Compare commits

..

61 Commits

Author SHA1 Message Date
56b43f4fec Perform appropriate CUDA stream synchronization in distributed autograd. (#53929) (#54358)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53929

The local autograd engine performs appropriate stream synchronization
between autograd nodes in the graph to ensure a consumer's stream is
synchronized with the producer's stream before executing the consumer.

However in case of distributed autograd, the SendRpcBackward function receives
gradients over the wire and TensorPipe uses its own pool of streams for this
purpose. As a result, the tensors are received on TensorPipe's stream pool but
SendRpcBackward runs on a different stream during the backward pass and there
is no logic to synchronize these streams.

To fix this, I've enhanced DistEngine to synchronize these streams
appropriately when it receives grads over the wire.
ghstack-source-id: 124055277

(Note: this ignores all push blocking failures!)

Test Plan:
1) Added unit test which reproduced the issue.
2) waitforbuildbot.

Reviewed By: walterddr, wanchaol

Differential Revision: D27025307

fbshipit-source-id: 2944854e688e001cb3989d2741727b30d9278414

Co-authored-by: Pritam Damania <pritam.damania@fb.com>
2021-03-23 19:28:21 -07:00
6c394614f0 [CI] Install compatible cmath for Win builds (#54556)
* [CI]Install older cmath during Windows build (#54431)

Summary:
Based on peterjc123 analysis, `cmath` after 26bbe2ad50 (diff-3fa97ceb95d524432661f01d4b34509c6d261a2f7f45ddcf26f79f55b3eec88a) renders a lot of CUDA fail to compile with:
```
error: calling a __host__ function("__copysignf") from a __host__ __device__ function("c10::guts::detail::apply_impl< ::at::native::AUnaryFunctor< ::>  &,     ::std::tuple<float >  &, (unsigned long long)0ull > ") is not allowed
```
Workaround for https://github.com/pytorch/pytorch/issues/54382

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54431

Reviewed By: anjali411

Differential Revision: D27234299

Pulled By: malfet

fbshipit-source-id: b3f1fef941341222cc10cb27346fcf4a1d522a0c

* [CI] Install compatible cmath for Win binary builds (#54527)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54527

Reviewed By: walterddr

Differential Revision: D27269528

Pulled By: malfet

fbshipit-source-id: 4afdc706598f3a6ad296468dfb77a70433ae7d0f
2021-03-23 19:02:01 -07:00
7c3c293ea7 [1.8] Don't build TensorPipe CMA backend on old glibc versions (#54491)
Some users who are building from source on old glibc versions are hitting the issue of TensorPipe using the process_vm_readv syscall which is not wrapped by glibc. This PR tries to check that condition in CMake and disable that backend in such cases.

This should have no effect on PyTorch's official builds, it should just help people who are building from source.
2021-03-23 15:56:26 -07:00
9d43171746 [1.8.1] Replace thrust with cub in randperm (#54537)
Summary:
Benchmark of
```python
%timeit torch.randperm(100000, device='cuda'); torch.cuda.synchronize()
```
thrust:
```
5.76 ms ± 42.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
cub:
```
3.02 ms ± 32.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

sync in thrust sort is removed

Warning:
Thrust supports 64bit indexing, but cub doesn't, so this is a functional regression. However, `torch.randperm(2**31, device='cuda')` fails with OOM on 40GB A100, and `torch.randperm(2**32, device='cuda')` fails with OOM on 80GB A100, so I think this functional regression has low impact and is acceptable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53841

Reviewed By: albanD

Differential Revision: D26993453

Pulled By: ngimel

fbshipit-source-id: 39dd128559d53dbb01cab1585e5462cb5f3cceca

Co-authored-by: Xiang Gao <qasdfgtyuiop@gmail.com>
2021-03-23 15:45:20 -07:00
f3c950e04e various doc building cleanups (#54141) 2021-03-23 11:23:02 -07:00
b6f49807db third_party: Update kineto to fix libtorch builds (#54205)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2021-03-17 13:26:11 -07:00
d84e05be49 [fix] Dimension out of range in pixel_shuffle / pixel_unshuffle (#54178)
Co-authored-by: Joel Benjamin Schlosser <jbschlosser@fb.com>
2021-03-17 12:40:59 -07:00
c6139b7915 Make ideep honor torch.set_num_thread changes (#53871) (#54025)
Summary:
When compiled with OpenMP support `ideep`'s computational_cache would cache max number of OpenMP workers
This number could be wrong after `torch.set_num_threads` call, so clean it after the call.

Fixes https://github.com/pytorch/pytorch/issues/53565

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53871

Reviewed By: albanD

Differential Revision: D27003265

Pulled By: malfet

fbshipit-source-id: 1d84c23070eafb3d444e09590d64f97f99ae9d36
2021-03-16 11:46:19 -07:00
30baaef738 Use int8_t instead of char in [load|store]_scalar` (#52616) (#54022)
Summary:
Since `char` is not guaranteed to be signed on all platforms (it is unsigned on ARM)
Fixes https://github.com/pytorch/pytorch/issues/52146

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52616

Test Plan: Run ` python3 -c "import torch;a=torch.tensor([-1], dtype=torch.int8);print(a.tolist())"` on arm-linux system

Reviewed By: walterddr

Differential Revision: D26586678

Pulled By: malfet

fbshipit-source-id: 91972189b54f86add516ffb96d579acb0bc13311
2021-03-16 11:45:50 -07:00
264d0ecf83 [nn] nn.Embedding : padding_idx doc update (#53809) (#54026)
Summary:
Follow-up of https://github.com/pytorch/pytorch/pull/53447

Reference: https://github.com/pytorch/pytorch/pull/53447#discussion_r590521051

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53809

Reviewed By: bdhirsh

Differential Revision: D27049643

Pulled By: jbschlosser

fbshipit-source-id: 623a2a254783b86391dc2b0777b688506adb4c0e

Co-authored-by: kshitij12345 <kshitijkalambarkar@gmail.com>
2021-03-16 11:44:37 -07:00
51233ea4b0 Disabling dispatch to OneDNN for group convolutions when groups size = 24 * n (#54015)
* Disabling dispatch to OneDNN for group convolutions when groups size is 24 * n

* Add condition to non-zero grps

Co-authored-by: Vitaly Fedyunin <vitaly.fedyunin@gmail.com>
2021-03-16 07:34:18 -07:00
31a1a00ae8 Update Kineto revision for 1.8.1 (#54044)
Summary:
Updating Kineto to include bugfixes for 1.8.1

Test Plan: CI
2021-03-16 07:31:47 -07:00
bb98a99638 [ONNX] Update embedding export wrt padding_idx (#53931) (#54033)
Summary:
To be in-sync with https://github.com/pytorch/pytorch/issues/53447

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53931

Reviewed By: ngimel

Differential Revision: D27026616

Pulled By: malfet

fbshipit-source-id: 4c50b29fa296c90aeeeb1757bdaada92cbba33d4
2021-03-15 21:38:49 -07:00
295c7cf1de [ONNX] Update assign output shape for nested structure and dict output (#52893) (#53311) (#54019)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53311

Fixes dict output & nested tuple.

Test Plan: Imported from OSS

Reviewed By: pbelevich, malfet

Differential Revision: D26922426

Pulled By: SplitInfinity

fbshipit-source-id: c2c6b71c8d978b990181e0b025626dbf6ef2199e
2021-03-15 18:52:11 -07:00
3233861ec4 Fix test to use proper condition. (#52216) (#54028)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/52216

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26427506

Pulled By: ailzhang

fbshipit-source-id: ba4f2f66794cb2843926e5566eb4d25582f7fb2b

Co-authored-by: Ailing Zhang <ailzhang@fb.com>
2021-03-15 16:52:29 -07:00
47f4b3f7d4 Cherrypick #53576 into release/1.8 (#53766) 2021-03-15 13:36:09 -07:00
e450f1498f [ONNX] Support torch.isinf, torch.any and torch.all export to ONNX (#53328) (#53529) (#54007)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53529

Supported for ONNX export after opset 10.
This is not exportable to opsets < 10 due to
1. onnx::IsInf is introduced in opset 10
2. onnx::Equal does not accept float tensor prior to opset 11

Test Plan: Imported from OSS

Reviewed By: pbelevich, malfet

Differential Revision: D26922418

Pulled By: SplitInfinity

fbshipit-source-id: 69bcba50520fa3d69db4bd4c2b9f88c00146fca7

Co-authored-by: BowenBao <bowbao@microsoft.com>
2021-03-15 13:05:59 -07:00
6fd01f9440 [ONNX] Update inputs/input_names formatting to avoid ValueError with scriptMethods (#53519) (#53548) (#54005)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53548

fixes issue faced in #53506

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D26922415

Pulled By: malfet

fbshipit-source-id: b61842827bb14cef8c7a7089b2426fa53e642c90

Co-authored-by: BowenBao <bowbao@microsoft.com>
2021-03-15 12:24:20 -07:00
b33e434d55 [v1.8.1] Pick up upstream fixes from TensorPipe (#53804)
- Support transferring >2GB over CMA
- Avoid loading stub version of CUDA driver
- Don't use unsupported mmap option on older kernels
- Don't join non-existing thread if CMA is not viable

The last two manifested as uncaught exceptions (hence crashes) when initializing RPC. The first one caused same-machine RPC requests to fail.
2021-03-15 12:22:10 -07:00
a3e4bf60bb [fix] nn.Embedding: allow changing the padding vector (#53447) (#53986)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/53368

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53447

Reviewed By: albanD

Differential Revision: D26946284

Pulled By: jbschlosser

fbshipit-source-id: 54e5eec7da86fa02b1b6e4a235d66976a80764fc

Co-authored-by: kshitij12345 <kshitijkalambarkar@gmail.com>
2021-03-15 12:21:05 -07:00
e991cdaf58 [CherryPick] Fixes for distribution validation checks (#53763)
* Add sample validation for LKJCholesky.log_prob

* Fix distributions which don't properly honor validate_args=False

A number of derived distributions use base distributions in their
implementation.

We add what we hope is a comprehensive test whether all distributions
actually honor skipping validation of arguments in log_prob and then
fix the bugs we found. These bugs are particularly cumbersome in
PyTorch 1.8 and master when validate_args is turned on by default
In addition one might argue that validate_args is not performing
as well as it should when the default is not to validate but the
validation is turned on in instantiation.

Arguably, there is another set of bugs or at least inconsistencies
when validation of inputs does not prevent invalid indices in
sample validation (when with validation an IndexError is raised
in the test). We would encourage the implementors to be more
ambitious when validation is turned on and amend sample validation
to throw a ValueError for consistency.

* additional fixes to distributions

* address failing tests

Co-authored-by: neerajprad <neerajprad@devvm903.atn0.facebook.com>
Co-authored-by: Thomas Viehmann <tv.code@beamnet.de>
2021-03-15 10:51:50 -07:00
4596a8ec8a Remove MNIST for XLA (#53274) (#53987)
Summary:
Mitigates https://github.com/pytorch/pytorch/issues/53267

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53274

Reviewed By: zhangguanheng66, ailzhang

Differential Revision: D26819702

Pulled By: cpuhrsch

fbshipit-source-id: 5b9b30db6f8fc414aa9f3c841429bf99bc927763

Co-authored-by: cpuhrsch <cpuhrsch@devvm2783.frc0.facebook.com>
2021-03-15 07:53:39 -07:00
512f289884 Example LSTMCell (#51983) (#54003)
Summary:
Fixes #{51801}
LSTMCell example updated

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51983

Reviewed By: agolynski

Differential Revision: D26467104

Pulled By: zou3519

fbshipit-source-id: 31c8bf89b21cd2f748b2cc28a74169082d81503c

Co-authored-by: CarlosJose126 <43588143+CarlosJose126@users.noreply.github.com>
2021-03-15 07:50:49 -07:00
c439f85b16 Fix set_device_map docs (#53508) (#53822)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53508

closes #53501

Differential Revision: D26885263

Test Plan: Imported from OSS

Reviewed By: H-Huang

Pulled By: mrshenli

fbshipit-source-id: dd0493e6f179d93b518af8f082399cacb1c7cba6
2021-03-12 17:31:29 -08:00
30712fca7e ci: Remove special versioning privileges for cu102 (#53133) (#53734)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53133

In light of some issues where users were having trouble installing CUDA
specific versions of pytorch we should no longer have special privileges
for CUDA 10.2.

Recently I added scripts/release/promote/prep_binary_for_pypi.sh (https://github.com/pytorch/pytorch/pull/53056) to make
it so that we could theoretically promote any wheel we publish to
download.pytorch.org to pypi

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: walterddr

Differential Revision: D26759823

Pulled By: seemethere

fbshipit-source-id: 2d2b29e7fef0f48c23f3c853bdca6144b7c61f22
(cherry picked from commit b8546bde09c7c00581fe4ceb061e5942c7b78b20)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2021-03-10 11:53:14 -08:00
debf62d95c [1.8.1] Explicitly export submodules and variables from torch module (#53675)
Summary:
For https://github.com/pytorch/pytorch/issues/47027.

Some progress has been made in https://github.com/pytorch/pytorch/issues/50665, but in my testing trying to unwrap the circular dependencies is turning into a neverending quest.

This PR explicitly exports things in the top-level torch module without any semantic effect, in accordance with this py.typed library guidance: https://github.com/microsoft/pyright/blob/master/docs/typed-libraries.md#library-interface

It may be possible to do some of the other fixes just using `__all__` where needed, but `__all__` has a semantic effect I would like to further review. This PR at least fixes simple completions like `torch.nn` in Pylance/pyright.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52339

Reviewed By: smessmer

Differential Revision: D26694909

Pulled By: malfet

fbshipit-source-id: 99f2c6d0bf972afd4036df988e3acae857dde3e1

Co-authored-by: Jake Bailey <5341706+jakebailey@users.noreply.github.com>
2021-03-10 10:10:42 -08:00
e30dc8d21b enable autocast for xla (#48570) (#53671)
Summary:
For enabling amp in torch/xla, see [this](https://github.com/pytorch/xla/pull/2654).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48570

Reviewed By: ezyang

Differential Revision: D26120627

Pulled By: ailzhang

fbshipit-source-id: 32627b17c04bfdad128624676ea9bf6f117bc97d

Co-authored-by: Chengji Yao <yaochengji@hotmail.com>
2021-03-10 10:06:02 -08:00
4e590c9ced Docs cherrypicks 1.8.1 (#53674)
* [FX] Cherrypick docs fixes

* Update code links to point to 1.8
2021-03-09 17:23:28 -08:00
6e9f2c8df0 [1.8 release only] Remove fx graph mode quantization doc from release (#53055) 2021-03-02 12:26:26 -08:00
37c1f4a7fe Fix hipify_python (#52756)
Co-authored-by: rraminen <rraminen@amd.com>
Co-authored-by: Nikita Shulga <nshulga@fb.com>
2021-02-26 14:13:54 -08:00
49b74a52a4 Catch Flake8 error codes with multiple letters (#52750) (#52801)
Summary:
The Flake8 job has been passing on `master` despite giving warnings for [over a month](https://github.com/pytorch/pytorch/runs/1716124347). This is because it has been using a regex that doesn't recognize error codes starting with multiple letters, such as those used by [flake8-executable](https://pypi.org/project/flake8-executable/). This PR corrects the regex, and also adds another step at the end of the job which asserts that Flake8 actually gave no error output, in case similar regex issues appear in the future.

Tagging the following people to ask what to do to fix these `EXE002` warnings:

- https://github.com/pytorch/pytorch/issues/50629 authored by jaglinux, approved by rohan-varma
  - `test/distributed/test_c10d.py`
- https://github.com/pytorch/pytorch/issues/51262 authored by glaringlee, approved by ejguan
  - `torch/utils/data/datapipes/__init__.py`
  - `torch/utils/data/datapipes/iter/loadfilesfromdisk.py`
  - `torch/utils/data/datapipes/iter/listdirfiles.py`
  - `torch/utils/data/datapipes/iter/__init__.py`
  - `torch/utils/data/datapipes/utils/__init__.py`
  - `torch/utils/data/datapipes/utils/common.py`
- https://github.com/pytorch/pytorch/issues/51398 authored by glaringlee, approved by ejguan
  - `torch/utils/data/datapipes/iter/readfilesfromtar.py`
- https://github.com/pytorch/pytorch/issues/51599 authored by glaringlee, approved by ejguan
  - `torch/utils/data/datapipes/iter/readfilesfromzip.py`
- https://github.com/pytorch/pytorch/issues/51704 authored by glaringlee, approved by ejguan
  - `torch/utils/data/datapipes/iter/routeddecoder.py`
  - `torch/utils/data/datapipes/utils/decoder.py`
- https://github.com/pytorch/pytorch/issues/51709 authored by glaringlee, approved by ejguan
  - `torch/utils/data/datapipes/iter/groupbykey.py`

Specifically, the question is: for each of those files, should we remove the execute permissions, or should we add a shebang? And if the latter, which shebang?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52750

Test Plan:
The **Lint / flake8-py3** job in GitHub Actions:

- [this run](https://github.com/pytorch/pytorch/runs/1972039886) failed, showing that the new regex catches these warnings properly
- [this run](https://github.com/pytorch/pytorch/runs/1972393293) succeeded and gave no output in the "Run flake8" step, showing that this PR fixed all Flake8 warnings
- [this run](https://github.com/pytorch/pytorch/pull/52755/checks?check_run_id=1972414849) (in https://github.com/pytorch/pytorch/issues/52755) failed, showing that the new last step of the job successfully catches Flake8 warnings even without the regex fix

Reviewed By: walterddr, janeyx99

Differential Revision: D26637307

Pulled By: samestep

fbshipit-source-id: 572af6a3bbe57f5e9bd47f19f37c39db90f7b804

Co-authored-by: Sam Estep <sestep@fb.com>
2021-02-26 07:49:51 -08:00
11c78e9cb3 Expose documentation for LKJCholesky distribution (#52904)
This is already added to the master branch in https://github.com/pytorch/pytorch/pull/52763.
2021-02-26 07:47:29 -08:00
d6943ea58d apply diff 52351 (#52649) 2021-02-23 07:51:38 -08:00
02b61b49ea [1.8] Update XNNPACK (#52647)
Cherry-pick 55d53a4e70 into release/1.8 branch
2021-02-23 05:31:57 -08:00
d553478c98 [v1.8] Make TensorPipe work around bug in old versions of libibverbs (#52615)
The bug affects PyTorch users who meet two conditions:
- they have an old version of libibverbs installed (the userspace library), namely older than v25, which dates from Jul 29, 2019;
- but they do _not_ have an InfiniBand kernel module loaded.

In those cases they will experience a crash (uncaught exception) happening when initializing RPC, mentioning an "unknown error -38".

There is a workaround, which is for those users to activate a killswitch (which is private and undocumented) to disable the `ibv` backend of TensorPipe.
2021-02-22 16:55:12 -08:00
63333e2a25 [1.8] Update api doc for enabling TcpStore on Windows (#52601)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51847

Reviewed By: albanD

Differential Revision: D26405678

Pulled By: malfet

fbshipit-source-id: 073b675225b48d1732771583f8f2473e0fdcf35c

Co-authored-by: Joe Zhu <jozh@microsoft.com>
2021-02-22 10:14:09 -08:00
8e7eebfc9a [1.8] Fix onnx mixed precision export for layernorm & fuseLogSoftmaxNllLoss (#52510)
Co-authored-by: Shubham Bhokare <32080845+shubhambhokare1@users.noreply.github.com>
2021-02-19 14:40:53 -08:00
f8afb8bdd0 [v1.8.0] Various CUDA 11.1 with BUILD_SPLIT_CUDA_FIXES (#52518)
Co-authored-by: Nikita Shulga <nshulga@fb.com>
Co-authored-by: peterjc123 <peterghost86@gmail.com>
Co-authored-by: Jane Xu <janeyx@fb.com>
2021-02-19 12:41:21 -08:00
0851cc42b0 Update freezing API - changes from 52337 (#52392)
Co-authored-by: eellison <eellison@fb.com>
2021-02-18 15:36:51 -08:00
804f7b6018 Add arm64 binary build (#52443) (#52469)
Summary:
This is getting tested by https://github.com/pytorch/pytorch/issues/52441.

Adds new config for macos arm64 to our binary builds.
Now stores artifacts for mac builds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52443

Reviewed By: walterddr

Differential Revision: D26517330

Pulled By: janeyx99

fbshipit-source-id: 02774937a827bdd4c08486dc9f8fe63446917f1e
2021-02-18 15:17:27 -08:00
32758d30b3 onnx export of per channel fake quantize functions (#42835) (#52430)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/39502

This PR adds support for exporting **fake_quantize_per_channel_affine** to a pair of QuantizeLinear and DequantizeLinear. Per tensor support was added by PR https://github.com/pytorch/pytorch/pull/39738.

`axis` attribute of QuantizeLinear and DequantizeLinear, which is required for per channel support, is added in opset13 added by https://github.com/onnx/onnx/pull/2772.

[update 1/20/2021]: opset13 is being supported on master, the added function is now properly tested. Code also rebased to new master.

The function is also tested offline with the following code
```python
import torch
from torch import quantization

from torchvision import models
qat_resnet18 = models.resnet18(pretrained=True).eval().cuda()

qat_resnet18.qconfig = quantization.QConfig(
    activation=quantization.default_fake_quant, weight=quantization.default_per_channel_weight_fake_quant)
quantization.prepare_qat(qat_resnet18, inplace=True)
qat_resnet18.apply(quantization.enable_observer)
qat_resnet18.apply(quantization.enable_fake_quant)

dummy_input = torch.randn(16, 3, 224, 224).cuda()
_ = qat_resnet18(dummy_input)
for module in qat_resnet18.modules():
    if isinstance(module, quantization.FakeQuantize):
        module.calculate_qparams()
qat_resnet18.apply(quantization.disable_observer)

qat_resnet18.cuda()

input_names = [ "actual_input_1" ]
output_names = [ "output1" ]

torch.onnx.export(qat_resnet18, dummy_input, "quant_model.onnx", verbose=True, opset_version=13)
```
It can generate the desired graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42835

Reviewed By: houseroad

Differential Revision: D26293823

Pulled By: SplitInfinity

fbshipit-source-id: 300498a2e24b7731b12fa2fbdea4e73dde80e7ea

Co-authored-by: Hao Wu <skyw@users.noreply.github.com>
2021-02-18 12:50:40 -08:00
bcb64a8084 Fix upsample bicubic2d batching handling on CPU. (#52389) (#52445)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52389

Fixes: https://github.com/pytorch/pytorch/issues/49159

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D26496319

Pulled By: gchanan

fbshipit-source-id: d385cd683ef09e0596a9875ce84d03e6e77acc93
2021-02-18 12:46:39 -08:00
f07991d396 update symeig backward note about similar eigenvalues (#52311) (#52446)
Summary:
First part of https://github.com/pytorch/pytorch/issues/49886 to at least properly warn users of the current state

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52311

Reviewed By: soulitzer

Differential Revision: D26495644

Pulled By: albanD

fbshipit-source-id: 72abdfe41cdbcc1ac739a536eb85d1aa4ba90897
2021-02-18 12:45:47 -08:00
c458cd4852 [v1.8.0] .circleci: Downgrade CUDA 11.2 -> 11.1 for binaries (#52151) (#52406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52151

CUDA 11.2 might not be as performant as we thought so let's downgrade to
something we think is more performant.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D26408314

Pulled By: seemethere

fbshipit-source-id: e2446aa0115e2c2a79718b1fdfd9fccf2072822d
(cherry picked from commit a11650b069729997b002032d70e9793477147851)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2021-02-18 10:59:03 -08:00
f7c4afc0f4 [cmake] Add explicit cublas->cudart dependency (#52243) (#52404)
Summary:
Necessary to ensure correct link order, especially if libraries are
linked statically. Otherwise, one might run into:
```
/usr/bin/ld: /usr/local/cuda/lib64/libcublasLt_static.a(libcublasLt_static.a.o): undefined reference to symbol 'cudaStreamWaitEvent@libcudart.so.11.0'
/usr/local/cuda/lib64/libcudart.so: error adding symbols: DSO missing from command line
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52243

Reviewed By: seemethere, ngimel

Differential Revision: D26437159

Pulled By: malfet

fbshipit-source-id: 33b8bb5040bda10537833f3ad737f535488452ea
2021-02-17 16:07:41 -08:00
20554c00b6 [1.8] Remove torch.vmap (#52397)
torch.vmap is a prototype feature and should not be in the stable
binary. This PR:

- Removes the `torch.vmap` API
- Removes the documentation entry for torch.vmap
- Changes the vmap tests to use an internal API instead of torch.vmap.

Test Plan:
- Tested locally (test_torch, test_autograd, test_type_hints, test_vmap), but also wait
for CI.
2021-02-17 16:05:34 -08:00
3464d64f08 [1.8] Fix libnvrtc discoverability in package patched by auditwheel (#52365) 2021-02-17 16:05:05 -08:00
c6972eb3ac Skip OneDNN Convolution in case of groups = 24 #50042 (#52313)
Co-authored-by: Vitaly Fedyunin <vitaly.fedyunin@gmail.com>
2021-02-17 16:04:26 -08:00
25562d3d41 Use side-stream in CPU to GPU copies in DDP (#50180) (#52270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50180

Resolves the regression in
https://github.com/pytorch/pytorch/issues/49819 by adding copy over background
stream similar to scatter. For internal use cases, this is gated with an env var that maintains the previous behavior when it is off.

Test Plan: CI

Reviewed By: mrshenli, ngimel

Differential Revision: D25818170

fbshipit-source-id: e50c76c035504b2a44e2be084701cee45c90df75
2021-02-17 09:49:30 -08:00
cd63c37bc6 ports fix (#52242)
Co-authored-by: Mike Ruberry <mruberry@devfair044.maas>
2021-02-13 17:59:51 -08:00
c79decdbba [v1.8 patch] [Resubmission] Add a documentation page for DDP communication hooks (#52215)
Co-authored-by: wayi <wayi@devgpu238.prn2.facebook.com>
2021-02-12 16:37:23 -08:00
c307a3f336 [1.8] Do not print warning if CUDA driver not found (#51806) (#52050)
Summary:
It frequently happens when PyTorch compiled with CUDA support is installed on machine that does not have NVIDIA GPUs.

Fixes https://github.com/pytorch/pytorch/issues/47038

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51806

Reviewed By: ezyang

Differential Revision: D26285827

Pulled By: malfet

fbshipit-source-id: 9fd5e690d0135a2b219c1afa803fb69de9729f5e
2021-02-12 12:20:46 -08:00
f071020756 Workaround arm64 gcc error in std::copysign (#51900) (#52049)
Summary:
Move definition of copysign template and specialization for
bfloat16/half types before first use of copysign in that file

Add comment explaining why this is necessary

Fixes https://github.com/pytorch/pytorch/issues/51889

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51900

Reviewed By: walterddr

Differential Revision: D26321741

Pulled By: malfet

fbshipit-source-id: 888858b11d9708fa140fe9c0570cc5a24599205b
2021-02-12 08:00:46 -08:00
4f436f8570 fake_quant cachemask: remove Python bindings (#51878) (#52160)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51878

`fake_quantize_per_tensor_affine_cachemask` and
`fake_quantize_per_channel_affine_cachemask` are implementation
details of `fake_quantize_per_tensor_affine` and
`fake_quantize_per_channel_affine`, removing the
Python bindings for them since there is no need to
expose them.

Test Plan:
```
python test/test_quantization.py TestFakeQuantize
```

Imported from OSS

Reviewed By: albanD, bugra

Differential Revision: D26314173

fbshipit-source-id: 733c93a3951453e739b6ed46b72fbad2244f6e97
(cherry picked from commit 33afb5f19f4e427f099653139ae45b661b8bc596)
2021-02-12 07:37:00 -08:00
ae11589710 [FX][1.8] Cherrypick three FX fixes to 1.8 (#52021)
* Fix leaf modules in Transformer

[ghstack-poisoned]

* Fix tuple type annotations

[ghstack-poisoned]

* Generalize dict key check in `create-arg` (#51927)

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51927

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26329655

Pulled By: jamesr66a

fbshipit-source-id: a15e7d9564551521af12a8fde1c7524856f0cbc2
2021-02-12 07:35:34 -08:00
9e5bcc1020 1.8 cherrypick: Add metacompile of Ternary if (#51789) (#51913)
Summary:
Fixes issue: https://github.com/pytorch/pytorch/issues/49728
========
Ternary if operation fails in Torchscript when the condition variable is annotated as Final.

Tests:
=======
pytest -k test_ternary_static_if test/test_jit.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51789

Reviewed By: gmagogsfm

Differential Revision: D26278969

Pulled By: nikithamalgifb

fbshipit-source-id: 27d1383290211503188428fb2e8b7749f59ba16e

Co-authored-by: nikithamalgi <nikithamalgi@devvm146.prn0.facebook.com>
2021-02-09 21:34:26 -08:00
fa8578241d .jenkins: Release branch specific updates (#51982) 2021-02-09 21:33:29 -08:00
1368809532 [v1.8.0] [wip] doc_fix (#52006)
Summary:
tries to fix doc_test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51825

Reviewed By: bertmaher

Differential Revision: D26295583

Pulled By: ngimel

fbshipit-source-id: 13f6e7f1675d810adfd4abd2d579e2812fe54c80
(cherry picked from commit 6c0bf28da651eb8ff1d2d0dcfe807ea757fb61e5)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Natalia Gimelshein <ngimel@fb.com>
2021-02-09 21:32:32 -08:00
4073248fc2 [FX] Hide experimental folder (#51987) 2021-02-09 15:44:33 -08:00
75153cb730 Disable unaliged-access test from TestVectorizedMemoryAccess.CopyKernel (#51864) (#51890)
Summary:
Test begins to fail after the driver udpate

See https://github.com/pytorch/pytorch/issues/51863

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51864

Reviewed By: bertmaher

Differential Revision: D26304018

Pulled By: malfet

fbshipit-source-id: bb7ade2f28d8cf8f847159d4ce92391f0794c258

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2021-02-09 10:17:18 -08:00
5bb69b080c concantenate LICENSE files when building a wheel (#51634) (#51882)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/50695

I checked locally that the concatenated license file appears at `torch-<version>.dist-info/LICENSE` in the wheel.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51634

Reviewed By: zhangguanheng66

Differential Revision: D26225550

Pulled By: walterddr

fbshipit-source-id: 830c59fb7aea0eb50b99e295edddad9edab6ba3a

Co-authored-by: mattip <matti.picus@gmail.com>
2021-02-09 10:16:12 -08:00
4376 changed files with 105427 additions and 278260 deletions

View File

@ -1,63 +0,0 @@
# PyTorch CI Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on select configurations
# 2) runs only TestTorch unit tests.
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_ci_build: True
os: windows
cuda: cpu
customMatrixes:
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_ci_build: True
os: windows
cuda: gpu
customMatrixes:
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102

View File

@ -1,82 +0,0 @@
# PyTorch Daily Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) runs all PyTorch unit tests
stages:
- stage: 'BuildTest'
displayName: 'Build and Test PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_daily_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_daily_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -1,134 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
container_endpoint: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
container:
image: $[variables['container_image']]
endpoint: ${{parameters.container_endpoint}}
steps:
# Build stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- bash: git submodule update --init --recursive
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode
- bash: python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- bash: python test/test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- bash: python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode and exclude test binaries
- bash: python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- bash: python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)/dist/
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- bash: python -m pip install $(Build.SourcesDirectory)/verify/torch*linux*.whl
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- bash: |
cd $(Build.SourcesDirectory)/verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/publish
displayName: Download PyTorch Wheel
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- bash: |
export TORCH_VERSION=$(head -c 5 ./version.txt)
export LAST_COMMIT=$(git rev-parse --short HEAD)
export LAST_COMMIT_DATE=$(git log -1 --pretty=%ad --date=format:%Y%m%d)
cd $(Build.SourcesDirectory)/publish
export TORCH_WHEEL=$(echo torch*linux*whl)
az extension add -n azure-devops
echo $ADOTOKEN | az devops login
az artifacts universal publish --organization $AZURE_DEVOPS_ARTIFACTS_ORGANIZATION --project $AZURE_DEVOPS_ARTIFACTS_PROJECT --scope project --feed "PyTorch" --name $TORCH_WHEEL --description "PyTorch Official Build Artifact" --version $TORCH_VERSION-$LAST_COMMIT_DATE-$LAST_COMMIT --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch Official Build package to Azure Artifacts

View File

@ -1,150 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
CMAKE_GENERATOR: Ninja
PACKAGE_PDBS: 0
steps:
# Prepare for PyTorch build on Windows
- template: prepare-build-template.yml
parameters:
configuration: $(configuration)
build_stage: ${{ parameters.build_stage}}
# Build Stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- script: git submodule update --init --recursive
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode with Ninja
- script: call activate $(configuration) && python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test\test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode with Ninja and exclude test binaries
- script: call activate $(configuration) && python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- script: call activate $(configuration) && python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)\dist\
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification Stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
dir torch*win*.whl /b > whl.txt
set /p whl= < whl.txt
python -m pip install %whl%
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\publish
displayName: Download PyTorch Wheel
# Set up Azure Artifacts for Windows
# The pip install --upgrade command is a bug fix for Azure CLI on Windows
# More info: https://github.com/Azure/azure-cli/issues/16858
- script: |
pip install --upgrade pip --target \opt\az\lib\python3.6\site-packages\
az extension add -n azure-devops
displayName: Set up Azure Artifacts download on Windows
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- script: |
set /p TORCH_VERSION= < version.txt
cd $(Build.SourcesDirectory)\publish
git rev-parse --short HEAD > last_commit.txt && set /p LAST_COMMIT= < last_commit.txt
git log -1 --pretty=%ad --date=format:%Y%m%d > last_commit_date.txt && set /p LAST_COMMIT_DATE= < last_commit_date.txt
dir torch*win*.whl /b > whl.txt && set /p TORCH_WHEEL= < whl.txt
echo %ADOTOKEN% | az devops login
az artifacts universal publish --organization %AZURE_DEVOPS_ARTIFACTS_ORGANIZATION% --project %AZURE_DEVOPS_ARTIFACTS_PROJECT% --scope project --feed "PyTorch" --name %TORCH_WHEEL% --description "PyTorch Official Build Artifact" --version %TORCH_VERSION:~0,5%-%LAST_COMMIT_DATE%-%LAST_COMMIT% --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch nigthly package to Azure Artifacts

View File

@ -1,17 +0,0 @@
dependencies:
- python=PYTHON_VERSION
- numpy
- ninja
- pyyaml
- mkl
- mkl-include
- setuptools
- cmake
- cffi
- typing_extensions
- future
- six
- requests
- dataclasses
- pip:
- -r ../../requirements.txt

View File

@ -1,62 +0,0 @@
# Build prepare steps for PyTorch on Azure DevOps to build from source.
# These steps share between normal build process and semmle security scan tasks
parameters:
build_stage: False
configuration: ''
steps:
# End Python tasks that may be lingering over from previous runs
# Note: If python.exe isn't currently running, exit code becomes 128,
# which fails the run. Here exit code is set to 0 to avoid failed run.
- script: |
taskkill /f /im python.exe
IF %ERRORLEVEL% EQU 128 exit 0
displayName: End previous Python processes
# Clean up env directory in conda for fresh builds and set up conda environment YAML
- powershell: |
Remove-Item 'C:\Miniconda\envs' -Recurse -ErrorAction Ignore
$env:PYTHON_VERSION = $env:SYSTEM_JOBNAME.Substring(3,1) + '.' + $env:SYSTEM_JOBNAME.Substring(4,1)
(Get-Content .azure_pipelines\job_templates\common-packages.yml) -replace 'PYTHON_VERSION', $env:PYTHON_VERSION | Out-File -encoding ASCII .azure_pipelines\job_templates\common-packages.yml
displayName: Clean up previous environments and Set up conda environment YAML
# Make conda environment and install required packages
- script: |
call conda clean --all -y
call conda env create -n $(configuration) --file .azure_pipelines\job_templates\common-packages.yml
call activate $(configuration)
call conda install -c conda-forge libuv=1.39
displayName: Set up conda environment for building from source
- ${{ if eq(parameters.build_stage, 'True') }}:
# Install MKL
- script: |
rmdir /s /q mkl
del mkl_2020.2.254.7z
curl https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z -k -O
7z x -aoa mkl_2020.2.254.7z -omkl
displayName: Install MKL
# Install sccache and randomtemp
# Related PyTorch GitHub issue: https://github.com/pytorch/pytorch/issues/25393
# Related fix: https://github.com/pytorch/builder/pull/448/
- script: |
mkdir .\tmp_bin
curl -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output .\tmp_bin\sccache.exe
curl -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output .\tmp_bin\sccache-cl.exe
copy .\tmp_bin\sccache.exe .\tmp_bin\nvcc.exe
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.3/randomtemp.exe --output .\tmp_bin\randomtemp.exe
displayName: Install sccache and randomtemp
condition: not(eq(variables.CUDA_VERSION, ''))
# CUDA 11.2's CUB directory conflicts with CUDA 10.2 and 10.1
# builds, where CUDA 11.2's CUB is injected into non-CUDA
# 11.2 builds.
- powershell: Remove-Item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include\cub" -Recurse -ErrorAction Ignore
displayName: Remove conflicting CUB from CUDA installation
condition: not(eq(variables.CUDA_VERSION, ''))
- powershell: Copy-Item -Path "F:\cuda_11_2\cub\" -Destination "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include" -Recurse
displayName: Copy CUDA CUB for CUDA 11.2 build
condition: eq(variables.CUDA_VERSION, '112')

View File

@ -1,51 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
container_endpoint: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- bash: rm -rf pytorch_tests/
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(printf "%s"":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- bash: bash $(Build.SourcesDirectory)/pytorch_tests/scripts/linux/run.sh
env:
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests

View File

@ -1,49 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- script: if exist "pytorch_tests/" rmdir "pytorch_tests/" /q /s
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- powershell: |
$env:B64Pat = [Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes(":$env:_ADOTOKEN"))
git -c http.extraHeader="Authorization: Basic $env:B64Pat" clone $env:AZURE_DEVOPS_pytorch_tests_REPO_URL
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- script: call $(Build.SourcesDirectory)\pytorch_tests\scripts\windows\run.bat
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests

View File

@ -1,131 +0,0 @@
# Set environment variables for specific configurations
parameters:
is_official_build: False
os: ''
cuda: ''
steps:
# Environment configuration steps for Ubuntu builds
- ${{ if contains(parameters.os, 'ubuntu') }}:
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- bash: |
echo "##vso[task.setvariable variable=INSTALL_TEST;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
export PYTORCH_VERSION=$(head -c 5 ./version.txt)
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags.
- ${{ if contains(parameters.cuda, 'cpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU builds
- ${{ if contains(parameters.cuda, 'gpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]1"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU builds
# Set MKL environment variables
- bash: |
echo "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]/opt/intel/lib:$CMAKE_LIBRARY_PATH"
echo "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]/opt/intel/include:$CMAKE_INCLUDE_PATH"
displayName: Set MKL paths
# View current environment variables
- bash:
printenv
displayName: Show environment variables
# Environment configuration steps for Windows builds
- ${{ if contains(parameters.os, 'windows') }}:
# Set Conda Lib Path
- powershell: Write-Host "##vso[task.setvariable variable=CONDA_LIB_PATH;]C:\Miniconda\envs\$(configuration)\Library\bin"
displayName: Set Conda Lib Path
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=INSTALL_TEST;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
Set-Variable -Name PYTORCH_VERSION -Value (Get-Content .\version.txt).Substring(0,5)
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags..
- ${{ if contains(parameters.cuda, 'cpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU build
- ${{ if contains(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]1"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU build
# Set CUDA 11.2, 10.2 or 10.1 specific build flags
- ${{ if eq(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\"
displayName: Set CUDA 11.2 specific build flags
condition: eq(variables.CUDA_VERSION, '112')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\"
displayName: Set CUDA 10.2 specific build flags
condition: eq(variables.CUDA_VERSION, '102')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\"
displayName: Set CUDA 10.1 specific build flags
condition: eq(variables.CUDA_VERSION, '101')
- powershell: |
Write-Host "##vso[task.setvariable variable=CUDA_BIN_PATH;]$env:CUDA_PATH\bin\"
Write-Host "##vso[task.setvariable variable=CUDNN_ROOT;]$env:CUDA_PATH"
Write-Host "##vso[task.setvariable variable=CUDNN_INCLUDE_DIR;]$env:CUDA_PATH\include\"
Write-Host "##vso[task.setvariable variable=CUDNN_LIBRARY;]$env:CUDA_PATH\lib\x64\"
Write-Host "##vso[task.prependpath]$env:CUDA_PATH\bin"
Write-Host "##vso[task.setvariable variable=TORCH_NVCC_FLAGS;]-Xfatbin -compress-all --no-host-device-move-forward"
Write-Host "##vso[task.setvariable variable=THRUST_IGNORE_CUB_VERSION_CHECK;]1"
Write-Host "##vso[task.setvariable variable=NVTOOLSEXT_PATH;]C:\Program Files\NVIDIA Corporation\NvToolsExt\"
displayName: Set CUDA environment variables
- powershell: |
copy "$(CUDA_BIN_PATH)\cusparse*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cublas*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudart*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\curand*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cufft*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cusolver*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudnn*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\nvrtc*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\libiomp*5md.dll" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\uv.dll" $(Build.SourcesDirectory)\torch\lib
displayName: Copy CUDA/cuDNN/libomp/libuv dlls to torch\lib
# Set MKL, sccache and randomtemp environment variables
- powershell: |
Write-Host "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]$(Build.SourcesDirectory)\mkl\include"
Write-Host "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]$(Build.SourcesDirectory)\mkl\lib;$env:CMAKE_LIBRARY_PATH"
Write-Host "##vso[task.setvariable variable=ADDITIONAL_PATH;]$(Build.SourcesDirectory)\tmp_bin"
Write-Host "##vso[task.setvariable variable=SCCACHE_IDLE_TIMEOUT;]1500"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\nvcc.exe"
Write-Host "##vso[task.setvariable variable=CUDA_NVCC_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\randomtemp.exe"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_BASEDIR;]$(Build.SourcesDirectory)\tmp_bin"
displayName: Set MKL, sccache and randomtemp environment variables
# View current environment variables
- script:
set
displayName: Show environment variables

View File

@ -1,14 +0,0 @@
# Main logic to initiate wait for PR artifact to be ready
steps:
- task: InvokeRESTAPI@1
displayName: 'Wait for job success and wheel ready'
timeoutInMinutes: 60
inputs:
connectionType: 'connectedServiceName'
serviceConnection: circleciconn
method: 'POST'
headers: '{"Content-Type":"application/json", "BranchName":"$(TARGET_BRANCH_TO_CHECK_PR)", "JobName":"$(TARGET_CIRCLECI_PR)", "PlanUrl":"$(System.CollectionUri)", "ProjectId":"$(System.TeamProjectId)", "HubName":"$(System.HostType)", "PlanId":"$(System.PlanId)", "JobId":"$(System.JobId)", "TimelineId":"$(System.TimelineId)", "TaskInstanceId":"$(System.TaskInstanceId)", "AuthToken":"$(System.AccessToken)"}'
body: ''
urlSuffix: 'api/JobStatus'
waitForCompletion: true

View File

@ -1,49 +0,0 @@
# Initiate 5 agentless-server waiting jobs to check on the
# status of PR artifact builds, for a maximum wait time of
# 5 * 60 min =300 minutes. These jobs will pass immediately
# once targeted CircleCI build is ready.
jobs:
- job: checkjob1
pool: server
timeoutInMinutes: 60
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob2
pool: server
timeoutInMinutes: 60
dependsOn: checkjob1
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob3
pool: server
timeoutInMinutes: 60
dependsOn: checkjob2
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob4
pool: server
timeoutInMinutes: 60
dependsOn: checkjob3
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob5
pool: server
timeoutInMinutes: 60
dependsOn: checkjob4
continueOnError: true
steps:
- template: wheel-wait-job-template.yml

View File

@ -1,50 +0,0 @@
# PyTorch Nightly PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline runs custom PyTorch unit-tests on nightly
# PyTorch wheels.
stages:
- stage: 'NightlyCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_1)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_1)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_LIN_2)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_2)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_2)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_CPU
pool: $(BUILD_POOL_WIN_1)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_1)
_RUN_TESTS: $(RUN_TESTS_WIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_GPU
pool: $(BUILD_POOL_WIN_2)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_2)
_RUN_TESTS: $(RUN_TESTS_WIN)

View File

@ -1,30 +0,0 @@
# PyTorch PR PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) ensures that CircleCI builds for a given PR
# have finished, and that its artifacts are
# ready for download
# 2) runs custom PyTorch unit-tests on PyTorch
# wheels generated during PR builds.
stages:
- stage: 'EnsureArtifactsReady'
displayName: 'Ensure PyTorch PR Artifacts are ready'
jobs:
- template: job_templates/wheel-wait-template.yml
- stage: 'PRCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_PR)
customMatrixes:
PR_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_PR)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_PR)
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_PR)
_TARGET_BRANCH_TO_CHECK: $(TARGET_BRANCH_TO_CHECK_PR)
_DOCKER_IMAGE: $(DOCKER_IMAGE_PR)
_RUN_TESTS: $(RUN_TESTS_PR)

View File

@ -1,224 +0,0 @@
# PyTorch Official Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) verifies PyTorch artifacts by installing them in a clean environment
# and checking torch.__version_
# 3) publishes official PyTorch artifacts to Azure DevOps Artifacts for consumption
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_official_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_official_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Verify'
displayName: 'Verify PyTorch wheels'
dependsOn: Build
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Publish'
displayName: 'Publish PyTorch wheels'
dependsOn: Verify
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -55,15 +55,14 @@ CONFIG_TREE_DATA = OrderedDict(
macos_arm64=([None], OrderedDict(
wheel=[
"3.8",
"3.9",
],
conda=[
"3.8",
"3.9",
],
)),
# Skip CUDA-9.2 builds on Windows
windows=(
[v for v in dimensions.GPU_VERSIONS if v not in dimensions.ROCM_VERSION_LABELS],
[v for v in dimensions.GPU_VERSIONS if v not in ['cuda92'] + dimensions.ROCM_VERSION_LABELS],
OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,

View File

@ -27,19 +27,7 @@ class Conf(object):
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(
f"pytorch/conda-builder:{self.gpu_version}"
)
return miniutils.quote("pytorch/pytorch-binary-docker-image-ubuntu16.04:latest")
docker_word_substitution = {
"manywheel": "manylinux",

View File

@ -1,14 +1,14 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
"101",
"102",
"111",
]
ROCM_VERSIONS = [
"3.10",
"4.0.1",
"4.1",
"4.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]

View File

@ -32,9 +32,24 @@ CONFIG_TREE_DATA = [
]),
]),
("cuda", [
("9.2", [
("3.6", [
X(True),
("cuda_gcc_override", [
("gcc5.4", [
('build_only', [XImportant(True)]),
]),
]),
])
]),
("10.1", [
("3.6", [
('build_only', [X(True)]),
]),
]),
("10.2", [
("3.6", [
("shard_test", [X(True)]),
("shard_test", [XImportant(True)]),
("libtorch", [
(True, [
('build_only', [X(True)]),
@ -44,10 +59,10 @@ CONFIG_TREE_DATA = [
]),
("11.1", [
("3.8", [
("shard_test", [XImportant(True)]),
X(True),
("libtorch", [
(True, [
('build_only', [X(True)]),
('build_only', [XImportant(True)]),
]),
]),
]),
@ -57,9 +72,7 @@ CONFIG_TREE_DATA = [
("bionic", [
("clang", [
("9", [
("3.6", [
("noarch", [XImportant(True)]),
]),
XImportant("3.6"),
]),
("9", [
("3.6", [
@ -68,13 +81,6 @@ CONFIG_TREE_DATA = [
]),
]),
]),
("cuda", [
("10.2", [
("3.9", [
("shard_test", [XImportant(True)]),
]),
]),
]),
("gcc", [
("9", [
("3.8", [
@ -145,8 +151,6 @@ class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
@ -163,10 +167,8 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mlc": MLCConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"noarch": NoarchConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
@ -201,16 +203,6 @@ class XlaConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class MLCConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MLC=" + str(label)
def init2(self, node_name):
self.props["is_mlc"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
@ -256,14 +248,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
return ImportantConfigNode
class NoarchConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_noarch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)

View File

@ -273,7 +273,6 @@ def instantiate_configs():
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_coverage = fc.find_prop("is_coverage") or False
is_noarch = fc.find_prop("is_noarch") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
@ -317,9 +316,6 @@ def instantiate_configs():
parms_list_ignored_for_docker_image.append("coverage")
python_version = fc.find_prop("pyver")
if is_noarch:
parms_list_ignored_for_docker_image.append("noarch")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")

View File

@ -2,7 +2,6 @@ import cimodel.data.simple.util.branch_filters as branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK
)
import cimodel.lib.miniutils as miniutils
class AndroidJob:
@ -52,15 +51,13 @@ class AndroidGradleJob:
template_name,
dependencies,
is_master_only=True,
is_pr_only=False,
extra_props=tuple()):
is_pr_only=False):
self.job_name = job_name
self.template_name = template_name
self.dependencies = dependencies
self.is_master_only = is_master_only
self.is_pr_only = is_pr_only
self.extra_props = dict(extra_props)
def gen_tree(self):
@ -73,8 +70,6 @@ class AndroidGradleJob:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
elif self.is_pr_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.PR_BRANCH_LIST)
if self.extra_props:
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
@ -96,15 +91,6 @@ WORKFLOW_DATA = [
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single-full-jit",
"pytorch_android_gradle_custom_build_single",
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True,
extra_props=tuple({
"lite_interpreter": miniutils.quote(str(int(False)))
}.items())),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
"pytorch_android_gradle_build",

View File

@ -77,7 +77,7 @@ WORKFLOW_DATA = [
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
is_master_only=True,
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
@ -109,14 +109,14 @@ WORKFLOW_DATA = [
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_build",
is_master_only=True,
is_master_only=False,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_build",
is_master_only=True,
is_master_only=False,
),
SmoketestJob(
"binary_windows_build",
@ -131,7 +131,7 @@ WORKFLOW_DATA = [
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_test",
is_master_only=True,
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
),
SmoketestJob(
@ -173,7 +173,7 @@ WORKFLOW_DATA = [
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
is_master_only=True,
is_master_only=False,
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
has_libtorch_variant=True,
),
@ -182,7 +182,7 @@ WORKFLOW_DATA = [
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
is_master_only=True,
is_master_only=False,
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
has_libtorch_variant=True,
),

View File

@ -6,16 +6,21 @@ from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# TODO: make this generated from a matrix rather than just a static list
IMAGE_NAMES = [
"pytorch-linux-bionic-cuda11.1-cudnn8-py3.6-gcc9",
"pytorch-linux-bionic-cuda11.1-cudnn8-py3.8-gcc9",
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9",
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
"pytorch-linux-bionic-py3.6-clang9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
"pytorch-linux-bionic-py3.8-gcc9",
"pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4",
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
"pytorch-linux-xenial-py3-clang5-asan",
"pytorch-linux-xenial-py3-clang7-onnx",
@ -25,9 +30,7 @@ IMAGE_NAMES = [
"pytorch-linux-xenial-py3.6-gcc7.2",
"pytorch-linux-xenial-py3.6-gcc7",
"pytorch-linux-bionic-rocm3.9-py3.6",
"pytorch-linux-bionic-rocm4.0.1-py3.6",
"pytorch-linux-bionic-rocm4.1-py3.6",
"pytorch-linux-bionic-rocm4.2-py3.6",
"pytorch-linux-bionic-rocm3.10-py3.6",
]

View File

@ -61,20 +61,10 @@ class IOSJob:
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
"use_metal": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
"op_list": "mobilenetv2.yaml",
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False),
IOSJob(XCODE_VERSION, ArchVariant("arm64")),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={"use_metal": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={"op_list": "mobilenetv2.yaml"}),
]

View File

@ -1,22 +1,14 @@
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
def __init__(self, os_version, is_test=False):
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = non_phase_parts + extra_name_list + [
'build' if self.is_build else None,
'test' if self.is_test else None,
]
phase_name = "test" if self.is_test else "build"
full_job_name = "_".join(list(filter(None, full_job_name_list)))
full_job_name = "_".join(non_phase_parts + [phase_name])
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
@ -29,23 +21,7 @@ class MacOsJob:
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({
"lite_interpreter": True
}.items()),
)
]
WORKFLOW_DATA = [MacOsJob("10_13"), MacOsJob("10_13", True)]
def get_workflow_jobs():

View File

@ -65,12 +65,6 @@ WORKFLOW_DATA = [
["custom", "build", "dynamic"]
),
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["custom", "build", "static"]
),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
MobileJob(

View File

@ -1,5 +1,5 @@
import cimodel.data.simple.util.branch_filters
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN, NON_PR_BRANCH_LIST
from cimodel.data.simple.util.versions import CudaVersion
@ -10,19 +10,13 @@ class WindowsJob:
vscode_spec,
cuda_version,
force_on_cpu=False,
multi_gpu=False,
master_only=False,
nightly_only=False,
master_and_nightly=False
master_only_pred=lambda job: job.vscode_spec.year != 2019,
):
self.test_index = test_index
self.vscode_spec = vscode_spec
self.cuda_version = cuda_version
self.force_on_cpu = force_on_cpu
self.multi_gpu = multi_gpu
self.master_only = master_only
self.nightly_only = nightly_only
self.master_and_nightly = master_and_nightly
self.master_only_pred = master_only_pred
def gen_tree(self):
@ -31,10 +25,7 @@ class WindowsJob:
base_phase if self.test_index is None else base_phase + str(self.test_index)
)
key_parts = ["pytorch", "windows", base_phase]
if self.multi_gpu:
key_parts.append('multigpu')
key_name = "_".join(key_parts)
key_name = "_".join(["pytorch", "windows", base_phase])
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
@ -70,47 +61,35 @@ class WindowsJob:
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
if self.multi_gpu:
props_dict = {"requires": prerequisite_jobs}
else:
props_dict = {
"build_environment": build_environment_string,
"python_version": miniutils.quote("3.6"),
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
"vc_product": self.vscode_spec.get_product(),
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
"requires": prerequisite_jobs,
}
props_dict = {
"build_environment": build_environment_string,
"python_version": miniutils.quote("3.6"),
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
"vc_product": self.vscode_spec.get_product(),
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
"requires": prerequisite_jobs,
}
if self.master_only:
if self.master_only_pred(self):
props_dict[
"filters"
] = gen_filter_dict()
elif self.nightly_only:
props_dict[
"filters"
] = gen_filter_dict(branches_list=["nightly"], tags_list=RC_PATTERN)
elif self.master_and_nightly:
props_dict[
"filters"
] = gen_filter_dict(branches_list=NON_PR_BRANCH_LIST + ["nightly"], tags_list=RC_PATTERN)
] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
if not self.multi_gpu:
if base_phase == "test":
test_name = "-".join(["pytorch", "windows", numbered_phase])
props_dict["test_name"] = test_name
if base_phase == "test":
test_name = "-".join(["pytorch", "windows", numbered_phase])
props_dict["test_name"] = test_name
if is_running_on_cuda:
props_dict["executor"] = "windows-with-nvidia-gpu"
if is_running_on_cuda:
props_dict["executor"] = "windows-with-nvidia-gpu"
props_dict["cuda_version"] = (
miniutils.quote(str(self.cuda_version))
if self.cuda_version
else "cpu"
)
props_dict["cuda_version"] = (
miniutils.quote(str(self.cuda_version))
if self.cuda_version
else "cpu"
)
props_dict["name"] = "_".join(name_parts)
@ -129,7 +108,7 @@ class VcSpec:
return [self.prefixed_year()] + self.version_elements
def get_product(self):
return "BuildTools"
return "Community" if self.year == 2019 else "BuildTools"
def dotted_version(self):
return ".".join(self.version_elements)
@ -140,23 +119,28 @@ class VcSpec:
def render(self):
return "_".join(self.get_elements())
def FalsePred(_):
return False
def TruePred(_):
return True
_VC2019 = VcSpec(2019)
WORKFLOW_DATA = [
# VS2019 CUDA-10.1
WindowsJob(None, _VC2019, CudaVersion(10, 1), master_only=True),
WindowsJob(1, _VC2019, CudaVersion(10, 1), master_only=True),
WindowsJob(2, _VC2019, CudaVersion(10, 1), master_only=True),
WindowsJob(None, _VC2019, CudaVersion(10, 1)),
WindowsJob(1, _VC2019, CudaVersion(10, 1)),
WindowsJob(2, _VC2019, CudaVersion(10, 1)),
# VS2019 CUDA-11.1
WindowsJob(None, _VC2019, CudaVersion(11, 1)),
WindowsJob(1, _VC2019, CudaVersion(11, 1), master_only=True),
WindowsJob(2, _VC2019, CudaVersion(11, 1), master_only=True),
WindowsJob('_azure_multi_gpu', _VC2019, CudaVersion(11, 1), multi_gpu=True, nightly_only=True),
WindowsJob(1, _VC2019, CudaVersion(11, 1), master_only_pred=TruePred),
WindowsJob(2, _VC2019, CudaVersion(11, 1), master_only_pred=TruePred),
# VS2019 CPU-only
WindowsJob(None, _VC2019, None),
WindowsJob(1, _VC2019, None),
WindowsJob(2, _VC2019, None),
WindowsJob(1, _VC2019, CudaVersion(10, 1), force_on_cpu=True, master_only=True),
WindowsJob(1, _VC2019, None, master_only_pred=TruePred),
WindowsJob(2, _VC2019, None, master_only_pred=TruePred),
WindowsJob(1, _VC2019, CudaVersion(10, 1), force_on_cpu=True, master_only_pred=TruePred),
]

File diff suppressed because it is too large Load Diff

View File

@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'BREAKPAD=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -20,8 +20,10 @@ buildscript {
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
classpath 'com.android.tools.build:gradle:3.3.2'
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
}
}

View File

@ -88,7 +88,6 @@ case "$image" in
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
@ -101,7 +100,24 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
CUDA_VERSION=10.0
@ -111,7 +127,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
CUDA_VERSION=10.1
@ -122,7 +137,6 @@ case "$image" in
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
@ -133,7 +147,16 @@ case "$image" in
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7)
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7)
CUDA_VERSION=11.1
@ -144,18 +167,6 @@ case "$image" in
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.6
@ -163,7 +174,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.6
@ -171,7 +181,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.6
@ -180,7 +189,7 @@ case "$image" in
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
GRADLE_VERSION=4.10.3
CMAKE_VERSION=3.7.0
NINJA_VERSION=1.9.0
;;
@ -190,7 +199,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-py3.6-clang9)
ANACONDA_PYTHON_VERSION=3.6
@ -198,8 +206,7 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
VULKAN_SDK_VERSION=1.2.162.1
VULKAN_SDK_VERSION=1.2.148.0
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
@ -208,8 +215,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
CUDA_VERSION=10.2
@ -219,7 +224,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9)
CUDA_VERSION=10.2
@ -229,17 +233,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
CUDA_VERSION=11.0
@ -249,42 +242,57 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9)
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.1-cudnn8-py3.6-gcc9)
CUDA_VERSION=11.1
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.1-cudnn8-py3.8-gcc9)
CUDA_VERSION=11.1
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-rocm3.9-py3.6)
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=3.9
;;
pytorch-linux-bionic-rocm4.0.1-py3.6)
pytorch-linux-bionic-rocm3.10-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.0.1
;;
pytorch-linux-bionic-rocm4.1-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.1
;;
pytorch-linux-bionic-rocm4.2-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.2
ROCM_VERSION=3.10
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
@ -320,7 +328,7 @@ if [ -n "${JENKINS:-}" ]; then
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | head -c 32)"
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
@ -348,7 +356,6 @@ docker build \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "BREAKPAD=${BREAKPAD}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \

View File

@ -46,7 +46,4 @@ trap "docker logout ${registry}" EXIT
docker push "${image}:${tag}"
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read

View File

@ -64,7 +64,6 @@ ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8

View File

@ -99,7 +99,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle

View File

@ -77,7 +77,6 @@ install_centos() {
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \

View File

@ -1,19 +0,0 @@
#!/bin/bash
set -ex
git clone https://github.com/malfet/breakpad.git -b pytorch/release-1.9
pushd breakpad
git clone https://chromium.googlesource.com/linux-syscall-support src/third_party/lss
pushd src/third_party/lss
# same as with breakpad, there are no real releases for this repo so use a
# commit as the pin
git checkout e1e7b0ad8ee99a875b272c8e33e308472e897660
popd
./configure
make
make install
popd
rm -rf breakpad

View File

@ -71,22 +71,18 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.5, but
# we want to pin to version 3.5.
SCIPY_VERSION=1.1.0
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
if [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0 -c conda-forge
SCIPY_VERSION=1.6.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
conda_install numpy=1.18.5 pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
conda_install numpy=1.18.5 pyyaml mkl mkl-include setuptools cffi future six typing_extensions
else
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
conda_install numpy=1.18.5 pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
fi
if [[ "$CUDA_VERSION" == 10.0* ]]; then
if [[ "$CUDA_VERSION" == 9.2* ]]; then
conda_install magma-cuda92 -c pytorch
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install magma-cuda100 -c pytorch
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
conda_install magma-cuda101 -c pytorch
@ -96,8 +92,8 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
conda_install magma-cuda110 -c pytorch
elif [[ "$CUDA_VERSION" == 11.1* ]]; then
conda_install magma-cuda111 -c pytorch
elif [[ "$CUDA_VERSION" == 11.3* ]]; then
conda_install magma-cuda113 -c pytorch
elif [[ "$CUDA_VERSION" == 11.2* ]]; then
conda_install magma-cuda112 -c pytorch
fi
# TODO: This isn't working atm
@ -107,26 +103,20 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# TODO: Why is scipy pinned
# Pin MyPy version because new errors are likely to appear with each release
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
# Pin coverage so we can use COVERAGE_RCFILE
as_jenkins pip install --progress-bar off pytest \
scipy==$SCIPY_VERSION \
scipy==1.1.0 \
scikit-image \
librosa>=0.6.2 \
psutil \
numba \
llvmlite \
unittest-xml-reporting \
boto3==1.16.34 \
coverage==5.5 \
coverage \
hypothesis==4.53.2 \
mypy==0.812 \
mypy==0.770 \
tb-nightly
# Install numba only on python-3.8 or below
# For numba issue see https://github.com/pytorch/pytorch/issues/51511
if [[ $(python -c "import sys; print(int(sys.version_info < (3, 9)))") == "1" ]]; then
as_jenkins pip install --progress-bar off numba librosa>=0.6.2
else
as_jenkins pip install --progress-bar off numba==0.49.0 librosa>=0.6.2
fi
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
as_jenkins pip install --progress-bar off -U scikit-learn

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://www.openssl.org/source/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: opensl errors out when built with the -j option
make install_sw
cd ..
rm -rf "${OPENSSL}"

View File

@ -4,27 +4,20 @@ set -ex
install_magma() {
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
git clone https://bitbucket.org/icl/magma.git -b hipMAGMA
pushd magma
git checkout 878b1ce02e9cfe4a829be22c8f911e9c0b6bd88f
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
cp make.inc-examples/make.inc.hip-mkl-gcc make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --amdgpu-target=gfx803 --amdgpu-target=gfx900 --amdgpu-target=gfx906 --amdgpu-target=gfx908 --gpu-max-threads-per-block=256' >> make.inc
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
echo 'DEVCCFLAGS += --amdgpu-target=gfx803 --amdgpu-target=gfx900 --amdgpu-target=gfx906 --amdgpu-target=gfx908' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm
}
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
@ -38,14 +31,9 @@ install_ubuntu() {
apt-get install -y libc++1
apt-get install -y libc++abi1
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
echo "deb [arch=amd64] http://repo.radeon.com/rocm/apt/${ROCM_VERSION} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
echo "deb [arch=amd64] http://repo.radeon.com/rocm/apt/${ROCM_VERSION} xenial main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \

View File

@ -8,17 +8,16 @@ retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
mkdir -p $_vulkansdk_dir
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl --silent --show-error --location --fail --retry 3 \
--output "$_tmp_vulkansdk_targz" "$_https_amazon_aws/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
tar -C "$_vulkansdk_dir" -xzf "$_tmp_vulkansdk_targz" --strip-components 1
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"
export VULKAN_SDK="$_vulkansdk_dir/"
rm "$_tmp_vulkansdk_targz"

View File

@ -61,10 +61,6 @@ RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
ADD ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH

View File

@ -27,11 +27,6 @@ ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh

View File

@ -82,13 +82,6 @@ RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install breakpad
ARG BREAKPAD
ADD ./common/install_breakpad.sh install_breakpad.sh
RUN if [ -n "${BREAKPAD}" ]; then bash ./install_breakpad.sh; fi
RUN rm install_breakpad.sh
ENV INSTALLED_BREAKPAD ${BREAKPAD}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
@ -113,10 +106,6 @@ ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH

View File

@ -1,10 +1,10 @@
FROM ubuntu:18.04
FROM ubuntu:16.04
RUN apt-get update && apt-get install -y python3-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
RUN apt-get update && apt-get install -y python-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
ADD requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt
RUN pip install -r /requirements.txt
ADD gc.py /usr/bin/gc.py

View File

@ -1,4 +1,4 @@
#!/usr/bin/env python3
#!/usr/bin/env python
from collections import namedtuple

View File

@ -1,11 +1,11 @@
#!/usr/bin/env python3
#!/usr/bin/env python
import argparse
import boto3
import datetime
import boto3
import pytz
import re
import sys
import re
def save_to_s3(project, data):
@ -148,12 +148,9 @@ def chunks(chunkable, n):
""" Yield successive n-sized chunks from l.
"""
for i in range(0, len(chunkable), n):
yield chunkable[i: i + n]
yield chunkable[i : i + n]
SHA_PATTERN = re.compile(r'^[0-9a-f]{40}$')
def looks_like_git_sha(tag):
"""Returns a boolean to check if a tag looks like a git sha
@ -162,7 +159,6 @@ def looks_like_git_sha(tag):
"""
return re.match(SHA_PATTERN, tag) is not None
stable_window_tags = []
for repo in repos(client):
repositoryName = repo["repositoryName"]

View File

@ -80,52 +80,6 @@ class Header(object):
for line in filter(None, lines):
output_filehandle.write(line + "\n")
def filter_master_only_jobs(items):
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def _is_master_item(item):
filters = item.get('filters', None)
branches = filters.get('branches', None) if filters is not None else None
branches_only = branches.get('only', None) if branches is not None else None
return 'master' in branches_only if branches_only is not None else False
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get('requires', None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_master_item(item) and item_name not in master_deps:
return None
if 'filters' in item:
item = item.copy()
item.pop('filters')
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that master-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def gen_build_workflows_tree():
build_workflows_functions = [
@ -151,8 +105,7 @@ def gen_build_workflows_tree():
binary_build_definitions.get_nightly_tests,
binary_build_definitions.get_nightly_uploads,
]
build_jobs = [f() for f in build_workflows_functions]
master_build_jobs = filter_master_only_jobs(build_jobs)
return {
"workflows": {
"binary_builds": {
@ -161,11 +114,7 @@ def gen_build_workflows_tree():
},
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
"master_build": {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
"jobs": [f() for f in build_workflows_functions]
},
}
}
@ -190,7 +139,6 @@ YAML_SOURCES = [
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("workflows/workflows-scheduled-ci.yml"),
File("workflows/workflows-ecr-gc.yml"),
File("workflows/workflows-promote.yml"),
]

View File

@ -1,5 +0,0 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

View File

@ -1,17 +1,8 @@
#!/bin/bash -e
#!/bin/bash -xe
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
cd $(dirname "$0")
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"
./generate_config_yml.py > $NEW_FILE
cp $NEW_FILE config.yml

View File

@ -63,7 +63,6 @@ popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
git checkout release/1.9
echo "Using builder from "
git --no-pager log --max-count 1
popd

View File

@ -15,7 +15,7 @@ export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests --yes
conda install -c conda-forge valgrind --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}

View File

@ -24,6 +24,6 @@ rm cert.txt
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
fi
PROFILE=PyTorch_CI_2021
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -9,6 +9,10 @@ python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
# Set up Python
if [[ "$PACKAGE_TYPE" == conda ]]; then
# There was a bug that was introduced in conda-package-handling >= 1.6.1 that makes archives
# above a certain size fail out when attempting to extract
# see: https://github.com/conda/conda-package-handling/issues/71
conda install -y conda-package-handling=1.6.0
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
@ -34,10 +38,6 @@ if [[ "$DESIRED_CUDA" == "cu112" ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
fi
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
# Install the package
# These network calls should not have 'retry's because they are installing
# locally and aren't actually network calls

View File

@ -68,24 +68,12 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
fi
fi
USE_GOLD_LINKER="OFF"
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
USE_GOLD_LINKER="ON"
fi
USE_WHOLE_CUDNN="OFF"
# Link whole cuDNN for CUDA-11.1 to include fp16 fast kernels
if [[ "$(uname)" == "Linux" && "${DESIRED_CUDA}" == "cu111" ]]; then
USE_WHOLE_CUDNN="ON"
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.9.0.dev$DATE"
BASE_BUILD_VERSION="1.8.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
@ -148,7 +136,7 @@ if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
fi
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.9.0.dev
export NIGHTLIES_DATE_PREAMBLE=1.8.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
@ -180,10 +168,6 @@ export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
export USE_GLOO_WITH_OPENSSL="ON"
export USE_WHOLE_CUDNN="${USE_WHOLE_CUDNN}"
# =================== The above code will be executed inside Docker container ===================
EOL

View File

@ -31,10 +31,6 @@ if [[ "$CIRCLECI" == 'true' && -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Pac
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
if [[ "$CIRCLECI" == 'true' && -d "C:\\Microsoft" ]]; then
rm -rf "C:\\Microsoft\\Android*"
fi
echo "Free space on filesystem before build:"
df -h

View File

@ -10,7 +10,7 @@ export ANDROID_HOME=/opt/android/sdk
# Must be in sync with GRADLE_VERSION in docker image for android
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle

View File

@ -5,7 +5,7 @@ set -eu -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
@ -35,9 +35,7 @@ else
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES

View File

@ -24,9 +24,7 @@ retry sudo apt-get -y install \
echo "== DOCKER VERSION =="
docker version
if ! command -v aws >/dev/null; then
retry sudo pip3 -q install awscli==1.19.64
fi
retry sudo pip -q install awscli==1.16.35
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-460.39.run"
@ -50,50 +48,43 @@ else
fi
add_to_env_file() {
local name=$1
local value=$2
case "$value" in
*\ *)
# BASH_ENV should be set by CircleCI
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
;;
*)
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
;;
esac
local content
content=$1
# BASH_ENV should be set by CircleCI
echo "${content}" >> "${BASH_ENV:-/tmp/env}"
}
add_to_env_file IN_CI 1
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
add_to_env_file "IN_CI=1"
add_to_env_file "COMMIT_SOURCE=${CIRCLE_BRANCH:-}"
add_to_env_file "BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}"
add_to_env_file "CIRCLE_PULL_REQUEST=${CIRCLE_PULL_REQUEST}"
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
add_to_env_file "SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2"
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
add_to_env_file MAX_JOBS "${MAX_JOBS}"
add_to_env_file "MAX_JOBS=${MAX_JOBS}"
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
add_to_env_file "TORCH_CUDA_ARCH_LIST=5.2"
fi
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file "XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file "AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file "AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file "XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file "AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file "AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
set -x
fi
fi
@ -102,7 +93,5 @@ fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval "$(aws ecr get-login --region us-east-1 --no-include-email)"
set -x

View File

@ -1,140 +0,0 @@
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
import re
import json
import os
import sys
import requests
import time
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
PIPELINE_ID = "911"
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "master")
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
s = requests.Session()
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
def submit_build(pipeline_id, project_id, source_branch, source_version):
print("Submitting build for branch: " + source_branch)
print("Commit SHA1: ", source_version)
run_build_raw = s.post(build_base_url, json={
"definition": {"id": pipeline_id},
"project": {"id": project_id},
"sourceBranch": source_branch,
"sourceVersion": source_version
})
try:
run_build_json = run_build_raw.json()
except json.decoder.JSONDecodeError as e:
print(e)
print("Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired.")
sys.exit(-1)
build_id = run_build_json['id']
print("Submitted bulid: " + str(build_id))
print("Bulid URL: " + run_build_json['url'])
return build_id
def get_build(_id):
get_build_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
get_build_raw = s.get(get_build_url)
return get_build_raw.json()
def get_build_logs(_id):
get_build_logs_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
get_build_logs_raw = s.get(get_build_logs_url)
return get_build_logs_raw.json()
def get_log_content(url):
resp = s.get(url)
return resp.text
def wait_for_build(_id):
build_detail = get_build(_id)
build_status = build_detail['status']
while build_status == 'notStarted':
print('Waiting for run to start: ' + str(_id))
sys.stdout.flush()
try:
build_detail = get_build(_id)
build_status = build_detail['status']
except Exception as e:
print("Error getting build")
print(e)
time.sleep(30)
print("Bulid started: ", str(_id))
handled_logs = set()
while build_status == 'inProgress':
try:
print("Waiting for log: " + str(_id))
logs = get_build_logs(_id)
except Exception as e:
print("Error fetching logs")
print(e)
time.sleep(30)
continue
for log in logs['value']:
log_id = log['id']
if log_id in handled_logs:
continue
handled_logs.add(log_id)
print('Fetching log: \n' + log['url'])
try:
log_content = get_log_content(log['url'])
print(log_content)
except Exception as e:
print("Error getting log content")
print(e)
sys.stdout.flush()
build_detail = get_build(_id)
build_status = build_detail['status']
time.sleep(30)
build_result = build_detail['result']
print("Bulid status: " + build_status)
print("Bulid result: " + build_result)
return build_status, build_result
if __name__ == '__main__':
# Convert the branch name for Azure DevOps
match = re.search(r'pull/(\d+)', TARGET_BRANCH)
if match is not None:
pr_num = match.group(1)
SOURCE_BRANCH = f'refs/pull/{pr_num}/head'
else:
SOURCE_BRANCH = f'refs/heads/{TARGET_BRANCH}'
MAX_RETRY = 2
retry = MAX_RETRY
while retry > 0:
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
build_status, build_result = wait_for_build(build_id)
if build_result != 'succeeded':
retry = retry - 1
if retry > 0:
print("Retrying... remaining attempt: " + str(retry))
# Wait a bit before retrying
time.sleep((MAX_RETRY - retry) * 120)
continue
else:
print("No more chance to retry. Giving up.")
sys.exit(-1)
else:
break

View File

@ -17,7 +17,7 @@ def get_size(file_dir):
# we should only expect one file, if no, something is wrong
file_name = glob.glob(os.path.join(file_dir, "*"))[0]
return os.stat(file_name).st_size
except Exception:
except:
logging.exception(f"error getting file from: {file_dir}")
return 0
@ -145,5 +145,5 @@ if __name__ == "__main__":
if size != 0:
try:
send_message([build_message(size)])
except Exception:
except:
logging.exception("can't send message")

View File

@ -1,10 +1,7 @@
# https://developercommunity.visualstudio.com/t/install-specific-version-of-vs-component/1142479
# https://docs.microsoft.com/en-us/visualstudio/releases/2019/history#release-dates-and-build-numbers
# 16.8.5 BuildTools
$VS_DOWNLOAD_LINK = "https://download.visualstudio.microsoft.com/download/pr/20130c62-1bc8-43d6-b4f0-c20bb7c79113/145a319d79a83376915d8f855605e152ef5f6fa2b2f1d2dca411fb03722eea72/vs_BuildTools.exe"
$VS_DOWNLOAD_LINK = "https://aka.ms/vs/15/release/vs_buildtools.exe"
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
"--add Microsoft.VisualStudio.Component.VC.Tools.14.13",
"--add Microsoft.Component.MSBuild",
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
"--add Microsoft.VisualStudio.Component.TextTemplating",
@ -16,25 +13,10 @@ $VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStud
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS 2019 Version 16.8.5 installer failed"
echo "Download of the VS 2017 installer failed"
exit 1
}
if (Test-Path "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe") {
$existingPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -version "[16, 17)" -property installationPath
if ($existingPath -ne $null) {
echo "Found existing BuildTools installation in $existingPath"
$VS_UNINSTALL_ARGS = @("uninstall", "--installPath", "`"$existingPath`"", "--quiet","--wait")
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_UNINSTALL_ARGS -NoNewWindow -Wait -PassThru
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "Original BuildTools uninstall failed with code $exitCode"
exit 1
}
echo "Original BuildTools uninstalled"
}
}
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
Remove-Item -Path vs_installer.exe -Force
$exitCode = $process.ExitCode

View File

@ -8,18 +8,9 @@ if [[ "$cuda_major_version" == "10" ]]; then
msbuild_project_dir="CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions"
cuda_install_packages="nvcc_10.1 cuobjdump_10.1 nvprune_10.1 cupti_10.1 cublas_10.1 cublas_dev_10.1 cudart_10.1 cufft_10.1 cufft_dev_10.1 curand_10.1 curand_dev_10.1 cusolver_10.1 cusolver_dev_10.1 cusparse_10.1 cusparse_dev_10.1 nvgraph_10.1 nvgraph_dev_10.1 npp_10.1 npp_dev_10.1 nvrtc_10.1 nvrtc_dev_10.1 nvml_dev_10.1"
elif [[ "$cuda_major_version" == "11" ]]; then
if [[ "${CUDA_VERSION}" == "11.1" ]]; then
cuda_installer_name="cuda_11.1.0_456.43_win10"
msbuild_project_dir="visual_studio_integration/CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions"
cuda_install_packages="nvcc_11.1 cuobjdump_11.1 nvprune_11.1 nvprof_11.1 cupti_11.1 cublas_11.1 cublas_dev_11.1 cudart_11.1 cufft_11.1 cufft_dev_11.1 curand_11.1 curand_dev_11.1 cusolver_11.1 cusolver_dev_11.1 cusparse_11.1 cusparse_dev_11.1 npp_11.1 npp_dev_11.1 nvrtc_11.1 nvrtc_dev_11.1 nvml_dev_11.1"
elif [[ "${CUDA_VERSION}" == "11.3" ]]; then
cuda_installer_name="cuda_11.3.0_465.89_win10"
msbuild_project_dir="visual_studio_integration/CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions"
cuda_install_packages="thrust_11.3 nvcc_11.3 cuobjdump_11.3 nvprune_11.3 nvprof_11.3 cupti_11.3 cublas_11.3 cublas_dev_11.3 cudart_11.3 cufft_11.3 cufft_dev_11.3 curand_11.3 curand_dev_11.3 cusolver_11.3 cusolver_dev_11.3 cusparse_11.3 cusparse_dev_11.3 npp_11.3 npp_dev_11.3 nvrtc_11.3 nvrtc_dev_11.3 nvml_dev_11.3"
else
echo "This should not happen! ABORT."
exit 1
fi
cuda_installer_name="cuda_11.1.0_456.43_win10"
msbuild_project_dir="visual_studio_integration/CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions"
cuda_install_packages="nvcc_11.1 cuobjdump_11.1 nvprune_11.1 nvprof_11.1 cupti_11.1 cublas_11.1 cublas_dev_11.1 cudart_11.1 cufft_11.1 cufft_dev_11.1 curand_11.1 curand_dev_11.1 cusolver_11.1 cusolver_dev_11.1 cusparse_11.1 cusparse_dev_11.1 npp_11.1 npp_dev_11.1 nvrtc_11.1 nvrtc_dev_11.1 nvml_dev_11.1"
else
echo "CUDA_VERSION $CUDA_VERSION is not supported yet"
exit 1

View File

@ -6,14 +6,7 @@ cuda_major_version=${CUDA_VERSION%.*}
if [[ "$cuda_major_version" == "10" ]]; then
cudnn_installer_name="cudnn-${CUDA_VERSION}-windows10-x64-v7.6.4.38"
elif [[ "$cuda_major_version" == "11" ]]; then
if [[ "${CUDA_VERSION}" == "11.1" ]]; then
cudnn_installer_name="cudnn-${CUDA_VERSION}-windows-x64-v8.0.5.39"
elif [[ "${CUDA_VERSION}" == "11.3" ]]; then
cudnn_installer_name="cudnn-${CUDA_VERSION}-windows-x64-v8.2.0.53"
else
echo "This should not happen! ABORT."
exit 1
fi
cudnn_installer_name="cudnn-${CUDA_VERSION}-windows-x64-v8.0.5.39"
else
echo "CUDNN for CUDA_VERSION $CUDA_VERSION is not supported yet"
exit 1

View File

@ -22,24 +22,6 @@ pytorch_params: &pytorch_params
BUILD_ONLY: << parameters.build_only >>
resource_class: << parameters.resource_class >>
pytorch_android_params: &pytorch_android_params
parameters:
build_environment:
type: string
default: ""
op_list:
type: string
default: ""
lite_interpreter:
type: string
default: "1"
environment:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c"
PYTHON_VERSION: "3.6"
SELECTED_OP_LIST: << parameters.op_list >>
BUILD_LITE_INTERPRETER: << parameters.lite_interpreter >>
pytorch_ios_params: &pytorch_ios_params
parameters:
build_environment:
@ -57,16 +39,12 @@ pytorch_ios_params: &pytorch_ios_params
use_metal:
type: string
default: "0"
lite_interpreter:
type: string
default: "1"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
IOS_ARCH: << parameters.ios_arch >>
IOS_PLATFORM: << parameters.ios_platform >>
SELECTED_OP_LIST: << parameters.op_list >>
USE_PYTORCH_METAL: << parameters.use_metal >>
BUILD_LITE_INTERPRETER: << parameters.lite_interpreter >>
pytorch_windows_params: &pytorch_windows_params
parameters:
@ -106,6 +84,6 @@ pytorch_windows_params: &pytorch_windows_params
VC_YEAR: <<parameters.vc_year>>
VC_PRODUCT: <<parameters.vc_product>>
USE_CUDA: <<parameters.use_cuda>>
TORCH_CUDA_ARCH_LIST: "5.2 7.5"
TORCH_CUDA_ARCH_LIST: "7.5"
JOB_BASE_NAME: <<parameters.test_name>>
JOB_EXECUTOR: <<parameters.executor>>

View File

@ -111,11 +111,11 @@ commands:
git config --global user.email "circleci.ossci@gmail.com"
git config --global user.name "CircleCI"
git config remote.origin.url https://github.com/pytorch/pytorch.git
git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
git config --add remote.origin.fetch +refs/heads/release/1.8:refs/remotes/origin/release/1.8
git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.8:refs/remotes/origin/release/1.8 --depth=100 --quiet
# PRs generated from ghstack has format CIRCLE_PR_BASE_BRANCH=gh/xxx/1234/base
if [[ "${CIRCLE_PR_BASE_BRANCH}" == "gh/"* ]]; then
CIRCLE_PR_BASE_BRANCH=master
CIRCLE_PR_BASE_BRANCH=release/1.8
fi
export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/$CIRCLE_PR_BASE_BRANCH`
echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}

View File

@ -14,15 +14,19 @@ parameters:
run_build:
type: boolean
default: true
run_master_build:
type: boolean
default: false
docker_config_defaults: &docker_config_defaults
user: jenkins
aws_auth:
# This IAM user only allows read-write access to ECR
aws_access_key_id: ${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4}
aws_secret_access_key: ${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4}
executors:
windows-with-nvidia-gpu:
machine:
resource_class: windows.gpu.nvidia.medium
image: windows-server-2019-nvidia:previous
image: windows-server-2019-nvidia:stable
shell: bash.exe
windows-xlarge-cpu-with-nvidia-cuda:

View File

@ -45,7 +45,7 @@
binary_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- checkout
@ -108,7 +108,7 @@
smoke_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -293,6 +293,11 @@
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- checkout
- run:
name: _HACK_ Install CUDA compatible cmath
no_output_timeout: 1m
command: |
powershell .circleci/scripts/vs_install_cmath.ps1
- run:
<<: *binary_checkout
- run:
@ -308,8 +313,6 @@
- persist_to_workspace:
root: "C:/w"
paths: final_pkgs
- store_artifacts:
path: C:/w/final_pkgs
binary_windows_test:
<<: *binary_windows_params
@ -392,3 +395,4 @@
command: |
ANACONDA_API_TOKEN="${CONDA_PYTORCHBOT_TOKEN}" \
scripts/release/anaconda-prune/run.sh

View File

@ -8,7 +8,7 @@
# then install the one with the most recent version.
update_s3_htmls: &update_s3_htmls
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
resource_class: medium
steps:
- checkout

View File

@ -4,7 +4,7 @@
type: string
default: ""
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
resource_class: large
environment:
IMAGE_NAME: << parameters.image_name >>
@ -20,10 +20,7 @@
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_DOCKER_BUILDER_V1}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_DOCKER_BUILDER_V1}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS \
--password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval $(aws ecr get-login --no-include-email --region us-east-1)
set -x
# Check if image already exists, if it does then skip building it
if docker manifest inspect "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/${IMAGE_NAME}:${DOCKER_TAG}"; then
@ -56,7 +53,7 @@
cd .circleci/docker && ./build_docker.sh
docker_for_ecr_gc_build_job:
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- run:
@ -68,12 +65,9 @@
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_DOCKER_BUILDER_V1}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_DOCKER_BUILDER_V1}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS \
--password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval $(aws ecr get-login --no-include-email --region us-east-1)
set -x
docker push $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/gc/ecr
docker push 308535385114.dkr.ecr.us-east-1.amazonaws.com/gc/ecr
ecr_gc_job:
parameters:
project:

View File

@ -1,7 +1,7 @@
pytorch_doc_push:
resource_class: medium
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
parameters:
branch:
type: string
@ -30,7 +30,7 @@
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -75,7 +75,7 @@
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -111,43 +111,6 @@
paths:
- .
pytorch_macos_10_15_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.15-py3-arm64-build
macos:
xcode: "12.3.0"
steps:
- checkout
- run_brew_for_macos_build
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CI=1
export CROSS_COMPILE_ARM64=1
# Install sccache
sudo curl --retry 3 https://s3.amazonaws.com/ossci-macos/sccache_v2.15 --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
chmod a+x .jenkins/pytorch/macos-build.sh
unbuffer .jenkins/pytorch/macos-build.sh 2>&1 | ts
- persist_to_workspace:
root: /Users/distiller/workspace/
paths:
- miniconda3
- store_artifacts:
path: /Users/distiller/project/dist
pytorch_macos_10_13_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-build
@ -164,7 +127,7 @@
export IN_CI=1
# Install sccache
sudo curl --retry 3 https://s3.amazonaws.com/ossci-macos/sccache_v2.15 --output /usr/local/bin/sccache
sudo curl --retry 3 https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
@ -201,42 +164,6 @@
chmod a+x .jenkins/pytorch/macos-test.sh
unbuffer .jenkins/pytorch/macos-test.sh 2>&1 | ts
- run:
name: Report results
no_output_timeout: "5m"
command: |
set -ex
source /Users/distiller/workspace/miniconda3/bin/activate
pip install boto3
export PYTHONPATH="$PWD"
# Using the same IAM user to write stats to our OSS bucket
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test
when: always
- store_test_results:
path: test/test-reports
pytorch_macos_10_13_py3_lite_interpreter_build_test:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-test
macos:
xcode: "12.0"
steps:
- checkout
- attach_workspace:
at: ~/workspace
- run_brew_for_macos_build
- run:
name: Test
no_output_timeout: "1h"
command: |
set -e
export IN_CI=1
export BUILD_LITE_INTERPRETER=1
chmod a+x ${HOME}/project/.jenkins/pytorch/macos-lite-interpreter-build-test.sh
unbuffer ${HOME}/project/.jenkins/pytorch/macos-lite-interpreter-build-test.sh 2>&1 | ts
- store_test_results:
path: test/test-reports
@ -247,7 +174,7 @@
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -336,7 +263,7 @@
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -372,7 +299,7 @@
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -408,10 +335,13 @@
destination: artifacts.tgz
pytorch_android_gradle_custom_build_single:
<<: *pytorch_android_params
environment:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c"
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -431,11 +361,11 @@
echo "DOCKER_IMAGE: ${DOCKER_IMAGE}:${DOCKER_TAG}"
time docker pull ${DOCKER_IMAGE}:${DOCKER_TAG} >/dev/null
git submodule sync && git submodule update -q --init --recursive --depth 1
git submodule sync && git submodule update -q --init --recursive
VOLUME_MOUNTS="-v /home/circleci/project/:/var/lib/jenkins/workspace"
export id=$(docker run --env-file "${BASH_ENV}" ${VOLUME_MOUNTS} --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE}:${DOCKER_TAG})
export COMMAND='((echo "export GRADLE_OFFLINE=1" && echo "export BUILD_LITE_INTERPRETER=${BUILD_LITE_INTERPRETER}" && echo "sudo chown -R jenkins workspace && cd workspace && ./.circleci/scripts/build_android_gradle.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
export COMMAND='((echo "export GRADLE_OFFLINE=1" && echo "sudo chown -R jenkins workspace && cd workspace && ./.circleci/scripts/build_android_gradle.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Skip docker push as this job is purely for size analysis purpose.
@ -500,7 +430,7 @@
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive --depth 1
git submodule update --init --recursive
# export
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
@ -510,7 +440,6 @@
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
echo "USE_PYTORCH_METAL": "${USE_METAL}"
echo "BUILD_LITE_INTERPRETER": "${BUILD_LITE_INTERPRETER}"
#check the custom build flag
echo "SELECTED_OP_LIST: ${SELECTED_OP_LIST}"
@ -528,10 +457,6 @@
no_output_timeout: "30m"
command: |
set -e
if [ ${BUILD_LITE_INTERPRETER} == 0 ]; then
echo "Run Build Test is not for full jit, skipping."
exit 0
fi
PROJ_ROOT=/Users/distiller/project
PROFILE=PyTorch_CI_2021
# run the ruby build script
@ -557,9 +482,6 @@
if [ ${IOS_PLATFORM} != "SIMULATOR" ]; then
echo "not SIMULATOR build, skip it."
exit 0
elif [ ${BUILD_LITE_INTERPRETER} == 0 ]; then
echo "Run Simulator Tests is not for full jit, skipping."
exit 0
fi
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
@ -575,7 +497,7 @@
pytorch_linux_bazel_build:
<<: *pytorch_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -593,7 +515,7 @@
echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
git submodule sync && git submodule update -q --init --recursive --depth 1
git submodule sync && git submodule update -q --init --recursive
docker cp /home/circleci/project/. $id:/var/lib/jenkins/workspace
@ -613,7 +535,7 @@
pytorch_linux_bazel_test:
<<: *pytorch_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag
@ -654,26 +576,13 @@
- store_test_results:
path: bazel-testlogs
pytorch_windows_test_multigpu:
machine:
image: ubuntu-2004:202104-01
steps:
- checkout
- run:
name: Test
no_output_timeout: "90m"
command: |
set -e
python3 -m pip install requests
python3 ./.circleci/scripts/trigger_azure_pipeline.py
pytorch_doc_test:
environment:
BUILD_ENVIRONMENT: pytorch-doc-test
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4"
resource_class: medium
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
- checkout
- calculate_docker_image_tag

View File

@ -2,7 +2,7 @@ jobs:
pytorch_linux_build:
<<: *pytorch_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- checkout
@ -15,6 +15,9 @@ jobs:
no_output_timeout: "1h"
command: |
set -e
if [[ "${DOCKER_IMAGE}" == *rocm3.9* ]]; then
export DOCKER_TAG="f3d89a32912f62815e4feaeed47e564e887dffd6"
fi
if [[ ${BUILD_ENVIRONMENT} == *"pure_torch"* ]]; then
echo 'BUILD_CAFFE2=OFF' >> "${BASH_ENV}"
fi
@ -30,11 +33,11 @@ jobs:
time docker pull ${DOCKER_IMAGE}:${DOCKER_TAG} >/dev/null
export id=$(docker run --env-file "${BASH_ENV}" --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE}:${DOCKER_TAG})
git submodule sync && git submodule update -q --init --recursive --depth 1
git submodule sync && git submodule update -q --init --recursive
docker cp /home/circleci/project/. $id:/var/lib/jenkins/workspace
export COMMAND='((echo "sudo chown -R jenkins workspace && export CIRCLE_JOB="$CIRCLE_JOB" && cd workspace && .jenkins/pytorch/build.sh && find ${BUILD_ROOT} -type f -name "*.a" -or -name "*.o" -delete") | docker exec -u jenkins -i "$id" bash) 2>&1'
export COMMAND='((echo "sudo chown -R jenkins workspace && cd workspace && .jenkins/pytorch/build.sh && find ${BUILD_ROOT} -type f -name "*.a" -or -name "*.o" -delete") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
@ -80,7 +83,7 @@ jobs:
pytorch_linux_test:
<<: *pytorch_params
machine:
image: ubuntu-2004:202104-01
image: ubuntu-1604:202007-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- checkout
@ -165,7 +168,6 @@ jobs:
# =================== The following code will be executed inside Docker container ===================
set -ex
export SCRIBE_GRAPHQL_ACCESS_TOKEN="${SCRIBE_GRAPHQL_ACCESS_TOKEN}"
export CIRCLE_JOB="$CIRCLE_JOB"
${PARALLEL_FLAGS}
cd workspace
EOL
@ -180,27 +182,11 @@ jobs:
fi
echo "(cat docker_commands.sh | docker exec -u jenkins -i "$id" bash) 2>&1" > command.sh
unbuffer bash command.sh | ts
if [[ ${BUILD_ENVIRONMENT} == *"coverage"* ]]; then
echo "Retrieving C++ coverage report"
docker cp $id:/var/lib/jenkins/workspace/build/coverage.info ./test
fi
if [[ ${BUILD_ENVIRONMENT} == *"coverage"* || ${BUILD_ENVIRONMENT} == *"onnx"* ]]; then
echo "Retrieving Python coverage report"
docker cp $id:/var/lib/jenkins/workspace/test/.coverage ./test
docker cp $id:/var/lib/jenkins/workspace/test/coverage.xml ./test
python3 -mpip install codecov
python3 -mcodecov
fi
- run:
name: Report results
no_output_timeout: "5m"
command: |
set -e
# Retrieving test results should be done as very first step as command never fails
# But is always executed if previous step fails for some reason
echo "Retrieving test reports"
docker cp $id:/var/lib/jenkins/workspace/test/test-reports ./ || echo 'No test reports found!'
docker stats --all --no-stream
cat >docker_commands.sh \<<EOL
@ -215,18 +201,27 @@ jobs:
export CIRCLE_JOB="$CIRCLE_JOB"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
cd workspace
export PYTHONPATH="\${PWD}"
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test
python test/print_test_stats.py --upload-to-s3 test
EOL
echo "(cat docker_commands.sh | docker exec -u jenkins -e LANG=C.UTF-8 -i "$id" bash) 2>&1" > command.sh
echo "(cat docker_commands.sh | docker exec -u jenkins -i "$id" bash) 2>&1" > command.sh
unbuffer bash command.sh | ts
echo "Retrieving test reports"
docker cp $id:/var/lib/jenkins/workspace/test/test-reports ./ || echo 'No test reports found!'
if [[ ${BUILD_ENVIRONMENT} == *"coverage"* ]]; then
echo "Retrieving C++ coverage report"
docker cp $id:/var/lib/jenkins/workspace/build/coverage.info ./test
fi
if [[ ${BUILD_ENVIRONMENT} == *"coverage"* || ${BUILD_ENVIRONMENT} == *"onnx"* ]]; then
echo "Retrieving Python coverage report"
docker cp $id:/var/lib/jenkins/workspace/test/.coverage ./test
docker cp $id:/var/lib/jenkins/workspace/test/coverage.xml ./test
python3 -mpip install codecov
python3 -mcodecov
fi
when: always
- store_test_results:
path: test-reports
- store_artifacts:
path: test/.coverage
- store_artifacts:
path: test/coverage.xml
pytorch_windows_build:
<<: *pytorch_windows_params
@ -262,10 +257,10 @@ jobs:
steps:
- checkout
- run:
name: Install VS2019 toolchain
no_output_timeout: 10m
name: _HACK_ Install CUDA compatible cmath
no_output_timeout: 1m
command: |
powershell .circleci/scripts/vs_install.ps1
powershell .circleci/scripts/vs_install_cmath.ps1
- run:
name: Install Cuda
no_output_timeout: 30m
@ -330,11 +325,6 @@ jobs:
- checkout
- attach_workspace:
at: c:/users/circleci/workspace
- run:
name: Install VS2019 toolchain
no_output_timeout: 10m
command: |
powershell .circleci/scripts/vs_install.ps1
- run:
name: Install Cuda
no_output_timeout: 30m
@ -361,18 +351,5 @@ jobs:
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_WIN_BUILD_V1}
set -x
.jenkins/pytorch/win-test.sh
- run:
name: Report results
no_output_timeout: "5m"
command: |
set -ex
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_WIN_BUILD_V1}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_WIN_BUILD_V1}
export PYTHONPATH="$PWD"
pip install typing_extensions boto3
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test
when: always
- store_test_results:
path: test/test-reports
- store_artifacts:
path: test/coverage.xml

View File

@ -1,195 +0,0 @@
scheduled-ci:
triggers:
- schedule:
# runs every 4 hours on the 45th minute
cron: "45 0,4,8,12,16,20 * * *"
filters:
branches:
only:
- master
jobs:
- docker_build_job:
name: "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
image_name: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
- pytorch_linux_build:
name: periodic_pytorch_xenial_cuda11_3_cudnn8_gcc7_build
requires:
- "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
build_environment: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-build"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
- pytorch_linux_test:
name: periodic_pytorch_xenial_cuda11_3_cudnn8_gcc7_test
requires:
- periodic_pytorch_xenial_cuda11_3_cudnn8_gcc7_build
build_environment: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-test"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
use_cuda_docker_runtime: "1"
resource_class: gpu.medium
- pytorch_linux_build:
name: periodic_libtorch_xenial_cuda11_3_cudnn8_gcc7_build
requires:
- "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
build_environment: "pytorch-libtorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-build"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
- pytorch_windows_build:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
name: periodic_pytorch_windows_cuda11.3_build
python_version: "3.6"
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
- pytorch_windows_test:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
executor: windows-with-nvidia-gpu
name: periodic_pytorch_windows_cuda11.3_test1
python_version: "3.6"
requires:
- periodic_pytorch_windows_cuda11.3_build
test_name: pytorch-windows-test1
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
- pytorch_windows_test:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
executor: windows-with-nvidia-gpu
name: periodic_pytorch_windows_cuda11.3_test2
python_version: "3.6"
requires:
- periodic_pytorch_windows_cuda11.3_build
test_name: pytorch-windows-test2
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
# The following allows these jobs to run on ci-all and release branches
debuggable-scheduled-ci:
jobs:
- docker_build_job:
name: "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
image_name: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_linux_build:
name: pytorch_linux_xenial_cuda11_3_cudnn8_py3_gcc7_build
requires:
- "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
build_environment: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-build"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_linux_test:
name: pytorch_linux_xenial_cuda11_3_cudnn8_py3_gcc7_test
requires:
- pytorch_linux_xenial_cuda11_3_cudnn8_py3_gcc7_build
build_environment: "pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-test"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
use_cuda_docker_runtime: "1"
resource_class: gpu.medium
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_linux_build:
name: pytorch_libtorch_linux_xenial_cuda11_3_cudnn8_py3_gcc7_build
requires:
- "docker-pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
build_environment: "pytorch-libtorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7-build"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_windows_build:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
name: pytorch_windows_vs2019_py36_cuda11.3_build
python_version: "3.6"
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_windows_test:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
executor: windows-with-nvidia-gpu
name: pytorch_windows_vs2019_py36_cuda11.3_test1
python_version: "3.6"
requires:
- pytorch_windows_vs2019_py36_cuda11.3_build
test_name: pytorch-windows-test1
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
- pytorch_windows_test:
build_environment: pytorch-win-vs2019-cuda11-cudnn8-py3
cuda_version: "11.3"
executor: windows-with-nvidia-gpu
name: pytorch_windows_vs2019_py36_cuda11.3_test2
python_version: "3.6"
requires:
- pytorch_windows_vs2019_py36_cuda11.3_build
test_name: pytorch-windows-test2
use_cuda: "1"
vc_product: BuildTools
vc_version: "14.28.29333"
vc_year: "2019"
filters:
branches:
only:
- /ci-all\/.*/
- /release\/.*/
# the following clones pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7's tests but enables
# slow tests and sets an environment variable so gradcheck runs with fast_mode=False
slow-gradcheck-scheduled-ci:
triggers:
- schedule:
# runs every 8 hours on the 45th minute
cron: "45 0,8,16 * * *"
filters:
branches:
only:
- master
jobs:
- docker_build_job:
name: "docker-pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
image_name: "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
- pytorch_linux_build:
name: periodic_pytorch_xenial_cuda10_2_cudnn7_gcc7_build
requires:
- "docker-pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
build_environment: "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7-build"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
- pytorch_linux_test:
name: periodic_pytorch_xenial_cuda10_2_cudnn7_gcc7_old_gradcheck_tests
requires:
- periodic_pytorch_xenial_cuda10_2_cudnn7_gcc7_build
build_environment: "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7-old-gradcheck-tests"
docker_image: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
use_cuda_docker_runtime: "1"
resource_class: gpu.medium

View File

@ -1129,3 +1129,4 @@ JNIEXPORT void JNI_OnUnload(JavaVM* vm, void* reserved);
#define JNI_ABORT 2 /* free buffer w/o copying back */
#endif /* JNI_H_ */

View File

@ -6,11 +6,8 @@ bugprone-*,
-bugprone-forward-declaration-namespace,
-bugprone-macro-parentheses,
-bugprone-lambda-function-name,
-bugprone-reserved-identifier,
cppcoreguidelines-*,
-cppcoreguidelines-avoid-magic-numbers,
-cppcoreguidelines-interfaces-global-init,
-cppcoreguidelines-macro-usage,
-cppcoreguidelines-owning-memory,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-constant-array-index,
@ -33,7 +30,6 @@ modernize-*,
-modernize-use-trailing-return-type,
performance-*,
-performance-noexcept-move-constructor,
-performance-unnecessary-value-param,
'
HeaderFilterRegex: 'torch/csrc/.*'
AnalyzeTemporaryDtors: false

View File

@ -1,15 +0,0 @@
[run]
plugins =
coverage_plugins.jit_plugin
omit =
*/tmp*
*/Temp/*
*/usr/local/lib*
*test/*
[report]
omit =
*/tmp*
*/Temp/*
*/usr/local/lib*
*test/*

35
.flake8
View File

@ -4,7 +4,7 @@ max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E721,E741,F405,F821,F841,F999,W503,W504,C408,E302,W291,E303,
E203,E305,E402,E501,E721,E741,F403,F405,F821,F841,F999,W503,W504,C408,E302,W291,E303,
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
# to line this up with executable bit
EXE001,
@ -13,20 +13,21 @@ ignore =
# these ignores are from flake8-comprehensions; please fix!
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415
per-file-ignores = __init__.py: F401 torch/utils/cpp_extension.py: B950
optional-ascii-coding = True
exclude =
./.git,
./build_code_analyzer,
./build_test_custom_build,
./build,
./caffe2,
./docs/caffe2,
./docs/cpp/src,
./docs/src,
./scripts,
./test/generated_type_hints_smoketest.py,
./third_party,
./torch/include,
./torch/lib,
./venv,
*.pyi
docs/src,
docs/cpp/src,
venv,
third_party,
caffe2,
scripts,
docs/caffe2,
torch/lib/include,
torch/lib/tmp_install,
build,
torch/include,
*.pyi,
.git,
build,
build_test_custom_build,
build_code_analyzer,
test/generated_type_hints_smoketest.py

View File

@ -1,14 +0,0 @@
# automatically load the pytoch-gdb extension.
#
# gdb automatically tries to load this file whenever it is executed from the
# root of the pytorch repo, but by default it is not allowed to do so due to
# security reasons. If you want to use pytorch-gdb, please add the following
# line to your ~/.gdbinit (i.e., the .gdbinit file which is in your home
# directory, NOT this file):
# add-auto-load-safe-path /path/to/pytorch/.gdbinit
#
# Alternatively, you can manually load the pytorch-gdb commands into your
# existing gdb session by doing the following:
# (gdb) source /path/to/pytorch/tools/gdb/pytorch-gdb.py
source tools/gdb/pytorch-gdb.py

View File

@ -11,5 +11,3 @@ labels_to_circle_params:
- v[0-9]+(\.[0-9]+)*-rc[0-9]+
set_to_false:
- run_build
ci/master:
parameter: run_master_build

View File

@ -1,34 +0,0 @@
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
#
# NOTE (Apr, 5, 2021): Linux runners are currently all an amazonlinux2
#
# TODO: Add some documentation on how the auto-scaling works
#
# NOTE: Default values,
#
# runner_types:
# runner_label:
# instance_type: m4.large
# os: linux
# max_available: 20
# disk_size: 50
runner_types:
linux.2xlarge:
instance_type: c5.2xlarge
os: linux
max_available: 500
disk_size: 150
linux.8xlarge.nvidia.gpu:
instance_type: g3.8xlarge
os: linux
max_available: 50
disk_size: 150
windows.4xlarge:
instance_type: c5.4xlarge
os: windows
max_available: 200
disk_size: 256

View File

@ -1,42 +0,0 @@
#!/bin/sh
set -xeuo pipefail
PYTORCH_DOCKER_TAG=$(git describe --tags --always)-devel
CUDA_VERSION=11.1
# Build PyTorch nightly docker
make -f docker.Makefile \
DOCKER_REGISTRY=ghcr.io \
DOCKER_ORG=pytorch \
CUDA_VERSION=${CUDA_VERSION} \
DOCKER_IMAGE=pytorch-nightly \
DOCKER_TAG=${PYTORCH_DOCKER_TAG} \
INSTALL_CHANNEL=pytorch-nightly BUILD_TYPE=official devel-image
# Get the PYTORCH_NIGHTLY_COMMIT from the docker image
PYTORCH_NIGHTLY_COMMIT=$(docker run \
ghcr.io/pytorch/pytorch-nightly:${PYTORCH_DOCKER_TAG} \
python -c 'import torch; print(torch.version.git_version)' | head -c 7)
docker tag ghcr.io/pytorch/pytorch-nightly:${PYTORCH_DOCKER_TAG} \
ghcr.io/pytorch/pytorch-nightly:${PYTORCH_NIGHTLY_COMMIT}-cu${CUDA_VERSION}
docker tag ghcr.io/pytorch/pytorch-nightly:${PYTORCH_NIGHTLY_COMMIT}-cu${CUDA_VERSION} \
ghcr.io/pytorch/pytorch-nightly:latest
# Push the nightly docker to GitHub Container Registry
echo $GHCR_PAT | docker login ghcr.io -u pytorch --password-stdin
make -f docker.Makefile \
DOCKER_REGISTRY=ghcr.io \
DOCKER_ORG=pytorch \
DOCKER_IMAGE=pytorch-nightly \
DOCKER_TAG=${PYTORCH_NIGHTLY_COMMIT}-cu${CUDA_VERSION} \
devel-push
make -f docker.Makefile \
DOCKER_REGISTRY=ghcr.io \
DOCKER_ORG=pytorch \
DOCKER_IMAGE=pytorch-nightly \
DOCKER_TAG=latest \
devel-push

View File

@ -10,13 +10,14 @@ architectures:
* Latest ROCM
"""
import argparse
import json
from typing import Dict, List
import os
import itertools
CUDA_ARCHES = [
"10.1",
"10.2",
"11.1"
"11.0"
]
ROCM_ARCHES = [
@ -24,17 +25,13 @@ ROCM_ARCHES = [
"4.0"
]
FULL_ARCHES = [
"cpu",
*CUDA_ARCHES,
*ROCM_ARCHES
]
def arch_type(arch_version: str) -> str:
if arch_version in CUDA_ARCHES:
return "cuda"
elif arch_version in ROCM_ARCHES:
return "rocm"
else: # arch_version should always be "cpu" in this case
return "cpu"
WHEEL_CONTAINER_IMAGES = {
CONTAINER_IMAGES = {
**{
# TODO: Re-do manylinux CUDA image tagging scheme to be similar to
# ROCM so we don't have to do this replacement
@ -48,29 +45,6 @@ WHEEL_CONTAINER_IMAGES = {
"cpu": "pytorch/manylinux-cpu"
}
CONDA_CONTAINER_IMAGES = {
**{
gpu_arch: f"pytorch/conda-builder:cuda{gpu_arch}"
for gpu_arch in CUDA_ARCHES
},
"cpu": "pytorch/conda-builder:cpu"
}
LIBTORCH_CONTAINER_IMAGES = {
**{
# TODO: Re-do manylinux CUDA image tagging scheme to be similar to
# ROCM so we don't have to do this replacement
(gpu_arch, "pre-cxx11"): f"pytorch/manylinux-cuda{gpu_arch.replace('.', '')}"
for gpu_arch in CUDA_ARCHES
},
**{
(gpu_arch, "cxx11-abi"): f"pytorch/libtorch-cxx11-builder:cuda{gpu_arch}"
for gpu_arch in CUDA_ARCHES
},
("cpu", "pre-cxx11"): "pytorch/manylinux-cpu",
("cpu", "cxx11-abi"): "pytorch/libtorch-cxx11-builder:cpu",
}
FULL_PYTHON_VERSIONS = [
"3.6",
"3.7",
@ -79,89 +53,34 @@ FULL_PYTHON_VERSIONS = [
]
def is_pull_request() -> bool:
return False
# return os.environ.get("GITHUB_HEAD_REF")
def is_pull_request():
return os.environ.get("GITHUB_HEAD_REF")
def snip_if(is_pr: bool, versions: List[str]) -> List[str]:
"""
Return the full list of versions, or just the latest if on a PR.
"""
return [versions[-1]] if is_pr else versions
def generate_conda_matrix(is_pr: bool) -> List[Dict[str, str]]:
return [
{
def generate_matrix():
python_versions = FULL_PYTHON_VERSIONS
arches = FULL_ARCHES
if is_pull_request():
python_versions = [python_versions[-1]]
arches = ["cpu", CUDA_ARCHES[-1], ROCM_ARCHES[-1]]
matrix = []
for item in itertools.product(python_versions, arches):
python_version, arch_version = item
# Not my favorite code here
gpu_arch_type = "cuda"
if "rocm" in CONTAINER_IMAGES[arch_version]:
gpu_arch_type = "rocm"
elif "cpu" in CONTAINER_IMAGES[arch_version]:
gpu_arch_type = "cpu"
matrix.append({
"python_version": python_version,
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": arch_version,
"container_image": CONDA_CONTAINER_IMAGES[arch_version],
}
for python_version in snip_if(is_pr, FULL_PYTHON_VERSIONS)
# We don't currently build conda packages for rocm
for arch_version in ["cpu"] + snip_if(is_pr, CUDA_ARCHES)
]
def generate_libtorch_matrix(is_pr: bool) -> List[Dict[str, str]]:
libtorch_variants = [
"shared-with-deps",
"shared-without-deps",
"static-with-deps",
"static-without-deps",
]
return [
{
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_version": arch_version,
"libtorch_variant": libtorch_variant,
"devtoolset": abi_version,
"container_image": LIBTORCH_CONTAINER_IMAGES[(arch_version, abi_version)],
}
# We don't currently build libtorch for rocm
for arch_version in ["cpu"] + snip_if(is_pr, CUDA_ARCHES)
for libtorch_variant in libtorch_variants
# one of the values in the following list must be exactly
# "cxx11-abi", but the precise value of the other one doesn't
# matter
for abi_version in ["cxx11-abi", "pre-cxx11"]
]
def generate_wheels_matrix(is_pr: bool) -> List[Dict[str, str]]:
arches = ["cpu"]
arches += snip_if(is_pr, CUDA_ARCHES)
arches += snip_if(is_pr, ROCM_ARCHES)
return [
{
"python_version": python_version,
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_version": arch_version,
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
}
for python_version in snip_if(is_pr, FULL_PYTHON_VERSIONS)
for arch_version in arches
]
def from_includes(includes: List[Dict[str, str]]) -> str:
return json.dumps({"include": includes})
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument('mode', choices=['conda', 'libtorch', 'wheels'])
args = parser.parse_args()
is_pr = is_pull_request()
print(from_includes({
'conda': generate_conda_matrix,
'libtorch': generate_libtorch_matrix,
'wheels': generate_wheels_matrix,
}[args.mode](is_pr)))
"container_image": CONTAINER_IMAGES[arch_version]
})
return json.dumps({"include": matrix})
def main():
print(generate_matrix())
if __name__ == "__main__":
main()

View File

@ -1,161 +0,0 @@
#!/usr/bin/env python3
from pathlib import Path
import jinja2
DOCKER_REGISTRY = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
GITHUB_DIR = Path(__file__).parent.parent
CPU_TEST_RUNNER = "linux.2xlarge"
CUDA_TEST_RUNNER = "linux.8xlarge.nvidia.gpu"
class PyTorchLinuxWorkflow:
def __init__(
self,
build_environment: str,
docker_image_base: str,
on_pull_request: bool = False,
enable_doc_jobs: bool = False,
):
self.build_environment = build_environment
self.docker_image_base = docker_image_base
self.test_runner_type = CPU_TEST_RUNNER
self.on_pull_request = on_pull_request
self.enable_doc_jobs = enable_doc_jobs
if "cuda" in build_environment:
self.test_runner_type = CUDA_TEST_RUNNER
def generate_workflow_file(
self, workflow_template: jinja2.Template, jinja_env: jinja2.Environment
) -> Path:
output_file_path = GITHUB_DIR.joinpath(
f"workflows/{self.build_environment}.yml"
)
with open(output_file_path, "w") as output_file:
output_file.writelines(["# @generated DO NOT EDIT MANUALLY\n"])
output_file.write(
workflow_template.render(
build_environment=self.build_environment,
docker_image_base=self.docker_image_base,
test_runner_type=self.test_runner_type,
enable_doc_jobs=self.enable_doc_jobs,
on_pull_request=self.on_pull_request,
)
)
output_file.write('\n')
return output_file_path
WORKFLOWS = [
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-py3.6-gcc5.4",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
on_pull_request=True,
enable_doc_jobs=True,
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-paralleltbb-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-parallelnative-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-pure_torch-linux-xenial-py3.6-gcc5.4",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc5.4",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3.6-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-asan",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang7-onnx",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang7-onnx",
# ),
PyTorchLinuxWorkflow(
build_environment="pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7",
docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-libtorch-linux-xenial-cuda11.1-cudnn8-py3.6-gcc7",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.6-clang9-noarch",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-xla-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-vulkan-linux-bionic-py3.6-clang9",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.6-clang9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-py3.8-gcc9-coverage",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-py3.8-gcc9",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-bionic-rocm3.9-py3.6",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-bionic-rocm3.9-py3.6",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_32",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-x86_64",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v7a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-android-ndk-r19c-arm-v8a",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-asan",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-dynamic",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-custom-static",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
# PyTorchLinuxWorkflow(
# build_environment="pytorch-linux-xenial-py3.6-clang5-mobile-code-analysis",
# docker_image_base=f"{DOCKER_REGISTRY}/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
# ),
]
if __name__ == "__main__":
jinja_env = jinja2.Environment(
variable_start_string="!{{",
loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))),
)
workflow_template = jinja_env.get_template("linux_ci_workflow.yml.in")
for workflow in WORKFLOWS:
print(
workflow.generate_workflow_file(
workflow_template=workflow_template,
jinja_env=jinja_env
)
)

View File

@ -1,55 +0,0 @@
#!/usr/bin/env bash
set -eou pipefail
DISTRIBUTION=$(. /etc/os-release;echo $ID$VERSION_ID) \
DRIVER_FN="NVIDIA-Linux-x86_64-460.39.run"
YUM_REPO_URL="https://nvidia.github.io/nvidia-docker/${DISTRIBUTION}/nvidia-docker.repo"
install_nvidia_docker2_amzn2() {
(
set -x
# Needed for yum-config-manager
sudo yum install -y yum-utils
sudo yum-config-manager --add-repo "${YUM_REPO_URL}"
sudo yum install -y nvidia-docker2
sudo systemctl restart docker
)
}
install_nvidia_driver_amzn2() {
(
set -x
sudo yum groupinstall -y "Development Tools"
# ensure our kernel install is the same as our underlying kernel,
# groupinstall "Development Tools" has a habit of mismatching kernel headers
sudo yum install -y "kernel-devel-uname-r == $(uname -r)"
sudo curl -fsL -o /tmp/nvidia_driver "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash /tmp/nvidia_driver -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
sudo rm -fv /tmp/nvidia_driver
nvidia-smi
)
}
# Install container toolkit based on distribution
echo "== Installing nvidia container toolkit for ${DISTRIBUTION} =="
case "${DISTRIBUTION}" in
amzn*)
install_nvidia_docker2_amzn2
;;
*)
echo "ERROR: Unknown distribution ${DISTRIBUTION}"
exit 1
;;
esac
echo "== Installing nvidia driver ${DRIVER_FN} =="
case "${DISTRIBUTION}" in
amzn*)
install_nvidia_driver_amzn2
;;
*)
echo "ERROR: Unknown distribution ${DISTRIBUTION}"
exit 1
;;
esac

View File

@ -1,51 +0,0 @@
#!/usr/bin/env python3
'''
Verify that it is possible to round-trip native_functions.yaml via ruamel under some
configuration. Keeping native_functions.yaml consistent in this way allows us to
run codemods on the file using ruamel without introducing line noise. Note that we don't
want to normalize the YAML file, as that would to lots of spurious lint failures. Anything
that ruamel understands how to roundtrip, e.g., whitespace and comments, is OK!
ruamel is a bit picky about inconsistent indentation, so you will have to indent your
file properly. Also, if you are working on changing the syntax of native_functions.yaml,
you may find that you want to use some format that is not what ruamel prefers. If so,
it is OK to modify this script (instead of reformatting native_functions.yaml)--the point
is simply to make sure that there is *some* configuration of ruamel that can round trip
the YAML, not to be prescriptive about it.
'''
import ruamel.yaml
import difflib
import sys
from pathlib import Path
from io import StringIO
def fn(base):
return str(base / Path("aten/src/ATen/native/native_functions.yaml"))
with open(Path(__file__).parent.parent.parent / fn('.'), "r") as f:
contents = f.read()
yaml = ruamel.yaml.YAML()
yaml.preserve_quotes = True
yaml.width = 1000
yaml.boolean_representation = ['False', 'True']
r = yaml.load(contents)
# Cuz ruamel's author intentionally didn't include conversion to string
# https://stackoverflow.com/questions/47614862/best-way-to-use-ruamel-yaml-to-dump-to-string-not-to-stream
string_stream = StringIO()
yaml.dump(r, string_stream)
new_contents = string_stream.getvalue()
string_stream.close()
if contents != new_contents:
print("""\
## LINT FAILURE: native_functions.yaml ##
native_functions.yaml failed lint; please apply the diff below to fix lint.
If you think this is in error, please see .github/scripts/lint_native_functions.py
""", file=sys.stderr)
sys.stdout.writelines(difflib.unified_diff(contents.splitlines(True), new_contents.splitlines(True), fn('a'), fn('b')))
sys.exit(1)

View File

@ -1,21 +0,0 @@
#!/usr/bin/env python3
import os
import re
def main() -> None:
ref = os.environ['GITHUB_REF']
m = re.match(r'^refs/(\w+)/(.*)$', ref)
if m:
category, stripped = m.groups()
if category == 'heads':
print(f'::set-output name=branch::{stripped}')
elif category == 'pull':
print(f'::set-output name=branch::pull/{stripped.split("/")[0]}')
elif category == 'tags':
print(f'::set-output name=tag::{stripped}')
if __name__ == '__main__':
main()

View File

@ -1,37 +0,0 @@
#!/usr/bin/env python3
'''
This file verifies that the workflows that are potentially canceled in our cancel_redundant_workflow.yml
match the workflows we have running on pull requests (found in .github/workflows). This way, anytime a
workflow is added or removed, people can be reminded to modify the cancel_redundant_workflow.yml accordingly.
'''
import ruamel.yaml
from pathlib import Path
yaml = ruamel.yaml.YAML()
yaml.preserve_quotes = True
yaml.boolean_representation = ['False', 'True']
yaml.default_flow_style = False
if __name__ == '__main__':
workflow_paths = (Path(__file__).parent.parent / 'workflows').rglob('*')
workflows = []
for path in workflow_paths:
if path.suffix in {'.yml', '.yaml'}:
with open(path) as f:
data = yaml.load(f)
assert 'name' in data, 'Every GHA workflow must have a name.'
if 'pull_request' in data['on']:
workflows.append(data['name'])
with open('.github/workflows/cancel_redundant_workflows.yml', 'r') as f:
data = yaml.load(f)
# Replace workflows to cancel
data['on']['workflow_run']['workflows'] = sorted(workflows)
with open('.github/workflows/cancel_redundant_workflows.yml', 'w') as f:
yaml.dump(data, f)

View File

@ -1,5 +0,0 @@
#!/usr/bin/env bash
CHANGES=$(git status --porcelain)
echo "$CHANGES"
git diff
[ -z "$CHANGES" ]

View File

@ -1,103 +0,0 @@
"""
Generate a torchbench test report from a file containing the PR body.
Currently, only supports running tests on specified model names
Testing environment:
- Intel Xeon 8259CL @ 2.50 GHz, 24 Cores with disabled Turbo and HT
- Nvidia Tesla T4
- Nvidia Driver 450.51.06
- Python 3.7
- CUDA 10.2
"""
# Known issues:
# 1. Does not reuse the build artifact in other CI workflows
# 2. CI jobs are serialized because there is only one worker
import os
import pathlib
import argparse
import subprocess
from typing import List
CUDA_VERSION = "cu102"
PYTHON_VERSION = "3.7"
TORCHBENCH_CONFIG_NAME = "config.yaml"
MAGIC_PREFIX = "RUN_TORCHBENCH:"
ABTEST_CONFIG_TEMPLATE = """# This config is automatically generated by run_torchbench.py
start: {control}
end: {treatment}
threshold: 100
direction: decrease
timeout: 720
tests:"""
def gen_abtest_config(control: str, treatment: str, models: List[str]):
d = {}
d["control"] = control
d["treatment"] = treatment
config = ABTEST_CONFIG_TEMPLATE.format(**d)
if models == ["ALL"]:
return config + "\n"
for model in models:
config = f"{config}\n - {model}"
config = config + "\n"
return config
def deploy_torchbench_config(output_dir: str, config: str):
# Create test dir if needed
pathlib.Path(output_dir).mkdir(exist_ok=True)
# TorchBench config file name
config_path = os.path.join(output_dir, TORCHBENCH_CONFIG_NAME)
with open(config_path, "w") as fp:
fp.write(config)
def extract_models_from_pr(torchbench_path: str, prbody_file: str) -> List[str]:
model_list = []
with open(prbody_file, "r") as pf:
lines = map(lambda x: x.strip(), pf.read().splitlines())
magic_lines = list(filter(lambda x: x.startswith(MAGIC_PREFIX), lines))
if magic_lines:
# Only the first magic line will be respected.
model_list = list(map(lambda x: x.strip(), magic_lines[0][len(MAGIC_PREFIX):].split(",")))
# Shortcut: if model_list is ["ALL"], run all the tests
if model_list == ["ALL"]:
return model_list
# Sanity check: make sure all the user specified models exist in torchbench repository
benchmark_path = os.path.join(torchbench_path, "torchbenchmark", "models")
full_model_list = [model for model in os.listdir(benchmark_path) if os.path.isdir(os.path.join(benchmark_path, model))]
for m in model_list:
if m not in full_model_list:
print(f"The model {m} you specified does not exist in TorchBench suite. Please double check.")
return []
return model_list
def run_torchbench(pytorch_path: str, torchbench_path: str, output_dir: str):
# Copy system environment so that we will not override
env = dict(os.environ)
command = ["python", "bisection.py", "--work-dir", output_dir,
"--pytorch-src", pytorch_path, "--torchbench-src", torchbench_path,
"--config", os.path.join(output_dir, "config.yaml"),
"--output", os.path.join(output_dir, "result.txt")]
subprocess.check_call(command, cwd=torchbench_path, env=env)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run TorchBench tests based on PR')
parser.add_argument('--pr-num', required=True, type=str, help="The Pull Request number")
parser.add_argument('--pr-base-sha', required=True, type=str, help="The Pull Request base hash")
parser.add_argument('--pr-head-sha', required=True, type=str, help="The Pull Request head hash")
parser.add_argument('--pr-body', required=True, help="The file that contains body of a Pull Request")
parser.add_argument('--pytorch-path', required=True, type=str, help="Path to pytorch repository")
parser.add_argument('--torchbench-path', required=True, type=str, help="Path to TorchBench repository")
args = parser.parse_args()
output_dir: str = os.path.join(os.environ["HOME"], ".torchbench", "bisection", f"pr{args.pr_num}")
# Identify the specified models and verify the input
models = extract_models_from_pr(args.torchbench_path, args.pr_body)
if not models:
print("Can't parse the model filter from the pr body. Currently we only support allow-list.")
exit(1)
print(f"Ready to run TorchBench with benchmark. Result will be saved in the directory: {output_dir}.")
# Run TorchBench with the generated config
torchbench_config = gen_abtest_config(args.pr_base_sha, args.pr_head_sha, models)
deploy_torchbench_config(output_dir, torchbench_config)
run_torchbench(pytorch_path=args.pytorch_path, torchbench_path=args.torchbench_path, output_dir=output_dir)

View File

@ -1,368 +0,0 @@
# Template is at: .github/templates/linux_ci_workflow.yml
# Generation script: .github/scripts/generate_linux_ci_workflows.py
name: Linux CI (!{{ build_environment }})
on:
# TODO: Enable pull_request builds when we can verify capacity can be met by auto-scalers
{%- if on_pull_request %}
pull_request:
{%- endif %}
push:
branches:
- master
- release/*
workflow_dispatch:
env:
BUILD_ENVIRONMENT: !{{ build_environment }}
DOCKER_IMAGE_BASE: !{{ docker_image_base }}
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
TORCH_CUDA_ARCH_LIST: 5.2
IN_CI: 1
# Used for custom_opertor, jit_hooks, custom_backend, see .jenkins/pytorch/build.sh
CUSTOM_TEST_ARTIFACT_BUILD_DIR: build/custom_test_artifacts
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
jobs:
calculate-docker-image:
runs-on: linux.2xlarge
env:
DOCKER_BUILDKIT: 1
timeout-minutes: 90
outputs:
docker_image: ${{ steps.calculate-tag.outputs.docker_image }}
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow use of git merge-base
fetch-depth: 0
- name: Calculate docker image tag
id: calculate-tag
run: |
DOCKER_TAG=$(git rev-parse HEAD:.circleci/docker)
echo "::set-output name=docker_tag::${DOCKER_TAG}"
echo "::set-output name=docker_image::${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"
- name: Check if image should be built
id: check
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
BASE_REVISION: ${{ github.event.pull_request.base.sha || github.sha }}
run: |
eval "$(aws ecr get-login --no-include-email --region us-east-1)"
set -x
# Check if image already exists, if it does then skip building it
if docker manifest inspect "${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"; then
exit 0
fi
if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then
# if we're on the base branch then use the parent commit
MERGE_BASE=$(git rev-parse HEAD~)
else
# otherwise we're on a PR, so use the most recent base commit
MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION")
fi
# Covers the case where a previous tag doesn't exist for the tree
# this is only really applicable on trees that don't have `.circleci/docker` at its merge base, i.e. nightly
if ! git rev-parse "$MERGE_BASE:.circleci/docker"; then
echo "Directory '.circleci/docker' not found in commit $MERGE_BASE, you should probably rebase onto a more recent commit"
exit 1
fi
PREVIOUS_DOCKER_TAG=$(git rev-parse "$MERGE_BASE:.circleci/docker")
# If no image exists but the hash is the same as the previous hash then we should error out here
if [[ "${PREVIOUS_DOCKER_TAG}" = "${DOCKER_TAG}" ]]; then
echo "ERROR: Something has gone wrong and the previous image isn't available for the merge-base of your branch"
echo " contact the PyTorch team to restore the original images"
exit 1
fi
echo ::set-output name=rebuild::yes
- name: Build and push docker image
if: steps.check.outputs.rebuild
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
DOCKER_SKIP_S3_UPLOAD: 1
run: |
export IMAGE_NAME=${DOCKER_IMAGE_BASE#308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/}
cd .circleci/docker && ./build_docker.sh
build:
runs-on: linux.2xlarge
needs: calculate-docker-image
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow sharding to use git rev-list
submodules: recursive
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Build PyTorch
run: |
docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e SCCACHE_BUCKET \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e SKIP_SCCACHE_INITIALIZATION=1 \
-e TORCH_CUDA_ARCH_LIST \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && .jenkins/pytorch/build.sh'
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Archive artifacts into zip
run: |
zip -r artifacts.zip dist/ build/
- uses: actions/upload-artifact@v2
name: Store PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
retention-days: 30
if-no-files-found: error
path:
artifacts.zip
- name: Clean up docker images
if: always()
run: |
# Prune all of the docker images
docker system prune -af
test:
runs-on: !{{ test_runner_type }}
needs:
- calculate-docker-image
- build
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)/../":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
if: ${{ contains(env.BUILD_ENVIRONMENT, 'cuda') }}
run: |
bash .github/scripts/install_nvidia_utils_linux.sh
echo "GPU_FLAG=--gpus all" >> "${GITHUB_ENV}"
- name: Determine shm-size
run: |
shm_size="1g"
case "${BUILD_ENVIRONMENT}" in
*cuda*)
shm_size="2g"
;;
*rocm*)
shm_size="8g"
;;
esac
echo "SHM_SIZE=${shm_size}" >> "${GITHUB_ENV}"
- uses: actions/download-artifact@v2
name: Download PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
- name: Unzip artifacts
run: |
unzip -o artifacts.zip
- name: Output disk space left
run: |
sudo df -H
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Test PyTorch
run: |
# TODO: Stop building test binaries as part of the build phase
# Used for GPU_FLAG since that doesn't play nice
# shellcheck disable=SC2086
docker run \
${GPU_FLAG:-} \
-e BUILD_ENVIRONMENT \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e IN_CI \
-e MAX_JOBS="$(nproc --ignore=2)" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--shm-size="${SHM_SIZE}" \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && pip install dist/*.whl && .jenkins/pytorch/test.sh'
- name: Chown workspace
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- uses: actions/upload-artifact@v2
name: Store PyTorch Test Reports
if: always()
with:
name: test-reports
retention-days: 30
if-no-files-found: error
path:
test/**/*.xml
- name: Clean up docker images
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
# Prune all of the docker images
docker system prune -af
render_test_results:
if: always()
needs:
- test
runs-on: ubuntu-18.04
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow tools/print_test_stats.py to use Git commands
fetch-depth: 0
- uses: actions/download-artifact@v2
name: Download PyTorch Test Reports
with:
name: test-reports
path: test/test-reports
- uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
# boto3 version copied from .circleci/docker/common/install_conda.sh
run: |
pip install -r requirements.txt
pip install boto3==1.16.34 junitparser rich
- name: Output Test Results (Click Me)
run: |
python tools/render_junit.py test
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py
- name: Display and upload test statistics (Click Me)
# temporary hack: set CIRCLE_* vars, until we update
# tools/print_test_stats.py to natively support GitHub Actions
env:
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_OSSCI_METRICS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_OSSCI_METRICS_SECRET_ACCESS_KEY }}
CIRCLE_BRANCH: ${{ steps.parse-ref.outputs.branch }}
CIRCLE_JOB: !{{ build_environment }}
CIRCLE_PR_NUMBER: ${{ github.event.pull_request.number }}
CIRCLE_SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
CIRCLE_TAG: ${{ steps.parse-ref.outputs.tag }}
CIRCLE_WORKFLOW_ID: ${{ github.run_id }} # dunno if this corresponds
run: |
export PYTHONPATH=$PWD
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test
{%- if enable_doc_jobs %}
pytorch_python_doc_build:
runs-on: linux.2xlarge
needs:
- calculate-docker-image
- build
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v alpine chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow sharding to use git rev-list
submodules: recursive
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- uses: actions/download-artifact@v2
name: Download PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
- name: Unzip artifacts
run: |
unzip -o artifacts.zip
- name: Build Python Doc in Docker
run: |
set -ex
time docker pull "${DOCKER_IMAGE}" > /dev/null
echo "${GITHUB_REF}"
ref=${GITHUB_REF##*/}
target=${ref//v}
docker run \
-e BUILD_ENVIRONMENT \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e IN_CI \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e CIRCLE_SHA1="$GITHUB_SHA" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--name="$GITHUB_SHA" \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
bash -c "sudo chown -R jenkins . && pip install dist/*.whl && ./.circleci/scripts/python_doc_push_script.sh docs/$target $target site"
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v alpine chown -R "$(id -u):$(id -g)" .
- name: Archive artifacts into zip
run: |
zip -r pytorch_github_io.zip "${GITHUB_WORKSPACE}/pytorch.github.io"
- uses: actions/upload-artifact@v2
name: Store PyTorch Build Artifacts
with:
name: pytorch_github_io
if-no-files-found: error
path: pytorch_github_io.zip
- name: Clean up docker images
if: always()
run: |
# Prune all of the docker images
docker system prune -af
{%- endif -%}

View File

@ -1,66 +0,0 @@
name: Add annotations
on:
workflow_run:
types:
- completed
workflows:
- Lint
jobs:
annotate:
strategy:
fail-fast: false
matrix:
name:
- flake8-py3
- clang-tidy
runs-on: ubuntu-18.04
steps:
- name: Download artifact
uses: actions/github-script@v3
env:
RUN_ID: ${{ github.event.workflow_run.id }}
LINT_NAME: ${{ matrix.name }}
with:
# https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
script: |
const artifacts = await github.actions.listWorkflowRunArtifacts({
owner: context.repo.owner,
repo: context.repo.repo,
run_id: process.env.RUN_ID,
});
const filteredArtifacts = artifacts.data.artifacts.filter(artifact => {
return artifact.name == process.env.LINT_NAME;
});
if (filteredArtifacts.length > 0) {
const matchArtifact = filteredArtifacts[0];
const download = await github.actions.downloadArtifact({
owner: context.repo.owner,
repo: context.repo.repo,
artifact_id: matchArtifact.id,
archive_format: 'zip',
});
const fs = require('fs');
fs.writeFileSync(
`${process.env.GITHUB_WORKSPACE}/linter-output.zip`,
Buffer.from(download.data),
);
}
- name: Unzip artifact
id: unzip
run: |
if unzip linter-output.zip annotations.json commit-sha.txt; then
echo ::set-output \
name=sha::"$(grep -Em1 '^[[:xdigit:]]{40}$' commit-sha.txt)"
fi
- if: steps.unzip.outputs.sha
name: Add annotations
uses: pytorch/add-annotations-github-action@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
check_name: ${{ matrix.name }}
linter_output_path: annotations.json
commit_sha: ${{ steps.unzip.outputs.sha }}
mode: json

View File

@ -1,47 +0,0 @@
name: Label PRs & Issues
on:
issues:
types: [opened, edited]
pull_request_target:
types: [edited, opened, synchronize, reopened]
jobs:
auto-label-rocm:
runs-on: ubuntu-18.04
steps:
- name: Retrieve information
id: vars
env:
EVENT_NAME: ${{ github.event_name }}
PR_TITLE: ${{ github.event.pull_request.title }}
PR_NUMBER: ${{ github.event.pull_request.number }}
ISSUE_TITLE: ${{ github.event.issue.title }}
ISSUE_NUMBER: ${{ github.event.issue.number }}
run: |
set -eux
if [[ "$EVENT_NAME" == "pull_request_target" ]]; then
TITLE="${PR_TITLE}"
ISSUE_NUMBER="${PR_NUMBER}"
else
TITLE="${ISSUE_TITLE}"
# ISSUE_NUMBER is already set
fi
echo ::set-output name=TITLE::"${TITLE}"
echo ::set-output name=ISSUE_NUMBER::"${ISSUE_NUMBER}"
- name: Auto-label ROCm
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
TITLE: ${{ steps.vars.outputs.TITLE }}
ISSUE_NUMBER: ${{ steps.vars.outputs.ISSUE_NUMBER }}
OWNER: ${{ github.repository_owner }}
REPO: ${{ github.event.repository.name }}
run: |
set -eux
if [[ "${TITLE,,}" == *rocm* ]]; then
curl \
-X POST \
-H "Authorization: token ${GITHUB_TOKEN}" \
"https://api.github.com/repos/${OWNER}/${REPO}/issues/${ISSUE_NUMBER}/labels" \
-d '{"labels":["module: rocm"]}'
fi

View File

@ -21,8 +21,8 @@ jobs:
id: set-matrix
run: |
# outputting for debugging purposes
MATRIX=$(python .github/scripts/generate_binary_build_matrix.py wheels)
echo "${MATRIX}"
python .github/scripts/generate_binary_build_matrix.py
MATRIX=$(python .github/scripts/generate_binary_build_matrix.py)
echo "::set-output name=matrix::${MATRIX}"
build-wheel:
if: ${{ github.repository_owner == 'pytorch' }}
@ -31,7 +31,6 @@ jobs:
strategy:
matrix:
${{ fromJson(needs.generate-build-matrix.outputs.matrix) }}
fail-fast: false
container:
image: ${{ matrix.container_image }}
env:
@ -44,8 +43,6 @@ jobs:
PYTORCH_BUILD_NUMBER: 1
SKIP_ALL_TESTS: 1
steps:
- name: Clean runner workspace
run: rm -rf "$GITHUB_WORKSPACE"
- name: Clone pytorch/pytorch
uses: actions/checkout@v2
with:
@ -61,17 +58,13 @@ jobs:
run: |
version=$(.github/scripts/generate_pytorch_version.py)
echo "Generated version: ${version}"
echo "PYTORCH_BUILD_VERSION=${version}" >> "$GITHUB_ENV"
- name: Set BUILD_SPLIT_CUDA
if: ${{ matrix.gpu_arch_type == 'cuda' && matrix.gpu_arch_version == '11.1' }}
run: |
echo "BUILD_SPLIT_CUDA=1" >> "$GITHUB_ENV"
echo "PYTORCH_BUILD_VERSION=${version}" >> $GITHUB_ENV
# TODO: Remove this once we remove the need for the directories to be
# in specific locations
- name: Symlink repositories to root directory (for legacy scripts purposes)
run: |
ln -s "$PWD"/pytorch /pytorch
ln -s "$PWD"/builder /builder
ln -s $(pwd)/pytorch /pytorch
ln -s $(pwd)/builder /builder
# TODO: Bundle the correct build script in the base container image so
# that we don't have to do this type of specification
- name: Build PyTorch binary (CUDA specific)

View File

@ -1,95 +0,0 @@
name: Build Linux Conda Packages
on:
# TODO: These are only runnable from workflow_dispatch, we need to eventually add
# a cron
# TODO: Add an on_release trigger to build on tags
workflow_dispatch:
jobs:
generate-build-matrix:
if: ${{ github.repository_owner == 'pytorch' }}
runs-on: ubuntu-18.04
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
container:
image: python:3.9
steps:
- name: Clone pytorch/pytorch
uses: actions/checkout@v2
- name: Generating build matrix
id: set-matrix
run: |
# outputting for debugging purposes
MATRIX=$(python .github/scripts/generate_binary_build_matrix.py conda)
echo "${MATRIX}"
echo "::set-output name=matrix::${MATRIX}"
build-conda:
if: ${{ github.repository_owner == 'pytorch' }}
needs: generate-build-matrix
runs-on: linux.2xlarge
strategy:
matrix:
${{ fromJson(needs.generate-build-matrix.outputs.matrix) }}
fail-fast: false
container:
image: ${{ matrix.container_image }}
env:
DESIRED_PYTHON: ${{ matrix.python_version }}
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: ${{ matrix.gpu_arch_version }}
GPU_ARCH_VERSION: ${{ matrix.GPU_ARCH_VERSION }}
GPU_ARCH_TYPE: ${{ matrix.gpu_arch_type }}
NO_BUILD_SUFFIX: True
# TODO: This is a legacy variable, we should just default all build to use
# this folder within the conda/build_pytorch.sh script
TORCH_CONDA_BUILD_FOLDER: pytorch-nightly
# TODO: Another legacy env variable that isn't useful anymore, should default
# to pytorch within the scripts directly
ANACONDA_USER: pytorch
PYTORCH_FINAL_PACKAGE_DIR: /remote
# We specify the CONDA_BLD_PATH here since conda creates extremely long paths
# for its default build path
CONDA_BLD_PATH: /build
PYTORCH_BUILD_NUMBER: 1
SKIP_ALL_TESTS: 1
steps:
- name: Clean runner workspace
run: rm -rf "$GITHUB_WORKSPACE"
- name: Clone pytorch/pytorch
uses: actions/checkout@v2
with:
path: pytorch
submodules: recursive
- name: Clone pytorch/builder
uses: actions/checkout@v2
with:
repository: pytorch/builder
path: builder
- name: Generate version string
working-directory: pytorch/
run: |
version=$(.github/scripts/generate_pytorch_version.py)
echo "Generated version: ${version}"
echo "PYTORCH_BUILD_VERSION=${version}" >> "$GITHUB_ENV"
- name: Set BUILD_SPLIT_CUDA
if: ${{ matrix.gpu_arch_type == 'cuda' && matrix.gpu_arch_version == '11.1' }}
run: |
echo "BUILD_SPLIT_CUDA=1" >> "$GITHUB_ENV"
# TODO: Remove this once we remove the need for the directories to be
# in specific locations
- name: Symlink repositories to root directory (for legacy scripts purposes)
run: |
mv "$PWD"/pytorch /pytorch
mv "$PWD"/builder /builder
# TODO: Bundle the correct build script in the base container image so
# that we don't have to do this type of specification
- name: Build PyTorch binary
run: |
/builder/conda/build_pytorch.sh
- uses: actions/upload-artifact@v2
with:
name: pytorch-conda-py${{ matrix.python_version }}-${{matrix.gpu_arch_type}}-${{ matrix.gpu_arch_version }}
path: /remote/**/*.bz2
# TODO: Add a step here for uploading binaries

View File

@ -1,94 +0,0 @@
name: Build Linux libtorch
on:
# TODO: These are only runnable from workflow_dispatch, we need to eventually add
# a cron
# TODO: Add an on_release trigger to build on tags
workflow_dispatch:
jobs:
generate-build-matrix:
if: ${{ github.repository_owner == 'pytorch' }}
runs-on: ubuntu-18.04
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
container:
image: python:3.9
steps:
- name: Clone pytorch/pytorch
uses: actions/checkout@v2
- name: Generating build matrix
id: set-matrix
run: |
# outputting for debugging purposes
MATRIX=$(python .github/scripts/generate_binary_build_matrix.py libtorch)
echo "${MATRIX}"
echo "::set-output name=matrix::${MATRIX}"
build-libtorch:
if: ${{ github.repository_owner == 'pytorch' }}
needs: generate-build-matrix
runs-on: linux.2xlarge
strategy:
matrix:
${{ fromJson(needs.generate-build-matrix.outputs.matrix) }}
fail-fast: false
container:
image: ${{ matrix.container_image }}
env:
# TODO: remove this var from the libtorch builder script(s)
DESIRED_PYTHON: '3.7'
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: ${{ matrix.gpu_arch_version }}
GPU_ARCH_VERSION: ${{ matrix.GPU_ARCH_VERSION }}
GPU_ARCH_TYPE: ${{ matrix.gpu_arch_type }}
BUILD_PYTHONLESS: 1
LIBTORCH_VARIANT: ${{ matrix.libtorch_variant }}
# TODO: remove this and bake env var into the Docker image
DESIRED_DEVTOOLSET: ${{ matrix.devtoolset }}
PYTORCH_BUILD_NUMBER: 1
SKIP_ALL_TESTS: 1
steps:
- name: Clean runner workspace
run: rm -rf "$GITHUB_WORKSPACE"
- name: Clone pytorch/pytorch
uses: actions/checkout@v2
with:
path: pytorch
submodules: recursive
- name: Clone pytorch/builder
uses: actions/checkout@v2
with:
repository: pytorch/builder
path: builder
- name: Generate version string
working-directory: pytorch/
run: |
version=$(.github/scripts/generate_pytorch_version.py)
echo "Generated version: ${version}"
echo "PYTORCH_BUILD_VERSION=${version}" >> "$GITHUB_ENV"
- name: Set BUILD_SPLIT_CUDA
if: ${{ matrix.gpu_arch_type == 'cuda' && matrix.gpu_arch_version == '11.1' }}
run: |
echo "BUILD_SPLIT_CUDA=1" >> "$GITHUB_ENV"
# TODO: Remove this once we remove the need for the directories to be
# in specific locations
- name: Symlink repositories to root directory (for legacy scripts purposes)
run: |
ln -s "$PWD"/pytorch /pytorch
ln -s "$PWD"/builder /builder
# TODO: Bundle the correct build script in the base container image so
# that we don't have to do this type of specification
- name: Build PyTorch binary (CUDA specific)
if: ${{ matrix.gpu_arch_type == 'cuda' }}
run: |
/builder/manywheel/build.sh
- name: Build PyTorch binary (CPU specific)
if: ${{ matrix.gpu_arch_type == 'cpu' }}
run: |
/builder/manywheel/build_cpu.sh
- uses: actions/upload-artifact@v2
with:
name: pytorch-libtorch-${{ matrix.libtorch_variant }}-${{ matrix.devtoolset }}-${{matrix.gpu_arch_type}}-${{ matrix.gpu_arch_version }}
path: /remote/**/*.zip
# TODO: Add a step here for uploading binaries

View File

@ -1,24 +0,0 @@
name: Cancel redundant workflows
on:
workflow_run:
types:
- requested
# NOTE: Make sure to add to this list as you add more workflows running on 'pull_request'
workflows:
- Lint
- Linux CI (pytorch-linux-xenial-py3.6-gcc5.4)
- Test tools
- TorchBench CI (pytorch-linux-py3.7-cu102)
- clang-format
jobs:
cancel:
# We do not want to cancel reruns on master
if: github.event.workflow_run.head_branch != 'master'
runs-on: ubuntu-18.04
steps:
- name: Cancel duplicate workflow runs
uses: potiuk/cancel-workflow-runs@a81b3c4d59c61e27484cfacdc13897dd908419c9
with:
cancelMode: duplicates
token: ${{ secrets.GITHUB_TOKEN }}
sourceRunId: ${{ github.event.workflow_run.id }}

View File

@ -8,37 +8,46 @@ jobs:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
uses: actions/setup-python@v1
with:
python-version: 3.x
architecture: x64
- name: Fetch PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow us to use git merge-base
uses: actions/checkout@v1
- name: Checkout PR tip
run: |
set -eux
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
# We are on a PR, so actions/checkout leaves us on a merge commit.
# Check out the actual tip of the branch.
git checkout ${{ github.event.pull_request.head.sha }}
fi
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
id: get_pr_tip
- name: Run clang-format
env:
BASE_SHA: ${{ github.event.pull_request.base.sha }}
run: |
set -eu
# This is necessary to get the same results regardless of whether the
# PR was opened directly or from a forked repo. See: `9f890a92` for more info.
git remote add upstream https://github.com/pytorch/pytorch
git fetch upstream "$GITHUB_BASE_REF"
BASE_SHA=${{ github.event.pull_request.base.sha }}
HEAD_SHA=${{ github.event.pull_request.head.sha }}
MERGE_BASE=$(git merge-base $BASE_SHA $HEAD_SHA)
# only run clang-format on allowlisted files
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo "| clang-format failures found! Run: "
echo "| tools/clang_format_ci.sh ${BASE_SHA} "
echo "| tools/clang_format_ci.sh ${MERGE_BASE} "
echo "| to fix this error. "
echo "| For more info, see: https://github.com/pytorch/pytorch/wiki/clang-format "
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
tools/clang_format_ci.sh "${BASE_SHA}"
tools/clang_format_ci.sh ${MERGE_BASE}
GIT_DIFF=$(git diff)
if [[ -z $GIT_DIFF ]]; then
exit 0
fi
echo "$GIT_DIFF"
echo $GIT_DIFF
exit 1

View File

@ -11,234 +11,116 @@ jobs:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
uses: actions/setup-python@v1
with:
python-version: 3.x
architecture: x64
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Install requirements
id: requirements
run: pip install -r requirements.txt
uses: actions/checkout@v1
- name: Checkout PR tip
run: |
set -eux
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
# We are on a PR, so actions/checkout leaves us on a merge commit.
# Check out the actual tip of the branch.
git checkout ${{ github.event.pull_request.head.sha }}
fi
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
id: get_pr_tip
- name: Ensure consistent CircleCI YAML config
if: always() && steps.requirements.outcome == 'success'
run: cd .circleci && ./ensure-consistency.py
- name: Ensure consistent GHA workflows in cancel_redundant_workflows.yml
if: always() && steps.requirements.outcome == 'success'
run: |
pip install ruamel.yaml==0.17.4
echo "Please locally run .github/scripts/regenerate_cancel_redundant_workflow.py and commit if this step fails."
.github/scripts/regenerate_cancel_redundant_workflow.py
git diff --exit-code .github/workflows/cancel_redundant_workflows.yml
- name: Lint native_functions.yaml
if: always() && steps.requirements.outcome == 'success'
pip install -r requirements.txt
cd .circleci && ./ensure-consistency.py
- name: Shellcheck Jenkins scripts
# https://github.com/koalaman/shellcheck#installing-a-pre-compiled-binary
run: |
pip install ruamel.yaml==0.17.4
.github/scripts/lint_native_functions.py
- name: Extract scripts from GitHub Actions workflows
if: always() && steps.requirements.outcome == 'success'
run: |
# For local lints, remove the .extracted_scripts folder if it was already there
rm -rf .extracted_scripts
tools/extract_scripts.py --out=.extracted_scripts
- name: Install ShellCheck
id: install_shellcheck
if: always()
# https://github.com/koalaman/shellcheck/tree/v0.7.2#installing-a-pre-compiled-binary
run: |
set -x
scversion="v0.7.2"
scversion="stable"
wget -qO- "https://github.com/koalaman/shellcheck/releases/download/${scversion?}/shellcheck-${scversion?}.linux.x86_64.tar.xz" | tar -xJv
sudo cp "shellcheck-${scversion}/shellcheck" /usr/bin/
rm -r "shellcheck-${scversion}"
shellcheck --version
- name: Run ShellCheck
if: always() && steps.install_shellcheck.outcome == 'success'
run: |
tools/run_shellcheck.sh .jenkins/pytorch .extracted_scripts
- name: Ensure correct trailing newlines
if: always() && steps.requirements.outcome == 'success'
run: |
(! git --no-pager grep -Il '' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude)**.expect' ':(exclude)tools/clang_format_hash' | tools/trailing_newlines.py || (echo "The above files do not have correct trailing newlines; please normalize them"; false))
- name: Ensure no trailing spaces
if: always()
run: |
(! git --no-pager grep -In '[[:blank:]]$' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' || (echo "The above lines have trailing spaces; please remove them"; false))
.jenkins/run-shellcheck.sh
- name: Ensure no tabs
if: always()
run: |
(! git --no-pager grep -In $'\t' -- . ':(exclude)*.svg' ':(exclude)**Makefile' ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above lines have tabs; please convert them to spaces"; false))
- name: Ensure no non-breaking spaces
if: always()
run: |
# NB: We use 'printf' below rather than '\u000a' since bash pre-4.2
# does not support the '\u000a' syntax (which is relevant for local linters)
(! git --no-pager grep -In "$(printf '\xC2\xA0')" -- . || (echo "The above lines have non-breaking spaces (U+00A0); please convert them to spaces (U+0020)"; false))
(! git grep -I -l $'\t' -- . ':(exclude)*.svg' ':(exclude)**Makefile' ':(exclude)**/contrib/**' ':(exclude)third_party' ':(exclude).gitattributes' ':(exclude).gitmodules' || (echo "The above files have tabs; please convert them to spaces"; false))
- name: Ensure canonical include
if: always()
run: |
(! git --no-pager grep -In $'#include "' -- ./c10 ./aten ./torch/csrc ':(exclude)aten/src/ATen/native/quantized/cpu/qnnpack/**' || (echo "The above lines have include with quotes; please convert them to #include <xxxx>"; false))
- name: Ensure no versionless Python shebangs
if: always()
run: |
(! git --no-pager grep -In '#!.*python$' -- . || (echo "The above lines have versionless Python shebangs; please specify either python2 or python3"; false))
- name: Ensure no unqualified noqa
if: always()
run: |
# shellcheck disable=SC2016
(! git --no-pager grep -InP '# noqa(?!: [A-Z]+\d{3})' -- '**.py' '**.pyi' ':(exclude)caffe2' || (echo 'The above lines have unqualified `noqa`; please convert them to `noqa: XXXX`'; false))
- name: Ensure no unqualified type ignore
if: always()
run: |
# shellcheck disable=SC2016
(! git --no-pager grep -InP '# type:\s*ignore(?!\[)' -- '**.py' '**.pyi' ':(exclude)test/test_jit.py' || (echo 'The above lines have unqualified `type: ignore`; please convert them to `type: ignore[xxxx]`'; false))
# note that this next step depends on a clean checkout;
(! git grep -I -l $'#include "' -- ./c10 ./aten ./torch/csrc ':(exclude)aten/src/ATen/native/quantized/cpu/qnnpack/**' || (echo "The above files have include with quotes; please convert them to #include <xxxx>"; false))
# note that this next step depends on a clean heckout;
# if you run it locally then it will likely to complain
# about all the generated files in torch/test
- name: Ensure C++ source files are not executable
if: always()
run: |
# shellcheck disable=SC2016
(! find . \( -path ./third_party -o -path ./.git -o -path ./torch/bin -o -path ./build \) -prune -o -type f -executable -regextype posix-egrep -not -regex '.+(\.(bash|sh|py|so)|git-pre-commit|git-clang-format|gradlew)$' -print | grep . || (echo 'The above files have executable permission; please remove their executable permission by using `chmod -x`'; false))
- name: C++ docs check
if: always() && steps.requirements.outcome == 'success'
run: |
sudo apt-get install -y doxygen
sudo apt-get install -y doxygen && pip install -r requirements.txt
cd docs/cpp/source && ./check-doxygen.sh
- name: CUDA kernel launch check
if: always() && steps.requirements.outcome == 'success'
run: |
set -eux
python torch/testing/check_kernel_launches.py |& tee "${GITHUB_WORKSPACE}"/cuda_kernel_launch_checks.txt
- name: Ensure no direct cub include
if: always()
run: |
(! git --no-pager grep -I -no $'#include <cub/' -- ./aten ':(exclude)aten/src/ATen/cuda/cub.cuh' || (echo "The above files have direct cub include; please include ATen/cuda/cub.cuh instead and wrap your cub calls in at::native namespace if necessary"; false))
py2-setup-validate-errormsg:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: 2.x
architecture: x64
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Attempt to run setup.py
run: |
python2 setup.py | grep "Python 2 has reached end-of-life and is no longer supported by PyTorch."
templates:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: 3.x
architecture: x64
- name: Install Jinja2
run: pip install Jinja2
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Regenerate workflows
run: .github/scripts/generate_linux_ci_workflows.py
- name: Assert that regenerating the workflows didn't change them
run: .github/scripts/report_git_status.sh
toc:
runs-on: ubuntu-18.04
# https://github.com/actions/virtual-environments/issues/599#issuecomment-602754687
env:
NPM_CONFIG_PREFIX: ~/.npm-global
steps:
- name: Setup Node
uses: actions/setup-node@v2
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Install markdown-toc
run: npm install -g markdown-toc
- name: Regenerate ToCs and check that they didn't change
run: |
set -eux
export PATH=~/.npm-global/bin:"$PATH"
for FILE in $(git grep -Il '<!-- toc -->' -- '**.md'); do
markdown-toc --bullets='-' -i "$FILE"
done
.github/scripts/report_git_status.sh
python torch/testing/check_kernel_launches.py |& tee ${GITHUB_WORKSPACE}/cuda_kernel_launch_checks.txt
flake8-py3:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
uses: actions/setup-python@v1
with:
python-version: 3.x
architecture: x64
- name: Fetch PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 2 # to allow us to use github.event.pull_request.head.sha
- name: Prepare output dir with HEAD commit SHA
env:
HEAD_SHA: ${{ github.event.pull_request.head.sha }}
run: |
mkdir flake8-output
cd flake8-output
echo "$HEAD_SHA" > commit-sha.txt
- name: Install dependencies
uses: actions/checkout@v1
- name: Checkout PR tip
run: |
set -eux
pip install typing-extensions # for tools/translate_annotations.py
pip install -r requirements-flake8.txt
flake8 --version
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
# We are on a PR, so actions/checkout leaves us on a merge commit.
# Check out the actual tip of the branch.
git checkout ${{ github.event.pull_request.head.sha }}
fi
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
id: get_pr_tip
- name: Run flake8
run: |
set -eux
flake8 | tee "${GITHUB_WORKSPACE}"/flake8-output.txt
- name: Translate annotations
if: github.event_name == 'pull_request'
env:
HEAD_SHA: ${{ github.event.pull_request.head.sha }}
run: |
tools/translate_annotations.py \
--file="${GITHUB_WORKSPACE}"/flake8-output.txt \
--regex='^(?P<filename>.*?):(?P<lineNumber>\d+):(?P<columnNumber>\d+): (?P<errorCode>\w+\d+) (?P<errorDesc>.*)' \
--commit="$HEAD_SHA" \
> flake8-output/annotations.json
- name: Upload artifact
uses: actions/upload-artifact@v2
pip install -r requirements-flake8.txt
flake8 --version
flake8 | tee ${GITHUB_WORKSPACE}/flake8-output.txt
- name: Add annotations
uses: pytorch/add-annotations-github-action@master
with:
name: flake8-py3
path: flake8-output/
- name: Fail if there were any warnings
check_name: 'flake8-py3'
linter_output_path: 'flake8-output.txt'
commit_sha: ${{ steps.get_pr_tip.outputs.commit_sha }}
regex: '^(?<filename>.*?):(?<lineNumber>\d+):(?<columnNumber>\d+): (?<errorCode>\w+\d+) (?<errorDesc>.*)'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Catch any other warnings
run: |
set -eux
# Re-output flake8 status so GitHub logs show it on the step that actually failed
cat "${GITHUB_WORKSPACE}"/flake8-output.txt
[ ! -s "${GITHUB_WORKSPACE}"/flake8-output.txt ]
[ ! -s flake8-output.txt ]
clang-tidy:
if: github.event_name == 'pull_request'
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
uses: actions/setup-python@v1
with:
python-version: 3.x
architecture: x64
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # to allow tools/clang_tidy.py to do its thing
- name: Prepare output dir with HEAD commit SHA
env:
HEAD_SHA: ${{ github.event.pull_request.head.sha }}
uses: actions/checkout@v1
- name: Checkout PR tip
run: |
mkdir clang-tidy-output
cd clang-tidy-output
echo "$HEAD_SHA" > commit-sha.txt
set -eux
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
# We are on a PR, so actions/checkout leaves us on a merge commit.
# Check out the actual tip of the branch.
git checkout ${{ github.event.pull_request.head.sha }}
fi
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
id: get_pr_tip
- name: Install dependencies
run: |
set -eux
@ -256,17 +138,19 @@ jobs:
sudo apt-get update
sudo apt-get install -y clang-tidy-11
sudo update-alternatives --install /usr/bin/clang-tidy clang-tidy /usr/bin/clang-tidy-11 1000
- name: Generate build files
- name: Run clang-tidy
run: |
set -eux
git remote add upstream https://github.com/pytorch/pytorch
git fetch upstream "$GITHUB_BASE_REF"
BASE_SHA=${{ github.event.pull_request.base.sha }}
HEAD_SHA=${{ github.event.pull_request.head.sha }}
MERGE_BASE=$(git merge-base $BASE_SHA $HEAD_SHA)
if [[ ! -d build ]]; then
git submodule update --init --recursive
export USE_NCCL=0
export USE_DEPLOY=1
# We really only need compile_commands.json, so no need to build!
time python setup.py --cmake-only build
@ -281,12 +165,6 @@ jobs:
--native-functions-path aten/src/ATen/native/native_functions.yaml \
--nn-path aten/src
fi
- name: Run clang-tidy
env:
BASE_SHA: ${{ github.event.pull_request.base.sha }}
HEAD_SHA: ${{ github.event.pull_request.head.sha }}
run: |
set -eux
# Run Clang-Tidy
# The negative filters below are to exclude files that include onnx_pb.h or
@ -299,7 +177,7 @@ jobs:
python tools/clang_tidy.py \
--verbose \
--paths torch/csrc/ \
--diff "$BASE_SHA" \
--diff "$MERGE_BASE" \
-g"-torch/csrc/jit/passes/onnx/helper.cpp" \
-g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp"\
-g"-torch/csrc/jit/serialization/onnx.cpp" \
@ -316,67 +194,44 @@ jobs:
-g"-torch/csrc/deploy/interpreter/interpreter.h" \
-g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
-g"-torch/csrc/deploy/interpreter/test_main.cpp" \
"$@" > "${GITHUB_WORKSPACE}"/clang-tidy-output.txt
"$@" > ${GITHUB_WORKSPACE}/clang-tidy-output.txt
cat "${GITHUB_WORKSPACE}"/clang-tidy-output.txt
tools/translate_annotations.py \
--file=clang-tidy-output.txt \
--regex='^(?P<filename>.*?):(?P<lineNumber>\d+):(?P<columnNumber>\d+): (?P<errorDesc>.*?) \[(?P<errorCode>.*)\]' \
--commit="$HEAD_SHA" \
> clang-tidy-output/annotations.json
- name: Upload artifact
uses: actions/upload-artifact@v2
cat ${GITHUB_WORKSPACE}/clang-tidy-output.txt
- name: Add annotations
uses: suo/add-annotations-github-action@master
with:
name: clang-tidy
path: clang-tidy-output/
check_name: 'clang-tidy'
linter_output_path: 'clang-tidy-output.txt'
commit_sha: ${{ steps.get_pr_tip.outputs.commit_sha }}
regex: '^(?<filename>.*?):(?<lineNumber>\d+):(?<columnNumber>\d+): (?<errorDesc>.*?) \[(?<errorCode>.*)\]'
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
cmakelint:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
uses: actions/setup-python@v1
with:
python-version: 3.x
architecture: x64
- name: Fetch PyTorch
uses: actions/checkout@v2
- name: Install dependencies
uses: actions/checkout@v1
- name: Checkout PR tip
run: |
set -eux
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
# We are on a PR, so actions/checkout leaves us on a merge commit.
# Check out the actual tip of the branch.
git checkout ${{ github.event.pull_request.head.sha }}
fi
echo ::set-output name=commit_sha::$(git rev-parse HEAD)
id: get_pr_tip
- name: Run cmakelint
run: |
set -eux
pip install cmakelint
cmakelint --version
- name: Run cmakelint
run: |
set -eux
git ls-files -z -- bootstrap '*.cmake' '*.cmake.in' '*CMakeLists.txt' | \
grep -E -z -v '^(cmake/Modules/|cmake/Modules_CUDA_fix/|cmake/Caffe2Config.cmake.in|aten/src/ATen/ATenConfig.cmake.in|cmake/Caffe2ConfigVersion.cmake.in|cmake/TorchConfig.cmake.in|cmake/TorchConfigVersion.cmake.in|cmake/cmake_uninstall.cmake.in)' | \
grep -E -z -v '^(cmake/Modules/|cmake/Modules_CUDA_fix/)' | \
xargs -0 cmakelint --config=.cmakelintrc --spaces=2 --quiet
mypy:
runs-on: ubuntu-18.04
steps:
- name: Setup Python
uses: actions/setup-python@v2
with:
python-version: 3.8
architecture: x64
- name: Fetch PyTorch
uses: actions/checkout@v2
- name: Install dependencies
run: |
set -eux
pip install -r requirements.txt
pip install mypy==0.812
# Needed to check tools/render_junit.py
pip install junitparser rich
- name: Run autogen
run: |
set -eux
time python -mtools.generate_torch_version --is_debug=false
time python -mtools.codegen.gen -s aten/src/ATen -d build/aten/src/ATen
time python -mtools.pyi.gen_pyi --native-functions-path aten/src/ATen/native/native_functions.yaml --deprecated-functions-path "tools/autograd/deprecated.yaml"
- name: Run mypy
run: |
set -eux
for CONFIG in mypy*.ini; do mypy --config="$CONFIG"; done

View File

@ -1,22 +0,0 @@
name: Build PyTorch nightly Docker image and push to GitHub Container Registry
on:
schedule:
# Push the nightly docker daily at 1 PM UTC
- cron: '0 13 * * *'
# Have the ability to trigger this job manually using the API as well
workflow_dispatch:
jobs:
build-publish-docker:
if: ${{ github.repository_owner == 'pytorch' }}
runs-on: linux.2xlarge
env:
GHCR_PAT: ${{ secrets.GHCR_PAT }}
steps:
- name: Checkout
uses: actions/checkout@v2
with:
ref: master
- name: Build and upload nightly docker
run: |
bash .github/scripts/build_publish_nightly_docker.sh

View File

@ -1,288 +0,0 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_ci_workflow.yml
# Generation script: .github/scripts/generate_linux_ci_workflows.py
name: Linux CI (pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7)
on:
# TODO: Enable pull_request builds when we can verify capacity can be met by auto-scalers
push:
branches:
- master
- release/*
workflow_dispatch:
env:
BUILD_ENVIRONMENT: pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7
DOCKER_IMAGE_BASE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
TORCH_CUDA_ARCH_LIST: 5.2
IN_CI: 1
# Used for custom_opertor, jit_hooks, custom_backend, see .jenkins/pytorch/build.sh
CUSTOM_TEST_ARTIFACT_BUILD_DIR: build/custom_test_artifacts
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
jobs:
calculate-docker-image:
runs-on: linux.2xlarge
env:
DOCKER_BUILDKIT: 1
timeout-minutes: 90
outputs:
docker_image: ${{ steps.calculate-tag.outputs.docker_image }}
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow use of git merge-base
fetch-depth: 0
- name: Calculate docker image tag
id: calculate-tag
run: |
DOCKER_TAG=$(git rev-parse HEAD:.circleci/docker)
echo "::set-output name=docker_tag::${DOCKER_TAG}"
echo "::set-output name=docker_image::${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"
- name: Check if image should be built
id: check
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
BASE_REVISION: ${{ github.event.pull_request.base.sha || github.sha }}
run: |
eval "$(aws ecr get-login --no-include-email --region us-east-1)"
set -x
# Check if image already exists, if it does then skip building it
if docker manifest inspect "${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"; then
exit 0
fi
if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then
# if we're on the base branch then use the parent commit
MERGE_BASE=$(git rev-parse HEAD~)
else
# otherwise we're on a PR, so use the most recent base commit
MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION")
fi
# Covers the case where a previous tag doesn't exist for the tree
# this is only really applicable on trees that don't have `.circleci/docker` at its merge base, i.e. nightly
if ! git rev-parse "$MERGE_BASE:.circleci/docker"; then
echo "Directory '.circleci/docker' not found in commit $MERGE_BASE, you should probably rebase onto a more recent commit"
exit 1
fi
PREVIOUS_DOCKER_TAG=$(git rev-parse "$MERGE_BASE:.circleci/docker")
# If no image exists but the hash is the same as the previous hash then we should error out here
if [[ "${PREVIOUS_DOCKER_TAG}" = "${DOCKER_TAG}" ]]; then
echo "ERROR: Something has gone wrong and the previous image isn't available for the merge-base of your branch"
echo " contact the PyTorch team to restore the original images"
exit 1
fi
echo ::set-output name=rebuild::yes
- name: Build and push docker image
if: steps.check.outputs.rebuild
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
DOCKER_SKIP_S3_UPLOAD: 1
run: |
export IMAGE_NAME=${DOCKER_IMAGE_BASE#308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/}
cd .circleci/docker && ./build_docker.sh
build:
runs-on: linux.2xlarge
needs: calculate-docker-image
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow sharding to use git rev-list
submodules: recursive
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Build PyTorch
run: |
docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e SCCACHE_BUCKET \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e SKIP_SCCACHE_INITIALIZATION=1 \
-e TORCH_CUDA_ARCH_LIST \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && .jenkins/pytorch/build.sh'
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Archive artifacts into zip
run: |
zip -r artifacts.zip dist/ build/
- uses: actions/upload-artifact@v2
name: Store PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
retention-days: 30
if-no-files-found: error
path:
artifacts.zip
- name: Clean up docker images
if: always()
run: |
# Prune all of the docker images
docker system prune -af
test:
runs-on: linux.8xlarge.nvidia.gpu
needs:
- calculate-docker-image
- build
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)/../":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
if: ${{ contains(env.BUILD_ENVIRONMENT, 'cuda') }}
run: |
bash .github/scripts/install_nvidia_utils_linux.sh
echo "GPU_FLAG=--gpus all" >> "${GITHUB_ENV}"
- name: Determine shm-size
run: |
shm_size="1g"
case "${BUILD_ENVIRONMENT}" in
*cuda*)
shm_size="2g"
;;
*rocm*)
shm_size="8g"
;;
esac
echo "SHM_SIZE=${shm_size}" >> "${GITHUB_ENV}"
- uses: actions/download-artifact@v2
name: Download PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
- name: Unzip artifacts
run: |
unzip -o artifacts.zip
- name: Output disk space left
run: |
sudo df -H
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Test PyTorch
run: |
# TODO: Stop building test binaries as part of the build phase
# Used for GPU_FLAG since that doesn't play nice
# shellcheck disable=SC2086
docker run \
${GPU_FLAG:-} \
-e BUILD_ENVIRONMENT \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e IN_CI \
-e MAX_JOBS="$(nproc --ignore=2)" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--shm-size="${SHM_SIZE}" \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && pip install dist/*.whl && .jenkins/pytorch/test.sh'
- name: Chown workspace
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- uses: actions/upload-artifact@v2
name: Store PyTorch Test Reports
if: always()
with:
name: test-reports
retention-days: 30
if-no-files-found: error
path:
test/**/*.xml
- name: Clean up docker images
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
# Prune all of the docker images
docker system prune -af
render_test_results:
if: always()
needs:
- test
runs-on: ubuntu-18.04
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow tools/print_test_stats.py to use Git commands
fetch-depth: 0
- uses: actions/download-artifact@v2
name: Download PyTorch Test Reports
with:
name: test-reports
path: test/test-reports
- uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
# boto3 version copied from .circleci/docker/common/install_conda.sh
run: |
pip install -r requirements.txt
pip install boto3==1.16.34 junitparser rich
- name: Output Test Results (Click Me)
run: |
python tools/render_junit.py test
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py
- name: Display and upload test statistics (Click Me)
# temporary hack: set CIRCLE_* vars, until we update
# tools/print_test_stats.py to natively support GitHub Actions
env:
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_OSSCI_METRICS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_OSSCI_METRICS_SECRET_ACCESS_KEY }}
CIRCLE_BRANCH: ${{ steps.parse-ref.outputs.branch }}
CIRCLE_JOB: pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7
CIRCLE_PR_NUMBER: ${{ github.event.pull_request.number }}
CIRCLE_SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
CIRCLE_TAG: ${{ steps.parse-ref.outputs.tag }}
CIRCLE_WORKFLOW_ID: ${{ github.run_id }} # dunno if this corresponds
run: |
export PYTHONPATH=$PWD
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test

View File

@ -1,365 +0,0 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_ci_workflow.yml
# Generation script: .github/scripts/generate_linux_ci_workflows.py
name: Linux CI (pytorch-linux-xenial-py3.6-gcc5.4)
on:
# TODO: Enable pull_request builds when we can verify capacity can be met by auto-scalers
pull_request:
push:
branches:
- master
- release/*
workflow_dispatch:
env:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3.6-gcc5.4
DOCKER_IMAGE_BASE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3.6-gcc5.4
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
TORCH_CUDA_ARCH_LIST: 5.2
IN_CI: 1
# Used for custom_opertor, jit_hooks, custom_backend, see .jenkins/pytorch/build.sh
CUSTOM_TEST_ARTIFACT_BUILD_DIR: build/custom_test_artifacts
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
jobs:
calculate-docker-image:
runs-on: linux.2xlarge
env:
DOCKER_BUILDKIT: 1
timeout-minutes: 90
outputs:
docker_image: ${{ steps.calculate-tag.outputs.docker_image }}
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow use of git merge-base
fetch-depth: 0
- name: Calculate docker image tag
id: calculate-tag
run: |
DOCKER_TAG=$(git rev-parse HEAD:.circleci/docker)
echo "::set-output name=docker_tag::${DOCKER_TAG}"
echo "::set-output name=docker_image::${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"
- name: Check if image should be built
id: check
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
BASE_REVISION: ${{ github.event.pull_request.base.sha || github.sha }}
run: |
eval "$(aws ecr get-login --no-include-email --region us-east-1)"
set -x
# Check if image already exists, if it does then skip building it
if docker manifest inspect "${DOCKER_IMAGE_BASE}:${DOCKER_TAG}"; then
exit 0
fi
if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then
# if we're on the base branch then use the parent commit
MERGE_BASE=$(git rev-parse HEAD~)
else
# otherwise we're on a PR, so use the most recent base commit
MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION")
fi
# Covers the case where a previous tag doesn't exist for the tree
# this is only really applicable on trees that don't have `.circleci/docker` at its merge base, i.e. nightly
if ! git rev-parse "$MERGE_BASE:.circleci/docker"; then
echo "Directory '.circleci/docker' not found in commit $MERGE_BASE, you should probably rebase onto a more recent commit"
exit 1
fi
PREVIOUS_DOCKER_TAG=$(git rev-parse "$MERGE_BASE:.circleci/docker")
# If no image exists but the hash is the same as the previous hash then we should error out here
if [[ "${PREVIOUS_DOCKER_TAG}" = "${DOCKER_TAG}" ]]; then
echo "ERROR: Something has gone wrong and the previous image isn't available for the merge-base of your branch"
echo " contact the PyTorch team to restore the original images"
exit 1
fi
echo ::set-output name=rebuild::yes
- name: Build and push docker image
if: steps.check.outputs.rebuild
env:
DOCKER_TAG: ${{ steps.calculate-tag.outputs.docker_tag }}
DOCKER_SKIP_S3_UPLOAD: 1
run: |
export IMAGE_NAME=${DOCKER_IMAGE_BASE#308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/}
cd .circleci/docker && ./build_docker.sh
build:
runs-on: linux.2xlarge
needs: calculate-docker-image
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow sharding to use git rev-list
submodules: recursive
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Build PyTorch
run: |
docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e SCCACHE_BUCKET \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e SKIP_SCCACHE_INITIALIZATION=1 \
-e TORCH_CUDA_ARCH_LIST \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && .jenkins/pytorch/build.sh'
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Archive artifacts into zip
run: |
zip -r artifacts.zip dist/ build/
- uses: actions/upload-artifact@v2
name: Store PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
retention-days: 30
if-no-files-found: error
path:
artifacts.zip
- name: Clean up docker images
if: always()
run: |
# Prune all of the docker images
docker system prune -af
test:
runs-on: linux.2xlarge
needs:
- calculate-docker-image
- build
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)/../":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
if: ${{ contains(env.BUILD_ENVIRONMENT, 'cuda') }}
run: |
bash .github/scripts/install_nvidia_utils_linux.sh
echo "GPU_FLAG=--gpus all" >> "${GITHUB_ENV}"
- name: Determine shm-size
run: |
shm_size="1g"
case "${BUILD_ENVIRONMENT}" in
*cuda*)
shm_size="2g"
;;
*rocm*)
shm_size="8g"
;;
esac
echo "SHM_SIZE=${shm_size}" >> "${GITHUB_ENV}"
- uses: actions/download-artifact@v2
name: Download PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
- name: Unzip artifacts
run: |
unzip -o artifacts.zip
- name: Output disk space left
run: |
sudo df -H
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Test PyTorch
run: |
# TODO: Stop building test binaries as part of the build phase
# Used for GPU_FLAG since that doesn't play nice
# shellcheck disable=SC2086
docker run \
${GPU_FLAG:-} \
-e BUILD_ENVIRONMENT \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e IN_CI \
-e MAX_JOBS="$(nproc --ignore=2)" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--shm-size="${SHM_SIZE}" \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
sh -c 'sudo chown -R jenkins . && pip install dist/*.whl && .jenkins/pytorch/test.sh'
- name: Chown workspace
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
- uses: actions/upload-artifact@v2
name: Store PyTorch Test Reports
if: always()
with:
name: test-reports
retention-days: 30
if-no-files-found: error
path:
test/**/*.xml
- name: Clean up docker images
if: always()
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v "${ALPINE_IMAGE}" chown -R "$(id -u):$(id -g)" .
# Prune all of the docker images
docker system prune -af
render_test_results:
if: always()
needs:
- test
runs-on: ubuntu-18.04
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
# deep clone, to allow tools/print_test_stats.py to use Git commands
fetch-depth: 0
- uses: actions/download-artifact@v2
name: Download PyTorch Test Reports
with:
name: test-reports
path: test/test-reports
- uses: actions/setup-python@v2
with:
python-version: 3.9
- name: Install dependencies
# boto3 version copied from .circleci/docker/common/install_conda.sh
run: |
pip install -r requirements.txt
pip install boto3==1.16.34 junitparser rich
- name: Output Test Results (Click Me)
run: |
python tools/render_junit.py test
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py
- name: Display and upload test statistics (Click Me)
# temporary hack: set CIRCLE_* vars, until we update
# tools/print_test_stats.py to natively support GitHub Actions
env:
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_OSSCI_METRICS_ACCESS_KEY_ID }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_OSSCI_METRICS_SECRET_ACCESS_KEY }}
CIRCLE_BRANCH: ${{ steps.parse-ref.outputs.branch }}
CIRCLE_JOB: pytorch-linux-xenial-py3.6-gcc5.4
CIRCLE_PR_NUMBER: ${{ github.event.pull_request.number }}
CIRCLE_SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
CIRCLE_TAG: ${{ steps.parse-ref.outputs.tag }}
CIRCLE_WORKFLOW_ID: ${{ github.run_id }} # dunno if this corresponds
run: |
export PYTHONPATH=$PWD
python tools/print_test_stats.py --upload-to-s3 --compare-with-s3 test
pytorch_python_doc_build:
runs-on: linux.2xlarge
needs:
- calculate-docker-image
- build
env:
DOCKER_IMAGE: ${{ needs.calculate-docker-image.outputs.docker_image }}
steps:
- name: Log in to ECR
run: |
aws ecr get-login --no-include-email --region us-east-1 > /tmp/ecr-login.sh
bash /tmp/ecr-login.sh
rm /tmp/ecr-login.sh
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v alpine chown -R "$(id -u):$(id -g)" .
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
fetch-depth: 0 # deep clone, to allow sharding to use git rev-list
submodules: recursive
- name: Pull docker image
run: |
docker pull "${DOCKER_IMAGE}"
- name: Preserve github env variables for use in docker
run: |
env | grep '^GITHUB' > "/tmp/github_env_${GITHUB_RUN_ID}"
- uses: actions/download-artifact@v2
name: Download PyTorch Build Artifacts
with:
name: ${{ env.BUILD_ENVIRONMENT }}
- name: Unzip artifacts
run: |
unzip -o artifacts.zip
- name: Build Python Doc in Docker
run: |
set -ex
time docker pull "${DOCKER_IMAGE}" > /dev/null
echo "${GITHUB_REF}"
ref=${GITHUB_REF##*/}
target=${ref//v}
docker run \
-e BUILD_ENVIRONMENT \
-e CUSTOM_TEST_ARTIFACT_BUILD_DIR \
-e IN_CI \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e CIRCLE_SHA1="$GITHUB_SHA" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--name="$GITHUB_SHA" \
--tty \
--user jenkins \
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}" \
bash -c "sudo chown -R jenkins . && pip install dist/*.whl && ./.circleci/scripts/python_doc_push_script.sh docs/$target $target site"
- name: Chown workspace
run: |
# Ensure the working directory gets chowned back to the current user
docker run --rm -v "$(pwd)":/v -w /v alpine chown -R "$(id -u):$(id -g)" .
- name: Archive artifacts into zip
run: |
zip -r pytorch_github_io.zip "${GITHUB_WORKSPACE}/pytorch.github.io"
- uses: actions/upload-artifact@v2
name: Store PyTorch Build Artifacts
with:
name: pytorch_github_io
if-no-files-found: error
path: pytorch_github_io.zip
- name: Clean up docker images
if: always()
run: |
# Prune all of the docker images
docker system prune -af

View File

@ -1,66 +0,0 @@
name: TorchBench CI (pytorch-linux-py3.7-cu102)
on:
pull_request:
env:
PR_NUM: ${{ github.event.number }}
PR_BODY: ${{ github.event.pull_request.body }}
PR_BASE_SHA: ${{ github.event.pull_request.base.sha }}
PR_HEAD_SHA: ${{ github.event.pull_request.head.sha }}
jobs:
run-torchbench:
# We don't accept running on non-pytorch repos because of security concerns
# Only run the job when the body contains magic word "RUN_TORCHBENCH:"
if: ${{ github.repository_owner == 'pytorch' && contains(github.event.pull_request.body, 'RUN_TORCHBENCH:') }}
runs-on: [self-hosted, bm-runner]
# Set to 12 hours
timeout-minutes: 720
steps:
- name: Checkout PyTorch
uses: actions/checkout@v2
with:
path: pytorch
- name: Checkout TorchBench
uses: actions/checkout@v2
with:
repository: pytorch/benchmark
path: benchmark
- name: Create conda environment
run: |
conda create -y -n pr-ci python=3.7
# shellcheck disable=SC1091
. "${HOME}"/anaconda3/etc/profile.d/conda.sh
conda activate pr-ci
conda install -y numpy=1.17 requests=2.22 ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six dataclasses pillow pytest tabulate
- name: Update self-hosted PyTorch
run: |
pushd "${HOME}"/pytorch
git fetch
popd
- name: Run TorchBench
run: |
pushd "${HOME}"/pytorch
PR_MERGE_BASE=$(git merge-base "$PR_BASE_SHA" "$PR_HEAD_SHA")
popd
PR_BODY_FILE=/tmp/pr-body.txt
echo "$PR_BODY" > ${PR_BODY_FILE}
# shellcheck disable=SC1091
. "${HOME}"/anaconda3/etc/profile.d/conda.sh
conda activate pr-ci
python3 pytorch/.github/scripts/run_torchbench.py \
--pytorch-path "${HOME}"/pytorch \
--torchbench-path "${PWD}"/benchmark \
--pr-num "$PR_NUM" \
--pr-base-sha "$PR_MERGE_BASE" \
--pr-head-sha "$PR_HEAD_SHA" \
--pr-body "$PR_BODY_FILE"
- name: Remove conda environment and cleanup
run: |
conda env remove --name pr-ci
rm /tmp/pr-body.txt
- name: Upload artifact
uses: actions/upload-artifact@v2
with:
name: TorchBench result
path: ~/.torchbench/bisection/pr${{ github.event.number }}

Some files were not shown because too many files have changed in this diff Show More