ void compute_num_of_partial_segments(const index_t *partials_per_segm
|
||||
partials_per_segment_offset[num_of_segments-1];
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
__global__ void write_num_of_segments_for_legacy_thrust_path(int64_t *num_of_segments_ptr, int64_t num_of_segments) {
|
||||
*num_of_segments_ptr = num_of_segments;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // anon namespace
|
||||
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
#endif
|
||||
|
||||
Tensor embedding_backward_cuda_kernel(
|
||||
const Tensor &grad,
|
||||
@ -223,12 +234,20 @@ Tensor embedding_backward_cuda_kernel(
|
||||
auto segment_offsets = at::empty({numel}, orig_indices.options());
|
||||
auto num_of_segments_tensor = at::empty({}, grad.options().dtype(kLong));
|
||||
int64_t *num_of_segments_ptr = num_of_segments_tensor.mutable_data_ptr<int64_t>();
|
||||
#if !CUB_SUPPORTS_UNIQUE_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
int64_t num_of_segments = embedding_backward_cuda_kernel_unique_by_key<index_t>(sorted_indices, segment_offsets);
|
||||
write_num_of_segments_for_legacy_thrust_path<<<1, 1, 0, c10::cuda::getCurrentCUDAStream()>>>(num_of_segments_ptr, num_of_segments);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(orig_indices.scalar_type(), "embedding_backward_cuda_kernel", [&] () {
|
||||
cuda::cub::unique_by_key(
|
||||
sorted_indices.const_data_ptr<index_t>(), thrust::make_counting_iterator(0),
|
||||
segment_offsets.mutable_data_ptr<index_t>(),
|
||||
num_of_segments_ptr, sorted_indices.numel());
|
||||
});
|
||||
#endif
|
||||
|
||||
int64_t max_segments = std::min<int64_t>(numel, num_weights);
|
||||
|
||||
|
@ -31,10 +31,16 @@
|
||||
|
||||
#include <c10/macros/Macros.h>
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
#include <thrust/iterator/reverse_iterator.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count);
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
@ -193,6 +199,7 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
|
||||
if (scale_grad_by_freq) {
|
||||
count = at::empty_like(indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
@ -219,6 +226,11 @@ Tensor embedding_bag_backward_cuda_sum_avg(
|
||||
num_indices
|
||||
);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), "embedding_bag_backward_cuda_sum_avg", [&] () {
|
||||
embedding_dense_backward_cuda_scan<index_t>(sorted_indices, count);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
return embedding_backward_cuda_kernel(grad, orig_indices, sorted_indices,
|
||||
count, num_weights, padding_idx, mode == EmbeddingBagMode::MEAN, offset2bag,
|
||||
|
@ -82,7 +82,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
|
||||
// lanczos approximation
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
|
||||
constexpr accscalar_t lanczos_sum_expg_scaled_num[13] = {
|
||||
static const accscalar_t lanczos_sum_expg_scaled_num[13] = {
|
||||
0.006061842346248906525783753964555936883222,
|
||||
0.5098416655656676188125178644804694509993,
|
||||
19.51992788247617482847860966235652136208,
|
||||
@ -97,7 +97,7 @@ __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
|
||||
103794043.1163445451906271053616070238554,
|
||||
56906521.91347156388090791033559122686859
|
||||
};
|
||||
constexpr accscalar_t lanczos_sum_expg_scaled_denom[13] = {
|
||||
static const accscalar_t lanczos_sum_expg_scaled_denom[13] = {
|
||||
1.,
|
||||
66.,
|
||||
1925.,
|
||||
@ -126,10 +126,10 @@ __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
|
||||
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
accscalar_t ax, fac, res, num, numfac;
|
||||
constexpr accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
|
||||
static const accscalar_t MAXLOG = std::is_same_v<accscalar_t,double> ?
|
||||
7.09782712893383996843E2 : 88.72283905206835;
|
||||
constexpr accscalar_t EXP1 = 2.718281828459045;
|
||||
constexpr accscalar_t lanczos_g = 6.024680040776729583740234375;
|
||||
static const accscalar_t EXP1 = 2.718281828459045;
|
||||
static const accscalar_t lanczos_g = 6.024680040776729583740234375;
|
||||
|
||||
if (::fabs(a - x) > 0.4 * ::fabs(a)) {
|
||||
ax = a * ::log(x) - x - ::lgamma(a);
|
||||
@ -158,9 +158,9 @@ __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
|
||||
// Compute igam using DLMF 8.11.4. [igam1]
|
||||
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
1.11022302462515654042E-16 : 5.9604644775390625E-8;
|
||||
constexpr int MAXITER = 2000;
|
||||
static const int MAXITER = 2000;
|
||||
|
||||
int i;
|
||||
accscalar_t ans, ax, c, r;
|
||||
@ -196,8 +196,8 @@ __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
|
||||
accscalar_t fac = 1;
|
||||
accscalar_t sum = 0;
|
||||
accscalar_t term, logx;
|
||||
constexpr int MAXITER = 2000;
|
||||
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
static const int MAXITER = 2000;
|
||||
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
1.11022302462515654042E-16 : 5.9604644775390625E-8;
|
||||
|
||||
for (n = 1; n < MAXITER; n++) {
|
||||
@ -219,7 +219,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
|
||||
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
|
||||
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
constexpr accscalar_t d[25][25] =
|
||||
static const accscalar_t d[25][25] =
|
||||
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15},
|
||||
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15},
|
||||
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15},
|
||||
@ -248,7 +248,7 @@ __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t
|
||||
|
||||
int k, n, sgn;
|
||||
int maxpow = 0;
|
||||
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
1.11022302462515654042E-16 : 5.9604644775390625E-8;
|
||||
accscalar_t lambda = x / a;
|
||||
accscalar_t sigma = (x - a) / a;
|
||||
@ -314,12 +314,12 @@ __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar
|
||||
int i;
|
||||
accscalar_t ans, ax, c, yc, r, t, y, z;
|
||||
accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
|
||||
constexpr int MAXITER = 2000;
|
||||
constexpr accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
static const int MAXITER = 2000;
|
||||
static const accscalar_t MACHEP = std::is_same_v<accscalar_t, double> ?
|
||||
1.11022302462515654042E-16 : 5.9604644775390625E-8;
|
||||
constexpr accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
|
||||
static const accscalar_t BIG = std::is_same_v<accscalar_t,double> ?
|
||||
4.503599627370496e15 : 16777216.;
|
||||
constexpr accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
|
||||
static const accscalar_t BIGINV = std::is_same_v<accscalar_t,double> ?
|
||||
2.22044604925031308085e-16 : 5.9604644775390625E-8;
|
||||
|
||||
ax = _igam_helper_fac(a, x);
|
||||
@ -385,10 +385,10 @@ __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) {
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
accscalar_t absxma_a;
|
||||
|
||||
constexpr accscalar_t SMALL = 20.0;
|
||||
constexpr accscalar_t LARGE = 200.0;
|
||||
constexpr accscalar_t SMALLRATIO = 0.3;
|
||||
constexpr accscalar_t LARGERATIO = 4.5;
|
||||
static const accscalar_t SMALL = 20.0;
|
||||
static const accscalar_t LARGE = 200.0;
|
||||
static const accscalar_t SMALLRATIO = 0.3;
|
||||
static const accscalar_t LARGERATIO = 4.5;
|
||||
|
||||
if ((x < 0) || (a < 0)) {
|
||||
// out of defined-region of the function
|
||||
@ -467,10 +467,10 @@ __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) {
|
||||
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
accscalar_t absxma_a;
|
||||
constexpr accscalar_t SMALL = 20.0;
|
||||
constexpr accscalar_t LARGE = 200.0;
|
||||
constexpr accscalar_t SMALLRATIO = 0.3;
|
||||
constexpr accscalar_t LARGERATIO = 4.5;
|
||||
static const accscalar_t SMALL = 20.0;
|
||||
static const accscalar_t LARGE = 200.0;
|
||||
static const accscalar_t SMALLRATIO = 0.3;
|
||||
static const accscalar_t LARGERATIO = 4.5;
|
||||
|
||||
// boundary values following SciPy
|
||||
if ((x < 0) || (a < 0)) {
|
||||
|
90
aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
Normal file
90
aten/src/ATen/native/cuda/LegacyThrustHelpers.cu
Normal file
@ -0,0 +1,90 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/native/cuda/SortingCommon.cuh>
|
||||
#include <ATen/cuda/cub_definitions.cuh>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#else
|
||||
#include <ATen/ops/empty_like.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cuda/ThrustAllocator.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/unique.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
|
||||
namespace at::native {
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
|
||||
template<typename index_t>
|
||||
void embedding_dense_backward_cuda_scan(Tensor &sorted_indices, Tensor &count) {
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
|
||||
auto num_indices = count.numel();
|
||||
|
||||
// Compute an increasing sequence per unique item in sortedIndices:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 1 2 3 1 2 1 1 2
|
||||
auto sorted_data = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto count_data = thrust::device_ptr<index_t>(count.mutable_data_ptr<index_t>());
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
sorted_data,
|
||||
sorted_data + num_indices,
|
||||
thrust::make_constant_iterator(1),
|
||||
count_data
|
||||
);
|
||||
|
||||
// Take the maximum of each count per unique key in reverse:
|
||||
// sorted: 2 5 5 5 7 7 8 9 9
|
||||
// count: 1 3 3 3 2 2 1 2 2
|
||||
thrust::inclusive_scan_by_key(
|
||||
policy,
|
||||
thrust::make_reverse_iterator(sorted_data + num_indices),
|
||||
thrust::make_reverse_iterator(sorted_data),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::make_reverse_iterator(count_data + num_indices),
|
||||
thrust::equal_to<index_t>(),
|
||||
thrust::maximum<index_t>()
|
||||
);
|
||||
}
|
||||
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int>(Tensor &sorted_indices, Tensor &count);
|
||||
template
|
||||
void embedding_dense_backward_cuda_scan<int64_t>(Tensor &sorted_indices, Tensor &count);
|
||||
|
||||
#endif
|
||||
|
||||
template<typename index_t>
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key(const Tensor &sorted_indices, Tensor &segment_offsets) {
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
at::cuda::ThrustAllocator allocator;
|
||||
auto policy = thrust::cuda::par(allocator).on(stream);
|
||||
const ptrdiff_t numel = sorted_indices.numel();
|
||||
auto sorted_indices_dev = thrust::device_ptr<const index_t>(sorted_indices.const_data_ptr<index_t>());
|
||||
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
auto dummy_dev = thrust::device_ptr<index_t>(dummy.mutable_data_ptr<index_t>());
|
||||
auto ends = thrust::unique_by_key_copy(
|
||||
policy,
|
||||
sorted_indices_dev,
|
||||
sorted_indices_dev + numel,
|
||||
thrust::make_counting_iterator(0),
|
||||
dummy_dev,
|
||||
thrust::device_ptr<index_t>(segment_offsets.mutable_data_ptr<index_t>()));
|
||||
return thrust::get<0>(ends) - dummy_dev;
|
||||
}
|
||||
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
template
|
||||
int64_t embedding_backward_cuda_kernel_unique_by_key<int64_t>(const Tensor &sorted_indices, Tensor &segment_offsets);
|
||||
|
||||
} // namespace at::native
|
@ -1,17 +1,18 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/detail/FunctionTraits.h>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
||||
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/native/cuda/thread_constants.h>
|
||||
|
||||
#include <thrust/tuple.h>
|
||||
|
||||
#include <ATen/native/cuda/MemoryAccess.cuh>
|
||||
|
||||
#include <tuple>
|
||||
|
||||
|
||||
|
||||
namespace at::native {
|
||||
|
||||
template<int N>
|
||||
@ -61,11 +62,7 @@ __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < elems_per_thread; i++) {
|
||||
if (policy.check_inbounds(i)) {
|
||||
#if defined(__HIP__)
|
||||
results[i] = c10::guts::apply(f, args[i]);
|
||||
#else
|
||||
results[i] = std::apply(f, args[i]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -231,7 +231,7 @@ const auto lcm_string = jiterator_stringify(
|
||||
const auto digamma_string = jiterator_stringify(
|
||||
template <typename T>
|
||||
T digamma(T x) {
|
||||
static constexpr double PI_f64 = 3.14159265358979323846;
|
||||
static const double PI_f64 = 3.14159265358979323846;
|
||||
|
||||
// Short-circuits if x is +/- 0 and returns -/+ ∞ per the C++ standard
|
||||
if (x == 0) {
|
||||
@ -3072,9 +3072,9 @@ template <typename scalar_t>
|
||||
static inline C10_HOST_DEVICE scalar_t calc_digamma(scalar_t in) {
|
||||
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
|
||||
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
|
||||
static constexpr double PI_f64 = 3.14159265358979323846;
|
||||
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
|
||||
constexpr accscalar_t A[] = {
|
||||
static const double PI_f64 = 3.14159265358979323846;
|
||||
const accscalar_t PSI_10 = 2.25175258906672110764;
|
||||
const accscalar_t A[] = {
|
||||
8.33333333333333333333E-2,
|
||||
-2.10927960927960927961E-2,
|
||||
7.57575757575757575758E-3,
|
||||
|
@ -146,7 +146,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
int64_t batch_size = target.size(0);
|
||||
int64_t H = target.size(1);
|
||||
int64_t W = target.size(2);
|
||||
int64_t n_classes = grad_input.size(1);
|
||||
|
||||
CUDA_KERNEL_LOOP(index, n_threads) {
|
||||
const int64_t b = index % batch_size;
|
||||
@ -157,7 +156,6 @@ __global__ void nll_loss2d_backward_no_reduce_kernel(
|
||||
if (cur_target == ignore_index) {
|
||||
continue;
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
|
||||
scalar_t value = -(weight != nullptr ? weight[cur_target] : static_cast<scalar_t>(1));
|
||||
grad_input[b][cur_target][h][w] = value * grad_output[b][h][w];
|
||||
}
|
||||
|
@ -23,7 +23,7 @@ namespace at::native {
|
||||
|
||||
// The maximum number of threads in a block
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int MAX_BLOCK_SIZE = 1024;
|
||||
constexpr int MAX_BLOCK_SIZE = 256;
|
||||
#else
|
||||
constexpr int MAX_BLOCK_SIZE = 512;
|
||||
#endif
|
||||
@ -33,7 +33,7 @@ constexpr unsigned MAX_GRID_SIZE = 65535u;
|
||||
// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
|
||||
static int getNumThreads(int nElem) {
|
||||
#if defined(USE_ROCM)
|
||||
int threadSizes[5] = { 64, 128, 256, 512, MAX_BLOCK_SIZE };
|
||||
int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
|
||||
#else
|
||||
int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
|
||||
#endif
|
||||
@ -115,23 +115,9 @@ __device__ scalar_t reduce(Op op, PTA tensor, int plane) {
|
||||
// first the reductions each thread does separately
|
||||
scalar_t sum = static_cast<scalar_t>(0);
|
||||
for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
|
||||
#if defined(USE_ROCM)
|
||||
constexpr int UNRL = 4; // load deserilize factor
|
||||
scalar_t tmp[UNRL];
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x*UNRL) {
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
tmp[u] = op(batch, plane, min((int)tensor.size(2)-1, (int)(x+u*blockDim.x)));
|
||||
#pragma unroll
|
||||
for (int u = 0; u < UNRL; u++)
|
||||
if (x+u*blockDim.x < tensor.size(2))
|
||||
sum += tmp[u];
|
||||
}
|
||||
#else
|
||||
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
|
||||
sum += op(batch, plane, x);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
__shared__ scalar_t shared[C10_WARP_SIZE];
|
||||
SumReduceOp<scalar_t> reduce_op;
|
||||
|
@ -413,12 +413,14 @@ struct ReduceOp {
|
||||
value = thread_reduce<output_vec_size>(input_slice);
|
||||
}
|
||||
|
||||
if (config.should_block_x_reduce()) {
|
||||
value = block_x_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
if (config.should_block_y_reduce()) {
|
||||
value = block_y_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
__syncthreads();
|
||||
if (config.should_block_x_reduce()) {
|
||||
value = block_x_reduce<output_vec_size>(value, shared_memory);
|
||||
}
|
||||
|
||||
using out_ptr_vec_t = std::array<out_scalar_t*, output_vec_size>;
|
||||
using offset_vec_t = std::array<index_t, output_vec_size>;
|
||||
offset_vec_t base_offsets;
|
||||
@ -655,8 +657,8 @@ struct ReduceOp {
|
||||
__syncthreads();
|
||||
// Intra-warp reduction, fix CUDA to have offset decreasing for better numerics
|
||||
// matching Triton, etc.
|
||||
// TODO(PaulZhang12): AMD and internal
|
||||
#if defined(USE_ROCM) || defined(FBCODE_CAFFE2)
|
||||
// todo for AMD
|
||||
#ifdef USE_ROCM
|
||||
for (int offset = 1; offset < dim_x; offset <<= 1) {
|
||||
#else
|
||||
for (int offset = dim_x >> 1; offset > 0; offset >>= 1) {
|
||||
@ -1095,7 +1097,11 @@ ReduceConfig setReduceConfig(const TensorIterator& iter){
|
||||
// threads with different threadIdx.x are independent and will produce results for different outputs.
|
||||
// In such case, values in each loaded vector always correspond to different outputs.
|
||||
if (fastest_moving_stride == sizeof(scalar_t)) {
|
||||
#ifdef USE_ROCM
|
||||
if (reduction_on_fastest_striding_dimension && dim0 >= 128 && iter.num_reduce_dims() == 1) {
|
||||
#else
|
||||
if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= input_vec_size) {
|
||||
#endif
|
||||
// Case 1: "vectorize along input"
|
||||
// Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case,
|
||||
// we should avoid vectorization.
|
||||
|
@ -39,14 +39,9 @@ static void std_var_kernel_cuda(TensorIterator& iter, double correction, bool ta
|
||||
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
|
||||
void mean_kernel_impl(TensorIterator& iter) {
|
||||
// returns acc_t for all non-complex dtypes and returns T for c10::complex<T>
|
||||
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
|
||||
using factor_t = typename c10::scalar_value_type<acc_t>::type;
|
||||
factor_t factor = static_cast<factor_t>(iter.num_output_elements()) / iter.numel();
|
||||
if constexpr (is_16_bits) {
|
||||
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
|
||||
} else {
|
||||
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
|
||||
}
|
||||
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<scalar_t, acc_t, factor_t, out_t> {factor});
|
||||
}
|
||||
|
||||
static void mean_kernel_cuda(TensorIterator& iter) {
|
||||
|
@ -13,19 +13,24 @@ namespace at::native {
|
||||
template <typename scalar_t, typename acc_t = scalar_t, typename out_t = scalar_t>
|
||||
struct sum_functor {
|
||||
void operator()(TensorIterator& iter) {
|
||||
const auto sum_combine = [] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
|
||||
return a + b;
|
||||
};
|
||||
constexpr bool is_16_bits = sizeof(scalar_t) == 2;
|
||||
if constexpr (is_16_bits) {
|
||||
#ifdef USE_ROCM
|
||||
// Half and BFloat16 can be packed in groups of up to 8 elements and
|
||||
// can use *_DWORDX4 instructions to achieve that.
|
||||
const bool is_16_bits =
|
||||
( (std::is_same<at::Half, scalar_t>::value) ||
|
||||
(std::is_same<at::BFloat16, scalar_t>::value) );
|
||||
if (is_16_bits) {
|
||||
gpu_reduce_kernel<scalar_t, out_t, /*vt0=*/4, /*input_vec_size=*/8>(
|
||||
iter, func_wrapper<out_t>(sum_combine)
|
||||
);
|
||||
} else {
|
||||
gpu_reduce_kernel<scalar_t, out_t>(
|
||||
iter, func_wrapper<out_t>(sum_combine)
|
||||
);
|
||||
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
|
||||
return a + b;
|
||||
}));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
gpu_reduce_kernel<scalar_t, out_t>(
|
||||
iter, func_wrapper<out_t>([] GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
|
||||
return a + b;
|
||||
}));
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -92,16 +92,6 @@ inline thrust::pair<int64_t, int64_t> get_index_mapping2d(
|
||||
output_offset + output_y * output_dim_x + output_x);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int64_t reflect_index(int64_t x, int64_t len) {
|
||||
const int64_t two = (len - 1) * 2;
|
||||
if (two <= 0) {
|
||||
return 0;
|
||||
}
|
||||
int64_t m = x % two;
|
||||
if (m < 0) m += two;
|
||||
return (m < len) ? m : (two - m);
|
||||
}
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void reflection_pad1d_out_kernel(
|
||||
const scalar_t * input, scalar_t * output,
|
||||
@ -116,28 +106,6 @@ __global__ void reflection_pad1d_out_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void reflection_pad1d_flat(
|
||||
const scalar_t* __restrict__ input,
|
||||
scalar_t* __restrict__ output,
|
||||
int64_t input_w, int64_t pad_l, int64_t pad_r,
|
||||
int64_t out_w, int64_t plane_count) {
|
||||
|
||||
const int64_t bx = blockDim.x;
|
||||
const int64_t tx = threadIdx.x;
|
||||
|
||||
const int64_t total = plane_count * out_w;
|
||||
const int64_t grid_stride = static_cast<int64_t>(bx) * gridDim.x;
|
||||
int64_t linear = static_cast<int64_t>(blockIdx.x) * bx + tx;
|
||||
|
||||
for (; linear < total; linear += grid_stride) {
|
||||
const int64_t plane = linear / out_w;
|
||||
const int64_t x = linear - plane * out_w;
|
||||
const int64_t j = reflect_index(x - pad_l, input_w);
|
||||
output[plane * out_w + x] = input[plane * input_w + j];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void reflection_pad1d_backward_out_kernel(
|
||||
scalar_t * grad_input, const scalar_t * grad_output,
|
||||
@ -742,44 +710,25 @@ TORCH_IMPL_FUNC(reflection_pad1d_out_cuda)
|
||||
int64_t input_w = input_.size(dim_w);
|
||||
int64_t output_w = input_w + pad_l + pad_r;
|
||||
|
||||
dim3 block_size(output_w > 256 ? 256 : output_w);
|
||||
dim3 grid_size((int)::ceil(output_w / 256.0), nplane, nbatch);
|
||||
|
||||
Tensor input = input_.contiguous();
|
||||
|
||||
const int block_x = static_cast<int>(std::min<int64_t>(256, std::max<int64_t>(1, output_w)));
|
||||
const cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
||||
const int max_x = prop->maxGridSize[0];
|
||||
const int max_y = prop->maxGridSize[1];
|
||||
const int max_z = prop->maxGridSize[2];
|
||||
|
||||
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, input.scalar_type(), "reflection_pad1d_out", [&] {
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
const int64_t gx = at::ceil_div(output_w, static_cast<int64_t>(block_x));
|
||||
|
||||
const bool fits3d = (nplane <= max_y) && (nbatch <= max_z) && (gx <= max_x);
|
||||
|
||||
if (fits3d) {
|
||||
dim3 block(block_x, 1, 1);
|
||||
dim3 grid(gx, static_cast<unsigned>(nplane), static_cast<unsigned>(nbatch));
|
||||
reflection_pad1d_out_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w, pad_l, pad_r);
|
||||
} else {
|
||||
dim3 block(block_x, 1, 1);
|
||||
const int64_t plane_count = nplane * nbatch;
|
||||
const int64_t total_blocks = at::ceil_div(plane_count * output_w, static_cast<int64_t>(block_x));
|
||||
const int grid_x = static_cast<int>(std::min<int64_t>(max_x, std::max<int64_t>(1, total_blocks)));
|
||||
dim3 grid(grid_x, 1, 1);
|
||||
|
||||
reflection_pad1d_flat<scalar_t><<<grid, block, 0, stream>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w, pad_l, pad_r, output_w, plane_count);
|
||||
}
|
||||
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
|
||||
kHalf, kBFloat16, input.scalar_type(), "reflection_pad1d_out_template", [&] {
|
||||
reflection_pad1d_out_kernel<<<
|
||||
grid_size,
|
||||
block_size,
|
||||
0,
|
||||
at::cuda::getCurrentCUDAStream()>>>(
|
||||
input.const_data_ptr<scalar_t>(),
|
||||
output.mutable_data_ptr<scalar_t>(),
|
||||
input_w,
|
||||
pad_l,
|
||||
pad_r);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
}
|
||||
|
||||
TORCH_IMPL_FUNC(reflection_pad1d_backward_out_cuda)(const Tensor& grad_output_,
|
||||
|
@ -19,6 +19,7 @@
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
void topk_out_with_sort(
|
||||
const Tensor& self,
|
||||
int64_t k, int64_t dim, bool largest,
|
||||
@ -30,12 +31,21 @@ void topk_out_with_sort(
|
||||
indices.copy_(sorted_indices.narrow(dim, 0, k));
|
||||
}
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
bool disable_sort_for_topk();
|
||||
bool should_use_sort(const Tensor& self, int64_t dim) {
|
||||
#if defined(USE_ROCM)
|
||||
if (self.dtype() == kBool) return false; // Bool sort not supported in ROCm: https://github.com/pytorch/pytorch/issues/139972
|
||||
return (self.numel() >= 10000 && self.numel() == self.size(dim)); // based on the experiments in https://github.com/pytorch/pytorch/pull/146387
|
||||
#else
|
||||
return false;
|
||||
if (disable_sort_for_topk()) return false;
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/68632
|
||||
if (self.dim() == 0) return false;
|
||||
if (self.dtype() == kBool) return false; // Bool is not support by topk
|
||||
int64_t slice_size = self.size(dim);
|
||||
if (slice_size == 0) return false;
|
||||
int64_t num_slices = self.numel() / slice_size;
|
||||
return num_slices <= 10 && slice_size >= 100000;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,11 @@ using namespace at::native;
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// TODO: remove this when CUDA <11.6 is no longer supported
|
||||
bool disable_sort_for_topk() {
|
||||
return CUB_SUPPORTS_SCAN_BY_KEY();
|
||||
}
|
||||
|
||||
namespace sbtopk { // single_block_topk
|
||||
|
||||
template <typename T>
|
||||
@ -413,6 +418,10 @@ __global__ void computeBlockwiseWithinKCounts(
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#if !CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
return;
|
||||
#endif
|
||||
|
||||
Bitwise desired_digit = at::cuda::Bitfield<Bitwise>::getBitfield(desired, current_bit, RADIX_BITS);
|
||||
|
||||
// if largest, then only threads that has tidx > desired_digit are active
|
||||
@ -468,6 +477,7 @@ __global__ void computeBlockwiseWithinKCounts(
|
||||
}
|
||||
}
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
// Assumption: slice_size can not be larger than UINT32_MAX
|
||||
template <typename Bitwise>
|
||||
__global__ void computeBlockwiseKthCounts(
|
||||
@ -599,6 +609,7 @@ __global__ void gatherTopK(at::cuda::detail::TensorInfo<const T, IndexType> inpu
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int get_items_per_thread(uint64_t num_slices, uint64_t slice_size) {
|
||||
// occupancy of this kernel is limited by registers per threads
|
||||
@ -676,12 +687,16 @@ void launch(
|
||||
uint32_t* digit_cum_sum = reinterpret_cast<uint32_t*>(digit_cum_sum_buffer.get());
|
||||
AT_CUDA_CHECK(cudaMemsetAsync(digit_cum_sum, 0, numInputSlices * RADIX_DIGITS * sizeof(uint32_t), stream));
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
auto withinKCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
|
||||
uint32_t* withinKCounts = reinterpret_cast<uint32_t*>(withinKCounts_buffer.get());
|
||||
AT_CUDA_CHECK(cudaMemsetAsync(withinKCounts, 0, num_blocks * sizeof(uint32_t), stream));
|
||||
|
||||
auto kthCounts_buffer = allocator.allocate(num_blocks * sizeof(uint32_t));
|
||||
uint32_t* kthCounts = reinterpret_cast<uint32_t*>(kthCounts_buffer.get());
|
||||
#else
|
||||
uint32_t* withinKCounts = nullptr;
|
||||
#endif
|
||||
|
||||
Bitwise desiredMask = 0;
|
||||
dim3 grid;
|
||||
@ -728,6 +743,7 @@ void launch(
|
||||
}
|
||||
desired = desired_in;
|
||||
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
computeBlockwiseKthCounts<Bitwise><<<std::min(((int64_t)numInputSlices + 255) / 256, (int64_t)1073741824), 256, 0, stream>>>(
|
||||
desired, counts, num_blocks, blocks_per_slice, kthCounts);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
@ -743,6 +759,28 @@ void launch(
|
||||
topK, topKWithinSliceStride, indices, indicesWithinSliceStride, items_per_thread,
|
||||
blocks_per_slice, kthValues, withinKCounts, kthCounts, num_blocks);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#else
|
||||
// Find topk values based on kth values
|
||||
{
|
||||
dim3 grid;
|
||||
TORCH_INTERNAL_ASSERT(getGridFromTiles(numInputSlices, grid), "Too many slices for topk");
|
||||
int warp_size = at::cuda::warp_size();
|
||||
dim3 block(std::min(at::ceil_div((int64_t)inputSliceSize, (int64_t)warp_size) * (int64_t)warp_size, (int64_t)1024));
|
||||
sbtopk::gatherTopK<T, IndexType, Dim, /* WithKthValues= */true><<<grid, block, 0, stream>>>(
|
||||
input,
|
||||
inputSliceSize,
|
||||
outputSliceSize,
|
||||
largest,
|
||||
numInputSlices,
|
||||
inputWithinSliceStride,
|
||||
topK,
|
||||
topKWithinSliceStride,
|
||||
indices,
|
||||
indicesWithinSliceStride,
|
||||
kthValues);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace mbtopk
|
||||
@ -750,6 +788,7 @@ void launch(
|
||||
bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
|
||||
if (num_slices > std::numeric_limits<uint32_t>::max() ||
|
||||
slice_size > std::numeric_limits<uint32_t>::max()) return false;
|
||||
#if CUB_SUPPORTS_SCAN_BY_KEY()
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/74267
|
||||
return (num_slices <= 20 && slice_size >= 20000) ||
|
||||
(num_slices > 20 && num_slices <= 40 && slice_size >= 10000) ||
|
||||
@ -758,6 +797,12 @@ bool should_use_multiblock(int64_t num_slices, int64_t slice_size) {
|
||||
(num_slices >= 200 && num_slices < 800 && slice_size >= 3000) ||
|
||||
(num_slices >= 800 && num_slices <= 4000 && slice_size >= 800) ||
|
||||
(num_slices > 4000 && slice_size >= 400);
|
||||
#else
|
||||
// This heuristics is based on the experiment in https://github.com/pytorch/pytorch/pull/71081
|
||||
return (num_slices <= 400 && slice_size >= 5000) ||
|
||||
(num_slices > 400 && num_slices < 4000 && slice_size >= 1000) ||
|
||||
(num_slices >= 4000 && slice_size >= 300);
|
||||
#endif
|
||||
}
|
||||
|
||||
void launch_gather_topk_kernel(
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user