Compare commits

..

59 Commits

Author SHA1 Message Date
74044638f7 Updating fbgemm 2020-03-23 11:05:29 -07:00
7f73f1d591 add python 3.8 workaround 2020-01-14 09:05:04 -08:00
ac15471de4 clarify when to use as_tuple in torch.nonzero (#32051)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31798

Differential Revision: D19272332

Pulled By: zou3519

fbshipit-source-id: 954d086a7b9f1a719e0dac303a4253bf7ec8e9f4
2020-01-14 11:07:33 -05:00
49364eb426 Fix typographical error in torch.triu docstring (#32067) (#32122)
Summary:
below --> above

Fixes https://github.com/pytorch/pytorch/issues/32032
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32067

Differential Revision: D19355788

Pulled By: zou3519

fbshipit-source-id: dc7a2538a78cd11e72d47ad923ef50599a5a87e2
2020-01-14 10:02:37 -05:00
bcf2d65446 disable two more tests 2020-01-13 21:57:12 -08:00
f7a33f1eef disable a few more tests because of OSX failures similar to #30604 2020-01-13 13:21:49 -08:00
bd584d52df Disable test_backward_per_tensor in test_fake_quant (#30594)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30594

This testcase started breaking, clean up for the build.
ghstack-source-id: 94736837

Test Plan: Unittest disabling change

Differential Revision: D18758635

fbshipit-source-id: 05df1158ff0ccd75e401f352da529fb663b1cae0
2020-01-13 13:15:20 -08:00
c697af4667 Temporarily disable test_numerical_consistency_per_tensor (#30600)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30600

test_numerical_consistency_per_tensor in test_fake_quant is failing on Windows.
ghstack-source-id: 94742124

Test Plan: CircleCI tests

Differential Revision: D18760287

fbshipit-source-id: 7f59355eab74e811bb370ad2836ed2f1def1f621
2020-01-13 13:15:14 -08:00
0f3f4ec64c Kill hypothesis deadline testing (#30890)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30890

We've received way too many complaints about this functionality making tests flaky, and it's not providing value to us anyway. Let's cut the shit and kill deadline testing

Test Plan: Imported from OSS

Differential Revision: D18857597

Pulled By: jamesr66a

fbshipit-source-id: 67e3412795ef2fb7b7ee896169651084e434d2f6
2020-01-13 13:12:14 -08:00
509df600bb Revert "Remove javasphinx extension (#31955)" (#32059)
This reverts commit 8ada95e95092f93780bd56bad568e2491880e9fd.
2020-01-10 14:31:35 -05:00
187101a88e [v1.4.0] Minimal changes in interpolate to support Keypointrcnn (#32010)
* Fix interpolate

* add keypointrcnn test

* update ort versio for test

* pin tv version

* Update test.sh

* Get rid of onnxruntime test changes.

* [v1.4.0] Added torchvision tests as part of ORT tests (#31835)

Summary:
Added torchvision tests as part of ORT tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31835

Reviewed By: hl475

Differential Revision: D19278607

Pulled By: houseroad

fbshipit-source-id: 18a6a85ce3019bcc9aee9517af1378964b585afd

* Remove faster_rcnn and mask_rcnn tests.

Co-authored-by: Lara Haidar <haidar.lara@gmail.com>
Co-authored-by: Negin Raoof <neginmr@utexas.edu>
2020-01-10 12:04:29 -05:00
e011d4a16e Restore CUDA half linspace+logspace and add coverage tests (#31959)
This PR restores the implementation of CUDA half linspace+logspace.

I added tests for the following:
- linspace+logspace have the same support for integral types on CPU/CUDA
- Precision tests for CUDA half, float, and double.

The precision for CUDA half seems bad, but I checked the numbers against
previous versions of pytorch. The output of CUDA Half linspace+logspace
are exactly the same when compared with 1.2.0.

Equivalent-ish PR on master:
https://github.com/pytorch/pytorch/pull/31962
2020-01-09 10:42:36 -05:00
8ada95e950 Remove javasphinx extension (#31955)
See PR [31581](https://github.com/pytorch/pytorch/pull/31581) for more details.
2020-01-08 14:09:19 -08:00
21c2481dfe Fix nvcc math functions for MSVC 2019 (#31704) (#31816)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/31108.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31704

Differential Revision: D19256110

Pulled By: mingbowan

fbshipit-source-id: a4aba2830aba002497f70a75ef995e5e7de08393
(cherry picked from commit 7a3ed36309f48cb833f1690991c7b0f59da6ce11)
2020-01-08 16:30:07 -05:00
398e8ba182 Include two caffe2 ops in v1.4.0 (#31716)
* move AliasWithNameOp to caffe2/operators

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31281

Reviewed By: houseroad

Differential Revision: D19053453

fbshipit-source-id: 350bfd5c001db9c17916dcae7ade8f56db1e9841

* move BatchPermutationOp to caffe2/operators

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31350

Reviewed By: houseroad

Differential Revision: D19053527

fbshipit-source-id: 50d11f137d0f5c07e8ad899a3a84d56a042bbc32

Co-authored-by: wat3rBro <wangyanghan6@gmail.com>
2020-01-08 13:28:13 -05:00
074b30cdcb Restructure docs organization and naming and add Javadoc (#31581)
* Restructure docs organization and naming and add Javadoc

- Rename “Other Languages” → “Language Bindings”
- Move the Community section to the bottom
- Move "Language Bindings" above "Python API"
- Add Javadoc url in index.rst

* Delete no longer needed java rst files. Remove javasphinx extension.
2020-01-08 10:22:35 -08:00
319bd5d431 Disable flaky TestMomentumSGD.test_fp16momentum_sgd (#31369) (#31637)
Summary:
Related to https://github.com/pytorch/pytorch/issues/31368
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31369

Co-authored-by: Vitaly Fedyunin <vitalyf@fb.com>
2019-12-26 13:20:37 -08:00
5a20bbd377 [v1.4.0 Support optional float parameters (float?, optional<double>). (#31530)
This is going to be used by upsample (which currently uses magic values to represent optionals).

For now, we just introduce a fake function for testing (torch._test_optional_float(x)).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517
2019-12-26 10:50:33 -08:00
fa59a9e190 Dump operator names of a script module, v1.4.0 pick request (#30747)
* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']
2019-12-26 10:49:49 -08:00
143868c3df cherry pick 30320 (#31573) 2019-12-23 22:49:26 -08:00
964929fcc2 hacky way to fix android-ndk build (#31529)
* hacky way to fix android build

* should run!!!

* again!!
2019-12-20 18:01:32 -08:00
cd20ecb472 no xla build/test for v1.4.0 (#31518) 2019-12-20 10:43:36 -08:00
19d4fd4910 Specify ordering on singular values and eigenvalues output from torch… (#30389) (#30575)
Summary:
….svd/symeig respectively

Changelog:
- Adds a note to docstrings of the both functions specifying the ordering

Fixes https://github.com/pytorch/pytorch/issues/30301
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30389

Differential Revision: D18707608

Pulled By: zou3519

fbshipit-source-id: b0f73631578f39a24fae9af4997c6491de8be9a8
2019-12-19 16:10:07 -08:00
a7d187baa4 [v1.4.0] Fix reading __cuda_array_interface__ inferred strides, add test. (#31450)
This is a simpler fix than https://github.com/pytorch/pytorch/pull/24947, which both fixed the bug and updated the protocol version.
This also adds a test (which the previous PR did not).

So the plan is that master (1.5) will have the new protocol version (and a test), 1.4 will have the old protocol version and the test.
2019-12-19 16:09:37 -08:00
0541546ac5 Fix unflatten when dim is a negative integer (#31208) (#31432)
Summary:
Changelog:
- Wrap dim to be a positive integer when dim is negative
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31208

Test Plan:
- Updated tests in test_namedtensor.py

Fixes https://github.com/pytorch/pytorch/issues/31184

Differential Revision: D19036569

Pulled By: zou3519

fbshipit-source-id: 86e01e20988dee7c4b6c73232f66282d687f9a2c
2019-12-19 16:09:28 -08:00
369ab73efd Fix copy kernel speed regression introduced in #29631 (#31279) (#31322)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/31271

This fixes copy kernel speed regression introduced in https://github.com/pytorch/pytorch/issues/29631.

The previous implementation forces the compiler to instantiate `static_cast_with_inter_type` because it is passed as an argument of a function. This behavior makes it impossible for compilers to do optimizations like automatic vectorization, and, function call itself is expensive compared to a single casting instruction.

To check the change, run
```
readelf -Ws /home/xgao/anaconda3/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so | grep static_cast_with_inter_type
```

On nightly build, we have output
```
168217: 0000000001852bf0     5 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsdE5applyEd
168816: 0000000001852d30    33 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIfEaE5applyEa
168843: 00000000018531f0     7 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIblE5applyEl
168930: 0000000001852c20     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIslE5applyEl
168935: 00000000018528d0   124 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIfNS_4HalfEE5applyES1_
169023: 0000000001852f30    17 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdEhE5applyEh
169713: 00000000018525c0     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIahE5applyEh
170033: 0000000001852c10     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsiE5applyEi
170105: 0000000001852bd0     5 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIshE5applyEh
170980: 0000000001852fc0    27 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdES1_IfEE5applyES3_
171398: 0000000001852810    13 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIdbE5applyEb
171574: 00000000018532e0    35 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIbNS_8BFloat16EE5applyES1_
171734: 0000000001852b20     6 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIlSt7complexIdEE5applyES2_
172422: 0000000001853350    54 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_8BFloat16EaE5applyEa
172704: 00000000018533c0    38 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_8BFloat16EfE5applyEf
172976: 0000000001852890    10 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIflE5applyEl
173038: 0000000001852f80     9 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdEfE5applyEf
173329: 00000000018531c0    20 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIbfE5applyEf
173779: 00000000018524d0     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIhiE5applyEi
174032: 0000000001852960    14 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIfNS_8BFloat16EE5applyES1_
174334: 0000000001852d60    29 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIfEdE5applyEd
174470: 0000000001852c60   124 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsNS_4HalfEE5applyES1_
174770: 0000000001852bc0    15 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIlNS_8BFloat16EE5applyES1_
176408: 0000000001853980   144 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_4HalfEbE5applyEb
176475: 0000000001852790   128 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIdNS_4HalfEE5applyES1_
....
```

And after this PR, we get empty output
```
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31279

Differential Revision: D19075587

Pulled By: ngimel

fbshipit-source-id: c20088241f39fa40c1d055f0a46eb5b9ece52e71
2019-12-19 16:09:11 -08:00
9f558e1ee6 turn off profiling graph exec (#30750) 2019-12-19 16:08:59 -08:00
f0ddfff200 Fix exception message in Java Tensor (#30776)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30205

Test Plan: Imported from OSS

Reviewed By: linbinyu

Differential Revision: D18653568

Pulled By: dreiss

fbshipit-source-id: a5fcb809eba641a7fbd0e99e835eceeb248e680c
2019-12-19 16:08:49 -08:00
2de184b5a9 Update persons_of_interest.rst (#30648) 2019-12-19 16:08:39 -08:00
e0eeddfc78 torch.where changes made on 1.3.1 but not on master (#30729)
* Make zeros argument of torch.where same dtype as other argument (#30661)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30661

Cherry-picked from https://github.com/pytorch/pytorch/pull/29080

Test Plan: Imported from OSS

Differential Revision: D18781870

Pulled By: nairbv

fbshipit-source-id: 9de85aa91bf7e0856f35c7c6238a8923315ed27f

Co-authored-by: ifedan

* Added check for torch.where on CPU that both arguments have same dtype (#30662)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30662

Cherry picked from: https://github.com/pytorch/pytorch/pull/29081

Test Plan: Imported from OSS

Differential Revision: D18782295

Pulled By: nairbv

fbshipit-source-id: 897ab25ddf8819ca34f5e86c5d3f41debb56cb04

Co-authored-by: ifedan
2019-12-19 16:01:51 -08:00
7727b57d08 [v1.4.0 cherrypick] Fix BC for quantized linear (#30629) 2019-12-19 16:01:26 -08:00
9e7dc37f90 Updates to Quantization documentation (#30372)
* added entires to quantization.rst per issue #27938

* more minor tweaks to quantization.rst to reflect the quantization support list (#27938)

* added discussion about setting backend engine to QNNPACK to quantization.rst (#29735)

* added docstrings to the fused functions in torch/nn/intrinsic/modules/fused.py (#26899)

* fixed the docstring for  torch.nn.intrinsic.quantized.ConvReLU3d  (#27451)

* fixed the formatting on fuse_modules() (#26305)

* fixed rendering issue on QConfig (#30283)

* resolved feedback on PR #30288. Thanks Raghu
2019-12-19 16:01:09 -08:00
227017059f Fix BC test for v1.4.0 (#31442)
* Fix BC test for v1.4.0

* Print out all the broken ops

* White list the broken ones
2019-12-19 14:16:24 -08:00
aeeccc1486 Disable the rebase logic to make the CI pass (#31399) 2019-12-18 12:21:13 -08:00
0b91246cbd [v1.4.0] Fix coverage and hypothesis conflict (#31429)
Summary:
Temporarily enforcing versions for all envs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31320

Differential Revision: D19122781

Pulled By: VitalyFedyunin

fbshipit-source-id: fe6473b177367371387d4b3b873131e7ecfbc0f8
2019-12-18 12:16:05 -08:00
0856d6f53c use earlier docker image to make sure generated binary size is small (#31142)
* use earlier docker image to make sure generated binary size is small

* fix hypothesis version
2019-12-17 15:03:29 -08:00
336e0d2874 our setup requires actions/checkout@v1 to work correctly (#31371)
* checkout correct branch for linting

* try #2

* try #3

* try #4
2019-12-17 10:56:50 -08:00
3b36f2068d Revert "Merge branch 'v1.4.0' of https://github.com/pytorch/pytorch into lahaidar/cherry_pick_28324"
This reverts commit 6207945564b317f4300264e80d125b9a7225b81e, reversing
changes made to 27a2ecb0a5da9507a2b0a0315a7dfeab4b9f85f9.
2019-12-13 16:20:28 -08:00
6207945564 Merge branch 'v1.4.0' of https://github.com/pytorch/pytorch into lahaidar/cherry_pick_28324 2019-12-13 15:48:08 -08:00
aecae514ab Merge branch 'cherry_pick_28324' of https://github.com/houseroad/pytorch into lahaidar/cherry_pick_28324 2019-12-13 15:45:32 -08:00
27a2ecb0a5 Revert "[v1.4.0 cherrypick] ONNX Interpolate Add Scales Params (#31170)" (#31272)
This reverts commit e36fd7b0bae7b350886bf090f7ce222a0c6218df.
2019-12-13 15:14:42 -08:00
e36fd7b0ba [v1.4.0 cherrypick] ONNX Interpolate Add Scales Params (#31170)
The original PR is #28324

We hope we can cover torchvision models in PyTorch ONNX exporter with release 1.4. This PR is part of it.
2019-12-13 15:08:35 -08:00
799cb646a6 update expect files 2019-12-13 11:36:06 -08:00
f60c63155a ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-13 11:36:06 -08:00
954d9ea466 fix test ci by pinning hypothesis and correcting the import (#31201)
* fix test ci by pinning hypothesis and correcting the import, from https://github.com/pytorch/pytorch/pull/31137

* also update for windows build
2019-12-13 11:30:57 -08:00
71185fb2a0 update expect files 2019-12-12 10:54:17 -08:00
a06f26560c Make Conv{1,2,3}dOptions and ConvTranspose{1,2,3}dOptions different classes (#31005)
Summary:
Currently, both `Conv{1,2,3}dOptions` and `ConvTranspose{1,2,3}dOptions` are aliases of the `ConvOptions<{1,2,3}>` class, which causes confusion because the `ConvOptions` class has parameters such as `transposed` that shouldn't be exposed to the end user. (This has caused issues such as https://github.com/pytorch/pytorch/issues/30931.) This PR makes the following improvements:
1. Rename the original `torch::nn::ConvOptions<N>` class to `torch::nn::detail::ConvNdOptions<N>` class, to signify that it's an implementation detail and should not be used publicly.
2. Create new classes `torch::nn::ConvOptions<N>` and `torch::nn::ConvTransposeOptions<N>`, which have parameters that exactly match the constructor of `torch.nn.Conv{1,2,3}d` and `torch.nn.ConvTranspose{1,2,3}d` in Python API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31005

Differential Revision: D18898048

Pulled By: yf225

fbshipit-source-id: 7663d646304c8cb004ca7f4aa4e70d3612c7bc75
2019-12-12 11:46:33 -05:00
e4cec279c6 ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-11 22:05:47 -08:00
b8b50aa909 Fix missing virtual destructor (#30927)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30927

Classes that are used virtually (e.g. have virtual methods) must have a virtual destructor or bad things happen
ghstack-source-id: 95144736

Test Plan: waitforsandcastle

Differential Revision: D18870351

fbshipit-source-id: 333af4e95469fdd9103aa9ef17b40cbc4a343f82
2019-12-09 12:47:01 -08:00
db686de13f [1.4.0] Enable len(dataloader) for iterable dataset (#30828)
* enable len(dl) for iterable dataset

* warn if len was called
2019-12-06 18:25:14 -05:00
288e463693 Fix a clang 7 compiler bug for c++14 mode (#30891)
This is already fixed in master as part of bc2e6d10fa.

Before this fix, compiling PyTorch with `-std=c++14` failed on clang 7 due to a compiler bug in the optimizer. With this fix, it works and people can compile PyTorch (or PyTorch extensions) with `-std=c++14`.
2019-12-06 14:11:12 -05:00
73783d1048 Update persons_of_interest.rst 2019-12-05 21:27:01 -08:00
8891d4eeb1 fix AvgPool2d for 2^31-1 sized inputs, and get test_cuda_kernel_loop_overflow_large to working state (#30793) 2019-12-04 23:13:17 -05:00
2085a6f329 Add local shutdown to process group agent (#30330)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30330

This is now possible due to previous changes made in `gloo` and `ProcessGroupGloo`. We `abort` the listener thread that is waiting for a message, and join all other threads. The API is changed so that the previous `wait_all_workers` does not destroy the agent, and this is now done in a new `shutdown` method. All callsites are updated appropriately.

ghstack-source-id: 94673884
ghstack-source-id: 94673884

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18661775

fbshipit-source-id: 5aaa7c14603e18253394224994f6cd43234301c2
2019-12-04 19:23:58 -08:00
3eda9e7da2 By default ignore RRef leaks during shutdown (#30217)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30217

Before this commit, RRefContext throws an error if it detects any
RRef leak during shutdown. However, this requires applications to
make sure that is has freed all references to RRefs in application
code, which can be a bad debugging experience when for large
applications. Besides, this also relies on Python GC to free things
up in time, which might not always be true. After this commit,
RRefContext would ignore leaking RRefs during shutdown, as shutdown
is called when the application has finished training and no longer
care about local states. Hence, it should be OK to just ignore
those leaks and destroy OwnerRRefs. If application would like to
enforce no leaks, just set torch.distributed.rpc.api._ignore_rref_leak
to False.

Test Plan: Imported from OSS

Differential Revision: D18632546

Pulled By: mrshenli

fbshipit-source-id: 2744b2401dafdd16de0e0a76cf8e07777bed0f38
2019-12-04 13:33:31 -05:00
fb8aa0e98c Remove namespace F = torch::nn::functional from torch/nn/modules/batchhnorm.h (#30684)
Summary:
This PR removes `namespace F = torch::nn::functional` from `torch/nn/modules/batchhnorm.h`, so that people don't have to define `torch::nn::functional` as `F` if they don't want to.

Fixes https://github.com/pytorch/pytorch/issues/30682.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30684

Differential Revision: D18795717

Pulled By: yf225

fbshipit-source-id: c9feffbeb632cc6b4ce3e6c22c0a78533bab69ad
2019-12-04 11:35:19 -05:00
c79b79dadd add default arg for init_method (#30208)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30208

Adds default arg for init_method so users don't have to pass this in,
and moves it to `RpcBackendOptions` struct. Removes `init_method` arg from rpc.init_rpc. Also fixes some docs.
ghstack-source-id: 94500475

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18630074

fbshipit-source-id: 04b7dd7ec96f4c4da311b71d250233f1f262135a
2019-12-03 15:26:51 -08:00
21acca4528 Exclude undefined tensors in the result of Module::parameters() / named_paramters() / buffers() / named_buffers() (#30626)
Summary:
PR https://github.com/pytorch/pytorch/pull/30523 attempted to fix https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462, but the fix wasn't complete. This PR makes the following improvements:
1. Fixes https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462 properly by excluding undefined tensors in the result of `Module::parameters()` / `named_parameters()` / `buffers()` / `named_buffers()`, which mirrors the Python API behavior.
2. Audits all use sites of `Module::parameters_` / `buffers_` and change them to `Module::named_parameters(/*recurse=*/false)` / `named_buffers(/*recurse=*/false)` when appropriate, so that use sites of module parameters / buffers never need to worry about undefined tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30626

Differential Revision: D18777507

Pulled By: yf225

fbshipit-source-id: 55b64b69779e1186342efd3c44857f416334ed6b
2019-12-03 15:57:32 -05:00
f710757557 Skip undefined tensors when moving torch::nn module to a different device (#30523)
Summary:
This fixes high-pri issues such as https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30523

Differential Revision: D18732904

Pulled By: yf225

fbshipit-source-id: fe5a7a43838000f5803bd9c01ecfba0c3f02df5d
2019-12-03 15:57:32 -05:00
7638 changed files with 269264 additions and 1081880 deletions

View File

@ -1,63 +0,0 @@
# PyTorch CI Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on select configurations
# 2) runs only TestTorch unit tests.
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_ci_build: True
os: windows
cuda: cpu
customMatrixes:
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_ci_build: True
os: windows
cuda: gpu
customMatrixes:
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102

View File

@ -1,82 +0,0 @@
# PyTorch Daily Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) runs all PyTorch unit tests
stages:
- stage: 'BuildTest'
displayName: 'Build and Test PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_daily_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_daily_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -1,134 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
container_endpoint: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
container:
image: $[variables['container_image']]
endpoint: ${{parameters.container_endpoint}}
steps:
# Build stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- bash: git submodule update --init --recursive
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode
- bash: python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- bash: python test/test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- bash: python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode and exclude test binaries
- bash: python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- bash: python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)/dist/
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- bash: python -m pip install $(Build.SourcesDirectory)/verify/torch*linux*.whl
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- bash: |
cd $(Build.SourcesDirectory)/verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/publish
displayName: Download PyTorch Wheel
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- bash: |
export TORCH_VERSION=$(head -c 5 ./version.txt)
export LAST_COMMIT=$(git rev-parse --short HEAD)
export LAST_COMMIT_DATE=$(git log -1 --pretty=%ad --date=format:%Y%m%d)
cd $(Build.SourcesDirectory)/publish
export TORCH_WHEEL=$(echo torch*linux*whl)
az extension add -n azure-devops
echo $ADOTOKEN | az devops login
az artifacts universal publish --organization $AZURE_DEVOPS_ARTIFACTS_ORGANIZATION --project $AZURE_DEVOPS_ARTIFACTS_PROJECT --scope project --feed "PyTorch" --name $TORCH_WHEEL --description "PyTorch Official Build Artifact" --version $TORCH_VERSION-$LAST_COMMIT_DATE-$LAST_COMMIT --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch Official Build package to Azure Artifacts

View File

@ -1,150 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
CMAKE_GENERATOR: Ninja
PACKAGE_PDBS: 0
steps:
# Prepare for PyTorch build on Windows
- template: prepare-build-template.yml
parameters:
configuration: $(configuration)
build_stage: ${{ parameters.build_stage}}
# Build Stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- script: git submodule update --init --recursive
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode with Ninja
- script: call activate $(configuration) && python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test\test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode with Ninja and exclude test binaries
- script: call activate $(configuration) && python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- script: call activate $(configuration) && python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)\dist\
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification Stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
dir torch*win*.whl /b > whl.txt
set /p whl= < whl.txt
python -m pip install %whl%
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\publish
displayName: Download PyTorch Wheel
# Set up Azure Artifacts for Windows
# The pip install --upgrade command is a bug fix for Azure CLI on Windows
# More info: https://github.com/Azure/azure-cli/issues/16858
- script: |
pip install --upgrade pip --target \opt\az\lib\python3.6\site-packages\
az extension add -n azure-devops
displayName: Set up Azure Artifacts download on Windows
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- script: |
set /p TORCH_VERSION= < version.txt
cd $(Build.SourcesDirectory)\publish
git rev-parse --short HEAD > last_commit.txt && set /p LAST_COMMIT= < last_commit.txt
git log -1 --pretty=%ad --date=format:%Y%m%d > last_commit_date.txt && set /p LAST_COMMIT_DATE= < last_commit_date.txt
dir torch*win*.whl /b > whl.txt && set /p TORCH_WHEEL= < whl.txt
echo %ADOTOKEN% | az devops login
az artifacts universal publish --organization %AZURE_DEVOPS_ARTIFACTS_ORGANIZATION% --project %AZURE_DEVOPS_ARTIFACTS_PROJECT% --scope project --feed "PyTorch" --name %TORCH_WHEEL% --description "PyTorch Official Build Artifact" --version %TORCH_VERSION:~0,5%-%LAST_COMMIT_DATE%-%LAST_COMMIT% --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch nigthly package to Azure Artifacts

View File

@ -1,17 +0,0 @@
dependencies:
- python=PYTHON_VERSION
- numpy
- ninja
- pyyaml
- mkl
- mkl-include
- setuptools
- cmake
- cffi
- typing_extensions
- future
- six
- requests
- dataclasses
- pip:
- -r ../../requirements.txt

View File

@ -1,62 +0,0 @@
# Build prepare steps for PyTorch on Azure DevOps to build from source.
# These steps share between normal build process and semmle security scan tasks
parameters:
build_stage: False
configuration: ''
steps:
# End Python tasks that may be lingering over from previous runs
# Note: If python.exe isn't currently running, exit code becomes 128,
# which fails the run. Here exit code is set to 0 to avoid failed run.
- script: |
taskkill /f /im python.exe
IF %ERRORLEVEL% EQU 128 exit 0
displayName: End previous Python processes
# Clean up env directory in conda for fresh builds and set up conda environment YAML
- powershell: |
Remove-Item 'C:\Miniconda\envs' -Recurse -ErrorAction Ignore
$env:PYTHON_VERSION = $env:SYSTEM_JOBNAME.Substring(3,1) + '.' + $env:SYSTEM_JOBNAME.Substring(4,1)
(Get-Content .azure_pipelines\job_templates\common-packages.yml) -replace 'PYTHON_VERSION', $env:PYTHON_VERSION | Out-File -encoding ASCII .azure_pipelines\job_templates\common-packages.yml
displayName: Clean up previous environments and Set up conda environment YAML
# Make conda environment and install required packages
- script: |
call conda clean --all -y
call conda env create -n $(configuration) --file .azure_pipelines\job_templates\common-packages.yml
call activate $(configuration)
call conda install -c conda-forge libuv=1.39
displayName: Set up conda environment for building from source
- ${{ if eq(parameters.build_stage, 'True') }}:
# Install MKL
- script: |
rmdir /s /q mkl
del mkl_2020.2.254.7z
curl https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z -k -O
7z x -aoa mkl_2020.2.254.7z -omkl
displayName: Install MKL
# Install sccache and randomtemp
# Related PyTorch GitHub issue: https://github.com/pytorch/pytorch/issues/25393
# Related fix: https://github.com/pytorch/builder/pull/448/
- script: |
mkdir .\tmp_bin
curl -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output .\tmp_bin\sccache.exe
curl -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output .\tmp_bin\sccache-cl.exe
copy .\tmp_bin\sccache.exe .\tmp_bin\nvcc.exe
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.3/randomtemp.exe --output .\tmp_bin\randomtemp.exe
displayName: Install sccache and randomtemp
condition: not(eq(variables.CUDA_VERSION, ''))
# CUDA 11.2's CUB directory conflicts with CUDA 10.2 and 10.1
# builds, where CUDA 11.2's CUB is injected into non-CUDA
# 11.2 builds.
- powershell: Remove-Item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include\cub" -Recurse -ErrorAction Ignore
displayName: Remove conflicting CUB from CUDA installation
condition: not(eq(variables.CUDA_VERSION, ''))
- powershell: Copy-Item -Path "F:\cuda_11_2\cub\" -Destination "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include" -Recurse
displayName: Copy CUDA CUB for CUDA 11.2 build
condition: eq(variables.CUDA_VERSION, '112')

View File

@ -1,51 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
container_endpoint: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- bash: rm -rf pytorch_tests/
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(printf "%s"":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- bash: bash $(Build.SourcesDirectory)/pytorch_tests/scripts/linux/run.sh
env:
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests

View File

@ -1,49 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- script: if exist "pytorch_tests/" rmdir "pytorch_tests/" /q /s
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- powershell: |
$env:B64Pat = [Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes(":$env:_ADOTOKEN"))
git -c http.extraHeader="Authorization: Basic $env:B64Pat" clone $env:AZURE_DEVOPS_pytorch_tests_REPO_URL
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- script: call $(Build.SourcesDirectory)\pytorch_tests\scripts\windows\run.bat
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests

View File

@ -1,131 +0,0 @@
# Set environment variables for specific configurations
parameters:
is_official_build: False
os: ''
cuda: ''
steps:
# Environment configuration steps for Ubuntu builds
- ${{ if contains(parameters.os, 'ubuntu') }}:
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- bash: |
echo "##vso[task.setvariable variable=INSTALL_TEST;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
export PYTORCH_VERSION=$(head -c 5 ./version.txt)
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags.
- ${{ if contains(parameters.cuda, 'cpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU builds
- ${{ if contains(parameters.cuda, 'gpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]1"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU builds
# Set MKL environment variables
- bash: |
echo "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]/opt/intel/lib:$CMAKE_LIBRARY_PATH"
echo "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]/opt/intel/include:$CMAKE_INCLUDE_PATH"
displayName: Set MKL paths
# View current environment variables
- bash:
printenv
displayName: Show environment variables
# Environment configuration steps for Windows builds
- ${{ if contains(parameters.os, 'windows') }}:
# Set Conda Lib Path
- powershell: Write-Host "##vso[task.setvariable variable=CONDA_LIB_PATH;]C:\Miniconda\envs\$(configuration)\Library\bin"
displayName: Set Conda Lib Path
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=INSTALL_TEST;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
Set-Variable -Name PYTORCH_VERSION -Value (Get-Content .\version.txt).Substring(0,5)
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags..
- ${{ if contains(parameters.cuda, 'cpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU build
- ${{ if contains(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]1"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU build
# Set CUDA 11.2, 10.2 or 10.1 specific build flags
- ${{ if eq(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\"
displayName: Set CUDA 11.2 specific build flags
condition: eq(variables.CUDA_VERSION, '112')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\"
displayName: Set CUDA 10.2 specific build flags
condition: eq(variables.CUDA_VERSION, '102')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\"
displayName: Set CUDA 10.1 specific build flags
condition: eq(variables.CUDA_VERSION, '101')
- powershell: |
Write-Host "##vso[task.setvariable variable=CUDA_BIN_PATH;]$env:CUDA_PATH\bin\"
Write-Host "##vso[task.setvariable variable=CUDNN_ROOT;]$env:CUDA_PATH"
Write-Host "##vso[task.setvariable variable=CUDNN_INCLUDE_DIR;]$env:CUDA_PATH\include\"
Write-Host "##vso[task.setvariable variable=CUDNN_LIBRARY;]$env:CUDA_PATH\lib\x64\"
Write-Host "##vso[task.prependpath]$env:CUDA_PATH\bin"
Write-Host "##vso[task.setvariable variable=TORCH_NVCC_FLAGS;]-Xfatbin -compress-all --no-host-device-move-forward"
Write-Host "##vso[task.setvariable variable=THRUST_IGNORE_CUB_VERSION_CHECK;]1"
Write-Host "##vso[task.setvariable variable=NVTOOLSEXT_PATH;]C:\Program Files\NVIDIA Corporation\NvToolsExt\"
displayName: Set CUDA environment variables
- powershell: |
copy "$(CUDA_BIN_PATH)\cusparse*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cublas*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudart*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\curand*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cufft*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cusolver*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudnn*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\nvrtc*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\libiomp*5md.dll" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\uv.dll" $(Build.SourcesDirectory)\torch\lib
displayName: Copy CUDA/cuDNN/libomp/libuv dlls to torch\lib
# Set MKL, sccache and randomtemp environment variables
- powershell: |
Write-Host "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]$(Build.SourcesDirectory)\mkl\include"
Write-Host "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]$(Build.SourcesDirectory)\mkl\lib;$env:CMAKE_LIBRARY_PATH"
Write-Host "##vso[task.setvariable variable=ADDITIONAL_PATH;]$(Build.SourcesDirectory)\tmp_bin"
Write-Host "##vso[task.setvariable variable=SCCACHE_IDLE_TIMEOUT;]1500"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\nvcc.exe"
Write-Host "##vso[task.setvariable variable=CUDA_NVCC_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\randomtemp.exe"
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_BASEDIR;]$(Build.SourcesDirectory)\tmp_bin"
displayName: Set MKL, sccache and randomtemp environment variables
# View current environment variables
- script:
set
displayName: Show environment variables

View File

@ -1,14 +0,0 @@
# Main logic to initiate wait for PR artifact to be ready
steps:
- task: InvokeRESTAPI@1
displayName: 'Wait for job success and wheel ready'
timeoutInMinutes: 60
inputs:
connectionType: 'connectedServiceName'
serviceConnection: circleciconn
method: 'POST'
headers: '{"Content-Type":"application/json", "BranchName":"$(TARGET_BRANCH_TO_CHECK_PR)", "JobName":"$(TARGET_CIRCLECI_PR)", "PlanUrl":"$(System.CollectionUri)", "ProjectId":"$(System.TeamProjectId)", "HubName":"$(System.HostType)", "PlanId":"$(System.PlanId)", "JobId":"$(System.JobId)", "TimelineId":"$(System.TimelineId)", "TaskInstanceId":"$(System.TaskInstanceId)", "AuthToken":"$(System.AccessToken)"}'
body: ''
urlSuffix: 'api/JobStatus'
waitForCompletion: true

View File

@ -1,49 +0,0 @@
# Initiate 5 agentless-server waiting jobs to check on the
# status of PR artifact builds, for a maximum wait time of
# 5 * 60 min =300 minutes. These jobs will pass immediately
# once targeted CircleCI build is ready.
jobs:
- job: checkjob1
pool: server
timeoutInMinutes: 60
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob2
pool: server
timeoutInMinutes: 60
dependsOn: checkjob1
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob3
pool: server
timeoutInMinutes: 60
dependsOn: checkjob2
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob4
pool: server
timeoutInMinutes: 60
dependsOn: checkjob3
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob5
pool: server
timeoutInMinutes: 60
dependsOn: checkjob4
continueOnError: true
steps:
- template: wheel-wait-job-template.yml

View File

@ -1,50 +0,0 @@
# PyTorch Nightly PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline runs custom PyTorch unit-tests on nightly
# PyTorch wheels.
stages:
- stage: 'NightlyCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_1)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_1)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_LIN_2)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_2)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_2)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_CPU
pool: $(BUILD_POOL_WIN_1)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_1)
_RUN_TESTS: $(RUN_TESTS_WIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_GPU
pool: $(BUILD_POOL_WIN_2)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_2)
_RUN_TESTS: $(RUN_TESTS_WIN)

View File

@ -1,30 +0,0 @@
# PyTorch PR PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) ensures that CircleCI builds for a given PR
# have finished, and that its artifacts are
# ready for download
# 2) runs custom PyTorch unit-tests on PyTorch
# wheels generated during PR builds.
stages:
- stage: 'EnsureArtifactsReady'
displayName: 'Ensure PyTorch PR Artifacts are ready'
jobs:
- template: job_templates/wheel-wait-template.yml
- stage: 'PRCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_PR)
customMatrixes:
PR_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_PR)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_PR)
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_PR)
_TARGET_BRANCH_TO_CHECK: $(TARGET_BRANCH_TO_CHECK_PR)
_DOCKER_IMAGE: $(DOCKER_IMAGE_PR)
_RUN_TESTS: $(RUN_TESTS_PR)

View File

@ -1,224 +0,0 @@
# PyTorch Official Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) verifies PyTorch artifacts by installing them in a clean environment
# and checking torch.__version_
# 3) publishes official PyTorch artifacts to Azure DevOps Artifacts for consumption
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_official_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_official_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Verify'
displayName: 'Verify PyTorch wheels'
dependsOn: Build
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Publish'
displayName: 'Publish PyTorch wheels'
dependsOn: Verify
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -1,3 +0,0 @@
build --copt=--std=c++14
build --copt=-I.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin

View File

@ -1 +0,0 @@
3.1.0

View File

@ -31,7 +31,7 @@ Usage
1. Make changes to these scripts.
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
You'll see a build failure on GitHub if the scripts don't agree with the checked-in version.
You'll see a build failure on TravisCI if the scripts don't agree with the checked-in version.
Motivation
@ -55,7 +55,7 @@ Future direction
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
> in the future future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
@ -71,9 +71,9 @@ A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.6, 3.7, 3.8
* windows: 3.6, 3.7, 3.8
* linux: 2.7m, 2.7mu, 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 2.7, 3.5, 3.6, 3.7
* windows: 3.5, 3.6, 3.7
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
@ -90,7 +90,7 @@ The binaries are built in CircleCI. There are nightly binaries built every night
We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f \<a s3 url\>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
@ -104,16 +104,16 @@ All binaries are built in CircleCI workflows except Windows. There are checked-i
Some quick vocab:
* A \**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
* A\**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on\https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
* **jobs** are a sequence of '**steps**'
* **steps** are usually just a bash script or a builtin CircleCI command. *All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* **steps** are usually just a bash script or a builtin CircleCI command.* All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
## How are the workflows structured?
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
1. binary_builds
1. binarybuilds
1. every day midnight EST
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
@ -144,7 +144,7 @@ The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build,
## How are the jobs structured?
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources. Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources . Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
* binary_linux_build.sh
@ -178,7 +178,8 @@ CircleCI creates a final yaml file by inlining every <<* segment, so if we were
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
* linux test jobs use the machine executor in order for them to properly interface with GPUs since docker executors cannot execute with attached GPUs
* linux test jobs use the machine executor and spin up their own docker. Why this nonsense? It's cause we run nvidia-docker for our GPU tests; any code that calls into the CUDA runtime needs to be run on nvidia-docker. To run a nvidia-docker you need to install some nvidia packages on the host machine and then call docker with the '—runtime nvidia' argument. CircleCI doesn't support this, so we have to do it ourself.
* This is not just a mere inconvenience. **This blocks all of our linux tests from using more than 2 cores.** But there is nothing that we can do about it, but wait for a fix on circleci's side. Right now, we only run some smoke tests (some simple imports) on the binaries, but this also affects non-binary test jobs.
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
@ -204,7 +205,7 @@ TODO: fill in stuff
## Overview
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder), which is a repo that defines how all the binaries are built. The relevant code is
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder) , which is a repo that defines how all the binaries are built. The relevant code is
```
@ -260,7 +261,7 @@ Linux, MacOS and Windows use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
tl;dr on conda-build is
tldr; on conda-build is
1. Creates a brand new conda environment, based off of deps in the meta.yaml
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
@ -270,7 +271,7 @@ tl;dr on conda-build is
4. Runs some simple import tests (if specified in the meta.yaml)
5. Saves the finished package as a tarball
The build.sh we use is essentially a wrapper around `python setup.py build`, but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The build.sh we use is essentially a wrapper around ```python setup.py build``` , but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The entrypoint file `builder/conda/build_conda.sh` is complicated because
@ -355,15 +356,15 @@ The Dockerfiles are available in pytorch/builder, but there is no circleci job o
# How to manually rebuild the binaries
tl;dr make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
tldr; make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
## How to test changes to the binaries via .circleci
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using `.circleci/regenerate.sh` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using ```.circleci/regenerate.sh``` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
```sh
```
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
@ -408,7 +409,7 @@ The advantage of this flow is that you can make new changes to the base commit a
You can build Linux binaries locally easily using docker.
```sh
```
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
#
@ -418,6 +419,8 @@ You can build Linux binaries locally easily using docker.
# in the docker container then you will see path/to/foo/baz on your local
# machine. You could also clone the pytorch and builder repos in the docker.
#
# If you're building a CUDA binary then use `nvidia-docker run` instead, see below.
#
# If you know how, add ccache as a volume too and speed up everything
docker run \
-v your/pytorch/repo:/pytorch \
@ -441,7 +444,9 @@ export DESIRED_CUDA=cpu
**Building CUDA binaries on docker**
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a long time).
To build a CUDA binary you need to use `nvidia-docker run` instead of just `docker run` (or you can manually pass `--runtime=nvidia`). This adds some needed libraries and things to build CUDA stuff.
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a loong time).
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
@ -451,7 +456,7 @@ Theres no easy way to generate reproducible hermetic MacOS environments. If y
But if you want to try, then Id recommend
```sh
```
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
@ -461,7 +466,7 @@ But if you want to try, then Id recommend
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"

View File

@ -5,6 +5,9 @@ for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
In addition to generating config.yml content, the tree is also traversed
to produce a visualization of config dimensions.
"""
from collections import OrderedDict
@ -25,53 +28,33 @@ DEPS_INCLUSION_DIMENSIONS = [
]
def get_processor_arch_name(gpu_version):
return "cpu" if not gpu_version else (
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
)
def get_processor_arch_name(cuda_version):
return "cpu" if not cuda_version else "cu" + cuda_version
LINUX_PACKAGE_VARIANTS = OrderedDict(
manywheel=[
"2.7m",
"2.7mu",
"3.5m",
"3.6m",
"3.7m",
"3.8m",
"3.9m"
],
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7m",
"2.7m",
],
)
CONFIG_TREE_DATA = OrderedDict(
linux=(dimensions.GPU_VERSIONS, LINUX_PACKAGE_VARIANTS),
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
"2.7",
],
)),
macos_arm64=([None], OrderedDict(
wheel=[
"3.8",
"3.9",
],
conda=[
"3.8",
"3.9",
],
)),
windows=(
[v for v in dimensions.GPU_VERSIONS if v not in dimensions.ROCM_VERSION_LABELS],
OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)
),
)
# GCC config variants:
@ -90,11 +73,6 @@ LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
],
)
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
"debug",
"release",
]
class TopLevelNode(ConfigNode):
def __init__(self, node_name, config_tree_data, smoke):
@ -108,12 +86,12 @@ class TopLevelNode(ConfigNode):
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
def __init__(self, parent, os_name, cuda_versions, py_tree):
super(OSConfigNode, self).__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
self.props["gpu_versions"] = gpu_versions
self.props["cuda_versions"] = cuda_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
@ -129,10 +107,8 @@ class PackageFormatConfigNode(ConfigNode):
def get_children(self):
if self.find_prop("os_name") == "linux":
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class LinuxGccConfigNode(ConfigNode):
@ -142,39 +118,21 @@ class LinuxGccConfigNode(ConfigNode):
self.props["gcc_config_variant"] = gcc_config_variant
def get_children(self):
gpu_versions = self.find_prop("gpu_versions")
cuda_versions = self.find_prop("cuda_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == 'devtoolset7':
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
cuda_versions = filter(lambda x: x != "90", cuda_versions)
# XXX disabling conda rocm build since docker images are not there
if self.find_prop("package_format") == 'conda':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
# XXX libtorch rocm build is temporarily disabled
if self.find_prop("package_format") == 'libtorch':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
return [ArchConfigNode(self, v) for v in gpu_versions]
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in cuda_versions]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
def __init__(self, parent, cu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
self.props["gpu"] = gpu
self.props["cu"] = cu
def get_children(self):
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
@ -187,6 +145,8 @@ class PyVersionConfigNode(ConfigNode):
self.props["pyver"] = pyver
def get_children(self):
smoke = self.find_prop("smoke")
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")

View File

@ -1,45 +1,30 @@
from collections import OrderedDict
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.data.binary_build_data as binary_build_data
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
class Conf(object):
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant):
self.os = os
self.gpu_version = gpu_version
self.cuda_version = cuda_version
self.pydistro = pydistro
self.parms = parms
self.smoke = smoke
self.libtorch_variant = libtorch_variant
self.gcc_config_variant = gcc_config_variant
self.libtorch_config_variant = libtorch_config_variant
def gen_build_env_parms(self):
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
elems.append(str(self.libtorch_config_variant))
return elems
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(
f"pytorch/conda-builder:{self.gpu_version}"
)
return miniutils.quote("pytorch/conda-cuda-cxx11-ubuntu1604:latest")
docker_word_substitution = {
"manywheel": "manylinux",
@ -48,13 +33,12 @@ class Conf(object):
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
# TODO cuda images should consolidate into tag-base images similar to rocm
alt_docker_suffix = "cuda102" if not self.gpu_version else (
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
# The cpu nightlies are built on the pytorch/manylinux-cuda100 docker image
alt_docker_suffix = self.cuda_version or "100"
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
if self.cuda_version == "101":
return "soumith/manylinux-cuda101@sha256:5d62be90d5b7777121180e6137c7eed73d37aaf9f669c51b783611e37e0b4916"
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
@ -79,82 +63,38 @@ class Conf(object):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
job_def["requires"] = ["setup"]
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["postnightly"],
)
job_def["requires"].append("update_s3_htmls_for_nightlies")
job_def["requires"].append("update_s3_htmls_for_nightlies_devtoolset7")
job_def["filters"] = {"branches": {"only": "postnightly"}}
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
job_def["filters"] = {"branches": {"only": "nightly"}}
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["requires"].append(self.gen_build_name("build", nightly))
if not (self.smoke and self.os == "macos"):
job_def["docker_image"] = self.gen_docker_image()
# fix this. only works on cuda not rocm
if self.os != "windows" and self.gpu_version:
if self.cuda_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.gpu_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
if self.cuda_version:
job_def["resource_class"] = "gpu.medium"
if phase == "upload":
job_def["context"] = "org-member"
job_def["requires"] = ["setup", self.gen_build_name(upload_phase_dependency, nightly)]
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name : job_def}
def gen_upload_job(self, phase, requires_dependency):
"""Generate binary_upload job for configuration
Output looks similar to:
- binary_upload:
name: binary_linux_manywheel_3_7m_cu92_devtoolset7_nightly_upload
context: org-member
requires: binary_linux_manywheel_3_7m_cu92_devtoolset7_nightly_test
filters:
branches:
only:
- nightly
tags:
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
package_type: manywheel
upload_subfolder: cu92
"""
return {
"binary_upload": OrderedDict({
"name": self.gen_build_name(phase, nightly=True),
"context": "org-member",
"requires": [self.gen_build_name(
requires_dependency,
nightly=True
)],
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"package_type": self.pydistro,
"upload_subfolder": binary_build_data.get_processor_arch_name(
self.gpu_version,
),
})
}
def get_root(smoke, name):
return binary_build_data.TopLevelNode(
@ -173,47 +113,35 @@ def gen_build_env_list(smoke):
for c in config_list:
conf = Conf(
c.find_prop("os_name"),
c.find_prop("gpu"),
c.find_prop("cu"),
c.find_prop("package_format"),
[c.find_prop("pyver")],
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
c.find_prop("smoke"),
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
)
newlist.append(conf)
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def predicate_exclude_nonlinux_and_libtorch(config):
return config.os == "linux"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_upload_job("upload", phase_dependency))
phase_dependency = "test" if predicate_exclude_nonlinux_and_libtorch(conf) else "build"
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
return mylist
def get_post_upload_jobs():
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["postnightly"],
),
},
},
]
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
filtered_configs = filter(predicate_exclude_nonlinux_and_libtorch, configs)
tests = []
for conf_options in filtered_configs:
@ -228,9 +156,7 @@ def get_jobs(toplevel_key, smoke):
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
# don't test for macos_arm64 as it's cross compiled
if phase != "test" or build_config.os != "macos_arm64":
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
return jobs_list

View File

@ -0,0 +1,81 @@
from cimodel.lib.conf_tree import ConfigNode, XImportant
from cimodel.lib.conf_tree import Ver
CONFIG_TREE_DATA = [
(Ver("ubuntu", "16.04"), [
([Ver("gcc", "5")], [XImportant("onnx_py2")]),
([Ver("clang", "7")], [XImportant("onnx_py3.6")]),
]),
]
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
# noinspection PyMethodMayBeStatic
def modify_label(self, label):
return str(label)
def init2(self, node_name):
pass
def get_children(self):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
def is_build_only(self):
if str(self.find_prop("language_version")) == "onnx_py3.6":
return False
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
"clang3.8",
"clang3.9",
"clang7",
"android",
}) or self.find_prop("distro_version").name == "macos"
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super(TopLevelNode, self).__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return DistroConfigNode
class DistroConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["distro_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return CompilerConfigNode
class CompilerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return LanguageConfigNode
class LanguageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["language_version"] = node_name
self.props["build_only"] = self.is_build_only()
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["important"] = True
def get_children(self):
return []

View File

@ -0,0 +1,161 @@
from collections import OrderedDict
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
from cimodel.lib.conf_tree import Ver
import cimodel.lib.miniutils as miniutils
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
from dataclasses import dataclass
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
DOCKER_IMAGE_VERSION = 345
@dataclass
class Conf:
language: str
distro: Ver
# There could be multiple compiler versions configured (e.g. nvcc
# for gpu files and host compiler (gcc/clang) for cpu files)
compilers: [Ver]
build_only: bool
is_important: bool
@property
def compiler_names(self):
return [c.name for c in self.compilers]
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
def get_cudnn_insertion(self):
omit = self.language == "onnx_py2" \
or self.language == "onnx_py3.6" \
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
return [] if omit else ["cudnn7"]
def get_build_name_root_parts(self):
return [
"caffe2",
self.language,
] + self.get_build_name_middle_parts()
def get_build_name_middle_parts(self):
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
def construct_phase_name(self, phase):
root_parts = self.get_build_name_root_parts()
return "_".join(root_parts + [phase]).replace(".", "_")
def get_platform(self):
platform = self.distro.name
if self.distro.name != "macos":
platform = "linux"
return platform
def gen_docker_image(self):
lang_substitutions = {
"onnx_py2": "py2",
"onnx_py3.6": "py3.6",
"cmake": "py2",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [lang] + self.get_build_name_middle_parts()
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
def gen_workflow_params(self, phase):
parameters = OrderedDict()
lang_substitutions = {
"onnx_py2": "onnx-py2",
"onnx_py3.6": "onnx-py3.6",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [
"caffe2",
lang,
] + self.get_build_name_middle_parts() + [phase]
build_env_name = "-".join(parts)
parameters["build_environment"] = miniutils.quote(build_env_name)
if "ios" in self.compiler_names:
parameters["build_ios"] = miniutils.quote("1")
if phase == "test":
# TODO cuda should not be considered a compiler
if "cuda" in self.compiler_names:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if self.distro.name != "macos":
parameters["docker_image"] = self.gen_docker_image()
if self.build_only:
parameters["build_only"] = miniutils.quote("1")
if phase == "test":
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
parameters["resource_class"] = resource_class
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.construct_phase_name(phase)
job_def["requires"] = ["setup"]
if phase == "test":
job_def["requires"].append(self.construct_phase_name("build"))
job_name = "caffe2_" + self.get_platform() + "_test"
else:
job_name = "caffe2_" + self.get_platform() + "_build"
if not self.is_important:
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name : job_def}
def get_root():
return TopLevelNode("Caffe2 Builds", CONFIG_TREE_DATA)
def instantiate_configs():
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
c = Conf(
language=fc.find_prop("language_version"),
distro=fc.find_prop("distro_version"),
compilers=fc.find_prop("compiler_version"),
build_only=fc.find_prop("build_only"),
is_important=fc.find_prop("important"),
)
config_list.append(c)
return config_list
def get_workflow_jobs():
configs = instantiate_configs()
x = []
for conf_options in configs:
phases = ["build"]
if not conf_options.build_only:
phases = dimensions.PHASES
for phase in phases:
x.append(conf_options.gen_workflow_job(phase))
return x

View File

@ -1,23 +1,15 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
"102",
"111",
None, # cpu build
"92",
"100",
"101",
]
ROCM_VERSIONS = [
"4.0.1",
"4.1",
"4.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = [
"2.7",
"3.5",
"3.6",
"3.7",
"3.8",
"3.9"
]

View File

@ -3,13 +3,18 @@ from cimodel.lib.conf_tree import ConfigNode, X, XImportant
CONFIG_TREE_DATA = [
("xenial", [
(None, [
XImportant("2.7.9"),
X("2.7"),
XImportant("3.5"), # Not run on all PRs, but should be included on [test all]
X("nightly"),
]),
("gcc", [
("5.4", [ # All this subtree rebases to master and then build
XImportant("3.6"),
("3.6", [
("important", [X(True)]),
("parallel_tbb", [X(True)]),
("parallel_native", [X(True)]),
("pure_torch", [X(True)]),
("parallel_tbb", [XImportant(True)]),
("parallel_native", [XImportant(True)]),
]),
]),
# TODO: bring back libtorch test
@ -17,80 +22,40 @@ CONFIG_TREE_DATA = [
]),
("clang", [
("5", [
("3.6", [
("asan", [
(True, [
("shard_test", [XImportant(True)]),
]),
]),
]),
]),
("7", [
("3.6", [
("onnx", [XImportant(True)]),
]),
XImportant("3.6"), # This is actually the ASAN build
]),
# ("7", [
# ("3.6", [
# ("xla", [XImportant(True)]),
# ]),
# ]),
]),
("cuda", [
("10.2", [
("3.6", [
("shard_test", [X(True)]),
("libtorch", [
(True, [
('build_only', [X(True)]),
]),
]),
]),
]),
("11.1", [
("3.8", [
("shard_test", [XImportant(True)]),
("libtorch", [
(True, [
('build_only', [X(True)]),
]),
]),
]),
]),
]),
]),
("bionic", [
("clang", [
("9", [
# Note there are magic strings here
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L21
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L143
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L153
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453144)
XImportant("3.6"),
("3.6", [
("noarch", [XImportant(True)]),
("libtorch", [XImportant(True)])
]),
]),
("9", [
("9.2", [X("3.6")]),
("10", [X("3.6")]),
("10.1", [X("3.6")]),
]),
("android", [
("r19c", [
("3.6", [
("xla", [XImportant(True)]),
("vulkan", [XImportant(True)]),
]),
]),
]),
("cuda", [
("10.2", [
("3.9", [
("shard_test", [XImportant(True)]),
]),
]),
]),
("gcc", [
("9", [
("3.8", [
("coverage", [
(True, [
("shard_test", [XImportant(True)]),
]),
]),
]),
]),
]),
("rocm", [
("3.9", [
("3.6", [
('build_only', [XImportant(True)]),
]),
("android_abi", [XImportant("x86_32")]),
("android_abi", [X("x86_64")]),
("android_abi", [X("arm-v7a")]),
("android_abi", [X("arm-v8a")]),
])
]),
]),
]),
@ -136,7 +101,6 @@ class DistroConfigNode(TreeConfigNode):
next_nodes = {
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
@ -145,8 +109,6 @@ class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
@ -161,36 +123,16 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
experimental_feature = self.find_prop("experimental_feature")
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mlc": MLCConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"noarch": NoarchConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"coverage": CoverageConfigNode,
"pure_torch": PureTorchConfigNode,
"android_abi": AndroidAbiConfigNode,
}
return next_nodes[experimental_feature]
class PureTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PURE_TORCH=" + str(label)
def init2(self, node_name):
self.props["is_pure_torch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class XlaConfigNode(TreeConfigNode):
def modify_label(self, label):
return "XLA=" + str(label)
@ -201,50 +143,6 @@ class XlaConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class MLCConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MLC=" + str(label)
def init2(self, node_name):
self.props["is_mlc"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Asan=" + str(label)
def init2(self, node_name):
self.props["is_asan"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ONNXConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Onnx=" + str(label)
def init2(self, node_name):
self.props["is_onnx"] = node_name
def child_constructor(self):
return ImportantConfigNode
class VulkanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Vulkan=" + str(label)
def init2(self, node_name):
self.props["is_vulkan"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
@ -255,15 +153,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class NoarchConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_noarch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
@ -274,7 +163,6 @@ class ParallelNativeConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
@ -283,41 +171,16 @@ class LibTorchConfigNode(TreeConfigNode):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
return ImportantConfigNode
class AndroidAbiConfigNode(TreeConfigNode):
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ShardTestConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["shard_test"] = node_name
self.props["android_abi"] = node_name
def child_constructor(self):
return ImportantConfigNode
class CoverageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_coverage"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)
@ -330,6 +193,7 @@ class ImportantConfigNode(TreeConfigNode):
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
@ -342,19 +206,6 @@ class XenialCompilerConfigNode(TreeConfigNode):
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class XenialCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
@ -362,12 +213,3 @@ class XenialCompilerVersionConfigNode(TreeConfigNode):
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -1,13 +1,19 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Optional
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.data.simple.util.docker_constants import gen_docker_image
from dataclasses import dataclass, field
from typing import List, Optional
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/"
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
# TOP OF .circleci/config.yml
DOCKER_IMAGE_VERSION = 405
@dataclass
@ -17,25 +23,18 @@ class Conf:
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
rocm_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
is_vulkan: bool = False
is_pure_torch: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional["Conf"] = None
parent_build: Optional['Conf'] = None
is_libtorch: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
@staticmethod
def is_test_phase(phase):
return "test" in phase
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
def get_parms(self, for_docker):
@ -47,47 +46,31 @@ class Conf:
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_vulkan and not for_docker:
leading.append("vulkan")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.is_pure_torch and not for_docker:
leading.append("pure_torch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
cuda_parms = []
if self.cuda_version:
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
if self.rocm_version:
cuda_parms.extend([f"rocm{self.rocm_version}"])
cuda_parms.extend(["cuda" + self.cuda_version, "cudnn7"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
if (not for_docker and self.parms_list_ignored_for_docker_image is not None):
result = result + self.parms_list_ignored_for_docker_image
return result
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
image_name, _ = gen_docker_image(base_build_env_name)
return miniutils.quote(image_name)
def gen_docker_image_requires(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
_, requires = gen_docker_image(base_build_env_name)
return miniutils.quote(requires)
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + base_build_env_name + ":" + str(DOCKER_IMAGE_VERSION))
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
def gen_build_name(self, build_or_test):
return (
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
.replace(".", "_")
.replace("-", "_")
)
return ("_".join(map(str, self.get_build_job_name_pieces(build_or_test)))).replace(".", "_").replace("-", "_")
def get_dependents(self):
return self.dependent_tests or []
@ -99,26 +82,22 @@ class Conf:
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if Conf.is_test_phase(phase) and self.gpu_resource:
if phase == "test" and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if Conf.is_test_phase(phase):
if phase == "test":
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
if self.rocm_version is not None:
resource_class = "pytorch/amd-gpu"
parameters["resource_class"] = resource_class
if phase == "build" and self.rocm_version is not None:
parameters["resource_class"] = "xlarge"
if hasattr(self, 'filters'):
parameters['filters'] = self.filters
return parameters
def gen_workflow_job(self, phase):
# All jobs require the setup job
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
job_def["requires"] = ["setup"]
if Conf.is_test_phase(phase):
if phase == "test":
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
@ -126,63 +105,43 @@ class Conf:
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_def["requires"].append(dependency_build.gen_build_name("build"))
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
job_def["requires"] = [self.gen_docker_image_requires()]
if not self.is_important:
job_def["filters"] = gen_filter_dict()
# If you update this, update
# caffe2_build_definitions.py too
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name: job_def}
return {job_name : job_def}
# TODO This is a hack to special case some configs just for the workflow list
class HiddenConf(object):
def __init__(self, name, parent_build=None, filters=None):
def __init__(self, name, parent_build=None):
self.name = name
self.parent_build = parent_build
self.filters = filters
def gen_workflow_job(self, phase):
return {
self.gen_build_name(phase): {
"requires": [self.parent_build.gen_build_name("build")],
"filters": self.filters,
}
}
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
def gen_build_name(self, _):
return self.name
class DocPushConf(object):
def __init__(self, name, parent_build=None, branch="master"):
self.name = name
self.parent_build = parent_build
self.branch = branch
def gen_workflow_job(self, phase):
return {
"pytorch_doc_push": {
"name": self.name,
"branch": self.branch,
"requires": [self.parent_build],
"context": "org-member",
"filters": gen_filter_dict(branches_list=["nightly"],
tags_list=RC_PATTERN)
}
}
# TODO Convert these to graph nodes
def gen_dependent_configs(xenial_parent_config):
extra_parms = [
(["multigpu"], "large"),
(["nogpu", "NO_AVX2"], None),
(["nogpu", "NO_AVX"], None),
(["NO_AVX2"], "medium"),
(["NO_AVX", "NO_AVX2"], "medium"),
(["slow"], "medium"),
(["nogpu"], None),
]
configs = []
@ -191,60 +150,19 @@ def gen_dependent_configs(xenial_parent_config):
c = Conf(
xenial_parent_config.distro,
["py3"] + parms,
pyver=xenial_parent_config.pyver,
pyver="3.6",
cuda_version=xenial_parent_config.cuda_version,
restrict_phases=["test"],
gpu_resource=gpu,
parent_build=xenial_parent_config,
is_important=False,
is_important=xenial_parent_config.is_important,
)
configs.append(c)
return configs
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
def gen_docs_configs(xenial_parent_config):
configs = []
configs.append(
HiddenConf(
"pytorch_python_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_python_doc_push",
parent_build="pytorch_python_doc_build",
branch="site",
)
)
configs.append(
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_cpp_doc_push",
parent_build="pytorch_cpp_doc_build",
branch="master",
)
)
configs.append(
HiddenConf(
"pytorch_doc_test",
parent_build=xenial_parent_config
)
)
return configs
@ -264,19 +182,13 @@ def instantiate_configs():
root = get_root()
found_configs = conf_tree.dfs(root)
restrict_phases = None
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_coverage = fc.find_prop("is_coverage") or False
is_noarch = fc.find_prop("is_noarch") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
parms_list_ignored_for_docker_image = []
python_version = None
@ -287,14 +199,9 @@ def instantiate_configs():
parms_list = ["py" + fc.find_prop("pyver")]
cuda_version = None
rocm_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
elif compiler_name == "rocm":
rocm_version = fc.find_prop("compiler_version")
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
elif compiler_name == "android":
android_ndk_version = fc.find_prop("compiler_version")
# TODO: do we need clang to compile host binaries like protoc?
@ -303,44 +210,25 @@ def instantiate_configs():
android_abi = fc.find_prop("android_abi")
parms_list_ignored_for_docker_image.append(android_abi)
restrict_phases = ["build"]
fc.props["is_important"] = True
elif compiler_name:
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
parms_list.append(gcc_version)
if is_asan:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
# TODO: This is a nasty special case
if compiler_name == "clang" and not is_xla:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_coverage:
parms_list_ignored_for_docker_image.append("coverage")
python_version = fc.find_prop("pyver")
if is_noarch:
parms_list_ignored_for_docker_image.append("noarch")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
restrict_phases = ["build", "ort_test1", "ort_test2"]
if cuda_version:
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
if cuda_version in ["9.2", "10", "10.1"]:
# TODO The gcc version is orthogonal to CUDA version?
parms_list.append("gcc7")
is_libtorch = fc.find_prop("is_libtorch") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
shard_test = fc.find_prop("shard_test") or False
# TODO: fix pure_torch python test packaging issue.
if shard_test:
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
restrict_phases.extend(["test1", "test2"])
if build_only or is_pure_torch:
restrict_phases = ["build"]
gpu_resource = None
if cuda_version and cuda_version != "10":
@ -352,10 +240,7 @@ def instantiate_configs():
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
rocm_version,
is_xla,
is_vulkan,
is_pure_torch,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
@ -363,35 +248,13 @@ def instantiate_configs():
parallel_backend=parallel_backend,
)
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build? Projects are
# beginning to drop python3.6
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.6"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
and not is_pure_torch
and compiler_name == "gcc"
and fc.find_prop("compiler_version") == "5.4"
):
c.filters = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
c.dependent_tests = gen_docs_configs(c)
if cuda_version == "10.2" and python_version == "3.6" and not is_libtorch:
if cuda_version == "9" and python_version == "3.6" and not is_libtorch:
c.dependent_tests = gen_dependent_configs(c)
if (
compiler_name == "gcc"
and compiler_version == "5.4"
and not is_libtorch
and not is_vulkan
and not is_pure_torch
and parallel_backend is None
):
if (compiler_name == "gcc"
and compiler_version == "5.4"
and not is_libtorch
and parallel_backend is None):
bc_breaking_check = Conf(
"backward-compatibility-check",
[],
@ -412,7 +275,7 @@ def get_workflow_jobs():
config_list = instantiate_configs()
x = []
x = ["setup"]
for conf_options in config_list:
phases = conf_options.restrict_phases or dimensions.PHASES
@ -420,7 +283,7 @@ def get_workflow_jobs():
for phase in phases:
# TODO why does this not have a test?
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
if phase == "test" and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))

View File

@ -1,28 +0,0 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.lib.miniutils import quote
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
def gen_workflow_job(channel: str):
return OrderedDict(
{
"anaconda_prune": OrderedDict(
{
"name": f"anaconda-prune-{channel}",
"context": quote("org-member"),
"packages": quote(PACKAGES_TO_PRUNE),
"channel": channel,
"filters": gen_filter_dict(branches_list=["postnightly"]),
}
)
}
)
def get_workflow_jobs():
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]

View File

@ -1,119 +0,0 @@
import cimodel.data.simple.util.branch_filters as branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK
)
import cimodel.lib.miniutils as miniutils
class AndroidJob:
def __init__(self,
variant,
template_name,
is_master_only=True):
self.variant = variant
self.template_name = template_name
self.is_master_only = is_master_only
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant + [
"build",
]
full_job_name = "_".join(base_name_parts)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"build_environment": "\"{}\"".format(build_env_name),
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
"requires": [DOCKER_REQUIREMENT_NDK]
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
return [{self.template_name: props_dict}]
class AndroidGradleJob:
def __init__(self,
job_name,
template_name,
dependencies,
is_master_only=True,
is_pr_only=False,
extra_props=tuple()):
self.job_name = job_name
self.template_name = template_name
self.dependencies = dependencies
self.is_master_only = is_master_only
self.is_pr_only = is_pr_only
self.extra_props = dict(extra_props)
def gen_tree(self):
props_dict = {
"name": self.job_name,
"requires": self.dependencies,
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
elif self.is_pr_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.PR_BRANCH_LIST)
if self.extra_props:
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
AndroidJob(["x86_64"], "pytorch_linux_build"),
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
"pytorch_android_gradle_build-x86_32",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single",
"pytorch_android_gradle_custom_build_single",
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single-full-jit",
"pytorch_android_gradle_custom_build_single",
[DOCKER_REQUIREMENT_NDK],
is_master_only=False,
is_pr_only=True,
extra_props=tuple({
"lite_interpreter": miniutils.quote(str(int(False)))
}.items())),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
"pytorch_android_gradle_build",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,69 +0,0 @@
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_GCC7,
DOCKER_REQUIREMENT_GCC7
)
def gen_job_name(phase):
job_name_parts = [
"pytorch",
"bazel",
phase,
]
return "_".join(job_name_parts)
class BazelJob:
def __init__(self, phase, extra_props=None):
self.phase = phase
self.extra_props = extra_props or {}
def gen_tree(self):
template_parts = [
"pytorch",
"linux",
"bazel",
self.phase,
]
build_env_parts = [
"pytorch",
"linux",
"xenial",
"py3.6",
"gcc7",
"bazel",
self.phase,
]
full_job_name = gen_job_name(self.phase)
build_env_name = "-".join(build_env_parts)
extra_requires = (
[gen_job_name("build")] if self.phase == "test" else
[DOCKER_REQUIREMENT_GCC7]
)
props_dict = {
"build_environment": build_env_name,
"docker_image": DOCKER_IMAGE_GCC7,
"name": full_job_name,
"requires": extra_requires,
}
props_dict.update(self.extra_props)
template_name = "_".join(template_parts)
return [{template_name: props_dict}]
WORKFLOW_DATA = [
BazelJob("build", {"resource_class": "large"}),
BazelJob("test"),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,193 +0,0 @@
"""
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
instead of doing one offs here
Binary builds (subset, to smoke test that they'll work)
NB: If you modify this file, you need to also modify
the binary_and_smoke_tests_on_pr variable in
pytorch-ci-hud to adjust the allowed build list
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
Note:
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
- binary_linux_conda_3_6_cu90_devtoolset7_build
- binary_linux_conda_3_6_cu90_devtoolset7_test
TODO
we should test a libtorch cuda build, but they take too long
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class SmoketestJob:
def __init__(self,
template_name,
build_env_parts,
docker_image,
job_name,
is_master_only=False,
requires=None,
has_libtorch_variant=False,
extra_props=None):
self.template_name = template_name
self.build_env_parts = build_env_parts
self.docker_image = docker_image
self.job_name = job_name
self.is_master_only = is_master_only
self.requires = requires or []
self.has_libtorch_variant = has_libtorch_variant
self.extra_props = extra_props or {}
def gen_tree(self):
props_dict = {
"build_environment": " ".join(self.build_env_parts),
"name": self.job_name,
"requires": self.requires,
}
if self.docker_image:
props_dict["docker_image"] = self.docker_image
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
if self.has_libtorch_variant:
props_dict["libtorch_variant"] = "shared-with-deps"
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
SmoketestJob(
"binary_linux_build",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
is_master_only=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
is_master_only=True,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_mac_build",
["wheel", "3.7", "cpu"],
None,
"binary_macos_wheel_3_7_cpu_build",
is_master_only=True,
),
# This job has an average run time of 3 hours o.O
# Now only running this on master to reduce overhead
SmoketestJob(
"binary_mac_build",
["libtorch", "3.7", "cpu"],
None,
"binary_macos_libtorch_3_7_cpu_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_test",
is_master_only=True,
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_test",
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
),
SmoketestJob(
"binary_windows_test",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_test",
is_master_only=True,
requires=["binary_windows_wheel_3_7_cu102_build"],
extra_props={
"executor": "windows-with-nvidia-gpu",
},
),
SmoketestJob(
"binary_linux_test",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
is_master_only=True,
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
extra_props={
"resource_class": "gpu.medium",
"use_cuda_docker_runtime": miniutils.quote((str(1))),
},
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
has_libtorch_variant=True,
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,52 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# TODO: make this generated from a matrix rather than just a static list
IMAGE_NAMES = [
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
"pytorch-linux-bionic-py3.6-clang9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
"pytorch-linux-bionic-py3.8-gcc9",
"pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
"pytorch-linux-xenial-py3-clang5-asan",
"pytorch-linux-xenial-py3-clang7-onnx",
"pytorch-linux-xenial-py3.8",
"pytorch-linux-xenial-py3.6-clang7",
"pytorch-linux-xenial-py3.6-gcc5.4", # this one is used in doc builds
"pytorch-linux-xenial-py3.6-gcc7.2",
"pytorch-linux-xenial-py3.6-gcc7",
"pytorch-linux-bionic-rocm3.9-py3.6",
"pytorch-linux-bionic-rocm4.0.1-py3.6",
"pytorch-linux-bionic-rocm4.1-py3.6",
"pytorch-linux-bionic-rocm4.2-py3.6",
]
def get_workflow_jobs():
"""Generates a list of docker image build definitions"""
ret = []
for image_name in IMAGE_NAMES:
parameters = OrderedDict({
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
})
if image_name == "pytorch-linux-xenial-py3.6-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
ret.append(OrderedDict(
{
"docker_build_job": parameters
}
))
return ret

View File

@ -1,78 +0,0 @@
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.versions import MultiPartVersion, CudaVersion
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_BASIC, DOCKER_IMAGE_CUDA_10_2
class GeConfigTestJob:
def __init__(self,
py_version,
gcc_version,
cuda_version,
variant_parts,
extra_requires,
use_cuda_docker=False,
build_env_override=None):
self.py_version = py_version
self.gcc_version = gcc_version
self.cuda_version = cuda_version
self.variant_parts = variant_parts
self.extra_requires = extra_requires
self.use_cuda_docker = use_cuda_docker
self.build_env_override = build_env_override
def get_all_parts(self, with_dots):
maybe_py_version = self.py_version.render_dots_or_parts(with_dots) if self.py_version else []
maybe_gcc_version = self.gcc_version.render_dots_or_parts(with_dots) if self.gcc_version else []
maybe_cuda_version = self.cuda_version.render_dots_or_parts(with_dots) if self.cuda_version else []
common_parts = [
"pytorch",
"linux",
"xenial",
] + maybe_cuda_version + maybe_py_version + maybe_gcc_version
return common_parts + self.variant_parts
def gen_tree(self):
resource_class = "gpu.medium" if self.use_cuda_docker else "large"
docker_image = DOCKER_IMAGE_CUDA_10_2 if self.use_cuda_docker else DOCKER_IMAGE_BASIC
full_name = "_".join(self.get_all_parts(False))
build_env = self.build_env_override or "-".join(self.get_all_parts(True))
props_dict = {
"name": full_name,
"build_environment": build_env,
"requires": self.extra_requires,
"resource_class": resource_class,
"docker_image": docker_image,
}
if self.use_cuda_docker:
props_dict["use_cuda_docker_runtime"] = miniutils.quote(str(1))
return [{"pytorch_linux_test": props_dict}]
WORKFLOW_DATA = [
GeConfigTestJob(
MultiPartVersion([3, 6], "py"),
MultiPartVersion([5, 4], "gcc"),
None,
["jit_legacy", "test"],
["pytorch_linux_xenial_py3_6_gcc5_4_build"]),
GeConfigTestJob(
None,
None,
CudaVersion(10, 2),
["cudnn7", "py3", "jit_legacy", "test"],
["pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7_build"],
use_cuda_docker=True,
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,82 +0,0 @@
from cimodel.data.simple.util.versions import MultiPartVersion
import cimodel.lib.miniutils as miniutils
XCODE_VERSION = MultiPartVersion([12, 0, 0])
class ArchVariant:
def __init__(self, name, custom_build_name=""):
self.name = name
self.custom_build_name = custom_build_name
def render(self):
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
return "_".join([self.name] + extra_parts)
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
self.xcode_version = xcode_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self, with_version_dots):
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
return [
"pytorch",
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "_".join(self.gen_name_parts(False))
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"build_environment": "-".join(self.gen_name_parts(True)),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
"name": self.gen_job_name(),
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
"use_metal": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
"op_list": "mobilenetv2.yaml",
"lite_interpreter": miniutils.quote(str(int(True)))}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,52 +0,0 @@
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = non_phase_parts + extra_name_list + [
'build' if self.is_build else None,
'test' if self.is_test else None,
]
full_job_name = "_".join(list(filter(None, full_job_name_list)))
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({
"lite_interpreter": True
}.items()),
)
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,86 +0,0 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_ASAN,
DOCKER_REQUIREMENT_ASAN,
DOCKER_IMAGE_NDK,
DOCKER_REQUIREMENT_NDK
)
class MobileJob:
def __init__(
self,
docker_image,
docker_requires,
variant_parts,
is_master_only=False):
self.docker_image = docker_image
self.docker_requires = docker_requires
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"requires": self.docker_requires,
"name": full_job_name,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = [
MobileJob(
DOCKER_IMAGE_ASAN,
[DOCKER_REQUIREMENT_ASAN],
["build"]
),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["custom", "build", "dynamic"]
),
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["custom", "build", "static"]
),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
MobileJob(
DOCKER_IMAGE_NDK,
[DOCKER_REQUIREMENT_NDK],
["code", "analysis"],
True
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,77 +0,0 @@
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK,
DOCKER_REQUIREMENT_NDK
)
class AndroidNightlyJob:
def __init__(self,
variant,
template_name,
extra_props=None,
with_docker=True,
requires=None,
no_build_suffix=False):
self.variant = variant
self.template_name = template_name
self.extra_props = extra_props or {}
self.with_docker = with_docker
self.requires = requires
self.no_build_suffix = no_build_suffix
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant
build_suffix = [] if self.no_build_suffix else ["build"]
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"requires": self.requires,
"filters": {"branches": {"only": "nightly"}},
}
props_dict.update(self.extra_props)
if self.with_docker:
props_dict["docker_image"] = DOCKER_IMAGE_NDK
props_dict["build_environment"] = build_env_name
return [{self.template_name: props_dict}]
BASE_REQUIRES = [DOCKER_REQUIREMENT_NDK]
WORKFLOW_DATA = [
AndroidNightlyJob(["x86_32"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["x86_64"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
with_docker=False,
requires=[
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
extra_props={"context": "org-member"},
with_docker=False,
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
no_build_suffix=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,68 +0,0 @@
import cimodel.data.simple.ios_definitions as ios_definitions
class IOSNightlyJob:
def __init__(self,
variant,
is_upload=False):
self.variant = variant
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, with_version_dots):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
common_name_pieces = [
"ios",
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
"nightly",
self.variant,
"build",
] + extra_name_suffix
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
def gen_tree(self):
extra_requires = [x.gen_job_name() for x in BUILD_CONFIGS] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
template_name = "_".join([
"binary",
"ios",
self.get_phase_name(),
])
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
WORKFLOW_DATA = BUILD_CONFIGS + [
IOSNightlyJob("binary", is_upload=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,27 +0,0 @@
NON_PR_BRANCH_LIST = [
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
PR_BRANCH_LIST = [
r"/gh\/.*\/head/",
r"/pull\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict

View File

@ -1,33 +0,0 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
def gen_docker_image(container_type):
return (
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
f"docker-{container_type}",
)
def gen_docker_image_requires(image_name):
return [f"docker-{image_name}"]
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.6-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.6-gcc7"
)
def gen_mobile_docker(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image(container_type)
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")

View File

@ -1,34 +0,0 @@
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
else:
return [self.prefix]
def render_dots(self):
return ".".join(self.prefixed_parts())
def render_dots_or_parts(self, with_dots):
if with_dots:
return [self.render_dots()]
else:
return self.prefixed_parts()
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")
def __str__(self):
return f"{self.major}.{self.minor}"

View File

@ -1,164 +0,0 @@
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN, NON_PR_BRANCH_LIST
from cimodel.data.simple.util.versions import CudaVersion
class WindowsJob:
def __init__(
self,
test_index,
vscode_spec,
cuda_version,
force_on_cpu=False,
multi_gpu=False,
master_only=False,
nightly_only=False,
master_and_nightly=False
):
self.test_index = test_index
self.vscode_spec = vscode_spec
self.cuda_version = cuda_version
self.force_on_cpu = force_on_cpu
self.multi_gpu = multi_gpu
self.master_only = master_only
self.nightly_only = nightly_only
self.master_and_nightly = master_and_nightly
def gen_tree(self):
base_phase = "build" if self.test_index is None else "test"
numbered_phase = (
base_phase if self.test_index is None else base_phase + str(self.test_index)
)
key_parts = ["pytorch", "windows", base_phase]
if self.multi_gpu:
key_parts.append('multigpu')
key_name = "_".join(key_parts)
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
target_arch = self.cuda_version.render_dots() if self.cuda_version else "cpu"
base_name_parts = [
"pytorch",
"windows",
self.vscode_spec.render(),
"py36",
target_arch,
]
prerequisite_jobs = []
if base_phase == "test":
prerequisite_jobs.append("_".join(base_name_parts + ["build"]))
if self.cuda_version:
self.cudnn_version = 8 if self.cuda_version.major == 11 else 7
arch_env_elements = (
["cuda" + str(self.cuda_version.major), "cudnn" + str(self.cudnn_version)]
if self.cuda_version
else ["cpu"]
)
build_environment_string = "-".join(
["pytorch", "win"]
+ self.vscode_spec.get_elements()
+ arch_env_elements
+ ["py3"]
)
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
if self.multi_gpu:
props_dict = {"requires": prerequisite_jobs}
else:
props_dict = {
"build_environment": build_environment_string,
"python_version": miniutils.quote("3.6"),
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
"vc_product": self.vscode_spec.get_product(),
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
"requires": prerequisite_jobs,
}
if self.master_only:
props_dict[
"filters"
] = gen_filter_dict()
elif self.nightly_only:
props_dict[
"filters"
] = gen_filter_dict(branches_list=["nightly"], tags_list=RC_PATTERN)
elif self.master_and_nightly:
props_dict[
"filters"
] = gen_filter_dict(branches_list=NON_PR_BRANCH_LIST + ["nightly"], tags_list=RC_PATTERN)
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
if not self.multi_gpu:
if base_phase == "test":
test_name = "-".join(["pytorch", "windows", numbered_phase])
props_dict["test_name"] = test_name
if is_running_on_cuda:
props_dict["executor"] = "windows-with-nvidia-gpu"
props_dict["cuda_version"] = (
miniutils.quote(str(self.cuda_version))
if self.cuda_version
else "cpu"
)
props_dict["name"] = "_".join(name_parts)
return [{key_name: props_dict}]
class VcSpec:
def __init__(self, year, version_elements=None, hide_version=False):
self.year = year
self.version_elements = version_elements or []
self.hide_version = hide_version
def get_elements(self):
if self.hide_version:
return [self.prefixed_year()]
return [self.prefixed_year()] + self.version_elements
def get_product(self):
return "BuildTools"
def dotted_version(self):
return ".".join(self.version_elements)
def prefixed_year(self):
return "vs" + str(self.year)
def render(self):
return "_".join(self.get_elements())
_VC2019 = VcSpec(2019)
WORKFLOW_DATA = [
# VS2019 CUDA-10.1
WindowsJob(None, _VC2019, CudaVersion(10, 1), master_only=True),
WindowsJob(1, _VC2019, CudaVersion(10, 1), master_only=True),
WindowsJob(2, _VC2019, CudaVersion(10, 1), master_only=True),
# VS2019 CUDA-11.1
WindowsJob(None, _VC2019, CudaVersion(11, 1)),
WindowsJob(1, _VC2019, CudaVersion(11, 1), master_only=True),
WindowsJob(2, _VC2019, CudaVersion(11, 1), master_only=True),
WindowsJob('_azure_multi_gpu', _VC2019, CudaVersion(11, 1), multi_gpu=True, nightly_only=True),
# VS2019 CPU-only
WindowsJob(None, _VC2019, None),
WindowsJob(1, _VC2019, None),
WindowsJob(2, _VC2019, None),
WindowsJob(1, _VC2019, CudaVersion(10, 1), force_on_cpu=True, master_only=True),
]
def get_windows_workflows():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,7 +1,5 @@
from collections import OrderedDict
import cimodel.lib.miniutils as miniutils
LIST_MARKER = "- "
INDENTATION_WIDTH = 2
@ -31,8 +29,7 @@ def render(fh, data, depth, is_list_member=False):
tuples.sort()
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
@ -46,7 +43,5 @@ def render(fh, data, depth, is_list_member=False):
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")
fh.write(list_member_prefix + str(data) + "\n")

View File

@ -0,0 +1,84 @@
"""
This module encapsulates dependencies on pygraphviz
"""
import colorsys
import cimodel.lib.conf_tree as conf_tree
def rgb2hex(rgb_tuple):
def to_hex(f):
return "%02x" % int(f * 255)
return "#" + "".join(map(to_hex, list(rgb_tuple)))
def handle_missing_graphviz(f):
"""
If the user has not installed pygraphviz, this causes
calls to the draw() method of the returned object to do nothing.
"""
try:
import pygraphviz # noqa: F401
return f
except ModuleNotFoundError:
class FakeGraph:
def draw(self, *args, **kwargs):
pass
return lambda _: FakeGraph()
@handle_missing_graphviz
def generate_graph(toplevel_config_node):
"""
Traverses the graph once first just to find the max depth
"""
config_list = conf_tree.dfs(toplevel_config_node)
max_depth = 0
for config in config_list:
max_depth = max(max_depth, config.get_depth())
# color the nodes using the max depth
from pygraphviz import AGraph
dot = AGraph()
def node_discovery_callback(node, sibling_index, sibling_count):
depth = node.get_depth()
sat_min, sat_max = 0.1, 0.6
sat_range = sat_max - sat_min
saturation_fraction = sibling_index / float(sibling_count - 1) if sibling_count > 1 else 1
saturation = sat_min + sat_range * saturation_fraction
# TODO Use a hash of the node label to determine the color
hue = depth / float(max_depth + 1)
rgb_tuple = colorsys.hsv_to_rgb(hue, saturation, 1)
this_node_key = node.get_node_key()
dot.add_node(
this_node_key,
label=node.get_label(),
style="filled",
# fillcolor=hex_color + ":orange",
fillcolor=rgb2hex(rgb_tuple),
penwidth=3,
color=rgb2hex(colorsys.hsv_to_rgb(hue, saturation, 0.9))
)
def child_callback(node, child):
this_node_key = node.get_node_key()
child_node_key = child.get_node_key()
dot.add_edge((this_node_key, child_node_key))
conf_tree.dfs_recurse(toplevel_config_node, lambda x: None, node_discovery_callback, child_callback)
return dot

View File

@ -1,17 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
DIFF_TOOL=meld
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
popd

View File

@ -1,24 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], '..'))
import cimodel.lib.miniyaml as miniyaml
def regurgitate(depth, use_pyyaml_formatter=False):
data = yaml.safe_load(sys.stdin)
if use_pyyaml_formatter:
output = yaml.dump(data, sort_keys=True)
sys.stdout.write(output)
else:
miniyaml.render(sys.stdout, data, depth)
if __name__ == "__main__":
regurgitate(3)

View File

@ -1,15 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=$1
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
TEMP_FILENAME=$(mktemp)
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
mv $TEMP_FILENAME $YAML_FILENAME
popd

File diff suppressed because it is too large Load Diff

View File

@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'BREAKPAD=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -20,8 +20,10 @@ buildscript {
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
classpath 'com.android.tools.build:gradle:3.3.2'
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
}
}

View File

@ -10,85 +10,63 @@ if [ -z "${image}" ]; then
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
# TODO: Generalize
OS="ubuntu"
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *-cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
fi
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
if [[ "$image" == *-xenial* ]]; then
if [[ "$image" == *-trusty* ]]; then
UBUNTU_VERSION=14.04
elif [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
ANACONDA_PYTHON_VERSION=3.8
pytorch-linux-bionic-clang9-thrift-llvmdev)
CLANG_VERSION=9
THRIFT=yes
LLVMDEV=yes
PROTOBUF=yes
;;
pytorch-linux-xenial-py2.7.9)
TRAVIS_PYTHON_VERSION=2.7.9
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py2.7)
TRAVIS_PYTHON_VERSION=2.7
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.5)
TRAVIS_PYTHON_VERSION=3.5
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc4.8)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=4.8
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.6-gcc5.4)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
@ -101,7 +79,55 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-pynightly)
TRAVIS_PYTHON_VERSION=nightly
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda8-cudnn7-py2)
CUDA_VERSION=8.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=2.7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda8-cudnn7-py3)
CUDA_VERSION=8.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py2)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=2.7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py3)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
CUDA_VERSION=10.0
@ -111,7 +137,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
CUDA_VERSION=10.1
@ -121,41 +146,6 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7)
CUDA_VERSION=11.1
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.6
@ -163,24 +153,14 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
GRADLE_VERSION=4.10.3
CMAKE_VERSION=3.7.0
NINJA_VERSION=1.9.0
;;
@ -190,128 +170,7 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-py3.6-clang9)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=3.9
;;
pytorch-linux-bionic-rocm4.0.1-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.0.1
;;
pytorch-linux-bionic-rocm4.1-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.1
;;
pytorch-linux-bionic-rocm4.2-py3.6)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
ROCM_VERSION=4.2
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
BREAKPAD=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
# Set Jenkins UID and GID if running Jenkins
@ -320,15 +179,11 @@ if [ -n "${JENKINS:-}" ]; then
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | head -c 32)"
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
@ -340,37 +195,23 @@ docker build \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "BREAKPAD=${BREAKPAD}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
@ -388,6 +229,19 @@ if [[ "$OS" == "ubuntu" ]]; then
fi
fi
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
else
echo "Please manually check nightly is OK:"
drun python --version
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"

View File

@ -13,7 +13,7 @@ retry () {
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
tag="${CIRCLE_WORKFLOW_ID}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
@ -46,7 +46,4 @@ trap "docker logout ${registry}" EXIT
docker push "${image}:${tag}"
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read

View File

@ -1,93 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install devtoolset
ARG DEVTOOLSET_VERSION
ADD ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
ADD ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, coverage, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -4,15 +4,13 @@ set -ex
[ -n "${ANDROID_NDK}" ]
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
apt-get update
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
pushd /tmp
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
curl -Os https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
popd
_ndk_dir=/opt/ndk
mkdir -p "$_ndk_dir"
@ -47,22 +45,43 @@ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# Installing android sdk
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
_sdk_version=sdk-tools-linux-3859397.zip
_android_home=/opt/android/sdk
rm -rf $_android_home
sudo mkdir -p $_android_home
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
sudo unzip -q $_tmp_sdk_zip -d $_android_home
rm $_tmp_sdk_zip
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
sudo unzip -q /tmp/$_sdk_version -d $_android_home
rm /tmp/$_sdk_version
sudo chmod -R 777 $_android_home
export ANDROID_HOME=$_android_home
export ADB_INSTALL_TIMEOUT=120
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
echo "PATH:${PATH}"
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
sudo chmod -R 777 ~/.android
yes | sdkmanager --licenses
yes | sdkmanager --update
sdkmanager \
"tools" \
"platform-tools" \
"emulator"
sdkmanager \
"build-tools;28.0.3" \
"build-tools;29.0.2"
sdkmanager \
"platforms;android-28" \
"platforms;android-29"
sdkmanager --list
# Installing Gradle
echo "GRADLE_VERSION:${GRADLE_VERSION}"
@ -70,7 +89,8 @@ _gradle_home=/opt/gradle
sudo rm -rf $gradle_home
sudo mkdir -p $_gradle_home
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
wget --no-verbose --output-document=/tmp/gradle.zip \
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
rm /tmp/gradle.zip
@ -99,7 +119,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle

View File

@ -2,122 +2,74 @@
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
else
cmake3="cmake=3.5*"
fi
if [[ "$UBUNTU_VERSION" == "14.04" ]]; then
# cmake 2 is too old
cmake3=cmake3
else
cmake3=cmake
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
software-properties-common \
sudo \
wget \
vim
if [[ "$UBUNTU_VERSION" == "18.04" ]]; then
cmake3="cmake=3.10*"
else
cmake3="${cmake3}=3.5*"
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
# TODO: libiomp also gets installed by conda, aka there's a conflict
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
python \
python-dev \
python-setuptools \
python-wheel \
software-properties-common \
sudo \
wget \
vim
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.16.1
if ! wget http://valgrind.org/downloads/valgrind-${VALGRIND_VERSION}.tar.bz2
if ! wget http://valgrind.org/downloads/valgrind-3.14.0.tar.bz2
then
wget https://sourceware.org/ftp/valgrind/valgrind-${VALGRIND_VERSION}.tar.bz2
wget https://sourceware.org/ftp/valgrind/valgrind-3.14.0.tar.bz2
fi
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
tar -xjf valgrind-3.14.0.tar.bz2
cd valgrind-3.14.0
./configure --prefix=/usr/local
make -j 4
make
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"
# TODO: THIS IS A HACK!!!
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
if dpkg -s libnccl-dev; then
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

View File

@ -1,25 +0,0 @@
#!/bin/bash
set -ex
git clone https://github.com/driazati/breakpad.git
pushd breakpad
# breakpad has no actual releases, so this is pinned to the top commit from
# main when this was forked (including the one patch commit). This uses a fork
# of the breakpad mainline that automatically daisy-chains out to any previously
# installed signal handlers (instead of overwriting them).
git checkout 5485e473ed46d065e05489e50dfc59d90dfd7e22
git clone https://chromium.googlesource.com/linux-syscall-support src/third_party/lss
pushd src/third_party/lss
# same as with breakpad, there are no real releases for this repo so use a
# commit as the pin
git checkout e1e7b0ad8ee99a875b272c8e33e308472e897660
popd
./configure
make
make install
popd
rm -rf breakpad

View File

@ -2,51 +2,17 @@
set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
apt-get install -y cargo pkg-config libssl-dev
echo "Checking out sccache repo"
git clone https://github.com/pytorch/sccache
cd sccache
echo "Building sccache"
cargo build --release
cp target/release/sccache /opt/cache/bin
echo "Cleaning up"
cd ..
rm -rf sccache
apt-get remove -y cargo rustc
apt-get autoclean && apt-get clean
}
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
}
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
if [ -n "$ROCM_VERSION" ]; then
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
else
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
*)
install_binary
;;
esac
fi
curl https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}
@ -54,12 +20,8 @@ write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
# NOTE: See specific ROCM_VERSION case below.
if [ "x$ROCM_VERSION" = x ]; then
write_sccache_stub clang
write_sccache_stub clang++
fi
write_sccache_stub clang
write_sccache_stub clang++
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
@ -68,50 +30,6 @@ if [ -n "$CUDA_VERSION" ]; then
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
write_sccache_stub nvcc
mv /opt/cache/bin/nvcc /opt/cache/lib/
fi
if [ -n "$ROCM_VERSION" ]; then
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
# directly under /opt/rocm while also preserving the original compiler names.
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
# Final link in symlink chain must point back to original directory.
# Original compiler is moved one directory deeper. Wrapper replaces it.
function write_sccache_stub_rocm() {
OLDCOMP=$1
COMPNAME=$(basename $OLDCOMP)
TOPDIR=$(dirname $OLDCOMP)
WRAPPED="$TOPDIR/original/$COMPNAME"
mv "$OLDCOMP" "$WRAPPED"
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
chmod a+x "$OLDCOMP"
}
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
# ROCm 3.3 or earlier.
mkdir /opt/rocm/hcc/bin/original
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/hcc/bin/original
ln -s ../$(readlink clang)
popd
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
# ROCm 3.5 and beyond.
mkdir /opt/rocm/llvm/bin/original
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/llvm/bin/original
ln -s ../$(readlink clang)
popd
else
echo "Cannot find ROCm compiler."
exit 1
fi
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
chmod a+x /opt/cache/lib/nvcc
fi

View File

@ -10,7 +10,7 @@ file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
curl -Os "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -4,7 +4,7 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
BASE_URL="https://repo.continuum.io/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
@ -24,20 +24,13 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
@ -56,10 +49,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
pushd /opt/conda
# Track latest conda update
as_jenkins conda update -y -n base conda
as_jenkins conda update -n base conda
# Install correct Python version
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
@ -71,69 +64,31 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.5, but
# we want to pin to version 3.5.
SCIPY_VERSION=1.1.0
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0 -c conda-forge
SCIPY_VERSION=1.6.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
else
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
fi
if [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
if [[ "$CUDA_VERSION" == 8.0* ]]; then
conda_install magma-cuda80 -c pytorch
elif [[ "$CUDA_VERSION" == 9.0* ]]; then
conda_install magma-cuda90 -c pytorch
elif [[ "$CUDA_VERSION" == 9.1* ]]; then
conda_install magma-cuda91 -c pytorch
elif [[ "$CUDA_VERSION" == 9.2* ]]; then
conda_install magma-cuda92 -c pytorch
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install magma-cuda100 -c pytorch
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
conda_install magma-cuda101 -c pytorch
elif [[ "$CUDA_VERSION" == 10.2* ]]; then
conda_install magma-cuda102 -c pytorch
elif [[ "$CUDA_VERSION" == 11.0* ]]; then
conda_install magma-cuda110 -c pytorch
elif [[ "$CUDA_VERSION" == 11.1* ]]; then
conda_install magma-cuda111 -c pytorch
elif [[ "$CUDA_VERSION" == 11.3* ]]; then
conda_install magma-cuda113 -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages, including those needed for Python test reporting
# Install some other packages
# TODO: Why is scipy pinned
# Pin MyPy version because new errors are likely to appear with each release
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
# Pin coverage so we can use COVERAGE_RCFILE
as_jenkins pip install --progress-bar off pytest \
scipy==$SCIPY_VERSION \
scikit-image \
psutil \
unittest-xml-reporting \
boto3==1.16.34 \
coverage==5.5 \
hypothesis==4.53.2 \
mypy==0.812 \
tb-nightly
# Install numba only on python-3.8 or below
# For numba issue see https://github.com/pytorch/pytorch/issues/51511
if [[ $(python -c "import sys; print(int(sys.version_info < (3, 9)))") == "1" ]]; then
as_jenkins pip install --progress-bar off numba librosa>=0.6.2
else
as_jenkins pip install --progress-bar off numba==0.49.0 librosa>=0.6.2
fi
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
as_jenkins pip install --progress-bar off -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
as_jenkins pip install --progress-bar off scikit-learn==0.20.3
fi
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
# scikit-learn is pinned because of
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
# only)
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.43.1 llvmlite==0.28.0
popd
fi

View File

@ -51,16 +51,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -7,15 +7,10 @@ if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [ "$UBUNTU_VERSION" = "16.04" -a "$GCC_VERSION" = "5" ]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
else
apt-get install -y g++-$GCC_VERSION
fi
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
# Cleanup package manager
apt-get autoclean && apt-get clean

View File

@ -1,8 +0,0 @@
#!/bin/bash
set -ex
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
pushd lcov
sudo make install # will be installed in /usr/local/bin/lcov
popd

View File

@ -1,4 +0,0 @@
#!/bin/bash
sudo apt-get -qq update
sudo apt-get -qq install --allow-downgrades --allow-change-held-packages libnccl-dev=2.5.6-1+cuda10.1 libnccl2=2.5.6-1+cuda10.1

View File

@ -1,4 +0,0 @@
#!/bin/bash
sudo apt-get update
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://www.openssl.org/source/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: opensl errors out when built with the -j option
make install_sw
cd ..
rm -rf "${OPENSSL}"

View File

@ -46,16 +46,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,123 +0,0 @@
#!/bin/bash
set -ex
install_magma() {
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
git checkout 878b1ce02e9cfe4a829be22c8f911e9c0b6bd88f
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --amdgpu-target=gfx803 --amdgpu-target=gfx900 --amdgpu-target=gfx906 --amdgpu-target=gfx908 --gpu-max-threads-per-block=256' >> make.inc
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
export PATH="${PATH}:/opt/rocm/bin"
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm
}
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
echo "deb [arch=amd64] http://repo.radeon.com/rocm/apt/${ROCM_VERSION} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available"
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
install_magma
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=http://repo.radeon.com/rocm/yum/${ROCM_VERSION}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=0" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
install_magma
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${SWIFTSHADER}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
# SwiftShader
_swiftshader_dir=/var/lib/jenkins/swiftshader
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
mkdir -p $_swiftshader_dir
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
curl --silent --show-error --location --fail --retry 3 \
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"

View File

@ -0,0 +1,94 @@
#!/bin/bash
set -ex
as_jenkins() {
# NB: Preserve PATH and LD_LIBRARY_PATH changes
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
mkdir -p /opt/python
chown jenkins:jenkins /opt/python
# Download Python binary from Travis
pushd tmp
as_jenkins wget --quiet https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64/python-$TRAVIS_PYTHON_VERSION.tar.bz2
# NB: The tarball also comes with /home/travis virtualenv that we
# don't care about. (Maybe we should, but we've worked around the
# "how do I install to python" issue by making this entire directory
# user-writable "lol")
# NB: Relative ordering of opt/python and flags matters
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
popd
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
python --version
pip --version
# Install pip from source.
# The python-pip package on Ubuntu Trusty is old
# and upon install numpy doesn't use the binary
# distribution, and fails to compile it from source.
pushd tmp
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
as_jenkins tar zxf pip-9.0.1.tar.gz
pushd pip-9.0.1
as_jenkins python setup.py install
popd
rm -rf pip-9.0.1*
popd
# Install pip packages
as_jenkins pip install --upgrade pip
pip --version
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
# These two packages have broken Cythonizations uploaded
# to PyPi, see:
#
# - https://github.com/numpy/numpy/issues/10500
# - https://github.com/yaml/pyyaml/issues/117
#
# Furthermore, the released version of Cython does not
# have these issues fixed.
#
# While we are waiting on fixes for these, we build
# from Git for now. Feel free to delete this conditional
# branch if things start working again (you may need
# to do this if these packages regress on Git HEAD.)
as_jenkins pip install git+https://github.com/cython/cython.git
as_jenkins pip install git+https://github.com/numpy/numpy.git
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
else
as_jenkins pip install numpy pyyaml
fi
as_jenkins pip install \
future \
hypothesis \
protobuf \
pytest \
pillow \
typing
as_jenkins pip install mkl mkl-devel
# SciPy does not support Python 3.7 or Python 2.7.9
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
fi
# Install psutil for dataloader tests
as_jenkins pip install psutil
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -47,16 +47,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${VULKAN_SDK_VERSION}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"

View File

@ -24,7 +24,7 @@ ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, coverage, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
@ -35,10 +35,11 @@ ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
@ -72,16 +73,6 @@ ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install NCCL for when CUDA is version 10.1
ADD ./common/install_nccl.sh install_nccl.sh
RUN if [ "${CUDA_VERSION}" = 10.1 ]; then bash ./install_nccl.sh; fi
RUN rm install_nccl.sh
# Install Open MPI for CUDA
ADD ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
@ -90,12 +81,5 @@ ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
ADD ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
USER jenkins
CMD ["bash"]

View File

@ -1,92 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, coverage, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -33,7 +33,7 @@ ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, coverage, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
@ -44,9 +44,11 @@ ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
ADD ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
@ -82,25 +84,6 @@ RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install breakpad
ARG BREAKPAD
ADD ./common/install_breakpad.sh install_breakpad.sh
RUN if [ -n "${BREAKPAD}" ]; then bash ./install_breakpad.sh; fi
RUN rm install_breakpad.sh
ENV INSTALLED_BREAKPAD ${BREAKPAD}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
ADD ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
@ -127,12 +110,5 @@ RUN bash ./install_jni.sh && rm install_jni.sh
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
USER jenkins
CMD ["bash"]

View File

@ -1,13 +0,0 @@
FROM ubuntu:18.04
RUN apt-get update && apt-get install -y python3-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
ADD requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt
ADD gc.py /usr/bin/gc.py
ADD docker_hub.py /usr/bin/docker_hub.py
ENTRYPOINT ["/usr/bin/gc.py"]

View File

@ -1,125 +0,0 @@
#!/usr/bin/env python3
from collections import namedtuple
import boto3
import requests
import os
IMAGE_INFO = namedtuple(
"IMAGE_INFO", ("repo", "tag", "size", "last_updated_at", "last_updated_by")
)
def build_access_token(username, passwordtr):
r = requests.post(
"https://hub.docker.com/v2/users/login/",
data={"username": username, "password": password},
)
r.raise_for_status()
token = r.json().get("token")
return {"Authorization": "JWT " + token}
def list_repos(user, token):
r = requests.get("https://hub.docker.com/v2/repositories/" + user, headers=token)
r.raise_for_status()
ret = sorted(
repo["user"] + "/" + repo["name"] for repo in r.json().get("results", [])
)
if ret:
print("repos found:")
print("".join("\n\t" + r for r in ret))
return ret
def list_tags(repo, token):
r = requests.get(
"https://hub.docker.com/v2/repositories/" + repo + "/tags", headers=token
)
r.raise_for_status()
return [
IMAGE_INFO(
repo=repo,
tag=t["name"],
size=t["full_size"],
last_updated_at=t["last_updated"],
last_updated_by=t["last_updater_username"],
)
for t in r.json().get("results", [])
]
def save_to_s3(tags):
table_content = ""
client = boto3.client("s3")
for t in tags:
table_content += (
"<tr><td>{repo}</td><td>{tag}</td><td>{size}</td>"
"<td>{last_updated_at}</td><td>{last_updated_by}</td></tr>"
).format(
repo=t.repo,
tag=t.tag,
size=t.size,
last_updated_at=t.last_updated_at,
last_updated_by=t.last_updated_by,
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css"
href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>
<script type="text/javascript" charset="utf8"
src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title> docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<caption>Docker images on docker hub</caption>
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">size</th>
<th scope="col">last_updated_at</th>
<th scope="col">last_updated_by</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );py
</script>
</html>
""".format(
table_content=table_content
)
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="docker_hub.html",
Body=html_body,
ContentType="text/html",
)
if __name__ == "__main__":
username = os.environ.get("DOCKER_HUB_USERNAME")
password = os.environ.get("DOCKER_HUB_PASSWORD")
token = build_access_token(username, password)
tags = []
for repo in list_repos("pytorch", token):
tags.extend(list_tags(repo, token))
save_to_s3(tags)

View File

@ -1,218 +0,0 @@
#!/usr/bin/env python3
import argparse
import boto3
import datetime
import pytz
import re
import sys
def save_to_s3(project, data):
table_content = ""
client = boto3.client("s3")
for repo, tag, window, age, pushed in data:
table_content += "<tr><td>{repo}</td><td>{tag}</td><td>{window}</td><td>{age}</td><td>{pushed}</td></tr>".format(
repo=repo, tag=tag, window=window, age=age, pushed=pushed
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
<script type="text/javascript" charset="utf8" src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title>{project} nightly and permanent docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">keep window</th>
<th scope="col">age</th>
<th scope="col">pushed at</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );
</script>
</html>
""".format(
project=project, table_content=table_content
)
# for pytorch, file can be found at
# http://ossci-docker.s3-website.us-east-1.amazonaws.com/pytorch.html
# and later one we can config docker.pytorch.org to point to the location
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="{project}.html".format(project=project),
Body=html_body,
ContentType="text/html",
)
def repos(client):
paginator = client.get_paginator("describe_repositories")
pages = paginator.paginate(registryId="308535385114")
for page in pages:
for repo in page["repositories"]:
yield repo
def images(client, repository):
paginator = client.get_paginator("describe_images")
pages = paginator.paginate(
registryId="308535385114", repositoryName=repository["repositoryName"]
)
for page in pages:
for image in page["imageDetails"]:
yield image
parser = argparse.ArgumentParser(description="Delete old Docker tags from registry")
parser.add_argument(
"--dry-run", action="store_true", help="Dry run; print tags that would be deleted"
)
parser.add_argument(
"--debug", action="store_true", help="Debug, print ignored / saved tags"
)
parser.add_argument(
"--keep-stable-days",
type=int,
default=14,
help="Days of stable Docker tags to keep (non per-build images)",
)
parser.add_argument(
"--keep-unstable-days",
type=int,
default=1,
help="Days of unstable Docker tags to keep (per-build images)",
)
parser.add_argument(
"--filter-prefix",
type=str,
default="",
help="Only run cleanup for repositories with this prefix",
)
parser.add_argument(
"--ignore-tags",
type=str,
default="",
help="Never cleanup these tags (comma separated)",
)
args = parser.parse_args()
if not args.ignore_tags or not args.filter_prefix:
print(
"""
Missing required arguments --ignore-tags and --filter-prefix
You must specify --ignore-tags and --filter-prefix to avoid accidentally
pruning a stable Docker tag which is being actively used. This will
make you VERY SAD. So pay attention.
First, which filter-prefix do you want? The list of valid prefixes
is in jobs/private.groovy under the 'docker-registry-cleanup' job.
You probably want either pytorch or caffe2.
Second, which ignore-tags do you want? It should be whatever the most
up-to-date DockerVersion for the repository in question is. Follow
the imports of jobs/pytorch.groovy to find them.
"""
)
sys.exit(1)
client = boto3.client("ecr", region_name="us-east-1")
stable_window = datetime.timedelta(days=args.keep_stable_days)
unstable_window = datetime.timedelta(days=args.keep_unstable_days)
now = datetime.datetime.now(pytz.UTC)
ignore_tags = args.ignore_tags.split(",")
def chunks(chunkable, n):
""" Yield successive n-sized chunks from l.
"""
for i in range(0, len(chunkable), n):
yield chunkable[i: i + n]
SHA_PATTERN = re.compile(r'^[0-9a-f]{40}$')
def looks_like_git_sha(tag):
"""Returns a boolean to check if a tag looks like a git sha
For reference a sha1 is 40 characters with only 0-9a-f and contains no
"-" characters
"""
return re.match(SHA_PATTERN, tag) is not None
stable_window_tags = []
for repo in repos(client):
repositoryName = repo["repositoryName"]
if not repositoryName.startswith(args.filter_prefix):
continue
# Keep list of image digests to delete for this repository
digest_to_delete = []
for image in images(client, repo):
tags = image.get("imageTags")
if not isinstance(tags, (list,)) or len(tags) == 0:
continue
created = image["imagePushedAt"]
age = now - created
for tag in tags:
if any([
looks_like_git_sha(tag),
tag.isdigit(),
tag.count("-") == 4, # TODO: Remove, this no longer applies as tags are now built using a SHA1
tag in ignore_tags]):
window = stable_window
if tag in ignore_tags:
stable_window_tags.append((repositoryName, tag, "", age, created))
elif age < window:
stable_window_tags.append((repositoryName, tag, window, age, created))
else:
window = unstable_window
if tag in ignore_tags or age < window:
if args.debug:
print("Ignoring {}:{} (age: {})".format(repositoryName, tag, age))
break
else:
for tag in tags:
print("{}Deleting {}:{} (age: {})".format("(dry run) " if args.dry_run else "", repositoryName, tag, age))
digest_to_delete.append(image["imageDigest"])
if args.dry_run:
if args.debug:
print("Skipping actual deletion, moving on...")
else:
# Issue batch delete for all images to delete for this repository
# Note that as of 2018-07-25, the maximum number of images you can
# delete in a single batch is 100, so chunk our list into batches of
# 100
for c in chunks(digest_to_delete, 100):
client.batch_delete_image(
registryId="308535385114",
repositoryName=repositoryName,
imageIds=[{"imageDigest": digest} for digest in c],
)
save_to_s3(args.filter_prefix, stable_window_tags)

View File

@ -1,3 +0,0 @@
boto3
pytz
requests

View File

@ -6,24 +6,13 @@ Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import namedtuple
import shutil
from collections import namedtuple, OrderedDict
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.simple.android_definitions
import cimodel.data.simple.bazel_definitions
import cimodel.data.simple.binary_smoketest
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.ge_config_tests
import cimodel.data.simple.ios_definitions
import cimodel.data.simple.macos_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_android
import cimodel.data.simple.nightly_ios
import cimodel.data.simple.anaconda_prune_defintions
import cimodel.data.windows_build_definitions as windows_build_definitions
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
@ -32,7 +21,6 @@ class File(object):
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
@ -41,7 +29,7 @@ class File(object):
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
class FunctionGen(namedtuple('FunctionGen', 'function depth')):
__slots__ = ()
@ -51,14 +39,15 @@ class Treegen(FunctionGen):
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
build_dict = OrderedDict()
self.function(build_dict)
miniyaml.render(output_filehandle, build_dict, self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
@ -68,6 +57,7 @@ def horizontal_rule():
class Header(object):
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
@ -80,96 +70,6 @@ class Header(object):
for line in filter(None, lines):
output_filehandle.write(line + "\n")
def filter_master_only_jobs(items):
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def _is_master_item(item):
filters = item.get('filters', None)
branches = filters.get('branches', None) if filters is not None else None
branches_only = branches.get('only', None) if branches is not None else None
return 'master' in branches_only if branches_only is not None else False
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get('requires', None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_master_item(item) and item_name not in master_deps:
return None
if 'filters' in item:
item = item.copy()
item.pop('filters')
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that master-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def gen_build_workflows_tree():
build_workflows_functions = [
cimodel.data.simple.docker_definitions.get_workflow_jobs,
pytorch_build_definitions.get_workflow_jobs,
cimodel.data.simple.macos_definitions.get_workflow_jobs,
cimodel.data.simple.android_definitions.get_workflow_jobs,
cimodel.data.simple.ios_definitions.get_workflow_jobs,
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.ge_config_tests.get_workflow_jobs,
cimodel.data.simple.bazel_definitions.get_workflow_jobs,
cimodel.data.simple.binary_smoketest.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.nightly_android.get_workflow_jobs,
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
windows_build_definitions.get_windows_workflows,
binary_build_definitions.get_post_upload_jobs,
binary_build_definitions.get_binary_smoke_test_jobs,
]
binary_build_functions = [
binary_build_definitions.get_binary_build_jobs,
binary_build_definitions.get_nightly_tests,
binary_build_definitions.get_nightly_uploads,
]
build_jobs = [f() for f in build_workflows_functions]
master_build_jobs = filter_master_only_jobs(build_jobs)
return {
"workflows": {
"binary_builds": {
"when": r"<< pipeline.parameters.run_binary_tests >>",
"jobs": [f() for f in binary_build_functions],
},
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
"master_build": {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
},
}
}
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
@ -177,22 +77,37 @@ YAML_SOURCES = [
File("commands.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
File("build-parameters/promote-build-params.yml"),
File("pytorch-build-params.yml"),
File("caffe2-build-params.yml"),
File("binary-build-params.yml"),
Header("Job specs"),
File("job-specs/pytorch-job-specs.yml"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/job-specs-promote.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("workflows/workflows-scheduled-ci.yml"),
File("workflows/workflows-ecr-gc.yml"),
File("workflows/workflows-promote.yml"),
File("pytorch-job-specs.yml"),
File("caffe2-job-specs.yml"),
File("binary-job-specs.yml"),
File("job-specs-setup.yml"),
File("job-specs-custom.yml"),
File("binary_update_htmls.yml"),
File("binary-build-tests.yml"),
File("docker_build_job.yml"),
File("workflows.yml"),
Listgen(pytorch_build_definitions.get_workflow_jobs, 3),
File("workflows-pytorch-macos-builds.yml"),
File("workflows-pytorch-android-gradle-build.yml"),
File("workflows-pytorch-ios-builds.yml"),
File("workflows-pytorch-mobile-builds.yml"),
File("workflows-pytorch-ge-config-tests.yml"),
Listgen(caffe2_build_definitions.get_workflow_jobs, 3),
File("workflows-binary-builds-smoke-subset.yml"),
Listgen(binary_build_definitions.get_binary_smoke_test_jobs, 3),
Listgen(binary_build_definitions.get_binary_build_jobs, 3),
File("workflows-nightly-ios-binary-builds.yml"),
File("workflows-nightly-android-binary-builds.yml"),
Header("Nightly tests"),
Listgen(binary_build_definitions.get_nightly_tests, 3),
File("workflows-nightly-uploads-header.yml"),
Listgen(binary_build_definitions.get_nightly_uploads, 3),
File("workflows-s3-html.yml"),
File("workflows-docker-builder.yml")
]

View File

@ -1,5 +0,0 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

View File

@ -1,17 +1,8 @@
#!/bin/bash -e
#!/bin/bash -xe
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
cd $(dirname "$0")
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"
./generate_config_yml.py > $NEW_FILE
cp $NEW_FILE config.yml

View File

@ -1,20 +1,9 @@
#!/bin/bash
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
rm -rf /c/w
ln -s "/c/Users/circleci/project" /c/w
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
@ -24,22 +13,11 @@ else
fi
# It is very important that this stays in sync with binary_populate_env.sh
if [[ "$OSTYPE" == "msys" ]]; then
# We need to make the paths as short as possible on Windows
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
# Try to extract PR number from branch if not already set
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
fi
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
# "smoke" binary build on PRs
@ -55,14 +33,13 @@ else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive
git submodule update --init --recursive --quiet
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
git checkout release/1.9
git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
echo "Using builder from "
git --no-pager log --max-count 1

View File

@ -31,9 +31,9 @@ fi
conda_sh="$workdir/install_miniconda.sh"
if [[ "$(uname)" == Darwin ]]; then
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
else
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
fi
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"

View File

@ -5,25 +5,20 @@ echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
export TCLLIBPATH="/usr/local/lib"
export TCLLIBPATH="/usr/local/lib"
# Install conda
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
curl -o ~/Downloads/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/Downloads/conda.sh
/bin/bash ~/Downloads/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
conda install -c conda-forge valgrind --yes
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
@ -31,13 +26,13 @@ cat ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
export BUILD_PYTORCH_MOBILE=1
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
#store the binary
cd ${WORKSPACE}
DEST_DIR=${WORKSPACE}/ios
mkdir -p ${DEST_DIR}
cp -R ${PROJ_ROOT}/build_ios/install ${DEST_DIR}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}

View File

@ -13,7 +13,7 @@ base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_cert
# install the provisioning profile
PROFILE=PyTorch_CI_2021.mobileprovision
PROFILE=TestApp_CI.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
@ -24,6 +24,6 @@ rm cert.txt
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
PROFILE=PyTorch_CI_2021
fi
PROFILE=TestApp_CI
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -14,14 +14,14 @@ mkdir -p ${ZIP_DIR}/src
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
# build a FAT bianry
cd ${ZIP_DIR}/install/lib
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpytorch_qnnpack.a libtorch.a)
for lib in ${target_libs[*]}
do
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
libs=("${ARTIFACTS_DIR}/x86_64/lib/${lib}" "${ARTIFACTS_DIR}/arm64/lib/${lib}")
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
fi
libs=(${ARTIFACTS_DIR}/x86_64/lib/${lib} ${ARTIFACTS_DIR}/arm64/lib/${lib})
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
done
# for nnpack, we only support arm64 build
cp ${ARTIFACTS_DIR}/arm64/lib/libnnpack.a ./
lipo -i ${ZIP_DIR}/install/lib/*.a
# copy the umbrella header and license
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
@ -34,13 +34,7 @@ touch version.txt
echo $(date +%s) > version.txt
zip -r ${ZIPFILE} install src version.txt LICENSE
# upload to aws
# Install conda then 'conda install' awscli
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
conda install -c conda-forge awscli --yes
brew install awscli
set +x
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}

View File

@ -5,22 +5,26 @@ set -eux -o pipefail
source /env
# Defaults here so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( $(nproc) - 2 ))}
if [[ "${DESIRED_CUDA}" == "cu111" ]]; then
export BUILD_SPLIT_CUDA="ON"
fi
export MAX_JOBS=12
# Parse the parameters
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
build_script='conda/build_pytorch.sh'
elif [[ "$DESIRED_CUDA" == cpu ]]; then
build_script='manywheel/build_cpu.sh'
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
build_script='manywheel/build_rocm.sh'
else
build_script='manywheel/build.sh'
fi
# We want to call unbuffer, which calls tclsh which finds the expect
# package. The expect was installed by yum into /usr/bin so we want to
# find /usr/bin/tclsh, but this is shadowed by /opt/conda/bin/tclsh in
# the conda docker images, so we prepend it to the path here.
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
mkdir /just_tclsh_bin
ln -s /usr/bin/tclsh /just_tclsh_bin/tclsh
export PATH=/just_tclsh_bin:$PATH
fi
# Build the package
SKIP_ALL_TESTS=1 "/builder/$build_script"
SKIP_ALL_TESTS=1 unbuffer "/builder/$build_script" | ts

View File

@ -5,43 +5,19 @@ cat >/home/circleci/project/ci_test_script.sh <<EOL
# =================== The following code will be executed inside Docker container ===================
set -eux -o pipefail
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
# Set up Python
if [[ "$PACKAGE_TYPE" == conda ]]; then
# There was a bug that was introduced in conda-package-handling >= 1.6.1 that makes archives
# above a certain size fail out when attempting to extract
# see: https://github.com/conda/conda-package-handling/issues/71
conda install -y conda-package-handling=1.6.0
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$DESIRED_PYTHON" == 2.7mu ]]; then
export PATH="/opt/python/cp27-cp27mu/bin:\$PATH"
elif [[ "$DESIRED_PYTHON" == 3.8m ]]; then
export PATH="/opt/python/cp38-cp38/bin:\$PATH"
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
# Prior to Python 3.8 paths were suffixed with an 'm'
if [[ -d "\${python_path}/bin" ]]; then
export PATH="\${python_path}/bin:\$PATH"
elif [[ -d "\${python_path}m/bin" ]]; then
export PATH="\${python_path}m/bin:\$PATH"
fi
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
export PATH="/opt/python/cp\$python_nodot-cp\${python_nodot}m/bin:\$PATH"
fi
EXTRA_CONDA_FLAGS=""
NUMPY_PIN=""
if [[ "\$python_nodot" = *39* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.20"
fi
if [[ "$DESIRED_CUDA" == "cu112" ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
fi
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
# Install the package
# These network calls should not have 'retry's because they are installing
# locally and aren't actually network calls
@ -50,37 +26,23 @@ mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to m
# conda build scripts themselves. These should really be consolidated
pkg="/final_pkgs/\$(ls /final_pkgs)"
if [[ "$PACKAGE_TYPE" == conda ]]; then
(
# For some reason conda likes to re-activate the conda environment when attempting this install
# which means that a deactivate is run and some variables might not exist when that happens,
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
# it comes to the conda installation commands
set +u
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
"numpy\${NUMPY_PIN}" \
future \
mkl>=2018 \
ninja \
dataclasses \
typing-extensions \
defaults::protobuf \
six
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -c pytorch -y cpuonly
conda install -y "\$pkg" --offline
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
conda install -y cpuonly -c pytorch
fi
retry conda install -yq future numpy protobuf six
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
# DESIRED_CUDA is in format cu90 or cu100
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
# DESIRED_CUDA is in format cu90 or cu102
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
fi
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "cudatoolkit=\${cu_ver}"
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
fi
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
)
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
fi
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
pip install "\$pkg"
retry pip install -q future numpy protobuf typing-extensions six
retry pip install -q future numpy protobuf six
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"
@ -90,7 +52,6 @@ fi
# Test the package
/builder/check_binary.sh
# =================== The above code will be executed inside Docker container ===================
EOL
echo

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Do NOT set -x
source /home/circleci/project/env
set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/home/circleci/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /home/circleci/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
export PATH="$MINICONDA_ROOT/bin:$PATH"
# Upload the package to the final location
pushd /home/circleci/project/final_pkgs
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry timeout 30 /home/circleci/project/login_to_anaconda.sh
anaconda upload "$(ls)" -u pytorch-nightly --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -20,9 +20,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
unzip "$pkg" -d /tmp
cd /tmp/libtorch
elif [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "$pkg"
conda install -y "$pkg" --offline
else
pip install "$pkg" -v
pip install "$pkg" --no-index --no-dependencies -v
fi
# Test

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Do NOT set -x
set -eu -o pipefail
set +x
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/Users/distiller/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /Users/distiller/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
pushd "$workdir/final_pkgs"
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry /Users/distiller/project/login_to_anaconda.sh
retry anaconda upload "$(ls)" -u pytorch-nightly --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -2,31 +2,11 @@
set -eux -o pipefail
export TZ=UTC
tagged_version() {
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" ]]; then
GIT_DESCRIBE="git --git-dir ${workdir}/p/.git describe"
else
GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
fi
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
${GIT_DESCRIBE} --tags
else
return 1
fi
}
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
@ -43,15 +23,7 @@ configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export DESIRED_DEVTOOLSET=""
export LIBTORCH_CONFIG="${configs[3]:-}"
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
export DEBUG=1
fi
else
export DESIRED_DEVTOOLSET="${configs[3]:-}"
fi
export DESIRED_DEVTOOLSET="${configs[3]:-}"
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
export BUILD_PYTHONLESS=1
fi
@ -68,39 +40,25 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
fi
fi
USE_GOLD_LINKER="OFF"
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
USE_GOLD_LINKER="ON"
# Upload to parallel folder for devtoolsets
# All nightlies used to be devtoolset3, then devtoolset7 was added as a build
# option, so the upload was redirected to nightly/devtoolset7 to avoid
# conflicts with other binaries (there shouldn't be any conflicts). Now we are
# making devtoolset7 the default.
if [[ "$DESIRED_DEVTOOLSET" == 'devtoolset7' || "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* || "$(uname)" == 'Darwin' ]]; then
export PIP_UPLOAD_FOLDER='nightly/'
else
# On linux machines, this shouldn't actually be called anymore. This is just
# here for extra safety.
export PIP_UPLOAD_FOLDER='nightly/devtoolset3/'
fi
USE_WHOLE_CUDNN="OFF"
# Link whole cuDNN for CUDA-11.1 to include fp16 fast kernels
if [[ "$(uname)" == "Linux" && "${DESIRED_CUDA}" == "cu111" ]]; then
USE_WHOLE_CUDNN="ON"
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.9.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
if tagged_version >/dev/null; then
# Switch upload folder to 'test/' if we are on a tag
PIP_UPLOAD_FOLDER='test/'
# Grab git tag, remove prefixed v and remove everything after -
# Used to clean up tags that are for release candidates like v1.6.0-rc1
# Turns tag v1.6.0-rc1 -> v1.6.0
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
fi
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu101" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="1.4.0.dev$DATE"
else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
export PYTORCH_BUILD_VERSION="1.4.0.dev$DATE+$DESIRED_CUDA"
fi
export PYTORCH_BUILD_NUMBER=1
@ -112,14 +70,8 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
@ -142,13 +94,9 @@ export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
export DEBUG="${DEBUG:-}"
fi
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.9.0.dev
export NIGHTLIES_DATE_PREAMBLE=1.4.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
@ -165,13 +113,8 @@ export DOCKER_IMAGE="$DOCKER_IMAGE"
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
@ -179,11 +122,6 @@ export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
export USE_GLOO_WITH_OPENSSL="ON"
export USE_WHOLE_CUDNN="${USE_WHOLE_CUDNN}"
# =================== The above code will be executed inside Docker container ===================
EOL

View File

@ -16,12 +16,31 @@ set -eux -o pipefail
# Expect actual code to be written to this file
chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d "${DOCKER_IMAGE}")
fi
# Copy the envfile and script with all the code to run into the docker.
docker cp /home/circleci/project/. "$id:/circleci_stuff"
# Copy built packages into the docker to test. This should only exist on the
# binary test jobs. The package should've been created from a binary build job,
# whhich persisted the package to a CircleCI workspace, which this job then
# copies into a GPU enabled docker for testing
if [[ -d "/home/circleci/project/final_pkgs" ]]; then
docker cp /home/circleci/project/final_pkgs "$id:/final_pkgs"
fi
# Copy the needed repos into the docker. These do not exist in the smoke test
# jobs, since the smoke test jobs do not need the Pytorch source code.
if [[ -d "$PYTORCH_ROOT" ]]; then
docker cp "$PYTORCH_ROOT" "$id:/pytorch"
fi
if [[ -d "$BUILDER_ROOT" ]]; then
docker cp "$BUILDER_ROOT" "$id:/builder"
fi
# Execute the test script that was populated by an earlier section

View File

@ -1,98 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
# Designates whether to submit as a release candidate or a nightly build
# Value should be `test` when uploading release candidates
# currently set within `designate_upload_channel`
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
# Designates what subfolder to put packages into
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
UPLOAD_BUCKET="s3://pytorch"
BACKUP_BUCKET="s3://pytorch-backup"
DRY_RUN=${DRY_RUN:-enabled}
# Don't actually do work unless explicit
ANACONDA="true anaconda"
AWS_S3_CP="aws s3 cp --dryrun"
if [[ "${DRY_RUN}" = "disabled" ]]; then
ANACONDA="anaconda"
AWS_S3_CP="aws s3 cp"
fi
do_backup() {
local backup_dir
backup_dir=$1
(
pushd /tmp/workspace
set -x
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
)
}
conda_upload() {
(
set -x
${ANACONDA} \
upload \
${PKG_DIR}/*.tar.bz2 \
-u "pytorch-${UPLOAD_CHANNEL}" \
--label main \
--no-progress \
--force
)
}
s3_upload() {
local extension
local pkg_type
extension="$1"
pkg_type="$2"
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
(
for pkg in ${PKG_DIR}/*.${extension}; do
(
set -x
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
)
done
)
}
case "${PACKAGE_TYPE}" in
conda)
conda_upload
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(\
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
| grep subdir \
| cut -d ':' -f2 \
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
)
BACKUP_DIR="conda/${subdir}"
;;
libtorch)
s3_upload "zip" "libtorch"
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
# wheel can either refer to wheel/manywheel
*wheel)
s3_upload "whl" "whl"
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
*)
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
exit 1
;;
esac
# CIRCLE_TAG is defined by upstream circleci,
# this can be changed to recognize tagged versions
if [[ -n "${CIRCLE_TAG:-}" ]]; then
do_backup "${BACKUP_DIR}"
fi

View File

@ -1,49 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/c/w/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache-windows
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
export VC_YEAR=2017
else
export VC_YEAR=2019
fi
if [[ "${DESIRED_CUDA}" == "cu111" ]]; then
export BUILD_SPLIT_CUDA="ON"
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
if [[ "$CIRCLECI" == 'true' && -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
if [[ "$CIRCLECI" == 'true' && -d "C:\\Microsoft" ]]; then
rm -rf "C:\\Microsoft\\Android*"
fi
echo "Free space on filesystem before build:"
df -h
pushd "$BUILDER_ROOT"
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
./windows/internal/build_conda.bat
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
./windows/internal/build_wheels.bat
fi
echo "Free space on filesystem after build:"
df -h

View File

@ -1,19 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/c/w/env"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2017
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
export VC_YEAR=2017
else
export VC_YEAR=2019
fi
pushd "$BUILDER_ROOT"
./windows/internal/smoke_test.bat
popd

View File

@ -1,44 +1,15 @@
#!/usr/bin/env bash
set -eux -o pipefail
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_NDK=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
# Must be in sync with GRADLE_VERSION in docker image for android
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Run custom build script
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
# Install torch & torchvision - used to download & dump used ops from test model.
retry pip install torch torchvision --progress-bar off
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
fi
# Run default build
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
@ -73,6 +44,9 @@ ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
fi
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
@ -82,6 +56,20 @@ if [ -n "{GRADLE_OFFLINE:-}" ]; then
GRADLE_PARAMS+=" --offline"
fi
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
env
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
$GRADLE_PATH $GRADLE_PARAMS
find . -type f -name "*.a" -exec ls -lh {} \;

View File

@ -30,7 +30,13 @@ if [ "$version" == "master" ]; then
is_master_doc=true
fi
echo "install_path: $install_path version: $version"
# Argument 3: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$3" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
# ======================== Building PyTorch C++ API Docs ========================
@ -47,22 +53,32 @@ sudo apt-get -y install doxygen
# Generate ATen files
pushd "${pt_checkout}"
pip install -r requirements.txt
time python -m tools.codegen.gen \
time python aten/src/ATen/gen.py \
-s aten/src/ATen \
-d build/aten/src/ATen
-d build/aten/src/ATen \
aten/src/ATen/Declarations.cwrap \
aten/src/THNN/generic/THNN.h \
aten/src/THCUNN/generic/THCUNN.h \
aten/src/ATen/nn.yaml \
aten/src/ATen/native/native_functions.yaml
# Copy some required files
cp aten/src/ATen/common_with_cwrap.py tools/shared/cwrap_common.py
cp torch/_utils_internal.py tools/shared
# Generate PyTorch files
time python tools/setup_helpers/generate_code.py \
--declarations-path build/aten/src/ATen/Declarations.yaml \
--native-functions-path aten/src/ATen/native/native_functions.yaml \
--nn-path aten/src/
# Build the docs
pushd docs/cpp
pip install -r requirements.txt
pip install breathe==4.11.1 bs4 lxml six
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
pip install exhale>=0.2.1
pip install sphinx==1.8.5
# Uncomment once it is fixed
# pip install -r requirements.txt
time make VERBOSE=1 html -j
popd
@ -88,8 +104,24 @@ git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate C++ docs from pytorch/pytorch@$CIRCLE_SHA1" || true
git commit -m "Automatic sync on $(date)" || true
git status
if [ "$dry_run" = false ]; then
echo "Pushing to https://github.com/pytorch/cppdocs"
set +x
/usr/bin/expect <<DONE
spawn git push -u origin master
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -1,8 +0,0 @@
set "DRIVER_DOWNLOAD_LINK=https://s3.amazonaws.com/ossci-windows/452.39-data-center-tesla-desktop-win10-64bit-international.exe"
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output 452.39-data-center-tesla-desktop-win10-64bit-international.exe
if errorlevel 1 exit /b 1
start /wait 452.39-data-center-tesla-desktop-win10-64bit-international.exe -s -noreboot
if errorlevel 1 exit /b 1
del 452.39-data-center-tesla-desktop-win10-64bit-international.exe || ver > NUL

View File

@ -5,7 +5,7 @@ set -eu -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
@ -35,9 +35,7 @@ else
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES

View File

@ -7,8 +7,6 @@ sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
echo "python_doc_push_script.sh: Invoked with $*"
set -ex
@ -40,30 +38,15 @@ echo "error: python_doc_push_script.sh: branch (arg3) not specified"
exit 1
fi
echo "install_path: $install_path version: $version"
# Argument 4: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$4" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
build_docs () {
set +e
set -o pipefail
make $1 2>&1 | tee /tmp/docs_build.txt
code=$?
if [ $code -ne 0 ]; then
set +x
echo =========================
grep "WARNING:" /tmp/docs_build.txt
echo =========================
echo Docs build failed. If the failure is not clear, scan back in the log
echo for any WARNINGS or for the line "build finished with problems"
echo "(tried to echo the WARNINGS above the ==== line)"
echo =========================
fi
set -ex
return $code
}
git clone https://github.com/pytorch/pytorch.github.io -b $branch --depth 1
git clone https://github.com/pytorch/pytorch.github.io -b $branch
pushd pytorch.github.io
export LC_ALL=C
@ -71,38 +54,26 @@ export PATH=/opt/conda/bin:$PATH
rm -rf pytorch || true
# Install TensorBoard in python 3 so torch.utils.tensorboard classes render
pip install -q https://s3.amazonaws.com/ossci-linux/wheels/tensorboard-1.14.0a0-py3-none-any.whl
# Get all the documentation sources, put them in one place
pushd "$pt_checkout"
git clone https://github.com/pytorch/vision
pushd vision
conda install -q pillow
time python setup.py install
popd
pushd docs
rm -rf source/torchvision
cp -a ../vision/docs/source source/torchvision
# Build the docs
pip -q install -r requirements.txt
pip -q install -r requirements.txt || true
if [ "$is_master_doc" = true ]; then
build_docs html
[ $? -eq 0 ] || exit $?
make coverage
# Now we have the coverage report, we need to make sure it is empty.
# Count the number of lines in the file and turn that number into a variable
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
# Skip the report header by subtracting 2: the header will be output even if
# there are no undocumented items.
#
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
# be documented then removed from there.
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
undocumented=$(($lines - 2))
if [ $undocumented -lt 0 ]; then
echo coverage output not found
exit 1
elif [ $undocumented -gt 0 ]; then
echo undocumented objects found:
cat build/coverage/python.txt
exit 1
fi
make html
else
# skip coverage, format for stable or tags
build_docs html-stable
[ $? -eq 0 ] || exit $?
make html-stable
fi
# Move them into the docs repo
@ -111,19 +82,37 @@ popd
git rm -rf "$install_path" || true
mv "$pt_checkout/docs/build/html" "$install_path"
# Prevent Google from indexing $install_path/_modules. This folder contains
# generated source files.
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
# One can `brew install gnu-sed` on a mac and then use "gsed" instead of "sed".
find "$install_path/_modules" -name "*.html" -print0 | xargs -0 sed -i '/<head>/a \ \ <meta name="robots" content="noindex">'
# Add the version handler by search and replace.
# XXX: Consider moving this to the docs Makefile or site build
if [ "$is_master_doc" = true ]; then
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>\1 \&#x25BC</a>@g"
else
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \&#x25BC</a>@g"
fi
git add "$install_path" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@$CIRCLE_SHA1" || true
git commit -m "auto-generating sphinx docs" || true
git status
if [ "$dry_run" = false ]; then
echo "Pushing to pytorch.github.io:$branch"
set +x
/usr/bin/expect <<DONE
spawn git push origin $branch
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -1,99 +1,81 @@
#!/usr/bin/env bash
set -ex -o pipefail
# Set up NVIDIA docker repo
curl -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
# Remove unnecessary sources
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
sudo rm -f /etc/apt/heroku.list
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
sudo rm -f /etc/apt/partner.list
retry () {
$* || $* || $* || $* || $*
}
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
# (with use of tee to avoid permissions problems)
# This is better than retrying the whole apt-get command
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
retry sudo apt-get update -qq
retry sudo apt-get -y install \
sudo apt-get -y update
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
# WARNING: Docker version is hardcoded here; you must update the
# version number below for docker-ce and nvidia-docker2 to get newer
# versions of Docker. We hardcode these numbers because we kept
# getting broken CI when Docker would update their docker version,
# and nvidia-docker2 would be out of date for a day until they
# released a newer version of their package.
#
# How to figure out what the correct versions of these packages are?
# My preferred method is to start a Docker instance of the correct
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
# apt what the packages you need are. Note that the CircleCI image
# comes with Docker.
sudo apt-get -y install \
linux-headers-$(uname -r) \
linux-image-generic \
moreutils \
docker-ce=5:18.09.4~3-0~ubuntu-xenial \
nvidia-container-runtime=2.0.0+docker18.09.4-1 \
nvidia-docker2=2.0.3+docker18.09.4-1 \
expect-dev
echo "== DOCKER VERSION =="
docker version
sudo pkill -SIGHUP dockerd
if ! command -v aws >/dev/null; then
retry sudo pip3 -q install awscli==1.19.64
fi
retry () {
$* || $* || $* || $* || $*
}
retry sudo pip -q install awscli==1.16.35
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-460.39.run"
DRIVER_FN="NVIDIA-Linux-x86_64-430.40.run"
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
# Taken directly from https://github.com/NVIDIA/nvidia-docker
# Add the package repositories
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update -qq
# Necessary to get the `--gpus` flag to function within docker
sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
else
# Explicitly remove nvidia docker apt repositories if not building for cuda
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
fi
add_to_env_file() {
local name=$1
local value=$2
case "$value" in
*\ *)
# BASH_ENV should be set by CircleCI
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
;;
*)
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
;;
esac
}
add_to_env_file IN_CI 1
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
add_to_env_file MAX_JOBS "${MAX_JOBS}"
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
fi
export SCCACHE_MAX_JOBS=`expr $(nproc) - 1`
export MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
export MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
echo "declare -x MAX_JOBS=${MAX_JOBS}" >> /home/circleci/project/env
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
set -x
fi
fi
@ -102,7 +84,5 @@ fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval $(aws ecr get-login --region us-east-1 --no-include-email)
set -x

View File

@ -2,7 +2,7 @@
set -eux -o pipefail
# Set up CircleCI GPG keys for apt, if needed
curl --retry 3 -s -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
# Stop background apt updates. Hypothetically, the kill should not
# be necessary, because stop is supposed to send a kill signal to
@ -33,7 +33,7 @@ systemctl list-units --all | cat
sudo pkill apt-get || true
# For even better luck, purge unattended-upgrades
sudo apt-get purge -y unattended-upgrades || true
sudo apt-get purge -y unattended-upgrades
cat /etc/apt/sources.list

Some files were not shown because too many files have changed in this diff Show More