Compare commits

..

39 Commits

Author SHA1 Message Date
cb90e36684 Update onnx.rst (#40605)
Correcting the link (current 404s)
2020-06-30 06:46:40 -07:00
54a63e0420 Update header names and add in C++ docs (#27172)
1. Update "Package Reference" to "Python API"
2. Add in torchaudio and torchtext reference links so they show up across all docs not just the main page
3. Add "Other Languages" section and add in C++ docs
2019-10-01 21:52:53 -04:00
8554416a19 delete C_CONTIGUOUS assertions to be compatible with particular builds of numpy 2019-08-08 05:54:09 -07:00
64069120e4 fix install_requires properly 2019-08-08 05:16:06 -07:00
11d7e8d85b Fix regression in triangular_solve when number of batches = 1 for CUDA (#23997)
Changelog:
- When number of batches = 1, dispatch to trsm instead of trsm_batched in MAGMA

Test Plan:
- All triangular_solve tests should pass to ensure that the change is valid
2019-08-07 20:36:21 -07:00
4d1d843d18 Hotpatch CXXFLAGS to be the same as CFLAGS if CXXFLAGS is not set. 2019-08-07 16:01:08 -07:00
3e8e88b7f4 Use prerendered KaTeX in docs. (#23376)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23376

This uses master version of sphinxcontrib-katex as it only
recently got prerender support.

Fixes #20984

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D16582064

Pulled By: ezyang

fbshipit-source-id: 9ef24c5788c19572515ded2db2e8ebfb7a5ed44d
2019-08-07 15:58:36 -07:00
214dc0244b Adds torch.random to docs/toc 2019-08-07 15:57:29 -07:00
db37022260 [jit] prefix module qualified names with __module__ (#23633)
This is temporary, won't be needed with the new serialization format.
But for now, since the main module gets its name from the archive name,
we need this for safety, other wise something like
`torch.jit.save("torch.pt") will break things.

ghstack-source-id: f36febe1025ff04e7f79617e548819d4876dc7fa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23630
2019-08-07 18:55:48 -04:00
a0e9dd3190 [jit] don't try to set training after ScriptModule has been initialized. (#23681)
Now when initializing a ScriptModule during the torch.jit.load()
process, there is already a cpp module backing the thing. That means
that setting training will overwrite whatever the initialized
ScriptModule had.

This PR splits apart the common "set up internal state" part of the
Module __init__ and calls that from ScriptModule.__init__ and
Module.__init__, leaving the "nn.Module-specific" part (setting
`self.training`) for the nn.Module __init__

ghstack-source-id: 9b2ba8a15c43cf230363e4cd10ba4ad3ac4931f7
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23680
2019-08-07 18:54:45 -04:00
5e36beca0f [jit] Support nn.GRU and Make nn.LSTM accept PackedSequence (#23700)
* [jit] Support nn.GRU and Make nn.LSTM accept PackedPaddedSequence

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix

* add link to comments
2019-08-07 18:54:08 -04:00
0d7d1d080d Fix argmax docstring (#23855) 2019-08-07 18:52:54 -04:00
e6f9422aca Fix expansion of stride argument (#23969)
In max_pool2d, max_pool3d, avg_pool2d, avg_pool3d.

There is only one substantive change: when stride.size() == 1,
we expand it to size 2.  However, I also took the opportunity
to give a better error message.

Testing here is bare minimum, because I'm in a hurry.  Just make
sure C++ API with all size 1 inputs works.

This is a squash of four commits.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2019-08-07 16:18:52 -04:00
805556cbb6 [v1.2] [RETRY] Fixed Bool in IsIntegralType bug (plus review comments) (#23955)
* Fixed Bool in IsIntegralType bug

* Added deprecation message

* Resolved PR comments

* Update for review comments.

* Get rid of tab.
2019-08-07 16:10:56 -04:00
7bdc5b6a63 Fix unused imports in torch/onnx/symbolic_opset8.py (#23678)
Summary:
Which causes lint errors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23678

Differential Revision: D16622458

Pulled By: mrshenli

fbshipit-source-id: 145ad30dfb452dd556573c1b3d4cdd9cd7852752
2019-08-07 13:09:35 -07:00
5ad90d39ab No need to handle the dependency of INSTALL_TEST on BUILD_TEST in cmake.py (#23806)
Summary:
Simplifying https://github.com/pytorch/pytorch/issues/23793: The dependency relationship between
{INSTALL,BUILD}_TEST is already properly handled in CMakeLists.txt. All
we need to do is to pass down INSTALL_TEST.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23806

Differential Revision: D16691833

Pulled By: soumith

fbshipit-source-id: 7607492b2d82db3f79b174373a92e2810a854a61
2019-08-07 13:03:41 -07:00
8893c32cd8 Upload OS X binaries to pytorch-nightly please...
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2019-08-07 15:56:40 -04:00
cdb032efea [v1.2] Update CosineAnnealingWarmRestarts to follow PyTorch 1.1+ Step Order. (#23833) (#23952)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/23480.

I only verified that the schedule reaches the restart at the expected step as specified in the issue, it would be good to have someone else verify correctness here.

Script:
```
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(torch.optim.SGD([torch.randn(1, requires_grad=True)], lr=0.5), T_0=1, T_mult=2)
for i in range(9):
    print(i)
    print(scheduler.get_lr())
    scheduler.step()
```
Output:
```
0
[0.5]
1
[0.5]
2
[0.25]
3
[0.5]
4
[0.42677669529663687]
5
[0.25]
6
[0.07322330470336313]
7
[0.5]
8
[0.4809698831278217]
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23833

Differential Revision: D16657251

Pulled By: gchanan

fbshipit-source-id: 713973cb7cbfc85dc333641cbe9feaf917718eb9
2019-08-07 13:39:24 -04:00
2ad6f427e8 [v1.2] fix torch.frac documentation (#23830) (#23951)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/13968 .

Following the math formula in wiki: https://en.wikipedia.org/wiki/Fractional_part
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23830

Differential Revision: D16656871

Pulled By: ailzhang

fbshipit-source-id: a71467870cf9566e0c7b1a045f72607dada81e1f
2019-08-07 13:39:12 -04:00
060f67723c Updated docs and added deprecation warnings to acknowledge a bool tensor (#22261) (#23811)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22261
ghimport-source-id: 1611d62d056a04c0ad15ef662e594a3d206a78e2

Test Plan: Imported from OSS

Differential Revision: D16005990

Pulled By: izdeby

fbshipit-source-id: 2413824aa75a0755719e4df11acd21e6607e5a85
2019-08-07 13:00:03 -04:00
fb50b52949 allow INSTALL_TEST to pass through from env to cmake (#23793)
Summary:
This allows `INSTALL_*` to pass through to cmake.
Additional fix is that if `INSTALL_TEST` is specified, it wont use `BUILD_TEST` as the default value for `INSTALL_TEST`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23793

Differential Revision: D16648668

Pulled By: soumith

fbshipit-source-id: 52c2a0d8033bc556355b87a6731a577940de9859
2019-08-05 13:09:06 -04:00
3314b57c33 Changed tensor comparison return type from uint8 to bool (#21113)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21113
ghimport-source-id: 9c4ba63457a72bfc41894387e0b01be3fd9a9baf

Test Plan: Imported from OSS

Differential Revision: D15552204

Pulled By: izdeby

fbshipit-source-id: a608213668649d058e22b510d7755cb99e7d0037
2019-08-05 07:43:49 -07:00
1ac19ea8ba Fix dataloader._shutdown_workers if not all workers are started (#23762) 2019-08-04 23:28:47 -04:00
93a8dda495 cpu binary builds are built with cu100 docker image now instead of cu80 2019-08-04 21:08:06 -04:00
de276b1d14 add appropriate install_requires 2019-08-04 20:00:30 -04:00
47828fd9fc Document empty_strided (#23740)
Changelog:
- Add doc string for torch.empty_strided
- Remove empty file named `python` in test/
2019-08-03 01:09:33 -04:00
f0a65e660c Allowing batching for det/logdet/slogdet operations (#22909) (#23634)
Summary:
Changelog:
- Add batching for det / logdet / slogdet operations
- Update derivative computation to support batched inputs (and consequently batched outputs)
- Update docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22909

Test Plan:
- Add a `test_det_logdet_slogdet_batched` method in `test_torch.py` to test `torch.det`, `torch.logdet` and `torch.slogdet` on batched inputs. This relies on the correctness of `torch.det` on single matrices (tested by `test_det_logdet_slogdet`). A port of this test is added to `test_cuda.py`
- Add autograd tests for batched inputs

Differential Revision: D16580988

Pulled By: ezyang

fbshipit-source-id: b76c87212fbe621f42a847e3b809b5e60cfcdb7a
2019-08-02 00:15:52 -04:00
7e327f259b [1.2.0] fix align_corners doc (#23709)
* fix align_corners doc

* Update torch/nn/functional.py

Co-Authored-By: bnehoran <bnehoran@users.noreply.github.com>

* Update torch/nn/functional.py

Co-Authored-By: bnehoran <bnehoran@users.noreply.github.com>
2019-08-02 00:14:50 -04:00
ccc7b5c225 Use dst dir for temp file (#23629) (#23713)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/23607
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23629

Differential Revision: D16594223

Pulled By: soumith

fbshipit-source-id: db0275415111f08fc13ab6be00b76737a20f92df
2019-08-02 00:14:32 -04:00
6f5fb78e9e Fix CTC loss for zero-length targets on GPU (#23298) (#23715)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/18215 at last!

Also sprinkle tests...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23298

Differential Revision: D16582145

Pulled By: soumith

fbshipit-source-id: bc8b1a629de0c2606e70a2218ccd135f4a9cdc5d
2019-08-02 00:14:11 -04:00
4f5211691f [jit] Recursive compilation error hot fixes (#23686)
* [jit] Recursive compilation error hot fixes

This is a combination of #23454 and #23682 which are needed for the
error reporting on recrusively compiled code

* #23682
2019-08-01 18:40:15 -04:00
7a7cfcbf0f add setup metadata to help PyPI flesh out content on pypi package page 2019-08-01 14:36:17 -04:00
129939132b [v1.2.0] Slightly improve dataloader docs on when auto-batching is disabled (#23672)
* Slightly improve dataloader docs on when auto-batching is disabled

* fix typo
2019-08-01 14:26:33 -04:00
bb4ff00f33 fix pin_memory_thread not exiting quickly (#23647) 2019-08-01 11:08:20 -04:00
49e32ffc9f Enable stable docs push to pytorch.github.io:site-v1.2.0 2019-08-01 06:22:00 -07:00
d6df9575f9 Fix regression in torch.qr (#23591) (#23606)
Summary:
Changelog:
- Use narrow instead of narrow_copy while returning
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23591

Test Plan:
- All tests should pass to ensure that the change is correct

Fixes https://github.com/pytorch/pytorch/issues/23580

Differential Revision: D16581174

Pulled By: ezyang

fbshipit-source-id: 1b6bf7d338ddd138ea4c6aa6901834dd202ec79c
2019-07-31 21:04:02 -04:00
c3bad0de3e at::view (#23452) (#23604)
Summary:
accidently calls clone, but what we want is creating an empty tensor and set storage.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23452
ghstack-source-id: 87438096

Differential Revision: D16442756

fbshipit-source-id: 6d5663f82c9bd4e9de8fc846c52992477843af6a
2019-07-31 20:25:35 -04:00
18cbf11329 Prepare the stable docs build for v1.2.0
This sets up the docs build in dry-run mode. If everything looks okay I
will enable it.
2019-07-31 13:25:47 -07:00
a9dc2a15b7 Refactor the pytorch_doc_push_script to take a branch
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23556

Test Plan:
- Run ci

Imported from OSS

Differential Revision: D16563747

Pulled By: zou3519

fbshipit-source-id: 104371b3712c00b073a82e5145090e7bd6fd2d53
2019-07-31 13:18:55 -07:00
5157 changed files with 206952 additions and 644916 deletions

View File

@ -1,3 +0,0 @@
build --copt=--std=c++14
build --copt=-I.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin

View File

@ -1 +0,0 @@
3.1.0

View File

@ -71,9 +71,8 @@ A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.6, 3.7, 3.8
* windows: 3.6, 3.7, 3.8
* linux: 2.7m, 2.7mu, 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos and windows: 2.7, 3.5, 3.6, 3.7
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
@ -93,12 +92,12 @@ We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
* shared with dependencies
* static with dependencies
* shared without dependencies
* static without dependencies
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
All binaries are built in CircleCI workflows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
# CircleCI structure of the binaries
@ -189,18 +188,6 @@ binary_run_in_docker.sh is a way to share the docker start-up code between the b
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Azure Pipelines structure of the binaries
TODO: fill in stuff
## How are the workflows structured?
TODO: fill in stuff
## How are the jobs structured?
TODO: fill in stuff
# Code structure of the binaries (circleci agnostic)
## Overview
@ -248,15 +235,13 @@ pytorch/builder
- build_common.sh # Actual build script that ^^ call into
- wheel/
- build_wheel.sh # Entrypoint for wheel builds
- windows/
- build_pytorch.bat # Entrypoint for wheel builds on Windows
```
Every type of package has an entrypoint build script that handles the all the important logic.
## Conda
Linux, MacOS and Windows use the same code flow for the conda builds.
Both Linux and MacOS use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
@ -275,7 +260,7 @@ The build.sh we use is essentially a wrapper around ```python setup.py build```
The entrypoint file `builder/conda/build_conda.sh` is complicated because
* It works for Linux, MacOS and Windows
* It works for both Linux and MacOS
* The mac builds used to create their own environments, since they all used to be on the same machine. Theres now a lot of extra logic to handle conda envs. This extra machinery could be removed
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
@ -287,7 +272,7 @@ Manywheels are pip packages for linux distros. Note that these manywheels are no
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unneccessary folders and movements here and there.
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
@ -306,19 +291,6 @@ The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## Windows Wheels (Windows pip and libtorch packages)
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## General notes
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
@ -332,7 +304,7 @@ Note that the Windows Python wheels are still built in conda environments. Some
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
* Its confusing. Most of those scripts deal with python specifics.
* Its confusinig. Most of those scripts deal with python specifics.
* The extra conditionals everywhere severely complicate the wheel build scripts
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
@ -340,12 +312,12 @@ Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for
All linux builds occur in docker images. The docker images are
* pytorch/conda-cuda
* soumith/conda-cuda
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
* Also used for cpu builds
* pytorch/manylinux-cuda90
* pytorch/manylinux-cuda92
* pytorch/manylinux-cuda100
* soumith/manylinux-cuda90
* soumith/manylinux-cuda92
* soumith/manylinux-cuda100
* Also used for cpu builds
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
@ -411,7 +383,7 @@ You can build Linux binaries locally easily using docker.
```
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
# Use the correct docker image, soumith/conda-cuda used here as an example
#
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
# machine that you're running the command on) accessible to the docker
@ -426,7 +398,7 @@ docker run \
-v your/pytorch/repo:/pytorch \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
-it soumith/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
@ -466,7 +438,7 @@ But if you want to try, then Id recommend
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
@ -497,8 +469,8 @@ N.B. installing a brand new miniconda is important. This has to do with how cond
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called base), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
Newer conda versions and proper python hygeine can prevent this, but just install a new miniconda to be safe.
### Windows
TODO: fill in
Maybe @peterjc123 can fill this section in.

View File

@ -1,3 +1,5 @@
#!/usr/bin/env python3
"""
This module models the tree of configuration variants
for "smoketest" builds.
@ -5,6 +7,9 @@ for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
In addition to generating config.yml content, the tree is also traversed
to produce a visualization of config dimensions.
"""
from collections import OrderedDict
@ -31,13 +36,15 @@ def get_processor_arch_name(cuda_version):
LINUX_PACKAGE_VARIANTS = OrderedDict(
manywheel=[
"2.7m",
"2.7mu",
"3.5m",
"3.6m",
"3.7m",
"3.8m",
],
conda=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.CONDA_PYTHON_VERSIONS,
libtorch=[
"3.7m",
"2.7m",
],
)
@ -45,39 +52,26 @@ CONFIG_TREE_DATA = OrderedDict(
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.CONDA_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)),
windows=(dimensions.CUDA_VERSIONS, OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
"2.7",
],
)),
)
# GCC config variants:
#
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
# which can only build with old gcc ABI. It is better than devtoolset3
# because it understands avx512, which is needed for good fbgemm performance.
#
# Libtorch with new gcc ABI is built with gcc 5.4 on Ubuntu 16.04.
LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
manywheel=['devtoolset7'],
conda=['devtoolset7'],
libtorch=[
"devtoolset7",
"gcc5.4_cxx11-abi",
],
)
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
"debug",
"release",
# Why is this an option?
# All the nightlies used to be devtoolset3 and built with the old gcc ABI. We
# added a devtoolset7 option so that we could build nightlies with the new gcc
# ABI. That didn't work since devtoolset7 can't build with the new gcc ABI. But
# then we set devtoolset7 to be the default anyways, since devtoolset7
# understands avx512, which is needed for good fbgemm performance.
# This should be removed. The base dockers should just be upgraded to
# devtoolset7 so we don't have to reinstall this in every build job.
# The same machinery that this uses, though, should be retooled for a different
# compiler toolchain that can build with the new gcc ABI.
DEVTOOLSET_VERSIONS = [
7,
]
@ -101,7 +95,13 @@ class OSConfigNode(ConfigNode):
self.props["cuda_versions"] = cuda_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
packaging_variants = [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
if self.find_prop("smoke"):
filtered_packaging_variants = list(filter(lambda x: x.get_label() != "libtorch", packaging_variants))
return filtered_packaging_variants
else:
return packaging_variants
class PackageFormatConfigNode(ConfigNode):
@ -113,40 +113,28 @@ class PackageFormatConfigNode(ConfigNode):
def get_children(self):
if self.find_prop("os_name") == "linux":
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
return [LinuxGccConfigNode(self, v) for v in DEVTOOLSET_VERSIONS]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class LinuxGccConfigNode(ConfigNode):
def __init__(self, parent, gcc_config_variant):
super(LinuxGccConfigNode, self).__init__(parent, "GCC_CONFIG_VARIANT=" + str(gcc_config_variant))
def __init__(self, parent, devtoolset_version):
super(LinuxGccConfigNode, self).__init__(parent, "DEVTOOLSET=" + str(devtoolset_version))
self.props["gcc_config_variant"] = gcc_config_variant
self.props["devtoolset_version"] = devtoolset_version
def get_children(self):
cuda_versions = self.find_prop("cuda_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == 'devtoolset7':
if self.find_prop("devtoolset_version") == 7:
cuda_versions = filter(lambda x: x != "90", cuda_versions)
return [ArchConfigNode(self, v) for v in cuda_versions]
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, cu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
@ -164,6 +152,8 @@ class PyVersionConfigNode(ConfigNode):
self.props["pyver"] = pyver
def get_children(self):
smoke = self.find_prop("smoke")
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")

View File

@ -1,12 +1,15 @@
#!/usr/bin/env python3
from collections import OrderedDict
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.data.binary_build_data as binary_build_data
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
import cimodel.lib.visualization as visualization
class Conf(object):
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, devtoolset_version):
self.os = os
self.cuda_version = cuda_version
@ -14,20 +17,15 @@ class Conf(object):
self.parms = parms
self.smoke = smoke
self.libtorch_variant = libtorch_variant
self.gcc_config_variant = gcc_config_variant
self.libtorch_config_variant = libtorch_config_variant
self.devtoolset_version = devtoolset_version
def gen_build_env_parms(self):
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
elems.append(str(self.libtorch_config_variant))
if self.devtoolset_version is not None:
elems.append("devtoolset" + str(self.devtoolset_version))
return elems
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
return miniutils.quote("pytorch/pytorch-binary-docker-image-ubuntu16.04:latest")
docker_word_substitution = {
"manywheel": "manylinux",
@ -36,80 +34,56 @@ class Conf(object):
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
alt_docker_suffix = self.cuda_version or "102"
# The cpu nightlies are built on the soumith/manylinux-cuda100 docker image
alt_docker_suffix = self.cuda_version or "100"
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
return miniutils.quote("soumith/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
def gen_build_name(self, build_or_test, nightly):
def gen_build_name(self, build_or_test):
parts = [self.get_name_prefix(), self.os] + self.gen_build_env_parms()
if nightly:
parts.append("nightly")
if self.libtorch_variant:
parts.append(self.libtorch_variant)
if not self.smoke:
parts.append(build_or_test)
joined = "_".join(parts)
return joined.replace(".", "_")
return "_".join(parts)
def gen_yaml_tree(self, build_or_test):
env_tuples = [("BUILD_ENVIRONMENT", miniutils.quote(" ".join(self.gen_build_env_parms())))]
def gen_workflow_job(self, phase, upload_phase_dependency=None, nightly=False):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
)
else:
if phase in ["upload"]:
filter_branch = "nightly"
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["docker_image"] = self.gen_docker_image()
if self.os != "windows" and self.cuda_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.cuda_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
if phase == "upload":
job_def["context"] = "org-member"
job_def["requires"] = [
self.gen_build_name(upload_phase_dependency, nightly)
]
env_tuples.append(("LIBTORCH_VARIANT", miniutils.quote(self.libtorch_variant)))
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name : job_def}
d = {"<<": "*" + "_".join([self.get_name_prefix(), os_name, build_or_test])}
if build_or_test == "test":
if not (self.smoke and self.os == "macos"):
env_tuples.append(("DOCKER_IMAGE", self.gen_docker_image()))
if self.cuda_version:
env_tuples.append(("USE_CUDA_DOCKER_RUNTIME", miniutils.quote("1")))
else:
if self.os == "linux" and build_or_test != "upload":
d["docker"] = [{"image": self.gen_docker_image()}]
d["environment"] = OrderedDict(env_tuples)
if build_or_test == "test":
if self.cuda_version:
d["resource_class"] = "gpu.medium"
return d
def get_root(smoke, name):
@ -134,77 +108,106 @@ def gen_build_env_list(smoke):
[c.find_prop("pyver")],
c.find_prop("smoke"),
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
c.find_prop("devtoolset_version"),
)
newlist.append(conf)
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
def predicate_exclude_nonlinux_and_libtorch(config):
return config.os == "linux" and (config.smoke or config.pydistro != "libtorch")
return mylist
def get_post_upload_jobs():
"""Generate jobs to update HTML indices and report binary sizes"""
configs = gen_build_env_list(False)
common_job_def = {
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"requires": [],
}
for conf in configs:
upload_job_name = conf.gen_build_name(
build_or_test="upload",
nightly=True
)
common_job_def["requires"].append(upload_job_name)
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
**common_job_def,
},
},
]
def add_build_entries(jobs_dict, phase, smoke, filter_predicate=lambda x: True):
configs = gen_build_env_list(smoke)
for conf_options in filter(filter_predicate, configs):
jobs_dict[conf_options.gen_build_name(phase)] = conf_options.gen_yaml_tree(phase)
def add_binary_build_specs(jobs_dict):
add_build_entries(jobs_dict, "build", False)
def add_binary_build_tests(jobs_dict):
add_build_entries(jobs_dict, "test", False, predicate_exclude_nonlinux_and_libtorch)
def add_binary_build_uploads(jobs_dict):
add_build_entries(jobs_dict, "upload", False)
def add_smoke_test_specs(jobs_dict):
add_build_entries(jobs_dict, "test", True)
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
filtered_configs = filter(predicate_exclude_nonlinux_and_libtorch, configs)
tests = []
for conf_options in filtered_configs:
yaml_item = conf_options.gen_workflow_job("test", nightly=True)
tests.append(yaml_item)
params = {"requires": ["setup", conf_options.gen_build_name("build")]}
tests.append({conf_options.gen_build_name("test"): params})
return tests
def get_nightly_uploads():
configs = gen_build_env_list(False)
def gen_config(conf, phase_dependency):
return {
conf.gen_build_name("upload"): OrderedDict([
("context", "org-member"),
("requires", ["setup", conf.gen_build_name(phase_dependency)]),
]),
}
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_nonlinux_and_libtorch(conf) else "build"
mylist.append(gen_config(conf, phase_dependency))
return mylist
def gen_schedule_tree(cron_timing):
return [{
"schedule": {
"cron": miniutils.quote(cron_timing),
"filters": {
"branches": {
"only": ["master"],
},
},
},
}]
def add_jobs_and_render(jobs_dict, toplevel_key, smoke, cron_schedule):
jobs_list = ["setup"]
def get_jobs(toplevel_key, smoke):
jobs_list = []
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
build_name = build_config.gen_build_name("build")
jobs_list.append({build_name: {"requires": ["setup"]}})
return jobs_list
jobs_dict[toplevel_key] = OrderedDict(
triggers=gen_schedule_tree(cron_schedule),
jobs=jobs_list,
)
graph = visualization.generate_graph(get_root(smoke, toplevel_key))
graph.draw(toplevel_key + "-config-dimensions.png", prog="twopi")
def get_binary_build_jobs():
return get_jobs("binarybuilds", False)
def add_binary_build_jobs(jobs_dict):
add_jobs_and_render(jobs_dict, "binarybuilds", False, "5 5 * * *")
def get_binary_smoke_test_jobs():
return get_jobs("binarysmoketests", True)
def add_binary_smoke_test_jobs(jobs_dict):
add_jobs_and_render(jobs_dict, "binarysmoketests", True, "15 16 * * *")

View File

@ -1,12 +1,38 @@
from cimodel.lib.conf_tree import ConfigNode, XImportant
#!/usr/bin/env python3
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
from cimodel.lib.conf_tree import Ver
CONFIG_TREE_DATA = [
(Ver("ubuntu", "14.04"), [
(Ver("gcc", "4.8"), [X("py2")]),
(Ver("gcc", "4.9"), [X("py2")]),
]),
(Ver("ubuntu", "16.04"), [
([Ver("clang", "7")], [XImportant("onnx_main_py3.6"),
XImportant("onnx_ort1_py3.6"),
XImportant("onnx_ort2_py3.6")]),
(Ver("cuda", "9.0"), [
# TODO make explicit that this is a "secret TensorRT build"
# (see https://github.com/pytorch/pytorch/pull/17323#discussion_r259446749)
# TODO Uh oh, were we supposed to make this one important?!
X("py2"),
XImportant("cmake"),
]),
(Ver("cuda", "9.1"), [XImportant("py2")]),
(Ver("mkl"), [XImportant("py2")]),
(Ver("gcc", "5"), [XImportant("onnx_py2")]),
(Ver("clang", "3.8"), [X("py2")]),
(Ver("clang", "3.9"), [X("py2")]),
(Ver("clang", "7"), [XImportant("py2"), XImportant("onnx_py3.6")]),
(Ver("android"), [XImportant("py2")]),
]),
(Ver("centos", "7"), [
(Ver("cuda", "9.0"), [X("py2")]),
]),
(Ver("macos", "10.13"), [
# TODO ios and system aren't related. system qualifies where the python comes
# from (use the system python instead of homebrew or anaconda)
(Ver("ios"), [X("py2")]),
(Ver("system"), [XImportant("py2")]),
]),
]
@ -28,22 +54,15 @@ class TreeConfigNode(ConfigNode):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
def is_build_only(self):
if str(self.find_prop("language_version")) == "onnx_main_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
if str(self.find_prop("language_version")) == "onnx_py3.6":
return False
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
return str(self.find_prop("compiler_version")) in [
"gcc4.9",
"clang3.8",
"clang3.9",
"clang7",
"android",
}) or self.find_prop("distro_version").name == "macos"
def is_test_only(self):
if str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
return True
return False
] or self.find_prop("distro_version").name == "macos"
class TopLevelNode(TreeConfigNode):
@ -77,7 +96,6 @@ class LanguageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["language_version"] = node_name
self.props["build_only"] = self.is_build_only()
self.props["test_only"] = self.is_test_only()
def child_constructor(self):
return ImportantConfigNode

View File

@ -1,42 +1,37 @@
#!/usr/bin/env python3
from collections import OrderedDict
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
from cimodel.lib.conf_tree import Ver
import cimodel.lib.miniutils as miniutils
import cimodel.lib.visualization as visualization
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from dataclasses import dataclass
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
DOCKER_IMAGE_VERSION = "376"
DOCKER_IMAGE_VERSION = 287
@dataclass
class Conf:
language: str
distro: Ver
# There could be multiple compiler versions configured (e.g. nvcc
# for gpu files and host compiler (gcc/clang) for cpu files)
compilers: [Ver]
compiler: Ver
build_only: bool
test_only: bool
is_important: bool
@property
def compiler_names(self):
return [c.name for c in self.compilers]
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
def get_cudnn_insertion(self):
omit = self.language == "onnx_main_py3.6" \
or self.language == "onnx_ort1_py3.6" \
or self.language == "onnx_ort2_py3.6" \
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
omit = self.language == "onnx_py2" \
or self.language == "onnx_py3.6" \
or self.compiler.name in ["android", "mkl", "clang"] \
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
return [] if omit else ["cudnn7"]
@ -48,17 +43,10 @@ class Conf:
] + self.get_build_name_middle_parts()
def get_build_name_middle_parts(self):
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
return [str(self.compiler)] + self.get_cudnn_insertion() + [str(self.distro)]
def construct_phase_name(self, phase):
root_parts = self.get_build_name_root_parts()
build_name_substitutions = {
"onnx_ort1_py3.6": "onnx_main_py3.6",
"onnx_ort2_py3.6": "onnx_main_py3.6",
}
if phase == "build":
root_parts = [miniutils.override(r, build_name_substitutions) for r in root_parts]
return "_".join(root_parts + [phase]).replace(".", "_")
def get_platform(self):
@ -70,23 +58,22 @@ class Conf:
def gen_docker_image(self):
lang_substitutions = {
"onnx_main_py3.6": "py3.6",
"onnx_ort1_py3.6": "py3.6",
"onnx_ort2_py3.6": "py3.6",
"cmake": "py3",
"onnx_py2": "py2",
"onnx_py3.6": "py3.6",
"cmake": "py2",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [lang] + self.get_build_name_middle_parts()
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
def gen_workflow_params(self, phase):
parameters = OrderedDict()
def gen_yaml_tree(self, phase):
tuples = []
lang_substitutions = {
"onnx_py3": "onnx-py3",
"onnx_main_py3.6": "onnx-main-py3.6",
"onnx_ort1_py3.6": "onnx-ort1-py3.6",
"onnx_ort2_py3.6": "onnx-ort2-py3.6",
"onnx_py2": "onnx-py2",
"onnx_py3.6": "onnx-py3.6",
}
lang = miniutils.override(self.language, lang_substitutions)
@ -96,39 +83,37 @@ class Conf:
lang,
] + self.get_build_name_middle_parts() + [phase]
build_env_name = "-".join(parts)
parameters["build_environment"] = miniutils.quote(build_env_name)
if "ios" in self.compiler_names:
parameters["build_ios"] = miniutils.quote("1")
build_env = "-".join(parts)
if not self.distro.name == "macos":
build_env = miniutils.quote(build_env)
tuples.append(("BUILD_ENVIRONMENT", build_env))
if self.compiler.name == "ios":
tuples.append(("BUILD_IOS", miniutils.quote("1")))
if phase == "test":
# TODO cuda should not be considered a compiler
if "cuda" in self.compiler_names:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if self.compiler.name == "cuda":
tuples.append(("USE_CUDA_DOCKER_RUNTIME", miniutils.quote("1")))
if self.distro.name != "macos":
parameters["docker_image"] = self.gen_docker_image()
if self.build_only:
parameters["build_only"] = miniutils.quote("1")
if phase == "test":
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
parameters["resource_class"] = resource_class
if self.distro.name == "macos":
tuples.append(("PYTHON_VERSION", miniutils.quote("2")))
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.construct_phase_name(phase)
if phase == "test":
job_def["requires"] = [self.construct_phase_name("build")]
job_name = "caffe2_" + self.get_platform() + "_test"
else:
job_name = "caffe2_" + self.get_platform() + "_build"
tuples.append(("DOCKER_IMAGE", self.gen_docker_image()))
if self.build_only:
tuples.append(("BUILD_ONLY", miniutils.quote("1")))
if not self.is_important:
job_def["filters"] = gen_filter_dict()
job_def.update(self.gen_workflow_params(phase))
return {job_name : job_def}
d = OrderedDict({"environment": OrderedDict(tuples)})
if phase == "test":
resource_class = "large" if self.compiler.name != "cuda" else "gpu.medium"
d["resource_class"] = resource_class
d["<<"] = "*" + "_".join(["caffe2", self.get_platform(), phase, "defaults"])
return d
def get_root():
@ -142,12 +127,12 @@ def instantiate_configs():
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
c = Conf(
language=fc.find_prop("language_version"),
distro=fc.find_prop("distro_version"),
compilers=fc.find_prop("compiler_version"),
compiler=fc.find_prop("compiler_version"),
build_only=fc.find_prop("build_only"),
test_only=fc.find_prop("test_only"),
is_important=fc.find_prop("important"),
)
@ -156,19 +141,47 @@ def instantiate_configs():
return config_list
def get_workflow_jobs():
def add_caffe2_builds(jobs_dict):
configs = instantiate_configs()
x = []
for conf_options in configs:
phases = ["build"]
if not conf_options.build_only:
phases = dimensions.PHASES
if conf_options.test_only:
phases = ["test"]
for phase in phases:
jobs_dict[conf_options.construct_phase_name(phase)] = conf_options.gen_yaml_tree(phase)
graph = visualization.generate_graph(get_root())
graph.draw("caffe2-config-dimensions.png", prog="twopi")
def get_caffe2_workflows():
configs = instantiate_configs()
# TODO Why don't we build this config?
# See https://github.com/pytorch/pytorch/pull/17323#discussion_r259450540
filtered_configs = filter(lambda x: not (str(x.distro) == "ubuntu14.04" and str(x.compiler) == "gcc4.9"), configs)
x = []
for conf_options in filtered_configs:
phases = ["build"]
if not conf_options.build_only:
phases = dimensions.PHASES
for phase in phases:
x.append(conf_options.gen_workflow_job(phase))
requires = ["setup"]
sub_d = {"requires": requires}
if phase == "test":
requires.append(conf_options.construct_phase_name("build"))
if not conf_options.is_important:
# If you update this, update
# pytorch_build_definitions.py too
sub_d["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
x.append({conf_options.construct_phase_name(phase): sub_d})
return x

View File

@ -1,14 +1,23 @@
#!/usr/bin/env python3
PHASES = ["build", "test"]
CUDA_VERSIONS = [
None, # cpu build
"92",
"101",
"102",
"100",
]
STANDARD_PYTHON_VERSIONS = [
"2.7",
"3.5",
"3.6",
"3.7",
]
CONDA_PYTHON_VERSIONS = [
"2.7",
"3.6",
"3.7",
"3.8"
]

View File

@ -1,56 +1,57 @@
#!/usr/bin/env python3
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
CONFIG_TREE_DATA = [
("xenial", [
("trusty", [
(None, [
XImportant("2.7.9"),
X("2.7"),
X("3.5"),
X("nightly"),
]),
("gcc", [
("5.4", [ # All this subtree rebases to master and then build
("4.8", [X("3.6")]),
("5.4", [
XImportant("3.6"),
("3.6", [
("parallel_tbb", [X(True)]),
("parallel_native", [X(True)]),
("xla", [XImportant(True)]),
("namedtensor", [XImportant(True)]),
]),
]),
# TODO: bring back libtorch test
("7", [X("3.6")]),
]),
]),
("xenial", [
("clang", [
("5", [
XImportant("3.6"), # This is actually the ASAN build
("3.6", [
("namedtensor", [XImportant(True)]), # ASAN
]),
]),
]),
("cuda", [
("9.2", [
X("3.6"),
("3.6", [
("cuda_gcc_override", [X("gcc5.4")])
])
]),
("10.1", [X("3.6")]),
("10.2", [
("9", [
# Note there are magic strings here
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L21
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L143
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L153
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453144)
X("2.7"),
XImportant("3.6"),
("3.6", [
("libtorch", [XImportant(True)])
("2.7", [
("namedtensor", [XImportant(True)]),
]),
]),
("9.2", [X("3.6")]),
("10", [X("3.6")]),
]),
]),
("bionic", [
("clang", [
("9", [
XImportant("3.6"),
]),
("9", [
("3.6", [
("xla", [XImportant(True)]),
]),
]),
]),
("gcc", [
("9", [XImportant("3.8")]),
("android", [
("r19c", [XImportant("3.6")]),
]),
]),
]
@ -94,12 +95,34 @@ class DistroConfigNode(TreeConfigNode):
distro = self.find_prop("distro_name")
next_nodes = {
"trusty": TrustyCompilerConfigNode,
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
class TrustyCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
def child_constructor(self):
return TrustyCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class TrustyCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
@ -119,12 +142,8 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
next_nodes = {
"xla": XlaConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"parallel_native": ParallelNativeConfigNode,
"libtorch": LibTorchConfigNode,
"namedtensor": NamedTensorConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode
}
return next_nodes[experimental_feature]
@ -140,50 +159,12 @@ class XlaConfigNode(TreeConfigNode):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
class NamedTensorConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
return "NAMEDTENSOR=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "paralleltbb"
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "parallelnative"
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
def init2(self, node_name):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ImportantConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
self.props["is_namedtensor"] = node_name
def child_constructor(self):
return ImportantConfigNode
@ -202,30 +183,12 @@ class ImportantConfigNode(TreeConfigNode):
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
return XenialCompilerVersionConfigNode
class XenialCompilerVersionConfigNode(TreeConfigNode):
@ -235,12 +198,3 @@ class XenialCompilerVersionConfigNode(TreeConfigNode):
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -1,35 +1,38 @@
#!/usr/bin/env python3
from collections import OrderedDict
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.data.simple.util.docker_constants import gen_docker_image_path
import cimodel.lib.visualization as visualization
from dataclasses import dataclass, field
from typing import List, Optional
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/"
DOCKER_IMAGE_VERSION = 323
@dataclass
class Conf:
distro: str
parms: List[str]
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
vulkan: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional['Conf'] = None
is_libtorch: bool = False
is_namedtensor: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
@ -42,25 +45,20 @@ class Conf:
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
if self.is_namedtensor and not for_docker:
leading.append("namedtensor")
cuda_parms = []
if self.cuda_version:
cuda_parms.extend(["cuda" + self.cuda_version, "cudnn7"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
result = result + self.parms_list_ignored_for_docker_image
return result
return leading + ["linux", self.distro] + cuda_parms + self.parms
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
return miniutils.quote(gen_docker_image_path(base_build_env_name))
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + base_build_env_name + ":" + str(DOCKER_IMAGE_VERSION))
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
@ -71,25 +69,44 @@ class Conf:
def get_dependents(self):
return self.dependent_tests or []
def gen_workflow_params(self, phase):
parameters = OrderedDict()
build_job_name_pieces = self.get_build_job_name_pieces(phase)
def gen_yaml_tree(self, build_or_test):
build_job_name_pieces = self.get_build_job_name_pieces(build_or_test)
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if phase == "test" and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if phase == "test":
env_dict = OrderedDict([
("BUILD_ENVIRONMENT", build_env_name),
("DOCKER_IMAGE", self.gen_docker_image_path()),
])
if self.pyver:
env_dict["PYTHON_VERSION"] = miniutils.quote(self.pyver)
if build_or_test == "test" and self.gpu_resource:
env_dict["USE_CUDA_DOCKER_RUNTIME"] = miniutils.quote("1")
d = {
"environment": env_dict,
"<<": "*" + "_".join(["pytorch", "linux", build_or_test, "defaults"]),
}
if build_or_test == "test":
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
parameters["resource_class"] = resource_class
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
if self.gpu_resource == "large":
env_dict["MULTI_GPU"] = miniutils.quote("1")
d["resource_class"] = resource_class
return d
def gen_workflow_yaml_item(self, phase):
# All jobs require the setup job
parameters = OrderedDict({"requires": ["setup"]})
if phase == "test":
@ -99,16 +116,14 @@ class Conf:
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
parameters["requires"].append(dependency_build.gen_build_name("build"))
if not self.is_important:
job_def["filters"] = gen_filter_dict()
job_def.update(self.gen_workflow_params(phase))
# If you update this, update
# caffe2_build_definitions.py too
parameters["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
return {job_name : job_def}
return {self.gen_build_name(phase): parameters}
# TODO This is a hack to special case some configs just for the workflow list
@ -117,7 +132,8 @@ class HiddenConf(object):
self.name = name
self.parent_build = parent_build
def gen_workflow_job(self, phase):
def gen_workflow_yaml_item(self, phase):
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
def gen_build_name(self, _):
@ -151,13 +167,7 @@ def gen_dependent_configs(xenial_parent_config):
configs.append(c)
return configs
def gen_docs_configs(xenial_parent_config):
configs = []
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push", "pytorch_doc_test"]:
for x in ["pytorch_short_perf_test_gpu", "pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
return configs
@ -179,26 +189,20 @@ def instantiate_configs():
root = get_root()
found_configs = conf_tree.dfs(root)
restrict_phases = None
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
parms_list_ignored_for_docker_image = []
vulkan = fc.find_prop("vulkan") or False
if vulkan:
parms_list_ignored_for_docker_image.append("vulkan")
python_version = None
if compiler_name == "cuda" or compiler_name == "android":
if distro_name == "xenial":
python_version = fc.find_prop("pyver")
parms_list = [fc.find_prop("abbreviated_pyver")]
else:
parms_list = ["py" + fc.find_prop("pyver")]
compiler_name = fc.find_prop("compiler_name")
cuda_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
@ -208,8 +212,6 @@ def instantiate_configs():
# TODO: do we need clang to compile host binaries like protoc?
parms_list.append("clang5")
parms_list.append("android-ndk-" + android_ndk_version)
android_abi = fc.find_prop("android_abi")
parms_list_ignored_for_docker_image.append(android_abi)
restrict_phases = ["build"]
elif compiler_name:
@ -217,22 +219,16 @@ def instantiate_configs():
parms_list.append(gcc_version)
# TODO: This is a nasty special case
if gcc_version == 'clang5' and not is_xla:
if compiler_name == "clang":
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if cuda_version in ["9.2", "10", "10.1", "10.2"]:
if cuda_version in ["9.2", "10"]:
# TODO The gcc version is orthogonal to CUDA version?
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
parms_list.append("gcc7")
is_libtorch = fc.find_prop("is_libtorch") or False
is_xla = fc.find_prop("is_xla") or False
is_namedtensor = fc.find_prop("is_namedtensor") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
if build_only and restrict_phases is None:
restrict_phases = ["build"]
gpu_resource = None
if cuda_version and cuda_version != "10":
@ -241,55 +237,60 @@ def instantiate_configs():
c = Conf(
distro_name,
parms_list,
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
is_xla,
vulkan,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
is_namedtensor=is_namedtensor,
is_important=is_important,
parallel_backend=parallel_backend,
)
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
if distro_name == 'xenial' and fc.find_prop("pyver") == '3.6' \
and cuda_version is None \
and parallel_backend is None \
and compiler_name == 'gcc' \
and fc.find_prop('compiler_version') == '5.4':
c.dependent_tests = gen_docs_configs(c)
if cuda_version == "10.1" and python_version == "3.6" and not is_libtorch:
if cuda_version == "9" and python_version == "3.6":
c.dependent_tests = gen_dependent_configs(c)
if (compiler_name == "gcc"
and compiler_version == "5.4"
and not is_libtorch
and parallel_backend is None):
bc_breaking_check = Conf(
"backward-compatibility-check",
[],
is_xla=False,
restrict_phases=["test"],
is_libtorch=False,
is_important=True,
parent_build=c,
)
c.dependent_tests.append(bc_breaking_check)
config_list.append(c)
return config_list
def get_workflow_jobs():
def add_build_env_defs(jobs_dict):
mydict = OrderedDict()
config_list = instantiate_configs()
for c in config_list:
phases = c.restrict_phases or dimensions.PHASES
for phase in phases:
# TODO why does this not have a test?
if phase == "test" and c.cuda_version == "10":
continue
d = c.gen_yaml_tree(phase)
mydict[c.gen_build_name(phase)] = d
if phase == "test":
for x in filter(lambda x: type(x) is not HiddenConf, c.get_dependents()):
d = x.gen_yaml_tree(phase)
mydict[x.gen_build_name(phase)] = d
# this is the circleci api version and probably never changes
jobs_dict["version"] = 2
jobs_dict["jobs"] = mydict
graph = visualization.generate_graph(get_root())
graph.draw("pytorch-config-dimensions.png", prog="twopi")
def get_workflow_list():
config_list = instantiate_configs()
x = []
x = ["setup"]
for conf_options in config_list:
phases = conf_options.restrict_phases or dimensions.PHASES
@ -300,10 +301,10 @@ def get_workflow_jobs():
if phase == "test" and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))
x.append(conf_options.gen_workflow_yaml_item(phase))
# TODO convert to recursion
for conf in conf_options.get_dependents():
x.append(conf.gen_workflow_job("test"))
x.append(conf.gen_workflow_yaml_item("test"))
return x

View File

@ -1,92 +0,0 @@
import cimodel.data.simple.util.branch_filters
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_NDK
class AndroidJob:
def __init__(self,
variant,
template_name,
is_master_only=True):
self.variant = variant
self.template_name = template_name
self.is_master_only = is_master_only
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant + [
"build",
]
full_job_name = "_".join(base_name_parts)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"build_environment": "\"{}\"".format(build_env_name),
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{self.template_name: props_dict}]
class AndroidGradleJob:
def __init__(self,
job_name,
template_name,
dependencies,
is_master_only=True):
self.job_name = job_name
self.template_name = template_name
self.dependencies = dependencies
self.is_master_only = is_master_only
def gen_tree(self):
props_dict = {
"name": self.job_name,
"requires": self.dependencies,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
AndroidJob(["x86_64"], "pytorch_linux_build"),
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
AndroidJob(["vulkan", "x86_32"], "pytorch_linux_build", is_master_only=False),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
"pytorch_android_gradle_build-x86_32",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
is_master_only=False),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
"pytorch_android_gradle_build",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,63 +0,0 @@
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_GCC7
def gen_job_name(phase):
job_name_parts = [
"pytorch",
"bazel",
phase,
]
return "_".join(job_name_parts)
class BazelJob:
def __init__(self, phase, extra_props=None):
self.phase = phase
self.extra_props = extra_props or {}
def gen_tree(self):
template_parts = [
"pytorch",
"linux",
"bazel",
self.phase,
]
build_env_parts = [
"pytorch",
"linux",
"xenial",
"py3.6",
"gcc7",
"bazel",
self.phase,
]
full_job_name = gen_job_name(self.phase)
build_env_name = "-".join(build_env_parts)
extra_requires = [gen_job_name("build")] if self.phase == "test" else []
props_dict = {
"build_environment": build_env_name,
"docker_image": DOCKER_IMAGE_GCC7,
"name": full_job_name,
"requires": extra_requires,
}
props_dict.update(self.extra_props)
template_name = "_".join(template_parts)
return [{template_name: props_dict}]
WORKFLOW_DATA = [
BazelJob("build", {"resource_class": "large"}),
BazelJob("test"),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,193 +0,0 @@
"""
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
instead of doing one offs here
Binary builds (subset, to smoke test that they'll work)
NB: If you modify this file, you need to also modify
the binary_and_smoke_tests_on_pr variable in
pytorch-ci-hud to adjust the list of whitelisted builds
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
Note:
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
- binary_linux_conda_3_6_cu90_devtoolset7_build
- binary_linux_conda_3_6_cu90_devtoolset7_test
TODO
we should test a libtorch cuda build, but they take too long
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class SmoketestJob:
def __init__(self,
template_name,
build_env_parts,
docker_image,
job_name,
is_master_only=False,
requires=None,
has_libtorch_variant=False,
extra_props=None):
self.template_name = template_name
self.build_env_parts = build_env_parts
self.docker_image = docker_image
self.job_name = job_name
self.is_master_only = is_master_only
self.requires = requires or []
self.has_libtorch_variant = has_libtorch_variant
self.extra_props = extra_props or {}
def gen_tree(self):
props_dict = {
"build_environment": " ".join(self.build_env_parts),
"name": self.job_name,
"requires": self.requires,
}
if self.docker_image:
props_dict["docker_image"] = self.docker_image
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
if self.has_libtorch_variant:
props_dict["libtorch_variant"] = "shared-with-deps"
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
SmoketestJob(
"binary_linux_build",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
is_master_only=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_mac_build",
["wheel", "3.7", "cpu"],
None,
"binary_macos_wheel_3_7_cpu_build",
is_master_only=True,
),
# This job has an average run time of 3 hours o.O
# Now only running this on master to reduce overhead
SmoketestJob(
"binary_mac_build",
["libtorch", "3.7", "cpu"],
None,
"binary_macos_libtorch_3_7_cpu_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_build",
is_master_only=False,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_build",
is_master_only=False,
),
SmoketestJob(
"binary_windows_build",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_test",
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_test",
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
),
SmoketestJob(
"binary_windows_test",
["wheel", "3.7", "cu102"],
None,
"binary_windows_wheel_3_7_cu102_test",
is_master_only=True,
requires=["binary_windows_wheel_3_7_cu102_build"],
extra_props={
"executor": "windows-with-nvidia-gpu",
},
),
SmoketestJob(
"binary_linux_test",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
is_master_only=True,
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
extra_props={
"resource_class": "gpu.medium",
"use_cuda_docker_runtime": miniutils.quote((str(1))),
},
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
is_master_only=False,
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
is_master_only=False,
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
has_libtorch_variant=True,
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,44 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
# TODO: make this generated from a matrix rather than just a static list
IMAGE_NAMES = [
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9",
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9",
"pytorch-linux-bionic-py3.6-clang9",
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
"pytorch-linux-bionic-py3.8-gcc9",
"pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7",
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4",
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7",
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
"pytorch-linux-xenial-py3-clang5-asan",
"pytorch-linux-xenial-py3.8",
"pytorch-linux-xenial-py3.6-clang7",
"pytorch-linux-xenial-py3.6-gcc4.8",
"pytorch-linux-xenial-py3.6-gcc5.4",
"pytorch-linux-xenial-py3.6-gcc7.2",
"pytorch-linux-xenial-py3.6-gcc7",
"pytorch-linux-xenial-pynightly",
"pytorch-linux-xenial-rocm3.3-py3.6",
]
def get_workflow_jobs():
"""Generates a list of docker image build definitions"""
return [
OrderedDict(
{
"docker_build_job": OrderedDict(
{"name": quote(image_name), "image_name": quote(image_name)}
)
}
)
for image_name in IMAGE_NAMES
]

View File

@ -1,103 +0,0 @@
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.versions import MultiPartVersion, CudaVersion
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_BASIC, DOCKER_IMAGE_CUDA_10_2
class GeConfigTestJob:
def __init__(self,
py_version,
gcc_version,
cuda_version,
variant_parts,
extra_requires,
use_cuda_docker=False,
build_env_override=None):
self.py_version = py_version
self.gcc_version = gcc_version
self.cuda_version = cuda_version
self.variant_parts = variant_parts
self.extra_requires = extra_requires
self.use_cuda_docker = use_cuda_docker
self.build_env_override = build_env_override
def get_all_parts(self, with_dots):
maybe_py_version = self.py_version.render_dots_or_parts(with_dots) if self.py_version else []
maybe_gcc_version = self.gcc_version.render_dots_or_parts(with_dots) if self.gcc_version else []
maybe_cuda_version = self.cuda_version.render_dots_or_parts(with_dots) if self.cuda_version else []
common_parts = [
"pytorch",
"linux",
"xenial",
] + maybe_cuda_version + maybe_py_version + maybe_gcc_version
return common_parts + self.variant_parts
def gen_tree(self):
resource_class = "gpu.medium" if self.use_cuda_docker else "large"
docker_image = DOCKER_IMAGE_CUDA_10_2 if self.use_cuda_docker else DOCKER_IMAGE_BASIC
full_name = "_".join(self.get_all_parts(False))
build_env = self.build_env_override or "-".join(self.get_all_parts(True))
props_dict = {
"name": full_name,
"build_environment": build_env,
"requires": self.extra_requires,
"resource_class": resource_class,
"docker_image": docker_image,
}
if self.use_cuda_docker:
props_dict["use_cuda_docker_runtime"] = miniutils.quote(str(1))
return [{"pytorch_linux_test": props_dict}]
WORKFLOW_DATA = [
GeConfigTestJob(
MultiPartVersion([3, 6], "py"),
MultiPartVersion([5, 4], "gcc"),
None,
["ge_config_legacy", "test"],
["pytorch_linux_xenial_py3_6_gcc5_4_build"]),
GeConfigTestJob(
MultiPartVersion([3, 6], "py"),
MultiPartVersion([5, 4], "gcc"),
None,
["ge_config_profiling", "test"],
["pytorch_linux_xenial_py3_6_gcc5_4_build"]),
GeConfigTestJob(
MultiPartVersion([3, 6], "py"),
MultiPartVersion([5, 4], "gcc"),
None,
["ge_config_simple", "test"],
["pytorch_linux_xenial_py3_6_gcc5_4_build"],
),
GeConfigTestJob(
None,
None,
CudaVersion(10, 2),
["cudnn7", "py3", "ge_config_legacy", "test"],
["pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7_build"],
use_cuda_docker=True,
# TODO Why does the build environment specify cuda10.1, while the
# job name is cuda10_2?
build_env_override="pytorch-linux-xenial-cuda10.1-cudnn7-ge_config_legacy-test"),
GeConfigTestJob(
None,
None,
CudaVersion(10, 2),
["cudnn7", "py3", "ge_config_profiling", "test"],
["pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7_build"],
use_cuda_docker=True,
# TODO Why does the build environment specify cuda10.1, while the
# job name is cuda10_2?
build_env_override="pytorch-linux-xenial-cuda10.1-cudnn7-ge_config_profiling-test"),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,71 +0,0 @@
from cimodel.data.simple.util.versions import MultiPartVersion
IOS_VERSION = MultiPartVersion([11, 2, 1])
class ArchVariant:
def __init__(self, name, is_custom=False):
self.name = name
self.is_custom = is_custom
def render(self):
extra_parts = ["custom"] if self.is_custom else []
return "_".join([self.name] + extra_parts)
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(self, ios_version, arch_variant, is_org_member_context=True, extra_props=None):
self.ios_version = ios_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self, with_version_dots):
version_parts = self.ios_version.render_dots_or_parts(with_version_dots)
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
return [
"pytorch",
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "_".join(self.gen_name_parts(False))
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"build_environment": "-".join(self.gen_name_parts(True)),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
"name": self.gen_job_name(),
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(IOS_VERSION, ArchVariant("x86_64"), is_org_member_context=False),
IOSJob(IOS_VERSION, ArchVariant("arm64")),
IOSJob(IOS_VERSION, ArchVariant("arm64", True), extra_props={"op_list": "mobilenetv2.yaml"}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,28 +0,0 @@
class MacOsJob:
def __init__(self, os_version, is_test=False):
self.os_version = os_version
self.is_test = is_test
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
phase_name = "test" if self.is_test else "build"
full_job_name = "_".join(non_phase_parts + [phase_name])
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [MacOsJob("10_13"), MacOsJob("10_13", True)]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,56 +0,0 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_ASAN, DOCKER_IMAGE_NDK
class MobileJob:
def __init__(self, docker_image, variant_parts, is_master_only=False):
self.docker_image = docker_image
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"name": full_job_name,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = [
MobileJob(DOCKER_IMAGE_ASAN, ["build"]),
MobileJob(DOCKER_IMAGE_ASAN, ["custom", "build", "static"]),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
MobileJob(DOCKER_IMAGE_NDK, ["custom", "build", "dynamic"]),
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
MobileJob(DOCKER_IMAGE_NDK, ["code", "analysis"], True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,73 +0,0 @@
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_NDK
class AndroidNightlyJob:
def __init__(self,
variant,
template_name,
extra_props=None,
with_docker=True,
requires=None,
no_build_suffix=False):
self.variant = variant
self.template_name = template_name
self.extra_props = extra_props or {}
self.with_docker = with_docker
self.requires = requires
self.no_build_suffix = no_build_suffix
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant
build_suffix = [] if self.no_build_suffix else ["build"]
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"requires": self.requires,
"filters": {"branches": {"only": "nightly"}},
}
props_dict.update(self.extra_props)
if self.with_docker:
props_dict["docker_image"] = DOCKER_IMAGE_NDK
props_dict["build_environment"] = build_env_name
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
AndroidNightlyJob(["x86_32"], "pytorch_linux_build"),
AndroidNightlyJob(["x86_64"], "pytorch_linux_build"),
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build"),
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build"),
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
with_docker=False,
requires=[
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
extra_props={"context": "org-member"},
with_docker=False,
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
no_build_suffix=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,68 +0,0 @@
import cimodel.data.simple.ios_definitions as ios_definitions
class IOSNightlyJob:
def __init__(self,
variant,
is_upload=False):
self.variant = variant
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, with_version_dots):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
common_name_pieces = [
"ios",
] + ios_definitions.IOS_VERSION.render_dots_or_parts(with_version_dots) + [
"nightly",
self.variant,
"build",
] + extra_name_suffix
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
def gen_tree(self):
extra_requires = [x.gen_job_name() for x in BUILD_CONFIGS] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
template_name = "_".join([
"binary",
"ios",
self.get_phase_name(),
])
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
WORKFLOW_DATA = BUILD_CONFIGS + [
IOSNightlyJob("binary", is_upload=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,22 +0,0 @@
NON_PR_BRANCH_LIST = [
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict

View File

@ -1,30 +0,0 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
# TOP OF .circleci/config.yml
DOCKER_IMAGE_TAG = "209062ef-ab58-422a-b295-36c4eed6e906"
def gen_docker_image_path(container_type):
return "/".join([
AWS_DOCKER_HOST,
"pytorch",
container_type + ":" + DOCKER_IMAGE_TAG,
])
DOCKER_IMAGE_BASIC = gen_docker_image_path("pytorch-linux-xenial-py3.6-gcc5.4")
DOCKER_IMAGE_CUDA_10_2 = gen_docker_image_path("pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7")
DOCKER_IMAGE_GCC7 = gen_docker_image_path("pytorch-linux-xenial-py3.6-gcc7")
def gen_mobile_docker_name(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image_path(container_type)
DOCKER_IMAGE_ASAN = gen_mobile_docker_name("asan")
DOCKER_IMAGE_NDK = gen_mobile_docker_name("android-ndk-r19c")

View File

@ -1,31 +0,0 @@
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + list(map(str, self.parts[1:]))
else:
return [self.prefix]
def render_dots(self):
return ".".join(self.prefixed_parts())
def render_dots_or_parts(self, with_dots):
if with_dots:
return [self.render_dots()]
else:
return self.prefixed_parts()
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")

View File

@ -1,142 +0,0 @@
import cimodel.data.simple.util.branch_filters
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.versions import CudaVersion
class WindowsJob:
def __init__(
self,
test_index,
vscode_spec,
cuda_version,
force_on_cpu=False,
master_only_pred=lambda job: job.vscode_spec.year != 2019,
):
self.test_index = test_index
self.vscode_spec = vscode_spec
self.cuda_version = cuda_version
self.force_on_cpu = force_on_cpu
self.master_only_pred = master_only_pred
def gen_tree(self):
base_phase = "build" if self.test_index is None else "test"
numbered_phase = (
base_phase if self.test_index is None else base_phase + str(self.test_index)
)
key_name = "_".join(["pytorch", "windows", base_phase])
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
target_arch = self.cuda_version.render_dots() if self.cuda_version else "cpu"
base_name_parts = [
"pytorch",
"windows",
self.vscode_spec.render(),
"py36",
target_arch,
]
prerequisite_jobs = []
if base_phase == "test":
prerequisite_jobs.append("_".join(base_name_parts + ["build"]))
arch_env_elements = (
["cuda" + str(self.cuda_version.major), "cudnn7"]
if self.cuda_version
else ["cpu"]
)
build_environment_string = "-".join(
["pytorch", "win"]
+ self.vscode_spec.get_elements()
+ arch_env_elements
+ ["py3"]
)
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
props_dict = {
"build_environment": build_environment_string,
"python_version": miniutils.quote("3.6"),
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
"vc_product": self.vscode_spec.get_product(),
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
"requires": prerequisite_jobs,
}
if self.master_only_pred(self):
props_dict[
"filters"
] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
if base_phase == "test":
test_name = "-".join(["pytorch", "windows", numbered_phase])
props_dict["test_name"] = test_name
if is_running_on_cuda:
props_dict["executor"] = "windows-with-nvidia-gpu"
props_dict["cuda_version"] = (
miniutils.quote(str(self.cuda_version.major))
if self.cuda_version
else "cpu"
)
props_dict["name"] = "_".join(name_parts)
return [{key_name: props_dict}]
class VcSpec:
def __init__(self, year, version_elements=None):
self.year = year
self.version_elements = version_elements or []
def get_elements(self):
return [self.prefixed_year()] + self.version_elements
def get_product(self):
return "Community" if self.year == 2019 else "BuildTools"
def dotted_version(self):
return ".".join(self.version_elements)
def prefixed_year(self):
return "vs" + str(self.year)
def render(self):
return "_".join(filter(None, [self.prefixed_year(), self.dotted_version()]))
def FalsePred(_):
return False
def TruePred(_):
return True
WORKFLOW_DATA = [
# VS2017 CUDA-10.1
WindowsJob(None, VcSpec(2017, ["14", "11"]), CudaVersion(10, 1), master_only_pred=FalsePred),
WindowsJob(1, VcSpec(2017, ["14", "11"]), CudaVersion(10, 1)),
# VS2017 no-CUDA (builds only)
WindowsJob(None, VcSpec(2017, ["14", "16"]), CudaVersion(10, 1)),
WindowsJob(None, VcSpec(2017, ["14", "16"]), None),
# VS2019 CUDA-10.1
WindowsJob(None, VcSpec(2019), CudaVersion(10, 1)),
WindowsJob(1, VcSpec(2019), CudaVersion(10, 1)),
WindowsJob(2, VcSpec(2019), CudaVersion(10, 1)),
# VS2019 CPU-only
WindowsJob(None, VcSpec(2019), None),
WindowsJob(1, VcSpec(2019), None),
WindowsJob(2, VcSpec(2019), None, master_only_pred=TruePred),
WindowsJob(1, VcSpec(2019), CudaVersion(10, 1), force_on_cpu=True),
WindowsJob(2, VcSpec(2019), CudaVersion(10, 1), force_on_cpu=True, master_only_pred=TruePred),
]
def get_windows_workflows():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,3 +1,6 @@
#!/usr/bin/env python3
from dataclasses import dataclass, field
from typing import Optional, Dict

View File

@ -1,3 +1,6 @@
#!/usr/bin/env python3
def quote(s):
return sandwich('"', s)

View File

@ -1,6 +1,7 @@
from collections import OrderedDict
#!/usr/bin/env python3
import cimodel.lib.miniutils as miniutils
from collections import OrderedDict
LIST_MARKER = "- "
@ -8,13 +9,23 @@ INDENTATION_WIDTH = 2
def is_dict(data):
return type(data) in [dict, OrderedDict]
return type(data) is dict or type(data) is OrderedDict
def is_collection(data):
return is_dict(data) or type(data) is list
# TODO can eventually drop this custom sorting
def sortkey(x):
k = x[0]
return (
k == "<<",
k != "environment",
k,
)
def render(fh, data, depth, is_list_member=False):
"""
PyYaml does not allow precise control over the quoting
@ -28,11 +39,10 @@ def render(fh, data, depth, is_list_member=False):
tuples = list(data.items())
if type(data) is not OrderedDict:
tuples.sort()
tuples.sort(key=sortkey)
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
@ -41,12 +51,14 @@ def render(fh, data, depth, is_list_member=False):
render(fh, v, depth + 1 + int(is_list_member))
# TODO Could eventually drop this cosmetic convention
if depth == 2:
fh.write("\n")
elif type(data) is list:
for v in data:
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")
fh.write(list_member_prefix + str(data) + "\n")

View File

@ -0,0 +1,86 @@
#!/usr/bin/env python3
"""
This module encapsulates dependencies on pygraphviz
"""
import colorsys
import cimodel.lib.conf_tree as conf_tree
def rgb2hex(rgb_tuple):
def to_hex(f):
return "%02x" % int(f * 255)
return "#" + "".join(map(to_hex, list(rgb_tuple)))
def handle_missing_graphviz(f):
"""
If the user has not installed pygraphviz, this causes
calls to the draw() method of the returned object to do nothing.
"""
try:
import pygraphviz # noqa: F401
return f
except ModuleNotFoundError:
class FakeGraph:
def draw(self, *args, **kwargs):
pass
return lambda _: FakeGraph()
@handle_missing_graphviz
def generate_graph(toplevel_config_node):
"""
Traverses the graph once first just to find the max depth
"""
config_list = conf_tree.dfs(toplevel_config_node)
max_depth = 0
for config in config_list:
max_depth = max(max_depth, config.get_depth())
# color the nodes using the max depth
from pygraphviz import AGraph
dot = AGraph()
def node_discovery_callback(node, sibling_index, sibling_count):
depth = node.get_depth()
sat_min, sat_max = 0.1, 0.6
sat_range = sat_max - sat_min
saturation_fraction = sibling_index / float(sibling_count - 1) if sibling_count > 1 else 1
saturation = sat_min + sat_range * saturation_fraction
# TODO Use a hash of the node label to determine the color
hue = depth / float(max_depth + 1)
rgb_tuple = colorsys.hsv_to_rgb(hue, saturation, 1)
this_node_key = node.get_node_key()
dot.add_node(
this_node_key,
label=node.get_label(),
style="filled",
# fillcolor=hex_color + ":orange",
fillcolor=rgb2hex(rgb_tuple),
penwidth=3,
color=rgb2hex(colorsys.hsv_to_rgb(hue, saturation, 0.9))
)
def child_callback(node, child):
this_node_key = node.get_node_key()
child_node_key = child.get_node_key()
dot.add_edge((this_node_key, child_node_key))
conf_tree.dfs_recurse(toplevel_config_node, lambda x: None, node_discovery_callback, child_callback)
return dot

View File

@ -1,17 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
DIFF_TOOL=meld
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
popd

View File

@ -1,24 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], '..'))
import cimodel.lib.miniyaml as miniyaml
def regurgitate(depth, use_pyyaml_formatter=False):
data = yaml.safe_load(sys.stdin)
if use_pyyaml_formatter:
output = yaml.dump(data, sort_keys=True)
sys.stdout.write(output)
else:
miniyaml.render(sys.stdout, data, depth)
if __name__ == "__main__":
regurgitate(3)

View File

@ -1,15 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=$1
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
TEMP_FILENAME=$(mktemp)
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
mv $TEMP_FILENAME $YAML_FILENAME
popd

File diff suppressed because it is too large Load Diff

View File

@ -1,19 +0,0 @@
# Docker images for Jenkins
This directory contains everything needed to build the Docker images
that are used in our CI
The Dockerfiles located in subdirectories are parameterized to
conditionally run build stages depending on build arguments passed to
`docker build`. This lets us use only a few Dockerfiles for many
images. The different configurations are identified by a freeform
string that we call a _build environment_. This string is persisted in
each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker

View File

@ -1 +0,0 @@
<manifest package="org.pytorch.deps" />

View File

@ -1,68 +0,0 @@
buildscript {
ext {
minSdkVersion = 21
targetSdkVersion = 28
compileSdkVersion = 28
buildToolsVersion = '28.0.3'
coreVersion = "1.2.0"
extJUnitVersion = "1.1.1"
runnerVersion = "1.2.0"
rulesVersion = "1.2.0"
junitVersion = "4.12"
}
repositories {
google()
mavenLocal()
mavenCentral()
jcenter()
}
dependencies {
classpath 'com.android.tools.build:gradle:3.3.2'
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
}
}
repositories {
google()
jcenter()
}
apply plugin: 'com.android.library'
android {
compileSdkVersion rootProject.compileSdkVersion
buildToolsVersion rootProject.buildToolsVersion
defaultConfig {
minSdkVersion minSdkVersion
targetSdkVersion targetSdkVersion
}
sourceSets {
main {
manifest.srcFile 'AndroidManifest.xml'
}
}
}
dependencies {
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
implementation 'com.google.code.findbugs:jsr305:3.0.1'
implementation 'com.facebook.soloader:nativeloader:0.8.0'
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion
implementation 'androidx.test.ext:junit:' + rootProject.extJUnitVersion
implementation 'androidx.test:rules:' + rootProject.rulesVersion
implementation 'androidx.test:runner:' + rootProject.runnerVersion
}

View File

@ -1,340 +0,0 @@
#!/bin/bash
set -ex
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
# TODO: Generalize
OS="ubuntu"
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *-cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *-rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
if [[ "$image" == *-trusty* ]]; then
UBUNTU_VERSION=14.04
elif [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
# TODO: This is a hack, get rid of this as soon as you get rid of the travis downloads
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/16.04/x86_64"
TRAVIS_PYTHON_VERSION=3.8
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc4.8)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=4.8
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.6-gcc5.4)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc7)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-pynightly)
TRAVIS_PYTHON_VERSION=nightly
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
CUDA_VERSION=10.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
CUDA_VERSION=10.1
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7)
UBUNTU_VERSION=16.04-rc
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=4.10.3
CMAKE_VERSION=3.7.0
NINJA_VERSION=1.9.0
;;
pytorch-linux-xenial-py3.6-clang7)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.6-clang9)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
UBUNTU_VERSION=18.04-rc
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9)
UBUNTU_VERSION=18.04-rc
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-rocm3.3-py3.6)
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=3.3
# newer cmake version required
CMAKE_VERSION=3.6.3
;;
pytorch-linux-bionic-rocm3.3-py3.6)
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=3.3
;;
esac
# Set Jenkins UID and GID if running Jenkins
if [ -n "${JENKINS:-}" ]; then
JENKINS_UID=$(id -u jenkins)
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "EC2=${EC2:-}" \
--build-arg "JENKINS=${JENKINS:-}" \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
exit 1
fi
if !(drun lsb_release -a 2>&1 | grep -qF "$UBUNTU_VERSION"); then
echo "UBUNTU_VERSION=$UBUNTU_VERSION, but:"
drun lsb_release -a
exit 1
fi
fi
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
else
echo "Please manually check nightly is OK:"
drun python --version
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
fi
if [ -n "$GCC_VERSION" ]; then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1
fi
fi
if [ -n "$CLANG_VERSION" ]; then
if !(drun clang --version 2>&1 | grep -qF "clang version $CLANG_VERSION"); then
echo "CLANG_VERSION=$CLANG_VERSION, but:"
drun clang --version
exit 1
fi
fi
if [ -n "$KATEX" ]; then
if !(drun katex --version); then
echo "KATEX=$KATEX, but:"
drun katex --version
exit 1
fi
fi

View File

@ -1,53 +0,0 @@
#!/bin/bash
set -ex
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*)
}
# If UPSTREAM_BUILD_ID is set (see trigger job), then we can
# use it to tag this build with the same ID used to tag all other
# base image builds. Also, we can try and pull the previous
# image first, to avoid rebuilding layers that haven't changed.
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${CIRCLE_WORKFLOW_ID}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
image="${registry}/pytorch/${IMAGE_NAME}"
login() {
aws ecr get-authorization-token --region us-east-1 --output text --query 'authorizationData[].authorizationToken' |
base64 -d |
cut -d: -f2 |
docker login -u AWS --password-stdin "$1"
}
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
# export EC2=1
# export JENKINS=1
# Try to pull the previous image (perhaps we can reuse some layers)
# if [ -n "${last_tag}" ]; then
# docker pull "${image}:${last_tag}" || true
# fi
# Build new image
./build.sh ${IMAGE_NAME} -t "${image}:${tag}"
docker push "${image}:${tag}"
# TODO: Get rid of duplicate tagging once ${DOCKER_TAG} becomes the default
docker tag "${image}:${tag}" "${image}:${DOCKER_TAG}"
docker push "${image}:${DOCKER_TAG}"
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read

View File

@ -1,129 +0,0 @@
#!/bin/bash
set -ex
[ -n "${ANDROID_NDK}" ]
apt-get update
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
pushd /tmp
curl -Os --retry 3 https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
popd
_ndk_dir=/opt/ndk
mkdir -p "$_ndk_dir"
unzip -qo /tmp/android*.zip -d "$_ndk_dir"
_versioned_dir=$(find "$_ndk_dir/" -mindepth 1 -maxdepth 1 -type d)
mv "$_versioned_dir"/* "$_ndk_dir"/
rmdir "$_versioned_dir"
rm -rf /tmp/*
# Install OpenJDK
# https://hub.docker.com/r/picoded/ubuntu-openjdk-8-jdk/dockerfile/
sudo apt-get update && \
apt-get install -y openjdk-8-jdk && \
apt-get install -y ant && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /var/cache/oracle-jdk8-installer;
# Fix certificate issues, found as of
# https://bugs.launchpad.net/ubuntu/+source/ca-certificates-java/+bug/983302
sudo apt-get update && \
apt-get install -y ca-certificates-java && \
apt-get clean && \
update-ca-certificates -f && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /var/cache/oracle-jdk8-installer;
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# Installing android sdk
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
_sdk_version=sdk-tools-linux-3859397.zip
_android_home=/opt/android/sdk
rm -rf $_android_home
sudo mkdir -p $_android_home
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
sudo unzip -q /tmp/$_sdk_version -d $_android_home
rm /tmp/$_sdk_version
sudo chmod -R 777 $_android_home
export ANDROID_HOME=$_android_home
export ADB_INSTALL_TIMEOUT=120
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
echo "PATH:${PATH}"
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
sudo chmod -R 777 ~/.android
yes | sdkmanager --licenses
yes | sdkmanager --update
sdkmanager \
"tools" \
"platform-tools" \
"emulator"
sdkmanager \
"build-tools;28.0.3" \
"build-tools;29.0.2"
sdkmanager \
"platforms;android-28" \
"platforms;android-29"
sdkmanager --list
# Installing Gradle
echo "GRADLE_VERSION:${GRADLE_VERSION}"
_gradle_home=/opt/gradle
sudo rm -rf $gradle_home
sudo mkdir -p $_gradle_home
wget --no-verbose --output-document=/tmp/gradle.zip \
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
rm /tmp/gradle.zip
sudo chmod -R 777 $_gradle_home
export GRADLE_HOME=$_gradle_home/gradle-$GRADLE_VERSION
alias gradle="${GRADLE_HOME}/bin/gradle"
export PATH="${GRADLE_HOME}/bin/:${PATH}"
echo "PATH:${PATH}"
gradle --version
mkdir /var/lib/jenkins/gradledeps
cp build.gradle /var/lib/jenkins/gradledeps
cp AndroidManifest.xml /var/lib/jenkins/gradledeps
pushd /var/lib/jenkins
export GRADLE_LOCAL_PROPERTIES=gradledeps/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle
popd
rm -rf /var/lib/jenkins/.gradle/daemon

View File

@ -1,75 +0,0 @@
#!/bin/bash
set -ex
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
else
cmake3="cmake=3.5*"
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
# TODO: libiomp also gets installed by conda, aka there's a conflict
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
python \
python-dev \
python-setuptools \
python-wheel \
software-properties-common \
sudo \
wget \
vim
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.15.0
if ! wget http://valgrind.org/downloads/valgrind-${VALGRIND_VERSION}.tar.bz2
then
wget https://sourceware.org/ftp/valgrind/valgrind-${VALGRIND_VERSION}.tar.bz2
fi
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j 4
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"
# TODO: THIS IS A HACK!!!
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
if dpkg -s libnccl-dev; then
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

View File

@ -1,35 +0,0 @@
#!/bin/bash
set -ex
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}
write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
write_sccache_stub clang
write_sccache_stub clang++
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
# implementation cannot find nvcc if it is setup this way, because it
# appears to search for the nvcc in PATH, and use its path to infer
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
chmod a+x /opt/cache/lib/nvcc
fi

View File

@ -1,44 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$CLANG_VERSION" ]; then
if [[ $CLANG_VERSION == 7 && $UBUNTU_VERSION == 16.04 ]]; then
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main"
elif [[ $CLANG_VERSION == 9 && $UBUNTU_VERSION == 18.04 ]]; then
sudo apt-get update
# gpg-agent is not available by default on 18.04
sudo apt-get install -y --no-install-recommends gpg-agent
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
apt-add-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-${CLANG_VERSION} main"
fi
sudo apt-get update
apt-get install -y --no-install-recommends clang-"$CLANG_VERSION"
apt-get install -y --no-install-recommends llvm-"$CLANG_VERSION"
# Install dev version of LLVM.
if [ -n "$LLVMDEV" ]; then
sudo apt-get install -y --no-install-recommends llvm-"$CLANG_VERSION"-dev
fi
# Use update-alternatives to make this version the default
# TODO: Decide if overriding gcc as well is a good idea
# update-alternatives --install /usr/bin/gcc gcc /usr/bin/clang-"$CLANG_VERSION" 50
# update-alternatives --install /usr/bin/g++ g++ /usr/bin/clang++-"$CLANG_VERSION" 50
update-alternatives --install /usr/bin/clang clang /usr/bin/clang-"$CLANG_VERSION" 50
update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-"$CLANG_VERSION" 50
# clang's packaging is a little messed up (the runtime libs aren't
# added into the linker path), so give it a little help
clang_lib=("/usr/lib/llvm-$CLANG_VERSION/lib/clang/"*"/lib/linux")
echo "$clang_lib" > /etc/ld.so.conf.d/clang.conf
ldconfig
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,16 +0,0 @@
#!/bin/bash
set -ex
[ -n "$CMAKE_VERSION" ]
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -1,96 +0,0 @@
#!/bin/bash
set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
case "$MAJOR_PYTHON_VERSION" in
2)
CONDA_FILE="Miniconda2-latest-Linux-x86_64.sh"
;;
3)
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
;;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
wget -q "${BASE_URL}/${CONDA_FILE}"
chmod +x "${CONDA_FILE}"
as_jenkins ./"${CONDA_FILE}" -b -f -p "/opt/conda"
popd
# NB: Don't do this, rely on the rpath to get it right
#echo "/opt/conda/lib" > /etc/ld.so.conf.d/conda-python.conf
#ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/conda/bin:\1"|g' -i /etc/environment
export PATH="/opt/conda/bin:$PATH"
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Track latest conda update
as_jenkins conda update -n base conda
# Install correct Python version
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
# This should be called as
# conda_install pkg1 pkg2 ... [-c channel]
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
}
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.5, but
# we want to pin to version 3.5.
if [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# DO NOT install typing if installing python-3.8, since its part of python-3.8 core packages
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
else
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
fi
if [[ "$CUDA_VERSION" == 9.2* ]]; then
conda_install magma-cuda92 -c pytorch
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install magma-cuda100 -c pytorch
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
conda_install magma-cuda101 -c pytorch
elif [[ "$CUDA_VERSION" == 10.2* ]]; then
conda_install magma-cuda102 -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages
# TODO: Why is scipy pinned
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
# scikit-learn is pinned because of
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
# only)
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.46.0 llvmlite==0.30.0
popd
fi

View File

@ -1,61 +0,0 @@
#!/bin/bash
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libhiredis-dev \
libleveldb-dev \
liblmdb-dev \
libsnappy-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
hiredis-devel \
leveldb-devel \
lmdb-devel \
snappy-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,23 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [ "$UBUNTU_VERSION" = "16.04" -a "$GCC_VERSION" = "5" ]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
else
apt-get install -y g++-$GCC_VERSION
fi
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -ex
mkdir -p /usr/local/include
cp jni.h /usr/local/include

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,30 +0,0 @@
#!/bin/bash
set -ex
llvm_url="https://github.com/llvm/llvm-project/releases/download/llvmorg-9.0.1/llvm-9.0.1.src.tar.xz"
mkdir /opt/llvm
pushd /tmp
wget --no-verbose --output-document=llvm.tar.xz "$llvm_url"
mkdir llvm
tar -xf llvm.tar.xz -C llvm --strip-components 1
rm -f llvm.tar.xz
cd llvm
mkdir build
cd build
cmake -G "Unix Makefiles" \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_INSTALL_PREFIX=/opt/llvm \
-DLLVM_TARGETS_TO_BUILD="host" \
-DLLVM_BUILD_TOOLS=OFF \
-DLLVM_BUILD_UTILS=OFF \
-DLLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN=ON \
../
make -j4
sudo make install
popd

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -ex
[ -n "$NINJA_VERSION" ]
url="https://github.com/ninja-build/ninja/releases/download/v${NINJA_VERSION}/ninja-linux.zip"
pushd /tmp
wget --no-verbose --output-document=ninja-linux.zip "$url"
unzip ninja-linux.zip -d /usr/local/bin
rm -f ninja-linux.zip
popd

View File

@ -1,56 +0,0 @@
#!/bin/bash
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
# Ubuntu 14.04 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we install that here if on 14.04
# Ubuntu 14.04 also has cmake 2.8.12 as the default option, so we will
# install cmake3 here and use cmake3.
apt-get update
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
apt-get install -y --no-install-recommends cmake3
install_protobuf_26
else
apt-get install -y --no-install-recommends \
libprotobuf-dev \
protobuf-compiler
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Centos7 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we always install install that here
install_protobuf_26
}
# Install base packages depending on the base OS
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,89 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y wget
apt-get install -y libopenblas-dev
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
DEB_ROCM_REPO=http://repo.radeon.com/rocm/apt/${ROCM_VERSION}
# Add rocm repository
wget -qO - $DEB_ROCM_REPO/rocm.gpg.key | apt-key add -
echo "deb [arch=amd64] $DEB_ROCM_REPO xenial main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocfft \
miopen-hip \
rocblas \
hipsparse \
rocrand \
hipcub \
rocthrust \
rccl \
rocprofiler-dev \
roctracer-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=http://repo.radeon.com/rocm/yum/rpm/" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=0" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocfft \
miopen-hip \
rocblas \
hipsparse \
rocrand \
rccl \
hipcub \
rocthrust \
rocprofiler-dev \
roctracer-dev
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,14 +0,0 @@
apt-get update
apt-get install -y sudo wget libboost-dev libboost-test-dev libboost-program-options-dev libboost-filesystem-dev libboost-thread-dev libevent-dev automake libtool flex bison pkg-config g++ libssl-dev
wget https://www-us.apache.org/dist/thrift/0.12.0/thrift-0.12.0.tar.gz
tar -xvf thrift-0.12.0.tar.gz
cd thrift-0.12.0
for file in ./compiler/cpp/Makefile*; do
sed -i 's/\-Werror//' $file
done
./bootstrap.sh
./configure --without-php --without-java --without-python --without-nodejs --without-go --without-ruby
sudo make
sudo make install
cd ..
rm thrift-0.12.0.tar.gz

View File

@ -1,97 +0,0 @@
#!/bin/bash
set -ex
as_jenkins() {
# NB: Preserve PATH and LD_LIBRARY_PATH changes
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
mkdir -p /opt/python
chown jenkins:jenkins /opt/python
# Download Python binary from Travis
pushd tmp
as_jenkins wget --quiet ${TRAVIS_DL_URL_PREFIX}/python-$TRAVIS_PYTHON_VERSION.tar.bz2
# NB: The tarball also comes with /home/travis virtualenv that we
# don't care about. (Maybe we should, but we've worked around the
# "how do I install to python" issue by making this entire directory
# user-writable "lol")
# NB: Relative ordering of opt/python and flags matters
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
popd
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
python --version
pip --version
# Install pip from source.
# The python-pip package on Ubuntu Trusty is old
# and upon install numpy doesn't use the binary
# distribution, and fails to compile it from source.
pushd tmp
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
as_jenkins tar zxf pip-9.0.1.tar.gz
pushd pip-9.0.1
as_jenkins python setup.py install
popd
rm -rf pip-9.0.1*
popd
# Install pip packages
as_jenkins pip install --upgrade pip
pip --version
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
# These two packages have broken Cythonizations uploaded
# to PyPi, see:
#
# - https://github.com/numpy/numpy/issues/10500
# - https://github.com/yaml/pyyaml/issues/117
#
# Furthermore, the released version of Cython does not
# have these issues fixed.
#
# While we are waiting on fixes for these, we build
# from Git for now. Feel free to delete this conditional
# branch if things start working again (you may need
# to do this if these packages regress on Git HEAD.)
as_jenkins pip install git+https://github.com/cython/cython.git
as_jenkins pip install git+https://github.com/numpy/numpy.git
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
else
as_jenkins pip install numpy pyyaml
fi
as_jenkins pip install \
future \
hypothesis \
protobuf \
pytest \
pillow \
typing
as_jenkins pip install mkl mkl-devel
# SciPy does not support Python 3.7 or Python 2.7.9
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
fi
# Install psutil for dataloader tests
as_jenkins pip install psutil
# Install dill for serialization tests
as_jenkins pip install "dill>=0.3.1"
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
# Mirror jenkins user in container
echo "jenkins:x:1014:1014::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1014:" >> /etc/group
# Create $HOME
mkdir -p /var/lib/jenkins
chown jenkins:jenkins /var/lib/jenkins
mkdir -p /var/lib/jenkins/.ccache
chown jenkins:jenkins /var/lib/jenkins/.ccache
# Allow writing to /usr/local (for make install)
chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins

View File

@ -1,57 +0,0 @@
#!/bin/bash
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libopencv-dev \
libavcodec-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
opencv-devel \
ffmpeg-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

File diff suppressed because it is too large Load Diff

View File

@ -1,94 +0,0 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CUDA_NVCC_EXECUTABLE=/opt/cache/lib/nvcc
# Add jni.h for java host build
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
# Install LLVM dev version
ADD ./common/install_llvm.sh install_llvm.sh
RUN bash ./install_llvm.sh
USER jenkins
CMD ["bash"]

View File

@ -1 +0,0 @@
*.sh

View File

@ -1,86 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV HIP_PLATFORM hcc
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1,119 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install thrift.
ARG THRIFT
ADD ./common/install_thrift.sh install_thrift.sh
RUN if [ -n "${THRIFT}" ]; then bash ./install_thrift.sh; fi
RUN rm install_thrift.sh
ENV INSTALLED_THRIFT ${THRIFT}
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ARG TRAVIS_DL_URL_PREFIX
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install Android NDK
ARG ANDROID
ARG ANDROID_NDK
ARG GRADLE_VERSION
ADD ./common/install_android.sh install_android.sh
ADD ./android/AndroidManifest.xml AndroidManifest.xml
ADD ./android/build.gradle build.gradle
RUN if [ -n "${ANDROID}" ]; then bash ./install_android.sh; fi
RUN rm install_android.sh
RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Add jni.h for java host build
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version
ADD ./common/install_llvm.sh install_llvm.sh
RUN bash ./install_llvm.sh
USER jenkins
CMD ["bash"]

View File

@ -1,13 +0,0 @@
FROM ubuntu:16.04
RUN apt-get update && apt-get install -y python-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
ADD requirements.txt /requirements.txt
RUN pip install -r /requirements.txt
ADD gc.py /usr/bin/gc.py
ADD docker_hub.py /usr/bin/docker_hub.py
ENTRYPOINT ["/usr/bin/gc.py"]

View File

@ -1,125 +0,0 @@
#!/usr/bin/env python
from collections import namedtuple
import boto3
import requests
import os
IMAGE_INFO = namedtuple(
"IMAGE_INFO", ("repo", "tag", "size", "last_updated_at", "last_updated_by")
)
def build_access_token(username, passwordtr):
r = requests.post(
"https://hub.docker.com/v2/users/login/",
data={"username": username, "password": password},
)
r.raise_for_status()
token = r.json().get("token")
return {"Authorization": "JWT " + token}
def list_repos(user, token):
r = requests.get("https://hub.docker.com/v2/repositories/" + user, headers=token)
r.raise_for_status()
ret = sorted(
repo["user"] + "/" + repo["name"] for repo in r.json().get("results", [])
)
if ret:
print("repos found:")
print("".join("\n\t" + r for r in ret))
return ret
def list_tags(repo, token):
r = requests.get(
"https://hub.docker.com/v2/repositories/" + repo + "/tags", headers=token
)
r.raise_for_status()
return [
IMAGE_INFO(
repo=repo,
tag=t["name"],
size=t["full_size"],
last_updated_at=t["last_updated"],
last_updated_by=t["last_updater_username"],
)
for t in r.json().get("results", [])
]
def save_to_s3(tags):
table_content = ""
client = boto3.client("s3")
for t in tags:
table_content += (
"<tr><td>{repo}</td><td>{tag}</td><td>{size}</td>"
"<td>{last_updated_at}</td><td>{last_updated_by}</td></tr>"
).format(
repo=t.repo,
tag=t.tag,
size=t.size,
last_updated_at=t.last_updated_at,
last_updated_by=t.last_updated_by,
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css"
href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>
<script type="text/javascript" charset="utf8"
src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title> docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<caption>Docker images on docker hub</caption>
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">size</th>
<th scope="col">last_updated_at</th>
<th scope="col">last_updated_by</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );py
</script>
</html>
""".format(
table_content=table_content
)
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="docker_hub.html",
Body=html_body,
ContentType="text/html",
)
if __name__ == "__main__":
username = os.environ.get("DOCKER_HUB_USERNAME")
password = os.environ.get("DOCKER_HUB_PASSWORD")
token = build_access_token(username, password)
tags = []
for repo in list_repos("pytorch", token):
tags.extend(list_tags(repo, token))
save_to_s3(tags)

View File

@ -1,214 +0,0 @@
#!/usr/bin/env python
import argparse
import datetime
import boto3
import pytz
import sys
import re
def save_to_s3(project, data):
table_content = ""
client = boto3.client("s3")
for repo, tag, window, age, pushed in data:
table_content += "<tr><td>{repo}</td><td>{tag}</td><td>{window}</td><td>{age}</td><td>{pushed}</td></tr>".format(
repo=repo, tag=tag, window=window, age=age, pushed=pushed
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
<script type="text/javascript" charset="utf8" src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title>{project} nightly and permanent docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">keep window</th>
<th scope="col">age</th>
<th scope="col">pushed at</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );
</script>
</html>
""".format(
project=project, table_content=table_content
)
# for pytorch, file can be found at
# http://ossci-docker.s3-website.us-east-1.amazonaws.com/pytorch.html
# and later one we can config docker.pytorch.org to point to the location
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="{project}.html".format(project=project),
Body=html_body,
ContentType="text/html",
)
def repos(client):
paginator = client.get_paginator("describe_repositories")
pages = paginator.paginate(registryId="308535385114")
for page in pages:
for repo in page["repositories"]:
yield repo
def images(client, repository):
paginator = client.get_paginator("describe_images")
pages = paginator.paginate(
registryId="308535385114", repositoryName=repository["repositoryName"]
)
for page in pages:
for image in page["imageDetails"]:
yield image
parser = argparse.ArgumentParser(description="Delete old Docker tags from registry")
parser.add_argument(
"--dry-run", action="store_true", help="Dry run; print tags that would be deleted"
)
parser.add_argument(
"--keep-stable-days",
type=int,
default=14,
help="Days of stable Docker tags to keep (non per-build images)",
)
parser.add_argument(
"--keep-unstable-days",
type=int,
default=1,
help="Days of unstable Docker tags to keep (per-build images)",
)
parser.add_argument(
"--filter-prefix",
type=str,
default="",
help="Only run cleanup for repositories with this prefix",
)
parser.add_argument(
"--ignore-tags",
type=str,
default="",
help="Never cleanup these tags (comma separated)",
)
args = parser.parse_args()
if not args.ignore_tags or not args.filter_prefix:
print(
"""
Missing required arguments --ignore-tags and --filter-prefix
You must specify --ignore-tags and --filter-prefix to avoid accidentally
pruning a stable Docker tag which is being actively used. This will
make you VERY SAD. So pay attention.
First, which filter-prefix do you want? The list of valid prefixes
is in jobs/private.groovy under the 'docker-registry-cleanup' job.
You probably want either pytorch or caffe2.
Second, which ignore-tags do you want? It should be whatever the most
up-to-date DockerVersion for the repository in question is. Follow
the imports of jobs/pytorch.groovy to find them.
"""
)
sys.exit(1)
client = boto3.client("ecr", region_name="us-east-1")
stable_window = datetime.timedelta(days=args.keep_stable_days)
unstable_window = datetime.timedelta(days=args.keep_unstable_days)
now = datetime.datetime.now(pytz.UTC)
ignore_tags = args.ignore_tags.split(",")
def chunks(chunkable, n):
""" Yield successive n-sized chunks from l.
"""
for i in range(0, len(chunkable), n):
yield chunkable[i : i + n]
SHA_PATTERN = re.compile(r'^[0-9a-f]{40}$')
def looks_like_git_sha(tag):
"""Returns a boolean to check if a tag looks like a git sha
For reference a sha1 is 40 characters with only 0-9a-f and contains no
"-" characters
"""
return re.match(SHA_PATTERN, tag) is not None
stable_window_tags = []
for repo in repos(client):
repositoryName = repo["repositoryName"]
if not repositoryName.startswith(args.filter_prefix):
continue
# Keep list of image digests to delete for this repository
digest_to_delete = []
print(repositoryName)
for image in images(client, repo):
tags = image.get("imageTags")
if not isinstance(tags, (list,)) or len(tags) == 0:
continue
tag = tags[0]
created = image["imagePushedAt"]
age = now - created
if any([
looks_like_git_sha(tag),
tag.isdigit(),
tag.count("-") == 4, # TODO: Remove, this no longer applies as tags are now built using a SHA1
tag in ignore_tags]):
window = stable_window
if tag in ignore_tags:
stable_window_tags.append((repositoryName, tag, "", age, created))
elif age < window:
stable_window_tags.append((repositoryName, tag, window, age, created))
else:
window = unstable_window
if tag in ignore_tags:
print("Ignoring tag {}:{} (age: {})".format(repositoryName, tag, age))
continue
if age < window:
print("Not deleting manifest for tag {}:{} (age: {})".format(repositoryName, tag, age))
continue
if args.dry_run:
print("(dry run) Deleting manifest for tag {}:{} (age: {})".format(repositoryName, tag, age))
else:
print("Deleting manifest for tag{}:{} (age: {})".format(repositoryName, tag, age))
digest_to_delete.append(image["imageDigest"])
# Issue batch delete for all images to delete for this repository
# Note that as of 2018-07-25, the maximum number of images you can
# delete in a single batch is 100, so chunk our list into batches of
# 100
for c in chunks(digest_to_delete, 100):
client.batch_delete_image(
registryId="308535385114",
repositoryName=repositoryName,
imageIds=[{"imageDigest": digest} for digest in c],
)
save_to_s3(args.filter_prefix, stable_window_tags)

View File

@ -1,3 +0,0 @@
boto3
pytz
requests

View File

@ -6,24 +6,13 @@ Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import OrderedDict, namedtuple
import shutil
from collections import namedtuple, OrderedDict
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.simple.android_definitions
import cimodel.data.simple.bazel_definitions
import cimodel.data.simple.binary_smoketest
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.ge_config_tests
import cimodel.data.simple.ios_definitions
import cimodel.data.simple.macos_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_android
import cimodel.data.simple.nightly_ios
import cimodel.data.windows_build_definitions as windows_build_definitions
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
@ -32,7 +21,6 @@ class File(object):
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
@ -41,7 +29,7 @@ class File(object):
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
class FunctionGen(namedtuple('FunctionGen', 'function depth')):
__slots__ = ()
@ -51,14 +39,15 @@ class Treegen(FunctionGen):
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
build_dict = OrderedDict()
self.function(build_dict)
miniyaml.render(output_filehandle, build_dict, self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
@ -68,6 +57,7 @@ def horizontal_rule():
class Header(object):
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
@ -81,81 +71,49 @@ class Header(object):
output_filehandle.write(line + "\n")
def gen_build_workflows_tree():
build_workflows_functions = [
pytorch_build_definitions.get_workflow_jobs,
cimodel.data.simple.macos_definitions.get_workflow_jobs,
cimodel.data.simple.android_definitions.get_workflow_jobs,
cimodel.data.simple.ios_definitions.get_workflow_jobs,
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.ge_config_tests.get_workflow_jobs,
cimodel.data.simple.bazel_definitions.get_workflow_jobs,
caffe2_build_definitions.get_workflow_jobs,
cimodel.data.simple.binary_smoketest.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.nightly_android.get_workflow_jobs,
windows_build_definitions.get_windows_workflows,
]
binary_build_functions = [
binary_build_definitions.get_binary_build_jobs,
binary_build_definitions.get_nightly_tests,
binary_build_definitions.get_nightly_uploads,
binary_build_definitions.get_post_upload_jobs,
binary_build_definitions.get_binary_smoke_test_jobs,
]
docker_builder_functions = [
cimodel.data.simple.docker_definitions.get_workflow_jobs
]
return {
"workflows": {
"binary_builds": {
"when": r"<< pipeline.parameters.run_binary_tests >>",
"jobs": [f() for f in binary_build_functions],
},
"docker_build": OrderedDict(
{
"triggers": [
{
"schedule": {
"cron": miniutils.quote("0 15 * * 0"),
"filters": {"branches": {"only": ["master"]}},
}
}
],
"jobs": [f() for f in docker_builder_functions],
}
),
"build": {"jobs": [f() for f in build_workflows_functions]},
}
}
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
File("header-section.yml"),
File("commands.yml"),
File("linux-build-defaults.yml"),
File("macos-build-defaults.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/caffe2-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
File("build-parameters/promote-build-params.yml"),
Header("Job specs"),
File("job-specs/pytorch-job-specs.yml"),
File("job-specs/caffe2-job-specs.yml"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/job-specs-promote.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("workflows/workflows-ecr-gc.yml"),
File("workflows/workflows-promote.yml"),
File("linux-binary-build-defaults.yml"),
File("macos-binary-build-defaults.yml"),
File("nightly-build-smoke-tests-defaults.yml"),
Header("Job specifications job specs"),
Treegen(pytorch_build_definitions.add_build_env_defs, 0),
File("job-specs-setup.yml"),
File("job-specs-custom.yml"),
Treegen(caffe2_build_definitions.add_caffe2_builds, 1),
File("binary_update_htmls.yml"),
Header("Binary build specs individual job specifications"),
Treegen(binary_build_definitions.add_binary_build_specs, 1),
Header(
"Binary build tests", [
"These are the smoke tests run right after the build, before the upload.",
"If these fail, the upload doesn't happen."
]
),
Treegen(binary_build_definitions.add_binary_build_tests, 1),
File("binary-build-tests.yml"),
Header("Binary build uploads"),
Treegen(binary_build_definitions.add_binary_build_uploads, 1),
Header("Smoke test specs individual job specifications"),
Treegen(binary_build_definitions.add_smoke_test_specs, 1),
File("workflows.yml"),
Listgen(pytorch_build_definitions.get_workflow_list, 3),
File("workflows-pytorch-macos-builds.yml"),
Listgen(caffe2_build_definitions.get_caffe2_workflows, 3),
File("workflows-binary-builds-smoke-subset.yml"),
Header("Daily smoke test trigger"),
Treegen(binary_build_definitions.add_binary_smoke_test_jobs, 1),
Header("Daily binary build trigger"),
Treegen(binary_build_definitions.add_binary_build_jobs, 1),
Header("Nightly tests"),
Listgen(binary_build_definitions.get_nightly_tests, 3),
File("workflows-nightly-uploads-header.yml"),
Listgen(binary_build_definitions.get_nightly_uploads, 3),
File("workflows-s3-html.yml"),
]

View File

@ -1,20 +1,9 @@
#!/bin/bash
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
rm -rf /c/w
ln -s "/c/Users/circleci/project" /c/w
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
@ -24,17 +13,11 @@ else
fi
# It is very important that this stays in sync with binary_populate_env.sh
if [[ "$OSTYPE" == "msys" ]]; then
# We need to make the paths as short as possible on Windows
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
# "smoke" binary build on PRs
@ -50,14 +33,16 @@ else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive
git submodule update --init --recursive --quiet
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
git fetch origin
git reset origin/master --hard
echo "Using builder from "
git --no-pager log --max-count 1
popd

View File

@ -31,9 +31,9 @@ fi
conda_sh="$workdir/install_miniconda.sh"
if [[ "$(uname)" == Darwin ]]; then
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
else
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
fi
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"

View File

@ -1,42 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
export TCLLIBPATH="/usr/local/lib"
# Install conda
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
cat ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
#store the binary
cd ${WORKSPACE}
DEST_DIR=${WORKSPACE}/ios
mkdir -p ${DEST_DIR}
cp -R ${PROJ_ROOT}/build_ios/install ${DEST_DIR}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
PROJ_ROOT=/Users/distiller/project
cd ${PROJ_ROOT}/ios/TestApp
# install fastlane
sudo gem install bundler && bundle install
# install certificates
echo "${IOS_CERT_KEY}" >> cert.txt
base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_cert
# install the provisioning profile
PROFILE=TestApp_CI.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
echo "${IOS_SIGN_KEY}" >> cert.txt
base64 --decode cert.txt -o ${PROFILE}
rm cert.txt
# run the ruby build script
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
PROFILE=TestApp_CI
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -1,44 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
ARTIFACTS_DIR=${WORKSPACE}/ios
ls ${ARTIFACTS_DIR}
ZIP_DIR=${WORKSPACE}/zip
mkdir -p ${ZIP_DIR}/install/lib
mkdir -p ${ZIP_DIR}/src
# copy header files
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
# build a FAT bianry
cd ${ZIP_DIR}/install/lib
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
for lib in ${target_libs[*]}
do
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
libs=("${ARTIFACTS_DIR}/x86_64/lib/${lib}" "${ARTIFACTS_DIR}/arm64/lib/${lib}")
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
fi
done
lipo -i ${ZIP_DIR}/install/lib/*.a
# copy the umbrella header and license
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
# zip the library
ZIPFILE=libtorch_ios_nightly_build.zip
cd ${ZIP_DIR}
#for testing
touch version.txt
echo $(date +%s) > version.txt
zip -r ${ZIPFILE} install src version.txt LICENSE
# upload to aws
brew install awscli
set +x
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
set +x
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read

View File

@ -9,15 +9,11 @@ set -eux -o pipefail
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
elif [[ "$DESIRED_PYTHON" == 2.7mu ]]; then
export PATH="/opt/python/cp27-cp27mu/bin:\$PATH"
else
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
# Prior to Python 3.8 paths were suffixed with an 'm'
if [[ -d "\${python_path}/bin" ]]; then
export PATH="\${python_path}/bin:\$PATH"
elif [[ -d "\${python_path}m/bin" ]]; then
export PATH="\${python_path}m/bin:\$PATH"
fi
export PATH="/opt/python/cp\$python_nodot-cp\${python_nodot}m/bin:\$PATH"
fi
# Install the package
@ -29,12 +25,9 @@ fi
pkg="/final_pkgs/\$(ls /final_pkgs)"
if [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "\$pkg" --offline
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -y cpuonly -c pytorch
fi
retry conda install -yq future numpy protobuf six
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
# DESIRED_CUDA is in format cu90 or cu102
# DESIRED_CUDA is in format cu90 or cu100
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
@ -42,19 +35,13 @@ if [[ "$PACKAGE_TYPE" == conda ]]; then
fi
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
fi
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
else
pip install "\$pkg"
retry pip install -q future numpy protobuf six
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"
unzip "\$pkg" -d /tmp
cd /tmp/libtorch
fi
# Test the package
/builder/check_binary.sh
# =================== The above code will be executed inside Docker container ===================
EOL
echo

View File

@ -5,6 +5,15 @@ set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/home/circleci/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /home/circleci/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
@ -12,37 +21,20 @@ declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
set -eux -o pipefail
export PATH="$MINICONDA_ROOT/bin:$PATH"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
BACKUP_BUCKET="s3://pytorch-backup"
retry pip install -q awscli
# Upload the package to the final location
pushd /home/circleci/project/final_pkgs
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
BACKUP_DIR="conda/${subdir}"
retry timeout 30 /home/circleci/project/login_to_anaconda.sh
anaconda upload "$(ls)" -u pytorch --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
fi
if [[ -n "${CIRCLE_TAG:-}" ]]; then
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
retry aws s3 cp --recursive . "$s3_dir"
fi

View File

@ -5,30 +5,26 @@ source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
pkg="$workdir/final_pkgs/$(ls $workdir/final_pkgs)"
# Don't test libtorch
# TODO we should test libtorch
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
exit 0
fi
# Create a new test env
# TODO cut all this out into a separate test job and have an entirely different
# miniconda
if [[ "$PACKAGE_TYPE" != libtorch ]]; then
source deactivate || true
conda create -qyn test python="$DESIRED_PYTHON"
source activate test >/dev/null
fi
source deactivate || true
conda create -qyn test python="$DESIRED_PYTHON"
source activate test >/dev/null
# Install the package
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="$(ls $workdir/final_pkgs/*-latest.zip)"
unzip "$pkg" -d /tmp
cd /tmp/libtorch
elif [[ "$PACKAGE_TYPE" == conda ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "$pkg" --offline
else
pip install "$pkg" --no-index --no-dependencies -v
fi
# Test
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
$workdir/builder/check_binary.sh
else
pushd "$workdir/pytorch"
$workdir/builder/run_tests.sh "$PACKAGE_TYPE" "$DESIRED_PYTHON" "$DESIRED_CUDA"
fi
pushd "$workdir/pytorch"
$workdir/builder/run_tests.sh "$PACKAGE_TYPE" "$DESIRED_PYTHON" "$DESIRED_CUDA"

View File

@ -4,6 +4,15 @@ set -eu -o pipefail
set +x
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/Users/distiller/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /Users/distiller/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
@ -13,36 +22,19 @@ set -eux -o pipefail
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
BACKUP_BUCKET="s3://pytorch-backup"
retry pip install -q awscli
pushd "$workdir/final_pkgs"
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
BACKUP_DIR="conda/${subdir}"
retry /Users/distiller/project/login_to_anaconda.sh
retry anaconda upload "$(ls)" -u pytorch-nightly --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
fi
if [[ -n "${CIRCLE_TAG:-}" ]]; then
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
retry aws s3 cp --recursive . "$s3_dir"
fi

View File

@ -2,31 +2,11 @@
set -eux -o pipefail
export TZ=UTC
tagged_version() {
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" ]]; then
GIT_DESCRIBE="git --git-dir ${workdir}/p/.git describe"
else
GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
fi
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
${GIT_DESCRIBE} --tags
else
return 1
fi
}
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
@ -43,76 +23,42 @@ configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export DESIRED_DEVTOOLSET=""
export LIBTORCH_CONFIG="${configs[3]:-}"
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
export DEBUG=1
fi
else
export DESIRED_DEVTOOLSET="${configs[3]:-}"
fi
export DESIRED_DEVTOOLSET="${configs[3]:-}"
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
export BUILD_PYTHONLESS=1
fi
# Pick docker image
export DOCKER_IMAGE=${DOCKER_IMAGE:-}
if [[ -z "$DOCKER_IMAGE" ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="pytorch/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="pytorch/manylinux-cuda100"
else
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
fi
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="soumith/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="soumith/manylinux-cuda100"
else
export DOCKER_IMAGE="soumith/manylinux-cuda${DESIRED_CUDA:2}"
fi
# Upload to parallel folder for gcc abis
# All nightlies used to be devtoolset3, then devtoolset7 was added as a build
# option, so the upload was redirected to nightly/devtoolset7 to avoid
# conflicts with other binaries (there shouldn't be any conflicts). Now we are
# making devtoolset7 the default.
if [[ "$DESIRED_DEVTOOLSET" == 'devtoolset7' || "$(uname)" == 'Darwin' ]]; then
export PIP_UPLOAD_FOLDER='nightly/'
else
# On linux machines, this shouldn't actually be called anymore. This is just
# here for extra safety.
export PIP_UPLOAD_FOLDER='nightly/devtoolset3/'
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.6.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
if tagged_version >/dev/null; then
# Switch upload folder to 'test/' if we are on a tag
PIP_UPLOAD_FOLDER='test/'
# Grab git tag, remove prefixed v and remove everything after -
# Used to clean up tags that are for release candidates like v1.6.0-rc1
# Turns tag v1.6.0-rc1 -> v1.6.0
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
fi
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
if [[ "$(uname)" == 'Darwin' ]]; then
export PYTORCH_BUILD_VERSION="1.2.0.dev$DATE"
else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
export PYTORCH_BUILD_VERSION="1.2.0.dev$DATE+$DESIRED_CUDA"
fi
export PYTORCH_BUILD_NUMBER=1
JAVA_HOME=
BUILD_JNI=OFF
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
break
fi
done
if [ -z "$JAVA_HOME" ]; then
echo "Did not find jni.h"
fi
fi
cat >>"$envfile" <<EOL
# =================== The following code will be executed inside Docker container ===================
export TZ=UTC
@ -124,36 +70,24 @@ export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
export DEBUG="${DEBUG:-}"
fi
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.6.0.dev
export NIGHTLIES_DATE_PREAMBLE=1.2.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
# TODO: We don't need this anymore IIUC
export TORCH_PACKAGE_NAME='torch'
export TORCH_PACKAGE_NAME='torch-nightly'
export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"

View File

@ -16,12 +16,31 @@ set -eux -o pipefail
# Expect actual code to be written to this file
chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --runtime=nvidia -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run -t -d "${DOCKER_IMAGE}")
fi
# Copy the envfile and script with all the code to run into the docker.
docker cp /home/circleci/project/. "$id:/circleci_stuff"
# Copy built packages into the docker to test. This should only exist on the
# binary test jobs. The package should've been created from a binary build job,
# whhich persisted the package to a CircleCI workspace, which this job then
# copies into a GPU enabled docker for testing
if [[ -d "/home/circleci/project/final_pkgs" ]]; then
docker cp /home/circleci/project/final_pkgs "$id:/final_pkgs"
fi
# Copy the needed repos into the docker. These do not exist in the smoke test
# jobs, since the smoke test jobs do not need the Pytorch source code.
if [[ -d "$PYTORCH_ROOT" ]]; then
docker cp "$PYTORCH_ROOT" "$id:/pytorch"
fi
if [[ -d "$BUILDER_ROOT" ]]; then
docker cp "$BUILDER_ROOT" "$id:/builder"
fi
# Execute the test script that was populated by an earlier section

View File

@ -1,41 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/c/w/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache-windows
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
export VC_YEAR=2017
else
export VC_YEAR=2019
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
if [[ "$CIRCLECI" == 'true' && -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
echo "Free space on filesystem before build:"
df -h
pushd "$BUILDER_ROOT"
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
./windows/internal/build_conda.bat
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
./windows/internal/build_wheels.bat
fi
echo "Free space on filesystem after build:"
df -h

View File

@ -1,19 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/c/w/env"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2017
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
export VC_YEAR=2017
else
export VC_YEAR=2019
fi
pushd "$BUILDER_ROOT"
./windows/internal/smoke_test.bat
popd

View File

@ -1,47 +0,0 @@
#!/bin/bash
set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
source "/env"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly/}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
BACKUP_BUCKET="s3://pytorch-backup"
retry pip install -q awscli
pushd /root/workspace/final_pkgs
# Upload the package to the final location
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
BACKUP_DIR="conda/${subdir}"
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
else
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
fi
if [[ -n "${CIRCLE_TAG:-}" ]]; then
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
retry aws s3 cp --recursive . "$s3_dir"
fi

View File

@ -1,85 +0,0 @@
#!/usr/bin/env bash
set -eux -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
# Must be in sync with GRADLE_VERSION in docker image for android
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
BUILD_ANDROID_INCLUDE_DIR_x86_64=~/workspace/build_android_install_x86_64/install/include
BUILD_ANDROID_LIB_DIR_x86_64=~/workspace/build_android_install_x86_64/install/lib
BUILD_ANDROID_INCLUDE_DIR_arm_v7a=~/workspace/build_android_install_arm_v7a/install/include
BUILD_ANDROID_LIB_DIR_arm_v7a=~/workspace/build_android_install_arm_v7a/install/lib
BUILD_ANDROID_INCLUDE_DIR_arm_v8a=~/workspace/build_android_install_arm_v8a/install/include
BUILD_ANDROID_LIB_DIR_arm_v8a=~/workspace/build_android_install_arm_v8a/install/lib
PYTORCH_ANDROID_SRC_MAIN_DIR=~/workspace/android/pytorch_android/src/main
JNI_INCLUDE_DIR=${PYTORCH_ANDROID_SRC_MAIN_DIR}/cpp/libtorch_include
mkdir -p $JNI_INCLUDE_DIR
JNI_LIBS_DIR=${PYTORCH_ANDROID_SRC_MAIN_DIR}/jniLibs
mkdir -p $JNI_LIBS_DIR
ln -s ${BUILD_ANDROID_INCLUDE_DIR_x86} ${JNI_INCLUDE_DIR}/x86
ln -s ${BUILD_ANDROID_LIB_DIR_x86} ${JNI_LIBS_DIR}/x86
if [[ "${BUILD_ENVIRONMENT}" != *-gradle-build-only-x86_32* ]]; then
ln -s ${BUILD_ANDROID_INCLUDE_DIR_x86_64} ${JNI_INCLUDE_DIR}/x86_64
ln -s ${BUILD_ANDROID_LIB_DIR_x86_64} ${JNI_LIBS_DIR}/x86_64
ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v7a} ${JNI_INCLUDE_DIR}/armeabi-v7a
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v7a} ${JNI_LIBS_DIR}/armeabi-v7a
ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
fi
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
fi
if [ -n "{GRADLE_OFFLINE:-}" ]; then
GRADLE_PARAMS+=" --offline"
fi
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
env
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
$GRADLE_PATH $GRADLE_PARAMS
find . -type f -name "*.a" -exec ls -lh {} \;
while IFS= read -r -d '' file
do
echo
echo "$file"
ls -lah "$file"
zipinfo -l "$file"
done < <(find . -type f -name '*.aar' -print0)
find . -type f -name *aar -print | xargs tar cfvz ~/workspace/android/artifacts.tgz

View File

@ -53,10 +53,11 @@ sudo apt-get -y install doxygen
# Generate ATen files
pushd "${pt_checkout}"
pip install -r requirements.txt
time python aten/src/ATen/gen.py \
time GEN_TO_SOURCE=1 python aten/src/ATen/gen.py \
-s aten/src/ATen \
-d build/aten/src/ATen \
aten/src/ATen/Declarations.cwrap \
aten/src/THNN/generic/THNN.h \
aten/src/THCUNN/generic/THCUNN.h \
aten/src/ATen/nn.yaml \
aten/src/ATen/native/native_functions.yaml
@ -72,10 +73,10 @@ time python tools/setup_helpers/generate_code.py \
# Build the docs
pushd docs/cpp
pip install breathe==4.13.0 bs4 lxml six
pip install breathe==4.11.1 bs4 lxml six
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
pip install exhale>=0.2.1
pip install sphinx==2.4.4
pip install sphinx==1.8.5
# Uncomment once it is fixed
# pip install -r requirements.txt
time make VERBOSE=1 html -j

View File

@ -1,44 +0,0 @@
#!/usr/bin/env bash
# DO NOT ADD 'set -x' not to reveal CircleCI secret context environment variables
set -eu -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
ls -la ~/workspace
GRADLE_PROPERTIES=~/workspace/android/gradle.properties
IS_SNAPSHOT="$(grep 'VERSION_NAME=[0-9\.]\+-SNAPSHOT' "$GRADLE_PROPERTIES")"
echo "IS_SNAPSHOT:$IS_SNAPSHOT"
if [ -z "$IS_SNAPSHOT" ]; then
echo "Error: version is not snapshot."
elif [ -z "$SONATYPE_NEXUS_USERNAME" ]; then
echo "Error: missing env variable SONATYPE_NEXUS_USERNAME."
elif [ -z "$SONATYPE_NEXUS_PASSWORD" ]; then
echo "Error: missing env variable SONATYPE_NEXUS_PASSWORD."
elif [ -z "$ANDROID_SIGN_KEY" ]; then
echo "Error: missing env variable ANDROID_SIGN_KEY."
elif [ -z "$ANDROID_SIGN_PASS" ]; then
echo "Error: missing env variable ANDROID_SIGN_PASS."
else
GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES
$GRADLE_PATH -p ~/workspace/android/ uploadArchives
fi

View File

@ -71,30 +71,8 @@ cp -a ../vision/docs/source source/torchvision
# Build the docs
pip -q install -r requirements.txt || true
if [ "$is_master_doc" = true ]; then
# TODO: fix gh-38011 then enable this which changes warnings into errors
# export SPHINXOPTS="-WT --keep-going"
make html
make coverage
# Now we have the coverage report, we need to make sure it is empty.
# Count the number of lines in the file and turn that number into a variable
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
# Skip the report header by subtracting 2: the header will be output even if
# there are no undocumented items.
#
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
# be documented then removed from there.
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
undocumented=$(($lines - 2))
if [ $undocumented -lt 0 ]; then
echo coverage output not found
exit 1
elif [ $undocumented -gt 0 ]; then
echo undocumented objects found:
cat build/coverage/python.txt
exit 1
fi
else
# Don't fail the build on coverage problems
make html-stable
fi
@ -112,12 +90,6 @@ else
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \&#x25BC</a>@g"
fi
# Prevent Google from indexing $install_path/_modules. This folder contains
# generated source files.
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
# One can `brew install gnu-sed` on a mac and then use "gsed" instead of "sed".
find "$install_path/_modules" -name "*.html" -print0 | xargs -0 sed -i '/<head>/a \ \ <meta name="robots" content="noindex">'
git add "$install_path" || true
git status
git config user.email "soumith+bot@pytorch.org"

View File

@ -2,7 +2,7 @@
set -ex -o pipefail
# Set up NVIDIA docker repo
curl -s -L --retry 3 https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
@ -13,15 +13,6 @@ sudo rm -f /etc/apt/heroku.list
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
sudo rm -f /etc/apt/partner.list
retry () {
$* || $* || $* || $* || $*
}
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
# (with use of tee to avoid permissions problems)
# This is better than retrying the whole apt-get command
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
sudo apt-get -y update
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
# WARNING: Docker version is hardcoded here; you must update the
@ -36,11 +27,7 @@ sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic d
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
# apt what the packages you need are. Note that the CircleCI image
# comes with Docker.
#
# Using 'retry' here as belt-and-suspenders even though we are
# presumably retrying at the single-package level via the
# apt.conf.d/80-retries technique.
retry sudo apt-get -y install \
sudo apt-get -y install \
linux-headers-$(uname -r) \
linux-image-generic \
moreutils \
@ -51,11 +38,14 @@ retry sudo apt-get -y install \
sudo pkill -SIGHUP dockerd
retry () {
$* || $* || $* || $* || $*
}
retry sudo pip -q install awscli==1.16.35
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-440.59.run"
DRIVER_FN="NVIDIA-Linux-x86_64-410.104.run"
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
@ -64,6 +54,7 @@ fi
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
echo "declare -x PYTHON_VERSION=${PYTHON_VERSION:-}" >> /home/circleci/project/env
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
@ -76,14 +67,12 @@ if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
set -x

View File

@ -2,7 +2,7 @@
set -eux -o pipefail
# Set up CircleCI GPG keys for apt, if needed
curl --retry 3 -s -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
# Stop background apt updates. Hypothetically, the kill should not
# be necessary, because stop is supposed to send a kill signal to

View File

@ -0,0 +1,96 @@
import argparse
import re
import sys
# Modify this variable if you want to change the set of default jobs
# which are run on all pull requests.
#
# WARNING: Actually, this is a lie; we're currently also controlling
# the set of jobs to run via the Workflows filters in CircleCI config.
default_set = [
# PyTorch CPU
# Selected oldest Python 2 version to ensure Python 2 coverage
'pytorch-linux-trusty-py2.7.9',
# PyTorch CUDA
'pytorch-linux-xenial-cuda9-cudnn7-py3',
# PyTorch ASAN
'pytorch-linux-xenial-py3-clang5-asan',
# PyTorch DEBUG
'pytorch-linux-trusty-py3.6-gcc5.4',
# Caffe2 CPU
'caffe2-py2-mkl-ubuntu16.04',
# Caffe2 CUDA
'caffe2-py2-cuda9.1-cudnn7-ubuntu16.04',
# Caffe2 ONNX
'caffe2-onnx-py2-gcc5-ubuntu16.04',
'caffe2-onnx-py3.6-clang7-ubuntu16.04',
# Caffe2 Clang
'caffe2-py2-clang7-ubuntu16.04',
# Caffe2 CMake
'caffe2-cmake-cuda9.0-cudnn7-ubuntu16.04',
# Binaries
'manywheel 2.7mu cpu devtoolset7',
'libtorch 2.7m cpu devtoolset7',
# Caffe2 Android
'caffe2-py2-android-ubuntu16.04',
# Caffe2 OSX
'caffe2-py2-system-macos10.13',
# PyTorch OSX
'pytorch-macos-10.13-cuda9.2-cudnn7-py3',
# PyTorch Android
'pytorch-linux-xenial-py3-clang5-android-ndk-r19c',
# XLA
'pytorch-xla-linux-trusty-py3.6-gcc5.4',
# Other checks
'pytorch-short-perf-test-gpu',
'pytorch-python-doc-push',
'pytorch-cpp-doc-push',
]
# Takes in commit message to analyze via stdin
#
# This script will query Git and attempt to determine if we should
# run the current CI job under question
#
# NB: Try to avoid hard-coding names here, so there's less place to update when jobs
# are updated/renamed
#
# Semantics in the presence of multiple tags:
# - Let D be the set of default builds
# - Let S be the set of explicitly specified builds
# - Run S \/ D
parser = argparse.ArgumentParser()
parser.add_argument('build_environment')
args = parser.parse_args()
commit_msg = sys.stdin.read()
# Matches anything that looks like [foo ci] or [ci foo] or [foo test]
# or [test foo]
RE_MARKER = re.compile(r'\[(?:([^ \[\]]+) )?(?:ci|test)(?: ([^ \[\]]+))?\]')
markers = RE_MARKER.finditer(commit_msg)
for m in markers:
if m.group(1) and m.group(2):
print("Unrecognized marker: {}".format(m.group(0)))
continue
spec = m.group(1) or m.group(2)
if spec in args.build_environment or spec == 'all':
print("Accepting {} due to commit marker {}".format(args.build_environment, m.group(0)))
sys.exit(0)
for spec in default_set:
if spec in args.build_environment:
print("Accepting {} as part of default set".format(args.build_environment))
sys.exit(0)
print("Rejecting {}".format(args.build_environment))
sys.exit(1)

View File

@ -0,0 +1,29 @@
#!/usr/bin/env bash
set -exu -o pipefail
SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
# Check if we should actually run
echo "BUILD_ENVIRONMENT: ${BUILD_ENVIRONMENT:-}"
echo "CIRCLE_PULL_REQUEST: ${CIRCLE_PULL_REQUEST:-}"
if [ -z "${BUILD_ENVIRONMENT:-}" ]; then
echo "Cannot run should_run_job.sh if BUILD_ENVIRONMENT is not defined!"
echo "CircleCI scripts are probably misconfigured."
exit 1
fi
if ! [ -e "$SCRIPT_DIR/COMMIT_MSG" ]; then
echo "Cannot run should_run_job.sh if you don't have COMMIT_MSG"
echo "written out. Are you perhaps running the wrong copy of this script?"
echo "You should be running the copy in ~/workspace; SCRIPT_DIR=$SCRIPT_DIR"
exit 1
fi
if [ -n "${CIRCLE_PULL_REQUEST:-}" ]; then
if [[ $CIRCLE_BRANCH != "ci-all/"* ]]; then
# Don't swallow "script doesn't exist
[ -e "$SCRIPT_DIR/should_run_job.py" ]
if ! python "$SCRIPT_DIR/should_run_job.py" "${BUILD_ENVIRONMENT:-}" < "$SCRIPT_DIR/COMMIT_MSG" ; then
circleci step halt
exit
fi
fi
fi

View File

@ -1,145 +0,0 @@
import glob
import json
import logging
import os
import os.path
import pathlib
import re
import sys
import time
import zipfile
import requests
def get_size(file_dir):
try:
# we should only expect one file, if no, something is wrong
file_name = glob.glob(os.path.join(file_dir, "*"))[0]
return os.stat(file_name).st_size
except:
logging.exception(f"error getting file from: {file_dir}")
return 0
def build_message(size):
pkg_type, py_ver, cu_ver, *_ = os.environ.get("BUILD_ENVIRONMENT", "").split() + [
None,
None,
None,
]
os_name = os.uname()[0].lower()
if os_name == "darwin":
os_name = "macos"
return {
"normal": {
"os": os_name,
"pkg_type": pkg_type,
"py_ver": py_ver,
"cu_ver": cu_ver,
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
"sha1": os.environ.get("CIRCLE_SHA1"),
"branch": os.environ.get("CIRCLE_BRANCH"),
},
"int": {
"time": int(time.time()),
"size": size,
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
},
}
def send_message(messages):
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
if not access_token:
raise ValueError("Can't find access token from environment variable")
url = "https://graph.facebook.com/scribe_logs"
r = requests.post(
url,
data={
"access_token": access_token,
"logs": json.dumps(
[
{
"category": "perfpipe_pytorch_binary_size",
"message": json.dumps(message),
"line_escape": False,
}
for message in messages
]
),
},
)
print(r.text)
r.raise_for_status()
def report_android_sizes(file_dir):
def gen_sizes():
# we should only expect one file, if no, something is wrong
aar_files = list(pathlib.Path(file_dir).rglob("pytorch_android-*.aar"))
if len(aar_files) != 1:
logging.exception(f"error getting aar files from: {file_dir} / {aar_files}")
return
aar_file = aar_files[0]
zf = zipfile.ZipFile(aar_file)
for info in zf.infolist():
# Scan ".so" libs in `jni` folder. Examples:
# jni/arm64-v8a/libfbjni.so
# jni/arm64-v8a/libpytorch_jni.so
m = re.match(r"^jni/([^/]+)/(.*\.so)$", info.filename)
if not m:
continue
arch, lib = m.groups()
# report per architecture library size
yield [arch, lib, info.compress_size, info.file_size]
# report whole package size
yield ["aar", aar_file.name, os.stat(aar_file).st_size, 0]
def gen_messages():
android_build_type = os.environ.get("ANDROID_BUILD_TYPE")
for arch, lib, comp_size, uncomp_size in gen_sizes():
print(android_build_type, arch, lib, comp_size, uncomp_size)
yield {
"normal": {
"os": "android",
# TODO: create dedicated columns
"pkg_type": "{}/{}/{}".format(android_build_type, arch, lib),
"cu_ver": "", # dummy value for derived field `build_name`
"py_ver": "", # dummy value for derived field `build_name`
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
"sha1": os.environ.get("CIRCLE_SHA1"),
"branch": os.environ.get("CIRCLE_BRANCH"),
},
"int": {
"time": int(time.time()),
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
"size": comp_size,
"raw_size": uncomp_size,
},
}
send_message(list(gen_messages()))
if __name__ == "__main__":
file_dir = os.environ.get(
"PYTORCH_FINAL_PACKAGE_DIR", "/home/circleci/project/final_pkgs"
)
if len(sys.argv) == 2:
file_dir = sys.argv[1]
print("checking dir: " + file_dir)
if "-android" in os.environ.get("BUILD_ENVIRONMENT", ""):
report_android_sizes(file_dir)
else:
size = get_size(file_dir)
if size != 0:
try:
send_message([build_message(size)])
except:
logging.exception("can't send message")

View File

@ -1,34 +0,0 @@
$VS_DOWNLOAD_LINK = "https://aka.ms/vs/15/release/vs_buildtools.exe"
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
"--add Microsoft.VisualStudio.Component.VC.Tools.14.11",
"--add Microsoft.Component.MSBuild",
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
"--add Microsoft.VisualStudio.Component.TextTemplating",
"--add Microsoft.VisualStudio.Component.VC.CoreIde",
"--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core",
"--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Win81")
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS 2017 installer failed"
exit 1
}
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
Remove-Item -Path vs_installer.exe -Force
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "VS 2017 installer exited with code $exitCode, which should be one of [0, 3010]."
curl.exe --retry 3 -kL $COLLECT_DOWNLOAD_LINK --output Collect.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS Collect tool failed."
exit 1
}
Start-Process "${PWD}\Collect.exe" -NoNewWindow -Wait -PassThru
New-Item -Path "C:\w\build-results" -ItemType "directory" -Force
Copy-Item -Path "C:\Users\circleci\AppData\Local\Temp\vslogs.zip" -Destination "C:\w\build-results\"
exit 1
}

View File

@ -1,37 +0,0 @@
#!/bin/bash
set -eux -o pipefail
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/cuda_10.1.243_426.00_win10.exe
7z x cuda_10.1.243_426.00_win10.exe -ocuda_10.1.243_426.00_win10
cd cuda_10.1.243_426.00_win10
mkdir cuda_install_logs
set +e
./setup.exe -s nvcc_10.1 cuobjdump_10.1 nvprune_10.1 cupti_10.1 cublas_10.1 cublas_dev_10.1 cudart_10.1 cufft_10.1 cufft_dev_10.1 curand_10.1 curand_dev_10.1 cusolver_10.1 cusolver_dev_10.1 cusparse_10.1 cusparse_dev_10.1 nvgraph_10.1 nvgraph_dev_10.1 npp_10.1 npp_dev_10.1 nvrtc_10.1 nvrtc_dev_10.1 nvml_dev_10.1 -loglevel:6 -log:"$(pwd -W)/cuda_install_logs"
set -e
if [[ "${VC_YEAR}" == "2017" ]]; then
cp -r CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions/* "C:/Program Files (x86)/Microsoft Visual Studio/2017/${VC_PRODUCT}/Common7/IDE/VC/VCTargets/BuildCustomizations/"
else
cp -r CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions/* "C:/Program Files (x86)/Microsoft Visual Studio/2019/${VC_PRODUCT}/MSBuild/Microsoft/VC/v160/BuildCustomizations/"
fi
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/NvToolsExt.7z
7z x NvToolsExt.7z -oNvToolsExt
mkdir -p "C:/Program Files/NVIDIA Corporation/NvToolsExt"
cp -r NvToolsExt/* "C:/Program Files/NVIDIA Corporation/NvToolsExt/"
export NVTOOLSEXT_PATH="C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\"
if ! ls "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.1/bin/nvcc.exe"
then
echo "CUDA installation failed"
mkdir -p /c/w/build-results
7z a "c:\\w\\build-results\\cuda_install_logs.7z" cuda_install_logs
exit 1
fi
cd ..
rm -rf ./cuda_10.1.243_426.00_win10
rm -f ./cuda_10.1.243_426.00_win10.exe

View File

@ -1,45 +0,0 @@
#!/usr/bin/env python3
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.data.simple.util.docker_constants as pytorch_docker_constants
from yaml import load
try:
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader
def load_config(filename=".circleci/config.yml"):
with open(filename, "r") as fh:
return load("".join(fh.readlines()), Loader)
def load_tags_for_projects(workflow_config):
return {
v["ecr_gc_job"]["project"]: v["ecr_gc_job"]["tags_to_keep"]
for v in workflow_config["workflows"]["ecr_gc"]["jobs"]
if isinstance(v, dict) and "ecr_gc_job" in v
}
def check_version(job, tags, expected_version):
valid_versions = tags[job].split(",")
if expected_version not in valid_versions:
raise RuntimeError(
"We configured {} to use Docker version {}; but this "
"version is not configured in job ecr_gc_job_for_{}. Non-deployed versions will be "
"garbage collected two weeks after they are created. DO NOT LAND "
"THIS TO MASTER without also updating ossci-job-dsl with this version."
"\n\nDeployed versions: {}".format(job, expected_version, job, tags[job])
)
def validate_docker_version():
tags = load_tags_for_projects(load_config())
check_version("pytorch", tags, pytorch_docker_constants.DOCKER_IMAGE_TAG)
check_version("caffe2", tags, caffe2_build_definitions.DOCKER_IMAGE_VERSION)
if __name__ == "__main__":
validate_docker_version()

View File

@ -0,0 +1,20 @@
# There is currently no testing for libtorch TODO
# binary_linux_libtorch_2.7m_cpu_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cpu"
# resource_class: gpu.medium
# <<: *binary_linux_test
#
# binary_linux_libtorch_2.7m_cu90_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cu90"
# resource_class: gpu.medium
# <<: *binary_linux_test
#
# binary_linux_libtorch_2.7m_cu100_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cu100"
# resource_class: gpu.medium
# <<: *binary_linux_test

View File

@ -0,0 +1,98 @@
# update_s3_htmls job
# These jobs create html files for every cpu/cu## folder in s3. The html
# files just store the names of all the files in that folder (which are
# binary files (.whl files)). This is to allow pip installs of the latest
# version in a folder without having to know the latest date. Pip has a flag
# -f that you can pass an html file listing a bunch of packages, and pip will
# then install the one with the most recent version.
update_s3_htmls: &update_s3_htmls
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- run:
<<: *setup_linux_system_environment
- run:
<<: *binary_checkout
# N.B. we do not run binary_populate_env. The only variable we need is
# PIP_UPLOAD_FOLDER (which is 'nightly/' for the nightlies and '' for
# releases, and sometimes other things for special cases). Instead we
# expect PIP_UPLOAD_FOLDER to be passed directly in the env. This is
# because, unlike all the other binary jobs, these jobs only get run once,
# in a separate workflow. They are not a step in other binary jobs like
# build, test, upload.
#
# You could attach this to every job, or include it in the upload step if
# you wanted. You would need to add binary_populate_env in this case to
# make sure it has the same upload folder as the job it's attached to. This
# function is idempotent, so it won't hurt anything; it's just a little
# unnescessary"
- run:
name: Update s3 htmls
no_output_timeout: "1h"
command: |
set +x
echo "declare -x \"AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}\"" >> /home/circleci/project/env
echo "declare -x \"AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}\"" >> /home/circleci/project/env
source /home/circleci/project/env
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
retry pip install awscli==1.6
"/home/circleci/project/builder/cron/update_s3_htmls.sh"
# Update s3 htmls for the nightlies
update_s3_htmls_for_nightlies:
environment:
PIP_UPLOAD_FOLDER: "nightly/"
<<: *update_s3_htmls
# Update s3 htmls for the nightlies for devtoolset7
update_s3_htmls_for_nightlies_devtoolset7:
environment:
PIP_UPLOAD_FOLDER: "nightly/devtoolset7/"
<<: *update_s3_htmls
# upload_binary_logs job
# The builder hud at pytorch.org/builder shows the sizes of all the binaries
# over time. It gets this info from html files stored in S3, which this job
# populates every day.
upload_binary_sizes: &upload_binary_sizes
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- run:
<<: *setup_linux_system_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_install_miniconda
- run:
name: Upload binary sizes
no_output_timeout: "1h"
command: |
set +x
echo "declare -x \"AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}\"" > /home/circleci/project/env
echo "declare -x \"AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}\"" >> /home/circleci/project/env
export DATE="$(date -u +%Y_%m_%d)"
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
source /home/circleci/project/env
set -eux -o pipefail
# This is hardcoded to match binary_install_miniconda.sh
export PATH="/home/circleci/project/miniconda/bin:$PATH"
# Not any awscli will work. Most won't. This one will work
retry conda create -qyn aws36 python=3.6
source activate aws36
pip install awscli==1.16.46
"/home/circleci/project/builder/cron/upload_binary_sizes.sh"

View File

@ -1,66 +0,0 @@
binary_linux_build_params: &binary_linux_build_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
libtorch_variant:
type: string
default: ""
resource_class:
type: string
default: "2xlarge+"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
LIBTORCH_VARIANT: << parameters.libtorch_variant >>
ANACONDA_USER: pytorch
resource_class: << parameters.resource_class >>
docker:
- image: << parameters.docker_image >>
binary_linux_test_upload_params: &binary_linux_test_upload_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
libtorch_variant:
type: string
default: ""
resource_class:
type: string
default: "medium"
use_cuda_docker_runtime:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
DOCKER_IMAGE: << parameters.docker_image >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
LIBTORCH_VARIANT: << parameters.libtorch_variant >>
resource_class: << parameters.resource_class >>
binary_mac_params: &binary_mac_params
parameters:
build_environment:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
binary_windows_params: &binary_windows_params
parameters:
build_environment:
type: string
default: ""
executor:
type: string
default: "windows-cpu-with-nvidia-cuda"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
BUILD_FOR_SYSTEM: windows
JOB_EXECUTOR: <<parameters.executor>>

View File

@ -1,27 +0,0 @@
caffe2_params: &caffe2_params
parameters:
build_environment:
type: string
default: ""
build_ios:
type: string
default: ""
docker_image:
type: string
default: ""
use_cuda_docker_runtime:
type: string
default: ""
build_only:
type: string
default: ""
resource_class:
type: string
default: "large"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
BUILD_IOS: << parameters.build_ios >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
DOCKER_IMAGE: << parameters.docker_image >>
BUILD_ONLY: << parameters.build_only >>
resource_class: << parameters.resource_class >>

View File

@ -1,14 +0,0 @@
promote_common: &promote_common
docker:
- image: pytorch/release
parameters:
package_name:
description: "package name to promote"
type: string
default: ""
environment:
PACKAGE_NAME: << parameters.package_name >>
ANACONDA_API_TOKEN: ${CONDA_PYTORCHBOT_TOKEN}
AWS_ACCESS_KEY_ID: ${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}
AWS_SECRET_ACCESS_KEY: ${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}

View File

@ -1,85 +0,0 @@
pytorch_params: &pytorch_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
resource_class:
type: string
default: "large"
use_cuda_docker_runtime:
type: string
default: ""
build_only:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
DOCKER_IMAGE: << parameters.docker_image >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
BUILD_ONLY: << parameters.build_only >>
resource_class: << parameters.resource_class >>
pytorch_ios_params: &pytorch_ios_params
parameters:
build_environment:
type: string
default: ""
ios_arch:
type: string
default: ""
ios_platform:
type: string
default: ""
op_list:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
IOS_ARCH: << parameters.ios_arch >>
IOS_PLATFORM: << parameters.ios_platform >>
SELECTED_OP_LIST: << parameters.op_list >>
pytorch_windows_params: &pytorch_windows_params
parameters:
executor:
type: string
default: "windows-cpu-with-nvidia-cuda"
build_environment:
type: string
default: ""
test_name:
type: string
default: ""
cuda_version:
type: string
default: "10"
python_version:
type: string
default: "3.6"
vc_version:
type: string
default: "14.11"
vc_year:
type: string
default: "2017"
vc_product:
type: string
default: "BuildTools"
use_cuda:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: <<parameters.build_environment>>
SCCACHE_BUCKET: "ossci-compiler-cache"
CUDA_VERSION: <<parameters.cuda_version>>
PYTHON_VERSION: <<parameters.python_version>>
VC_VERSION: <<parameters.vc_version>>
VC_YEAR: <<parameters.vc_year>>
VC_PRODUCT: <<parameters.vc_product>>
USE_CUDA: <<parameters.use_cuda>>
TORCH_CUDA_ARCH_LIST: "7.5"
JOB_BASE_NAME: <<parameters.test_name>>
JOB_EXECUTOR: <<parameters.executor>>

View File

@ -1,133 +0,0 @@
commands:
# Must be run after attaching workspace from previous steps
load_shared_env:
description: "Loads .circleci/shared/env_file into ${BASH_ENV}"
parameters:
# For some weird reason we decide to reattach our workspace to ~/workspace so
# in the vein of making it simple let's assume our share env_file is here
root:
type: string
default: "~/workspace"
steps:
- run:
name: "Load .circleci/shared/env_file into ${BASH_ENV}"
command: |
if [[ -f "<< parameters.root >>/.circleci/shared/env_file" ]]; then
cat << parameters.root >>/.circleci/shared/env_file >> ${BASH_ENV}
else
echo "We didn't have a shared env file, that's weird"
fi
# This system setup script is meant to run before the CI-related scripts, e.g.,
# installing Git client, checking out code, setting up CI env, and
# building/testing.
setup_linux_system_environment:
steps:
- run:
name: Set Up System Environment
no_output_timeout: "1h"
command: .circleci/scripts/setup_linux_system_environment.sh
setup_ci_environment:
steps:
- run:
name: Set Up CI Environment After attach_workspace
no_output_timeout: "1h"
command: .circleci/scripts/setup_ci_environment.sh
brew_update:
description: "Update Homebrew and install base formulae"
steps:
- run:
name: Update Homebrew
no_output_timeout: "10m"
command: |
set -ex
# Update repositories manually.
# Running `brew update` produces a comparison between the
# current checkout and the updated checkout, which takes a
# very long time because the existing checkout is 2y old.
for path in $(find /usr/local/Homebrew -type d -name .git)
do
cd $path/..
git fetch --depth=1 origin
git reset --hard origin/master
done
export HOMEBREW_NO_AUTO_UPDATE=1
# Install expect and moreutils so that we can call `unbuffer` and `ts`.
# moreutils installs a `parallel` executable by default, which conflicts
# with the executable from the GNU `parallel`, so we must unlink GNU
# `parallel` first, and relink it afterwards.
brew unlink parallel
brew install moreutils
brew link parallel --overwrite
brew install expect
brew_install:
description: "Install Homebrew formulae"
parameters:
formulae:
type: string
default: ""
steps:
- run:
name: Install << parameters.formulae >>
no_output_timeout: "10m"
command: |
set -ex
export HOMEBREW_NO_AUTO_UPDATE=1
brew install << parameters.formulae >>
run_brew_for_macos_build:
steps:
- brew_update
- brew_install:
formulae: libomp
run_brew_for_ios_build:
steps:
- brew_update
- brew_install:
formulae: libtool
optional_merge_target_branch:
steps:
- run:
name: (Optional) Merge target branch
no_output_timeout: "10m"
command: |
if [ -n "$CIRCLE_PULL_REQUEST" ]; then
PR_NUM=$(basename $CIRCLE_PULL_REQUEST)
CIRCLE_PR_BASE_BRANCH=$(curl -s https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$PR_NUM | jq -r '.base.ref')
if [[ "${BUILD_ENVIRONMENT}" == *"xla"* || "${BUILD_ENVIRONMENT}" == *"gcc5"* ]] ; then
set -x
git config --global user.email "circleci.ossci@gmail.com"
git config --global user.name "CircleCI"
git config remote.origin.url https://github.com/pytorch/pytorch.git
git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
# PRs generated from ghstack has format CIRCLE_PR_BASE_BRANCH=gh/xxx/1234/base
if [[ "${CIRCLE_PR_BASE_BRANCH}" == "gh/"* ]]; then
CIRCLE_PR_BASE_BRANCH=master
fi
export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/$CIRCLE_PR_BASE_BRANCH`
echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}
export GIT_COMMIT=${CIRCLE_SHA1}
echo "GIT_COMMIT: " ${GIT_COMMIT}
git checkout -f ${GIT_COMMIT}
git reset --hard ${GIT_COMMIT}
git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET}
echo "Merged $CIRCLE_PR_BASE_BRANCH branch before building in environment $BUILD_ENVIRONMENT"
set +x
else
echo "No need to merge with $CIRCLE_PR_BASE_BRANCH, skipping..."
fi
else
echo "This is not a pull request, skipping..."
fi

View File

@ -1,16 +1,15 @@
# WARNING: DO NOT EDIT THIS FILE DIRECTLY!!!
# See the README.md in this directory.
# IMPORTANT: To update Docker image version, please follow
# the instructions at
# https://github.com/pytorch/pytorch/wiki/Docker-image-build-on-CircleCI
version: 2.1
parameters:
run_binary_tests:
type: boolean
default: false
# IMPORTANT: To update Docker image version, please first update
# https://github.com/pytorch/ossci-job-dsl/blob/master/src/main/groovy/ossci/pytorch/DockerVersion.groovy and
# https://github.com/pytorch/ossci-job-dsl/blob/master/src/main/groovy/ossci/caffe2/DockerVersion.groovy,
# and then update DOCKER_IMAGE_VERSION at the top of the following files:
# * cimodel/data/pytorch_build_definitions.py
# * cimodel/data/caffe2_build_definitions.py
# And the inline copies of the variable in
# * verbatim-sources/job-specs-custom.yml
# (grep for DOCKER_IMAGE)
docker_config_defaults: &docker_config_defaults
user: jenkins
@ -19,16 +18,46 @@ docker_config_defaults: &docker_config_defaults
aws_access_key_id: ${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4}
aws_secret_access_key: ${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4}
executors:
windows-with-nvidia-gpu:
machine:
resource_class: windows.gpu.nvidia.medium
image: windows-server-2019-nvidia:stable
shell: bash.exe
# This system setup script is meant to run before the CI-related scripts, e.g.,
# installing Git client, checking out code, setting up CI env, and
# building/testing.
setup_linux_system_environment: &setup_linux_system_environment
name: Set Up System Environment
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/setup_linux_system_environment.sh
# NB: This (and the command below) must be run after attaching
# ~/workspace. This is NOT the default working directory (that's
# ~/project); this workspace is generated by the setup job.
should_run_job: &should_run_job
name: Should Run Job After attach_workspace
no_output_timeout: "2m"
command: ~/workspace/.circleci/scripts/should_run_job.sh
setup_ci_environment: &setup_ci_environment
name: Set Up CI Environment After attach_workspace
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/setup_ci_environment.sh
# Installs expect and moreutils so that we can call `unbuffer` and `ts`.
# Also installs OpenMP
# !!!!NOTE!!!! this is copied into a binary_macos_brew_update job which is the
# same but does not install libomp. If you are changing this, consider if you
# need to change that step as well.
macos_brew_update: &macos_brew_update
name: Brew update and install moreutils, expect and libomp
no_output_timeout: "1h"
command: |
set -ex
# See https://discourse.brew.sh/t/fetching-homebrew-repos-is-slow/5374/3
brew untap caskroom/homebrew-cask
# moreutils installs a `parallel` executable by default, which conflicts
# with the executable from the GNU `parallel`, so we must unlink GNU
# `parallel` first, and relink it afterwards
brew update
brew unlink parallel
brew install moreutils
brew link parallel --overwrite
brew install expect
brew install libomp
windows-cpu-with-nvidia-cuda:
machine:
# we will change to CPU host when it's ready
resource_class: windows.xlarge
image: windows-server-2019-vs2019:stable
shell: bash.exe

View File

@ -0,0 +1,267 @@
pytorch_short_perf_test_gpu:
environment:
BUILD_ENVIRONMENT: pytorch-short-perf-test-gpu
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:323"
PYTHON_VERSION: "3.6"
USE_CUDA_DOCKER_RUNTIME: "1"
resource_class: gpu.medium
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- run:
<<: *setup_linux_system_environment
- run:
<<: *setup_ci_environment
- run:
name: Perf Test
no_output_timeout: "1h"
command: |
set -e
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run --runtime=nvidia -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
docker cp $id:/var/lib/jenkins/workspace/env /home/circleci/project/env
# This IAM user allows write access to S3 bucket for perf test numbers
set +x
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_PERF_TEST_S3_BUCKET_V4}" >> /home/circleci/project/env
set -x
docker cp /home/circleci/project/env $id:/var/lib/jenkins/workspace/env
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && .jenkins/pytorch/short-perf-test-gpu.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
pytorch_python_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-python-doc-push
# TODO: stop hardcoding this
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:323"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- run:
<<: *setup_linux_system_environment
- run:
<<: *setup_ci_environment
- run:
name: Doc Build and Push
no_output_timeout: "1h"
command: |
set -ex
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
# master branch docs push
if [[ "${CIRCLE_BRANCH}" == "master" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/master master site") | docker exec -u jenkins -i "$id" bash) 2>&1'
# stable release docs push. Due to some circleci limitations, we keep
# an eternal PR open for merging v1.2.0 -> master for this job.
# XXX: The following code is only run on the v1.2.0 branch, which might
# not be exactly the same as what you see here.
elif [[ "${CIRCLE_BRANCH}" == "v1.2.0" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/stable 1.2.0 site-v1.2.0") | docker exec -u jenkins -i "$id" bash) 2>&1'
# For open PRs: Do a dry_run of the docs build, don't push build
else
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/master master site dry_run") | docker exec -u jenkins -i "$id" bash) 2>&1'
fi
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Save the docs build so we can debug any problems
export DEBUG_COMMIT_DOCKER_IMAGE=${COMMIT_DOCKER_IMAGE}-debug
docker commit "$id" ${DEBUG_COMMIT_DOCKER_IMAGE}
docker push ${DEBUG_COMMIT_DOCKER_IMAGE}
pytorch_cpp_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-cpp-doc-push
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:323"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- run:
<<: *setup_linux_system_environment
- run:
<<: *setup_ci_environment
- run:
name: Doc Build and Push
no_output_timeout: "1h"
command: |
set -ex
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
# master branch docs push
if [[ "${CIRCLE_BRANCH}" == "master" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/master master") | docker exec -u jenkins -i "$id" bash) 2>&1'
# stable release docs push. Due to some circleci limitations, we keep
# an eternal PR open (#16502) for merging v1.0.1 -> master for this job.
# XXX: The following code is only run on the v1.0.1 branch, which might
# not be exactly the same as what you see here.
elif [[ "${CIRCLE_BRANCH}" == "v1.0.1" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/stable 1.0.1") | docker exec -u jenkins -i "$id" bash) 2>&1'
# For open PRs: Do a dry_run of the docs build, don't push build
else
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/master master dry_run") | docker exec -u jenkins -i "$id" bash) 2>&1'
fi
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Save the docs build so we can debug any problems
export DEBUG_COMMIT_DOCKER_IMAGE=${COMMIT_DOCKER_IMAGE}-debug
docker commit "$id" ${DEBUG_COMMIT_DOCKER_IMAGE}
docker push ${DEBUG_COMMIT_DOCKER_IMAGE}
pytorch_macos_10_13_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-build
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- checkout
- run:
<<: *macos_brew_update
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# Install sccache
sudo curl https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
chmod a+x .jenkins/pytorch/macos-build.sh
unbuffer .jenkins/pytorch/macos-build.sh 2>&1 | ts
mkdir -p /Users/distiller/pytorch-ci-env/workspace
# copy with -a to preserve relative structure (e.g., symlinks), and be recursive
cp -a /Users/distiller/project/. /Users/distiller/pytorch-ci-env/workspace
- persist_to_workspace:
root: /Users/distiller/pytorch-ci-env
paths:
- "*"
pytorch_macos_10_13_py3_test:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-test
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
# This workspace also carries binaries from the build job
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- run:
<<: *macos_brew_update
- run:
name: Test
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# copy with -a to preserve relative structure (e.g., symlinks), and be recursive
# TODO: I'm not sure why we can't just run our job in
# ~/workspace and call it a day
# NB: Yes, you need workspace twice
cp -a ~/workspace/workspace/. /Users/distiller/project
chmod a+x .jenkins/pytorch/macos-test.sh
unbuffer .jenkins/pytorch/macos-test.sh 2>&1 | ts
pytorch_macos_10_13_cuda9_2_cudnn7_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-cuda9.2-cudnn7-py3-build
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_workspace:
at: ~/workspace
- run:
<<: *should_run_job
- checkout
- run:
<<: *macos_brew_update
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# Install CUDA 9.2
sudo rm -rf ~/cuda_9.2.64_mac_installer.app || true
curl https://s3.amazonaws.com/ossci-macos/cuda_9.2.64_mac_installer.zip -o ~/cuda_9.2.64_mac_installer.zip
unzip ~/cuda_9.2.64_mac_installer.zip -d ~/
sudo ~/cuda_9.2.64_mac_installer.app/Contents/MacOS/CUDAMacOSXInstaller --accept-eula --no-window
sudo cp /usr/local/cuda/lib/libcuda.dylib /Developer/NVIDIA/CUDA-9.2/lib/libcuda.dylib
sudo rm -rf /usr/local/cuda || true
# Install cuDNN 7.1 for CUDA 9.2
curl https://s3.amazonaws.com/ossci-macos/cudnn-9.2-osx-x64-v7.1.tgz -o ~/cudnn-9.2-osx-x64-v7.1.tgz
rm -rf ~/cudnn-9.2-osx-x64-v7.1 && mkdir ~/cudnn-9.2-osx-x64-v7.1
tar -xzvf ~/cudnn-9.2-osx-x64-v7.1.tgz -C ~/cudnn-9.2-osx-x64-v7.1
sudo cp ~/cudnn-9.2-osx-x64-v7.1/cuda/include/cudnn.h /Developer/NVIDIA/CUDA-9.2/include/
sudo cp ~/cudnn-9.2-osx-x64-v7.1/cuda/lib/libcudnn* /Developer/NVIDIA/CUDA-9.2/lib/
sudo chmod a+r /Developer/NVIDIA/CUDA-9.2/include/cudnn.h /Developer/NVIDIA/CUDA-9.2/lib/libcudnn*
# Install sccache
sudo curl https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
git submodule sync && git submodule update -q --init --recursive
chmod a+x .jenkins/pytorch/macos-build.sh
unbuffer .jenkins/pytorch/macos-build.sh 2>&1 | ts

Some files were not shown because too many files have changed in this diff Show More