Compare commits

..

33 Commits

Author SHA1 Message Date
71f889c7d2 fix formatting CIRCLE_TAG when building docs (#67026) (#69876)
Summary:
Similar to pytorch/text#1416
malfet, brianjo

The previous code failed when tags changed from `v0.9.0` to `v0.10.0`. I tested this offline, it would be nice to somehow be actually tag the repo and see that this adds the correct documentation directory to the pytorch/pytorch.github.io repo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67026

Reviewed By: saketh-are

Differential Revision: D31843381

Pulled By: malfet

fbshipit-source-id: 21526ad9ed4c1751c2d7f6d621da305f166a7f55

Co-authored-by: mattip <matti.picus@gmail.com>
2021-12-14 09:24:18 -08:00
932ac7bd71 [release/1.10] Remove fgrad_input from slow_conv2d (#64280) (#69622)
Co-authored-by: Peter Bell <peterbell10@live.co.uk>
2021-12-10 11:42:03 -08:00
3e412cd6df [release/1.10] fix pybind issue for get_autocast_cpu_dtype and get_autocast_gpu_dtype (#66396) (#69620)
Co-authored-by: XiaobingSuper <xiaobing.zhang@intel.com>
2021-12-10 11:41:40 -08:00
302ee7bfb6 [release/1.10] Fix adaptive_max_pool2d for channels-last on CUDA (#67697) (#69618)
Co-authored-by: Xiao Wang <24860335+xwang233@users.noreply.github.com>
2021-12-09 08:59:45 -08:00
0c91a7063d [release/1.10] TST Adds test for non-contiguous tensors (#64954) (#69617)
* TST Adds test for non-contiguous tensors (#64954)

Summary:
Follow up to https://github.com/pytorch/pytorch/issues/61935

This PR:

1. Adds test for non-contiguous tensors
2. Fixes bug in `NLLLoss` that was catch by the test.

The reason this was not catch in `common_nn` is because `CriterionTest` overrides `test_cuda` but does not call `test_nonconfig`.

cc albanD mruberry jbschlosser walterddr

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64954

Reviewed By: zou3519

Differential Revision: D31174149

Pulled By: jbschlosser

fbshipit-source-id: a16073e59b40ccc01c82ede016b63a8db2e810f5
(cherry picked from commit 0d3bf97fd05ce6ef5ddfb0a100c78ad82914cee4)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

* Cherry-pick changes from #64444

Namely, `make_weight` partial into `module_inputs_torch_nn_NLLLoss`

Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
Co-authored-by: Nikita Shulga <nshulga@fb.com>
2021-12-09 07:09:08 -08:00
eadb03895a [ONNX] Update onnxruntime to 1.9 for CI (#65029) (#67269) (#69641)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/67269

Test Plan: Imported from OSS

Reviewed By: ngimel, msaroufim

Differential Revision: D31962516

Pulled By: malfet

fbshipit-source-id: 39b3c6a4a05d7b769f0ef5ce7ea597209516cde2

Co-authored-by: Gary Miguel <garymiguel@microsoft.com>
2021-12-08 20:09:11 -08:00
8416d630c9 Fix strict aliasing rule violation in bitwise_binary_op (#66194) (#69619)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66119

Failure on ARM Neoverse N1 before this PR:
```
======================================================================
FAIL: test_bitwise_ops_cpu_int16 (__main__.TestBinaryUfuncsCPU)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_device_type.py", line 373, in instantiated_test
    result = test(self, **param_kwargs)
  File "test_binary_ufuncs.py", line 315, in test_bitwise_ops
    self.assertEqual(op(a, b), op(a_np, b_np))
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 1633, in assertEqual
    self.assertEqual(
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 1611, in assertEqual
    super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
AssertionError: False is not true : Tensors failed to compare as equal!Found 176 different element(s) (out of 225), with the greatest difference of 21850 (-21846 vs. 4) occuring at index (0, 2).

======================================================================
FAIL: test_bitwise_ops_cpu_int32 (__main__.TestBinaryUfuncsCPU)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_device_type.py", line 373, in instantiated_test
    result = test(self, **param_kwargs)
  File "test_binary_ufuncs.py", line 315, in test_bitwise_ops
    self.assertEqual(op(a, b), op(a_np, b_np))
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 1633, in assertEqual
    self.assertEqual(
  File "/opt/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 1611, in assertEqual
    super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
AssertionError: False is not true : Tensors failed to compare as equal!Found 188 different element(s) (out of 225), with the greatest difference of 1335341061 (-1335341056 vs. 5) occuring at index (14, 8).

----------------------------------------------------------------------
```
which passes now.

CC malfet ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66194

Reviewed By: dagitses, bdhirsh, ngimel

Differential Revision: D31430274

Pulled By: malfet

fbshipit-source-id: bcf1c9d584c02eff328dd5b1f7af064fac5942c9
(cherry picked from commit 0b0674121aeb7d8bbcccd0461d939b64879a1273)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: pbialecki <pbialecki@nvidia.com>
2021-12-08 15:01:18 -08:00
c78ceadbb0 [LiteInterpreter] Specify Loader to yaml.load (#67694) (#69642)
Summary:
It became a mandatory argument since PyYaml-6, but has been present since PyYaml-3

Unblock migration to newer runtime

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67694

Reviewed By: seemethere

Differential Revision: D32106043

Pulled By: malfet

fbshipit-source-id: 35246b97a974b168c066396ea31987b267534c7f
2021-12-08 14:59:16 -08:00
70af72c794 Fix python version in test tools CI job (#66947) (#69643)
Summary:
On the HUD, the test tools job is failing as the runners now install Python 3.10, which is not compatible with numpy 1.20

See https://github.com/pytorch/pytorch/runs/3952169950?check_suite_focus=true Install dependencies step:
```
 ERROR: Command errored out with exit status 1:
   command: /opt/hostedtoolcache/Python/3.10.0/x64/bin/python /opt/hostedtoolcache/Python/3.10.0/x64/lib/python3.10/site-packages/pip/_vendor/pep517/in_process/_in_process.py build_wheel /tmp/tmptq8aay7m
       cwd: /tmp/pip-install-dk_6t98q/numpy_e9431bf106b746148c0e7c36e46551b4
  Complete output (1169 lines):
  setup.py:66: RuntimeWarning: NumPy 1.20.0 may not yet support Python 3.10.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66947

Reviewed By: suo, malfet

Differential Revision: D31799205

Pulled By: janeyx99

fbshipit-source-id: 64bf10c37c0aa4f5837c48e92d56e81d920722bd

Co-authored-by: Jane Xu <janeyx@fb.com>
2021-12-08 14:51:06 -08:00
36449ea931 (torch/elastic) add fqdn hostname to error printout (#66182) (#66662)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66182

closes https://github.com/pytorch/pytorch/issues/63174

Does a few things:

1. adds hostname to the error report
2. moves the "root cause" section to the end (presumably since the logs are being "tailed" we want the root cause to appear at the end)
3. moves redundant error info logging to debug
4. makes the border max 60 char in length and justifies left for the header

NOTE: YOU HAVE TO annotate your main function with torch.distributed.elastic.multiprocessing.errors.record, otherwise no traceback is printed (this is because python exception propagation does NOT work out of the both for IPC - hence the extra record annotation).

Test Plan:
Sample

```
============================================================
run_script_path FAILED
------------------------------------------------------------
Failures:
  <NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
  time      : 2021-10-05_17:37:22
  host      : devvm4955.prn0.facebook.com
  rank      : 0 (local_rank: 0)
  exitcode  : 1 (pid: 3296201)
  error_file: /home/kiuk/tmp/elastic/none_3_lsytqe/attempt_0/0/error.json
  traceback :
  Traceback (most recent call last):
    File "/tmp/jetter.xr3_x6qq/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 372, in wrapper
      return f(*args, **kwargs)
    File "main.py", line 28, in main
      raise RuntimeError(args.throws)
  RuntimeError: foobar

============================================================
```

Reviewed By: cbalioglu, aivanou

Differential Revision: D31416492

fbshipit-source-id: 0aeaf6e634e23ce0ea7f6a03b12c8a9ac57246e9
2021-10-14 18:35:23 -07:00
b544cbddfa Handle shared memory cases in MathBitFallback (#66667)
* Handle shared memory cases in MathBithFallback (#63602)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63602

This PR fixes the case when a read and write is performed on a memory shared between mutable and (or) non-mutable arguments. Example:
```
a=torch.tensor([1+1j])
b=a.conj()
b.add_(a) # should return tensor([2]) but returns tensor ([2-2j])
```

The issue here is that in the conjugate fallback, we resolve the conjugation in-place for mutable arguments which can be a problem as shown above in the case when other input arguments share memory with the mutable argument(s).
This PR fixes this issue by:
1. first scanning through the operator input arguments and creating a vector of mutable arguments that have the conj bit set to `True` (and accordingly setting the flag `check_for_alias_with_mut_arg ` to `True` or `False`).
2. Iterating through all the arguments. At this time we only look at the non-mutable arguments. If `check_for_alias_with_mut_arg` is set to `True`, then we iterate through `mutable_inputs` to check if the current arg tensor in question doesn't alias any of the entries in `mutable_inputs`. If yes, then we clone the non-mutable tensor arg, else we resolve the conjugation as before.
3. Now we look through the mutable_inputs vector (which contains only mutable input tensors with conj bit set to `True`). We in-place conjugate each of the entries in the vector.
4. Do the computation.
5. Re-conjugate the mutable argument tensors.

NOTE: `TensorLists` are not fully handled in ConjugateFallback. Please see the in-line comment for more details.

Fixes https://github.com/pytorch/pytorch/issues/59943

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D30466905

Pulled By: anjali411

fbshipit-source-id: 58058e5e6481da04a12d03f743c1491942a6cc9b

* fix lint (#66572)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66572

Test Plan: Imported from OSS

Reviewed By: seemethere

Differential Revision: D31624043

Pulled By: suo

fbshipit-source-id: 9db9cee3140d78c2a2f0c937be84755206fee1dd

Co-authored-by: anjali411 <chourdiaanjali123@gmail.com>
Co-authored-by: Michael Suo <suo@fb.com>
2021-10-14 18:34:13 -07:00
ddf3092581 Disable .numpy() and .tolist() for tensor subclasses subclasses and f… (#66642)
* Disable .numpy() and .tolist() for tensor subclasses subclasses and fix .tolist() for conjugated and negated tensors (#66082)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66082

Fixes https://github.com/pytorch/pytorch/issues/66024 #65779

cc ezyang anjali411 dylanbespalko mruberry Lezcano nikitaved albanD

Test Plan: Imported from OSS

Reviewed By: Gamrix, albanD

Differential Revision: D31615588

Pulled By: anjali411

fbshipit-source-id: c3e65ef0fe301630eb76732ccd7819683c09aa19

* Apply suggestions from code review

Co-authored-by: Nikita Shulga <nikita.shulga@gmail.com>
Co-authored-by: Nikita Shulga <nshulga@fb.com>
2021-10-14 16:00:56 -07:00
cc360fa38f Delete extraneous whitespaces 2021-10-14 15:57:16 -07:00
3c134b8b1e Disable .numpy() and .tolist() for tensor subclasses subclasses and fix .tolist() for conjugated and negated tensors (#66082) (#66576)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66082

Fixes https://github.com/pytorch/pytorch/issues/66024 #65779

cc ezyang anjali411 dylanbespalko mruberry Lezcano nikitaved albanD

Test Plan: Imported from OSS

Reviewed By: Gamrix, albanD

Differential Revision: D31615588

Pulled By: anjali411

fbshipit-source-id: c3e65ef0fe301630eb76732ccd7819683c09aa19
2021-10-14 13:16:03 -07:00
4a514dd81e Call PyArray_Check only if NumPy is available (#66433) (#66629)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66353

Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66433

Reviewed By: seemethere, janeyx99

Differential Revision: D31548290

Pulled By: malfet

fbshipit-source-id: 3b094bc8195d0392338e0bdc6df2f39587b85bb3
2021-10-14 09:46:41 -07:00
c3ea586e32 fix normal with empty std (#66524) 2021-10-14 09:42:41 -07:00
9509e8a3d6 Fix cosine similarity dim checks (#66214)
* fix cosine similarity dimensionality check

* fix shapes in the doc
2021-10-08 07:22:40 -07:00
1774a6a2f4 [ONNX] Deprecate various args (#65962)
* [ONNX] Remove argument _retain_param_name from torch.onnx.export() function. (#61702) (#64370)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64370

As of now, the "_retain_param_name" parameter has no description in PyTorch docs website. According to code, this argument determines if we keep the original parameter names of PyTorch model in the final ONNX graph. If this is False, those original parameter names will be replaced with a series of integers starting from 1.

Since setting numbers as parameter names make no sense to users, we remove this argument from the torch.onnx.export() function to increase user experience of calling this function.

This PR will still keep it in torch.onnx.export() function for backward support while all backend logic has been changed to work as _retain_param_name is set to True.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905270

Pulled By: malfet

fbshipit-source-id: ca60757ca17daaff937e9f08da42596086795f4a

Co-authored-by: fatcat-z <zhang-ji@outlook.com>

* [ONNX] Remove strip_doc_string param from torch.onnx.export() function. (#61712) (#64371)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64371

As of now, the "strip_doc_string" parameter was described as below:

strip_doc_string (bool, default True): do not include the field
doc_string``` from the exported model. Otherwise the field will mention the source code locations for model``.

This is usually useless to users who want to transform a PyTorch model to ONNX one. Only when the user wants to debug the export process, these source code locations could provide benefits.

To make the export() function more friendly by providing less parameters, we combined "strip_doc_string" into "verbose" parameter. If a user set verbose to True, it means the users need some log information for debugging the export process and this is similar with the purpose of strip_doc_string parameter.

But the usage of these 2 arguments are opposite: setting verbose to True means we want to print log information to help debug, which means strip_doc_string should be False. And this is how we replace strip_doc_string with verbose argument in this PR.

This PR will still keep it in torch.onnx.export() function for backward support while the usage of it has been combined with verbose argument.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905268

Pulled By: malfet

fbshipit-source-id: 2f06eb805c01fe15ff7a1b4f6595c937ba716d60

Co-authored-by: fatcat-z <zhang-ji@outlook.com>

* [ONNX] minor doc improvements and cleanup (#62514) (#64373)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64373

* Fix some bad formatting and clarify things in onnx.rst.
* In `export_to_pretty_string`:
    * Add documentation for previously undocumented args.
    * Document that `f` arg is ignored and mark it deprecated.
    * Update tests to stop setting `f`.
    * Warn if `_retain_param_name` is set.
* Use double quotes for string literals in test_operators.py.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905271

Pulled By: malfet

fbshipit-source-id: 3627eeabf40b9516c4a83cfab424ce537b36e4b3

* [ONNX] Deprecated the example_outputs param from torch.onnx.export() function. (#62815) (#64380)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64380

* `example_outputs` used to determine the type and shape of the outputs without tracing the execution of the model. And it must be provided when exporting a ScriptModule or ScriptFunction when using export() function.

* Since we can work out `example_outputs` in internal function instead of being provided by user, so we deprecated this argument in the export() function to increase user experience of calling this function.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905266

Pulled By: malfet

fbshipit-source-id: d00b00d7d02b365d165028288ad915678caa51f2

Co-authored-by: hwangdeyu <dejack953@outlook.com>

* [ONNX] Deprecate use_external_data_format param from torch.onnx.export() function. (#62257) (#64382)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64382

* This `use_external_data_format` parameter is used for large models cannot be exported because of the 2GB protobuf limit.

* When `use_external_data_format` set to True, the model is exported in ONNX external data format, in which case some of the model parameters are stored in external binary files and not in the ONNX model file itself.

* This PR will set this paramter to DEPRECATED and check the model proto sizes by code instead of by user, if the sizes lager than 2GB, then `use_external_data_format = True` automatically.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905265

Pulled By: malfet

fbshipit-source-id: 82b4e17bfa6a8de2bfd700a5282c12f6835603cb

Co-authored-by: hwangdeyu <dejack953@outlook.com>

* fix clang-tidy error introduced by #64382 (#65977)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65977

Reviewed By: ngimel

Differential Revision: D31423174

Pulled By: malfet

fbshipit-source-id: 0ea560b9a6ddd6431f70bd3ac10ace68e26ab352

Co-authored-by: BowenBao <bowbao@microsoft.com>
Co-authored-by: fatcat-z <zhang-ji@outlook.com>
Co-authored-by: hwangdeyu <dejack953@outlook.com>
2021-10-08 07:21:29 -07:00
a27906c250 Convert Sampler back to lazily construction (#63646) (#65926)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63646

Fixes #63609

Test Plan: Imported from OSS

Reviewed By: NivekT

Differential Revision: D30451774

Pulled By: ejguan

fbshipit-source-id: 550d77494326446d1a42b5da0559e0d384c47413
2021-10-08 07:20:03 -07:00
49f52b6c07 Revert "Added option to update parameters using state_dict in AveragedModel (#65495) (#65755)" (#66308)
This reverts commit 5f1a434599b46afd99607839d15892e09269a1c4.
2021-10-08 07:17:47 -07:00
5f1a434599 Added option to update parameters using state_dict in AveragedModel (#65495) (#65755)
* Added option to update parameters using state_dict in AveragedModel (#65495)

Summary:
While implementing [EMA](https://github.com/pytorch/vision/pull/4381)(which extends AveragedModel) in torchvision, update_parameters() from AveragedModel could not be used as it did not handle state_dict(), so a custom update_parameters() needed to be defined in [EMA class](https://github.com/pytorch/vision/pull/4406). This PR aims to handle this scenario removing the need for this custom update_parameters() implementation.

Discussion: https://github.com/pytorch/vision/pull/4406#pullrequestreview-753734102

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65495

Reviewed By: datumbox

Differential Revision: D31176742

Pulled By: prabhat00155

fbshipit-source-id: 326d14876018f21cf602bab5eaba344678dbabe2
(cherry picked from commit 2ea724b1fd543304e3be7bd223cac451cd093e16)

* Added validation of mode parameter in AveragedModel (#65921)

Summary:
Discussion: https://github.com/pytorch/pytorch/pull/65495#issuecomment-930460469

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65921

Reviewed By: albanD

Differential Revision: D31310105

Pulled By: prabhat00155

fbshipit-source-id: 417691832a7c793744830c11e0ce53e3972d21a3
(cherry picked from commit c7748fc172553da66368fd0b7fea3fe5661e2dc1)
2021-10-06 11:13:31 -07:00
ecbf5a7439 Tweak file_diff_from_base for release/1.10 branch (#66202) 2021-10-06 08:34:46 -07:00
4e3ebebcff [DataPipe] DataPipe Fix and Deprecation Warnings for Release 1.10 (#65932)
* Unify the output pathname of archive reader and extractor (#65424)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65424

This PR is re-implementation for https://github.com/facebookexternal/torchdata/pull/93
Same PR has landed into torchdata https://github.com/facebookexternal/torchdata/pull/157

Test Plan: Imported from OSS

Reviewed By: soulitzer

Differential Revision: D31090447

Pulled By: ejguan

fbshipit-source-id: 45af1ad9b24310bebfd6e010f41cff398946ba65

* [DatePipe] add deprecation warnings for DataPipes that will solely exist in TorchData (#65827)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65827

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D31272794

Pulled By: NivekT

fbshipit-source-id: 8da8266184b4df050422904cbc5fca6d7c3d2e02

* [DataPipe] Fixes an issue where TarArchiveReader closes stream when read into a buffer (#65877)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65877

Fixes #65808

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D31296041

Pulled By: NivekT

fbshipit-source-id: cdcad3a333ae9781d6063678a122a128955b0ff4

Co-authored-by: Erjia Guan <erjia@fb.com>
2021-10-05 20:54:40 -07:00
2b46c95e7c [iOS][CI] Update dev certs (#66004) (#66188)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65988

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66004

Reviewed By: xta0

Differential Revision: D31340893

Pulled By: malfet

fbshipit-source-id: 3bf0be266e9686a73d62e86c5cf0bebeb0416260

Co-authored-by: Tao Xu <taox@fb.com>
2021-10-05 20:12:40 -07:00
5f3eee1ca5 Fix backward compatibility tests (#66186)
Compare operator list against RC1 build rather than against nightly
2021-10-05 20:12:13 -07:00
4731f33d02 Fix Windows ninja builds when MAX_JOBS is specified (#65444) (#66155)
Summary:
Reported by cloudhan in https://github.com/pytorch/pytorch/pull/64733#issuecomment-924545463

Fixes regression introduced by 047e68235f

cc malfet seemethere

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65444

Reviewed By: dagitses, seemethere

Differential Revision: D31103260

Pulled By: malfet

fbshipit-source-id: 9d5454a64cb8a0b96264119cf16582cc5afed284
2021-10-05 12:03:27 -07:00
ecfcb8ff5a Binary building wthout python fix (#66031) (#66117)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66030

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66031

Reviewed By: VitalyFedyunin

Differential Revision: D31356243

Pulled By: malfet

fbshipit-source-id: d1537bc65bbba5d6497ecb8db7160a397eca81fd
2021-10-05 12:02:51 -07:00
6aadfda9e2 [ci] try installing libgnutls to fix cert error (#65934) (#65979)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65934

see: https://github.com/pytorch/pytorch/issues/65931, this was a
suggested remediation on the linked issue

Test Plan: Imported from OSS

Reviewed By: malfet, zhouzhuojie

Differential Revision: D31313040

Pulled By: suo

fbshipit-source-id: a9e2b82a1e879962af768ed3049c73ab77394738

Co-authored-by: Michael Suo <suo@fb.com>
2021-09-30 18:55:44 -07:00
13666d20fd [DataPipe] Fix deepcopy filehandle for Mapper and in-place modification for IterableWrapper (#65220) (#65924)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65220

Fixes #65221

- Remove deepcopy from Mapper to support file handles
- Convert `IterableWrapper` to deepcopy iterable instance within each iterator to prevent in-place modification (different data per epoch)
- Convert `IDP` to `IterableWrapper` in test_datapipe.py
- Refine the variable names (prevent using `dp` that is module reference)

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D31021886

Pulled By: ejguan

fbshipit-source-id: 72a9eee66c758e2717d591cd0942892bddedc223
2021-09-30 18:36:49 -07:00
1fa17a20fc Fix the slowdown of _object_to_tensor since 1.9 (#65721) (#65835)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65721

#Closes: https://github.com/pytorch/pytorch/issues/65696

The bug is introduced in https://github.com/pytorch/pytorch/pull/55861, and it causes 100X slowdown since 1.9.
ghstack-source-id: 139128267

Test Plan:
Performance test:
```
import time

from torch.distributed.distributed_c10d import _object_to_tensor

start = time.time()
_object_to_tensor("x" * 50_000_000)
print("Time:", time.time() - start)
```

Reviewed By: rohan-varma

Differential Revision: D31219794

fbshipit-source-id: 1abec38f9d51361c1eab6ad5efd87b589322e208

Co-authored-by: Yi Wang <wayi@fb.com>
2021-09-29 14:38:54 -07:00
c05547fa6c Fix test reporting git merge-base (#65787) 2021-09-28 15:48:32 -07:00
0e857bf109 [1.10] Remove torch.vmap (#65496)
torch.vmap is a prototype feature and should not be in the stable
binary. This PR:
- Removes the torch.vmap API
- Removes the documentation entry for torch.vmap
- Changes the vmap tests to use an internal API instead of torch.vmap.

Test Plan:
- Tested locally (test_torch, test_autograd, test_type_hints, test_vmap),
but also wait for CI.
2021-09-24 10:29:08 -07:00
ad22804b95 [release/1.10] Pin builder and xla repo (#65433)
Pin builder to https://github.com/pytorch/builder/commits/release/1.10
Pin xla to https://github.com/pytorch/xla/tree/r1.10
2021-09-21 16:16:22 -07:00
8825 changed files with 374481 additions and 1409440 deletions

View File

@ -0,0 +1,63 @@
# PyTorch CI Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on select configurations
# 2) runs only TestTorch unit tests.
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_ci_build: True
os: windows
cuda: cpu
customMatrixes:
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_ci_build: True
os: windows
cuda: gpu
customMatrixes:
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102

View File

@ -0,0 +1,82 @@
# PyTorch Daily Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) runs all PyTorch unit tests
stages:
- stage: 'BuildTest'
displayName: 'Build and Test PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_daily_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_daily_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -0,0 +1,134 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
container_endpoint: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
container:
image: $[variables['container_image']]
endpoint: ${{parameters.container_endpoint}}
steps:
# Build stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- bash: git submodule update --init --recursive --jobs 0
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode
- bash: python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- bash: python test/test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- bash: python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode and exclude test binaries
- bash: python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- bash: python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)/dist/
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- bash: python -m pip install $(Build.SourcesDirectory)/verify/torch*linux*.whl
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- bash: |
cd $(Build.SourcesDirectory)/verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/publish
displayName: Download PyTorch Wheel
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- bash: |
export TORCH_VERSION=$(head -c 5 ./version.txt)
export LAST_COMMIT=$(git rev-parse --short HEAD)
export LAST_COMMIT_DATE=$(git log -1 --pretty=%ad --date=format:%Y%m%d)
cd $(Build.SourcesDirectory)/publish
export TORCH_WHEEL=$(echo torch*linux*whl)
az extension add -n azure-devops
echo $ADOTOKEN | az devops login
az artifacts universal publish --organization $AZURE_DEVOPS_ARTIFACTS_ORGANIZATION --project $AZURE_DEVOPS_ARTIFACTS_PROJECT --scope project --feed "PyTorch" --name $TORCH_WHEEL --description "PyTorch Official Build Artifact" --version $TORCH_VERSION-$LAST_COMMIT_DATE-$LAST_COMMIT --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch Official Build package to Azure Artifacts

View File

@ -0,0 +1,150 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
CMAKE_GENERATOR: Ninja
PACKAGE_PDBS: 0
steps:
# Prepare for PyTorch build on Windows
- template: prepare-build-template.yml
parameters:
configuration: $(configuration)
build_stage: ${{ parameters.build_stage}}
# Build Stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- script: git submodule update --init --recursive --jobs 0
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode with Ninja
- script: call activate $(configuration) && python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test\test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode with Ninja and exclude test binaries
- script: call activate $(configuration) && python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- script: call activate $(configuration) && python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)\dist\
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification Stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
dir torch*win*.whl /b > whl.txt
set /p whl= < whl.txt
python -m pip install %whl%
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\publish
displayName: Download PyTorch Wheel
# Set up Azure Artifacts for Windows
# The pip install --upgrade command is a bug fix for Azure CLI on Windows
# More info: https://github.com/Azure/azure-cli/issues/16858
- script: |
pip install --upgrade pip --target \opt\az\lib\python3.6\site-packages\
az extension add -n azure-devops
displayName: Set up Azure Artifacts download on Windows
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- script: |
set /p TORCH_VERSION= < version.txt
cd $(Build.SourcesDirectory)\publish
git rev-parse --short HEAD > last_commit.txt && set /p LAST_COMMIT= < last_commit.txt
git log -1 --pretty=%ad --date=format:%Y%m%d > last_commit_date.txt && set /p LAST_COMMIT_DATE= < last_commit_date.txt
dir torch*win*.whl /b > whl.txt && set /p TORCH_WHEEL= < whl.txt
echo %ADOTOKEN% | az devops login
az artifacts universal publish --organization %AZURE_DEVOPS_ARTIFACTS_ORGANIZATION% --project %AZURE_DEVOPS_ARTIFACTS_PROJECT% --scope project --feed "PyTorch" --name %TORCH_WHEEL% --description "PyTorch Official Build Artifact" --version %TORCH_VERSION:~0,5%-%LAST_COMMIT_DATE%-%LAST_COMMIT% --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch nigthly package to Azure Artifacts

View File

@ -0,0 +1,17 @@
dependencies:
- python=PYTHON_VERSION
- numpy
- ninja
- pyyaml
- mkl
- mkl-include
- setuptools
- cmake
- cffi
- typing_extensions
- future
- six
- requests
- dataclasses
- pip:
- -r ../../requirements.txt

View File

@ -0,0 +1,26 @@
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
- bash: |
bash $(Build.SourcesDirectory)/pytorch_tests/webapp/notify_webapp.sh
displayName: Notify Webapp

View File

@ -0,0 +1,62 @@
# Build prepare steps for PyTorch on Azure DevOps to build from source.
# These steps share between normal build process and semmle security scan tasks
parameters:
build_stage: False
configuration: ''
steps:
# End Python tasks that may be lingering over from previous runs
# Note: If python.exe isn't currently running, exit code becomes 128,
# which fails the run. Here exit code is set to 0 to avoid failed run.
- script: |
taskkill /f /im python.exe
IF %ERRORLEVEL% EQU 128 exit 0
displayName: End previous Python processes
# Clean up env directory in conda for fresh builds and set up conda environment YAML
- powershell: |
Remove-Item 'C:\Miniconda\envs' -Recurse -ErrorAction Ignore
$env:PYTHON_VERSION = $env:SYSTEM_JOBNAME.Substring(3,1) + '.' + $env:SYSTEM_JOBNAME.Substring(4,1)
(Get-Content .azure_pipelines\job_templates\common-packages.yml) -replace 'PYTHON_VERSION', $env:PYTHON_VERSION | Out-File -encoding ASCII .azure_pipelines\job_templates\common-packages.yml
displayName: Clean up previous environments and Set up conda environment YAML
# Make conda environment and install required packages
- script: |
call conda clean --all -y
call conda env create -n $(configuration) --file .azure_pipelines\job_templates\common-packages.yml
call activate $(configuration)
call conda install -c conda-forge libuv=1.39
displayName: Set up conda environment for building from source
- ${{ if eq(parameters.build_stage, 'True') }}:
# Install MKL
- script: |
rmdir /s /q mkl
del mkl_2020.2.254.7z
curl https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z -k -O
7z x -aoa mkl_2020.2.254.7z -omkl
displayName: Install MKL
# Install sccache and randomtemp
# Related PyTorch GitHub issue: https://github.com/pytorch/pytorch/issues/25393
# Related fix: https://github.com/pytorch/builder/pull/448/
- script: |
mkdir .\tmp_bin
curl -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output .\tmp_bin\sccache.exe
curl -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output .\tmp_bin\sccache-cl.exe
copy .\tmp_bin\sccache.exe .\tmp_bin\nvcc.exe
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.3/randomtemp.exe --output .\tmp_bin\randomtemp.exe
displayName: Install sccache and randomtemp
condition: not(eq(variables.CUDA_VERSION, ''))
# CUDA 11.2's CUB directory conflicts with CUDA 10.2 and 10.1
# builds, where CUDA 11.2's CUB is injected into non-CUDA
# 11.2 builds.
- powershell: Remove-Item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include\cub" -Recurse -ErrorAction Ignore
displayName: Remove conflicting CUB from CUDA installation
condition: not(eq(variables.CUDA_VERSION, ''))
- powershell: Copy-Item -Path "F:\cuda_11_2\cub\" -Destination "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include" -Recurse
displayName: Copy CUDA CUB for CUDA 11.2 build
condition: eq(variables.CUDA_VERSION, '112')

View File

@ -0,0 +1,61 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
container_endpoint: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- bash: rm -rf pytorch_tests/
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- bash: bash $(Build.SourcesDirectory)/pytorch_tests/scripts/linux/run.sh
env:
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
_AZUREML_CLONE_PASSWORD: $(AZUREML_CLONE_PASSWORD)
_SPPASSWORD: $(SPPASSWORD)
displayName: Run PyTorch Unit Tests
# Tests results are available outside the docker container since
# the current directory is mounted as a volume of the container.
- task: PublishTestResults@2
condition: always()
inputs:
testResultsFiles: '**/test-*.xml'
testRunTitle: 'Publish test results for Python'

View File

@ -0,0 +1,57 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- script: if exist "pytorch_tests/" rmdir "pytorch_tests/" /q /s
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- powershell: |
$env:B64Pat = [Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes(":$env:_ADOTOKEN"))
git -c http.extraHeader="Authorization: Basic $env:B64Pat" clone $env:AZURE_DEVOPS_pytorch_tests_REPO_URL
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- script: call $(Build.SourcesDirectory)\pytorch_tests\scripts\windows\run.bat
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests
# Tests results are available outside the docker container since
# the current directory is mounted as a volume of the container.
- task: PublishTestResults@2
condition: always()
inputs:
testResultsFiles: '**\test-*.xml'
testRunTitle: 'Publish test results for Python'

View File

@ -0,0 +1,131 @@
# Set environment variables for specific configurations
parameters:
is_official_build: False
os: ''
cuda: ''
steps:
# Environment configuration steps for Ubuntu builds
- ${{ if contains(parameters.os, 'ubuntu') }}:
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- bash: |
echo "##vso[task.setvariable variable=INSTALL_TEST;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
export PYTORCH_VERSION=$(head -c 5 ./version.txt)
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags.
- ${{ if contains(parameters.cuda, 'cpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU builds
- ${{ if contains(parameters.cuda, 'gpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]1"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU builds
# Set MKL environment variables
- bash: |
echo "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]/opt/intel/lib:$CMAKE_LIBRARY_PATH"
echo "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]/opt/intel/include:$CMAKE_INCLUDE_PATH"
displayName: Set MKL paths
# View current environment variables
- bash:
printenv
displayName: Show environment variables
# Environment configuration steps for Windows builds
- ${{ if contains(parameters.os, 'windows') }}:
# Set Conda Lib Path
- powershell: Write-Host "##vso[task.setvariable variable=CONDA_LIB_PATH;]C:\Miniconda\envs\$(configuration)\Library\bin"
displayName: Set Conda Lib Path
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=INSTALL_TEST;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
Set-Variable -Name PYTORCH_VERSION -Value (Get-Content .\version.txt).Substring(0,5)
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags..
- ${{ if contains(parameters.cuda, 'cpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU build
- ${{ if contains(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]1"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU build
# Set CUDA 11.2, 10.2 or 10.1 specific build flags
- ${{ if eq(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\"
displayName: Set CUDA 11.2 specific build flags
condition: eq(variables.CUDA_VERSION, '112')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\"
displayName: Set CUDA 10.2 specific build flags
condition: eq(variables.CUDA_VERSION, '102')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\"
displayName: Set CUDA 10.1 specific build flags
condition: eq(variables.CUDA_VERSION, '101')
- powershell: |
Write-Host "##vso[task.setvariable variable=CUDA_BIN_PATH;]$env:CUDA_PATH\bin\"
Write-Host "##vso[task.setvariable variable=CUDNN_ROOT;]$env:CUDA_PATH"
Write-Host "##vso[task.setvariable variable=CUDNN_INCLUDE_DIR;]$env:CUDA_PATH\include\"
Write-Host "##vso[task.setvariable variable=CUDNN_LIBRARY;]$env:CUDA_PATH\lib\x64\"
Write-Host "##vso[task.prependpath]$env:CUDA_PATH\bin"
Write-Host "##vso[task.setvariable variable=TORCH_NVCC_FLAGS;]-Xfatbin -compress-all --no-host-device-move-forward"
Write-Host "##vso[task.setvariable variable=THRUST_IGNORE_CUB_VERSION_CHECK;]1"
Write-Host "##vso[task.setvariable variable=NVTOOLSEXT_PATH;]C:\Program Files\NVIDIA Corporation\NvToolsExt\"
displayName: Set CUDA environment variables
- powershell: |
copy "$(CUDA_BIN_PATH)\cusparse*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cublas*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudart*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\curand*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cufft*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cusolver*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudnn*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\nvrtc*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\libiomp*5md.dll" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\uv.dll" $(Build.SourcesDirectory)\torch\lib
displayName: Copy CUDA/cuDNN/libomp/libuv dlls to torch\lib
# Set MKL, sccache and randomtemp environment variables
- powershell: |
Write-Host "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]$(Build.SourcesDirectory)\mkl\include"
Write-Host "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]$(Build.SourcesDirectory)\mkl\lib;$env:CMAKE_LIBRARY_PATH"
Write-Host "##vso[task.setvariable variable=ADDITIONAL_PATH;]$(Build.SourcesDirectory)\tmp_bin"
Write-Host "##vso[task.setvariable variable=SCCACHE_IDLE_TIMEOUT;]1500"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\nvcc.exe"
Write-Host "##vso[task.setvariable variable=CUDA_NVCC_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\randomtemp.exe"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_BASEDIR;]$(Build.SourcesDirectory)\tmp_bin"
displayName: Set MKL, sccache and randomtemp environment variables
# View current environment variables
- script:
set
displayName: Show environment variables

View File

@ -0,0 +1,14 @@
# Main logic to initiate wait for PR artifact to be ready
steps:
- task: InvokeRESTAPI@1
displayName: 'Wait for job success and wheel ready'
timeoutInMinutes: 60
inputs:
connectionType: 'connectedServiceName'
serviceConnection: circleciconn
method: 'POST'
headers: '{"Content-Type":"application/json", "BranchName":"$(_TARGET_BRANCH_TO_CHECK)", "JobName":"$(TARGET_CIRCLECI_BUILD_PR)", "PRNumber":"$(_TARGET_PR_NUMBER)", "TargetCommit":"$(_TARGET_COMMIT)", "PlanUrl":"$(System.CollectionUri)", "ProjectId":"$(System.TeamProjectId)", "HubName":"$(System.HostType)", "PlanId":"$(System.PlanId)", "JobId":"$(System.JobId)", "TimelineId":"$(System.TimelineId)", "TaskInstanceId":"$(System.TaskInstanceId)", "AuthToken":"$(System.AccessToken)"}'
body: ''
urlSuffix: 'api/JobStatus'
waitForCompletion: true

View File

@ -0,0 +1,92 @@
# Initiate 5 agentless-server waiting jobs to check on the
# status of PR artifact builds, for a maximum wait time of
# 11*60 min=660 mins. These jobs will pass immediately
# once targeted CircleCI build is ready.
jobs:
- job: checkjob1
pool: server
timeoutInMinutes: 60
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob2
pool: server
timeoutInMinutes: 60
dependsOn: checkjob1
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob3
pool: server
timeoutInMinutes: 60
dependsOn: checkjob2
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob4
pool: server
timeoutInMinutes: 60
dependsOn: checkjob3
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob5
pool: server
timeoutInMinutes: 60
dependsOn: checkjob4
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob6
pool: server
timeoutInMinutes: 60
dependsOn: checkjob5
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob7
pool: server
timeoutInMinutes: 60
dependsOn: checkjob6
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob8
pool: server
timeoutInMinutes: 60
dependsOn: checkjob7
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob9
pool: server
timeoutInMinutes: 60
dependsOn: checkjob8
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob10
pool: server
timeoutInMinutes: 60
dependsOn: checkjob9
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob11
pool: server
timeoutInMinutes: 60
dependsOn: checkjob10
continueOnError: true
steps:
- template: wheel-wait-job-template.yml

View File

@ -0,0 +1,60 @@
# PyTorch Nightly PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline runs custom PyTorch unit-tests on nightly
# PyTorch wheels.
stages:
- stage: 'NightlyCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_1)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_1)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_LIN_2)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_2)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_2)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_CPU
pool: $(BUILD_POOL_WIN_1)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_1)
_RUN_TESTS: $(RUN_TESTS_WIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_GPU
pool: $(BUILD_POOL_WIN_2)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_2)
_RUN_TESTS: $(RUN_TESTS_WIN)
- stage: 'NotifyWebapp'
displayName: 'Notify Webapp that pipeline is finished'
dependsOn: NightlyCustomTests
condition: succeededOrFailed()
jobs:
- template: job_templates/notify-webapp-template.yml
parameters:
name: ubuntu_1804_CPU
pool: $(BUILD_POOL_LIN_1)

View File

@ -0,0 +1,62 @@
# PyTorch PR PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) ensures that CircleCI builds for a given PR
# have finished, and that its artifacts are
# ready for download
# 2) runs custom PyTorch unit-tests on PyTorch
# wheels generated during PR builds.
resources:
webhooks:
- webhook: GitHubPyTorchPRTrigger
connection: GitHubPyTorchPRTriggerConnection
filters:
- path: repositoryName
value: pytorch_tests
stages:
- stage: 'EnsureArtifactsReady'
displayName: 'Ensure PyTorch PR Artifacts are ready'
jobs:
- template: job_templates/wheel-wait-template.yml
variables:
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
- stage: 'PRCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
dependsOn: EnsureArtifactsReady
condition: succeeded()
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_PR)
customMatrixes:
PR_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_PR)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_PR)
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
_DOCKER_IMAGE: $(DOCKER_IMAGE_PR)
_RUN_TESTS: $(RUN_TESTS_PR)
- stage: 'NotifyWebapp'
displayName: 'Notify Webapp that pipeline is finished'
dependsOn: PRCustomTests
condition: succeededOrFailed()
jobs:
- template: job_templates/notify-webapp-template.yml
parameters:
name: ubuntu_1804_CPU
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
PR_Notify_WebApp:
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}

View File

@ -0,0 +1,224 @@
# PyTorch Official Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) verifies PyTorch artifacts by installing them in a clean environment
# and checking torch.__version_
# 3) publishes official PyTorch artifacts to Azure DevOps Artifacts for consumption
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_official_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_official_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Verify'
displayName: 'Verify PyTorch wheels'
dependsOn: Build
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Publish'
displayName: 'Publish PyTorch wheels'
dependsOn: Verify
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

110
.bazelrc
View File

@ -1,115 +1,13 @@
build --cxxopt=--std=c++17
build --copt=--std=c++14
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin
build --experimental_ui_max_stdouterr_bytes=2048576
# Configuration to disable tty features for environments like CI
build:no-tty --curses no
build:no-tty --progress_report_interval 10
build:no-tty --show_progress_rate_limit 10
# Build with GPU support by default.
build --define=cuda=true
# rules_cuda configuration
build --@rules_cuda//cuda:enable_cuda
build --@rules_cuda//cuda:cuda_targets=sm_52
build --@rules_cuda//cuda:compiler=nvcc
build --repo_env=CUDA_PATH=/usr/local/cuda
# Configuration to build without GPU support
build:cpu-only --define=cuda=false
# Configuration to build with GPU support
build:gpu --define=cuda=true
# define a separate build folder for faster switching between configs
build:cpu-only --platform_suffix=-cpu-only
# See the note on the config-less build for details about why we are
# doing this. We must also do it for the "-cpu-only" platform suffix.
build --copt=-isystem --copt=bazel-out/k8-fastbuild-cpu-only/bin
# rules_cuda configuration
build:cpu-only --@rules_cuda//cuda:enable_cuda=False
# Definition of --config=shell
# interactive shell immediately before execution
build:shell --run_under="//tools/bazel_tools:shellwrap"
# Disable all warnings for external repositories. We don't care about
# their warnings.
build --per_file_copt=^external/@-w
# Set additional warnings to error level.
#
# Implementation notes:
# * we use file extensions to determine if we are using the C++
# compiler or the cuda compiler
# * we use ^// at the start of the regex to only permit matching
# PyTorch files. This excludes external repos.
#
# Note that because this is logically a command-line flag, it is
# considered the word on what warnings are enabled. This has the
# unfortunate consequence of preventing us from disabling an error at
# the target level because those flags will come before these flags in
# the action invocation. Instead we provide per-file exceptions after
# this.
#
# On the bright side, this means we don't have to more broadly apply
# the exceptions to an entire target.
#
# Looking for CUDA flags? We have a cu_library macro that we can edit
# directly. Look in //tools/rules:cu.bzl for details. Editing the
# macro over this has the following advantages:
# * making changes does not require discarding the Bazel analysis
# cache
# * it allows for selective overrides on individual targets since the
# macro-level opts will come earlier than target level overrides
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=all
# The following warnings come from -Wall. We downgrade them from error
# to warnings here.
#
# sign-compare has a tremendous amount of violations in the
# codebase. It will be a lot of work to fix them, just disable it for
# now.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-sign-compare
# We intentionally use #pragma unroll, which is compiler specific.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-error=unknown-pragmas
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=extra
# The following warnings come from -Wextra. We downgrade them from error
# to warnings here.
#
# unused-parameter-compare has a tremendous amount of violations in the
# codebase. It will be a lot of work to fix them, just disable it for
# now.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-unused-parameter
# missing-field-parameters has both a large number of violations in
# the codebase, but it also is used pervasively in the Python C
# API. There are a couple of catches though:
# * we use multiple versions of the Python API and hence have
# potentially multiple different versions of each relevant
# struct. They may have different numbers of fields. It will be
# unwieldy to support multiple versions in the same source file.
# * Python itself for many of these structs recommends only
# initializing a subset of the fields. We should respect the API
# usage conventions of our dependencies.
#
# Hence, we just disable this warning altogether. We may want to clean
# up some of the clear-cut cases that could be risky, but we still
# likely want to have this disabled for the most part.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-missing-field-initializers
build --per_file_copt='//:aten/src/ATen/RegisterCompositeExplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterCompositeImplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterMkldnnCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCsrCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterZeroTensor\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterAutogradLazy\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterLazy\.cpp$'@-Wno-error=unused-function
build:gpu --platform_suffix=-gpu

View File

@ -1,25 +0,0 @@
[pt]
is_oss=1
[buildfile]
name = BUCK.oss
includes = //tools/build_defs/select.bzl
[repositories]
bazel_skylib = third_party/bazel-skylib/
ovr_config = .
[download]
in_build = true
[cxx]
cxxflags = -std=c++17
should_remap_host_platform = true
cpp = /usr/bin/clang
cc = /usr/bin/clang
cxx = /usr/bin/clang++
cxxpp = /usr/bin/clang++
ld = /usr/bin/clang++
[project]
default_flavors_mode=all

View File

@ -1,36 +0,0 @@
set -ex
LOCAL_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)
ROOT_DIR=$(cd "$LOCAL_DIR"/../.. && pwd)
TEST_DIR="$ROOT_DIR/test"
gtest_reports_dir="${TEST_DIR}/test-reports/cpp"
pytest_reports_dir="${TEST_DIR}/test-reports/python"
# Figure out which Python to use
PYTHON="$(which python)"
if [[ "${BUILD_ENVIRONMENT}" =~ py((2|3)\.?[0-9]?\.?[0-9]?) ]]; then
PYTHON=$(which "python${BASH_REMATCH[1]}")
fi
if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
# HIP_PLATFORM is auto-detected by hipcc; unset to avoid build errors
unset HIP_PLATFORM
if which sccache > /dev/null; then
# Save sccache logs to file
sccache --stop-server || true
rm -f ~/sccache_error.log || true
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
# Report sccache stats for easier debugging
sccache --zero-stats
fi
fi
# /usr/local/caffe2 is where the cpp bits are installed to in cmake-only
# builds. In +python builds the cpp tests are copied to /usr/local/caffe2 so
# that the test code in .ci/test.sh is the same
INSTALL_PREFIX="/usr/local/caffe2"
mkdir -p "$gtest_reports_dir" || true
mkdir -p "$pytest_reports_dir" || true
mkdir -p "$INSTALL_PREFIX" || true

View File

@ -1,172 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
echo 'Skipping tests'
exit 0
fi
if [[ "${BUILD_ENVIRONMENT}" == *-rocm* ]]; then
# temporary to locate some kernel issues on the CI nodes
export HSAKMT_DEBUG_LEVEL=4
fi
# These additional packages are needed for circleci ROCm builds.
if [[ $BUILD_ENVIRONMENT == *rocm* ]]; then
# Need networkx 2.0 because bellmand_ford was moved in 2.1 . Scikit-image by
# defaults installs the most recent networkx version, so we install this lower
# version explicitly before scikit-image pulls it in as a dependency
pip install networkx==2.0
# click - onnx
pip install --progress-bar off click protobuf tabulate virtualenv mock typing-extensions
fi
# Find where cpp tests and Caffe2 itself are installed
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
# For cmake only build we install everything into /usr/local
cpp_test_dir="$INSTALL_PREFIX/cpp_test"
ld_library_path="$INSTALL_PREFIX/lib"
else
# For Python builds we install into python
# cd to /usr first so the python import doesn't get confused by any 'caffe2'
# directory in cwd
python_installation="$(dirname $(dirname $(cd /usr && $PYTHON -c 'import os; import caffe2; print(os.path.realpath(caffe2.__file__))')))"
caffe2_pypath="$python_installation/caffe2"
cpp_test_dir="$python_installation/torch/test"
ld_library_path="$python_installation/torch/lib"
fi
################################################################################
# C++ tests #
################################################################################
# Only run cpp tests in the first shard, don't run cpp tests a second time in the second shard
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
echo "Running C++ tests.."
for test in $(find "$cpp_test_dir" -executable -type f); do
case "$test" in
# skip tests we know are hanging or bad
*/mkl_utils_test|*/aten/integer_divider_test)
continue
;;
*/scalar_tensor_test|*/basic|*/native_test)
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
continue
else
LD_LIBRARY_PATH="$ld_library_path" "$test"
fi
;;
*/*_benchmark)
LD_LIBRARY_PATH="$ld_library_path" "$test" --benchmark_color=false
;;
*)
# Currently, we use a mixture of gtest (caffe2) and Catch2 (ATen). While
# planning to migrate to gtest as the common PyTorch c++ test suite, we
# currently do NOT use the xml test reporter, because Catch doesn't
# support multiple reporters
# c.f. https://github.com/catchorg/Catch2/blob/master/docs/release-notes.md#223
# which means that enabling XML output means you lose useful stdout
# output for Jenkins. It's more important to have useful console
# output than it is to have XML output for Jenkins.
# Note: in the future, if we want to use xml test reporter once we switch
# to all gtest, one can simply do:
LD_LIBRARY_PATH="$ld_library_path" \
"$test" --gtest_output=xml:"$gtest_reports_dir/$(basename $test).xml"
;;
esac
done
fi
################################################################################
# Python tests #
################################################################################
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
exit 0
fi
# If pip is installed as root, we must use sudo.
# CircleCI docker images could install conda as jenkins user, or use the OS's python package.
PIP=$(which pip)
PIP_USER=$(stat --format '%U' $PIP)
CURRENT_USER=$(id -u -n)
if [[ "$PIP_USER" = root && "$CURRENT_USER" != root ]]; then
MAYBE_SUDO=sudo
fi
# Uninstall pre-installed hypothesis and coverage to use an older version as newer
# versions remove the timeout parameter from settings which ideep/conv_transpose_test.py uses
$MAYBE_SUDO pip -q uninstall -y hypothesis
$MAYBE_SUDO pip -q uninstall -y coverage
# "pip install hypothesis==3.44.6" from official server is unreliable on
# CircleCI, so we host a copy on S3 instead
$MAYBE_SUDO pip -q install attrs==18.1.0 -f https://s3.amazonaws.com/ossci-linux/wheels/attrs-18.1.0-py2.py3-none-any.whl
$MAYBE_SUDO pip -q install coverage==4.5.1 -f https://s3.amazonaws.com/ossci-linux/wheels/coverage-4.5.1-cp36-cp36m-macosx_10_12_x86_64.whl
$MAYBE_SUDO pip -q install hypothesis==3.44.6 -f https://s3.amazonaws.com/ossci-linux/wheels/hypothesis-3.44.6-py3-none-any.whl
# Collect additional tests to run (outside caffe2/python)
EXTRA_TESTS=()
# CUDA builds always include NCCL support
if [[ "$BUILD_ENVIRONMENT" == *-cuda* ]] || [[ "$BUILD_ENVIRONMENT" == *-rocm* ]]; then
EXTRA_TESTS+=("$caffe2_pypath/contrib/nccl")
fi
rocm_ignore_test=()
if [[ $BUILD_ENVIRONMENT == *-rocm* ]]; then
# Currently these tests are failing on ROCM platform:
# On ROCm, RCCL (distributed) development isn't complete.
# https://github.com/ROCmSoftwarePlatform/rccl
rocm_ignore_test+=("--ignore $caffe2_pypath/python/data_parallel_model_test.py")
# This test has been flaky in ROCm CI (but note the tests are
# cpu-only so should be unrelated to ROCm)
rocm_ignore_test+=("--ignore $caffe2_pypath/python/operator_test/blobs_queue_db_test.py")
# This test is skipped on Jenkins(compiled without MKL) and otherwise known flaky
rocm_ignore_test+=("--ignore $caffe2_pypath/python/ideep/convfusion_op_test.py")
# This test is skipped on Jenkins(compiled without MKL) and causing segfault on Circle
rocm_ignore_test+=("--ignore $caffe2_pypath/python/ideep/pool_op_test.py")
fi
echo "Running Python tests.."
# locale setting is required by click package
for loc in "en_US.utf8" "C.UTF-8"; do
if locale -a | grep "$loc" >/dev/null 2>&1; then
export LC_ALL="$loc"
export LANG="$loc"
break;
fi
done
# Some Caffe2 tests fail when run using AVX512 ISA, see https://github.com/pytorch/pytorch/issues/66111
export DNNL_MAX_CPU_ISA=AVX2
# Should still run even in the absence of SHARD_NUMBER
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
# TODO(sdym@meta.com) remove this when the linked issue resolved.
# py is temporary until https://github.com/Teemu/pytest-sugar/issues/241 is fixed
pip install --user py==1.11.0
pip install --user pytest-sugar
# NB: Warnings are disabled because they make it harder to see what
# the actual erroring test is
"$PYTHON" \
-m pytest \
-x \
-v \
--disable-warnings \
--junit-xml="$pytest_reports_dir/result.xml" \
--ignore "$caffe2_pypath/python/test/executor_test.py" \
--ignore "$caffe2_pypath/python/operator_test/matmul_op_test.py" \
--ignore "$caffe2_pypath/python/operator_test/pack_ops_test.py" \
--ignore "$caffe2_pypath/python/mkl/mkl_sbn_speed_test.py" \
--ignore "$caffe2_pypath/python/trt/test_pt_onnx_trt.py" \
${rocm_ignore_test[@]} \
"$caffe2_pypath/python" \
"${EXTRA_TESTS[@]}"
fi

View File

@ -1,392 +0,0 @@
#!/bin/bash
set -ex
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "bionic" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
# Use the same pre-built XLA test image from PyTorch/XLA
if [[ "$image" == *xla* ]]; then
echo "Using pre-built XLA test image..."
exit 0
fi
if [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
# When using ubuntu - 22.04, start from Ubuntu docker image, instead of nvidia/cuda docker image.
if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
elif [[ "$image" == *linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter/Dockerfile"
fi
# CMake 3.18 is needed to support CUDA17 language variant
CMAKE_VERSION=3.18.5
_UCX_COMMIT=31e74cac7bee0ef66bef2af72e7d86d9c282e5ab
_UCC_COMMIT=1c7a7127186e7836f73aafbd7697bbc274a77eee
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-bionic-cuda11.6-cudnn8-py3-gcc7)
CUDA_VERSION=11.6.2
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
;;
pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7)
CUDA_VERSION=11.7.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
;;
pytorch-linux-bionic-cuda11.8-cudnn8-py3-gcc7)
CUDA_VERSION=11.8.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
;;
pytorch-linux-focal-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
;;
pytorch-linux-focal-py3-clang10-onnx)
ANACONDA_PYTHON_VERSION=3.8
CLANG_VERSION=10
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
;;
pytorch-linux-focal-py3-clang7-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
NINJA_VERSION=1.9.0
;;
pytorch-linux-bionic-py3.8-clang9)
ANACONDA_PYTHON_VERSION=3.8
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
CONDA_CMAKE=yes
;;
pytorch-linux-bionic-py3.11-clang9)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
CONDA_CMAKE=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
;;
pytorch-linux-focal-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.3
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
;;
pytorch-linux-focal-rocm-n-py3)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.4.2
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
;;
pytorch-linux-focal-py3.8-gcc7)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
CONDA_CMAKE=yes
;;
pytorch-linux-jammy-cuda11.6-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.6
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-jammy-cuda11.7-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.7
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-jammy-cuda11.8-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.8
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
ANACONDA_PYTHON_VERSION=3.9
CONDA_CMAKE=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
NINJA_VERSION=1.9.0
fi
if [[ "$image" == *centos7* ]]; then
NINJA_VERSION=1.10.2
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 8 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx906}" \
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
--build-arg "CONDA_CMAKE=${CONDA_CMAKE}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
exit 1
fi
if !(drun lsb_release -a 2>&1 | grep -qF "$UBUNTU_VERSION"); then
echo "UBUNTU_VERSION=$UBUNTU_VERSION, but:"
drun lsb_release -a
exit 1
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
fi
if [ -n "$GCC_VERSION" ]; then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1
fi
fi
if [ -n "$CLANG_VERSION" ]; then
if !(drun clang --version 2>&1 | grep -qF "clang version $CLANG_VERSION"); then
echo "CLANG_VERSION=$CLANG_VERSION, but:"
drun clang --version
exit 1
fi
fi
if [ -n "$KATEX" ]; then
if !(drun katex --version); then
echo "KATEX=$KATEX, but:"
drun katex --version
exit 1
fi
fi

View File

@ -1,60 +0,0 @@
#!/bin/bash
set -ex
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*)
}
# If UPSTREAM_BUILD_ID is set (see trigger job), then we can
# use it to tag this build with the same ID used to tag all other
# base image builds. Also, we can try and pull the previous
# image first, to avoid rebuilding layers that haven't changed.
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
image="${registry}/pytorch/${IMAGE_NAME}"
login() {
aws ecr get-authorization-token --region us-east-1 --output text --query 'authorizationData[].authorizationToken' |
base64 -d |
cut -d: -f2 |
docker login -u AWS --password-stdin "$1"
}
# Only run these steps if not on github actions
if [[ -z "${GITHUB_ACTIONS}" ]]; then
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
fi
# Try to pull the previous image (perhaps we can reuse some layers)
# if [ -n "${last_tag}" ]; then
# docker pull "${image}:${last_tag}" || true
# fi
# Build new image
./build.sh ${IMAGE_NAME} -t "${image}:${tag}"
# Only push if `DOCKER_SKIP_PUSH` = false
if [ "${DOCKER_SKIP_PUSH:-true}" = "false" ]; then
# Only push if docker image doesn't exist already.
# ECR image tags are immutable so this will avoid pushing if only just testing if the docker jobs work
# NOTE: The only workflow that should push these images should be the docker-builds.yml workflow
if ! docker manifest inspect "${image}:${tag}" >/dev/null 2>/dev/null; then
docker push "${image}:${tag}"
fi
fi
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
trap "rm -rf ${IMAGE_NAME}:${tag}.tar" EXIT
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi

View File

@ -1,111 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm || \
(yum -y install https://packages.endpointdev.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm && \
sed -i "s/packages.endpoint/packages.endpointdev/" /etc/yum.repos.d/endpoint.repo)
RUN yum install -y git
# Install devtoolset
ARG DEVTOOLSET_VERSION
COPY ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
COPY ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1,32 +0,0 @@
#!/bin/bash
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
export SUDO=/bin/sudo
else
export SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
# This should be called as
# conda_install pkg1 pkg2 ... [-c channel]
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_run() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION --no-capture-output $*
}
pip_install() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION pip install --progress-bar off $*
}

View File

@ -1,169 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
maybe_libiomp_dev="libiomp-dev"
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
fi
if [[ "$CLANG_VERSION" == 12 ]]; then
maybe_libomp_dev="libomp-12-dev"
elif [[ "$CLANG_VERSION" == 10 ]]; then
maybe_libomp_dev="libomp-10-dev"
else
maybe_libomp_dev=""
fi
# TODO: Remove this once nvidia package repos are back online
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
deploy_deps="libffi-dev libbz2-dev libreadline-dev libncurses5-dev libncursesw5-dev libgdbm-dev libsqlite3-dev uuid-dev tk-dev"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${deploy_deps} \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
software-properties-common \
wget \
sudo \
vim \
jq \
libtool \
vim \
unzip \
gdb
# Should resolve issues related to various apt package repository cert issues
# see: https://github.com/pytorch/pytorch/issues/65931
apt-get install -y libgnutls30
# cuda-toolkit does not work with gcc-11.2.0 which is default in Ubunutu 22.04
# see: https://github.com/NVlabs/instant-ngp/issues/119
if [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
apt-get install -y g++-10
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 30
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 30
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-10 30
# https://www.spinics.net/lists/libreoffice/msg07549.html
sudo rm -rf /usr/lib/gcc/x86_64-linux-gnu/11
wget https://github.com/gcc-mirror/gcc/commit/2b2d97fc545635a0f6aa9c9ee3b017394bc494bf.patch -O noexecpt.patch
sudo patch /usr/include/c++/10/bits/range_access.h noexecpt.patch
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim \
unzip \
gdb
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.20.0
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j6
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"

View File

@ -1,31 +0,0 @@
#!/bin/bash
set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
apt-get remove cmake -y
;;
centos)
yum remove cmake -y
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -1,98 +0,0 @@
#!/bin/bash
set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
case "$MAJOR_PYTHON_VERSION" in
2)
CONDA_FILE="Miniconda2-latest-Linux-x86_64.sh"
;;
3)
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
;;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
pushd /tmp
wget -q "${BASE_URL}/${CONDA_FILE}"
# NB: Manually invoke bash per https://github.com/conda/conda/issues/10431
as_jenkins bash "${CONDA_FILE}" -b -f -p "/opt/conda"
popd
# NB: Don't do this, rely on the rpath to get it right
#echo "/opt/conda/lib" > /etc/ld.so.conf.d/conda-python.conf
#ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/conda/bin:\1"|g' -i /etc/environment
export PATH="/opt/conda/bin:$PATH"
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Prevent conda from updating to 4.14.0, which causes docker build failures
# See https://hud.pytorch.org/pytorch/pytorch/commit/754d7f05b6841e555cea5a4b2c505dd9e0baec1d
# Uncomment the below when resolved to track the latest conda update
# as_jenkins conda update -y -n base conda
# Install correct Python version
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION"
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2021.4.0 mkl-include=2021.4.0 setuptools"
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
# TODO: Stop using `-c malfet`
conda_install numpy=1.23.5 ${CONDA_COMMON_DEPS} llvmdev=8.0.0 -c malfet
elif [ "$ANACONDA_PYTHON_VERSION" = "3.10" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
else
# Install `typing-extensions` for 3.7
conda_install numpy=1.18.5 ${CONDA_COMMON_DEPS} typing-extensions
fi
# Use conda cmake in some cases. Conda cmake will be newer than our supported
# min version (3.5 for xenial and 3.10 for bionic), so we only do it in those
# following builds that we know should use conda. Specifically, Ubuntu bionic
# and focal cannot find conda mkl with stock cmake, so we need a cmake from conda
if [ -n "${CONDA_CMAKE}" ]; then
conda_install cmake
fi
# Magma package names are concatenation of CUDA major and minor ignoring revision
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
if [ -n "$CUDA_VERSION" ]; then
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
pip_install -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
pip_install scikit-learn==0.20.3
fi
popd
fi

View File

@ -1,27 +0,0 @@
#!/bin/bash
if [[ ${CUDNN_VERSION} == 8 ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
CUDNN_NAME="cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive"
if [[ ${CUDA_VERSION:0:4} == "11.7" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-8.5.0.96_cuda11-archive"
curl --retry 3 -OLs https://ossci-linux.s3.amazonaws.com/${CUDNN_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-8.7.0.84_cuda11-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/${CUDNN_NAME}.tar.xz
else
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/${CUDNN_NAME}.tar.xz
fi
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/include/
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/include/* /usr/include/x86_64-linux-gnu/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
cp -a ${CUDNN_NAME}/lib/* /usr/lib/x86_64-linux-gnu/
cd ..
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -1,25 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
apt-get update
# Ignore error if gpg-agent doesn't exist (for Ubuntu 16.04)
apt-get install -y gpg-agent || :
curl --retry 3 -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs
curl --retry 3 -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
sudo apt-get -y install doxygen
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,27 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [[ "$UBUNTU_VERSION" == "16.04" && "${GCC_VERSION:0:1}" == "5" ]]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 50
else
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
if [ -n "${UBUNTU_VERSION}" ]; then
apt update
apt-get install -y clang doxygen git graphviz nodejs npm libtinfo5
fi
# Do shallow clone of PyTorch so that we can init lintrunner in Docker build context
git clone https://github.com/pytorch/pytorch.git --depth 1
chown -R jenkins pytorch
pushd pytorch
# Install all linter dependencies
pip_install -r requirements.txt
conda_run lintrunner init
# Cache .lintbin directory as part of the Docker image
cp -r .lintbin /tmp
popd
# Node dependencies required by toc linter job
npm install -g markdown-toc
# Cleaning up
rm -rf pytorch

View File

@ -1,16 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
make -j6; make install_sw
# Link the ssl libraries to the /usr/lib folder.
sudo ln -s /opt/openssl/lib/lib* /usr/lib
cd ..
rm -rf "${OPENSSL}"

View File

@ -1,146 +0,0 @@
#!/bin/bash
set -ex
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
# Map ROCm version to AMDGPU version
declare -A AMDGPU_VERSIONS=( ["5.0"]="21.50" ["5.1.1"]="22.10.1" ["5.2"]="22.20" )
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
local amdgpu_baseurl
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
fi
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
fi
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
ROCM_REPO="${UBUNTU_VERSION_NAME}"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available"
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
local amdgpu_baseurl
if [[ $OS_VERSION == 9 ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/9.0/main/x86_64"
else
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/7.9/main/x86_64"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
fi
fi
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
fi
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -ex
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# Fixes memory leaks of magma found while executing linalg UTs
git checkout 5959b8783e45f1809812ed96ae762f38ee701972
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc
done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION
popd
mv magma /opt/rocm

View File

@ -1,48 +0,0 @@
#!/bin/bash
set -ex
if [[ -d "/usr/local/cuda/" ]]; then
with_cuda=/usr/local/cuda/
else
with_cuda=no
fi
function install_ucx() {
set -ex
git clone --recursive https://github.com/openucx/ucx.git
pushd ucx
git checkout ${UCX_COMMIT}
git submodule update --init --recursive
./autogen.sh
./configure --prefix=$UCX_HOME \
--enable-mt \
--with-cuda=$with_cuda \
--enable-profiling \
--enable-stats
time make -j
sudo make install
popd
rm -rf ucx
}
function install_ucc() {
set -ex
git clone --recursive https://github.com/openucx/ucc.git
pushd ucc
git checkout ${UCC_COMMIT}
git submodule update --init --recursive
./autogen.sh
./configure --prefix=$UCC_HOME --with-ucx=$UCX_HOME --with-cuda=$with_cuda
time make -j
sudo make install
popd
rm -rf ucc
}
install_ucx
install_ucc

View File

@ -1,33 +0,0 @@
#!/bin/bash
set -ex
# Mirror jenkins user in container
# jenkins user as ec2-user should have the same user-id
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1000:" >> /etc/group
# Needed on focal or newer
echo "jenkins:*:19110:0:99999:7:::" >>/etc/shadow
# Create $HOME
mkdir -p /var/lib/jenkins
chown jenkins:jenkins /var/lib/jenkins
mkdir -p /var/lib/jenkins/.ccache
chown jenkins:jenkins /var/lib/jenkins/.ccache
# Allow writing to /usr/local (for make install)
chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
# Test that sudo works
$SUDO -u jenkins $SUDO -v

View File

@ -1,34 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Note that Docker build forbids copying file outside the build context
COPY ./common/install_linter.sh install_linter.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh common_utils.sh
USER jenkins
CMD ["bash"]

View File

@ -1,260 +0,0 @@
# Python dependencies required for unit tests
#awscli==1.6 #this breaks some platforms
#Description: AWS command line interface
#Pinned versions: 1.6
#test that import:
boto3==1.19.12
#Description: AWS SDK for python
#Pinned versions: 1.19.12, 1.16.34
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
#test that import:
coremltools==5.0b5
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
#dataclasses #this breaks some platforms
#Description: Provides decorators for auto adding special methods to user classes
#Pinned versions:
#test that import:
expecttest==0.1.3
#Description: method for writing tests where test framework auto populates
# the expected output based on previous runs
#Pinned versions: 0.1.3
#test that import:
flatbuffers==2.0
#Description: cross platform serialization library
#Pinned versions: 2.0
#test that import:
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
#Description: unitparser handles JUnit/xUnit Result XML files
#Pinned versions: 2.1.1
#test that import:
librosa>=0.6.2 ; python_version < "3.11"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
#Pinned versions:
#test that import: test_profiler.py, test_public_bindings.py, test_testing.py,
#test_nn.py, test_mkldnn.py, test_jit.py, test_fx_experimental.py,
#test_autograd.py
#mkl-devel
# see mkl
#mock # breaks ci/circleci: docker-pytorch-linux-xenial-py3-clang5-android-ndk-r19c
#Description: A testing library that allows you to replace parts of your
#system under test with mock objects
#Pinned versions:
#test that import: test_module_init.py, test_modules.py, test_nn.py,
#test_testing.py
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
#Description: collects runtime types of function arguments and return
#values, and can automatically generate stub files
#Pinned versions:
#test that import:
mypy==0.960
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 0.960
#test that import: test_typing.py, test_type_hints.py
networkx==2.6.3
#Description: creation, manipulation, and study of
#the structure, dynamics, and functions of complex networks
#Pinned versions: 2.6.3 (latest version that works with Python 3.7+)
#test that import: functorch
#ninja
#Description: build system. Note that it install from
#here breaks things so it is commented out
#Pinned versions: 1.10.0.post1
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9"
numba==0.54.1 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#numpy
#Description: Provides N-dimensional arrays and linear algebra
#Pinned versions: 1.20
#test that import: test_view_ops.py, test_unary_ufuncs.py, test_type_promotion.py,
#test_type_info.py, test_torch.py, test_tensorexpr_pybind.py, test_tensorexpr.py,
#test_tensorboard.py, test_tensor_creation_ops.py, test_static_runtime.py,
#test_spectral_ops.py, test_sort_and_select.py, test_shape_ops.py,
#test_segment_reductions.py, test_reductions.py, test_pruning_op.py,
#test_overrides.py, test_numpy_interop.py, test_numba_integration.py
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
#Pinned versions: 1.9.0
#test that import:
opt-einsum==3.3
#Description: Python library to optimize tensor contraction order, used in einsum
#Pinned versions: 3.3
#test that import: test_linalg.py
#pillow
#Description: Python Imaging Library fork
#Pinned versions:
#test that import:
protobuf==3.20.2
#Description: Googles data interchange format
#Pinned versions: 3.20.1
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
#Pinned versions:
#test that import: test_profiler.py, test_openmp.py, test_dataloader.py
pytest
#Description: testing framework
#Pinned versions:
#test that import: test_typing.py, test_cpp_extensions_aot.py, run_test.py
pytest-xdist
#Description: plugin for running pytest in parallel
#Pinned versions:
#test that import:
pytest-shard
#Description: plugin spliting up tests in pytest
#Pinned versions:
#test that import:
pytest-flakefinder==1.1.0
#Description: plugin for rerunning tests a fixed number of times in pytest
#Pinned versions: 1.1.0
#test that import:
pytest-rerunfailures
#Description: plugin for rerunning failure tests in pytest
#Pinned versions:
#test that import:
#pytest-benchmark
#Description: fixture for benchmarking code
#Pinned versions: 3.2.3
#test that import:
#pytest-sugar
#Description: shows failures and errors instantly
#Pinned versions:
#test that import:
xdoctest==1.1.0
#Description: runs doctests in pytest
#Pinned versions: 1.1.0
#test that import:
pygments==2.12.0
#Description: support doctest highlighting
#Pinned versions: 2.12.0
#test that import: the doctests
#PyYAML
#Description: data serialization format
#Pinned versions:
#test that import:
#requests
#Description: HTTP library
#Pinned versions:
#test that import: test_type_promotion.py
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 10.9.0
#test that import:
scikit-image
#Description: image processing routines
#Pinned versions:
#test that import: test_nn.py
#scikit-learn
#Description: machine learning package
#Pinned versions: 0.20.3
#test that import:
scipy==1.6.3 ; python_version < "3.10"
scipy==1.8.1 ; python_version == "3.10"
scipy==1.9.3 ; python_version == "3.11"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.6.3
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
#test_linalg.py, test_binary_ufuncs.py
#tabulate
#Description: Pretty-print tabular data
#Pinned versions:
#test that import:
tb-nightly
#Description: TensorBoard
#Pinned versions:
#test that import:
#typing-extensions
#Description: type hints for python
#Pinned versions:
#test that import:
#virtualenv
#Description: virtual environment for python
#Pinned versions:
#test that import:
unittest-xml-reporting<=3.2.0,>=2.0.0
#Description: saves unit test results to xml
#Pinned versions:
#test that import:
lintrunner==0.9.2
#Description: all about linters
#Pinned versions: 0.9.2
#test that import:
rockset==1.0.3
#Description: queries Rockset
#Pinned versions: 1.0.3
#test that import:
ghstack==0.7.1
#Description: ghstack tool
#Pinned versions: 0.7.1
#test that import:

View File

@ -1,132 +0,0 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
FROM ${IMAGE_NAME}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
ARG CONDA_CMAKE
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ "${CUDNN_VERSION}" -eq 8 ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
USER jenkins
CMD ["bash"]

View File

@ -1,102 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1,165 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
ARG CLANG_VERSION
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install thrift.
ARG THRIFT
COPY ./common/install_thrift.sh install_thrift.sh
RUN if [ -n "${THRIFT}" ]; then bash ./install_thrift.sh; fi
RUN rm install_thrift.sh
ENV INSTALLED_THRIFT ${THRIFT}
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
COPY ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# Install cuda and cudnn
ARG CUDA_VERSION
RUN wget -q https://raw.githubusercontent.com/pytorch/builder/main/common/install_cuda.sh -O install_cuda.sh
RUN bash ./install_cuda.sh ${CUDA_VERSION} && rm install_cuda.sh
ENV DESIRED_CUDA ${CUDA_VERSION}
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install Android NDK
ARG ANDROID
ARG ANDROID_NDK
ARG GRADLE_VERSION
COPY ./common/install_android.sh install_android.sh
COPY ./android/AndroidManifest.xml AndroidManifest.xml
COPY ./android/build.gradle build.gradle
RUN if [ -n "${ANDROID}" ]; then bash ./install_android.sh; fi
RUN rm install_android.sh
RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
COPY ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
COPY ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
COPY ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
USER jenkins
CMD ["bash"]

View File

@ -1,14 +0,0 @@
# Jenkins
The scripts in this directory are the entrypoint for testing ONNX exporter.
The environment variable `BUILD_ENVIRONMENT` is expected to be set to
the build environment you intend to test. It is a hint for the build
and test scripts to configure Caffe2 a certain way and include/exclude
tests. Docker images, they equal the name of the image itself. For
example: `py2-cuda9.0-cudnn7-ubuntu16.04`. The Docker images that are
built on Jenkins and are used in triggered builds already have this
environment variable set in their manifest. Also see
`./docker/jenkins/*/Dockerfile` and search for `BUILD_ENVIRONMENT`.
Our Jenkins installation is located at https://ci.pytorch.org/jenkins/.

View File

@ -1,19 +0,0 @@
set -ex
LOCAL_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)
ROOT_DIR=$(cd "$LOCAL_DIR"/../.. && pwd)
TEST_DIR="$ROOT_DIR/test"
pytest_reports_dir="${TEST_DIR}/test-reports/python"
# Figure out which Python to use
PYTHON="$(which python)"
if [[ "${BUILD_ENVIRONMENT}" =~ py((2|3)\.?[0-9]?\.?[0-9]?) ]]; then
PYTHON=$(which "python${BASH_REMATCH[1]}")
fi
if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
# HIP_PLATFORM is auto-detected by hipcc; unset to avoid build errors
unset HIP_PLATFORM
fi
mkdir -p "$pytest_reports_dir" || true

View File

@ -1,74 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
echo 'Skipping tests'
exit 0
fi
if [[ "${BUILD_ENVIRONMENT}" == *-rocm* ]]; then
# temporary to locate some kernel issues on the CI nodes
export HSAKMT_DEBUG_LEVEL=4
fi
# These additional packages are needed for circleci ROCm builds.
if [[ $BUILD_ENVIRONMENT == *rocm* ]]; then
# Need networkx 2.0 because bellmand_ford was moved in 2.1 . Scikit-image by
# defaults installs the most recent networkx version, so we install this lower
# version explicitly before scikit-image pulls it in as a dependency
pip install networkx==2.0
# click - onnx
pip install --progress-bar off click protobuf tabulate virtualenv mock typing-extensions
fi
################################################################################
# Python tests #
################################################################################
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
exit 0
fi
# If pip is installed as root, we must use sudo.
# CircleCI docker images could install conda as jenkins user, or use the OS's python package.
PIP=$(which pip)
PIP_USER=$(stat --format '%U' $PIP)
CURRENT_USER=$(id -u -n)
if [[ "$PIP_USER" = root && "$CURRENT_USER" != root ]]; then
MAYBE_SUDO=sudo
fi
# Uninstall pre-installed hypothesis and coverage to use an older version as newer
# versions remove the timeout parameter from settings which ideep/conv_transpose_test.py uses
$MAYBE_SUDO pip -q uninstall -y hypothesis
$MAYBE_SUDO pip -q uninstall -y coverage
# "pip install hypothesis==3.44.6" from official server is unreliable on
# CircleCI, so we host a copy on S3 instead
$MAYBE_SUDO pip -q install attrs==18.1.0 -f https://s3.amazonaws.com/ossci-linux/wheels/attrs-18.1.0-py2.py3-none-any.whl
$MAYBE_SUDO pip -q install coverage==4.5.1 -f https://s3.amazonaws.com/ossci-linux/wheels/coverage-4.5.1-cp36-cp36m-macosx_10_12_x86_64.whl
$MAYBE_SUDO pip -q install hypothesis==4.57.1
##############
# ONNX tests #
##############
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
pip install -q --user --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
pip install -q --user transformers==4.25.1
pip install -q --user ninja flatbuffers==2.0 numpy==1.22.4 onnxruntime==1.14.0 beartype==0.10.4
# TODO: change this when onnx 1.13.1 is released.
pip install --no-use-pep517 'onnx @ git+https://github.com/onnx/onnx@e192ba01e438d22ca2dedd7956e28e3551626c91'
# TODO: change this when onnx-script is on testPypi
pip install 'onnx-script @ git+https://github.com/microsoft/onnx-script@a71e35bcd72537bf7572536ee57250a0c0488bf6'
# numba requires numpy <= 1.20, onnxruntime requires numpy >= 1.21.
# We don't actually need it for our tests, but it's imported if it's present, so uninstall.
pip uninstall -q --yes numba
# JIT C++ extensions require ninja, so put it into PATH.
export PATH="/var/lib/jenkins/.local/bin:$PATH"
"$ROOT_DIR/scripts/onnx/test.sh"
fi

View File

@ -1,42 +0,0 @@
This directory contains scripts for our continuous integration.
One important thing to keep in mind when reading the scripts here is
that they are all based off of Docker images, which we build for each of
the various system configurations we want to run on Jenkins. This means
it is very easy to run these tests yourself:
1. Figure out what Docker image you want. The general template for our
images look like:
``registry.pytorch.org/pytorch/pytorch-$BUILD_ENVIRONMENT:$DOCKER_VERSION``,
where ``$BUILD_ENVIRONMENT`` is one of the build environments
enumerated in
[pytorch-dockerfiles](https://github.com/pytorch/pytorch/blob/master/.ci/docker/build.sh). The dockerfile used by jenkins can be found under the `.ci` [directory](https://github.com/pytorch/pytorch/blob/master/.ci/docker)
2. Run ``docker run -it -u jenkins $DOCKER_IMAGE``, clone PyTorch and
run one of the scripts in this directory.
The Docker images are designed so that any "reasonable" build commands
will work; if you look in [build.sh](build.sh) you will see that it is a
very simple script. This is intentional. Idiomatic build instructions
should work inside all of our Docker images. You can tweak the commands
however you need (e.g., in case you want to rebuild with DEBUG, or rerun
the build with higher verbosity, etc.).
We have to do some work to make this so. Here is a summary of the
mechanisms we use:
- We install binaries to directories like `/usr/local/bin` which
are automatically part of your PATH.
- We add entries to the PATH using Docker ENV variables (so
they apply when you enter Docker) and `/etc/environment` (so they
continue to apply even if you sudo), instead of modifying
`PATH` in our build scripts.
- We use `/etc/ld.so.conf.d` to register directories containing
shared libraries, instead of modifying `LD_LIBRARY_PATH` in our
build scripts.
- We reroute well known paths like `/usr/bin/gcc` to alternate
implementations with `update-alternatives`, instead of setting
`CC` and `CXX` in our implementations.

View File

@ -1,42 +0,0 @@
#!/bin/bash
# Required environment variable: $BUILD_ENVIRONMENT
# (This is set by default in the Docker images we build, so you don't
# need to set it yourself.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
echo "Clang version:"
clang --version
python tools/stats/export_test_times.py
# detect_leaks=0: Python is very leaky, so we need suppress it
# symbolize=1: Gives us much better errors when things go wrong
export ASAN_OPTIONS=detect_leaks=0:detect_stack_use_after_return=1:symbolize=1:detect_odr_violation=0
if [ -n "$(which conda)" ]; then
export CMAKE_PREFIX_PATH=/opt/conda
fi
# TODO: Make the ASAN flags a centralized env var and unify with USE_ASAN option
CC="clang" CXX="clang++" LDSHARED="clang --shared" \
CFLAGS="-fsanitize=address -fsanitize=undefined -fno-sanitize-recover=all -fsanitize-address-use-after-scope -shared-libasan" \
USE_ASAN=1 USE_CUDA=0 USE_MKLDNN=0 \
python setup.py bdist_wheel
pip_install_whl "$(echo dist/*.whl)"
# Test building via the sdist source tarball
python setup.py sdist
mkdir -p /tmp/tmp
pushd /tmp/tmp
tar zxf "$(dirname "${BASH_SOURCE[0]}")/../../dist/"*.tar.gz
cd torch-*
python setup.py build --cmake-only
popd
print_sccache_stats
assert_git_not_dirty

View File

@ -1,29 +0,0 @@
#!/bin/bash
# Required environment variable: $BUILD_ENVIRONMENT
# (This is set by default in the Docker images we build, so you don't
# need to set it yourself.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
echo "Clang version:"
clang --version
python tools/stats/export_test_times.py
if [ -n "$(which conda)" ]; then
export CMAKE_PREFIX_PATH=/opt/conda
fi
CC="clang" CXX="clang++" LDSHARED="clang --shared" \
CFLAGS="-fsanitize=thread" \
USE_TSAN=1 USE_CUDA=0 USE_MKLDNN=0 \
python setup.py bdist_wheel
pip_install_whl "$(echo dist/*.whl)"
print_sccache_stats
assert_git_not_dirty

View File

@ -1,318 +0,0 @@
#!/bin/bash
set -ex
# Required environment variable: $BUILD_ENVIRONMENT
# (This is set by default in the Docker images we build, so you don't
# need to set it yourself.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
if [[ "$BUILD_ENVIRONMENT" == *-clang7-asan* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-asan.sh" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" == *-clang7-tsan* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-tsan.sh" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" == *-mobile-*build* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-mobile.sh" "$@"
fi
echo "Python version:"
python --version
echo "GCC version:"
gcc --version
echo "CMake version:"
cmake --version
echo "Environment variables:"
env
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
echo "NVCC version:"
nvcc --version
fi
if [[ "$BUILD_ENVIRONMENT" == *cuda11* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *cuda11.3* && "$BUILD_ENVIRONMENT" != *clang* ]]; then
# TODO: there is a linking issue when building with UCC using clang,
# disable it for now and to be fix later.
export USE_UCC=1
export USE_SYSTEM_UCC=1
fi
fi
if [[ ${BUILD_ENVIRONMENT} == *"caffe2"* ]]; then
echo "Caffe2 build is ON"
export BUILD_CAFFE2=ON
fi
if [[ ${BUILD_ENVIRONMENT} == *"paralleltbb"* ]]; then
export ATEN_THREADING=TBB
export USE_TBB=1
elif [[ ${BUILD_ENVIRONMENT} == *"parallelnative"* ]]; then
export ATEN_THREADING=NATIVE
fi
# Enable LLVM dependency for TensorExpr testing
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
export USE_LLVM=/opt/rocm/llvm
export LLVM_DIR=/opt/rocm/llvm/lib/cmake/llvm
else
export USE_LLVM=/opt/llvm
export LLVM_DIR=/opt/llvm/lib/cmake/llvm
fi
if ! which conda; then
# In ROCm CIs, we are doing cross compilation on build machines with
# intel cpu and later run tests on machines with amd cpu.
# Also leave out two builds to make sure non-mkldnn builds still work.
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
export USE_MKLDNN=1
else
export USE_MKLDNN=0
fi
else
export CMAKE_PREFIX_PATH=/opt/conda
fi
if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
export JAVA_HOME="$JH"
export BUILD_JNI=ON
break
fi
done
if [ -z "$JAVA_HOME" ]; then
echo "Did not find jni.h"
fi
fi
# Use special scripts for Android builds
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
export ANDROID_NDK=/opt/ndk
build_args=()
if [[ "${BUILD_ENVIRONMENT}" == *-arm-v7a* ]]; then
build_args+=("-DANDROID_ABI=armeabi-v7a")
elif [[ "${BUILD_ENVIRONMENT}" == *-arm-v8a* ]]; then
build_args+=("-DANDROID_ABI=arm64-v8a")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_32* ]]; then
build_args+=("-DANDROID_ABI=x86")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_64* ]]; then
build_args+=("-DANDROID_ABI=x86_64")
fi
if [[ "${BUILD_ENVIRONMENT}" == *vulkan* ]]; then
build_args+=("-DUSE_VULKAN=ON")
fi
build_args+=("-DUSE_LITE_INTERPRETER_PROFILER=OFF")
exec ./scripts/build_android.sh "${build_args[@]}" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" != *android* && "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
export USE_VULKAN=1
# shellcheck disable=SC1091
source /var/lib/jenkins/vulkansdk/setup-env.sh
fi
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# hcc used to run out of memory, silently exiting without stopping
# the build process, leaving undefined symbols in the shared lib,
# causing undefined symbol errors when later running tests.
# We used to set MAX_JOBS to 4 to avoid, but this is no longer an issue.
if [ -z "$MAX_JOBS" ]; then
export MAX_JOBS=$(($(nproc) - 1))
fi
if [[ -n "$CI" && -z "$PYTORCH_ROCM_ARCH" ]]; then
# Set ROCM_ARCH to gfx906 for CI builds, if user doesn't override.
echo "Limiting PYTORCH_ROCM_ARCH to gfx906 for CI builds"
export PYTORCH_ROCM_ARCH="gfx906"
fi
# hipify sources
python tools/amd_build/build_amd.py
fi
# sccache will fail for CUDA builds if all cores are used for compiling
# gcc 7 with sccache seems to have intermittent OOM issue if all cores are used
if [ -z "$MAX_JOBS" ]; then
if { [[ "$BUILD_ENVIRONMENT" == *cuda* ]] || [[ "$BUILD_ENVIRONMENT" == *gcc7* ]]; } && which sccache > /dev/null; then
export MAX_JOBS=$(($(nproc) - 1))
fi
fi
# TORCH_CUDA_ARCH_LIST must be passed from an environment variable
if [[ "$BUILD_ENVIRONMENT" == *cuda* && -z "$TORCH_CUDA_ARCH_LIST" ]]; then
echo "TORCH_CUDA_ARCH_LIST must be defined"
exit 1
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
export CC=clang
export CXX=clang++
fi
if [[ "${BUILD_ENVIRONMENT}" == *no-ops* ]]; then
export USE_PER_OPERATOR_HEADERS=0
fi
if [[ "${BUILD_ENVIRONMENT}" == *-pch* ]]; then
export USE_PRECOMPILED_HEADERS=1
fi
if [[ "${BUILD_ENVIRONMENT}" == *linux-focal-py3.7-gcc7-build* ]]; then
export USE_GLOO_WITH_OPENSSL=ON
fi
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
set -e
get_bazel
# Leave 1 CPU free and use only up to 80% of memory to reduce the change of crashing
# the runner
BAZEL_MEM_LIMIT="--local_ram_resources=HOST_RAM*.8"
BAZEL_CPU_LIMIT="--local_cpu_resources=HOST_CPUS-1"
tools/bazel build --config=no-tty "${BAZEL_MEM_LIMIT}" "${BAZEL_CPU_LIMIT}" //...
# Build torch, the Python module, and tests for CPU-only
tools/bazel build --config=no-tty "${BAZEL_MEM_LIMIT}" "${BAZEL_CPU_LIMIT}" --config=cpu-only :torch :_C.so :all_tests
else
# check that setup.py would fail with bad arguments
echo "The next three invocations are expected to fail with invalid command error messages."
( ! get_exit_code python setup.py bad_argument )
( ! get_exit_code python setup.py clean] )
( ! get_exit_code python setup.py clean bad_argument )
if [[ "$BUILD_ENVIRONMENT" != *libtorch* ]]; then
# rocm builds fail when WERROR=1
# XLA test build fails when WERROR=1
# set only when building other architectures
# or building non-XLA tests.
if [[ "$BUILD_ENVIRONMENT" != *rocm* &&
"$BUILD_ENVIRONMENT" != *xla* ]]; then
WERROR=1 python setup.py bdist_wheel
else
python setup.py bdist_wheel
fi
pip_install_whl "$(echo dist/*.whl)"
# TODO: I'm not sure why, but somehow we lose verbose commands
set -x
assert_git_not_dirty
# Copy ninja build logs to dist folder
mkdir -p dist
if [ -f build/.ninja_log ]; then
cp build/.ninja_log dist
fi
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# remove sccache wrappers post-build; runtime compilation of MIOpen kernels does not yet fully support them
sudo rm -f /opt/cache/bin/cc
sudo rm -f /opt/cache/bin/c++
sudo rm -f /opt/cache/bin/gcc
sudo rm -f /opt/cache/bin/g++
pushd /opt/rocm/llvm/bin
if [[ -d original ]]; then
sudo mv original/clang .
sudo mv original/clang++ .
fi
sudo rm -rf original
popd
fi
CUSTOM_TEST_ARTIFACT_BUILD_DIR=${CUSTOM_TEST_ARTIFACT_BUILD_DIR:-"build/custom_test_artifacts"}
CUSTOM_TEST_USE_ROCM=$([[ "$BUILD_ENVIRONMENT" == *rocm* ]] && echo "ON" || echo "OFF")
CUSTOM_TEST_MODULE_PATH="${PWD}/cmake/public"
mkdir -pv "${CUSTOM_TEST_ARTIFACT_BUILD_DIR}"
# Build custom operator tests.
CUSTOM_OP_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/custom-op-build"
CUSTOM_OP_TEST="$PWD/test/custom_operator"
python --version
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$CUSTOM_OP_BUILD"
pushd "$CUSTOM_OP_BUILD"
cmake "$CUSTOM_OP_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
assert_git_not_dirty
# Build jit hook tests
JIT_HOOK_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/jit-hook-build"
JIT_HOOK_TEST="$PWD/test/jit_hooks"
python --version
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$JIT_HOOK_BUILD"
pushd "$JIT_HOOK_BUILD"
cmake "$JIT_HOOK_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
assert_git_not_dirty
# Build custom backend tests.
CUSTOM_BACKEND_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/custom-backend-build"
CUSTOM_BACKEND_TEST="$PWD/test/custom_backend"
python --version
mkdir -p "$CUSTOM_BACKEND_BUILD"
pushd "$CUSTOM_BACKEND_BUILD"
cmake "$CUSTOM_BACKEND_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
assert_git_not_dirty
else
# Test no-Python build
echo "Building libtorch"
# This is an attempt to mitigate flaky libtorch build OOM error. By default, the build parallelization
# is set to be the number of CPU minus 2. So, let's try a more conservative value here. A 4xlarge has
# 16 CPUs
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
# NB: Install outside of source directory (at the same level as the root
# pytorch folder) so that it doesn't get cleaned away prior to docker push.
BUILD_LIBTORCH_PY=$PWD/tools/build_libtorch.py
mkdir -p ../cpp-build/caffe2
pushd ../cpp-build/caffe2
WERROR=1 VERBOSE=1 DEBUG=1 python "$BUILD_LIBTORCH_PY"
popd
fi
fi
if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]]; then
# export test times so that potential sharded tests that'll branch off this build will use consistent data
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
python tools/stats/export_test_times.py
fi
print_sccache_stats

View File

@ -1,58 +0,0 @@
#!/bin/bash
# Required environment variables:
# $BUILD_ENVIRONMENT (should be set by your Docker image)
if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
# Save the absolute path in case later we chdir (as occurs in the gpu perf test)
script_dir="$( cd "$(dirname "${BASH_SOURCE[0]}")" || exit ; pwd -P )"
if which sccache > /dev/null; then
# Save sccache logs to file
sccache --stop-server > /dev/null 2>&1 || true
rm -f ~/sccache_error.log || true
function sccache_epilogue() {
echo "::group::Sccache Compilation Log"
echo '=================== sccache compilation log ==================='
python "$script_dir/print_sccache_log.py" ~/sccache_error.log 2>/dev/null || true
echo '=========== If your build fails, please take a look at the log above for possible reasons ==========='
sccache --show-stats
sccache --stop-server || true
echo "::endgroup::"
}
# Register the function here so that the error log can be printed even when
# sccache fails to start, i.e. timeout error
trap_add sccache_epilogue EXIT
if [[ -n "${SKIP_SCCACHE_INITIALIZATION:-}" ]]; then
# sccache --start-server seems to hang forever on self hosted runners for GHA
# so let's just go ahead and skip the --start-server altogether since it seems
# as though sccache still gets used even when the sscache server isn't started
# explicitly
echo "Skipping sccache server initialization, setting environment variables"
export SCCACHE_IDLE_TIMEOUT=1200
export SCCACHE_ERROR_LOG=~/sccache_error.log
export RUST_LOG=sccache::server=error
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=0 sccache --start-server
else
# increasing SCCACHE_IDLE_TIMEOUT so that extension_backend_test.cpp can build after this PR:
# https://github.com/pytorch/pytorch/pull/16645
SCCACHE_ERROR_LOG=~/sccache_error.log SCCACHE_IDLE_TIMEOUT=1200 RUST_LOG=sccache::server=error sccache --start-server
fi
# Report sccache stats for easier debugging
sccache --zero-stats
fi
if which ccache > /dev/null; then
# Report ccache stats for easier debugging
ccache --zero-stats
ccache --show-stats
function ccache_epilogue() {
ccache --show-stats
}
trap_add ccache_epilogue EXIT
fi
fi

View File

@ -1,28 +0,0 @@
#!/bin/bash
# Common setup for all Jenkins scripts
# shellcheck source=./common_utils.sh
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
set -ex
# Required environment variables:
# $BUILD_ENVIRONMENT (should be set by your Docker image)
# Figure out which Python to use for ROCm
if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
# HIP_PLATFORM is auto-detected by hipcc; unset to avoid build errors
unset HIP_PLATFORM
export PYTORCH_TEST_WITH_ROCM=1
# temporary to locate some kernel issues on the CI nodes
export HSAKMT_DEBUG_LEVEL=4
# improve rccl performance for distributed tests
export HSA_FORCE_FINE_GRAIN_PCIE=1
fi
# TODO: Renable libtorch testing for MacOS, see https://github.com/pytorch/pytorch/issues/62598
# shellcheck disable=SC2034
BUILD_TEST_LIBTORCH=0
retry () {
"$@" || (sleep 1 && "$@") || (sleep 2 && "$@")
}

View File

@ -1,236 +0,0 @@
#!/bin/bash
# Common util **functions** that can be sourced in other scripts.
# note: printf is used instead of echo to avoid backslash
# processing and to properly handle values that begin with a '-'.
log() { printf '%s\n' "$*"; }
error() { log "ERROR: $*" >&2; }
fatal() { error "$@"; exit 1; }
retry () {
"$@" || (sleep 10 && "$@") || (sleep 20 && "$@") || (sleep 40 && "$@")
}
# compositional trap taken from https://stackoverflow.com/a/7287873/23845
# appends a command to a trap
#
# - 1st arg: code to add
# - remaining args: names of traps to modify
#
trap_add() {
trap_add_cmd=$1; shift || fatal "${FUNCNAME[0]} usage error"
for trap_add_name in "$@"; do
trap -- "$(
# helper fn to get existing trap command from output
# of trap -p
extract_trap_cmd() { printf '%s\n' "$3"; }
# print existing trap command with newline
eval "extract_trap_cmd $(trap -p "${trap_add_name}")"
# print the new trap command
printf '%s\n' "${trap_add_cmd}"
)" "${trap_add_name}" \
|| fatal "unable to add to trap ${trap_add_name}"
done
}
# set the trace attribute for the above function. this is
# required to modify DEBUG or RETURN traps because functions don't
# inherit them unless the trace attribute is set
declare -f -t trap_add
function assert_git_not_dirty() {
# TODO: we should add an option to `build_amd.py` that reverts the repo to
# an unmodified state.
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]] && [[ "$BUILD_ENVIRONMENT" != *xla* ]] ; then
git_status=$(git status --porcelain)
if [[ $git_status ]]; then
echo "Build left local git repository checkout dirty"
echo "git status --porcelain:"
echo "${git_status}"
exit 1
fi
fi
}
function pip_install_whl() {
# This is used to install PyTorch and other build artifacts wheel locally
# without using any network connection
python3 -mpip install --no-index --no-deps "$@"
}
function pip_install() {
# retry 3 times
# old versions of pip don't have the "--progress-bar" flag
pip install --progress-bar off "$@" || pip install --progress-bar off "$@" || pip install --progress-bar off "$@" ||\
pip install "$@" || pip install "$@" || pip install "$@"
}
function pip_uninstall() {
# uninstall 2 times
pip uninstall -y "$@" || pip uninstall -y "$@"
}
function get_exit_code() {
set +e
"$@"
retcode=$?
set -e
return $retcode
}
function get_bazel() {
if [[ $(uname) == "Darwin" ]]; then
# download bazel version
retry curl https://github.com/bazelbuild/bazel/releases/download/4.2.1/bazel-4.2.1-darwin-x86_64 -Lo tools/bazel
# verify content
echo '74d93848f0c9d592e341e48341c53c87e3cb304a54a2a1ee9cff3df422f0b23c tools/bazel' | shasum -a 256 -c >/dev/null
else
# download bazel version
retry curl https://ossci-linux.s3.amazonaws.com/bazel-4.2.1-linux-x86_64 -o tools/bazel
# verify content
echo '1a4f3a3ce292307bceeb44f459883859c793436d564b95319aacb8af1f20557c tools/bazel' | shasum -a 256 -c >/dev/null
fi
chmod +x tools/bazel
}
function install_monkeytype {
# Install MonkeyType
pip_install MonkeyType
}
function get_pinned_commit() {
cat .github/ci_commit_pins/"${1}".txt
}
function install_torchtext() {
local commit
commit=$(get_pinned_commit text)
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/text.git@${commit}"
}
function install_torchvision() {
local commit
commit=$(get_pinned_commit vision)
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/vision.git@${commit}"
}
function clone_pytorch_xla() {
if [[ ! -d ./xla ]]; then
git clone --recursive -b r2.0 --quiet https://github.com/pytorch/xla.git
pushd xla
# pin the xla hash so that we don't get broken by changes to xla
git checkout "$(cat ../.github/ci_commit_pins/xla.txt)"
git submodule sync
git submodule update --init --recursive
popd
fi
}
function install_filelock() {
pip_install filelock
}
function install_triton() {
local commit
if [[ "${TEST_CONFIG}" == *rocm* ]]; then
echo "skipping triton due to rocm"
else
commit=$(get_pinned_commit triton)
if [[ "${BUILD_ENVIRONMENT}" == *gcc7* ]]; then
# Trition needs gcc-9 to build
sudo apt-get install -y g++-9
CXX=g++-9 pip_install --user "git+https://github.com/openai/triton@${commit}#subdirectory=python"
elif [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
# Trition needs <filesystem> which surprisingly is not available with clang-9 toolchain
sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test
sudo apt-get install -y g++-9
CXX=g++-9 pip_install --user "git+https://github.com/openai/triton@${commit}#subdirectory=python"
else
pip_install --user "git+https://github.com/openai/triton@${commit}#subdirectory=python"
fi
pip_install --user jinja2
fi
}
function setup_torchdeploy_deps(){
conda install -y -n "py_${ANACONDA_PYTHON_VERSION}" "libpython-static=${ANACONDA_PYTHON_VERSION}"
local CC
local CXX
CC="$(which gcc)"
CXX="$(which g++)"
export CC
export CXX
pip install --upgrade pip
}
function checkout_install_torchdeploy() {
local commit
commit=$(get_pinned_commit multipy)
setup_torchdeploy_deps
pushd ..
git clone --recurse-submodules https://github.com/pytorch/multipy.git
pushd multipy
git checkout "${commit}"
python multipy/runtime/example/generate_examples.py
pip install -e .
popd
popd
}
function test_torch_deploy(){
pushd ..
pushd multipy
./multipy/runtime/build/test_deploy
popd
popd
}
function install_huggingface() {
local commit
commit=$(get_pinned_commit huggingface)
pip_install pandas
pip_install scipy
pip_install "git+https://github.com/huggingface/transformers.git@${commit}#egg=transformers"
}
function install_timm() {
local commit
commit=$(get_pinned_commit timm)
pip_install pandas
pip_install scipy
pip_install "git+https://github.com/rwightman/pytorch-image-models@${commit}"
}
function checkout_install_torchbench() {
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout no_torchaudio
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
popd
}
function test_functorch() {
python test/run_test.py --functorch --verbose
}
function print_sccache_stats() {
echo 'PyTorch Build Statistics'
sccache --show-stats
if [[ -n "${OUR_GITHUB_JOB_ID}" ]]; then
sccache --show-stats --stats-format json | jq .stats \
> "sccache-stats-${BUILD_ENVIRONMENT}-${OUR_GITHUB_JOB_ID}.json"
else
echo "env var OUR_GITHUB_JOB_ID not set, will not write sccache stats to json"
fi
}

View File

@ -1,6 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
docker build -t pytorch .

View File

@ -1,10 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
echo "Testing pytorch docs"
cd docs
pip_install -r requirements.txt
make doctest

View File

@ -1,80 +0,0 @@
#!/bin/bash
# shellcheck disable=SC2034
# shellcheck source=./macos-common.sh
source "$(dirname "${BASH_SOURCE[0]}")/macos-common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Build PyTorch
if [ -z "${CI}" ]; then
export DEVELOPER_DIR=/Applications/Xcode9.app/Contents/Developer
fi
# This helper function wraps calls to binaries with sccache, but only if they're not already wrapped with sccache.
# For example, `clang` will be `sccache clang`, but `sccache clang` will not become `sccache sccache clang`.
# The way this is done is by detecting the command of the parent pid of the current process and checking whether
# that is sccache, and wrapping sccache around the process if its parent were not already sccache.
function write_sccache_stub() {
output=$1
binary=$(basename "${output}")
printf "#!/bin/sh\nif [ \$(ps auxc \$(ps auxc -o ppid \$\$ | grep \$\$ | rev | cut -d' ' -f1 | rev) | tr '\\\\n' ' ' | rev | cut -d' ' -f2 | rev) != sccache ]; then\n exec sccache %s \"\$@\"\nelse\n exec %s \"\$@\"\nfi" "$(which "${binary}")" "$(which "${binary}")" > "${output}"
chmod a+x "${output}"
}
if which sccache > /dev/null; then
# Create temp directory for sccache shims
tmp_dir=$(mktemp -d)
trap 'rm -rfv ${tmp_dir}' EXIT
write_sccache_stub "${tmp_dir}/clang++"
write_sccache_stub "${tmp_dir}/clang"
export PATH="${tmp_dir}:$PATH"
fi
cross_compile_arm64() {
# Cross compilation for arm64
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 CMAKE_OSX_ARCHITECTURES=arm64 MACOSX_DEPLOYMENT_TARGET=11.0 USE_MKLDNN=OFF USE_QNNPACK=OFF WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel
}
compile_x86_64() {
USE_DISTRIBUTED=0 WERROR=1 python setup.py bdist_wheel
}
build_lite_interpreter() {
echo "Testing libtorch (lite interpreter)."
CPP_BUILD="$(pwd)/../cpp_build"
# Ensure the removal of the tmp directory
trap 'rm -rfv ${CPP_BUILD}' EXIT
rm -rf "${CPP_BUILD}"
mkdir -p "${CPP_BUILD}/caffe2"
# It looks libtorch need to be built in "${CPP_BUILD}/caffe2 folder.
BUILD_LIBTORCH_PY=$PWD/tools/build_libtorch.py
pushd "${CPP_BUILD}/caffe2" || exit
VERBOSE=1 DEBUG=1 python "${BUILD_LIBTORCH_PY}"
popd || exit
"${CPP_BUILD}/caffe2/build/bin/test_lite_interpreter_runtime"
}
if [[ ${BUILD_ENVIRONMENT} = *arm64* ]]; then
cross_compile_arm64
elif [[ ${BUILD_ENVIRONMENT} = *lite-interpreter* ]]; then
export BUILD_LITE_INTERPRETER=1
build_lite_interpreter
else
compile_x86_64
fi
if which sccache > /dev/null; then
print_sccache_stats
fi
python tools/stats/export_test_times.py
assert_git_not_dirty

View File

@ -1,14 +0,0 @@
#!/bin/bash
# Common prelude for macos-build.sh and macos-test.sh
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
sysctl -a | grep machdep.cpu
# These are required for both the build job and the test job.
# In the latter to test cpp extensions.
export MACOSX_DEPLOYMENT_TARGET=10.9
export CXX=clang++
export CC=clang

View File

@ -1,186 +0,0 @@
#!/bin/bash
# shellcheck disable=SC2034
# shellcheck source=./macos-common.sh
source "$(dirname "${BASH_SOURCE[0]}")/macos-common.sh"
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# Test that OpenMP is enabled for non-arm64 build
if [[ ${BUILD_ENVIRONMENT} != *arm64* ]]; then
pushd test
if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available()))") == "1" ]]; then
echo "Build should have OpenMP enabled, but torch.backends.openmp.is_available() is False"
exit 1
fi
popd
fi
setup_test_python() {
# The CircleCI worker hostname doesn't resolve to an address.
# This environment variable makes ProcessGroupGloo default to
# using the address associated with the loopback interface.
export GLOO_SOCKET_IFNAME=lo0
echo "Ninja version: $(ninja --version)"
# Increase default limit on open file handles from 256 to 1024
ulimit -n 1024
}
test_python_all() {
setup_test_python
time python test/run_test.py --verbose --exclude-jit-executor
assert_git_not_dirty
}
test_python_shard() {
if [[ -z "$NUM_TEST_SHARDS" ]]; then
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
exit 1
fi
setup_test_python
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS"
assert_git_not_dirty
}
test_libtorch() {
# C++ API
if [[ "$BUILD_TEST_LIBTORCH" == "1" ]]; then
# NB: Install outside of source directory (at the same level as the root
# pytorch folder) so that it doesn't get cleaned away prior to docker push.
# But still clean it before we perform our own build.
echo "Testing libtorch"
CPP_BUILD="$PWD/../cpp-build"
rm -rf "$CPP_BUILD"
mkdir -p "$CPP_BUILD"/caffe2
BUILD_LIBTORCH_PY=$PWD/tools/build_libtorch.py
pushd "$CPP_BUILD"/caffe2
VERBOSE=1 DEBUG=1 python "$BUILD_LIBTORCH_PY"
popd
python tools/download_mnist.py --quiet -d test/cpp/api/mnist
# Unfortunately it seems like the test can't load from miniconda3
# without these paths being set
export DYLD_LIBRARY_PATH="$DYLD_LIBRARY_PATH:$PWD/miniconda3/lib"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$PWD/miniconda3/lib"
TORCH_CPP_TEST_MNIST_PATH="test/cpp/api/mnist" "$CPP_BUILD"/caffe2/bin/test_api
assert_git_not_dirty
fi
}
print_cmake_info() {
CMAKE_EXEC=$(which cmake)
echo "$CMAKE_EXEC"
CONDA_INSTALLATION_DIR=$(dirname "$CMAKE_EXEC")
# Print all libraries under cmake rpath for debugging
ls -la "$CONDA_INSTALLATION_DIR/../lib"
export CMAKE_EXEC
# Explicitly add conda env lib folder to cmake rpath to address the flaky issue
# where cmake dependencies couldn't be found. This seems to point to how conda
# links $CMAKE_EXEC to its package cache when cloning a new environment
install_name_tool -add_rpath @executable_path/../lib "${CMAKE_EXEC}" || true
# Adding the rpath will invalidate cmake signature, so signing it again here
# to trust the executable. EXC_BAD_ACCESS (SIGKILL (Code Signature Invalid))
# with an exit code 137 otherwise
codesign -f -s - "${CMAKE_EXEC}" || true
}
test_custom_backend() {
print_cmake_info
echo "Testing custom backends"
pushd test/custom_backend
rm -rf build && mkdir build
pushd build
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
CMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" "${CMAKE_EXEC}" ..
make VERBOSE=1
popd
# Run Python tests and export a lowered module.
python test_custom_backend.py -v
python backend.py --export-module-to=model.pt
# Run C++ tests using the exported module.
build/test_custom_backend ./model.pt
rm -f ./model.pt
popd
assert_git_not_dirty
}
test_custom_script_ops() {
print_cmake_info
echo "Testing custom script operators"
pushd test/custom_operator
# Build the custom operator library.
rm -rf build && mkdir build
pushd build
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
CMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" "${CMAKE_EXEC}" ..
make VERBOSE=1
popd
# Run tests Python-side and export a script module.
python test_custom_ops.py -v
python model.py --export-script-module=model.pt
# Run tests C++-side and load the exported script module.
build/test_custom_ops ./model.pt
popd
assert_git_not_dirty
}
test_jit_hooks() {
print_cmake_info
echo "Testing jit hooks in cpp"
pushd test/jit_hooks
# Build the custom operator library.
rm -rf build && mkdir build
pushd build
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
CMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" "${CMAKE_EXEC}" ..
make VERBOSE=1
popd
# Run tests Python-side and export a script module.
python model.py --export-script-module=model
# Run tests C++-side and load the exported script module.
build/test_jit_hooks ./model
popd
assert_git_not_dirty
}
if [[ "${TEST_CONFIG}" == *functorch* ]]; then
test_functorch
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then
test_python_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
test_libtorch
test_custom_script_ops
elif [[ "${SHARD_NUMBER}" == 2 ]]; then
test_jit_hooks
test_custom_backend
fi
else
test_python_all
test_libtorch
test_custom_script_ops
test_jit_hooks
test_custom_backend
fi

View File

@ -1,49 +0,0 @@
#!/bin/bash
# Required environment variable: $BUILD_ENVIRONMENT
# (This is set by default in the Docker images we build, so you don't
# need to set it yourself.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
echo "Testing pytorch"
# Disabling tests to see if they solve timeout issues; see https://github.com/pytorch/pytorch/issues/70015
# python tools/download_mnist.py --quiet -d test/cpp/api/mnist
# OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="test/cpp/api/mnist" build/bin/test_api
time python test/run_test.py --verbose -i distributed/test_c10d_common
time python test/run_test.py --verbose -i distributed/test_c10d_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
# FSDP tests
for f in test/distributed/fsdp/*.py ; do time python test/run_test.py --verbose -i "${f#*/}" ; done
# ShardedTensor tests
time python test/run_test.py --verbose -i distributed/checkpoint/test_checkpoint
time python test/run_test.py --verbose -i distributed/checkpoint/test_file_system_checkpoint
time python test/run_test.py --verbose -i distributed/_shard/sharding_spec/test_sharding_spec
time python test/run_test.py --verbose -i distributed/_shard/sharding_plan/test_sharding_plan
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_megatron_prototype
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor_reshard
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_chunk
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_elementwise_ops
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_embedding
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_embedding_bag
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_binary_cmp
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_init
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_linear
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_math_ops
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_matrix_ops
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/ops/test_softmax
time python test/run_test.py --verbose -i distributed/_shard/sharded_optim/test_sharded_optim
time python test/run_test.py --verbose -i distributed/_shard/test_partial_tensor
time python test/run_test.py --verbose -i distributed/_shard/test_replicated_tensor
# Other tests
time python test/run_test.py --verbose -i test_cuda_primary_ctx
time python test/run_test.py --verbose -i test_optim -- -k optimizers_with_varying_tensors
assert_git_not_dirty

View File

@ -1,71 +0,0 @@
#!/bin/bash
SCRIPT_PARENT_DIR=$(dirname "${BASH_SOURCE[0]}")
# shellcheck source=.ci/pytorch/common.sh
source "$SCRIPT_PARENT_DIR/common.sh"
cd .ci/pytorch/perf_test
echo "Running CPU perf test for PyTorch..."
pip install -q awscli
# Set multipart_threshold to be sufficiently high, so that `aws s3 cp` is not a multipart read
# More info at https://github.com/aws/aws-cli/issues/2321
aws configure set default.s3.multipart_threshold 5GB
UPSTREAM_DEFAULT_BRANCH="$(git remote show https://github.com/pytorch/pytorch.git | awk '/HEAD branch/ {print $NF}')"
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# Get current default branch commit hash
DEFAULT_BRANCH_COMMIT_ID=$(git log --format="%H" -n 1)
export DEFAULT_BRANCH_COMMIT_ID
fi
# Find the default branch commit to test against
git remote add upstream https://github.com/pytorch/pytorch.git
git fetch upstream
IFS=$'\n'
while IFS='' read -r commit_id; do
if aws s3 ls s3://ossci-perf-test/pytorch/cpu_runtime/"${commit_id}".json; then
LATEST_TESTED_COMMIT=${commit_id}
break
fi
done < <(git rev-list upstream/"$UPSTREAM_DEFAULT_BRANCH")
aws s3 cp s3://ossci-perf-test/pytorch/cpu_runtime/"${LATEST_TESTED_COMMIT}".json cpu_runtime.json
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# Prepare new baseline file
cp cpu_runtime.json new_cpu_runtime.json
python update_commit_hash.py new_cpu_runtime.json "${DEFAULT_BRANCH_COMMIT_ID}"
fi
# Include tests
# shellcheck source=./perf_test/test_cpu_speed_mini_sequence_labeler.sh
. ./test_cpu_speed_mini_sequence_labeler.sh
# shellcheck source=./perf_test/test_cpu_speed_mnist.sh
. ./test_cpu_speed_mnist.sh
# shellcheck source=./perf_test/test_cpu_speed_torch.sh
. ./test_cpu_speed_torch.sh
# shellcheck source=./perf_test/test_cpu_speed_torch_tensor.sh
. ./test_cpu_speed_torch_tensor.sh
# Run tests
export TEST_MODE="compare_with_baseline"
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
export TEST_MODE="compare_and_update"
fi
# Operator tests
run_test test_cpu_speed_torch ${TEST_MODE}
run_test test_cpu_speed_torch_tensor ${TEST_MODE}
# Sample model tests
run_test test_cpu_speed_mini_sequence_labeler 20 ${TEST_MODE}
run_test test_cpu_speed_mnist 20 ${TEST_MODE}
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# This could cause race condition if we are testing the same default branch commit twice,
# but the chance of them executing this line at the same time is low.
aws s3 cp new_cpu_runtime.json s3://ossci-perf-test/pytorch/cpu_runtime/"${DEFAULT_BRANCH_COMMIT_ID}".json --acl public-read
fi

View File

@ -1,76 +0,0 @@
#!/bin/bash
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
pushd .ci/pytorch/perf_test
echo "Running GPU perf test for PyTorch..."
# Trying to uninstall PyYAML can cause problem. Workaround according to:
# https://github.com/pypa/pip/issues/5247#issuecomment-415571153
pip install -q awscli --ignore-installed PyYAML
# Set multipart_threshold to be sufficiently high, so that `aws s3 cp` is not a multipart read
# More info at https://github.com/aws/aws-cli/issues/2321
aws configure set default.s3.multipart_threshold 5GB
UPSTREAM_DEFAULT_BRANCH="$(git remote show https://github.com/pytorch/pytorch.git | awk '/HEAD branch/ {print $NF}')"
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# Get current default branch commit hash
DEFAULT_BRANCH_COMMIT_ID=$(git log --format="%H" -n 1)
export DEFAULT_BRANCH_COMMIT_ID
fi
# Find the default branch commit to test against
git remote add upstream https://github.com/pytorch/pytorch.git
git fetch upstream
IFS=$'\n'
while IFS='' read -r commit_id; do
if aws s3 ls s3://ossci-perf-test/pytorch/gpu_runtime/"${commit_id}".json; then
LATEST_TESTED_COMMIT=${commit_id}
break
fi
done < <(git rev-list upstream/"$UPSTREAM_DEFAULT_BRANCH")
aws s3 cp s3://ossci-perf-test/pytorch/gpu_runtime/"${LATEST_TESTED_COMMIT}".json gpu_runtime.json
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# Prepare new baseline file
cp gpu_runtime.json new_gpu_runtime.json
python update_commit_hash.py new_gpu_runtime.json "${DEFAULT_BRANCH_COMMIT_ID}"
fi
# Include tests
# shellcheck source=./perf_test/test_gpu_speed_mnist.sh
. ./test_gpu_speed_mnist.sh
# shellcheck source=./perf_test/test_gpu_speed_word_language_model.sh
. ./test_gpu_speed_word_language_model.sh
# shellcheck source=./perf_test/test_gpu_speed_cudnn_lstm.sh
. ./test_gpu_speed_cudnn_lstm.sh
# shellcheck source=./perf_test/test_gpu_speed_lstm.sh
. ./test_gpu_speed_lstm.sh
# shellcheck source=./perf_test/test_gpu_speed_mlstm.sh
. ./test_gpu_speed_mlstm.sh
# Run tests
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
run_test test_gpu_speed_mnist 20 compare_and_update
run_test test_gpu_speed_word_language_model 20 compare_and_update
run_test test_gpu_speed_cudnn_lstm 20 compare_and_update
run_test test_gpu_speed_lstm 20 compare_and_update
run_test test_gpu_speed_mlstm 20 compare_and_update
else
run_test test_gpu_speed_mnist 20 compare_with_baseline
run_test test_gpu_speed_word_language_model 20 compare_with_baseline
run_test test_gpu_speed_cudnn_lstm 20 compare_with_baseline
run_test test_gpu_speed_lstm 20 compare_with_baseline
run_test test_gpu_speed_mlstm 20 compare_with_baseline
fi
if [[ "$COMMIT_SOURCE" == "$UPSTREAM_DEFAULT_BRANCH" ]]; then
# This could cause race condition if we are testing the same default branch commit twice,
# but the chance of them executing this line at the same time is low.
aws s3 cp new_gpu_runtime.json s3://ossci-perf-test/pytorch/gpu_runtime/"${DEFAULT_BRANCH_COMMIT_ID}".json --acl public-read
fi
popd

File diff suppressed because it is too large Load Diff

View File

@ -1,160 +0,0 @@
if "%DEBUG%" == "1" (
set BUILD_TYPE=debug
) ELSE (
set BUILD_TYPE=release
)
set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocolatey\bin;C:\Program Files\Git\cmd;C:\Program Files\Amazon\AWSCLI;C:\Program Files\Amazon\AWSCLI\bin;%PATH%
:: This inflates our log size slightly, but it is REALLY useful to be
:: able to see what our cl.exe commands are (since you can actually
:: just copy-paste them into a local Windows setup to just rebuild a
:: single file.)
:: log sizes are too long, but leaving this here incase someone wants to use it locally
:: set CMAKE_VERBOSE_MAKEFILE=1
set INSTALLER_DIR=%SCRIPT_HELPERS_DIR%\installation-helpers
call %INSTALLER_DIR%\install_mkl.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
call %INSTALLER_DIR%\install_magma.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
call %INSTALLER_DIR%\install_sccache.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
:: Miniconda has been installed as part of the Windows AMI with all the dependencies.
:: We just need to activate it here
call %INSTALLER_DIR%\activate_miniconda3.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
:: Override VS env here
pushd .
if "%VC_VERSION%" == "" (
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64
) else (
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%VC_VERSION%
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
@echo on
popd
if not "%USE_CUDA%"=="1" goto cuda_build_end
set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION%
if x%CUDA_VERSION:.=%==x%CUDA_VERSION% (
echo CUDA version %CUDA_VERSION% format isn't correct, which doesn't contain '.'
exit /b 1
)
rem version transformer, for example 10.1 to 10_1.
if x%CUDA_VERSION:.=%==x%CUDA_VERSION% (
echo CUDA version %CUDA_VERSION% format isn't correct, which doesn't contain '.'
exit /b 1
)
set VERSION_SUFFIX=%CUDA_VERSION:.=_%
set CUDA_PATH_V%VERSION_SUFFIX%=%CUDA_PATH%
set CUDNN_LIB_DIR=%CUDA_PATH%\lib\x64
set CUDA_TOOLKIT_ROOT_DIR=%CUDA_PATH%
set CUDNN_ROOT_DIR=%CUDA_PATH%
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
set PATH=%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp;%PATH%
set CUDNN_LIB_DIR=%CUDA_PATH%\lib\x64
set CUDA_TOOLKIT_ROOT_DIR=%CUDA_PATH%
set CUDNN_ROOT_DIR=%CUDA_PATH%
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
set PATH=%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp;%PATH%
:cuda_build_end
set DISTUTILS_USE_SDK=1
set PATH=%TMP_DIR_WIN%\bin;%PATH%
:: The latest Windows CUDA test is running on AWS G5 runner with A10G GPU
if "%TORCH_CUDA_ARCH_LIST%" == "" set TORCH_CUDA_ARCH_LIST=8.6
:: The default sccache idle timeout is 600, which is too short and leads to intermittent build errors.
set SCCACHE_IDLE_TIMEOUT=0
set SCCACHE_IGNORE_SERVER_IO_ERROR=1
sccache --stop-server
sccache --start-server
sccache --zero-stats
set CC=sccache-cl
set CXX=sccache-cl
set CMAKE_GENERATOR=Ninja
if "%USE_CUDA%"=="1" (
:: randomtemp is used to resolve the intermittent build error related to CUDA.
:: code: https://github.com/peterjc123/randomtemp-rust
:: issue: https://github.com/pytorch/pytorch/issues/25393
::
:: CMake requires a single command as CUDA_NVCC_EXECUTABLE, so we push the wrappers
:: randomtemp.exe and sccache.exe into a batch file which CMake invokes.
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.4/randomtemp.exe --output %TMP_DIR_WIN%\bin\randomtemp.exe
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
echo @"%TMP_DIR_WIN%\bin\randomtemp.exe" "%TMP_DIR_WIN%\bin\sccache.exe" "%CUDA_PATH%\bin\nvcc.exe" %%* > "%TMP_DIR%/bin/nvcc.bat"
cat %TMP_DIR%/bin/nvcc.bat
set CUDA_NVCC_EXECUTABLE=%TMP_DIR%/bin/nvcc.bat
for /F "usebackq delims=" %%n in (`cygpath -m "%CUDA_PATH%\bin\nvcc.exe"`) do set CMAKE_CUDA_COMPILER=%%n
set CMAKE_CUDA_COMPILER_LAUNCHER=%TMP_DIR%/bin/randomtemp.exe;%TMP_DIR%\bin\sccache.exe
)
@echo off
echo @echo off >> %TMP_DIR_WIN%\ci_scripts\pytorch_env_restore.bat
for /f "usebackq tokens=*" %%i in (`set`) do echo set "%%i" >> %TMP_DIR_WIN%\ci_scripts\pytorch_env_restore.bat
@echo on
if "%REBUILD%" == "" (
if NOT "%BUILD_ENVIRONMENT%" == "" (
:: Create a shortcut to restore pytorch environment
echo @echo off >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
echo call "%TMP_DIR_WIN%/ci_scripts/pytorch_env_restore.bat" >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
echo cd /D "%CD%" >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
aws s3 cp "s3://ossci-windows/Restore PyTorch Environment.lnk" "C:\Users\circleci\Desktop\Restore PyTorch Environment.lnk"
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
)
python setup.py bdist_wheel
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
sccache --show-stats
python -c "import os, glob; os.system('python -mpip install --no-index --no-deps ' + glob.glob('dist/*.whl')[0])"
(
if "%BUILD_ENVIRONMENT%"=="" (
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3` in Command Prompt before running Git Bash.
) else (
if "%USE_CUDA%"=="1" (
7z a %TMP_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torchgen %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\functorch %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\nvfuser && copy /Y "%TMP_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z" "%PYTORCH_FINAL_PACKAGE_DIR%\"
) else (
7z a %TMP_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torchgen %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\functorch && copy /Y "%TMP_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z" "%PYTORCH_FINAL_PACKAGE_DIR%\"
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
:: export test times so that potential sharded tests that'll branch off this build will use consistent data
python tools/stats/export_test_times.py
copy /Y ".pytorch-test-times.json" "%PYTORCH_FINAL_PACKAGE_DIR%"
:: Also save build/.ninja_log as an artifact
copy /Y "build\.ninja_log" "%PYTORCH_FINAL_PACKAGE_DIR%\"
)
)
sccache --show-stats --stats-format json | jq .stats > sccache-stats-%BUILD_ENVIRONMENT%-%OUR_GITHUB_JOB_ID%.json
sccache --stop-server

View File

@ -1,19 +0,0 @@
call %SCRIPT_HELPERS_DIR%\setup_pytorch_env.bat
:: exit the batch once there's an error
if not errorlevel 0 (
echo "setup pytorch env failed"
echo %errorlevel%
exit /b
)
echo "Test functorch"
pushd test
python run_test.py --functorch --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
popd
if ERRORLEVEL 1 goto fail
:eof
exit /b 0
:fail
exit /b 1

View File

@ -1,26 +0,0 @@
if "%BUILD_ENVIRONMENT%"=="" (
set CONDA_PARENT_DIR=%CD%
) else (
set CONDA_PARENT_DIR=C:\Jenkins
)
:: Be conservative here when rolling out the new AMI with conda. This will try
:: to install conda as before if it couldn't find the conda installation. This
:: can be removed eventually after we gain enough confidence in the AMI
if not exist %CONDA_PARENT_DIR%\Miniconda3 (
set INSTALL_FRESH_CONDA=1
)
if "%INSTALL_FRESH_CONDA%"=="1" (
curl --retry 3 --retry-all-errors -k https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe --output %TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
:: Activate conda so that we can use its commands, i.e. conda, python, pip
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3

View File

@ -1,37 +0,0 @@
if "%CUDA_VERSION%" == "cpu" (
echo skip magma installation for cpu builds
exit /b 0
)
rem remove dot in cuda_version, fox example 11.1 to 111
if not "%USE_CUDA%"=="1" (
exit /b 0
)
if x%CUDA_VERSION:.=%==x%CUDA_VERSION% (
echo CUDA version %CUDA_VERSION% format isn't correct, which doesn't contain '.'
exit /b 1
)
set VERSION_SUFFIX=%CUDA_VERSION:.=%
set CUDA_SUFFIX=cuda%VERSION_SUFFIX%
if "%CUDA_SUFFIX%" == "" (
echo unknown CUDA version, please set `CUDA_VERSION` higher than 10.2
exit /b 1
)
if "%REBUILD%"=="" (
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z --output %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z
) else (
aws s3 cp s3://ossci-windows/magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z --quiet
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
7z x -aoa %TMP_DIR_WIN%\magma_2.5.4_%CUDA_SUFFIX%_%BUILD_TYPE%.7z -o%TMP_DIR_WIN%\magma
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
set MAGMA_HOME=%TMP_DIR_WIN%\magma

View File

@ -1,14 +0,0 @@
if "%REBUILD%"=="" (
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z --output %TMP_DIR_WIN%\mkl.7z
) else (
aws s3 cp s3://ossci-windows/mkl_2020.2.254.7z %TMP_DIR_WIN%\mkl.7z --quiet
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
7z x -aoa %TMP_DIR_WIN%\mkl.7z -o%TMP_DIR_WIN%\mkl
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
set CMAKE_INCLUDE_PATH=%TMP_DIR_WIN%\mkl\include
set LIB=%TMP_DIR_WIN%\mkl\lib;%LIB%

View File

@ -1,18 +0,0 @@
mkdir %TMP_DIR_WIN%\bin
if "%REBUILD%"=="" (
:check_sccache
%TMP_DIR_WIN%\bin\sccache.exe --show-stats || (
taskkill /im sccache.exe /f /t || ver > nul
del %TMP_DIR_WIN%\bin\sccache.exe || ver > nul
del %TMP_DIR_WIN%\bin\sccache-cl.exe || ver > nul
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output %TMP_DIR_WIN%\bin\sccache.exe
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output %TMP_DIR_WIN%\bin\sccache-cl.exe
) else (
aws s3 cp s3://ossci-windows/sccache.exe %TMP_DIR_WIN%\bin\sccache.exe
aws s3 cp s3://ossci-windows/sccache-cl.exe %TMP_DIR_WIN%\bin\sccache-cl.exe
)
goto :check_sccache
)
)

View File

@ -1,73 +0,0 @@
if exist "%TMP_DIR%/ci_scripts/pytorch_env_restore.bat" (
call %TMP_DIR%/ci_scripts/pytorch_env_restore.bat
exit /b 0
)
set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocolatey\bin;C:\Program Files\Git\cmd;C:\Program Files\Amazon\AWSCLI;C:\Program Files\Amazon\AWSCLI\bin;%PATH%
:: Install Miniconda3
set INSTALLER_DIR=%SCRIPT_HELPERS_DIR%\installation-helpers
:: Miniconda has been installed as part of the Windows AMI with all the dependencies.
:: We just need to activate it here
call %INSTALLER_DIR%\activate_miniconda3.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
pushd .
if "%VC_VERSION%" == "" (
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64
) else (
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%VC_VERSION%
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
@echo on
popd
set DISTUTILS_USE_SDK=1
if not "%USE_CUDA%"=="1" goto cuda_build_end
set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION%
rem version transformer, for example 10.1 to 10_1.
set VERSION_SUFFIX=%CUDA_VERSION:.=_%
set CUDA_PATH_V%VERSION_SUFFIX%=%CUDA_PATH%
set CUDNN_LIB_DIR=%CUDA_PATH%\lib\x64
set CUDA_TOOLKIT_ROOT_DIR=%CUDA_PATH%
set CUDNN_ROOT_DIR=%CUDA_PATH%
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
set PATH=%CUDA_PATH%\bin;%CUDA_PATH%\libnvvp;%PATH%
set NUMBAPRO_CUDALIB=%CUDA_PATH%\bin
set NUMBAPRO_LIBDEVICE=%CUDA_PATH%\nvvm\libdevice
set NUMBAPRO_NVVM=%CUDA_PATH%\nvvm\bin\nvvm64_32_0.dll
:cuda_build_end
set PYTHONPATH=%TMP_DIR_WIN%\build;%PYTHONPATH%
if NOT "%BUILD_ENVIRONMENT%"=="" (
pushd %TMP_DIR_WIN%\build
copy /Y %PYTORCH_FINAL_PACKAGE_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z %TMP_DIR_WIN%\
:: 7z: -aos skips if exists because this .bat can be called multiple times
7z x %TMP_DIR_WIN%\%IMAGE_COMMIT_TAG%.7z -aos
popd
) else (
xcopy /s %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
)
@echo off
echo @echo off >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore.bat
for /f "usebackq tokens=*" %%i in (`set`) do echo set "%%i" >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore.bat
@echo on
if NOT "%BUILD_ENVIRONMENT%" == "" (
:: Create a shortcut to restore pytorch environment
echo @echo off >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
echo call "%TMP_DIR_WIN%/ci_scripts/pytorch_env_restore.bat" >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
echo cd /D "%CD%" >> %TMP_DIR_WIN%/ci_scripts/pytorch_env_restore_helper.bat
aws s3 cp "s3://ossci-windows/Restore PyTorch Environment.lnk" "C:\Users\circleci\Desktop\Restore PyTorch Environment.lnk"
)

View File

@ -1,37 +0,0 @@
call %SCRIPT_HELPERS_DIR%\setup_pytorch_env.bat
:: exit the batch once there's an error
if not errorlevel 0 (
echo "setup pytorch env failed"
echo %errorlevel%
exit /b
)
pushd test
set GFLAGS_EXE="C:\Program Files (x86)\Windows Kits\10\Debuggers\x64\gflags.exe"
if "%SHARD_NUMBER%" == "1" (
if exist %GFLAGS_EXE% (
echo Some smoke tests
%GFLAGS_EXE% /i python.exe +sls
python %SCRIPT_HELPERS_DIR%\run_python_nn_smoketests.py
if ERRORLEVEL 1 goto fail
%GFLAGS_EXE% /i python.exe -sls
if ERRORLEVEL 1 goto fail
)
)
echo Copying over test times file
copy /Y "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.pytorch-test-times.json" "%PROJECT_DIR_WIN%"
echo Run nn tests
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
if ERRORLEVEL 1 goto fail
popd
:eof
exit /b 0
:fail
exit /b 1

View File

@ -1,86 +0,0 @@
#!/bin/bash
set -ex
SCRIPT_PARENT_DIR=$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
# shellcheck source=./common.sh
source "$SCRIPT_PARENT_DIR/common.sh"
IMAGE_COMMIT_ID=$(git rev-parse HEAD)
export IMAGE_COMMIT_ID
export IMAGE_COMMIT_TAG=${BUILD_ENVIRONMENT}-${IMAGE_COMMIT_ID}
if [[ ${JOB_NAME} == *"develop"* ]]; then
export IMAGE_COMMIT_TAG=develop-${IMAGE_COMMIT_TAG}
fi
export TMP_DIR="${PWD}/build/win_tmp"
TMP_DIR_WIN=$(cygpath -w "${TMP_DIR}")
export TMP_DIR_WIN
export PROJECT_DIR="${PWD}"
PROJECT_DIR_WIN=$(cygpath -w "${PROJECT_DIR}")
export PROJECT_DIR_WIN
export TEST_DIR="${PWD}/test"
TEST_DIR_WIN=$(cygpath -w "${TEST_DIR}")
export TEST_DIR_WIN
export PYTORCH_FINAL_PACKAGE_DIR="${PYTORCH_FINAL_PACKAGE_DIR:-/c/users/circleci/workspace/build-results}"
PYTORCH_FINAL_PACKAGE_DIR_WIN=$(cygpath -w "${PYTORCH_FINAL_PACKAGE_DIR}")
export PYTORCH_FINAL_PACKAGE_DIR_WIN
mkdir -p "$TMP_DIR"/build/torch
# This directory is used only to hold "pytorch_env_restore.bat", called via "setup_pytorch_env.bat"
CI_SCRIPTS_DIR=$TMP_DIR/ci_scripts
mkdir -p "$CI_SCRIPTS_DIR"
if [ -n "$(ls "$CI_SCRIPTS_DIR"/*)" ]; then
rm "$CI_SCRIPTS_DIR"/*
fi
export SCRIPT_HELPERS_DIR=$SCRIPT_PARENT_DIR/win-test-helpers
if [[ "$TEST_CONFIG" = "force_on_cpu" ]]; then
# run the full test suite for force_on_cpu test
export USE_CUDA=0
fi
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
# Used so that only cuda/rocm specific versions of tests are generated
# mainly used so that we're not spending extra cycles testing cpu
# devices on expensive gpu machines
export PYTORCH_TESTING_DEVICE_ONLY_FOR="cuda"
fi
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do
if [[ -x "$path" ]]; then
"$path" || echo "true";
break
fi
done
if [[ "${TEST_CONFIG}" == *functorch* ]]; then
"$SCRIPT_HELPERS_DIR"/install_test_functorch.bat
elif [[ $NUM_TEST_SHARDS -eq 1 ]]; then
"$SCRIPT_HELPERS_DIR"/test_python_shard.bat
"$SCRIPT_HELPERS_DIR"/test_custom_script_ops.bat
"$SCRIPT_HELPERS_DIR"/test_custom_backend.bat
"$SCRIPT_HELPERS_DIR"/test_libtorch.bat
else
"$SCRIPT_HELPERS_DIR"/test_python_shard.bat
if [[ "${SHARD_NUMBER}" == 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
"$SCRIPT_HELPERS_DIR"/test_libtorch.bat
if [[ "${USE_CUDA}" == "1" ]]; then
"$SCRIPT_HELPERS_DIR"/test_python_jit_legacy.bat
fi
elif [[ "${SHARD_NUMBER}" == 2 && $NUM_TEST_SHARDS -gt 1 ]]; then
"$SCRIPT_HELPERS_DIR"/test_custom_backend.bat
"$SCRIPT_HELPERS_DIR"/test_custom_script_ops.bat
fi
fi
}
run_tests
assert_git_not_dirty
echo "TEST PASSED"

View File

@ -1,8 +1,3 @@
Warning
=======
Contents may be out of date. Our CircleCI workflows are gradually being migrated to Github actions.
Structure of CI
===============
@ -21,6 +16,8 @@ setup job:
not, even if there isn't a Git checkout.
CircleCI configuration generator
================================
@ -59,6 +56,7 @@ See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestrevi
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
@ -73,9 +71,9 @@ A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.7, 3.8
* windows: 3.7, 3.8
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.6, 3.7, 3.8
* windows: 3.6, 3.7, 3.8
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
@ -190,6 +188,18 @@ binary_run_in_docker.sh is a way to share the docker start-up code between the b
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Azure Pipelines structure of the binaries
TODO: fill in stuff
## How are the workflows structured?
TODO: fill in stuff
## How are the jobs structured?
TODO: fill in stuff
# Code structure of the binaries (circleci agnostic)
## Overview
@ -205,22 +215,28 @@ pytorch/pytorch
- config.yml # GENERATED file that actually controls all circleci behavior
- verbatim-sources # Used to generate job/workflow sections in ^
- scripts/ # Code needed to prepare circleci environments for binary build scripts
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
- cmake files # used in normal building of pytorch
# All code needed to prepare a binary build, given an environment
# with all the right variables/packages/paths.
pytorch/builder
# Given an installed binary and a proper python env, runs some checks
# to make sure the binary was built the proper way. Checks things like
# the library dependencies, symbols present, etc.
- check_binary.sh
# Given an installed binary, runs python tests to make sure everything
# is in order. These should be de-duped. Right now they both run smoke
# tests, but are called from different places. Usually just call some
# import statements, but also has overlap with check_binary.sh above
- run_tests.sh
- smoke_test.sh
# Folders that govern how packages are built. See paragraphs below
- conda/
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
@ -349,28 +365,36 @@ Writing PRs that test the binaries is annoying, since the default circleci jobs
```sh
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
# Regenerate the yaml, has to be in python 3.7
.circleci/regenerate.sh
# Make a commit
git add .circleci *
git commit -m "My real changes"
git push origin my_branch
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
# Also eliminate ensure-consistency and should_run_job checks
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
# Make a commit you won't keep
git add .circleci
git commit -m "[DO NOT LAND] testing binaries for above changes"
git push origin my_branch
# Now you need to make some changes to the first commit.
git rebase -i HEAD~2 # mark the first commit as 'edit'
# Make the changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
.circleci/regenerate.sh
# Ammend the commit and recontinue
git add .circleci
git commit --amend
git rebase --continue
# Update the PR, need to force since the commits are different now
git push origin my_branch --force
```
@ -399,12 +423,14 @@ docker run \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.7
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
# The builds generate lots of output so you probably need this when
@ -428,6 +454,7 @@ But if you want to try, then Id recommend
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
# Install a new miniconda
# First remove any other python or conda installation from your PATH
# Always install miniconda 3, even if building for Python <3
@ -438,17 +465,20 @@ chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
export PATH="~/my_new_conda/bin:$PATH"
# Create a clean python env
# All MacOS builds use conda to manage the python env and dependencies
# that are built with, even the pip packages
conda create -yn binary python=2.7
conda activate binary
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.7
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint you want
path/to/builder/wheel/build_wheel.sh
```

View File

@ -30,7 +30,48 @@ def get_processor_arch_name(gpu_version):
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
)
LINUX_PACKAGE_VARIANTS = OrderedDict(
manywheel=[
"3.6m",
"3.7m",
"3.8m",
"3.9m"
],
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7m",
],
)
CONFIG_TREE_DATA = OrderedDict(
linux=(dimensions.GPU_VERSIONS, LINUX_PACKAGE_VARIANTS),
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)),
macos_arm64=([None], OrderedDict(
wheel=[
"3.8",
"3.9",
],
conda=[
"3.8",
"3.9",
],
)),
windows=(
[v for v in dimensions.GPU_VERSIONS if v not in dimensions.ROCM_VERSION_LABELS],
OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)
),
)
# GCC config variants:
@ -57,7 +98,7 @@ WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
class TopLevelNode(ConfigNode):
def __init__(self, node_name, config_tree_data, smoke):
super().__init__(None, node_name)
super(TopLevelNode, self).__init__(None, node_name)
self.config_tree_data = config_tree_data
self.props["smoke"] = smoke
@ -68,7 +109,7 @@ class TopLevelNode(ConfigNode):
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
super().__init__(parent, os_name)
super(OSConfigNode, self).__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
@ -80,7 +121,7 @@ class OSConfigNode(ConfigNode):
class PackageFormatConfigNode(ConfigNode):
def __init__(self, parent, package_format, python_versions):
super().__init__(parent, package_format)
super(PackageFormatConfigNode, self).__init__(parent, package_format)
self.props["python_versions"] = python_versions
self.props["package_format"] = package_format
@ -97,7 +138,7 @@ class PackageFormatConfigNode(ConfigNode):
class LinuxGccConfigNode(ConfigNode):
def __init__(self, parent, gcc_config_variant):
super().__init__(parent, "GCC_CONFIG_VARIANT=" + str(gcc_config_variant))
super(LinuxGccConfigNode, self).__init__(parent, "GCC_CONFIG_VARIANT=" + str(gcc_config_variant))
self.props["gcc_config_variant"] = gcc_config_variant
@ -122,7 +163,7 @@ class LinuxGccConfigNode(ConfigNode):
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super().__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
self.props["libtorch_config_variant"] = libtorch_config_variant
@ -132,7 +173,7 @@ class WindowsLibtorchConfigNode(ConfigNode):
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super().__init__(parent, get_processor_arch_name(gpu))
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
self.props["gpu"] = gpu
@ -142,7 +183,7 @@ class ArchConfigNode(ConfigNode):
class PyVersionConfigNode(ConfigNode):
def __init__(self, parent, pyver):
super().__init__(parent, pyver)
super(PyVersionConfigNode, self).__init__(parent, pyver)
self.props["pyver"] = pyver
@ -158,7 +199,7 @@ class PyVersionConfigNode(ConfigNode):
class LinkingVariantConfigNode(ConfigNode):
def __init__(self, parent, linking_variant):
super().__init__(parent, linking_variant)
super(LinkingVariantConfigNode, self).__init__(parent, linking_variant)
def get_children(self):
return [DependencyInclusionConfigNode(self, v) for v in DEPS_INCLUSION_DIMENSIONS]
@ -166,6 +207,6 @@ class LinkingVariantConfigNode(ConfigNode):
class DependencyInclusionConfigNode(ConfigNode):
def __init__(self, parent, deps_variant):
super().__init__(parent, deps_variant)
super(DependencyInclusionConfigNode, self).__init__(parent, deps_variant)
self.props["libtorch_variant"] = "-".join([self.parent.get_label(), self.get_label()])

View File

@ -2,14 +2,14 @@ PHASES = ["build", "test"]
CUDA_VERSIONS = [
"102",
"111",
"113",
"116",
"117",
]
ROCM_VERSIONS = [
"4.3.1",
"4.5.2",
"4.0.1",
"4.1",
"4.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
@ -17,8 +17,8 @@ ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = [
"3.6",
"3.7",
"3.8",
"3.9",
"3.10"
"3.9"
]

View File

@ -1,7 +1,70 @@
from cimodel.lib.conf_tree import ConfigNode
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
CONFIG_TREE_DATA = [
("xenial", [
("gcc", [
("5.4", [ # All this subtree rebases to master and then build
("3.6", [
("important", [X(True)]),
]),
]),
# TODO: bring back libtorch test
("7", [X("3.6")]),
]),
("clang", [
("7", [
("3.6", [
("asan", [
(True, [
("shard_test", [XImportant(True)]),
]),
]),
("onnx", [XImportant(True)]),
]),
]),
]),
("cuda", [
("10.2", [
("3.6", [
# Build are needed for slow_gradcheck
('build_only', [X(True)]),
("slow_gradcheck", [
# If you update this slow gradcheck, you should
# also update docker_definitions.py to make sure
# the docker image match the config used here
(True, [
('shard_test', [XImportant(True)]),
]),
]),
# UNCOMMENT THE BELOW TO REENABLE LIBTORCH
# ("libtorch", [
# (True, [
# ('build_only', [X(True)]),
# ]),
# ]),
]),
]),
]),
]),
("bionic", [
("clang", [
("9", [
("3.6", [
("xla", [XImportant(True)]),
("vulkan", [XImportant(True)]),
]),
]),
]),
# @jithunnair-amd believes Jenkins builds are sufficient
# ("rocm", [
# ("3.9", [
# ("3.6", [
# ('build_only', [XImportant(True)]),
# ]),
# ]),
# ]),
]),
]
@ -12,7 +75,7 @@ def get_major_pyver(dotted_version):
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super().__init__(parent, self.modify_label(node_name))
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
@ -28,7 +91,7 @@ class TreeConfigNode(ConfigNode):
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super().__init__(None, node_name, subtree)
super(TopLevelNode, self).__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
@ -71,11 +134,10 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mps": MPSConfigNode,
"mlc": MLCConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"crossref": CrossRefConfigNode,
"dynamo": DynamoConfigNode,
"noarch": NoarchConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
@ -83,6 +145,7 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"coverage": CoverageConfigNode,
"pure_torch": PureTorchConfigNode,
"slow_gradcheck": SlowGradcheckConfigNode,
}
@ -117,12 +180,12 @@ class XlaConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class MPSConfigNode(TreeConfigNode):
class MLCConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MPS=" + str(label)
return "MLC=" + str(label)
def init2(self, node_name):
self.props["is_mps"] = node_name
self.props["is_mlc"] = node_name
def child_constructor(self):
return ImportantConfigNode
@ -172,17 +235,9 @@ class ParallelTBBConfigNode(TreeConfigNode):
return ImportantConfigNode
class CrossRefConfigNode(TreeConfigNode):
class NoarchConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_crossref"] = node_name
def child_constructor(self):
return ImportantConfigNode
class DynamoConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_dynamo"] = node_name
self.props["is_noarch"] = node_name
def child_constructor(self):
return ImportantConfigNode
@ -234,6 +289,14 @@ class ShardTestConfigNode(TreeConfigNode):
return ImportantConfigNode
class CoverageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_coverage"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)

View File

@ -185,7 +185,7 @@ def gen_docs_configs(xenial_parent_config):
HiddenConf(
"pytorch_python_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
filters=gen_filter_dict(branches_list=["master", "nightly"],
tags_list=RC_PATTERN),
)
)
@ -201,7 +201,7 @@ def gen_docs_configs(xenial_parent_config):
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
filters=gen_filter_dict(branches_list=["master", "nightly"],
tags_list=RC_PATTERN),
)
)
@ -239,8 +239,8 @@ def instantiate_configs(only_slow_gradcheck):
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_crossref = fc.find_prop("is_crossref") or False
is_dynamo = fc.find_prop("is_dynamo") or False
is_coverage = fc.find_prop("is_coverage") or False
is_noarch = fc.find_prop("is_noarch") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
@ -284,11 +284,12 @@ def instantiate_configs(only_slow_gradcheck):
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_crossref:
parms_list_ignored_for_docker_image.append("crossref")
if is_coverage:
parms_list_ignored_for_docker_image.append("coverage")
python_version = fc.find_prop("pyver")
if is_dynamo:
parms_list_ignored_for_docker_image.append("dynamo")
if is_noarch:
parms_list_ignored_for_docker_image.append("noarch")
if is_onnx:
parms_list.append("onnx")
@ -338,12 +339,13 @@ def instantiate_configs(only_slow_gradcheck):
build_only=build_only,
)
# run docs builds on "pytorch-linux-xenial-py3.7-gcc5.4". Docs builds
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build?
# XXX should this be updated to a more modern build? Projects are
# beginning to drop python3.6
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.7"
and fc.find_prop("pyver") == "3.6"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
@ -355,6 +357,28 @@ def instantiate_configs(only_slow_gradcheck):
tags_list=RC_PATTERN)
c.dependent_tests = gen_docs_configs(c)
if (
compiler_name != "clang"
and not rocm_version
and not is_libtorch
and not is_vulkan
and not is_pure_torch
and not is_noarch
and not is_slow_gradcheck
and not only_slow_gradcheck
and not build_only
):
distributed_test = Conf(
c.gen_build_name("") + "distributed",
[],
is_xla=False,
restrict_phases=["test"],
is_libtorch=False,
is_important=True,
parent_build=c,
)
c.dependent_tests.append(distributed_test)
config_list.append(c)
return config_list

View File

@ -0,0 +1,119 @@
import cimodel.data.simple.util.branch_filters as branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK
)
import cimodel.lib.miniutils as miniutils
class AndroidJob:
def __init__(self,
variant,
template_name,
is_master_only=True):
self.variant = variant
self.template_name = template_name
self.is_master_only = is_master_only
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant + [
"build",
]
full_job_name = "_".join(base_name_parts)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"build_environment": "\"{}\"".format(build_env_name),
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
"requires": [DOCKER_REQUIREMENT_NDK]
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
return [{self.template_name: props_dict}]
class AndroidGradleJob:
def __init__(self,
job_name,
template_name,
dependencies,
is_master_only=True,
is_pr_only=False,
extra_props=tuple()):
self.job_name = job_name
self.template_name = template_name
self.dependencies = dependencies
self.is_master_only = is_master_only
self.is_pr_only = is_pr_only
self.extra_props = dict(extra_props)
def gen_tree(self):
props_dict = {
"name": self.job_name,
"requires": self.dependencies,
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
elif self.is_pr_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.PR_BRANCH_LIST)
if self.extra_props:
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
AndroidJob(["x86_64"], "pytorch_linux_build"),
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
"pytorch_android_gradle_build-x86_32",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single",
"pytorch_android_gradle_custom_build_single",
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single-full-jit",
"pytorch_android_gradle_custom_build_single",
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True,
extra_props=tuple({
"lite_interpreter": miniutils.quote(str(int(False)))
}.items())),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
"pytorch_android_gradle_build",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,69 @@
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_GCC7,
DOCKER_REQUIREMENT_GCC7
)
def gen_job_name(phase):
job_name_parts = [
"pytorch",
"bazel",
phase,
]
return "_".join(job_name_parts)
class BazelJob:
def __init__(self, phase, extra_props=None):
self.phase = phase
self.extra_props = extra_props or {}
def gen_tree(self):
template_parts = [
"pytorch",
"linux",
"bazel",
self.phase,
]
build_env_parts = [
"pytorch",
"linux",
"xenial",
"py3.6",
"gcc7",
"bazel",
self.phase,
]
full_job_name = gen_job_name(self.phase)
build_env_name = "-".join(build_env_parts)
extra_requires = (
[gen_job_name("build")] if self.phase == "test" else
[DOCKER_REQUIREMENT_GCC7]
)
props_dict = {
"build_environment": build_env_name,
"docker_image": DOCKER_IMAGE_GCC7,
"name": full_job_name,
"requires": extra_requires,
}
props_dict.update(self.extra_props)
template_name = "_".join(template_parts)
return [{template_name: props_dict}]
WORKFLOW_DATA = [
BazelJob("build", {"resource_class": "large"}),
BazelJob("test"),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,193 @@
"""
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
instead of doing one offs here
Binary builds (subset, to smoke test that they'll work)
NB: If you modify this file, you need to also modify
the binary_and_smoke_tests_on_pr variable in
pytorch-ci-hud to adjust the allowed build list
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
Note:
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
- binary_linux_conda_3_6_cu90_devtoolset7_build
- binary_linux_conda_3_6_cu90_devtoolset7_test
TODO
we should test a libtorch cuda build, but they take too long
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class SmoketestJob:
def __init__(self,
template_name,
build_env_parts,
docker_image,
job_name,
is_master_only=False,
requires=None,
has_libtorch_variant=False,
extra_props=None):
self.template_name = template_name
self.build_env_parts = build_env_parts
self.docker_image = docker_image
self.job_name = job_name
self.is_master_only = is_master_only
self.requires = requires or []
self.has_libtorch_variant = has_libtorch_variant
self.extra_props = extra_props or {}
def gen_tree(self):
props_dict = {
"build_environment": " ".join(self.build_env_parts),
"name": self.job_name,
"requires": self.requires,
}
if self.docker_image:
props_dict["docker_image"] = self.docker_image
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
if self.has_libtorch_variant:
props_dict["libtorch_variant"] = "shared-with-deps"
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
SmoketestJob(
"binary_linux_build",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
is_master_only=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
is_master_only=True,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_mac_build",
["wheel", "3.7", "cpu"],
None,
"binary_macos_wheel_3_7_cpu_build",
is_master_only=True,
),
# This job has an average run time of 3 hours o.O
# Now only running this on master to reduce overhead
SmoketestJob(
"binary_mac_build",
["libtorch", "3.7", "cpu"],
None,
"binary_macos_libtorch_3_7_cpu_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_test",
is_master_only=True,
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_test",
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
),
SmoketestJob(
"binary_windows_test",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_test",
is_master_only=True,
requires=["binary_windows_wheel_3_7_cu102_build"],
extra_props={
"executor": "windows-with-nvidia-gpu",
},
),
SmoketestJob(
"binary_linux_test",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
is_master_only=True,
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
extra_props={
"resource_class": "gpu.medium",
"use_cuda_docker_runtime": miniutils.quote((str(1))),
},
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
has_libtorch_variant=True,
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -4,8 +4,27 @@ from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# NOTE: All hardcoded docker image builds have been migrated to GHA
# TODO: make this generated from a matrix rather than just a static list
IMAGE_NAMES = [
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
"pytorch-linux-bionic-py3.6-clang9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
"pytorch-linux-bionic-py3.8-gcc9",
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
"pytorch-linux-xenial-py3-clang5-asan",
"pytorch-linux-xenial-py3-clang7-asan",
"pytorch-linux-xenial-py3-clang7-onnx",
"pytorch-linux-xenial-py3.8",
"pytorch-linux-xenial-py3.6-clang7",
"pytorch-linux-xenial-py3.6-gcc5.4", # this one is used in doc builds
"pytorch-linux-xenial-py3.6-gcc7.2",
"pytorch-linux-xenial-py3.6-gcc7",
"pytorch-linux-bionic-rocm4.1-py3.6",
"pytorch-linux-bionic-rocm4.2-py3.6",
"pytorch-linux-bionic-rocm4.3.1-py3.6",
]
# This entry should be an element from the list above
@ -13,12 +32,10 @@ IMAGE_NAMES = [
# pytorch_build_data.py
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
def get_workflow_jobs(only_slow_gradcheck=False):
"""Generates a list of docker image build definitions"""
ret = []
for image_name in images:
if image_name.startswith('docker-'):
image_name = image_name.lstrip('docker-')
for image_name in IMAGE_NAMES:
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
continue
@ -26,7 +43,7 @@ def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
})
if image_name == "pytorch-linux-xenial-py3.7-gcc5.4":
if image_name == "pytorch-linux-xenial-py3.6-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",

View File

@ -1,5 +1,4 @@
from cimodel.data.simple.util.versions import MultiPartVersion
from cimodel.data.simple.util.branch_filters import gen_filter_dict_exclude
import cimodel.lib.miniutils as miniutils
XCODE_VERSION = MultiPartVersion([12, 5, 1])
@ -12,7 +11,7 @@ class ArchVariant:
def render(self):
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
return "-".join([self.name] + extra_parts).replace("_", "-")
return "_".join([self.name] + extra_parts)
def get_platform(arch_variant_name):
@ -26,25 +25,30 @@ class IOSJob:
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self):
version_parts = self.xcode_version.render_dots_or_parts("-")
build_variant_suffix = self.arch_variant.render()
def gen_name_parts(self, with_version_dots):
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
return [
"pytorch",
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "-".join(self.gen_name_parts())
return "_".join(self.gen_name_parts(False))
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"name": self.gen_job_name(),
"build_environment": self.gen_job_name(),
"build_environment": "-".join(self.gen_name_parts(True)),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
"name": self.gen_job_name(),
}
if self.is_org_member_context:
@ -53,28 +57,24 @@ class IOSJob:
if self.extra_props:
props_dict.update(self.extra_props)
props_dict["filters"] = gen_filter_dict_exclude()
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
# "use_metal": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom-ops"), extra_props={
# "op_list": "mobilenetv2.yaml",
# "lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "coreml"), is_org_member_context=False, extra_props={
"use_coreml": miniutils.quote(str(int(True))),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
"use_metal": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
"op_list": "mobilenetv2.yaml",
"lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
# "use_coreml": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
]

View File

@ -11,14 +11,10 @@ class MacOsJob:
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = (
non_phase_parts
+ extra_name_list
+ [
"build" if self.is_build else None,
"test" if self.is_test else None,
]
)
full_job_name_list = non_phase_parts + extra_name_list + [
'build' if self.is_build else None,
'test' if self.is_test else None,
]
full_job_name = "_".join(list(filter(None, full_job_name_list)))
@ -45,8 +41,10 @@ WORKFLOW_DATA = [
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({"lite_interpreter": True}.items()),
),
extra_props=tuple({
"lite_interpreter": True
}.items()),
)
]

View File

@ -4,6 +4,12 @@ PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_ASAN,
DOCKER_REQUIREMENT_ASAN,
DOCKER_IMAGE_NDK,
DOCKER_REQUIREMENT_NDK
)
class MobileJob:
@ -46,6 +52,33 @@ class MobileJob:
WORKFLOW_DATA = [
MobileJob(
DOCKER_IMAGE_ASAN,
[DOCKER_REQUIREMENT_ASAN],
["build"]
),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["custom", "build", "dynamic"]
),
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["custom", "build", "static"]
),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["code", "analysis"],
True
),
]

View File

@ -0,0 +1,77 @@
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK,
DOCKER_REQUIREMENT_NDK
)
class AndroidNightlyJob:
def __init__(self,
variant,
template_name,
extra_props=None,
with_docker=True,
requires=None,
no_build_suffix=False):
self.variant = variant
self.template_name = template_name
self.extra_props = extra_props or {}
self.with_docker = with_docker
self.requires = requires
self.no_build_suffix = no_build_suffix
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant
build_suffix = [] if self.no_build_suffix else ["build"]
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"requires": self.requires,
"filters": {"branches": {"only": "nightly"}},
}
props_dict.update(self.extra_props)
if self.with_docker:
props_dict["docker_image"] = DOCKER_IMAGE_NDK
props_dict["build_environment"] = build_env_name
return [{self.template_name: props_dict}]
BASE_REQUIRES = [DOCKER_REQUIREMENT_NDK]
WORKFLOW_DATA = [
AndroidNightlyJob(["x86_32"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["x86_64"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
with_docker=False,
requires=[
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
extra_props={"context": "org-member"},
with_docker=False,
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
no_build_suffix=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -5,26 +5,21 @@ import cimodel.lib.miniutils as miniutils
class IOSNightlyJob:
def __init__(self,
variant,
is_full_jit=False,
is_upload=False):
self.variant = variant
self.is_full_jit = is_full_jit
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, sep):
def get_common_name_pieces(self, with_version_dots):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
extra_name = ["full_jit"] if self.is_full_jit else []
common_name_pieces = [
"ios",
] + extra_name + [
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(sep) + [
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
"nightly",
self.variant,
"build",
@ -33,14 +28,13 @@ class IOSNightlyJob:
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(None))
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
def gen_tree(self):
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
extra_requires = [x.gen_job_name() for x in build_configs] if self.is_upload else []
extra_requires = [x.gen_job_name() for x in BUILD_CONFIGS] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(".")),
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
@ -53,9 +47,6 @@ class IOSNightlyJob:
props_dict["use_metal"] = miniutils.quote(str(int(True)))
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
if self.is_full_jit:
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
template_name = "_".join([
"binary",
"ios",
@ -70,14 +61,9 @@ BUILD_CONFIGS = [
IOSNightlyJob("arm64"),
]
BUILD_CONFIGS_FULL_JIT = [
IOSNightlyJob("x86_64", is_full_jit=True),
IOSNightlyJob("arm64", is_full_jit=True),
]
WORKFLOW_DATA = BUILD_CONFIGS + BUILD_CONFIGS_FULL_JIT + [
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
WORKFLOW_DATA = BUILD_CONFIGS + [
IOSNightlyJob("binary", is_upload=True),
]

View File

@ -1,5 +1,4 @@
NON_PR_BRANCH_LIST = [
"main",
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
@ -12,9 +11,6 @@ PR_BRANCH_LIST = [
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
MAC_IOS_EXCLUSION_LIST = ["nightly", "postnightly"]
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
@ -29,11 +25,3 @@ def gen_filter_dict(
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict
def gen_filter_dict_exclude(branches_list=MAC_IOS_EXCLUSION_LIST):
return {
"branches": {
"ignore": branches_list,
},
}

View File

@ -11,7 +11,7 @@ def gen_docker_image_requires(image_name):
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc5.4"
"pytorch-linux-xenial-py3.6-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
@ -19,7 +19,7 @@ DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc7"
"pytorch-linux-xenial-py3.6-gcc7"
)

View File

@ -1,6 +1,3 @@
from typing import Optional
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
@ -16,11 +13,14 @@ class MultiPartVersion:
else:
return [self.prefix]
def render_dots_or_parts(self, sep: Optional[str] = None):
if sep is None:
return self.prefixed_parts()
def render_dots(self):
return ".".join(self.prefixed_parts())
def render_dots_or_parts(self, with_dots):
if with_dots:
return [self.render_dots()]
else:
return [sep.join(self.prefixed_parts())]
return self.prefixed_parts()
class CudaVersion(MultiPartVersion):

View File

@ -0,0 +1,160 @@
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN, NON_PR_BRANCH_LIST
from cimodel.data.simple.util.versions import CudaVersion
class WindowsJob:
def __init__(
self,
test_index,
vscode_spec,
cuda_version,
force_on_cpu=False,
multi_gpu=False,
master_only=False,
nightly_only=False,
master_and_nightly=False
):
self.test_index = test_index
self.vscode_spec = vscode_spec
self.cuda_version = cuda_version
self.force_on_cpu = force_on_cpu
self.multi_gpu = multi_gpu
self.master_only = master_only
self.nightly_only = nightly_only
self.master_and_nightly = master_and_nightly
def gen_tree(self):
base_phase = "build" if self.test_index is None else "test"
numbered_phase = (
base_phase if self.test_index is None else base_phase + str(self.test_index)
)
key_parts = ["pytorch", "windows", base_phase]
if self.multi_gpu:
key_parts.append('multigpu')
key_name = "_".join(key_parts)
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
target_arch = self.cuda_version.render_dots() if self.cuda_version else "cpu"
python_version = "3.8"
base_name_parts = [
"pytorch",
"windows",
self.vscode_spec.render(),
"py" + python_version.replace(".", ""),
target_arch,
]
prerequisite_jobs = []
if base_phase == "test":
prerequisite_jobs.append("_".join(base_name_parts + ["build"]))
if self.cuda_version:
self.cudnn_version = 8 if self.cuda_version.major == 11 else 7
arch_env_elements = (
["cuda" + str(self.cuda_version.major) + "." + str(self.cuda_version.minor)]
if self.cuda_version
else ["cpu"]
)
build_environment_string = "-".join(
["pytorch", "win"]
+ self.vscode_spec.get_elements()
+ arch_env_elements
+ ["py" + python_version.split(".")[0]]
)
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
if self.multi_gpu:
props_dict = {"requires": prerequisite_jobs}
else:
props_dict = {
"build_environment": build_environment_string,
"python_version": miniutils.quote(python_version),
"vs_version": miniutils.quote("16.8.6"),
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
"vc_product": self.vscode_spec.get_product(),
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
"requires": prerequisite_jobs,
}
if self.master_only:
props_dict[
"filters"
] = gen_filter_dict()
elif self.nightly_only:
props_dict[
"filters"
] = gen_filter_dict(branches_list=["nightly"], tags_list=RC_PATTERN)
elif self.master_and_nightly:
props_dict[
"filters"
] = gen_filter_dict(branches_list=NON_PR_BRANCH_LIST + ["nightly"], tags_list=RC_PATTERN)
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
if not self.multi_gpu:
if base_phase == "test":
test_name = "-".join(["pytorch", "windows", numbered_phase])
props_dict["test_name"] = test_name
if is_running_on_cuda:
props_dict["executor"] = "windows-with-nvidia-gpu"
props_dict["cuda_version"] = (
miniutils.quote(str(self.cuda_version))
if self.cuda_version
else "cpu"
)
props_dict["name"] = "_".join(name_parts)
return [{key_name: props_dict}]
class VcSpec:
def __init__(self, year, version_elements=None, hide_version=False):
self.year = year
self.version_elements = version_elements or []
self.hide_version = hide_version
def get_elements(self):
if self.hide_version:
return [self.prefixed_year()]
return [self.prefixed_year()] + self.version_elements
def get_product(self):
return "BuildTools"
def dotted_version(self):
return ".".join(self.version_elements)
def prefixed_year(self):
return "vs" + str(self.year)
def render(self):
return "_".join(self.get_elements())
_VC2019 = VcSpec(2019)
WORKFLOW_DATA = [
# VS2019 CUDA-10.2
WindowsJob(None, _VC2019, CudaVersion(10, 2), master_only=True),
# VS2019 CUDA-10.2 force on cpu
WindowsJob(1, _VC2019, CudaVersion(10, 2), force_on_cpu=True, master_only=True),
# TODO: This test is disabled due to https://github.com/pytorch/pytorch/issues/59724
# WindowsJob('_azure_multi_gpu', _VC2019, CudaVersion(11, 1), multi_gpu=True, master_and_nightly=True),
]
def get_windows_workflows():
return [item.gen_tree() for item in WORKFLOW_DATA]

8611
.circleci/config.yml generated

File diff suppressed because it is too large Load Diff

View File

@ -51,9 +51,9 @@ android {
dependencies {
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
implementation 'com.google.code.findbugs:jsr305:3.0.1'
implementation 'com.facebook.soloader:nativeloader:0.10.4'
implementation 'com.facebook.soloader:nativeloader:0.8.0'
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion

392
.circleci/docker/build.sh Executable file
View File

@ -0,0 +1,392 @@
#!/bin/bash
set -ex
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
if [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
ANACONDA_PYTHON_VERSION=3.8
CMAKE_VERSION=3.10.3
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc5.4)
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc7)
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7)
CUDA_VERSION=11.1
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
CMAKE_VERSION=3.10.3
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
CMAKE_VERSION=3.10.3
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
CMAKE_VERSION=3.10.3
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
CMAKE_VERSION=3.10.3
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
NINJA_VERSION=1.9.0
;;
pytorch-linux-xenial-py3.6-clang7)
ANACONDA_PYTHON_VERSION=3.6
CMAKE_VERSION=3.10.3
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.6-clang9)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=3.9
;;
pytorch-linux-bionic-rocm4.1-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=4.1
;;
pytorch-linux-bionic-rocm4.2-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=4.2
;;
pytorch-linux-bionic-rocm4.3.1-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=4.3.1
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *xenial* ]]; then
CMAKE_VERSION=3.10.3
fi
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
# Set Jenkins UID and GID if running Jenkins
if [ -n "${JENKINS:-}" ]; then
JENKINS_UID=$(id -u jenkins)
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "EC2=${EC2:-}" \
--build-arg "JENKINS=${JENKINS:-}" \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
exit 1
fi
if !(drun lsb_release -a 2>&1 | grep -qF "$UBUNTU_VERSION"); then
echo "UBUNTU_VERSION=$UBUNTU_VERSION, but:"
drun lsb_release -a
exit 1
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
fi
if [ -n "$GCC_VERSION" ]; then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1
fi
fi
if [ -n "$CLANG_VERSION" ]; then
if !(drun clang --version 2>&1 | grep -qF "clang version $CLANG_VERSION"); then
echo "CLANG_VERSION=$CLANG_VERSION, but:"
drun clang --version
exit 1
fi
fi
if [ -n "$KATEX" ]; then
if !(drun katex --version); then
echo "KATEX=$KATEX, but:"
drun katex --version
exit 1
fi
fi

View File

@ -0,0 +1,52 @@
#!/bin/bash
set -ex
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*)
}
# If UPSTREAM_BUILD_ID is set (see trigger job), then we can
# use it to tag this build with the same ID used to tag all other
# base image builds. Also, we can try and pull the previous
# image first, to avoid rebuilding layers that haven't changed.
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
image="${registry}/pytorch/${IMAGE_NAME}"
login() {
aws ecr get-authorization-token --region us-east-1 --output text --query 'authorizationData[].authorizationToken' |
base64 -d |
cut -d: -f2 |
docker login -u AWS --password-stdin "$1"
}
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
# export EC2=1
# export JENKINS=1
# Try to pull the previous image (perhaps we can reuse some layers)
# if [ -n "${last_tag}" ]; then
# docker pull "${image}:${last_tag}" || true
# fi
# Build new image
./build.sh ${IMAGE_NAME} -t "${image}:${tag}"
docker push "${image}:${tag}"
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi

View File

@ -0,0 +1,93 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install devtoolset
ARG DEVTOOLSET_VERSION
ADD ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
ADD ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, coverage, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -0,0 +1,123 @@
#!/bin/bash
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
else
cmake3="cmake=3.5*"
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
software-properties-common \
sudo \
wget \
vim
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.16.1
if ! wget http://valgrind.org/downloads/valgrind-${VALGRIND_VERSION}.tar.bz2
then
wget https://sourceware.org/ftp/valgrind/valgrind-${VALGRIND_VERSION}.tar.bz2
fi
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j 4
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"

View File

@ -5,9 +5,7 @@ set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
# libssl-dev will not work as it is upgraded to libssl3 in Ubuntu-22.04.
# Instead use lib and headers from OpenSSL1.1 installed in `install_openssl.sh``
apt-get install -y cargo
apt-get install -y cargo pkg-config libssl-dev
echo "Checking out sccache repo"
git clone https://github.com/pytorch/sccache
cd sccache
@ -48,9 +46,7 @@ fi
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
# Unset LD_PRELOAD for ps because of asan + ps issues
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90589
printf "#!/bin/sh\nif [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}

View File

@ -13,9 +13,6 @@ if [ -n "$CLANG_VERSION" ]; then
sudo apt-get install -y --no-install-recommends gpg-agent
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
apt-add-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-${CLANG_VERSION} main"
elif [[ $UBUNTU_VERSION == 22.04 ]]; then
# work around ubuntu apt-get conflicts
sudo apt-get -y -f install
fi
sudo apt-get update

View File

@ -0,0 +1,19 @@
#!/bin/bash
set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
apt-get remove cmake -y
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -0,0 +1,136 @@
#!/bin/bash
set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
case "$MAJOR_PYTHON_VERSION" in
2)
CONDA_FILE="Miniconda2-latest-Linux-x86_64.sh"
;;
3)
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
;;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
wget -q "${BASE_URL}/${CONDA_FILE}"
chmod +x "${CONDA_FILE}"
as_jenkins ./"${CONDA_FILE}" -b -f -p "/opt/conda"
popd
# NB: Don't do this, rely on the rpath to get it right
#echo "/opt/conda/lib" > /etc/ld.so.conf.d/conda-python.conf
#ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/conda/bin:\1"|g' -i /etc/environment
export PATH="/opt/conda/bin:$PATH"
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Track latest conda update
as_jenkins conda update -y -n base conda
# Install correct Python version
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
# This should be called as
# conda_install pkg1 pkg2 ... [-c channel]
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
}
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.10, but
# we want to pin to version 3.10.
SCIPY_VERSION=1.1.0
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0 -c conda-forge
SCIPY_VERSION=1.6.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
else
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
fi
if [[ "$CUDA_VERSION" == 10.2* ]]; then
conda_install magma-cuda102 -c pytorch
elif [[ "$CUDA_VERSION" == 11.0* ]]; then
conda_install magma-cuda110 -c pytorch
elif [[ "$CUDA_VERSION" == 11.1* ]]; then
conda_install magma-cuda111 -c pytorch
elif [[ "$CUDA_VERSION" == 11.3* ]]; then
conda_install magma-cuda113 -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages, including those needed for Python test reporting
# TODO: Why is scipy pinned
# Pin MyPy version because new errors are likely to appear with each release
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
# Pin coverage so we can use COVERAGE_RCFILE
as_jenkins pip install --progress-bar off pytest \
scipy==$SCIPY_VERSION \
scikit-image \
psutil \
unittest-xml-reporting \
boto3==1.16.34 \
coverage==5.5 \
hypothesis==4.53.2 \
expecttest==0.1.3 \
mypy==0.812 \
tb-nightly
# Install numba only on python-3.8 or below
# For numba issue see https://github.com/pytorch/pytorch/issues/51511
if [[ $(python -c "import sys; print(int(sys.version_info < (3, 9)))") == "1" ]]; then
as_jenkins pip install --progress-bar off numba librosa>=0.6.2
else
as_jenkins pip install --progress-bar off numba==0.49.0 librosa>=0.6.2
fi
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
as_jenkins pip install --progress-bar off -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
as_jenkins pip install --progress-bar off scikit-learn==0.20.3
fi
popd
fi

Some files were not shown because too many files have changed in this diff Show More