mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 16:04:58 +08:00 
			
		
		
		
	Compare commits
	
		
			167 Commits
		
	
	
		
			v2.1.2
			...
			v1.5.1-rc1
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 3c31d73c87 | |||
| dfe8cdff5a | |||
| e7a6ed8151 | |||
| fc0dde5db3 | |||
| 83edd5164a | |||
| 833c4201ad | |||
| 5579c9e4c2 | |||
| 367901e1f9 | |||
| c4903bde61 | |||
| 7d2fcd505c | |||
| bb33e5fc85 | |||
| c5424a85dc | |||
| 5d01f87e58 | |||
| 82f549b0a8 | |||
| f306655d49 | |||
| 409e42e3b8 | |||
| 6151405f6c | |||
| d01065e50c | |||
| 67508dadaa | |||
| b54a731c8e | |||
| 3920c1d173 | |||
| 8d48a6490a | |||
| 17eae0e0cd | |||
| 4a9e45d50e | |||
| eb387a0a2b | |||
| 420c6dc43d | |||
| 39f0a2752a | |||
| 366026ab10 | |||
| 408e158df9 | |||
| 3598dea7ad | |||
| a5b05e8867 | |||
| 7fc2433458 | |||
| aba610b9e8 | |||
| dc30c519dd | |||
| 9bf2aaa659 | |||
| 25621d05df | |||
| 96f218d7dd | |||
| f810011c40 | |||
| 5f8bb352c3 | |||
| 52469a512b | |||
| c56adee862 | |||
| 4ff3872a20 | |||
| d7bdffabed | |||
| 9ba0a89489 | |||
| c164fbccb1 | |||
| 9a51e477ac | |||
| 375566fb78 | |||
| dfdc788076 | |||
| 9e6ef814cc | |||
| 31461800f6 | |||
| e741839b0e | |||
| 8eb39c9cfd | |||
| b5e4c0993d | |||
| 6bc6832bda | |||
| 593594839c | |||
| cf65c8ef15 | |||
| ca0dc1fcdc | |||
| b58f89b2e4 | |||
| 87b6685c6b | |||
| f746f1b746 | |||
| 1379415150 | |||
| 7d638d2596 | |||
| bad005d331 | |||
| 16d8a52407 | |||
| a33b264588 | |||
| 3a67e00889 | |||
| 6bd039551d | |||
| b6c3058d61 | |||
| ed908b4fbc | |||
| b66e0af58b | |||
| bf8a5ede96 | |||
| c2bc5c56c5 | |||
| db3c3ed662 | |||
| 9de4770bbd | |||
| 911a2a6b63 | |||
| 60375bcfdf | |||
| 63dcd9eccc | |||
| e8236d2ed4 | |||
| 0058b1bb7e | |||
| 419283e291 | |||
| 0e6f6ba218 | |||
| ec8dbaf920 | |||
| 7e168d134f | |||
| 6daae58871 | |||
| fee0ff1bf6 | |||
| deaf3b65cf | |||
| dca9c2501d | |||
| 842cd47416 | |||
| a30b49085c | |||
| 82626f8ad9 | |||
| 27fddfda4f | |||
| 7ecf6a1c10 | |||
| beb07a44c4 | |||
| a01c3bd1fe | |||
| ffd010f8a0 | |||
| 8ad59f03a8 | |||
| ed3640df68 | |||
| fb88942f6c | |||
| 5d05c51887 | |||
| df5986fbf3 | |||
| 165403f614 | |||
| fbf18c34ff | |||
| 84f806c821 | |||
| 94139a7d95 | |||
| 75e36186b2 | |||
| f4a0b406dd | |||
| e884e720f0 | |||
| dacdbc22d1 | |||
| 2a789cd0e0 | |||
| f9b010f399 | |||
| 55614ff306 | |||
| b12579da53 | |||
| 920e3eb761 | |||
| bec01e755a | |||
| 6a880e1bc9 | |||
| fa86e32a4e | |||
| 5aabaf2b18 | |||
| 4a707e8f95 | |||
| db127b21eb | |||
| 45313cd9e1 | |||
| df531973e1 | |||
| 9e3c577caa | |||
| 5357b8e4d9 | |||
| 0f23d23db4 | |||
| 7c24280a3f | |||
| 7100f0be13 | |||
| f7f611c2ec | |||
| acb982d0b0 | |||
| aa8b7ad989 | |||
| 2d403ed8be | |||
| c25a664f77 | |||
| ab660ae394 | |||
| 3c476a8858 | |||
| 651fa88645 | |||
| 565c3400b4 | |||
| 3e332778b4 | |||
| f598738920 | |||
| 4c6bfa0187 | |||
| 6f25003682 | |||
| 752c129fa1 | |||
| fb59a9caca | |||
| 4d30dbdd35 | |||
| b7f4a1a397 | |||
| afda1dc943 | |||
| d506ae882b | |||
| 36e5abe531 | |||
| 6e6f62230e | |||
| 5d15577e6c | |||
| 6aa5298c5c | |||
| f3df13725b | |||
| 4eee3caa11 | |||
| 4d96463130 | |||
| 246b824644 | |||
| 5ca9014318 | |||
| 48590d6a9b | |||
| 75148df1f5 | |||
| b89eb7c654 | |||
| 8877885454 | |||
| e2184ba083 | |||
| 8ef47ad2f0 | |||
| 6725b6f503 | |||
| bcd3f6da1a | |||
| 0b3d2f7b7d | |||
| f522651a7e | |||
| 01c8ef2757 | |||
| 7cfe68ce3a | |||
| 6f3120c6b9 | 
@ -466,7 +466,7 @@ But if you want to try, then I’d recommend
 | 
			
		||||
# Always install miniconda 3, even if building for Python <3
 | 
			
		||||
new_conda="~/my_new_conda"
 | 
			
		||||
conda_sh="$new_conda/install_miniconda.sh"
 | 
			
		||||
curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
 | 
			
		||||
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
 | 
			
		||||
chmod +x "$conda_sh"
 | 
			
		||||
"$conda_sh" -b -p "$MINICONDA_ROOT"
 | 
			
		||||
rm -f "$conda_sh"
 | 
			
		||||
 | 
			
		||||
@ -34,8 +34,6 @@ def get_processor_arch_name(cuda_version):
 | 
			
		||||
 | 
			
		||||
LINUX_PACKAGE_VARIANTS = OrderedDict(
 | 
			
		||||
    manywheel=[
 | 
			
		||||
        "2.7m",
 | 
			
		||||
        "2.7mu",
 | 
			
		||||
        "3.5m",
 | 
			
		||||
        "3.6m",
 | 
			
		||||
        "3.7m",
 | 
			
		||||
@ -43,7 +41,7 @@ LINUX_PACKAGE_VARIANTS = OrderedDict(
 | 
			
		||||
    ],
 | 
			
		||||
    conda=dimensions.STANDARD_PYTHON_VERSIONS,
 | 
			
		||||
    libtorch=[
 | 
			
		||||
        "2.7m",
 | 
			
		||||
        "3.7m",
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
@ -53,11 +51,21 @@ CONFIG_TREE_DATA = OrderedDict(
 | 
			
		||||
        wheel=dimensions.STANDARD_PYTHON_VERSIONS,
 | 
			
		||||
        conda=dimensions.STANDARD_PYTHON_VERSIONS,
 | 
			
		||||
        libtorch=[
 | 
			
		||||
            "2.7",
 | 
			
		||||
            "3.7",
 | 
			
		||||
        ],
 | 
			
		||||
    )),
 | 
			
		||||
    windows=(dimensions.CUDA_VERSIONS, OrderedDict(
 | 
			
		||||
        wheel=dimensions.STANDARD_PYTHON_VERSIONS,
 | 
			
		||||
        conda=dimensions.STANDARD_PYTHON_VERSIONS,
 | 
			
		||||
        libtorch=[
 | 
			
		||||
            "3.7",
 | 
			
		||||
        ],
 | 
			
		||||
    )),
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
CONFIG_TREE_DATA_NO_WINDOWS = CONFIG_TREE_DATA.copy()
 | 
			
		||||
CONFIG_TREE_DATA_NO_WINDOWS.pop("windows")
 | 
			
		||||
 | 
			
		||||
# GCC config variants:
 | 
			
		||||
#
 | 
			
		||||
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
 | 
			
		||||
@ -74,6 +82,11 @@ LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
 | 
			
		||||
    ],
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
 | 
			
		||||
    "debug",
 | 
			
		||||
    "release",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TopLevelNode(ConfigNode):
 | 
			
		||||
    def __init__(self, node_name, config_tree_data, smoke):
 | 
			
		||||
@ -108,6 +121,8 @@ class PackageFormatConfigNode(ConfigNode):
 | 
			
		||||
    def get_children(self):
 | 
			
		||||
        if self.find_prop("os_name") == "linux":
 | 
			
		||||
            return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
 | 
			
		||||
        elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
 | 
			
		||||
            return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
 | 
			
		||||
        else:
 | 
			
		||||
            return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
 | 
			
		||||
 | 
			
		||||
@ -129,6 +144,16 @@ class LinuxGccConfigNode(ConfigNode):
 | 
			
		||||
        return [ArchConfigNode(self, v) for v in cuda_versions]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class WindowsLibtorchConfigNode(ConfigNode):
 | 
			
		||||
    def __init__(self, parent, libtorch_config_variant):
 | 
			
		||||
        super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
 | 
			
		||||
 | 
			
		||||
        self.props["libtorch_config_variant"] = libtorch_config_variant
 | 
			
		||||
 | 
			
		||||
    def get_children(self):
 | 
			
		||||
        return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ArchConfigNode(ConfigNode):
 | 
			
		||||
    def __init__(self, parent, cu):
 | 
			
		||||
        super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
 | 
			
		||||
 | 
			
		||||
@ -6,7 +6,7 @@ import cimodel.lib.miniutils as miniutils
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Conf(object):
 | 
			
		||||
    def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant):
 | 
			
		||||
    def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
 | 
			
		||||
 | 
			
		||||
        self.os = os
 | 
			
		||||
        self.cuda_version = cuda_version
 | 
			
		||||
@ -15,11 +15,14 @@ class Conf(object):
 | 
			
		||||
        self.smoke = smoke
 | 
			
		||||
        self.libtorch_variant = libtorch_variant
 | 
			
		||||
        self.gcc_config_variant = gcc_config_variant
 | 
			
		||||
        self.libtorch_config_variant = libtorch_config_variant
 | 
			
		||||
 | 
			
		||||
    def gen_build_env_parms(self):
 | 
			
		||||
        elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
 | 
			
		||||
        if self.gcc_config_variant is not None:
 | 
			
		||||
            elems.append(str(self.gcc_config_variant))
 | 
			
		||||
        if self.libtorch_config_variant is not None:
 | 
			
		||||
            elems.append(str(self.libtorch_config_variant))
 | 
			
		||||
        return elems
 | 
			
		||||
 | 
			
		||||
    def gen_docker_image(self):
 | 
			
		||||
@ -67,9 +70,14 @@ class Conf(object):
 | 
			
		||||
            job_def["requires"].append("update_s3_htmls_for_nightlies_devtoolset7")
 | 
			
		||||
            job_def["filters"] = {"branches": {"only": "postnightly"}}
 | 
			
		||||
        else:
 | 
			
		||||
            filter_branches = ["nightly"]
 | 
			
		||||
            # we only want to add the release branch filter if we aren't
 | 
			
		||||
            # uploading
 | 
			
		||||
            if phase not in ["upload"]:
 | 
			
		||||
                filter_branches.append(r"/release\/.*/")
 | 
			
		||||
            job_def["filters"] = {
 | 
			
		||||
                "branches": {
 | 
			
		||||
                    "only": "nightly"
 | 
			
		||||
                    "only": filter_branches
 | 
			
		||||
                },
 | 
			
		||||
                # Will run on tags like v1.5.0-rc1, etc.
 | 
			
		||||
                "tags": {
 | 
			
		||||
@ -105,11 +113,18 @@ class Conf(object):
 | 
			
		||||
 | 
			
		||||
def get_root(smoke, name):
 | 
			
		||||
 | 
			
		||||
    return binary_build_data.TopLevelNode(
 | 
			
		||||
        name,
 | 
			
		||||
        binary_build_data.CONFIG_TREE_DATA,
 | 
			
		||||
        smoke,
 | 
			
		||||
    )
 | 
			
		||||
    if smoke:
 | 
			
		||||
        return binary_build_data.TopLevelNode(
 | 
			
		||||
            name,
 | 
			
		||||
            binary_build_data.CONFIG_TREE_DATA_NO_WINDOWS,
 | 
			
		||||
            smoke,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        return binary_build_data.TopLevelNode(
 | 
			
		||||
            name,
 | 
			
		||||
            binary_build_data.CONFIG_TREE_DATA,
 | 
			
		||||
            smoke,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gen_build_env_list(smoke):
 | 
			
		||||
@ -127,6 +142,7 @@ def gen_build_env_list(smoke):
 | 
			
		||||
            c.find_prop("smoke"),
 | 
			
		||||
            c.find_prop("libtorch_variant"),
 | 
			
		||||
            c.find_prop("gcc_config_variant"),
 | 
			
		||||
            c.find_prop("libtorch_config_variant"),
 | 
			
		||||
        )
 | 
			
		||||
        newlist.append(conf)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,6 @@ from cimodel.lib.conf_tree import Ver
 | 
			
		||||
 | 
			
		||||
CONFIG_TREE_DATA = [
 | 
			
		||||
    (Ver("ubuntu", "16.04"), [
 | 
			
		||||
        ([Ver("gcc", "5")], [XImportant("onnx_py2")]),
 | 
			
		||||
        ([Ver("clang", "7")], [XImportant("onnx_main_py3.6"),
 | 
			
		||||
                               XImportant("onnx_ort1_py3.6"),
 | 
			
		||||
                               XImportant("onnx_ort2_py3.6")]),
 | 
			
		||||
 | 
			
		||||
@ -33,8 +33,7 @@ class Conf:
 | 
			
		||||
    # TODO: Eventually we can probably just remove the cudnn7 everywhere.
 | 
			
		||||
    def get_cudnn_insertion(self):
 | 
			
		||||
 | 
			
		||||
        omit = self.language == "onnx_py2" \
 | 
			
		||||
            or self.language == "onnx_main_py3.6" \
 | 
			
		||||
        omit = self.language == "onnx_main_py3.6" \
 | 
			
		||||
            or self.language == "onnx_ort1_py3.6" \
 | 
			
		||||
            or self.language == "onnx_ort2_py3.6" \
 | 
			
		||||
            or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
 | 
			
		||||
@ -71,11 +70,10 @@ class Conf:
 | 
			
		||||
    def gen_docker_image(self):
 | 
			
		||||
 | 
			
		||||
        lang_substitutions = {
 | 
			
		||||
            "onnx_py2": "py2",
 | 
			
		||||
            "onnx_main_py3.6": "py3.6",
 | 
			
		||||
            "onnx_ort1_py3.6": "py3.6",
 | 
			
		||||
            "onnx_ort2_py3.6": "py3.6",
 | 
			
		||||
            "cmake": "py2",
 | 
			
		||||
            "cmake": "py3",
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        lang = miniutils.override(self.language, lang_substitutions)
 | 
			
		||||
@ -85,7 +83,7 @@ class Conf:
 | 
			
		||||
    def gen_workflow_params(self, phase):
 | 
			
		||||
        parameters = OrderedDict()
 | 
			
		||||
        lang_substitutions = {
 | 
			
		||||
            "onnx_py2": "onnx-py2",
 | 
			
		||||
            "onnx_py3": "onnx-py3",
 | 
			
		||||
            "onnx_main_py3.6": "onnx-main-py3.6",
 | 
			
		||||
            "onnx_ort1_py3.6": "onnx-ort1-py3.6",
 | 
			
		||||
            "onnx_ort2_py3.6": "onnx-ort2-py3.6",
 | 
			
		||||
@ -129,7 +127,7 @@ class Conf:
 | 
			
		||||
            job_name = "caffe2_" + self.get_platform() + "_build"
 | 
			
		||||
 | 
			
		||||
        if not self.is_important:
 | 
			
		||||
            job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
 | 
			
		||||
            job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
 | 
			
		||||
        job_def.update(self.gen_workflow_params(phase))
 | 
			
		||||
        return {job_name : job_def}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -8,7 +8,6 @@ CUDA_VERSIONS = [
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
STANDARD_PYTHON_VERSIONS = [
 | 
			
		||||
    "2.7",
 | 
			
		||||
    "3.5",
 | 
			
		||||
    "3.6",
 | 
			
		||||
    "3.7",
 | 
			
		||||
 | 
			
		||||
@ -114,7 +114,7 @@ class Conf:
 | 
			
		||||
        if not self.is_important:
 | 
			
		||||
            # If you update this, update
 | 
			
		||||
            # caffe2_build_definitions.py too
 | 
			
		||||
            job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
 | 
			
		||||
            job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
 | 
			
		||||
        job_def.update(self.gen_workflow_params(phase))
 | 
			
		||||
 | 
			
		||||
        return {job_name : job_def}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										3290
									
								
								.circleci/config.yml
									
									
									
									
									
								
							
							
						
						
									
										3290
									
								
								.circleci/config.yml
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@ -4,7 +4,7 @@ set -ex
 | 
			
		||||
 | 
			
		||||
# Optionally install conda
 | 
			
		||||
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
 | 
			
		||||
  BASE_URL="https://repo.continuum.io/miniconda"
 | 
			
		||||
  BASE_URL="https://repo.anaconda.com/miniconda"
 | 
			
		||||
 | 
			
		||||
  MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -10,6 +10,11 @@ retry () {
 | 
			
		||||
if [[ "$(uname)" == Darwin ]]; then
 | 
			
		||||
  # macos executor (builds and tests)
 | 
			
		||||
  workdir="/Users/distiller/project"
 | 
			
		||||
elif [[ "$OSTYPE" == "msys" ]]; then
 | 
			
		||||
  # windows executor (builds and tests)
 | 
			
		||||
  rm -rf /c/w
 | 
			
		||||
  ln -s "/c/Users/circleci/project" /c/w
 | 
			
		||||
  workdir="/c/w"
 | 
			
		||||
elif [[ -d "/home/circleci/project" ]]; then
 | 
			
		||||
  # machine executor (binary tests)
 | 
			
		||||
  workdir="/home/circleci/project"
 | 
			
		||||
@ -19,8 +24,14 @@ else
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# It is very important that this stays in sync with binary_populate_env.sh
 | 
			
		||||
export PYTORCH_ROOT="$workdir/pytorch"
 | 
			
		||||
export BUILDER_ROOT="$workdir/builder"
 | 
			
		||||
if [[ "$OSTYPE" == "msys" ]]; then
 | 
			
		||||
  # We need to make the paths as short as possible on Windows
 | 
			
		||||
  export PYTORCH_ROOT="$workdir/p"
 | 
			
		||||
  export BUILDER_ROOT="$workdir/b"
 | 
			
		||||
else
 | 
			
		||||
  export PYTORCH_ROOT="$workdir/pytorch"
 | 
			
		||||
  export BUILDER_ROOT="$workdir/builder"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Clone the Pytorch branch
 | 
			
		||||
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
 | 
			
		||||
 | 
			
		||||
@ -31,9 +31,9 @@ fi
 | 
			
		||||
 | 
			
		||||
conda_sh="$workdir/install_miniconda.sh"
 | 
			
		||||
if [[ "$(uname)" == Darwin ]]; then
 | 
			
		||||
  curl --retry 3 -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
 | 
			
		||||
  curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
 | 
			
		||||
else
 | 
			
		||||
  curl --retry 3 -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
 | 
			
		||||
  curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
 | 
			
		||||
fi
 | 
			
		||||
chmod +x "$conda_sh"
 | 
			
		||||
"$conda_sh" -b -p "$MINICONDA_ROOT"
 | 
			
		||||
 | 
			
		||||
@ -2,11 +2,31 @@
 | 
			
		||||
set -eux -o pipefail
 | 
			
		||||
export TZ=UTC
 | 
			
		||||
 | 
			
		||||
tagged_version() {
 | 
			
		||||
  # Grabs version from either the env variable CIRCLE_TAG
 | 
			
		||||
  # or the pytorch git described version
 | 
			
		||||
  if [[ "$OSTYPE" == "msys" ]]; then
 | 
			
		||||
    GIT_DESCRIBE="git --git-dir ${workdir}/p/.git describe"
 | 
			
		||||
  else
 | 
			
		||||
    GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
 | 
			
		||||
  fi
 | 
			
		||||
  if [[ -n "${CIRCLE_TAG:-}" ]]; then
 | 
			
		||||
    echo "${CIRCLE_TAG}"
 | 
			
		||||
  elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
 | 
			
		||||
    ${GIT_DESCRIBE} --tags
 | 
			
		||||
  else
 | 
			
		||||
    return 1
 | 
			
		||||
  fi
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
# We need to write an envfile to persist these variables to following
 | 
			
		||||
# steps, but the location of the envfile depends on the circleci executor
 | 
			
		||||
if [[ "$(uname)" == Darwin ]]; then
 | 
			
		||||
  # macos executor (builds and tests)
 | 
			
		||||
  workdir="/Users/distiller/project"
 | 
			
		||||
elif [[ "$OSTYPE" == "msys" ]]; then
 | 
			
		||||
  # windows executor (builds and tests)
 | 
			
		||||
  workdir="/c/w"
 | 
			
		||||
elif [[ -d "/home/circleci/project" ]]; then
 | 
			
		||||
  # machine executor (binary tests)
 | 
			
		||||
  workdir="/home/circleci/project"
 | 
			
		||||
@ -23,7 +43,15 @@ configs=($BUILD_ENVIRONMENT)
 | 
			
		||||
export PACKAGE_TYPE="${configs[0]}"
 | 
			
		||||
export DESIRED_PYTHON="${configs[1]}"
 | 
			
		||||
export DESIRED_CUDA="${configs[2]}"
 | 
			
		||||
export DESIRED_DEVTOOLSET="${configs[3]:-}"
 | 
			
		||||
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
 | 
			
		||||
  export DESIRED_DEVTOOLSET=""
 | 
			
		||||
  export LIBTORCH_CONFIG="${configs[3]:-}"
 | 
			
		||||
  if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
 | 
			
		||||
    export DEBUG=1
 | 
			
		||||
  fi
 | 
			
		||||
else
 | 
			
		||||
  export DESIRED_DEVTOOLSET="${configs[3]:-}"
 | 
			
		||||
fi
 | 
			
		||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
 | 
			
		||||
  export BUILD_PYTHONLESS=1
 | 
			
		||||
fi
 | 
			
		||||
@ -47,15 +75,17 @@ export DATE="$(date -u +%Y%m%d)"
 | 
			
		||||
#TODO: We should be pulling semver version from the base version.txt
 | 
			
		||||
BASE_BUILD_VERSION="1.5.0.dev$DATE"
 | 
			
		||||
# Change BASE_BUILD_VERSION to git tag when on a git tag
 | 
			
		||||
if git describe --tags --exact >/dev/null 2>/dev/null; then
 | 
			
		||||
# Use 'git -C' to make doubly sure we're in the correct directory for checking
 | 
			
		||||
# the git tag
 | 
			
		||||
if tagged_version >/dev/null; then
 | 
			
		||||
  # Switch upload folder to 'test/' if we are on a tag
 | 
			
		||||
  PIP_UPLOAD_FOLDER='test/'
 | 
			
		||||
  # Grab git tag, remove prefixed v and remove everything after -
 | 
			
		||||
  # Used to clean up tags that are for release candidates like v1.5.0-rc1
 | 
			
		||||
  # Turns tag v1.5.0-rc1 -> v1.5.0
 | 
			
		||||
  BASE_BUILD_VERSION="$(git describe --tags | sed -e 's/^v//' -e 's/-.*$//')"
 | 
			
		||||
  BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
 | 
			
		||||
fi
 | 
			
		||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu101" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
 | 
			
		||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
 | 
			
		||||
  export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
 | 
			
		||||
else
 | 
			
		||||
  export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
 | 
			
		||||
@ -94,6 +124,10 @@ export DESIRED_CUDA="$DESIRED_CUDA"
 | 
			
		||||
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
 | 
			
		||||
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
 | 
			
		||||
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
 | 
			
		||||
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
 | 
			
		||||
  export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
 | 
			
		||||
  export DEBUG="${DEBUG:-}"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
export DATE="$DATE"
 | 
			
		||||
export NIGHTLIES_DATE_PREAMBLE=1.5.0.dev
 | 
			
		||||
@ -113,8 +147,13 @@ export DOCKER_IMAGE="$DOCKER_IMAGE"
 | 
			
		||||
 | 
			
		||||
export workdir="$workdir"
 | 
			
		||||
export MAC_PACKAGE_WORK_DIR="$workdir"
 | 
			
		||||
export PYTORCH_ROOT="$workdir/pytorch"
 | 
			
		||||
export BUILDER_ROOT="$workdir/builder"
 | 
			
		||||
if [[ "$OSTYPE" == "msys" ]]; then
 | 
			
		||||
  export PYTORCH_ROOT="$workdir/p"
 | 
			
		||||
  export BUILDER_ROOT="$workdir/b"
 | 
			
		||||
else
 | 
			
		||||
  export PYTORCH_ROOT="$workdir/pytorch"
 | 
			
		||||
  export BUILDER_ROOT="$workdir/builder"
 | 
			
		||||
fi
 | 
			
		||||
export MINICONDA_ROOT="$workdir/miniconda"
 | 
			
		||||
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										33
									
								
								.circleci/scripts/binary_windows_build.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								.circleci/scripts/binary_windows_build.sh
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,33 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
set -eux -o pipefail
 | 
			
		||||
 | 
			
		||||
source "/c/w/env"
 | 
			
		||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
 | 
			
		||||
 | 
			
		||||
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
 | 
			
		||||
export VC_YEAR=2017
 | 
			
		||||
export USE_SCCACHE=1
 | 
			
		||||
export SCCACHE_BUCKET=ossci-compiler-cache-windows
 | 
			
		||||
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
 | 
			
		||||
 | 
			
		||||
set +x
 | 
			
		||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
 | 
			
		||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
 | 
			
		||||
set -x
 | 
			
		||||
 | 
			
		||||
if [[ "$CIRCLECI" == 'true' && -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019" ]]; then
 | 
			
		||||
  rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
echo "Free space on filesystem before build:"
 | 
			
		||||
df -h
 | 
			
		||||
 | 
			
		||||
pushd "$BUILDER_ROOT"
 | 
			
		||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
 | 
			
		||||
  ./windows/internal/build_conda.bat
 | 
			
		||||
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
 | 
			
		||||
  ./windows/internal/build_wheels.bat
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
echo "Free space on filesystem after build:"
 | 
			
		||||
df -h
 | 
			
		||||
							
								
								
									
										37
									
								
								.circleci/scripts/binary_windows_upload.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								.circleci/scripts/binary_windows_upload.sh
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,37 @@
 | 
			
		||||
#!/bin/bash
 | 
			
		||||
set -eu -o pipefail
 | 
			
		||||
set +x
 | 
			
		||||
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
 | 
			
		||||
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
 | 
			
		||||
 | 
			
		||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
 | 
			
		||||
# DO NOT TURN -x ON BEFORE THIS LINE
 | 
			
		||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
 | 
			
		||||
set -eux -o pipefail
 | 
			
		||||
 | 
			
		||||
source "/env"
 | 
			
		||||
 | 
			
		||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
 | 
			
		||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly/}
 | 
			
		||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
 | 
			
		||||
#       The only difference is the trailing slash
 | 
			
		||||
# Strip trailing slashes if there
 | 
			
		||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
 | 
			
		||||
 | 
			
		||||
pushd /root/workspace/final_pkgs
 | 
			
		||||
# Upload the package to the final location
 | 
			
		||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
 | 
			
		||||
  retry conda install -yq anaconda-client
 | 
			
		||||
  anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload  "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
 | 
			
		||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
 | 
			
		||||
  retry conda install -c conda-forge -yq awscli
 | 
			
		||||
  s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
 | 
			
		||||
  for pkg in $(ls); do
 | 
			
		||||
    retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
 | 
			
		||||
  done
 | 
			
		||||
else
 | 
			
		||||
  retry conda install -c conda-forge -yq awscli
 | 
			
		||||
  s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
 | 
			
		||||
  retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
@ -72,10 +72,10 @@ time python tools/setup_helpers/generate_code.py \
 | 
			
		||||
 | 
			
		||||
# Build the docs
 | 
			
		||||
pushd docs/cpp
 | 
			
		||||
pip install breathe>=4.13.0 bs4 lxml six
 | 
			
		||||
pip install breathe==4.13.0 bs4 lxml six
 | 
			
		||||
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
 | 
			
		||||
pip install exhale>=0.2.1
 | 
			
		||||
pip install sphinx>=2.0
 | 
			
		||||
pip install sphinx==2.4.4
 | 
			
		||||
# Uncomment once it is fixed
 | 
			
		||||
# pip install -r requirements.txt
 | 
			
		||||
time make VERBOSE=1 html -j
 | 
			
		||||
 | 
			
		||||
@ -52,3 +52,12 @@ binary_mac_params: &binary_mac_params
 | 
			
		||||
  environment:
 | 
			
		||||
    BUILD_ENVIRONMENT: << parameters.build_environment >>
 | 
			
		||||
 | 
			
		||||
binary_windows_params: &binary_windows_params
 | 
			
		||||
  parameters:
 | 
			
		||||
    build_environment:
 | 
			
		||||
      type: string
 | 
			
		||||
      default: ""
 | 
			
		||||
  environment:
 | 
			
		||||
    BUILD_ENVIRONMENT: << parameters.build_environment >>
 | 
			
		||||
    BUILD_FOR_SYSTEM: windows
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -275,3 +275,46 @@
 | 
			
		||||
          script="/Users/distiller/project/.circleci/scripts/binary_ios_upload.sh"
 | 
			
		||||
          cat "$script"
 | 
			
		||||
          source "$script"
 | 
			
		||||
 | 
			
		||||
  binary_windows_build:
 | 
			
		||||
    <<: *binary_windows_params
 | 
			
		||||
    executor:
 | 
			
		||||
      name: windows-cpu-with-nvidia-cuda
 | 
			
		||||
    steps:
 | 
			
		||||
    # See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
 | 
			
		||||
    - attach_scripts
 | 
			
		||||
    - run:
 | 
			
		||||
        <<: *binary_checkout
 | 
			
		||||
    - run:
 | 
			
		||||
        <<: *binary_populate_env
 | 
			
		||||
    - run:
 | 
			
		||||
        name: Build
 | 
			
		||||
        no_output_timeout: "1h"
 | 
			
		||||
        command: |
 | 
			
		||||
          set -eux -o pipefail
 | 
			
		||||
          script="/c/w/p/.circleci/scripts/binary_windows_build.sh"
 | 
			
		||||
          cat "$script"
 | 
			
		||||
          source "$script"
 | 
			
		||||
    - persist_to_workspace:
 | 
			
		||||
        root: "C:/w"
 | 
			
		||||
        paths: final_pkgs
 | 
			
		||||
 | 
			
		||||
  binary_windows_upload:
 | 
			
		||||
    <<: *binary_windows_params
 | 
			
		||||
    docker:
 | 
			
		||||
      - image: continuumio/miniconda
 | 
			
		||||
    steps:
 | 
			
		||||
    # See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
 | 
			
		||||
    - attach_scripts
 | 
			
		||||
    - run:
 | 
			
		||||
        <<: *binary_checkout
 | 
			
		||||
    - run:
 | 
			
		||||
        <<: *binary_populate_env
 | 
			
		||||
    - run:
 | 
			
		||||
        name: Upload
 | 
			
		||||
        no_output_timeout: "10m"
 | 
			
		||||
        command: |
 | 
			
		||||
          set -eux -o pipefail
 | 
			
		||||
          script="/pytorch/.circleci/scripts/binary_windows_upload.sh"
 | 
			
		||||
          cat "$script"
 | 
			
		||||
          source "$script"
 | 
			
		||||
 | 
			
		||||
@ -151,7 +151,7 @@
 | 
			
		||||
            # Install Anaconda if we need to
 | 
			
		||||
            if [ -n "${CAFFE2_USE_ANACONDA}" ]; then
 | 
			
		||||
              rm -rf ${TMPDIR}/anaconda
 | 
			
		||||
              curl --retry 3 -o ${TMPDIR}/conda.sh https://repo.continuum.io/miniconda/Miniconda${ANACONDA_VERSION}-latest-MacOSX-x86_64.sh
 | 
			
		||||
              curl --retry 3 -o ${TMPDIR}/conda.sh https://repo.anaconda.com/miniconda/Miniconda${ANACONDA_VERSION}-latest-MacOSX-x86_64.sh
 | 
			
		||||
              chmod +x ${TMPDIR}/conda.sh
 | 
			
		||||
              /bin/bash ${TMPDIR}/conda.sh -b -p ${TMPDIR}/anaconda
 | 
			
		||||
              rm -f ${TMPDIR}/conda.sh
 | 
			
		||||
 | 
			
		||||
@ -20,16 +20,16 @@ jobs:
 | 
			
		||||
          export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE})
 | 
			
		||||
 | 
			
		||||
          # TODO We may want to move the rebase logic to a separate step after checkout
 | 
			
		||||
          # Rebase to master only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "master" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge master branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          # Rebase to release/1.5 only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "release/1.5" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge release/1.5 branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            set -x
 | 
			
		||||
            git config --global user.email "circleci.ossci@gmail.com"
 | 
			
		||||
            git config --global user.name "CircleCI"
 | 
			
		||||
            git config remote.origin.url https://github.com/pytorch/pytorch.git
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/master`
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/release/1.5:refs/remotes/origin/release/1.5
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.5:refs/remotes/origin/release/1.5 --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/release/1.5`
 | 
			
		||||
            echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}
 | 
			
		||||
            export GIT_COMMIT=${CIRCLE_SHA1}
 | 
			
		||||
            echo "GIT_COMMIT: " ${GIT_COMMIT}
 | 
			
		||||
@ -38,7 +38,7 @@ jobs:
 | 
			
		||||
            git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET}
 | 
			
		||||
            set +x
 | 
			
		||||
          else
 | 
			
		||||
            echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            echo "Do NOT merge release/1.5 branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          fi
 | 
			
		||||
 | 
			
		||||
          git submodule sync && git submodule update -q --init --recursive
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_test:
 | 
			
		||||
          name: pytorch_windows_vs2017_14.11_py36_cuda10.1_test1
 | 
			
		||||
          test_name: pytorch-windows-test1
 | 
			
		||||
@ -32,6 +33,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_test:
 | 
			
		||||
          name: pytorch_windows_vs2017_14.11_py36_cuda10.1_test2
 | 
			
		||||
          test_name: pytorch-windows-test2
 | 
			
		||||
@ -49,6 +51,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_build:
 | 
			
		||||
          name: pytorch_windows_vs2017_14.16_py36_cuda10.1_build
 | 
			
		||||
          cuda_version: "10"
 | 
			
		||||
@ -64,6 +67,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_test:
 | 
			
		||||
          name: pytorch_windows_vs2017_14.16_py36_cuda10.1_test1
 | 
			
		||||
          test_name: pytorch-windows-test1
 | 
			
		||||
@ -81,6 +85,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_test:
 | 
			
		||||
          name: pytorch_windows_vs2017_14.16_py36_cuda10.1_test2
 | 
			
		||||
          test_name: pytorch-windows-test2
 | 
			
		||||
@ -98,6 +103,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - pytorch_windows_build:
 | 
			
		||||
          name: pytorch_windows_vs2019_py36_cuda10.1_build
 | 
			
		||||
          cuda_version: "10"
 | 
			
		||||
 | 
			
		||||
@ -7,12 +7,6 @@
 | 
			
		||||
      # pytorch-ci-hud to adjust the list of whitelisted builds
 | 
			
		||||
      # at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
 | 
			
		||||
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_build
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_3_7m_cu102_devtoolset7_build
 | 
			
		||||
          build_environment: "manywheel 3.7m cu102 devtoolset7"
 | 
			
		||||
@ -23,24 +17,21 @@
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_conda_2_7_cpu_devtoolset7_build
 | 
			
		||||
          build_environment: "conda 2.7 cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          docker_image: "pytorch/conda-cuda"
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      # This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
 | 
			
		||||
      # - binary_linux_conda_3_6_cu90_devtoolset7_build
 | 
			
		||||
      # TODO rename to remove python version for libtorch
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_libtorch_2_7m_cpu_devtoolset7_shared-with-deps_build
 | 
			
		||||
          build_environment: "libtorch 2.7m cpu devtoolset7"
 | 
			
		||||
          name: binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build
 | 
			
		||||
          build_environment: "libtorch 3.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          libtorch_variant: "shared-with-deps"
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_libtorch_2_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build
 | 
			
		||||
          build_environment: "libtorch 2.7m cpu gcc5.4_cxx11-abi"
 | 
			
		||||
          name: binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build
 | 
			
		||||
          build_environment: "libtorch 3.7m cpu gcc5.4_cxx11-abi"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          libtorch_variant: "shared-with-deps"
 | 
			
		||||
@ -48,45 +39,51 @@
 | 
			
		||||
      # TODO we should test a libtorch cuda build, but they take too long
 | 
			
		||||
      # - binary_linux_libtorch_2_7m_cu90_devtoolset7_static-without-deps_build
 | 
			
		||||
      - binary_mac_build:
 | 
			
		||||
          name: binary_macos_wheel_3_6_cpu_build
 | 
			
		||||
          build_environment: "wheel 3.6 cpu"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
      - binary_mac_build:
 | 
			
		||||
          name: binary_macos_conda_2_7_cpu_build
 | 
			
		||||
          build_environment: "conda 2.7 cpu"
 | 
			
		||||
          name: binary_macos_wheel_3_7_cpu_build
 | 
			
		||||
          build_environment: "wheel 3.7 cpu"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      # This job has an average run time of 3 hours o.O
 | 
			
		||||
      # Now only running this on master to reduce overhead
 | 
			
		||||
      # TODO rename to remove python version for libtorch
 | 
			
		||||
      - binary_mac_build:
 | 
			
		||||
          name: binary_macos_libtorch_2_7_cpu_build
 | 
			
		||||
          build_environment: "libtorch 2.7 cpu"
 | 
			
		||||
          name: binary_macos_libtorch_3_7_cpu_build
 | 
			
		||||
          build_environment: "libtorch 3.7 cpu"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_test
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - binary_windows_build:
 | 
			
		||||
          name: binary_windows_libtorch_3_7_cpu_debug_build
 | 
			
		||||
          build_environment: "libtorch 3.7 cpu debug"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
      - binary_windows_build:
 | 
			
		||||
          name: binary_windows_libtorch_3_7_cpu_release_build
 | 
			
		||||
          build_environment: "libtorch 3.7 cpu release"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
      - binary_windows_build:
 | 
			
		||||
          name: binary_windows_wheel_3_7_cu102_build
 | 
			
		||||
          build_environment: "wheel 3.7 cu102"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cpu_devtoolset7_build
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_3_7m_cu102_devtoolset7_test
 | 
			
		||||
          build_environment: "manywheel 3.7m cu102 devtoolset7"
 | 
			
		||||
@ -100,29 +97,25 @@
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_conda_2_7_cpu_devtoolset7_test
 | 
			
		||||
          build_environment: "conda 2.7 cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_conda_2_7_cpu_devtoolset7_build
 | 
			
		||||
          docker_image: "pytorch/conda-cuda"
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
      # This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
 | 
			
		||||
      # - binary_linux_conda_3_6_cu90_devtoolset7_test:
 | 
			
		||||
      # TODO rename to remove python version for libtorch
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_libtorch_2_7m_cpu_devtoolset7_shared-with-deps_test
 | 
			
		||||
          build_environment: "libtorch 2.7m cpu devtoolset7"
 | 
			
		||||
          name: binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test
 | 
			
		||||
          build_environment: "libtorch 3.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_libtorch_2_7m_cpu_devtoolset7_shared-with-deps_build
 | 
			
		||||
            - binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build
 | 
			
		||||
          libtorch_variant: "shared-with-deps"
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_libtorch_2_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test
 | 
			
		||||
          build_environment: "libtorch 2.7m cpu gcc5.4_cxx11-abi"
 | 
			
		||||
          name: binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test
 | 
			
		||||
          build_environment: "libtorch 3.7m cpu gcc5.4_cxx11-abi"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_libtorch_2_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build
 | 
			
		||||
            - binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build
 | 
			
		||||
          libtorch_variant: "shared-with-deps"
 | 
			
		||||
          docker_image: "pytorch/pytorch-binary-docker-image-ubuntu16.04:latest"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,21 +20,12 @@
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-cuda9-cudnn7-py2"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-cuda9-cudnn7-py2"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-cuda9-cudnn7-py3"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-cuda9-cudnn7-py3"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-py2.7.9"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-py2.7.9"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-py2.7"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-py2.7"
 | 
			
		||||
      - docker_build_job:
 | 
			
		||||
          name: "pytorch-linux-xenial-py3-clang5-android-ndk-r19c"
 | 
			
		||||
          image_name: "pytorch-linux-xenial-py3-clang5-android-ndk-r19c"
 | 
			
		||||
 | 
			
		||||
@ -4,6 +4,8 @@
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
          requires:
 | 
			
		||||
            - pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build
 | 
			
		||||
 | 
			
		||||
@ -13,6 +15,8 @@
 | 
			
		||||
            branches:
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
          requires:
 | 
			
		||||
            - pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build
 | 
			
		||||
            - pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build
 | 
			
		||||
 | 
			
		||||
@ -7,10 +7,10 @@
 | 
			
		||||
          docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4:f990c76a-a798-42bb-852f-5be5006f8026"
 | 
			
		||||
          resource_class: large
 | 
			
		||||
      - pytorch_linux_test:
 | 
			
		||||
          name: pytorch_linux_xenial_py3_6_gcc5_4_ge_config_simple_test
 | 
			
		||||
          name: pytorch_linux_xenial_py3_6_gcc5_4_ge_config_profiling_test
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - pytorch_linux_xenial_py3_6_gcc5_4_build
 | 
			
		||||
          build_environment: "pytorch-linux-xenial-py3.6-gcc5.4-ge_config_simple-test"
 | 
			
		||||
          build_environment: "pytorch-linux-xenial-py3.6-gcc5.4-ge_config_profiling-test"
 | 
			
		||||
          docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4:f990c76a-a798-42bb-852f-5be5006f8026"
 | 
			
		||||
          resource_class: large
 | 
			
		||||
 | 
			
		||||
@ -31,6 +31,7 @@
 | 
			
		||||
              only:
 | 
			
		||||
                - master
 | 
			
		||||
                - /ci-all\/.*/
 | 
			
		||||
                - /release\/.*/
 | 
			
		||||
          build_environment: "pytorch-linux-xenial-py3-clang5-mobile-code-analysis"
 | 
			
		||||
          build_only: "1"
 | 
			
		||||
          # Use LLVM-DEV toolchain in android-ndk-r19c docker image
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										42
									
								
								.github/workflows/lint.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										42
									
								
								.github/workflows/lint.yml
									
									
									
									
										vendored
									
									
								
							@ -67,7 +67,7 @@ jobs:
 | 
			
		||||
      - name: Run flake8
 | 
			
		||||
        run: |
 | 
			
		||||
          set -eux
 | 
			
		||||
          pip install flake8 flake8-mypy flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi mccabe pycodestyle pyflakes
 | 
			
		||||
          pip install flake8==3.7.9 flake8-mypy flake8-bugbear flake8-comprehensions flake8-executable flake8-pyi mccabe pycodestyle==2.5.0 pyflakes==2.1.1
 | 
			
		||||
          flake8 --version
 | 
			
		||||
          flake8 --exit-zero > ${GITHUB_WORKSPACE}/flake8-output.txt
 | 
			
		||||
          cat ${GITHUB_WORKSPACE}/flake8-output.txt
 | 
			
		||||
@ -81,44 +81,6 @@ jobs:
 | 
			
		||||
        env:
 | 
			
		||||
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
 | 
			
		||||
 | 
			
		||||
  flake8-py2:
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
    steps:
 | 
			
		||||
      - name: Setup Python
 | 
			
		||||
        uses: actions/setup-python@v1
 | 
			
		||||
        with:
 | 
			
		||||
          python-version: 2.x
 | 
			
		||||
          architecture: x64
 | 
			
		||||
      - name: Fetch PyTorch
 | 
			
		||||
        uses: actions/checkout@v1
 | 
			
		||||
      - name: Checkout PR tip
 | 
			
		||||
        run: |
 | 
			
		||||
          set -eux
 | 
			
		||||
          if [[ "${{ github.event_name }}" == "pull_request" ]]; then
 | 
			
		||||
            # We are on a PR, so actions/checkout leaves us on a merge commit.
 | 
			
		||||
            # Check out the actual tip of the branch.
 | 
			
		||||
            git checkout ${{ github.event.pull_request.head.sha }}
 | 
			
		||||
          fi
 | 
			
		||||
          echo ::set-output name=commit_sha::$(git rev-parse HEAD)
 | 
			
		||||
        id: get_pr_tip
 | 
			
		||||
      - name: Run flake8
 | 
			
		||||
        run: |
 | 
			
		||||
          set -eux
 | 
			
		||||
          pip install flake8
 | 
			
		||||
          rm -rf .circleci tools/clang_format_new.py
 | 
			
		||||
          flake8 --exit-zero > ${GITHUB_WORKSPACE}/flake8-output.txt
 | 
			
		||||
          cat ${GITHUB_WORKSPACE}/flake8-output.txt
 | 
			
		||||
      - name: Add annotations
 | 
			
		||||
        uses: pytorch/add-annotations-github-action@master
 | 
			
		||||
        with:
 | 
			
		||||
          check_name: 'flake8-py2'
 | 
			
		||||
          linter_output_path: 'flake8-output.txt'
 | 
			
		||||
          commit_sha: ${{ steps.get_pr_tip.outputs.commit_sha }}
 | 
			
		||||
          regex: '^(?<filename>.*?):(?<lineNumber>\d+):(?<columnNumber>\d+): (?<errorCode>\w\d+) (?<errorDesc>.*)'
 | 
			
		||||
        env:
 | 
			
		||||
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  clang-tidy:
 | 
			
		||||
    if: github.event_name == 'pull_request'
 | 
			
		||||
    runs-on: ubuntu-latest
 | 
			
		||||
@ -198,6 +160,8 @@ jobs:
 | 
			
		||||
            -g"-torch/csrc/jit/export.cpp"            \
 | 
			
		||||
            -g"-torch/csrc/jit/import.cpp"            \
 | 
			
		||||
            -g"-torch/csrc/jit/netdef_converter.cpp"  \
 | 
			
		||||
            -g"-torch/csrc/cuda/nccl.*"               \
 | 
			
		||||
            -g"-torch/csrc/cuda/python_nccl.cpp"      \
 | 
			
		||||
            "$@" > ${GITHUB_WORKSPACE}/clang-tidy-output.txt
 | 
			
		||||
 | 
			
		||||
          cat ${GITHUB_WORKSPACE}/clang-tidy-output.txt
 | 
			
		||||
 | 
			
		||||
@ -6,6 +6,69 @@ TEST_DIR="$ROOT_DIR/caffe2_tests"
 | 
			
		||||
gtest_reports_dir="${TEST_DIR}/cpp"
 | 
			
		||||
pytest_reports_dir="${TEST_DIR}/python"
 | 
			
		||||
 | 
			
		||||
# This is needed to work around ROCm using old docker images until
 | 
			
		||||
# the transition to new images is complete.
 | 
			
		||||
# TODO: Remove once ROCm CI is using new images.
 | 
			
		||||
if [[ $BUILD_ENVIRONMENT == py3.6-devtoolset7-rocmrpm-centos* ]]; then
 | 
			
		||||
  # This file is sourced multiple times, only install conda the first time.
 | 
			
		||||
  # We must install conda where we have write access.
 | 
			
		||||
  CONDA_DIR="$ROOT_DIR/conda"
 | 
			
		||||
  if [[ ! -d $CONDA_DIR ]]; then
 | 
			
		||||
    ANACONDA_PYTHON_VERSION=3.6
 | 
			
		||||
    BASE_URL="https://repo.anaconda.com/miniconda"
 | 
			
		||||
    CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
 | 
			
		||||
    mkdir $CONDA_DIR
 | 
			
		||||
    pushd /tmp
 | 
			
		||||
    wget -q "${BASE_URL}/${CONDA_FILE}"
 | 
			
		||||
    chmod +x "${CONDA_FILE}"
 | 
			
		||||
    ./"${CONDA_FILE}" -b -f -p "$CONDA_DIR"
 | 
			
		||||
    popd
 | 
			
		||||
    export PATH="$CONDA_DIR/bin:$PATH"
 | 
			
		||||
    # Ensure we run conda in a directory that jenkins has write access to
 | 
			
		||||
    pushd $CONDA_DIR
 | 
			
		||||
    # Track latest conda update
 | 
			
		||||
    conda update -n base conda
 | 
			
		||||
    # Install correct Python version
 | 
			
		||||
    conda install python="$ANACONDA_PYTHON_VERSION"
 | 
			
		||||
 | 
			
		||||
    conda_install() {
 | 
			
		||||
      # Ensure that the install command don't upgrade/downgrade Python
 | 
			
		||||
      # This should be called as
 | 
			
		||||
      #   conda_install pkg1 pkg2 ... [-c channel]
 | 
			
		||||
      conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    # Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
 | 
			
		||||
    conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
 | 
			
		||||
 | 
			
		||||
    # TODO: This isn't working atm
 | 
			
		||||
    conda_install nnpack -c killeent
 | 
			
		||||
 | 
			
		||||
    # Install some other packages
 | 
			
		||||
 | 
			
		||||
    # Need networkx 2.0 because bellmand_ford was moved in 2.1 . Scikit-image by
 | 
			
		||||
    # defaults installs the most recent networkx version, so we install this lower
 | 
			
		||||
    # version explicitly before scikit-image pulls it in as a dependency
 | 
			
		||||
    pip install networkx==2.0
 | 
			
		||||
 | 
			
		||||
    # TODO: Why is scipy pinned
 | 
			
		||||
    # numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
 | 
			
		||||
    # scikit-learn is pinned because of
 | 
			
		||||
    # https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
 | 
			
		||||
    # only)
 | 
			
		||||
    pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.46.0 llvmlite==0.30.0
 | 
			
		||||
 | 
			
		||||
    # click - onnx
 | 
			
		||||
    # hypothesis - tests
 | 
			
		||||
    # jupyter - for tutorials
 | 
			
		||||
    pip install --progress-bar off click hypothesis jupyter protobuf tabulate virtualenv mock typing-extensions
 | 
			
		||||
 | 
			
		||||
    popd
 | 
			
		||||
  else
 | 
			
		||||
    export PATH="$CONDA_DIR/bin:$PATH"
 | 
			
		||||
  fi
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Figure out which Python to use
 | 
			
		||||
PYTHON="$(which python)"
 | 
			
		||||
if [[ "${BUILD_ENVIRONMENT}" =~ py((2|3)\.?[0-9]?\.?[0-9]?) ]]; then
 | 
			
		||||
 | 
			
		||||
@ -144,7 +144,7 @@ if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
 | 
			
		||||
    # default pip version is too old(9.0.2), unable to support tag `manylinux2010`.
 | 
			
		||||
    # Fix the pip error: Couldn't find a version that satisfies the requirement
 | 
			
		||||
    sudo pip install --upgrade pip
 | 
			
		||||
    pip install -q --user -i https://test.pypi.org/simple/ ort-nightly==1.1.0.dev1228
 | 
			
		||||
    pip install -q --user -i https://test.pypi.org/simple/ ort-nightly==1.3.0.dev202005123
 | 
			
		||||
  fi
 | 
			
		||||
  "$ROOT_DIR/scripts/onnx/test.sh"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
@ -167,7 +167,7 @@ fi
 | 
			
		||||
 | 
			
		||||
# Patch required to build xla
 | 
			
		||||
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
 | 
			
		||||
  git clone --recursive https://github.com/pytorch/xla.git
 | 
			
		||||
  git clone --recursive -b r1.5 https://github.com/pytorch/xla.git
 | 
			
		||||
  ./xla/scripts/apply_patches.sh
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
@ -259,7 +259,7 @@ if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
 | 
			
		||||
  # XLA build requires Bazel
 | 
			
		||||
  # We use bazelisk to avoid updating Bazel version manually.
 | 
			
		||||
  sudo npm install -g @bazel/bazelisk
 | 
			
		||||
  sudo ln -s "$(command -v bazelisk)" /usr/bin/bazel
 | 
			
		||||
  sudo ln -sf "$(command -v bazelisk)" /usr/bin/bazel
 | 
			
		||||
 | 
			
		||||
  # Install bazels3cache for cloud cache
 | 
			
		||||
  sudo npm install -g bazels3cache
 | 
			
		||||
 | 
			
		||||
@ -13,12 +13,12 @@ mkdir -p ${WORKSPACE_DIR}
 | 
			
		||||
# If a local installation of conda doesn't exist, we download and install conda
 | 
			
		||||
if [ ! -d "${WORKSPACE_DIR}/miniconda3" ]; then
 | 
			
		||||
  mkdir -p ${WORKSPACE_DIR}
 | 
			
		||||
  curl --retry 3 https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o ${WORKSPACE_DIR}/miniconda3.sh
 | 
			
		||||
  curl --retry 3 https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -o ${WORKSPACE_DIR}/miniconda3.sh
 | 
			
		||||
  retry bash ${WORKSPACE_DIR}/miniconda3.sh -b -p ${WORKSPACE_DIR}/miniconda3
 | 
			
		||||
fi
 | 
			
		||||
export PATH="${WORKSPACE_DIR}/miniconda3/bin:$PATH"
 | 
			
		||||
source ${WORKSPACE_DIR}/miniconda3/bin/activate
 | 
			
		||||
retry conda install -y mkl mkl-include numpy pyyaml setuptools cmake cffi ninja
 | 
			
		||||
retry conda install -y mkl mkl-include numpy pyyaml=5.3 setuptools=46.0.0 cmake cffi ninja
 | 
			
		||||
 | 
			
		||||
# The torch.hub tests make requests to GitHub.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ if [ -n "${IN_CIRCLECI}" ]; then
 | 
			
		||||
    sudo apt-get install -y --allow-downgrades --allow-change-held-packages libnccl-dev=2.5.6-1+cuda10.1 libnccl2=2.5.6-1+cuda10.1
 | 
			
		||||
  fi
 | 
			
		||||
 | 
			
		||||
  if [[ "$BUILD_ENVIRONMENT" == *-xenial-cuda9-cudnn7-py2* ]]; then
 | 
			
		||||
  if [[ "$BUILD_ENVIRONMENT" == *-xenial-cuda10.1-cudnn7-py3* ]]; then
 | 
			
		||||
    # TODO: move this to Docker
 | 
			
		||||
    sudo apt-get update
 | 
			
		||||
    sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev
 | 
			
		||||
 | 
			
		||||
@ -21,7 +21,7 @@ if [ -n "${IN_CIRCLECI}" ]; then
 | 
			
		||||
    sudo apt-get -qq install --allow-downgrades --allow-change-held-packages libnccl-dev=2.5.6-1+cuda10.1 libnccl2=2.5.6-1+cuda10.1
 | 
			
		||||
  fi
 | 
			
		||||
 | 
			
		||||
  if [[ "$BUILD_ENVIRONMENT" == *-xenial-cuda9-cudnn7-py2* ]]; then
 | 
			
		||||
  if [[ "$BUILD_ENVIRONMENT" == *-xenial-cuda10.1-cudnn7-py3* ]]; then
 | 
			
		||||
    # TODO: move this to Docker
 | 
			
		||||
    sudo apt-get -qq update
 | 
			
		||||
    sudo apt-get -qq install --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev
 | 
			
		||||
@ -141,8 +141,8 @@ test_python_nn() {
 | 
			
		||||
  assert_git_not_dirty
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
test_python_ge_config_simple() {
 | 
			
		||||
  time python test/run_test.py --include test_jit_simple --verbose --determine-from="$DETERMINE_FROM"
 | 
			
		||||
test_python_ge_config_profiling() {
 | 
			
		||||
  time python test/run_test.py --include test_jit_profiling test_jit_fuser_profiling --verbose --determine-from="$DETERMINE_FROM"
 | 
			
		||||
  assert_git_not_dirty
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -152,7 +152,7 @@ test_python_ge_config_legacy() {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
test_python_all_except_nn() {
 | 
			
		||||
  time python test/run_test.py --exclude test_nn test_jit_simple test_jit_legacy test_jit_fuser_legacy --verbose --bring-to-front test_quantization test_quantized test_quantized_tensor test_quantized_nn_mods --determine-from="$DETERMINE_FROM"
 | 
			
		||||
  time python test/run_test.py --exclude test_nn test_jit_profiling test_jit_legacy test_jit_fuser_legacy test_jit_fuser_profiling --verbose --bring-to-front test_quantization test_quantized test_quantized_tensor test_quantized_nn_mods --determine-from="$DETERMINE_FROM"
 | 
			
		||||
  assert_git_not_dirty
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -244,7 +244,7 @@ test_backward_compatibility() {
 | 
			
		||||
  pushd test/backward_compatibility
 | 
			
		||||
  python dump_all_function_schemas.py --filename new_schemas.txt
 | 
			
		||||
  pip_uninstall torch
 | 
			
		||||
  pip_install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
 | 
			
		||||
  pip_install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
 | 
			
		||||
  python check_backward_compatibility.py --new-schemas new_schemas.txt
 | 
			
		||||
  popd
 | 
			
		||||
  set +x
 | 
			
		||||
@ -264,8 +264,8 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xla* || "${JOB_BASE_NAME}" == *xla* ]]; then
 | 
			
		||||
  test_xla
 | 
			
		||||
elif [[ "${BUILD_ENVIRONMENT}" == *ge_config_legacy* || "${JOB_BASE_NAME}" == *ge_config_legacy* ]]; then
 | 
			
		||||
  test_python_ge_config_legacy
 | 
			
		||||
elif [[ "${BUILD_ENVIRONMENT}" == *ge_config_simple* || "${JOB_BASE_NAME}" == *ge_config_simple* ]]; then
 | 
			
		||||
  test_python_ge_config_simple
 | 
			
		||||
elif [[ "${BUILD_ENVIRONMENT}" == *ge_config_profiling* || "${JOB_BASE_NAME}" == *ge_config_profiling* ]]; then
 | 
			
		||||
  test_python_ge_config_profiling
 | 
			
		||||
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
 | 
			
		||||
  # TODO: run some C++ tests
 | 
			
		||||
  echo "no-op at the moment"
 | 
			
		||||
 | 
			
		||||
@ -5,7 +5,7 @@ if "%BUILD_ENVIRONMENT%"=="" (
 | 
			
		||||
)
 | 
			
		||||
if "%REBUILD%"=="" (
 | 
			
		||||
  IF EXIST %CONDA_PARENT_DIR%\Miniconda3 ( rd /s /q %CONDA_PARENT_DIR%\Miniconda3 )
 | 
			
		||||
  curl --retry 3 -k https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
 | 
			
		||||
  curl --retry 3 -k https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
 | 
			
		||||
  %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
 | 
			
		||||
)
 | 
			
		||||
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3
 | 
			
		||||
 | 
			
		||||
@ -13,7 +13,7 @@ if "%BUILD_ENVIRONMENT%"=="" (
 | 
			
		||||
)
 | 
			
		||||
if NOT "%BUILD_ENVIRONMENT%"=="" (
 | 
			
		||||
    IF EXIST %CONDA_PARENT_DIR%\Miniconda3 ( rd /s /q %CONDA_PARENT_DIR%\Miniconda3 )
 | 
			
		||||
    curl --retry 3 https://repo.continuum.io/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
 | 
			
		||||
    curl --retry 3 https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
 | 
			
		||||
    %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
 | 
			
		||||
)
 | 
			
		||||
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3
 | 
			
		||||
 | 
			
		||||
@ -1,3 +1,3 @@
 | 
			
		||||
call %SCRIPT_HELPERS_DIR%\setup_pytorch_env.bat
 | 
			
		||||
cd test && python run_test.py --exclude test_nn test_jit_simple test_jit_legacy test_jit_fuser_legacy --verbose --determine-from="%1" && cd ..
 | 
			
		||||
cd test && python run_test.py --exclude test_nn test_jit_profiling test_jit_legacy test_jit_fuser_legacy test_jit_fuser_profiling --verbose --determine-from="%1" && cd ..
 | 
			
		||||
if ERRORLEVEL 1 exit /b 1
 | 
			
		||||
 | 
			
		||||
@ -160,20 +160,18 @@ ENDIF(BLAS_FOUND)
 | 
			
		||||
 | 
			
		||||
IF(LAPACK_FOUND)
 | 
			
		||||
  list(APPEND ATen_CPU_DEPENDENCY_LIBS ${LAPACK_LIBRARIES})
 | 
			
		||||
  if(USE_CUDA)
 | 
			
		||||
  if(USE_CUDA AND MSVC)
 | 
			
		||||
    # Although Lapack provides CPU (and thus, one might expect that ATen_cuda
 | 
			
		||||
    # would not need this at all), some of our libraries (magma in particular)
 | 
			
		||||
    # backend to CPU BLAS/LAPACK implementations, and so it is very important
 | 
			
		||||
    # we get the *right* implementation, because even if the symbols are the
 | 
			
		||||
    # same, LAPACK implementions may have different calling conventions.
 | 
			
		||||
    # This caused https://github.com/pytorch/pytorch/issues/7353
 | 
			
		||||
    #
 | 
			
		||||
    # We do NOT do this on Linux, since we just rely on torch_cpu to
 | 
			
		||||
    # provide all of the symbols we need
 | 
			
		||||
    list(APPEND ATen_CUDA_DEPENDENCY_LIBS ${LAPACK_LIBRARIES})
 | 
			
		||||
  endif()
 | 
			
		||||
  if(USE_ROCM)
 | 
			
		||||
    # It's not altogether clear that HIP behaves the same way, but it
 | 
			
		||||
    # seems safer to assume that it needs it too
 | 
			
		||||
    list(APPEND ATen_HIP_DEPENDENCY_LIBS ${LAPACK_LIBRARIES})
 | 
			
		||||
  endif()
 | 
			
		||||
ENDIF(LAPACK_FOUND)
 | 
			
		||||
 | 
			
		||||
IF (UNIX AND NOT APPLE)
 | 
			
		||||
@ -331,8 +329,12 @@ IF(USE_CUDA AND NOT USE_ROCM)
 | 
			
		||||
  IF(USE_MAGMA)
 | 
			
		||||
    list(APPEND ATen_CUDA_DEPENDENCY_LIBS ${MAGMA_LIBRARIES})
 | 
			
		||||
    IF ($ENV{TH_BINARY_BUILD})
 | 
			
		||||
      list(APPEND ATen_CUDA_DEPENDENCY_LIBS
 | 
			
		||||
        "${BLAS_LIBRARIES};${BLAS_LIBRARIES};${BLAS_LIBRARIES}")
 | 
			
		||||
      IF (MSVC)
 | 
			
		||||
        # Do not do this on Linux: see Note [Extra MKL symbols for MAGMA in torch_cpu]
 | 
			
		||||
        # in caffe2/CMakeLists.txt
 | 
			
		||||
        list(APPEND ATen_CUDA_DEPENDENCY_LIBS
 | 
			
		||||
          "${BLAS_LIBRARIES};${BLAS_LIBRARIES};${BLAS_LIBRARIES}")
 | 
			
		||||
      ENDIF(MSVC)
 | 
			
		||||
    ENDIF($ENV{TH_BINARY_BUILD})
 | 
			
		||||
  ENDIF(USE_MAGMA)
 | 
			
		||||
  IF ($ENV{ATEN_STATIC_CUDA})
 | 
			
		||||
 | 
			
		||||
@ -125,13 +125,15 @@ void _parallel_run(
 | 
			
		||||
  std::tie(num_tasks, chunk_size) =
 | 
			
		||||
      internal::calc_num_tasks_and_chunk_size(begin, end, grain_size);
 | 
			
		||||
 | 
			
		||||
  std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
 | 
			
		||||
  std::exception_ptr eptr;
 | 
			
		||||
  std::vector<std::shared_ptr<c10::ivalue::Future>> futures(num_tasks);
 | 
			
		||||
  for (size_t task_id = 0; task_id < num_tasks; ++task_id) {
 | 
			
		||||
    futures[task_id] = std::make_shared<c10::ivalue::Future>(c10::NoneType::get());
 | 
			
		||||
  }
 | 
			
		||||
  auto task = [f, &eptr, &err_flag, &futures, begin, end, chunk_size]
 | 
			
		||||
  struct {
 | 
			
		||||
    std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
 | 
			
		||||
    std::exception_ptr eptr;
 | 
			
		||||
    std::mutex mutex;
 | 
			
		||||
    volatile size_t remaining;
 | 
			
		||||
    std::condition_variable cv;
 | 
			
		||||
  } state;
 | 
			
		||||
 | 
			
		||||
  auto task = [f, &state, begin, end, chunk_size]
 | 
			
		||||
      (int /* unused */, size_t task_id) {
 | 
			
		||||
    int64_t local_start = begin + task_id * chunk_size;
 | 
			
		||||
    if (local_start < end) {
 | 
			
		||||
@ -140,21 +142,30 @@ void _parallel_run(
 | 
			
		||||
        ParallelRegionGuard guard(task_id);
 | 
			
		||||
        f(local_start, local_end, task_id);
 | 
			
		||||
      } catch (...) {
 | 
			
		||||
        if (!err_flag.test_and_set()) {
 | 
			
		||||
          eptr = std::current_exception();
 | 
			
		||||
        if (!state.err_flag.test_and_set()) {
 | 
			
		||||
          state.eptr = std::current_exception();
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    futures[task_id]->markCompleted();
 | 
			
		||||
    {
 | 
			
		||||
      std::unique_lock<std::mutex> lk(state.mutex);
 | 
			
		||||
      if (--state.remaining == 0) {
 | 
			
		||||
        state.cv.notify_one();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  };
 | 
			
		||||
  state.remaining = num_tasks;
 | 
			
		||||
  _run_with_pool(task, num_tasks);
 | 
			
		||||
 | 
			
		||||
  // Wait for all tasks to finish.
 | 
			
		||||
  for (size_t task_id = 0; task_id < num_tasks; ++task_id) {
 | 
			
		||||
    futures[task_id]->wait();
 | 
			
		||||
  {
 | 
			
		||||
    std::unique_lock<std::mutex> lk(state.mutex);
 | 
			
		||||
    if (state.remaining != 0) {
 | 
			
		||||
      state.cv.wait(lk);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  if (eptr) {
 | 
			
		||||
    std::rethrow_exception(eptr);
 | 
			
		||||
  if (state.eptr) {
 | 
			
		||||
    std::rethrow_exception(state.eptr);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -16,14 +16,6 @@
 | 
			
		||||
#include <numeric>
 | 
			
		||||
#include <memory>
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
#define __ubsan_ignore_vptr__ __attribute__((no_sanitize("vptr")))
 | 
			
		||||
#else
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
#define __ubsan_ignore_vptr__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
 | 
			
		||||
  TypeName(const TypeName&) = delete; \
 | 
			
		||||
  void operator=(const TypeName&) = delete
 | 
			
		||||
 | 
			
		||||
@ -27,14 +27,9 @@ using c10::KernelFunction;
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
void variable_fallback_kernel(const OperatorHandle& op, Stack* stack) {
 | 
			
		||||
    at::AutoNonVariableTypeMode _var_guard(true);
 | 
			
		||||
    Dispatcher::singleton().callBoxed(op, stack);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static auto registry = Dispatcher::singleton().registerBackendFallbackKernel(
 | 
			
		||||
static auto registry = c10::Dispatcher::singleton().registerBackendFallbackKernel(
 | 
			
		||||
    DispatchKey::VariableTensorId,
 | 
			
		||||
    KernelFunction::makeFromBoxedFunction<&variable_fallback_kernel>()
 | 
			
		||||
    KernelFunction::makeFallthrough()
 | 
			
		||||
);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,10 @@ void registerCustomClass(at::ClassTypePtr class_type) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
at::ClassTypePtr getCustomClass(const std::string& name) {
 | 
			
		||||
  // BC hack so we can upgrade a binary internally
 | 
			
		||||
  if (name == "__torch__.torch.classes.SentencePiece") {
 | 
			
		||||
    return getCustomClass("__torch__.torch.classes.fb.SentencePiece");
 | 
			
		||||
  }
 | 
			
		||||
  return customClasses().count(name) ? customClasses()[name] : nullptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@
 | 
			
		||||
#include <c10/util/math_compat.h>
 | 
			
		||||
#include <ATen/native/cpu/zmath.h>
 | 
			
		||||
#include <c10/util/TypeCast.h>
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
#if defined(__GNUC__)
 | 
			
		||||
#define __at_align32__ __attribute__((aligned(32)))
 | 
			
		||||
 | 
			
		||||
@ -145,7 +145,7 @@ private:
 | 
			
		||||
 | 
			
		||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
 | 
			
		||||
 | 
			
		||||
class FilterDescriptor
 | 
			
		||||
class TORCH_CUDA_API FilterDescriptor
 | 
			
		||||
  : public Descriptor<cudnnFilterStruct,
 | 
			
		||||
                      &cudnnCreateFilterDescriptor,
 | 
			
		||||
                      &cudnnDestroyFilterDescriptor>
 | 
			
		||||
 | 
			
		||||
@ -550,7 +550,6 @@ FunctionOption = TypedDict('FunctionOption', {
 | 
			
		||||
    'type_method_definition_dispatch': str,
 | 
			
		||||
    'type_method_formals': List[str],
 | 
			
		||||
    'variants': str,
 | 
			
		||||
    'with_gil': bool,
 | 
			
		||||
    'zero_dim_dispatch_when_scalar': str,
 | 
			
		||||
})
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -673,11 +673,11 @@ Tensor & leaky_relu_(
 | 
			
		||||
  return at::leaky_relu_out(self, self, neg_val);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Note: leakyReLu backward calculation doesn't support in-place call with non-positive slope.
 | 
			
		||||
// Note: leakyReLu backward calculation doesn't support in-place call with negative slope.
 | 
			
		||||
// The reason is that for in-place forward call, the forward result will be saved into autograd
 | 
			
		||||
// node instead of the input itself, when calculating backward gradient, there is no way to know
 | 
			
		||||
// whether the original input for current node is positive or not if the input slope is
 | 
			
		||||
// non-positive. eg. forward is 2, slope is -0.2, the original input for this node could be
 | 
			
		||||
// negative. eg. forward is 2, slope is -0.2, the original input for this node could be
 | 
			
		||||
// either 2, or -10, so no way to get a correct backward gradient in this case.
 | 
			
		||||
Tensor leaky_relu_backward(
 | 
			
		||||
    const Tensor& grad_output,
 | 
			
		||||
@ -685,11 +685,11 @@ Tensor leaky_relu_backward(
 | 
			
		||||
    Scalar negval,
 | 
			
		||||
    bool is_result) {
 | 
			
		||||
  TORCH_CHECK(
 | 
			
		||||
    !is_result || negval.to<double>() > 0.0,
 | 
			
		||||
    "In-place leakyReLu backward calculation is triggered with a non-positive slope which is not supported. "
 | 
			
		||||
    "This is caused by calling in-place forward function with a non-positive slope, "
 | 
			
		||||
    !is_result || negval.to<double>() >= 0.0,
 | 
			
		||||
    "In-place leakyReLu backward calculation is triggered with a negative slope which is not supported. "
 | 
			
		||||
    "This is caused by calling in-place forward function with a negative slope, "
 | 
			
		||||
    "please call out-of-place version instead. File an issue at https://github.com/pytorch/pytorch if you do "
 | 
			
		||||
    "require supporting in-place leakRelu backward calculation with non-positive slope");
 | 
			
		||||
    "require supporting in-place leakRelu backward calculation with negative slope");
 | 
			
		||||
 | 
			
		||||
  Tensor result;
 | 
			
		||||
  auto iter = TensorIterator::binary_op(result, self_or_result, grad_output);
 | 
			
		||||
@ -698,17 +698,34 @@ Tensor leaky_relu_backward(
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::tuple<Tensor, Tensor> log_sigmoid_forward_cpu(const Tensor& input) {
 | 
			
		||||
  auto result = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
  auto buffer = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
  // FIXME: do these actually need to be zeros_like or can they be empty_like?
 | 
			
		||||
  auto result = at::zeros_like(input, at::MemoryFormat::Contiguous);
 | 
			
		||||
  auto buffer = at::zeros_like(input, at::MemoryFormat::Contiguous);
 | 
			
		||||
  log_sigmoid_cpu_stub(kCPU, result, buffer, input.contiguous());
 | 
			
		||||
  return std::make_tuple(result, buffer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
std::tuple<Tensor&, Tensor&> log_sigmoid_forward_out_cpu(Tensor& result, Tensor& buffer, const Tensor& input) {
 | 
			
		||||
  log_sigmoid_cpu_stub(kCPU, result, buffer, input);
 | 
			
		||||
  result.resize_as_(input);
 | 
			
		||||
  buffer.resize_as_(input, at::MemoryFormat::Contiguous);
 | 
			
		||||
  TORCH_CHECK(buffer.is_contiguous(), "Contiguous buffer required for log_sigmoid with out parameter");
 | 
			
		||||
  Tensor result_tmp = result.is_contiguous() ? result : at::empty_like(result, at::MemoryFormat::Contiguous);
 | 
			
		||||
  log_sigmoid_cpu_stub(kCPU, result_tmp, buffer, input.contiguous());
 | 
			
		||||
  if (!result.is_contiguous()) {
 | 
			
		||||
    result.copy_(result_tmp);
 | 
			
		||||
  }
 | 
			
		||||
  return std::forward_as_tuple(result, buffer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & log_sigmoid_out(Tensor & output, const Tensor & self) {
 | 
			
		||||
  Tensor buffer = at::empty({0}, self.options());
 | 
			
		||||
  return std::get<0>(at::log_sigmoid_forward_out(output, buffer, self));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor log_sigmoid(const Tensor & self) {
 | 
			
		||||
  return std::get<0>(at::log_sigmoid_forward(self));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor log_sigmoid_backward_cpu(const Tensor& grad_output, const Tensor& input, const Tensor& buffer) {
 | 
			
		||||
  Tensor grad_input;
 | 
			
		||||
  auto iter = at::TensorIterator();
 | 
			
		||||
 | 
			
		||||
@ -138,6 +138,10 @@ Tensor true_divide(const Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return iter.output();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_(Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return native::true_divide_out(self, self, divisor);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& floor_divide_out(Tensor& result, const Tensor& self, const Tensor& other) {
 | 
			
		||||
  auto iter = TensorIterator::binary_op(result, self, other,
 | 
			
		||||
    /*check_mem_overlap=*/true);
 | 
			
		||||
@ -731,7 +735,11 @@ Tensor& fmod_(Tensor& self, Scalar other) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor true_divide(const Tensor& self, Scalar divisor) {
 | 
			
		||||
  return at::true_divide(self, wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
  return self.true_divide(wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_(Tensor& self, Scalar divisor) {
 | 
			
		||||
  return self.true_divide_(wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -609,7 +609,7 @@ at::Tensor _convolution(
 | 
			
		||||
    auto weight_view = at::_unsafe_view(weight, -1);
 | 
			
		||||
    auto out = input*weight_view[0];
 | 
			
		||||
    if (bias.defined())
 | 
			
		||||
      out = out + bias[0];
 | 
			
		||||
      out.add_(bias[0]);
 | 
			
		||||
    return out.view(o);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -639,7 +639,7 @@ at::Tensor _convolution(
 | 
			
		||||
            input.contiguous(cudnn_memory_format), weight,
 | 
			
		||||
            padding, stride, dilation, params.groups, params.benchmark, params.deterministic);
 | 
			
		||||
        if (bias.defined()) {
 | 
			
		||||
          output = output + reshape_bias(input.dim(), bias);
 | 
			
		||||
          output.add_(reshape_bias(input.dim(), bias));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
      } else if (params.use_miopen(input, bias.defined())){
 | 
			
		||||
@ -662,14 +662,14 @@ at::Tensor _convolution(
 | 
			
		||||
          input.contiguous(cudnn_memory_format), weight,
 | 
			
		||||
          params.padding, params.output_padding, params.stride, params.dilation, params.groups, params.benchmark, params.deterministic);
 | 
			
		||||
      if (bias.defined()) {
 | 
			
		||||
        output = output + reshape_bias(input.dim(), bias);
 | 
			
		||||
        output.add_(reshape_bias(input.dim(), bias));
 | 
			
		||||
      }
 | 
			
		||||
    } else {
 | 
			
		||||
      output = at::cudnn_convolution(
 | 
			
		||||
          input.contiguous(cudnn_memory_format), weight,
 | 
			
		||||
          params.padding, params.stride, params.dilation, params.groups, params.benchmark, params.deterministic);
 | 
			
		||||
      if (bias.defined()) {
 | 
			
		||||
        output = output + reshape_bias(input.dim(), bias);
 | 
			
		||||
        output.add_(reshape_bias(input.dim(), bias));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  } else if (params.use_miopen(input, bias.defined())) {
 | 
			
		||||
 | 
			
		||||
@ -70,8 +70,8 @@ struct CAFFE2_API DispatchStub<rT (*)(Args...), T> {
 | 
			
		||||
      // they will still compute the same value for cpu_dispatch_ptr.
 | 
			
		||||
      if (!cpu_dispatch_ptr.load(std::memory_order_relaxed)) {
 | 
			
		||||
        FnPtr tmp_cpu_dispatch_ptr = nullptr;
 | 
			
		||||
        cpu_dispatch_ptr.compare_exchange_weak(
 | 
			
		||||
            tmp_cpu_dispatch_ptr, choose_cpu_impl(), std::memory_order_relaxed);
 | 
			
		||||
        while(!cpu_dispatch_ptr.compare_exchange_weak(
 | 
			
		||||
            tmp_cpu_dispatch_ptr, choose_cpu_impl(), std::memory_order_relaxed));
 | 
			
		||||
      }
 | 
			
		||||
      return (*cpu_dispatch_ptr)(std::forward<ArgTypes>(args)...);
 | 
			
		||||
    } else if (device_type == DeviceType::CUDA) {
 | 
			
		||||
 | 
			
		||||
@ -31,15 +31,6 @@ Tensor nll_loss2d(const Tensor & self, const Tensor & target, const Tensor & wei
 | 
			
		||||
  return std::get<0>(at::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & log_sigmoid_out(Tensor & output, const Tensor & self) {
 | 
			
		||||
  Tensor buffer = at::empty({0}, self.options());
 | 
			
		||||
  return std::get<0>(at::log_sigmoid_forward_out(output, buffer, self));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor log_sigmoid(const Tensor & self) {
 | 
			
		||||
  return std::get<0>(at::log_sigmoid_forward(self));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & thnn_conv2d_out(Tensor & output, const Tensor & self, const Tensor & weight, IntArrayRef kernel_size, const Tensor & bias, IntArrayRef stride, IntArrayRef padding) {
 | 
			
		||||
  Tensor finput = at::empty({0}, self.options());
 | 
			
		||||
  Tensor fgrad_input = at::empty({0}, self.options());
 | 
			
		||||
 | 
			
		||||
@ -533,7 +533,7 @@ Tensor frobenius_norm(const Tensor& self, IntArrayRef dim, bool keepdim) {
 | 
			
		||||
    return at::norm(self, 2, dim, keepdim, self.scalar_type());
 | 
			
		||||
  }
 | 
			
		||||
  if (self.is_complex()){
 | 
			
		||||
    return at::sqrt(at::sum((self.conj() * self).real(), dim, keepdim));
 | 
			
		||||
    return at::sqrt(at::sum(at::real(self.conj() * self), dim, keepdim));
 | 
			
		||||
  } else {
 | 
			
		||||
    return at::sqrt(at::sum((self * self), dim, keepdim));
 | 
			
		||||
  }
 | 
			
		||||
@ -553,7 +553,7 @@ Tensor &frobenius_norm_out(
 | 
			
		||||
    return at::norm_out(result, self, 2, dim, keepdim, self.scalar_type());
 | 
			
		||||
  }
 | 
			
		||||
  if (self.is_complex()){
 | 
			
		||||
    return at::sqrt_out(result, at::sum((self.conj() * self).real(), dim, keepdim));
 | 
			
		||||
    return at::sqrt_out(result, at::sum(at::real(self.conj() * self), dim, keepdim));
 | 
			
		||||
  } else {
 | 
			
		||||
    return at::sqrt_out(result, at::sum((self * self), dim, keepdim));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -799,7 +799,7 @@ static Tensor &std_var_out(Tensor &result, const Tensor &self, IntArrayRef dim,
 | 
			
		||||
 | 
			
		||||
  if (at::isComplexType(self.scalar_type())){
 | 
			
		||||
    ScalarType dtype = c10::toValueType(get_dtype(result, self, {}, true));
 | 
			
		||||
    Tensor real_in = self.real().to(dtype);
 | 
			
		||||
    Tensor real_in = at::real(self).to(dtype);
 | 
			
		||||
    Tensor real_out = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    auto iter = make_reduction("std or var", real_out, real_in, dim, keepdim, dtype);
 | 
			
		||||
    if (iter.numel() == 0) {
 | 
			
		||||
@ -807,7 +807,7 @@ static Tensor &std_var_out(Tensor &result, const Tensor &self, IntArrayRef dim,
 | 
			
		||||
    } else {
 | 
			
		||||
      std_var_stub(iter.device_type(), iter, unbiased, false);
 | 
			
		||||
    }
 | 
			
		||||
    Tensor imag_in = self.imag().to(dtype);
 | 
			
		||||
    Tensor imag_in = at::imag(self).to(dtype);
 | 
			
		||||
    Tensor imag_out = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    iter = make_reduction("std or var", imag_out, imag_in, dim, keepdim, dtype);
 | 
			
		||||
    if (iter.numel() == 0) {
 | 
			
		||||
@ -845,7 +845,7 @@ static std::tuple<Tensor&,Tensor&> std_var_mean_out(const char* fname, Tensor &r
 | 
			
		||||
           ".");
 | 
			
		||||
  if (at::isComplexType(self.scalar_type())){
 | 
			
		||||
    ScalarType dtype = c10::toValueType(get_dtype(result1, self, {}, true));
 | 
			
		||||
    Tensor real_in = self.real().to(dtype);
 | 
			
		||||
    Tensor real_in = at::real(self).to(dtype);
 | 
			
		||||
    Tensor real_out_var = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    Tensor real_out_mean = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    auto iter = make_reduction(fname, real_out_var, real_out_mean, real_in, dim, keepdim, dtype);
 | 
			
		||||
@ -855,7 +855,7 @@ static std::tuple<Tensor&,Tensor&> std_var_mean_out(const char* fname, Tensor &r
 | 
			
		||||
    } else {
 | 
			
		||||
      std_var_stub(iter.device_type(), iter, unbiased, false);
 | 
			
		||||
    }
 | 
			
		||||
    Tensor imag_in = self.imag().to(dtype);
 | 
			
		||||
    Tensor imag_in = at::imag(self).to(dtype);
 | 
			
		||||
    Tensor imag_out_var = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    Tensor imag_out_mean = at::empty({0}, self.options().dtype(dtype));
 | 
			
		||||
    iter = make_reduction(fname, imag_out_var, imag_out_mean, imag_in, dim, keepdim, dtype);
 | 
			
		||||
 | 
			
		||||
@ -85,6 +85,7 @@ inline void setStrided(
 | 
			
		||||
    IntArrayRef size,
 | 
			
		||||
    IntArrayRef stride,
 | 
			
		||||
    int64_t storage_offset) {
 | 
			
		||||
  TORCH_CHECK(size.size() == stride.size(), "mismatch in length of strides and shape");
 | 
			
		||||
  auto* self_ = self.unsafeGetTensorImpl();
 | 
			
		||||
  checkInBoundsForStorage(size, stride, storage_offset, self_->storage());
 | 
			
		||||
 | 
			
		||||
@ -93,7 +94,6 @@ inline void setStrided(
 | 
			
		||||
  self_->set_storage_offset(storage_offset);
 | 
			
		||||
 | 
			
		||||
  /* size and stride */
 | 
			
		||||
  AT_ASSERT(size.size() == stride.size());
 | 
			
		||||
  if (self_->sizes() == size && self_->strides() == stride) {
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -130,6 +130,28 @@ static Tensor reshape_indexer(const Tensor& index, int64_t dims_before, int64_t
 | 
			
		||||
  return index.reshape(shape);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// checks whether index.dtype == int64
 | 
			
		||||
// and self.dtyp == src.dtype if src is a Tensor
 | 
			
		||||
static void scatter_gather_dtype_check(
 | 
			
		||||
  const std::string& method_name,
 | 
			
		||||
  const Tensor& self,
 | 
			
		||||
  const Tensor& index,
 | 
			
		||||
  const c10::optional<const Tensor>& src_opt = c10::nullopt
 | 
			
		||||
) {
 | 
			
		||||
  TORCH_CHECK(
 | 
			
		||||
    index.scalar_type() == at::ScalarType::Long,
 | 
			
		||||
    method_name, "(): Expected dtype int64 for index"
 | 
			
		||||
  );
 | 
			
		||||
 | 
			
		||||
  if (src_opt.has_value()) {
 | 
			
		||||
    auto src = src_opt.value();
 | 
			
		||||
    TORCH_CHECK(
 | 
			
		||||
      self.scalar_type() == src.scalar_type(),
 | 
			
		||||
      method_name, "(): Expected self.dtype to be equal to src.dtype"
 | 
			
		||||
    );
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
AdvancedIndex::AdvancedIndex(const Tensor& src, TensorList indices_list)
 | 
			
		||||
{
 | 
			
		||||
  int64_t element_size_bytes = src.element_size();
 | 
			
		||||
@ -493,40 +515,48 @@ Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, const
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & gather_out_cpu(Tensor & result, const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad) {
 | 
			
		||||
  scatter_gather_dtype_check("gather_out_cpu", self, index, result);
 | 
			
		||||
  result.resize_(index.sizes());
 | 
			
		||||
  gather_stub(result.device().type(), result, self, dim, index);
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor gather_cpu(const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad) {
 | 
			
		||||
  scatter_gather_dtype_check("gather_cpu", self, index);
 | 
			
		||||
  Tensor result = at::empty({0}, self.options());
 | 
			
		||||
  return gather_out_cpu(result, self, dim, index, sparse_grad);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & scatter_cpu_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter_cpu", self, index, src);
 | 
			
		||||
  scatter_stub(self.device().type(), self, dim, index, src);
 | 
			
		||||
  return self;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & scatter_fill_cpu_(Tensor & self, int64_t dim, const Tensor & index, Scalar src) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter_fill_cpu", self, index);
 | 
			
		||||
  scatter_fill_stub(self.device().type(), self, dim, index, src);
 | 
			
		||||
  return self;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter", self, index, source);
 | 
			
		||||
  return self.clone(at::MemoryFormat::Preserve).scatter_(dim, index, source);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, Scalar source) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter", self, index);
 | 
			
		||||
  return self.clone(at::MemoryFormat::Preserve).scatter_(dim, index, source);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor & scatter_add_cpu_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter_add_cpu", self, index, src);
 | 
			
		||||
  scatter_add_stub(self.device().type(), self, dim, index, src);
 | 
			
		||||
  return self;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor scatter_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
 | 
			
		||||
  scatter_gather_dtype_check("scatter_add", self, index, source);
 | 
			
		||||
  return self.clone(at::MemoryFormat::Preserve).scatter_add_(dim, index, source);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -33,7 +33,7 @@ static inline Tensor to_impl(const Tensor& self, const TensorOptions& options, b
 | 
			
		||||
    if (self.is_non_overlapping_and_dense()) {
 | 
			
		||||
      // Copy all strides
 | 
			
		||||
      auto r = at::empty_strided(self.sizes(), self.strides(), options.memory_format(c10::nullopt));
 | 
			
		||||
      r.copy_(self);
 | 
			
		||||
      r.copy_(self, non_blocking);
 | 
			
		||||
      return r;
 | 
			
		||||
    } else {
 | 
			
		||||
      memory_format = self.suggest_memory_format();
 | 
			
		||||
 | 
			
		||||
@ -99,7 +99,7 @@ Tensor _dim_arange(const Tensor& like, int64_t dim) {
 | 
			
		||||
 | 
			
		||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ empty ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
			
		||||
Tensor empty_cpu(IntArrayRef size, const TensorOptions& options_, c10::optional<c10::MemoryFormat> optional_memory_format) {
 | 
			
		||||
 | 
			
		||||
  TORCH_CHECK(!isComplexType(at::typeMetaToScalarType(options_.dtype())), "Complex dtype not supported.");
 | 
			
		||||
  TORCH_CHECK(
 | 
			
		||||
    !(options_.has_memory_format() && optional_memory_format.has_value()),
 | 
			
		||||
    "Cannot set memory_format both in TensorOptions and explicit argument; please delete "
 | 
			
		||||
 | 
			
		||||
@ -638,7 +638,7 @@ void TensorIterator::narrow(int dim, int64_t start, int64_t size) {
 | 
			
		||||
  for (auto& op : operands_) {
 | 
			
		||||
    op.data = ((char*)op.data) + op.stride_bytes[dim] * start;
 | 
			
		||||
  }
 | 
			
		||||
  if (size == 1) {
 | 
			
		||||
  if (size == 1 && !is_reduction_) {
 | 
			
		||||
    coalesce_dimensions();
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -891,10 +891,13 @@ std::unique_ptr<TensorIterator> TensorIterator::split(int dim) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int TensorIterator::get_dim_to_split() const {
 | 
			
		||||
  TORCH_INTERNAL_ASSERT(ndim() >= 1 && shape()[ndim() - 1] >= 2);
 | 
			
		||||
  TORCH_INTERNAL_ASSERT(ndim() >= 1);
 | 
			
		||||
  int64_t max_extent = -1;
 | 
			
		||||
  int dim_to_split = -1;
 | 
			
		||||
  for (int dim = ndim() - 1; dim >= 0; dim--) {
 | 
			
		||||
    if (shape_[dim] == 0) {
 | 
			
		||||
      continue;
 | 
			
		||||
    }
 | 
			
		||||
    int64_t size = shape_[dim];
 | 
			
		||||
    for (auto& op : operands_) {
 | 
			
		||||
      int64_t extent = (size - 1) * op.stride_bytes[dim];
 | 
			
		||||
 | 
			
		||||
@ -98,6 +98,15 @@ Tensor & _cat_out_cpu(Tensor& result, TensorList tensors, int64_t dim) {
 | 
			
		||||
        "output memory locations. Found overlap in input tensor ", i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Dtypes should be the same
 | 
			
		||||
  const auto first_in_cat = tensors[0];
 | 
			
		||||
  for (int64_t i = 1; i < tensors.size(); i++) {
 | 
			
		||||
    TORCH_CHECK(first_in_cat.dtype() == tensors[i].dtype(),
 | 
			
		||||
              "Expected object of scalar type ", first_in_cat.dtype(),
 | 
			
		||||
              " but got scalar type ", tensors[i].dtype(),
 | 
			
		||||
              " for sequence element ", i, ".");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto should_skip = [](const Tensor& t) { return t.numel() == 0 && t.dim() == 1; };
 | 
			
		||||
  for (auto const &tensor : tensors) {
 | 
			
		||||
    if (should_skip(tensor)) {
 | 
			
		||||
 | 
			
		||||
@ -73,11 +73,17 @@ Tensor& abs_(Tensor& self) { return unary_op_impl_(self, at::abs_out); }
 | 
			
		||||
Tensor& angle_out(Tensor& result, const Tensor& self) { return unary_op_impl_out(result, self, angle_stub); }
 | 
			
		||||
Tensor angle(const Tensor& self) { return unary_op_impl(self, at::angle_out); }
 | 
			
		||||
 | 
			
		||||
Tensor& real_out(Tensor& result, const Tensor& self) { return unary_op_impl_out(result, self, real_stub); }
 | 
			
		||||
Tensor real(const Tensor& self) { return unary_op_impl(self, at::real_out); }
 | 
			
		||||
Tensor real(const Tensor& self) {
 | 
			
		||||
  TORCH_CHECK(!self.is_complex(), "real is not yet implemented for complex tensors.");
 | 
			
		||||
  return self;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& imag_out(Tensor& result, const Tensor& self) { return unary_op_impl_out(result, self, imag_stub); }
 | 
			
		||||
Tensor imag(const Tensor& self) { return unary_op_impl(self, at::imag_out); }
 | 
			
		||||
Tensor imag(const Tensor& self) {
 | 
			
		||||
  TORCH_CHECK(false, "imag is not yet implemented.");
 | 
			
		||||
 | 
			
		||||
  // Note: unreachable
 | 
			
		||||
  return at::zeros_like(self);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& conj_out(Tensor& result, const Tensor& self) { return unary_op_impl_out(result, self, conj_stub); }
 | 
			
		||||
Tensor conj(const Tensor& self) { return unary_op_impl(self, at::conj_out); }
 | 
			
		||||
 | 
			
		||||
@ -7,6 +7,7 @@
 | 
			
		||||
#include <ATen/native/TensorIterator.h>
 | 
			
		||||
#include <ATen/native/BinaryOps.h>
 | 
			
		||||
#include <ATen/native/cpu/Loops.h>
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
namespace at { namespace native {
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
@ -87,6 +87,10 @@ static void max_kernel_impl(
 | 
			
		||||
    Tensor& max_indices,
 | 
			
		||||
    const Tensor& self,
 | 
			
		||||
    c10::optional<int64_t> dim) {
 | 
			
		||||
 | 
			
		||||
  TORCH_CHECK(max.scalar_type() == self.scalar_type() && max_indices.scalar_type() == kLong,
 | 
			
		||||
    "Expect dtype ", self.scalar_type(), "and torch.long, but got ", max.scalar_type(), "and", max_indices.scalar_type());
 | 
			
		||||
 | 
			
		||||
  AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(ScalarType::Bool, self.scalar_type(), "max", [&] {
 | 
			
		||||
    Reduction<scalar_t, int64_t>::apply(max, max_indices, self, dim, true);
 | 
			
		||||
  });
 | 
			
		||||
@ -97,6 +101,10 @@ static void min_kernel_impl(
 | 
			
		||||
    Tensor& min_indices,
 | 
			
		||||
    const Tensor& self,
 | 
			
		||||
    c10::optional<int64_t> dim) {
 | 
			
		||||
 | 
			
		||||
  TORCH_CHECK(min.scalar_type() == self.scalar_type() && min_indices.scalar_type() == kLong,
 | 
			
		||||
    "Expect dtype ", self.scalar_type(), "and torch.long, but got ", min.scalar_type(), "and", min_indices.scalar_type());
 | 
			
		||||
 | 
			
		||||
  AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND(ScalarType::Bool, self.scalar_type(), "min", [&] {
 | 
			
		||||
    Reduction<scalar_t, int64_t>::apply(min, min_indices, self, dim, false);
 | 
			
		||||
  });
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,7 @@
 | 
			
		||||
#include <ATen/native/cuda/zmath.cuh>
 | 
			
		||||
#include <ATen/native/TensorIterator.h>
 | 
			
		||||
#include <ATen/native/BinaryOps.h>
 | 
			
		||||
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
// NOTE: CUDA on Windows requires that the enclosing function
 | 
			
		||||
// of a __device__ lambda not have internal linkage.
 | 
			
		||||
@ -69,7 +69,6 @@ void remainder_kernel_cuda(TensorIterator& iter) {
 | 
			
		||||
    AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "remainder_cuda", [&]() {
 | 
			
		||||
      using thrust_t = typename ztype_cuda<scalar_t>::thrust_t;
 | 
			
		||||
      gpu_kernel_with_scalars(iter, []GPU_LAMBDA(thrust_t a, thrust_t b) -> thrust_t {
 | 
			
		||||
        CUDA_KERNEL_ASSERT(b != 0);
 | 
			
		||||
        thrust_t r = a % b;
 | 
			
		||||
        if ((r != 0) && ((r < 0) != (b < 0))) {
 | 
			
		||||
          r += b;
 | 
			
		||||
 | 
			
		||||
@ -358,7 +358,7 @@ void max_pool2d_with_indices_out_cuda_template(
 | 
			
		||||
 | 
			
		||||
  Tensor input = input_.contiguous(memory_format);
 | 
			
		||||
 | 
			
		||||
  const int64_t in_stride_n = input.stride(-4);
 | 
			
		||||
  const int64_t in_stride_n = input_.ndimension() == 4 ? input.stride(-4) : 0;
 | 
			
		||||
  const int64_t in_stride_c = input.stride(-3);
 | 
			
		||||
  const int64_t in_stride_h = input.stride(-2);
 | 
			
		||||
  const int64_t in_stride_w = input.stride(-1);
 | 
			
		||||
@ -506,7 +506,7 @@ void max_pool2d_with_indices_backward_out_cuda_template(
 | 
			
		||||
  const int64_t inputHeight = input.size(-2);
 | 
			
		||||
  const int64_t inputWidth = input.size(-1);
 | 
			
		||||
 | 
			
		||||
  const int64_t in_stride_n = input.stride(-4);
 | 
			
		||||
  const int64_t in_stride_n = input.ndimension() == 4 ? input.stride(-4) : 0;
 | 
			
		||||
  const int64_t in_stride_c = input.stride(-3);
 | 
			
		||||
  const int64_t in_stride_h = input.stride(-2);
 | 
			
		||||
  const int64_t in_stride_w = input.stride(-1);
 | 
			
		||||
 | 
			
		||||
@ -54,7 +54,7 @@ __global__ void EmbeddingBag_updateOutputKernel(
 | 
			
		||||
      scalar_t *weightFeat = weight + featureDim * weight_stride1;
 | 
			
		||||
      int64_t begin = bag == 0 ? 0 : offsets[bag]; // forces first offset to be 0 instead of asserting on it
 | 
			
		||||
      int64_t end = (bag < numBags - 1) ? (offsets[bag + 1]) : numIndices;
 | 
			
		||||
      assert(end >= begin);
 | 
			
		||||
      CUDA_KERNEL_ASSERT(end >= begin);
 | 
			
		||||
 | 
			
		||||
      accscalar_t weightFeatSum = 0;
 | 
			
		||||
      scalar_t weightFeatMax;
 | 
			
		||||
 | 
			
		||||
@ -192,13 +192,13 @@ void index_put_accum_kernel(Tensor & self, TensorList indices, const Tensor & va
 | 
			
		||||
  if (num_indices > 0 && sliceSize > 0) {
 | 
			
		||||
      const bool permuted = !src.is_contiguous();
 | 
			
		||||
      auto src_ = permuted ? src.contiguous() : src;
 | 
			
		||||
      linearIndex = linearIndex.view(-1);
 | 
			
		||||
      linearIndex = linearIndex.reshape(-1);
 | 
			
		||||
      auto sorted_indices = at::empty_like(linearIndex, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
      auto orig_indices = at::empty_like(linearIndex, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
      using device_ptr = thrust::device_ptr<int64_t>;
 | 
			
		||||
      const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
 | 
			
		||||
 | 
			
		||||
      linearIndex.div_(sliceSize);
 | 
			
		||||
      linearIndex.floor_divide_(sliceSize);
 | 
			
		||||
      {
 | 
			
		||||
      sorted_indices.copy_(linearIndex);
 | 
			
		||||
      auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
 | 
			
		||||
 | 
			
		||||
@ -35,13 +35,13 @@ __global__ void renormRowsL1(scalar_t* dist, long rows, long cols) {
 | 
			
		||||
    scalar_t sum = static_cast<scalar_t>(0);
 | 
			
		||||
    for (int64_t col = threadIdx.x; col < cols; col += blockDim.x) {
 | 
			
		||||
      val = dist[row * cols + col];
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(!THCNumerics<scalar_t>::lt(val, zero)); // ! < 0 for NaN handling
 | 
			
		||||
      CUDA_KERNEL_ASSERT(!THCNumerics<scalar_t>::lt(val, zero)); // ! < 0 for NaN handling
 | 
			
		||||
      sum = sum + val;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    sum = reduceBlock(smem, blockDim.x, sum, ReduceAdd<scalar_t>(), zero);
 | 
			
		||||
    if (threadIdx.x == 0) {
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(!THCNumerics<scalar_t>::lt(val, zero)); // ! < 0 for NaN handling
 | 
			
		||||
      CUDA_KERNEL_ASSERT(!THCNumerics<scalar_t>::lt(val, zero)); // ! < 0 for NaN handling
 | 
			
		||||
      smem[0] = sum;
 | 
			
		||||
    }
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
@ -61,7 +61,7 @@ void renormRows(Tensor& t) {
 | 
			
		||||
  int64_t cols = t.size(1);
 | 
			
		||||
 | 
			
		||||
  auto props = at::cuda::getCurrentDeviceProperties();
 | 
			
		||||
  CUDA_ALWAYS_ASSERT(props != NULL);
 | 
			
		||||
  CUDA_KERNEL_ASSERT(props != NULL);
 | 
			
		||||
  int numSM = props->multiProcessorCount;
 | 
			
		||||
  int maxThreads = props->maxThreadsPerBlock;
 | 
			
		||||
 | 
			
		||||
@ -84,7 +84,7 @@ __device__ int binarySearchForMultinomial(scalar_t* cumdist,
 | 
			
		||||
  int start = 0;
 | 
			
		||||
  int end = size;
 | 
			
		||||
  // cumdist[size - 1] = 0 => all zero prob dist
 | 
			
		||||
  CUDA_ALWAYS_ASSERT(cumdist[size - 1] > static_cast<scalar_t>(0));
 | 
			
		||||
  CUDA_KERNEL_ASSERT(cumdist[size - 1] > static_cast<scalar_t>(0));
 | 
			
		||||
 | 
			
		||||
  while (end - start > 0) {
 | 
			
		||||
    int mid = start + (end - start) / 2;
 | 
			
		||||
@ -124,36 +124,33 @@ sampleMultinomialWithReplacement(std::pair<uint64_t, uint64_t> seeds,
 | 
			
		||||
  // search due to divergence. It seems possible to compute multiple
 | 
			
		||||
  // values and limit divergence though later on.
 | 
			
		||||
 | 
			
		||||
  // global index formula for 1D grid of 2D blocks
 | 
			
		||||
  int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
 | 
			
		||||
  // global index formula for 2D grid of 1D blocks
 | 
			
		||||
  int idx = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
  curandStatePhilox4_32_10_t state;
 | 
			
		||||
  curand_init(seeds.first, idx, seeds.second, &state);
 | 
			
		||||
 | 
			
		||||
  // The block determines the distribution for which we generate a point
 | 
			
		||||
  for (int64_t curDist = blockIdx.x;
 | 
			
		||||
  for (int64_t curDist = blockIdx.y;
 | 
			
		||||
       curDist < distributions;
 | 
			
		||||
       curDist += gridDim.x) {
 | 
			
		||||
    for (int sampleBase = 0;
 | 
			
		||||
         sampleBase < totalSamples; sampleBase += blockDim.y) {
 | 
			
		||||
      // The warp determines the sample
 | 
			
		||||
      int sample = sampleBase + threadIdx.y;
 | 
			
		||||
       curDist += gridDim.y) {
 | 
			
		||||
    for (int sample = blockIdx.x*blockDim.x + threadIdx.x;
 | 
			
		||||
         sample < totalSamples; sample += blockDim.x*gridDim.x) {
 | 
			
		||||
 | 
			
		||||
      // All threads participate in this
 | 
			
		||||
      //we are losing 3 out of 4 generated numbers but it's ok
 | 
			
		||||
      //this kernel is not very efficient anyway
 | 
			
		||||
      auto rand = curand_uniform4(&state);
 | 
			
		||||
      scalar_t r = static_cast<scalar_t>(rand.x);
 | 
			
		||||
 | 
			
		||||
      if (threadIdx.x == 0 && sample < totalSamples) {
 | 
			
		||||
        // Find the bucket that a uniform sample lies in
 | 
			
		||||
        int choice = binarySearchForMultinomial<scalar_t>(
 | 
			
		||||
            normDistPrefixSum + curDist * categories,
 | 
			
		||||
            normDist + curDist * categories,
 | 
			
		||||
            categories,
 | 
			
		||||
            r);
 | 
			
		||||
      // Find the bucket that a uniform sample lies in
 | 
			
		||||
      int choice = binarySearchForMultinomial<scalar_t>(
 | 
			
		||||
          normDistPrefixSum + curDist * categories,
 | 
			
		||||
          normDist + curDist * categories,
 | 
			
		||||
          categories,
 | 
			
		||||
          r);
 | 
			
		||||
 | 
			
		||||
      dest[curDist * totalSamples + sample] = choice;
 | 
			
		||||
 | 
			
		||||
        // Torch indices are 1-based
 | 
			
		||||
        dest[curDist * totalSamples + sample] = choice;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -180,17 +177,14 @@ sampleMultinomialWithoutReplacement(std::pair<uint64_t, uint64_t> seeds,
 | 
			
		||||
 | 
			
		||||
  // The block and warp determines the distribution for which we
 | 
			
		||||
  // generate a point
 | 
			
		||||
  for (int64_t curDistBase = blockIdx.x * blockDim.y;
 | 
			
		||||
       curDistBase < distributions;
 | 
			
		||||
       curDistBase += gridDim.x * blockDim.y) {
 | 
			
		||||
    // The warp determines the distribution
 | 
			
		||||
    int64_t curDist = curDistBase + threadIdx.y;
 | 
			
		||||
  for (int64_t curDist = blockIdx.x * blockDim.y + threadIdx.y;
 | 
			
		||||
       curDist < distributions;
 | 
			
		||||
       curDist += gridDim.x * blockDim.y) {
 | 
			
		||||
 | 
			
		||||
    // All threads must participate in this
 | 
			
		||||
    auto rand = curand_uniform4(&state);
 | 
			
		||||
    scalar_t r = static_cast<scalar_t>(rand.x);
 | 
			
		||||
 | 
			
		||||
    if (threadIdx.x == 0 && curDist < distributions) {
 | 
			
		||||
    if (threadIdx.x == 0) {
 | 
			
		||||
      // Find the bucket that a uniform sample lies in
 | 
			
		||||
      int choice = binarySearchForMultinomial<scalar_t>(
 | 
			
		||||
          normDistPrefixSum + curDist * categories,
 | 
			
		||||
@ -240,9 +234,9 @@ sampleMultinomialOnce(int64_t* dest,
 | 
			
		||||
    scalar_t val;
 | 
			
		||||
    for (int cat = threadIdx.x; cat < categories; cat += blockDim.x) {
 | 
			
		||||
      val = dist[curDist * stride_dist + cat * stride_categories];
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(val >= zero);
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(!THCNumerics<scalar_t>::isinf(val));
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(!THCNumerics<scalar_t>::isnan(val));
 | 
			
		||||
      CUDA_KERNEL_ASSERT(val >= zero);
 | 
			
		||||
      CUDA_KERNEL_ASSERT(!THCNumerics<scalar_t>::isinf(val));
 | 
			
		||||
      CUDA_KERNEL_ASSERT(!THCNumerics<scalar_t>::isnan(val));
 | 
			
		||||
      sum = sum + static_cast<accscalar_t>(val);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@ -252,8 +246,8 @@ sampleMultinomialOnce(int64_t* dest,
 | 
			
		||||
    // Broadcast sum and sample value
 | 
			
		||||
    if (threadIdx.x == 0) {
 | 
			
		||||
      // Make sure the sum of our distribution didn't overflow
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(!THCNumerics<accscalar_t>::isinf(sum));
 | 
			
		||||
      CUDA_ALWAYS_ASSERT(sum > accZero);
 | 
			
		||||
      CUDA_KERNEL_ASSERT(!THCNumerics<accscalar_t>::isinf(sum));
 | 
			
		||||
      CUDA_KERNEL_ASSERT(sum > accZero);
 | 
			
		||||
 | 
			
		||||
      asmem[0] = sum;
 | 
			
		||||
      smem[0] = sampled[curDist];
 | 
			
		||||
@ -363,7 +357,7 @@ void multinomial_kernel_impl(Tensor& result, const Tensor& self, const int64_t n
 | 
			
		||||
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(self_v.scalar_type(), "multinomial_kernel_cuda", [&] {
 | 
			
		||||
    using accscalar_t = at::acc_type<scalar_t, true>;
 | 
			
		||||
    auto props = at::cuda::getCurrentDeviceProperties();
 | 
			
		||||
    CUDA_ALWAYS_ASSERT(props != NULL);
 | 
			
		||||
    CUDA_KERNEL_ASSERT(props != NULL);
 | 
			
		||||
    int numSM = props->multiProcessorCount;
 | 
			
		||||
    int maxThreads = props->maxThreadsPerBlock;
 | 
			
		||||
    int maxShared = props->sharedMemPerBlock;
 | 
			
		||||
@ -415,26 +409,27 @@ void multinomial_kernel_impl(Tensor& result, const Tensor& self, const int64_t n
 | 
			
		||||
      std::pair<uint64_t, uint64_t> rng_engine_inputs;
 | 
			
		||||
 | 
			
		||||
      if (with_replacement) {
 | 
			
		||||
        // Binary search is warp divergent (so effectively we're running
 | 
			
		||||
        // with just a single thread), but for better utilization,
 | 
			
		||||
        // we need each block to have at least 4 warps.
 | 
			
		||||
        dim3 block(128);
 | 
			
		||||
 | 
			
		||||
        // Each block will generate a sample from one
 | 
			
		||||
        // distribution concurrently.
 | 
			
		||||
        int grid_y=std::min<int>(numDist, at::cuda::getCurrentDeviceProperties()->maxGridSize[1]);
 | 
			
		||||
        dim3 grid((n_sample-1)/block.x+1, grid_y);
 | 
			
		||||
        {
 | 
			
		||||
          // See Note [Acquire lock when using random generators]
 | 
			
		||||
          std::lock_guard<std::mutex> lock(gen->mutex_);
 | 
			
		||||
 | 
			
		||||
          // each thread will utilize one random, however, since we have to use
 | 
			
		||||
          // each thread generates a single sample for (numdist/numblocks.y) distributions, however, since we have to use
 | 
			
		||||
          // curand_uniform4 (See Note [Register spilling in curand call for CUDA < 10]),
 | 
			
		||||
          // offset is 4.
 | 
			
		||||
          rng_engine_inputs = gen->philox_engine_inputs(4);
 | 
			
		||||
          // offset is 4 times that.
 | 
			
		||||
          auto offset = ((numDist-1)/grid.y+1)*4;
 | 
			
		||||
          rng_engine_inputs = gen->philox_engine_inputs(offset);
 | 
			
		||||
        }
 | 
			
		||||
        // Sample with replacement
 | 
			
		||||
 | 
			
		||||
        // Binary search is warp divergent (so effectively we're running
 | 
			
		||||
        // with just a single thread), but for better utilization,
 | 
			
		||||
        // we need each block to have at least 4 warps.
 | 
			
		||||
        dim3 block(32, 4);
 | 
			
		||||
 | 
			
		||||
        // Each warp in a block will generate a sample from one
 | 
			
		||||
        // distribution concurrently.
 | 
			
		||||
        dim3 grid(numDist < MAX_NUM_BLOCKS ? numDist : MAX_NUM_BLOCKS);
 | 
			
		||||
 | 
			
		||||
        sampleMultinomialWithReplacement
 | 
			
		||||
            <<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
 | 
			
		||||
            rng_engine_inputs,
 | 
			
		||||
@ -470,10 +465,11 @@ void multinomial_kernel_impl(Tensor& result, const Tensor& self, const int64_t n
 | 
			
		||||
            // See Note [Acquire lock when using random generators]
 | 
			
		||||
            std::lock_guard<std::mutex> lock(gen->mutex_);
 | 
			
		||||
 | 
			
		||||
            // each thread will utilize one random, however, since we have to use
 | 
			
		||||
            // each thread will utilize distributions/(gridDim.x*blockDim.y) randoms, however, since we have to use
 | 
			
		||||
            // curand_uniform4 (See Note [Register spilling in curand call for CUDA < 10]),
 | 
			
		||||
            // offset is 4.
 | 
			
		||||
            rng_engine_inputs = gen->philox_engine_inputs(4);
 | 
			
		||||
            // offset is 4 times that.
 | 
			
		||||
            auto offset = ((numDist-1)/(grid.x*block.y)+1)*4;
 | 
			
		||||
            rng_engine_inputs = gen->philox_engine_inputs(offset);
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          // The kernel can only draw one sample before we have to
 | 
			
		||||
 | 
			
		||||
@ -431,13 +431,12 @@ __global__ void batch_norm_backward_reduce_kernel(
 | 
			
		||||
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean_dy,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean_dy_xmu,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
 | 
			
		||||
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias) {
 | 
			
		||||
 | 
			
		||||
  index_t plane = blockIdx.x;
 | 
			
		||||
  index_t N = input.size(0) * input.size(2);
 | 
			
		||||
 | 
			
		||||
  stat_accscalar_t r_mean = mean[plane];
 | 
			
		||||
  stat_accscalar_t factor = invstd[plane];
 | 
			
		||||
@ -446,7 +445,6 @@ __global__ void batch_norm_backward_reduce_kernel(
 | 
			
		||||
  Float2<input_scalar_t, stat_accscalar_t> res = reduce<Float2<input_scalar_t, stat_accscalar_t>, GradOp<input_scalar_t, stat_accscalar_t,
 | 
			
		||||
                                                                                   GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>>>(g, grad_output, plane);
 | 
			
		||||
 | 
			
		||||
  stat_accscalar_t norm = stat_accscalar_t(1) / N;
 | 
			
		||||
  if (threadIdx.x == 0) {
 | 
			
		||||
    if (grad_weight.size(0) > 0) {
 | 
			
		||||
      grad_weight[plane] = static_cast<stat_scalar_t>(res.v2 * factor);
 | 
			
		||||
@ -454,11 +452,11 @@ __global__ void batch_norm_backward_reduce_kernel(
 | 
			
		||||
    if (grad_bias.size(0) > 0) {
 | 
			
		||||
      grad_bias[plane] = static_cast<stat_scalar_t>(res.v1);
 | 
			
		||||
    }
 | 
			
		||||
    if (mean_dy.size(0) > 0) {
 | 
			
		||||
      mean_dy[plane] = static_cast<stat_accscalar_t>(res.v1 * norm);
 | 
			
		||||
    if (sum_dy.size(0) > 0) {
 | 
			
		||||
      sum_dy[plane] = static_cast<stat_accscalar_t>(res.v1);
 | 
			
		||||
    }
 | 
			
		||||
    if (mean_dy_xmu.size(0) > 0) {
 | 
			
		||||
      mean_dy_xmu[plane] = static_cast<stat_accscalar_t>(res.v2 * norm);
 | 
			
		||||
    if (sum_dy_xmu.size(0) > 0) {
 | 
			
		||||
      sum_dy_xmu[plane] = static_cast<stat_accscalar_t>(res.v2);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -740,16 +738,16 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_templ
 | 
			
		||||
 | 
			
		||||
  using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
 | 
			
		||||
  int64_t n_input = input_.size(1);
 | 
			
		||||
  Tensor mean_dy_;
 | 
			
		||||
  Tensor mean_dy_xmu_;
 | 
			
		||||
  Tensor sum_dy_;
 | 
			
		||||
  Tensor sum_dy_xmu_;
 | 
			
		||||
  Tensor grad_weight_;
 | 
			
		||||
  Tensor grad_bias_;
 | 
			
		||||
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
 | 
			
		||||
  auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
 | 
			
		||||
 | 
			
		||||
  if (input_g) {
 | 
			
		||||
    mean_dy_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
    mean_dy_xmu_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
    sum_dy_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
    sum_dy_xmu_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
 | 
			
		||||
  }
 | 
			
		||||
  if (weight_g) {
 | 
			
		||||
    grad_weight_ = at::empty({n_input}, weight_.options());
 | 
			
		||||
@ -764,8 +762,8 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_templ
 | 
			
		||||
  auto grad_bias = packed_accessor_or_dummy<stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_);
 | 
			
		||||
  auto mean = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_);
 | 
			
		||||
  auto invstd = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_);
 | 
			
		||||
  auto mean_dy = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_dy_);
 | 
			
		||||
  auto mean_dy_xmu = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_dy_xmu_);
 | 
			
		||||
  auto sum_dy = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_);
 | 
			
		||||
  auto sum_dy_xmu = packed_accessor_or_dummy<stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_);
 | 
			
		||||
 | 
			
		||||
  auto batch_size = input_reshaped.size(0);
 | 
			
		||||
  auto feature_size = input_reshaped.size(2);
 | 
			
		||||
@ -778,10 +776,10 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_templ
 | 
			
		||||
  const dim3 grid(n_input);
 | 
			
		||||
 | 
			
		||||
  batch_norm_backward_reduce_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<grid, block, 0, stream>>>
 | 
			
		||||
    (input, grad_output, mean, invstd, mean_dy, mean_dy_xmu, grad_weight, grad_bias);
 | 
			
		||||
    (input, grad_output, mean, invstd, sum_dy, sum_dy_xmu, grad_weight, grad_bias);
 | 
			
		||||
  AT_CUDA_CHECK(cudaGetLastError());
 | 
			
		||||
 | 
			
		||||
  return std::make_tuple(mean_dy_, mean_dy_xmu_, grad_weight_, grad_bias_);
 | 
			
		||||
  return std::make_tuple(sum_dy_, sum_dy_xmu_, grad_weight_, grad_bias_);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
 | 
			
		||||
 | 
			
		||||
@ -307,6 +307,15 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
                "tensor ", i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Dtypes should be the same
 | 
			
		||||
  const auto first_in_cat = inputs[0];
 | 
			
		||||
  for (int64_t i = 1; i < inputs.size(); i++) {
 | 
			
		||||
    TORCH_CHECK(first_in_cat.dtype() == inputs[i].dtype(),
 | 
			
		||||
              "Expected object of scalar type ", first_in_cat.dtype(),
 | 
			
		||||
              " but got scalar type ", inputs[i].dtype(),
 | 
			
		||||
              " for sequence element ", i, ".");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < inputs.size(); i++)
 | 
			
		||||
  {
 | 
			
		||||
    if (should_skip(inputs[i])) {
 | 
			
		||||
@ -325,6 +334,12 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
  TORCH_CHECK(inputs.size() > 0, "invalid number of inputs ", inputs.size());
 | 
			
		||||
  TORCH_CHECK(dimension >= 0, "invalid dimension ", dimension);
 | 
			
		||||
 | 
			
		||||
  for (const Tensor& t: inputs) {
 | 
			
		||||
    TORCH_CHECK(t.device() == notSkippedTensor->device(),
 | 
			
		||||
                "All input tensors must be on the same device. Received ",
 | 
			
		||||
                t.device(), " and ", notSkippedTensor->device());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  c10::MemoryFormat memory_format = compute_output_memory_format(inputs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int64_t> size(notSkippedTensor->sizes().vec());
 | 
			
		||||
@ -355,17 +370,11 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
  // 4. The number of dimensions is <= 4
 | 
			
		||||
  // 5. All input tensors are contiguous (output tensor may be non-contig)
 | 
			
		||||
  // 6. All input tensors can use 32-bit indexing
 | 
			
		||||
  // 7. All input tensors are on the same device
 | 
			
		||||
 | 
			
		||||
  const bool all32BitIndexable = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [] (const Tensor& t) {
 | 
			
		||||
      return at::cuda::detail::canUse32BitIndexMath(t);
 | 
			
		||||
    });
 | 
			
		||||
  Device firstDevice = notSkippedTensor->device();
 | 
			
		||||
  const bool allSameDevice = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [firstDevice](const Tensor& t) {
 | 
			
		||||
      return t.device() == firstDevice;
 | 
			
		||||
    });
 | 
			
		||||
  const bool allContiguous = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [=](const Tensor& t) {
 | 
			
		||||
      return !t.defined() || t.is_contiguous(memory_format);
 | 
			
		||||
@ -375,8 +384,7 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
      out.dim() <= CAT_ARRAY_MAX_INPUT_DIMS &&
 | 
			
		||||
      at::cuda::detail::canUse32BitIndexMath(out) &&
 | 
			
		||||
      allContiguous &&
 | 
			
		||||
      all32BitIndexable &&
 | 
			
		||||
      allSameDevice) {
 | 
			
		||||
      all32BitIndexable) {
 | 
			
		||||
 | 
			
		||||
    AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
 | 
			
		||||
        at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16,
 | 
			
		||||
 | 
			
		||||
@ -65,7 +65,7 @@ struct TopKTypeConfig<int16_t> {
 | 
			
		||||
  typedef uint32_t RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(int16_t v) {
 | 
			
		||||
    assert(sizeof(short) == 2);
 | 
			
		||||
    static_assert(sizeof(short) == 2, "");
 | 
			
		||||
    return 32768u + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -79,7 +79,7 @@ struct TopKTypeConfig<int32_t> {
 | 
			
		||||
  typedef uint32_t RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(int32_t v) {
 | 
			
		||||
    assert(sizeof(int) == 4);
 | 
			
		||||
    static_assert(sizeof(int) == 4, "");
 | 
			
		||||
    return 2147483648u + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -93,7 +93,7 @@ struct TopKTypeConfig<int64_t> {
 | 
			
		||||
  typedef uint64_t RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(int64_t v) {
 | 
			
		||||
    assert(sizeof(int64_t) == 8);
 | 
			
		||||
    static_assert(sizeof(int64_t) == 8, "");
 | 
			
		||||
    return 9223372036854775808ull + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -125,7 +125,7 @@ struct TopKTypeConfig<at::Half> {
 | 
			
		||||
  static inline __device__ RadixType convert(at::Half v) {
 | 
			
		||||
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
 | 
			
		||||
    RadixType x = __half_as_ushort(v);
 | 
			
		||||
    RadixType mask = -((x >> 15)) | 0x8000;
 | 
			
		||||
    RadixType mask = (x & 0x00008000) ? 0x0000ffff : 0x00008000;
 | 
			
		||||
    return (v == v) ? (x ^ mask) : 0xffff;
 | 
			
		||||
#else
 | 
			
		||||
    assert(false);
 | 
			
		||||
@ -135,7 +135,7 @@ struct TopKTypeConfig<at::Half> {
 | 
			
		||||
 | 
			
		||||
  static inline __device__ at::Half deconvert(RadixType v) {
 | 
			
		||||
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
 | 
			
		||||
    RadixType mask = ((v >> 15) - 1) | 0x8000;
 | 
			
		||||
    RadixType mask = (v & 0x00008000) ? 0x00008000 : 0x0000ffff;
 | 
			
		||||
    return __ushort_as_half(v ^ mask);
 | 
			
		||||
#else
 | 
			
		||||
    assert(false);
 | 
			
		||||
 | 
			
		||||
@ -44,6 +44,7 @@ Tensor& eye_out_cuda(Tensor& result, int64_t n, int64_t m) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor empty_cuda(IntArrayRef size, const TensorOptions& options, c10::optional<MemoryFormat> optional_memory_format) {
 | 
			
		||||
  TORCH_CHECK(!isComplexType(at::typeMetaToScalarType(options.dtype())), "Complex dtype not supported.");
 | 
			
		||||
  AT_ASSERT(options.device().type() == at::DeviceType::CUDA);
 | 
			
		||||
  TORCH_INTERNAL_ASSERT(impl::variable_excluded_from_dispatch());
 | 
			
		||||
  TORCH_CHECK(!options.pinned_memory(), "Only dense CPU tensors can be pinned");
 | 
			
		||||
 | 
			
		||||
@ -238,18 +238,12 @@
 | 
			
		||||
 | 
			
		||||
- func: real(Tensor self) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: real.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
 | 
			
		||||
  variants: function
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: imag(Tensor self) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: imag.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
 | 
			
		||||
  variants: function
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: conj(Tensor self) -> Tensor
 | 
			
		||||
@ -2872,7 +2866,7 @@
 | 
			
		||||
 | 
			
		||||
- func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide
 | 
			
		||||
    CUDA: true_divide
 | 
			
		||||
@ -2880,6 +2874,15 @@
 | 
			
		||||
    SparseCUDA: true_divide_sparse
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
 | 
			
		||||
  variants: method
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide_
 | 
			
		||||
    CUDA: true_divide_
 | 
			
		||||
    SparseCPU: true_divide_sparse_
 | 
			
		||||
    SparseCUDA: true_divide_sparse_
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide_out
 | 
			
		||||
@ -2890,7 +2893,11 @@
 | 
			
		||||
 | 
			
		||||
- func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
 | 
			
		||||
  variants: method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: trunc(Tensor self) -> Tensor
 | 
			
		||||
 | 
			
		||||
@ -272,6 +272,10 @@ SparseTensor& true_divide_out_sparse_scalar(
 | 
			
		||||
  return true_divide_out_sparse_zerodim(result, dividend, wrapped_scalar_tensor(divisor));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_sparse_(Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return true_divide_out_sparse_zerodim(self, self, divisor);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
// floor_divide(SparseTensor, Scalar)
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
@ -138,7 +138,7 @@ SparseTensor coalesce_sparse_cuda(const SparseTensor& self) {
 | 
			
		||||
      // broadcasting logic; instead, it will blast the elements from one
 | 
			
		||||
      // to the other so long as the numel is the same
 | 
			
		||||
      indicesSlice.copy_(indices1D);
 | 
			
		||||
      indices1D.div_(self.size(d));
 | 
			
		||||
      indices1D.floor_divide_(self.size(d));
 | 
			
		||||
      indicesSlice.add_(indices1D, -self.size(d));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -14,7 +14,7 @@ namespace xnnpack {
 | 
			
		||||
namespace {
 | 
			
		||||
torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_class() {
 | 
			
		||||
  static auto register_linear_op_context_class =
 | 
			
		||||
      torch::jit::class_<XNNPackLinearOpContext>("XNNPackLinearOpContext")
 | 
			
		||||
      torch::jit::class_<XNNPackLinearOpContext>("xnnpack", "XNNPackLinearOpContext")
 | 
			
		||||
          .def_pickle(
 | 
			
		||||
              [](const c10::intrusive_ptr<XNNPackLinearOpContext>& op_context)
 | 
			
		||||
                  -> SerializationTypeLinearPrePack { // __getstate__
 | 
			
		||||
@ -38,7 +38,7 @@ torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_cl
 | 
			
		||||
 | 
			
		||||
torch::jit::class_<XNNPackConv2dOpContext> register_xnnpack_conv2d_op_context_class() {
 | 
			
		||||
  static auto register_conv2d_op_context_class =
 | 
			
		||||
      torch::jit::class_<XNNPackConv2dOpContext>("XNNPackConv2dOpContext")
 | 
			
		||||
      torch::jit::class_<XNNPackConv2dOpContext>("xnnpack", "XNNPackConv2dOpContext")
 | 
			
		||||
          .def_pickle(
 | 
			
		||||
              [](const c10::intrusive_ptr<XNNPackConv2dOpContext>& op_context)
 | 
			
		||||
                  -> SerializationTypeConv2dPrePack { // __getstate__
 | 
			
		||||
@ -74,25 +74,25 @@ static auto registry =
 | 
			
		||||
  // Registering under _xnnpack namespace for now. As we add more backend requiring similar functionality
 | 
			
		||||
  // We can refactor the code and use a better namespace.
 | 
			
		||||
    torch::RegisterOperators()
 | 
			
		||||
        .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.XNNPackLinearOpContext",
 | 
			
		||||
        .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.xnnpack.XNNPackLinearOpContext",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::linear::LinearPrePack>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.XNNPackLinearOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
        .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.xnnpack.XNNPackLinearOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::linear::LinearPacked>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::conv2d_prepack(Tensor W, Tensor? B, int[2] stride, "
 | 
			
		||||
            "int[2] padding, int[2] dilation, int groups) "
 | 
			
		||||
            "-> __torch__.torch.classes.XNNPackConv2dOpContext",
 | 
			
		||||
            "-> __torch__.torch.classes.xnnpack.XNNPackConv2dOpContext",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::convolution2d::Conv2dPrePack>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::conv2d_packed(Tensor X, "
 | 
			
		||||
            "__torch__.torch.classes.XNNPackConv2dOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            "__torch__.torch.classes.xnnpack.XNNPackConv2dOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::convolution2d::Conv2dPacked>(
 | 
			
		||||
 | 
			
		||||
@ -423,6 +423,85 @@ class CAFFE2_API Tensor {
 | 
			
		||||
 | 
			
		||||
  // ~~~~~ Autograd API ~~~~~
 | 
			
		||||
 | 
			
		||||
  /// \fn bool is_leaf() const;
 | 
			
		||||
  ///
 | 
			
		||||
  /// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
 | 
			
		||||
  ///
 | 
			
		||||
  /// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
 | 
			
		||||
  /// created by the user. This means that they are not the result of an operation and so
 | 
			
		||||
  /// `grad_fn()` is `nullptr`.
 | 
			
		||||
  ///
 | 
			
		||||
  /// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
 | 
			
		||||
  /// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
 | 
			
		||||
  ///
 | 
			
		||||
  /// Example:
 | 
			
		||||
  /// @code
 | 
			
		||||
  /// auto a = torch::rand(10, torch::requires_grad());
 | 
			
		||||
  /// std::cout << a.is_leaf() << std::endl; // prints `true`
 | 
			
		||||
  ///
 | 
			
		||||
  /// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
 | 
			
		||||
  /// std::cout << b.is_leaf() << std::endl; // prints `false`
 | 
			
		||||
  /// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
 | 
			
		||||
  ///
 | 
			
		||||
  /// auto c = torch::rand(10, torch::requires_grad()) + 2;
 | 
			
		||||
  /// std::cout << c.is_leaf() << std::endl; // prints `false`
 | 
			
		||||
  /// // c was created by the addition operation
 | 
			
		||||
  ///
 | 
			
		||||
  /// auto d = torch::rand(10).cuda();
 | 
			
		||||
  /// std::cout << d.is_leaf() << std::endl; // prints `true`
 | 
			
		||||
  /// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
 | 
			
		||||
  ///
 | 
			
		||||
  /// auto e = torch::rand(10).cuda().requires_grad_();
 | 
			
		||||
  /// std::cout << e.is_leaf() << std::endl; // prints `true`
 | 
			
		||||
  /// // e requires gradients and has no operations creating it
 | 
			
		||||
  ///
 | 
			
		||||
  /// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
 | 
			
		||||
  /// std::cout << f.is_leaf() << std::endl; // prints `true`
 | 
			
		||||
  /// // f requires grad, has no operation creating it
 | 
			
		||||
  /// @endcode
 | 
			
		||||
 | 
			
		||||
  /// \fn void backward(const Tensor & gradient={}, bool keep_graph=false, bool create_graph=false) const;
 | 
			
		||||
  ///
 | 
			
		||||
  /// Computes the gradient of current tensor with respect to graph leaves.
 | 
			
		||||
  ///
 | 
			
		||||
  /// The graph is differentiated using the chain rule. If the tensor is
 | 
			
		||||
  /// non-scalar (i.e. its data has more than one element) and requires
 | 
			
		||||
  /// gradient, the function additionally requires specifying ``gradient``.
 | 
			
		||||
  /// It should be a tensor of matching type and location, that contains
 | 
			
		||||
  /// the gradient of the differentiated function w.r.t. this Tensor.
 | 
			
		||||
  ///
 | 
			
		||||
  /// This function accumulates gradients in the leaves - you might need to
 | 
			
		||||
  /// zero them before calling it.
 | 
			
		||||
  ///
 | 
			
		||||
  /// \param gradient Gradient w.r.t. the
 | 
			
		||||
  ///     tensor. If it is a tensor, it will be automatically converted
 | 
			
		||||
  ///     to a Tensor that does not require grad unless ``create_graph`` is True.
 | 
			
		||||
  ///     None values can be specified for scalar Tensors or ones that
 | 
			
		||||
  ///     don't require grad. If a None value would be acceptable then
 | 
			
		||||
  ///     this argument is optional.
 | 
			
		||||
  /// \param keep_graph If ``false``, the graph used to compute
 | 
			
		||||
  ///     the grads will be freed. Note that in nearly all cases setting
 | 
			
		||||
  ///     this option to True is not needed and often can be worked around
 | 
			
		||||
  ///     in a much more efficient way. Defaults to the value of
 | 
			
		||||
  ///     ``create_graph``.
 | 
			
		||||
  /// \param create_graph If ``true``, graph of the derivative will
 | 
			
		||||
  ///     be constructed, allowing to compute higher order derivative
 | 
			
		||||
  ///     products. Defaults to ``false``.
 | 
			
		||||
 | 
			
		||||
  /// \fn Tensor detach() const;
 | 
			
		||||
  ///
 | 
			
		||||
  /// Returns a new Tensor, detached from the current graph.
 | 
			
		||||
  /// The result will never require gradient.
 | 
			
		||||
 | 
			
		||||
  /// \fn Tensor & detach_() const;
 | 
			
		||||
  ///
 | 
			
		||||
  /// Detaches the Tensor from the graph that created it, making it a leaf.
 | 
			
		||||
  /// Views cannot be detached in-place.
 | 
			
		||||
 | 
			
		||||
  /// \fn void retain_grad() const;
 | 
			
		||||
  ///
 | 
			
		||||
  /// Enables .grad() for non-leaf Tensors.
 | 
			
		||||
 | 
			
		||||
  Tensor& set_requires_grad(bool requires_grad) {
 | 
			
		||||
    impl_->set_requires_grad(requires_grad);
 | 
			
		||||
    return *this;
 | 
			
		||||
@ -431,9 +510,16 @@ class CAFFE2_API Tensor {
 | 
			
		||||
    return impl_->requires_grad();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Return a mutable reference to the gradient. This is conventionally
 | 
			
		||||
  /// used as `t.grad() = x` to set a gradient to a completely new tensor.
 | 
			
		||||
  Tensor& grad() {
 | 
			
		||||
    return impl_->grad();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// This function returns an undefined tensor by default and returns a defined tensor
 | 
			
		||||
  /// the first time a call to `backward()` computes gradients for this Tensor.
 | 
			
		||||
  /// The attribute will then contain the gradients computed and future calls
 | 
			
		||||
  /// to `backward()` will accumulate (add) gradients into it.
 | 
			
		||||
  const Tensor& grad() const {
 | 
			
		||||
    return impl_->grad();
 | 
			
		||||
  }
 | 
			
		||||
@ -505,11 +591,38 @@ class CAFFE2_API Tensor {
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  using hook_return_var_t = std::enable_if_t<std::is_same<typename std::result_of<T&(Tensor)>::type, Tensor>::value, unsigned>;
 | 
			
		||||
 | 
			
		||||
  // Returns the index of the hook in the list which can be used to remove hook
 | 
			
		||||
  // Register a hook with no return value
 | 
			
		||||
  /// Registers a backward hook.
 | 
			
		||||
  ///
 | 
			
		||||
  /// The hook will be called every time a gradient with respect to the Tensor is computed.
 | 
			
		||||
  /// The hook should have one of the following signature:
 | 
			
		||||
  /// ```
 | 
			
		||||
  /// hook(Tensor grad) -> Tensor
 | 
			
		||||
  /// ```
 | 
			
		||||
  /// ```
 | 
			
		||||
  /// hook(Tensor grad) -> void
 | 
			
		||||
  /// ```
 | 
			
		||||
  /// The hook should not modify its argument, but it can optionally return a new gradient
 | 
			
		||||
  /// which will be used in place of `grad`.
 | 
			
		||||
  ///
 | 
			
		||||
  /// This function returns the index of the hook in the list which can be used to remove hook.
 | 
			
		||||
  ///
 | 
			
		||||
  /// Example:
 | 
			
		||||
  /// @code
 | 
			
		||||
  /// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
 | 
			
		||||
  /// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
 | 
			
		||||
  /// v.backward(torch::tensor({1., 2., 3.}));
 | 
			
		||||
  /// // This prints:
 | 
			
		||||
  /// // ```
 | 
			
		||||
  /// //  2
 | 
			
		||||
  /// //  4
 | 
			
		||||
  /// //  6
 | 
			
		||||
  /// // [ CPUFloatType{3} ]
 | 
			
		||||
  /// // ```
 | 
			
		||||
  /// std::cout << v.grad() << std::endl;
 | 
			
		||||
  /// v.remove_hook(h);  // removes the hook
 | 
			
		||||
  /// @endcode
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  hook_return_void_t<T> register_hook(T&& hook) const;
 | 
			
		||||
  // Register a hook with variable return value
 | 
			
		||||
  template <typename T>
 | 
			
		||||
  hook_return_var_t<T> register_hook(T&& hook) const;
 | 
			
		||||
 | 
			
		||||
@ -518,7 +631,7 @@ private:
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  // Remove hook at given position
 | 
			
		||||
  /// Remove hook at given position
 | 
			
		||||
  void remove_hook(unsigned pos) const;
 | 
			
		||||
 | 
			
		||||
  // View Variables
 | 
			
		||||
 | 
			
		||||
@ -69,12 +69,6 @@
 | 
			
		||||
# define TH_UNUSED
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
#else
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef M_PI
 | 
			
		||||
# define M_PI 3.14159265358979323846
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@ -9,7 +9,7 @@ set(extra_src)
 | 
			
		||||
# loop over all types
 | 
			
		||||
foreach(THC_TYPE Byte Char Short Int Long Half Float Double)
 | 
			
		||||
   # loop over files which need to be split between types (because of long compile times)
 | 
			
		||||
   foreach(THC_FILE TensorSort TensorMathPointwise TensorMathReduce TensorMasked)
 | 
			
		||||
   foreach(THC_FILE TensorSort TensorMathPointwise TensorMathReduce TensorMasked TensorTopK)
 | 
			
		||||
      if(NOT EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/generated/THC${THC_FILE}${THC_TYPE}.cu")
 | 
			
		||||
         FILE(WRITE "${CMAKE_CURRENT_SOURCE_DIR}/generated/THC${THC_FILE}${THC_TYPE}.cu"
 | 
			
		||||
           "#include <THC/THC${THC_FILE}.cuh>\n#include <THC/THCTensor.hpp>\n\n#include <THC/generic/THC${THC_FILE}.cu>\n#include <THC/THCGenerate${THC_TYPE}Type.h>\n")
 | 
			
		||||
@ -56,7 +56,6 @@ set(ATen_CUDA_SRCS ${ATen_CUDA_SRCS}
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorIndex.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorRandom.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorScatterGather.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorTopK.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorSort.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCSortUtils.cu
 | 
			
		||||
  ${CMAKE_CURRENT_SOURCE_DIR}/THCTensorMode.cu
 | 
			
		||||
 | 
			
		||||
@ -73,7 +73,7 @@ TensorInfo<T, IndexType>::TensorInfo(T* p,
 | 
			
		||||
template <typename T, typename IndexType>
 | 
			
		||||
void
 | 
			
		||||
TensorInfo<T, IndexType>::reduceDim(int dim) {
 | 
			
		||||
  assert(dim < dims && dim >= 0);
 | 
			
		||||
  TORCH_INTERNAL_ASSERT(dim < dims && dim >= 0);
 | 
			
		||||
  sizes[dim] = 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -81,7 +81,7 @@ template <typename T, typename IndexType>
 | 
			
		||||
int
 | 
			
		||||
TensorInfo<T, IndexType>::collapseDims(const int excludeDim) {
 | 
			
		||||
 | 
			
		||||
  assert(excludeDim >= -1 && excludeDim < dims);
 | 
			
		||||
  TORCH_INTERNAL_ASSERT(excludeDim >= -1 && excludeDim < dims);
 | 
			
		||||
 | 
			
		||||
  int stopDim = (excludeDim == -1) ? dims : excludeDim;
 | 
			
		||||
  int newIndex = -1;
 | 
			
		||||
 | 
			
		||||
@ -1,19 +0,0 @@
 | 
			
		||||
#include <THC/THC.h>
 | 
			
		||||
#include <THC/THCReduceApplyUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorCopy.h>
 | 
			
		||||
#include <THC/THCTensorMath.h>
 | 
			
		||||
#include <THC/THCAsmUtils.cuh>
 | 
			
		||||
#include <THC/THCScanUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorTypeUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorMathReduce.cuh>
 | 
			
		||||
#include <ATen/WrapDimUtils.h>
 | 
			
		||||
#include <algorithm> // for std::min
 | 
			
		||||
 | 
			
		||||
#if CUDA_VERSION >= 7000 || defined __HIP_PLATFORM_HCC__
 | 
			
		||||
#include <thrust/system/cuda/execution_policy.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateAllTypes.h>
 | 
			
		||||
@ -1,6 +1,21 @@
 | 
			
		||||
#ifndef THC_TENSOR_TOPK_CUH
 | 
			
		||||
#define THC_TENSOR_TOPK_CUH
 | 
			
		||||
 | 
			
		||||
#include <THC/THC.h>
 | 
			
		||||
#include <THC/THCReduceApplyUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorCopy.h>
 | 
			
		||||
#include <THC/THCTensorMath.h>
 | 
			
		||||
#include <THC/THCAsmUtils.cuh>
 | 
			
		||||
#include <THC/THCScanUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorTypeUtils.cuh>
 | 
			
		||||
#include <THC/THCTensorMathReduce.cuh>
 | 
			
		||||
#include <ATen/WrapDimUtils.h>
 | 
			
		||||
#include <algorithm> // for std::min
 | 
			
		||||
 | 
			
		||||
#if CUDA_VERSION >= 7000 || defined __HIP_PLATFORM_HCC__
 | 
			
		||||
#include <thrust/system/cuda/execution_policy.h>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
#include <ATen/native/cuda/SortingRadixSelect.cuh>
 | 
			
		||||
 | 
			
		||||
@ -52,6 +67,7 @@ __global__ void gatherTopK(TensorInfo<T, IndexType> input,
 | 
			
		||||
    inputSliceStart, outputSliceSize,
 | 
			
		||||
    inputSliceSize, inputWithinSliceStride,
 | 
			
		||||
    smem, &topKValue);
 | 
			
		||||
  const auto topKConverted = at::native::TopKTypeConfig<T>::convert(topKValue);
 | 
			
		||||
 | 
			
		||||
  // Every value that is strictly less/greater than `pattern`
 | 
			
		||||
  // (depending on sort dir) in sorted int format is in the top-K.
 | 
			
		||||
@ -74,11 +90,12 @@ __global__ void gatherTopK(TensorInfo<T, IndexType> input,
 | 
			
		||||
    bool inRange = (i < inputSliceSize);
 | 
			
		||||
    T v =
 | 
			
		||||
      inRange ? doLdg(&inputSliceStart[i * inputWithinSliceStride]) : ScalarConvert<int, T>::to(0);
 | 
			
		||||
    const auto convertedV = at::native::TopKTypeConfig<T>::convert(v);
 | 
			
		||||
    bool hasTopK;
 | 
			
		||||
    if (Order) {
 | 
			
		||||
      hasTopK = inRange && (THCNumerics<T>::gt(v, topKValue));
 | 
			
		||||
      hasTopK = inRange && (convertedV > topKConverted);
 | 
			
		||||
    } else {
 | 
			
		||||
      hasTopK = inRange && (THCNumerics<T>::lt(v, topKValue));
 | 
			
		||||
      hasTopK = inRange && (convertedV < topKConverted);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int index;
 | 
			
		||||
@ -111,7 +128,8 @@ __global__ void gatherTopK(TensorInfo<T, IndexType> input,
 | 
			
		||||
    bool inRange = (i < inputSliceSize);
 | 
			
		||||
    T v =
 | 
			
		||||
      inRange ? doLdg(&inputSliceStart[i * inputWithinSliceStride]) : ScalarConvert<int, T>::to(0);
 | 
			
		||||
    bool hasTopK = inRange && (THCNumerics<T>::eq(v, topKValue));
 | 
			
		||||
    const auto convertedV = at::native::TopKTypeConfig<T>::convert(v);
 | 
			
		||||
    bool hasTopK = inRange && (convertedV == topKConverted);
 | 
			
		||||
 | 
			
		||||
    int index;
 | 
			
		||||
    int carry;
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKByte.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKByte.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateByteType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKChar.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKChar.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateCharType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKDouble.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKDouble.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateDoubleType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKFloat.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKFloat.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateFloatType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKHalf.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKHalf.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateHalfType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKInt.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKInt.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateIntType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKLong.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKLong.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateLongType.h>
 | 
			
		||||
							
								
								
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKShort.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								aten/src/THC/generated/THCTensorTopKShort.cu
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
#include <THC/THCTensorTopK.cuh>
 | 
			
		||||
#include <THC/THCTensor.hpp>
 | 
			
		||||
 | 
			
		||||
#include <THC/generic/THCTensorTopK.cu>
 | 
			
		||||
#include <THC/THCGenerateShortType.h>
 | 
			
		||||
@ -269,7 +269,7 @@ void THCTensor_(mode)(THCState *state,
 | 
			
		||||
        break;
 | 
			
		||||
      case 1:
 | 
			
		||||
      default:
 | 
			
		||||
        assert(false);
 | 
			
		||||
        TORCH_INTERNAL_ASSERT(false);
 | 
			
		||||
    }
 | 
			
		||||
    THCudaCheck(cudaGetLastError());
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -101,7 +101,7 @@ void THCTensor_(sortKeyValueInplace)(THCState* state,
 | 
			
		||||
      /* Nothing to do, data already sorted */          \
 | 
			
		||||
      break;                                            \
 | 
			
		||||
      default:                                          \
 | 
			
		||||
      assert(false);                                    \
 | 
			
		||||
      TORCH_INTERNAL_ASSERT(false);                                    \
 | 
			
		||||
    }                                                   \
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -23,6 +23,14 @@
 | 
			
		||||
 | 
			
		||||
#include "c10/macros/Export.h"
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
  #define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
  #define __ubsan_ignore_float_cast_overflow__ __attribute__((no_sanitize("float-cast-overflow")))
 | 
			
		||||
#else
 | 
			
		||||
  #define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
  #define __ubsan_ignore_float_cast_overflow__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Disable the copy and assignment operator for a class. Note that this will
 | 
			
		||||
// disable the usage of the class in std containers.
 | 
			
		||||
#define C10_DISABLE_COPY_AND_ASSIGN(classname) \
 | 
			
		||||
@ -196,25 +204,29 @@ constexpr uint32_t CUDA_THREADS_PER_BLOCK_FALLBACK = 256;
 | 
			
		||||
#define __func__ __FUNCTION__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// CUDA_KERNEL_ASSERT is a macro that wraps an assert() call inside cuda
 | 
			
		||||
// kernels. This is not supported by Apple platforms so we special case it.
 | 
			
		||||
// See http://docs.nvidia.com/cuda/cuda-c-programming-guide/#assertion
 | 
			
		||||
#if defined(__APPLE__) || defined(__HIP_PLATFORM_HCC__)
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(...)
 | 
			
		||||
#else // __APPLE__
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(...) assert(__VA_ARGS__)
 | 
			
		||||
#endif // __APPLE__
 | 
			
		||||
 | 
			
		||||
// CUDA_ALWAYS_ASSERT is similar to CUDA_KERNEL_ASSERT but checks the assertion
 | 
			
		||||
// CUDA_KERNEL_ASSERT checks the assertion
 | 
			
		||||
// even when NDEBUG is defined. This is useful for important assertions in CUDA
 | 
			
		||||
// code that when building Release.
 | 
			
		||||
#if defined(__APPLE__) || defined(__HIP_PLATFORM_HCC__)
 | 
			
		||||
// Those platforms do not support assert()
 | 
			
		||||
#define CUDA_ALWAYS_ASSERT(cond)
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(cond)
 | 
			
		||||
#elif defined(_MSC_VER)
 | 
			
		||||
// TODO: This should be defined but I don't have the environment to properly
 | 
			
		||||
// test it. See e.g., https://github.com/pytorch/pytorch/pull/32719#discussion_r379918384
 | 
			
		||||
#define CUDA_ALWAYS_ASSERT(cond)
 | 
			
		||||
#if defined(NDEBUG)
 | 
			
		||||
extern "C" {
 | 
			
		||||
  C10_IMPORT
 | 
			
		||||
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__) || defined(__HIP__)
 | 
			
		||||
    __host__ __device__
 | 
			
		||||
#endif // __CUDA_ARCH__
 | 
			
		||||
 void _wassert(
 | 
			
		||||
    wchar_t const* _Message,
 | 
			
		||||
    wchar_t const* _File,
 | 
			
		||||
    unsigned _Line);
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(cond)                                                                 \
 | 
			
		||||
  if (C10_UNLIKELY(!(cond))) {                                                                   \
 | 
			
		||||
    (void)(_wassert(_CRT_WIDE(#cond), _CRT_WIDE(__FILE__), static_cast<unsigned>(__LINE__)), 0); \
 | 
			
		||||
  }
 | 
			
		||||
#else // __APPLE__, _MSC_VER
 | 
			
		||||
#if defined(NDEBUG)
 | 
			
		||||
extern "C" {
 | 
			
		||||
@ -233,7 +245,7 @@ __host__ __device__
 | 
			
		||||
        const char* function) throw();
 | 
			
		||||
}
 | 
			
		||||
#endif // NDEBUG
 | 
			
		||||
#define CUDA_ALWAYS_ASSERT(cond)                                         \
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(cond)                                         \
 | 
			
		||||
  if (C10_UNLIKELY(!(cond))) {                                           \
 | 
			
		||||
    __assert_fail(#cond, __FILE__, static_cast<unsigned int>(__LINE__),  \
 | 
			
		||||
                  __func__);                                             \
 | 
			
		||||
 | 
			
		||||
@ -66,24 +66,44 @@ void Error::AppendMessage(const std::string& new_msg) {
 | 
			
		||||
namespace Warning {
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
  WarningHandler* getHandler() {
 | 
			
		||||
  WarningHandler* getBaseHandler() {
 | 
			
		||||
    static WarningHandler base_warning_handler_ = WarningHandler();
 | 
			
		||||
    return &base_warning_handler_;
 | 
			
		||||
  };
 | 
			
		||||
  static thread_local WarningHandler* warning_handler_ = getHandler();
 | 
			
		||||
 | 
			
		||||
  class ThreadWarningHandler {
 | 
			
		||||
    public:
 | 
			
		||||
      ThreadWarningHandler() = delete;
 | 
			
		||||
 | 
			
		||||
      static WarningHandler* get_handler() {
 | 
			
		||||
        if (!warning_handler_) {
 | 
			
		||||
          warning_handler_ = getBaseHandler();
 | 
			
		||||
        }
 | 
			
		||||
        return warning_handler_;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      static void set_handler(WarningHandler* handler) {
 | 
			
		||||
        warning_handler_ = handler;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
      static thread_local WarningHandler* warning_handler_;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  thread_local WarningHandler* ThreadWarningHandler::warning_handler_ = nullptr;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void warn(SourceLocation source_location, const std::string& msg) {
 | 
			
		||||
  warning_handler_->process(source_location, msg);
 | 
			
		||||
  ThreadWarningHandler::get_handler()->process(source_location, msg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void set_warning_handler(WarningHandler* handler) noexcept(true) {
 | 
			
		||||
  warning_handler_ = handler;
 | 
			
		||||
  ThreadWarningHandler::set_handler(handler);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
WarningHandler* get_warning_handler() noexcept(true) {
 | 
			
		||||
  return warning_handler_;
 | 
			
		||||
  return ThreadWarningHandler::get_handler();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Warning
 | 
			
		||||
 | 
			
		||||
@ -67,7 +67,7 @@ struct maybe_real<true, src_t> {
 | 
			
		||||
 | 
			
		||||
template <typename dest_t, typename src_t>
 | 
			
		||||
struct static_cast_with_inter_type {
 | 
			
		||||
  C10_HOST_DEVICE static inline dest_t apply(src_t src) {
 | 
			
		||||
  C10_HOST_DEVICE __ubsan_ignore_float_cast_overflow__ static inline dest_t apply(src_t src) {
 | 
			
		||||
    constexpr bool real = needs_real<dest_t, src_t>::value;
 | 
			
		||||
    return static_cast<dest_t>(
 | 
			
		||||
      static_cast<inter_copy_type_t<dest_t>>(maybe_real<real, src_t>::apply(src)));
 | 
			
		||||
 | 
			
		||||
@ -748,7 +748,7 @@ if (NOT INTERN_BUILD_MOBILE OR NOT BUILD_CAFFE2_MOBILE)
 | 
			
		||||
      target_include_directories(torch_cuda PUBLIC "${NVTOOLEXT_HOME}/include")
 | 
			
		||||
      # -INCLUDE is used to ensure torch_cuda is linked against in a project that relies on it.
 | 
			
		||||
      # Related issue: https://github.com/pytorch/pytorch/issues/31611
 | 
			
		||||
      target_link_libraries(torch_cuda INTERFACE "-INCLUDE:\"?warp_size@cuda@at@@YAHXZ\"")
 | 
			
		||||
      target_link_libraries(torch_cuda INTERFACE "-INCLUDE:?warp_size@cuda@at@@YAHXZ")
 | 
			
		||||
 | 
			
		||||
    elseif(APPLE)
 | 
			
		||||
      set(TORCH_CUDA_LIBRARIES
 | 
			
		||||
@ -949,6 +949,31 @@ if (USE_OPENMP AND OPENMP_FOUND)
 | 
			
		||||
  target_link_libraries(torch_cpu PRIVATE ${OpenMP_CXX_LIBRARIES})
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
if ($ENV{TH_BINARY_BUILD})
 | 
			
		||||
  if (NOT MSVC AND USE_CUDA AND NOT APPLE)
 | 
			
		||||
    # Note [Extra MKL symbols for MAGMA in torch_cpu]
 | 
			
		||||
    #
 | 
			
		||||
    # When we build CUDA libraries and link against MAGMA, MAGMA makes use of
 | 
			
		||||
    # some BLAS symbols in its CPU fallbacks when it has no GPU versions
 | 
			
		||||
    # of kernels.  Previously, we ensured the BLAS symbols were filled in by
 | 
			
		||||
    # MKL by linking torch_cuda with BLAS, but when we are statically linking
 | 
			
		||||
    # against MKL (when we do wheel builds), this actually ends up pulling in a
 | 
			
		||||
    # decent chunk of MKL into torch_cuda, inflating our torch_cuda binary
 | 
			
		||||
    # size by 8M.  torch_cpu exposes most of the MKL symbols we need, but
 | 
			
		||||
    # empirically we determined that there are four which it doesn't provide.  If
 | 
			
		||||
    # we link torch_cpu with these --undefined symbols, we can ensure they
 | 
			
		||||
    # do get pulled in, and then we can avoid statically linking in MKL to
 | 
			
		||||
    # torch_cuda at all!
 | 
			
		||||
    #
 | 
			
		||||
    # We aren't really optimizing for binary size on Windows (and this link
 | 
			
		||||
    # line doesn't work on Windows), so don't do it there.
 | 
			
		||||
    #
 | 
			
		||||
    # These linker commands do not work on OS X, do not attempt this there.
 | 
			
		||||
    # (It shouldn't matter anyway, though, because OS X has dropped CUDA support)
 | 
			
		||||
    set_target_properties(torch_cpu PROPERTIES LINK_FLAGS "-Wl,--undefined=mkl_lapack_slaed0 -Wl,--undefined=mkl_lapack_dlaed0 -Wl,--undefined=mkl_lapack_dormql -Wl,--undefined=mkl_lapack_sormql")
 | 
			
		||||
  endif()
 | 
			
		||||
endif()
 | 
			
		||||
 | 
			
		||||
target_link_libraries(torch_cpu PUBLIC c10)
 | 
			
		||||
target_link_libraries(torch_cpu PUBLIC ${Caffe2_PUBLIC_DEPENDENCY_LIBS})
 | 
			
		||||
target_link_libraries(torch_cpu PRIVATE ${Caffe2_DEPENDENCY_LIBS})
 | 
			
		||||
 | 
			
		||||
@ -261,15 +261,6 @@ CAFFE2_CUDA_API const char* curandGetErrorString(curandStatus_t error);
 | 
			
		||||
    for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); \
 | 
			
		||||
         j += blockDim.y * gridDim.y)
 | 
			
		||||
 | 
			
		||||
// CUDA_KERNEL_ASSERT is a macro that wraps an assert() call inside cuda
 | 
			
		||||
// kernels. This is not supported by Apple platforms so we special case it.
 | 
			
		||||
// See http://docs.nvidia.com/cuda/cuda-c-programming-guide/#assertion
 | 
			
		||||
#if defined(__APPLE__) || defined(__HIP_PLATFORM_HCC__)
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(...)
 | 
			
		||||
#else // __APPLE__
 | 
			
		||||
#define CUDA_KERNEL_ASSERT(...) assert(__VA_ARGS__)
 | 
			
		||||
#endif // __APPLE__
 | 
			
		||||
 | 
			
		||||
// The following helper functions are here so that you can write a kernel call
 | 
			
		||||
// when you are not particularly interested in maxing out the kernels'
 | 
			
		||||
// performance. Usually, this will give you a reasonable speed, but if you
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,8 @@
 | 
			
		||||
#include "caffe2/operators/fused_rowwise_nbitfake_conversion_ops.h"
 | 
			
		||||
#include <fp16.h>
 | 
			
		||||
#ifdef __AVX__
 | 
			
		||||
#include <immintrin.h>
 | 
			
		||||
#endif
 | 
			
		||||
#include "c10/util/Registry.h"
 | 
			
		||||
 | 
			
		||||
namespace caffe2 {
 | 
			
		||||
 | 
			
		||||
@ -50,8 +50,13 @@ __global__ void ReluCUDAKernel<half2>(const int N, const half2* X, half2* Y) {
 | 
			
		||||
    Y[i] = __hmul2(__hgt2(__ldg(X + i), kZero), __ldg(X + i));
 | 
			
		||||
#else
 | 
			
		||||
    const float2 xx = __half22float2(X[i]);
 | 
			
		||||
    Y[i] =
 | 
			
		||||
        __floats2half2_rn(xx.x > 0.0f ? xx.x : 0.0f, xx.y > 0.0f ? xx.y : 0.0f);
 | 
			
		||||
    // There are explicit cast to float here, because it may otherwise cause ambiguity on ROCm and can be triggered
 | 
			
		||||
    // sometimes:
 | 
			
		||||
    //
 | 
			
		||||
    //   error: conditional expression is ambiguous; 'const hip_impl::Scalar_accessor<float, Native_vec_, 0>' can be
 | 
			
		||||
    //   converted to 'float' and vice versa
 | 
			
		||||
    Y[i] = __floats2half2_rn(xx.x > 0.0f ? static_cast<float>(xx.x) : 0.0f,
 | 
			
		||||
                             xx.y > 0.0f ? static_cast<float>(xx.y) : 0.0f);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -100,8 +105,14 @@ __global__ void ReluGradientCUDAKernel<half2>(
 | 
			
		||||
#else
 | 
			
		||||
    const float2 dy = __half22float2(dY[i]);
 | 
			
		||||
    const float2 yy = __half22float2(Y[i]);
 | 
			
		||||
    dX[i] =
 | 
			
		||||
        __floats2half2_rn(yy.x > 0.0f ? dy.x : 0.0f, yy.y > 0.0f ? dy.y : 0.0f);
 | 
			
		||||
    // There are explicit cast to float here, because it may otherwise cause ambiguity on ROCm and can be triggered
 | 
			
		||||
    // sometimes:
 | 
			
		||||
    //
 | 
			
		||||
    //   error: conditional expression is ambiguous; 'const hip_impl::Scalar_accessor<float, Native_vec_, 1>' can be
 | 
			
		||||
    //   converted to 'float' and vice versa
 | 
			
		||||
 | 
			
		||||
     dX[i] = __floats2half2_rn(yy.x > 0.0f ? static_cast<float>(dy.x) : 0.0f,
 | 
			
		||||
                               yy.y > 0.0f ? static_cast<float>(dy.y) : 0.0f);
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -76,7 +76,7 @@ struct TopKTypeConfig<short> {
 | 
			
		||||
  typedef unsigned int RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(short v) {
 | 
			
		||||
    CUDA_KERNEL_ASSERT(sizeof(short) == 2);
 | 
			
		||||
    static_assert(sizeof(short) == 2, "");
 | 
			
		||||
    return 32768u + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -90,7 +90,7 @@ struct TopKTypeConfig<int> {
 | 
			
		||||
  typedef unsigned int RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(int v) {
 | 
			
		||||
    CUDA_KERNEL_ASSERT(sizeof(int) == 4);
 | 
			
		||||
    static_assert(sizeof(int) == 4, "");
 | 
			
		||||
    return 2147483648u + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@ -104,6 +104,7 @@ struct TopKTypeConfig<long> {
 | 
			
		||||
  typedef unsigned long long int RadixType;
 | 
			
		||||
 | 
			
		||||
  static inline __device__ RadixType convert(long v) {
 | 
			
		||||
    //static_assert fails on windows, so leave it as CUDA_KERNEL_ASSERT
 | 
			
		||||
    CUDA_KERNEL_ASSERT(sizeof(long) == 8);
 | 
			
		||||
    return 9223372036854775808ull + v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										40
									
								
								cmake/External/nccl.cmake
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										40
									
								
								cmake/External/nccl.cmake
									
									
									
									
										vendored
									
									
								
							@ -15,6 +15,7 @@ if (NOT __NCCL_INCLUDED)
 | 
			
		||||
    # this second replacement is needed when there are multiple archs
 | 
			
		||||
    string(REPLACE ";-gencode" " -gencode" NVCC_GENCODE "${NVCC_GENCODE}")
 | 
			
		||||
 | 
			
		||||
    set(__NCCL_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/nccl")
 | 
			
		||||
    ExternalProject_Add(nccl_external
 | 
			
		||||
      SOURCE_DIR ${PROJECT_SOURCE_DIR}/third_party/nccl/nccl
 | 
			
		||||
      BUILD_IN_SOURCE 1
 | 
			
		||||
@ -30,20 +31,49 @@ if (NOT __NCCL_INCLUDED)
 | 
			
		||||
        "CUDA_HOME=${CUDA_TOOLKIT_ROOT_DIR}"
 | 
			
		||||
        "NVCC=${CUDA_NVCC_EXECUTABLE}"
 | 
			
		||||
        "NVCC_GENCODE=${NVCC_GENCODE}"
 | 
			
		||||
        "BUILDDIR=${CMAKE_CURRENT_BINARY_DIR}/nccl"
 | 
			
		||||
        "BUILDDIR=${__NCCL_BUILD_DIR}"
 | 
			
		||||
        "VERBOSE=0"
 | 
			
		||||
        "-j"
 | 
			
		||||
      BUILD_BYPRODUCTS "${CMAKE_CURRENT_BINARY_DIR}/nccl/lib/libnccl_static.a"
 | 
			
		||||
        BUILD_BYPRODUCTS "${__NCCL_BUILD_DIR}/lib/libnccl_static.a"
 | 
			
		||||
      INSTALL_COMMAND ""
 | 
			
		||||
      )
 | 
			
		||||
 | 
			
		||||
    # Detect objcopy version
 | 
			
		||||
    execute_process (COMMAND "${CMAKE_OBJCOPY}" "--version" OUTPUT_VARIABLE OBJCOPY_VERSION_STR)
 | 
			
		||||
    string(REGEX REPLACE "GNU objcopy version ([0-9])\\.([0-9]+).*" "\\1" OBJCOPY_VERSION_MAJOR ${OBJCOPY_VERSION_STR})
 | 
			
		||||
    string(REGEX REPLACE "GNU objcopy version ([0-9])\\.([0-9]+).*" "\\2" OBJCOPY_VERSION_MINOR ${OBJCOPY_VERSION_STR})
 | 
			
		||||
 | 
			
		||||
    if ((${OBJCOPY_VERSION_MAJOR} GREATER 2) OR ((${OBJCOPY_VERSION_MAJOR} EQUAL 2) AND (${OBJCOPY_VERSION_MINOR} GREATER 27)))
 | 
			
		||||
      message(WARNING "Enabling NCCL library slimming")
 | 
			
		||||
      add_custom_command(
 | 
			
		||||
        OUTPUT "${__NCCL_BUILD_DIR}/lib/libnccl_slim_static.a"
 | 
			
		||||
        DEPENDS nccl_external
 | 
			
		||||
        COMMAND "${CMAKE_COMMAND}" -E make_directory "${__NCCL_BUILD_DIR}/objects"
 | 
			
		||||
        COMMAND cd objects
 | 
			
		||||
        COMMAND "${CMAKE_AR}" x "${__NCCL_BUILD_DIR}/lib/libnccl_static.a"
 | 
			
		||||
        COMMAND for obj in all_gather_* all_reduce_* broadcast_* reduce_*.o$<SEMICOLON> do "${CMAKE_OBJCOPY}" --remove-relocations .nvFatBinSegment --remove-section __nv_relfatbin $$obj$<SEMICOLON> done
 | 
			
		||||
       COMMAND "${CMAKE_AR}" cr "${__NCCL_BUILD_DIR}/lib/libnccl_slim_static.a" "*.o"
 | 
			
		||||
        COMMAND cd -
 | 
			
		||||
        COMMAND "${CMAKE_COMMAND}" -E remove_directory "${__NCCL_BUILD_DIR}/objects"
 | 
			
		||||
        WORKING_DIRECTORY "${__NCCL_BUILD_DIR}"
 | 
			
		||||
        COMMENT "Slimming NCCL"
 | 
			
		||||
      )
 | 
			
		||||
    add_custom_target(nccl_slim_external DEPENDS "${__NCCL_BUILD_DIR}/lib/libnccl_slim_static.a")
 | 
			
		||||
    set(__NCCL_LIBRARY_DEP nccl_slim_external)
 | 
			
		||||
    set(NCCL_LIBRARIES ${__NCCL_BUILD_DIR}/lib/libnccl_slim_static.a)
 | 
			
		||||
  else()
 | 
			
		||||
    message(WARNING "Objcopy version is too old to support NCCL library slimming")
 | 
			
		||||
    set(__NCCL_LIBRARY_DEP nccl_external)
 | 
			
		||||
    set(NCCL_LIBRARIES ${__NCCL_BUILD_DIR}/lib/libnccl_static.a)
 | 
			
		||||
  endif()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    set(NCCL_FOUND TRUE)
 | 
			
		||||
    add_library(__caffe2_nccl INTERFACE)
 | 
			
		||||
    # The following old-style variables are set so that other libs, such as Gloo,
 | 
			
		||||
    # can still use it.
 | 
			
		||||
    set(NCCL_INCLUDE_DIRS ${CMAKE_CURRENT_BINARY_DIR}/nccl/include)
 | 
			
		||||
    set(NCCL_LIBRARIES ${CMAKE_CURRENT_BINARY_DIR}/nccl/lib/libnccl_static.a)
 | 
			
		||||
    add_dependencies(__caffe2_nccl nccl_external)
 | 
			
		||||
    set(NCCL_INCLUDE_DIRS ${__NCCL_BUILD_DIR}/include)
 | 
			
		||||
    add_dependencies(__caffe2_nccl ${__NCCL_LIBRARY_DEP})
 | 
			
		||||
    target_link_libraries(__caffe2_nccl INTERFACE ${NCCL_LIBRARIES})
 | 
			
		||||
    target_include_directories(__caffe2_nccl INTERFACE ${NCCL_INCLUDE_DIRS})
 | 
			
		||||
  endif()
 | 
			
		||||
 | 
			
		||||
@ -56,6 +56,10 @@ INPUT                  = ../../../aten/src/ATen/ATen.h \
 | 
			
		||||
                         ../../../c10/cuda/CUDAStream.h \
 | 
			
		||||
                         ../../../torch/csrc/api/include \
 | 
			
		||||
                         ../../../torch/csrc/api/src \
 | 
			
		||||
                         ../../../torch/csrc/autograd/autograd.h \
 | 
			
		||||
                         ../../../torch/csrc/autograd/custom_function.h \
 | 
			
		||||
                         ../../../torch/csrc/autograd/function.h \
 | 
			
		||||
                         ../../../torch/csrc/autograd/variable.h \
 | 
			
		||||
                         ../../../torch/csrc/autograd/generated/variable_factories.h \
 | 
			
		||||
                         ../../../torch/csrc/jit/runtime/custom_operator.h \
 | 
			
		||||
                         ../../../torch/csrc/jit/serialization/import.h \
 | 
			
		||||
 | 
			
		||||
@ -281,7 +281,9 @@ change one property, this is quite practical.
 | 
			
		||||
In conclusion, we can now compare how ``TensorOptions`` defaults, together with
 | 
			
		||||
the abbreviated API for creating ``TensorOptions`` using free functions, allow
 | 
			
		||||
tensor creation in C++ with the same convenience as in Python. Compare this
 | 
			
		||||
call in Python::
 | 
			
		||||
call in Python:
 | 
			
		||||
 | 
			
		||||
.. code-block:: python
 | 
			
		||||
 | 
			
		||||
  torch.randn(3, 4, dtype=torch.float32, device=torch.device('cuda', 1), requires_grad=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										99
									
								
								docs/cpp/source/notes/tensor_indexing.rst
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								docs/cpp/source/notes/tensor_indexing.rst
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,99 @@
 | 
			
		||||
Tensor Indexing API
 | 
			
		||||
===================
 | 
			
		||||
 | 
			
		||||
Indexing a tensor in the PyTorch C++ API works very similar to the Python API.
 | 
			
		||||
All index types such as ``None`` / ``...`` / integer / boolean / slice / tensor
 | 
			
		||||
are available in the C++ API, making translation from Python indexing code to C++
 | 
			
		||||
very simple. The main difference is that, instead of using the ``[]``-operator
 | 
			
		||||
similar to the Python API syntax, in the C++ API the indexing methods are:
 | 
			
		||||
 | 
			
		||||
- ``torch::Tensor::index`` (`link <https://pytorch.org/cppdocs/api/classat_1_1_tensor.html#_CPPv4NK2at6Tensor5indexE8ArrayRefIN2at8indexing11TensorIndexEE>`_)
 | 
			
		||||
- ``torch::Tensor::index_put_`` (`link <https://pytorch.org/cppdocs/api/classat_1_1_tensor.html#_CPPv4N2at6Tensor10index_put_E8ArrayRefIN2at8indexing11TensorIndexEERK6Tensor>`_)
 | 
			
		||||
 | 
			
		||||
It's also important to note that index types such as ``None`` / ``Ellipsis`` / ``Slice``
 | 
			
		||||
live in the ``torch::indexing`` namespace, and it's recommended to put ``using namespace torch::indexing``
 | 
			
		||||
before any indexing code for convenient use of those index types.
 | 
			
		||||
 | 
			
		||||
Here are some examples of translating Python indexing code to C++:
 | 
			
		||||
 | 
			
		||||
Getter
 | 
			
		||||
------
 | 
			
		||||
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| Python                                                   | C++  (assuming ``using namespace torch::indexing``)                                  |
 | 
			
		||||
+==========================================================+======================================================================================+
 | 
			
		||||
| ``tensor[None]``                                         | ``tensor.index({None})``                                                             |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[Ellipsis, ...]``                                | ``tensor.index({Ellipsis, "..."})``                                                  |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[1, 2]``                                         | ``tensor.index({1, 2})``                                                             |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[True, False]``                                  | ``tensor.index({true, false})``                                                      |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[1::2]``                                         | ``tensor.index({Slice(1, None, 2)})``                                                |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[torch.tensor([1, 2])]``                         | ``tensor.index({torch::tensor({1, 2})})``                                            |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[..., 0, True, 1::2, torch.tensor([1, 2])]``     | ``tensor.index({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})})``         |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
 | 
			
		||||
Setter
 | 
			
		||||
------
 | 
			
		||||
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| Python                                                   | C++  (assuming ``using namespace torch::indexing``)                                  |
 | 
			
		||||
+==========================================================+======================================================================================+
 | 
			
		||||
| ``tensor[None] = 1``                                     | ``tensor.index_put_({None}, 1)``                                                     |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[Ellipsis, ...] = 1``                            | ``tensor.index_put_({Ellipsis, "..."}, 1)``                                          |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[1, 2] = 1``                                     | ``tensor.index_put_({1, 2}, 1)``                                                     |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[True, False] = 1``                              | ``tensor.index_put_({true, false}, 1)``                                              |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[1::2] = 1``                                     | ``tensor.index_put_({Slice(1, None, 2)}, 1)``                                        |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[torch.tensor([1, 2])] = 1``                     | ``tensor.index_put_({torch::tensor({1, 2})}, 1)``                                    |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
| ``tensor[..., 0, True, 1::2, torch.tensor([1, 2])] = 1`` | ``tensor.index_put_({"...", 0, true, Slice(1, None, 2), torch::tensor({1, 2})}, 1)`` |
 | 
			
		||||
+----------------------------------------------------------+--------------------------------------------------------------------------------------+
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Translating between Python/C++ index types
 | 
			
		||||
------------------------------------------
 | 
			
		||||
 | 
			
		||||
The one-to-one translation between Python and C++ index types is as follows:
 | 
			
		||||
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| Python                  | C++ (assuming ``using namespace torch::indexing``)                     |
 | 
			
		||||
+=========================+========================================================================+
 | 
			
		||||
| ``None``                | ``None``                                                               |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``Ellipsis``            | ``Ellipsis``                                                           |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``...``                 | ``"..."``                                                              |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``123``                 | ``123``                                                                |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``True``                | ``true``                                                               |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``False``               | ``false``                                                              |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``:`` or ``::``         | ``Slice()`` or ``Slice(None, None)`` or ``Slice(None, None, None)``    |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``1:`` or ``1::``       | ``Slice(1, None)`` or ``Slice(1, None, None)``                         |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``:3`` or ``:3:``       | ``Slice(None, 3)`` or ``Slice(None, 3, None)``                         |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``::2``                 | ``Slice(None, None, 2)``                                               |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``1:3``                 | ``Slice(1, 3)``                                                        |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``1::2``                | ``Slice(1, None, 2)``                                                  |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``:3:2``                | ``Slice(None, 3, 2)``                                                  |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``1:3:2``               | ``Slice(1, 3, 2)``                                                     |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
| ``torch.tensor([1, 2])``| ``torch::tensor({1, 2})``                                              |
 | 
			
		||||
+-------------------------+------------------------------------------------------------------------+
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user