Compare commits

..

167 Commits

Author SHA1 Message Date
3c31d73c87 [ONNX] Fix pow op export [1.5.1] (#39791)
* [ONNX] Fix pow op export (#38065)

Summary:
Fix pow type cast for opset 9 and update opset 12
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38065

Differential Revision: D21485353

Pulled By: malfet

fbshipit-source-id: 3993e835ffad07b2e6585eb5cf1cb7c8474de2ec

* Update ort-nighly version as suggested in https://github.com/pytorch/pytorch/pull/39685#issuecomment-641452470

* Apply changes from https://github.com/pytorch/pytorch/pull/37846 to  `test_topk_smallest_unsorted`

Co-authored-by: neginraoof <neginmr@utexas.edu>
2020-06-11 15:26:46 -07:00
dfe8cdff5a [v1.5.1] add dtype checks for scatter/gather family of functions (#39773)
* add dtype checks for scatter/gather family of functions [1.5.1]

Adds additional dtype checks for scatter/gather family of functions, namely:
1. Checks whether `index` is of type `Long`
2. Checks whether `src.dtype == self.dtype`.

This is a rather involved rework of https://github.com/pytorch/pytorch/pull/38646

* Adjust test to match both TH and ATen exception patterns
2020-06-10 10:29:54 -07:00
e7a6ed8151 [v1.5.1] add dtype checking for gather and scatter (#38025)
Summary:
Fixed https://github.com/pytorch/pytorch/issues/37996

in the `cpu_scatter_gather_base_kernel`, it interpret a pointer as `int64_t` regardless the actual dtype.
2b41b9bceb/aten/src/ATen/native/cpu/ScatterGatherKernel.cpp (L106)
add a index dtype checking will avoid the nasty index out of bound error. As using `int64_t` is convention in ATen code (a.k.a, a limitation), no further fix is needed at the moment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38025

Differential Revision: D21498146

Pulled By: ezyang

fbshipit-source-id: b1f96f394a460c4bc63d21ec8d4a2cfbf3e97b03
2020-06-09 10:59:51 -04:00
fc0dde5db3 Fix weight quantization in RNNs
Weight quantization was done incorrectly for LSTMs, the statistics for all weights (across layers) were combined in the observer. This meant that weights for later layers in a LSTM would use sub-optimal scales impacting accuracy. The problem gets worse as the number of layers increases.

Differential Revision: [D20842145](https://our.internmc.facebook.com/intern/diff/D20842145/)

[ghstack-poisoned]
2020-06-09 10:39:57 -04:00
83edd5164a [1.5.1] Check illegal output dtype for torch.{min, max} (#39686)
* Check illegal output dtype for torch.{min, max}

Summary:
The test is currently only enabled for CPU, and it will be enabled for CUDA after the migration of `min` and `max` from THC to ATen is done.
This is a cherry-pick of https://github.com/pytorch/pytorch/pull/38850

* Skip test_minmax_illegal_dtype for XLA

Co-authored-by: Xiang Gao <qasdfgtyuiop@gmail.com>
2020-06-08 21:25:10 -07:00
833c4201ad allow user passing relative paths in include_dirs within setuptools.setup (#38264)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38264

Test Plan: Imported from OSS

Differential Revision: D21509277

Pulled By: glaringlee

fbshipit-source-id: b0bc17d375a89b96b1bdacde5987b4f4baa9468e
2020-06-08 11:35:49 -04:00
5579c9e4c2 [v1.5.1] Remove duplicate 'with_gil' declaration.
This gets picked up by mypy as an error in 1.5.1, not sure if it's a different version or setting, but might as well fix.

ghstack-source-id: 016f8d4bdb0444dd8285f1f29bdc8f2db2265c12
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39540
2020-06-08 11:34:31 -04:00
367901e1f9 [v1.5.1 cherry-pick] Work around building onnx in older rocm docker images (#39253) (#39547)
Summary:
Cherry-pick of https://github.com/pytorch/pytorch/pull/39253

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2020-06-04 21:10:57 -07:00
c4903bde61 [1.5.1] Bug fix for argmin/argmax (#39212) 2020-06-03 19:26:54 -04:00
7d2fcd505c [v1.5.1 cherry pick] fix the device inconsistency for import convert_sync_batchnorm (#39344)
* resolve merge conflict

* Remove wrong merge

Co-authored-by: jiej <jiej@nvidia.com>
2020-06-03 17:27:26 -04:00
bb33e5fc85 as_strided : add size and stride length check (#39301)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/39281
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39301

Differential Revision: D21849082

Pulled By: gchanan

fbshipit-source-id: 5d30ef10767c4d35c6cb59c5e6a9acbfe0270a40
2020-06-03 16:52:29 -04:00
c5424a85dc Make _C extension a thin C wrapper (#39422)
Summary:
It just depends on a single `torch_python` library.
C library does not depend on standard C++ library and as result it closes https://github.com/pytorch/pytorch/issues/36941
This is a cherry-pick of https://github.com/pytorch/pytorch/pull/39375 into release/1.5 branch
2020-06-03 07:44:48 -07:00
5d01f87e58 fix asserts in cuda code (#39047)
Summary:
Gets rid of some in-kernel asserts where they can be replaced with static_asserts
Replaces bare in-kernel `assert` in one case with `CUDA_KERNEL_ASSERT` where necessary
replaces host code `assert`s with `TORCH_INTERNAL_ASSERT`
Another group of asserts is in fractional max pooling kernels which should be fixed regardless https://github.com/pytorch/pytorch/issues/39044, the problems there are not just asserts.
I've audited remaining cases of in-kernel asserts, and they are more like `TORCH_INTERNAL_ASSERT`, so they should not happen with invalid user data. I think it's ok to leave them as is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39047

Differential Revision: D21750392

Pulled By: ngimel

fbshipit-source-id: e9417523a2c672284de3515933cb7ed166e56719
2020-06-03 10:01:08 -04:00
82f549b0a8 [v1.5.1][JIT] make torch.unique compilable (#38156)
Summary:
Fix for https://github.com/pytorch/pytorch/issues/37986

Follows the stack in https://github.com/pytorch/pytorch/pull/33783 stack to make functions in `torch/functional.py` resolve to their python implementations. Because the return type of `torch.unique` depends on `return_inverse` and `return_counts` I had to refactor the implementation to use our boolean_dispatch mechanism.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38156

Differential Revision: D21504449

Pulled By: eellison

fbshipit-source-id: 7efb1dff3b5c00655da10168403ac4817286ff59
2020-06-02 12:00:57 -04:00
f306655d49 [v1.5.1] Implement CUDA_KERNEL_ASSERT for MSVC (#39218) (#39288)
* Implement CUDA_KERNEL_ASSERT for MSVC (#39218)

Summary:
Tested locally on CPU/GPU + Debug/Release.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39218

Differential Revision: D21786500

Pulled By: malfet

fbshipit-source-id: 7e871003d3509436952932b5ff3599e36bb8f205

# Conflicts:
#	test/test_cuda.py

* Fix one more conflict
2020-06-01 16:01:27 -07:00
409e42e3b8 Restore thread_local states in continuation thread on RPC servers (#38512)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38512

As we gradually making the RPC non-blocking on server side, the
processing of the same request can yield-run on different threads.
Hence, we need to populate thread_local states (e.g., ctx id) in
the continuation thread.

Fixes #38439

Test Plan: Imported from OSS

Differential Revision: D21583642

Pulled By: mrshenli

fbshipit-source-id: a79bce1cb207fd11f1fa02b08465e49badda65fc
2020-06-01 17:56:25 -04:00
6151405f6c Fix DDP bug in single process multiple device use cases (#36503)
This is a commit to merge #36503 into the 1.5.1 release. It fixes
single-process multi-GPU DDP use cases by explicitly exposing
model replica's parameters to DDP. #36656 is landed into master at 8d6a8d2.

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36503

Test Plan: Imported from OSS

Differential Revision: D21179274

Pulled By: mrshenli

fbshipit-source-id: 0afce30ae0ddda753d1e240584a0f80df9aec4c2
2020-06-01 17:56:01 -04:00
d01065e50c fix argmin/argmax behavior wrt autograd 2020-06-01 11:17:47 -04:00
67508dadaa Update FBGEMM hash (#39278)
Includes FBGEMM-1.5.0 hash + cherry-picked https://github.com/pytorch/FBGEMM/pull/381
2020-06-01 08:07:39 -07:00
b54a731c8e [v1.5.1] fix clip_grad_norm to work with parameters on the different devices (#38615)
Summary:
Per title.
We move all the individual gradient norms to a single device before stacking (no-op if all the gradients are already on a single device), `clip_coef` is copied to the device of gradient, which may be suboptimal as there could be multiple copies, but no worse than when we were synchronizing for each parameter. In a simple case of all gradients on a single device, there should be no synchronization.
Also, we no longer error out if parameter list is empty or none of the parameters have gradients, and return 0 total_norm instead.
Fixes https://github.com/pytorch/pytorch/issues/38605
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38615

Reviewed By: ailzhang

Differential Revision: D21634588

Pulled By: ngimel

fbshipit-source-id: ea4d08d4f3445438260052820c7ca285231a156b
2020-05-29 19:12:26 -04:00
3920c1d173 Support paths with spaces when building ninja extension (#38670)
Summary:
Generate the following `build.ninja` file and can successfully build:
```
cflags = -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA '-I/scratch/yuxinwu/space space/detectron2/layers/csrc' -I/private/home/yuxinwu/miniconda3/lib/python3.7
/site-packages/torch/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torc
h/include/TH -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/THC -I/public/apps/cuda/10.1/include -I/private/home/yuxinwu/miniconda3/include/python3.7m -c
post_cflags = -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14
cuda_cflags = -DWITH_CUDA '-I/scratch/yuxinwu/space space/detectron2/layers/csrc' -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include -I/private/home/yuxinwu/miniconda3/li
b/python3.7/site-packages/torch/include/torch/csrc/api/include -I/private/home/yuxinwu/miniconda3/lib/python3.7/site-packages/torch/include/TH -I/private/home/yuxinwu/miniconda3/lib/python3.7/site
-packages/torch/include/THC -I/public/apps/cuda/10.1/include -I/private/home/yuxinwu/miniconda3/include/python3.7m -c
cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options '-fPIC' -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_
OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -ccbin=/public/apps/gcc/7.1.0/bin/gcc -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
-gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -std=c++14
ldflags =

rule compile
  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
  depfile = $out.d
  deps = gcc

rule cuda_compile
  command = $nvcc $cuda_cflags -c $in -o $out $cuda_post_cflags

build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/vision.o: compile /scratch/yuxinwu/space$ space/detectron2/layers/csrc/vision.c$
p
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.o: compile /scratch/yuxinwu/space$ space/de$
ectron2/layers/csrc/box_iou_rotated/box_iou_rotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.o: compile /scratch/yuxinwu/space$ space/de$
ectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/nms_rotated/nms_rotated_cpu.o: compile /scratch/yuxinwu/space$ space/detectron2$
layers/csrc/nms_rotated/nms_rotated_cpu.cpp
build /scratch/yuxinwu/space$ space/build/temp.linux-x86_64-3.7/scratch/yuxinwu/space$ space/detectron2/layers/csrc/ROIAlign/ROIAlign_cpu.o: compile /scratch/yuxinwu/space$ space/detectron2/layer$
/csrc/ROIAlign/ROIAlign_cpu.cpp

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38670

Differential Revision: D21689613

Pulled By: ppwwyyxx

fbshipit-source-id: 1f71b12433e18f6b0c6aad5e1b390b4438654563
2020-05-29 09:48:49 -04:00
8d48a6490a Fix cpp extension build failure if path contains space (#38860)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38860

Differential Revision: D21686335

Pulled By: ezyang

fbshipit-source-id: 2675f4f70b48ae3b58ea597a2b584b446d03c704
2020-05-29 09:48:40 -04:00
17eae0e0cd restore proper cuda assert behavior with DNDEBUG (#38943)
Summary:
Per title. https://github.com/pytorch/pytorch/issues/32719 essentially disabled asserts in cuda kernels in release build. Asserts in cuda kernels are typically used to prevent invalid reads/writes, so without asserts invalid read/writes are silent errors in most cases (sometimes they would still cause "illegal memory access" errors, but because of caching allocator this usually won't happen).
We don't need 2 macros, CUDA_ALWAYS_ASSERT and CUDA_KERNEL_ASSERT because all current asserts in cuda kernels are important to prevent illegal memory accesses, and they should never be disabled.
This PR removes macro CUDA_ALWAYS_ASSERT and instead makes CUDA_KERNEL_ASSERT (that is commonly used in the kernels) an asserttion both in release and debug builds.
Fixes https://github.com/pytorch/pytorch/issues/38771
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38943

Differential Revision: D21723767

Pulled By: ngimel

fbshipit-source-id: d88d8aa1b047b476d5340e69311e65aff4da5074
2020-05-28 19:00:31 -04:00
4a9e45d50e [v1.5.1] Reduction should not coalesce_dimensions when splitting for 32bit indexing (#37788)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/37583
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37788

Differential Revision: D21387325

Pulled By: ngimel

fbshipit-source-id: dbd0f5a23e06d8c4cc68cd21b09b4b0221c4bba7
2020-05-28 19:00:16 -04:00
eb387a0a2b Give _VariableFunctions class a different name, so pickling works (#38033)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38033

Pickles require class names to be actually accessible from the module
in question.  _VariableFunction was not!  This fixes it.

Fixes https://github.com/pytorch/pytorch/issues/37703

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21458068

Pulled By: ezyang

fbshipit-source-id: 2a5ac41f9d1972e300724981b9b4b84364ddc18c
2020-05-28 14:15:35 -04:00
420c6dc43d [v1.5.1] Fixes floordiv dunder registrations (#38695)
Summary:
floordiv was missing a couple dunder registrations, which was causing __ifloordiv__ to not be called when it should. This adds the appropriate registrations and adds a test verifying that the inplace dunders are actually occuring inplace.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38695

Differential Revision: D21633980

Pulled By: mruberry

fbshipit-source-id: a423f5ec327cdc062fd6d9d56abd36fe44ac8198
2020-05-28 14:13:29 -04:00
39f0a2752a fix multinomial kernels to properly advance random states (#38046)
Summary:
Before, multinomial kernels did not advance random states enough, which lead to the same sequence being generated over and over with a shift of 4. This PR fixes that.
Fixes https://github.com/pytorch/pytorch/issues/37403
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38046

Differential Revision: D21516542

Pulled By: ngimel

fbshipit-source-id: 23248a8c3a5c44316c4c35cd71a8c3b5f76c90f2
2020-05-28 14:07:13 -04:00
366026ab10 Fix memory usage increase reported in #38568 (#38674)
Summary:
update to in-place version for bias add in convolution, this saves unnecessary memory allocation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38674

Differential Revision: D21626080

Pulled By: ngimel

fbshipit-source-id: 4f52a3ae2e5aefae372d8ea5188336216f910da3
2020-05-28 13:54:00 -04:00
408e158df9 skip ctc_loss test on Windows (#35069)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35069

It is flaky on Windows only, so disable for now:
https://github.com/pytorch/pytorch/issues/34870

Test Plan: Imported from OSS

Differential Revision: D20544736

Pulled By: suo

fbshipit-source-id: 49e35a4b4f0d1d20157769a4dff22cb4fe86770c
2020-05-28 13:52:47 -04:00
3598dea7ad Pin flake8 to 3.7.9 (#38269)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38269

Test Plan: Imported from OSS

Differential Revision: D21510318

Pulled By: mrshenli

fbshipit-source-id: ac57a0ffed7401c13b7983b8685a8706b8181142
2020-05-27 18:12:10 -04:00
a5b05e8867 Correct Javadoc link (#39039)
Correct Javadoc link to match the 1.4 version: https://github.com/pytorch/pytorch/blob/release/1.4/docs/source/index.rst
2020-05-27 12:41:47 -07:00
7fc2433458 Fix conv non zero padding being applied in wrong dim (#37881)
Summary:
Turns out F.pad takes in dims in reverse order. Fixes https://github.com/pytorch/pytorch/issues/37844
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37881

Differential Revision: D21554011

Pulled By: soumith

fbshipit-source-id: a85a7f6db9f981d915728965903c5c57b6617c93
2020-05-18 11:26:00 -04:00
aba610b9e8 add slope == 0 case into standard leaky relu nn test (#37559)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37559

Test Plan: Imported from OSS

Differential Revision: D21319922

Pulled By: glaringlee

fbshipit-source-id: 212ef8e9d0f0d55a312d282693cd5990e0376c6a
2020-05-05 11:32:04 -04:00
dc30c519dd allow inplace leaky_relu backward calc when slope == 0 (#37453)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37453

to fix (#37345)

Test Plan: Imported from OSS

Differential Revision: D21290911

Pulled By: glaringlee

fbshipit-source-id: 81677e9e195298bc1bde82b77c51f52d58aa5422
2020-05-05 11:32:04 -04:00
9bf2aaa659 Fix cpp extension compile failure on some envs (#37221)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37221

Test Plan: Imported from OSS

Differential Revision: D21226873

Pulled By: glaringlee

fbshipit-source-id: 0a390bbeaf153ee5ec355943f92c2dbcc5e04b59
2020-05-05 11:32:04 -04:00
25621d05df Don't use NonVariableTypeMode in custom ops (#37355)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37355

Potentially fixes https://github.com/pytorch/pytorch/issues/37306
ghstack-source-id: 103073537

Test Plan: waitforsandcastle

Differential Revision: D21261946

fbshipit-source-id: 454652b528dcf942bec5438f89201822de40bbf0
2020-04-29 21:10:19 -07:00
96f218d7dd Add experimental tag 2020-04-21 10:12:52 -07:00
f810011c40 Update persons_of_interest.rst (#37001)
Co-authored-by: Joseph Spisak <spisakjo@gmail.com>
2020-04-21 12:13:52 -04:00
5f8bb352c3 Move rpc.rst back to the source folder to preserve existing doc URLs (#36675) (#36732)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36675

Test Plan: Imported from OSS

Differential Revision: D21048628

Pulled By: mrshenli

fbshipit-source-id: 3cb1b35ddc1f40c673b0db9048d77dfa024be1e7

Co-authored-by: Shen Li <shenli@devfair017.maas>
2020-04-21 07:55:53 -07:00
52469a512b run the simple executor for jit tests by default, add profiling jobs for fusion tests (#36933)
* run the simple executor for jit tests by default, add profiling jobs for fusion tests

* fix flake8 warnings

* fix ci failures

* fix test_determination.py
2020-04-21 10:52:39 -04:00
c56adee862 Add new C++ landing page and update in index.rst (#36972)
* Add cpp landing page

* Update C++ to go to cpp_index.rst
2020-04-21 00:35:45 -07:00
4ff3872a20 [v.1.5.0] Ensure linearIndex of advanced indexing backwards is contig… (#36962)
* [v.1.5.0] Ensure linearIndex of advanced indexing backwards is contiguous.

This is a more straightforward solution to the problem than https://github.com/pytorch/pytorch/pull/36957; I don't know about the relative performance.

Fixes: #36956

ghstack-source-id: 43c48eaee7232cd3ed2b108edbbee24c11e8321a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36959

* Fix test.
2020-04-20 19:59:38 -04:00
d7bdffabed [v1.5 Patch] Disable flaky test_backward_node_failure_python_udf test in dist_autograd_test.py
This test is flaky on 1.5 release branch. Below is a failed CI run:
https://app.circleci.com/pipelines/github/pytorch/pytorch/157331/workflows/b3e0bd6b-6c55-4d14-bde8-96b8345cf9e2/jobs/5190025
2020-04-20 14:25:32 -04:00
9ba0a89489 Overwrite bazel if /usr/bin/bazel already exists. 2020-04-20 14:24:42 -04:00
c164fbccb1 Add TorchServe 2020-04-19 21:44:32 -07:00
9a51e477ac make simple executor the default for OSS 2020-04-17 20:00:53 -04:00
375566fb78 Handle log_sigmoid(out=) properly.
Fixes: https://github.com/pytorch/pytorch/issues/36499

Changes:
1) Moves some bindings from LegacyNNDefinitions to Activation so all of log_sigmoid lives together
2) Properly handle non-contiguous / incorrectly sized out parameters to log_sigmoid.  This is done by copying from a buffer if necessary.
3) Require that the internal buffer (different from 2)) is contiguous.  This should always be the case because it's always created internally.
4) Adds a test
2020-04-17 15:43:35 -04:00
dfdc788076 Fix incorrect merge of #34136.
If you look at https://github.com/pytorch/pytorch/pull/34136/, you will notice a commit (80c15c087c) that didn't get merged.
This is to address that, to avoid crashing on remainder when the rhs is 0.

ghstack-source-id: e805e290bd4b7d3165fd78d4e537e56e4c459162
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36760
2020-04-17 15:42:20 -04:00
9e6ef814cc [v1.5.0] Print keyword-only arg symbol for function signature suggestions.
Fixes: https://github.com/pytorch/pytorch/issues/36773

ghstack-source-id: 6b08839ffc8b228e9533a47b7fd034367fc93dec
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36780
2020-04-17 15:42:04 -04:00
31461800f6 Migrate release CI jobs to CircleCI for Windows (v1.5 Release) (#36658)
* Migrate release CI jobs to CircleCI for Windows (v1.5 Release)

* Fix comments
2020-04-16 12:18:27 -04:00
Jie
e741839b0e Fixing SyncBN dgrad (#36382)
Summary:
Previous PR https://github.com/pytorch/pytorch/issues/22248 which provides support for variadic batch size across processes doesn't account the mean_dy/mean_dy_xmu on backward path, which produces wrong dgrad.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36382

Differential Revision: D20984446

Pulled By: ngimel

fbshipit-source-id: 80066eee83760b275d61e2cdd4e86facca5577fd
2020-04-16 10:58:16 -04:00
8eb39c9cfd [CI] fix test_distributed for python 3.8+ (#36542)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36542

Python 3.8 set the default multiprocessing start mode to spawn, but we
need fork in these tests, otherwise there are some pickling issues.
Test: Ensure that these tests succeed when run with python 3.8
ghstack-source-id: 102093824

Test Plan: Ensure success with python 3.8

Differential Revision: D21007753

fbshipit-source-id: 4b39844c6ba76a53293c0dfde7c98ec5a78fe113
2020-04-16 10:54:57 -04:00
b5e4c0993d Add a warning for Single-Process Multi-GPU DDP 2020-04-15 19:08:24 -04:00
6bc6832bda fix syntax 2020-04-15 19:00:11 -04:00
593594839c Update docs for 1.5 to remove Python 2 references (#36338)
* Remove python 2 from jit.rst

* Remove python 2 from jit_language_reference.rst

* Remove python 2 from multiprocessing.rst

* Remove python 2 from named_tensor.rst

* Remove python 2 from multiprocessing.rst

* Remove python 2 from windows.rst

* Update multiprocessing.rst

* Remove python 2 from notes/multiprocessing.rst
2020-04-14 15:57:02 -07:00
cf65c8ef15 Fix torch.min docs (#36319)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36319

On the way to resolving #35216.
This is a fix for just the master branch but once this goes in,
I'll send a cherry-pick to release/1.5

The problem is that we were not calling `format` on a string that had
templates (e.g., '{input}', '{dim}'). This change makes it so that we
call format on the entire docstring for `torch.min`.

Test Plan:
- The `torch.max` docs are OK:
https://pytorch.org/docs/master/torch.html#torch.max and don't need
changing.
- `torch.min` docs, before this change: see second screenshot in #35216.
- after this change: <Insert link here on github>

![image](https://user-images.githubusercontent.com/5652049/78921702-4e2acc00-7a63-11ea-9ea0-89636ff6fb0a.png)

Differential Revision: D20946702

Pulled By: zou3519

fbshipit-source-id: a1a28707e41136a9bb170c8a4191786cf037a0c2
2020-04-13 19:03:03 -04:00
ca0dc1fcdc skip test in 3.8 because of inconsistent regex 2020-04-10 11:06:47 -07:00
b58f89b2e4 Use counter instead of vector of futures in _parallel_run (#36159) (#36334)
Summary:
This should be faster than allocating one mutex, flag and conditional variable per task.

Using `std::atomic<size_t>` to count remaing tasks is not sufficient,
because modification of remaining counter and signalling conditional variable must happen atomically,
otherwise `wait()` might get invoked after `notify_one()` was called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36159

Test Plan: CI

Differential Revision: D20905411

Pulled By: malfet

fbshipit-source-id: facaf599693649c3f43edafc49f369e90d2f60de
(cherry picked from commit 986a8fdd6a18d9110f8bde59361967139450966b)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-09 14:08:57 -07:00
87b6685c6b repr and _*state_dict for qRNN (#31540)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31540

Fixes #31468

Test Plan: Imported from OSS

Differential Revision: D19205894

Pulled By: z-a-f

fbshipit-source-id: 80c36f74aa20a125ea8d74a54e9905576f1bc6d7
2020-04-09 12:26:56 -04:00
f746f1b746 Revert "Avoid clone for sparse tensors during accumulation of grads. (#33427)"
This reverts commit b185359fb4ba4dcb0c048fd1d049da23eff88b27.
2020-04-09 11:33:55 -04:00
1379415150 Revert "AccumulateGrad: ensure sparse tensor indices and values refcount is always 1 (#34559)"
This reverts commit 2ce9513b0c8894987f6d42bfb57ff95b22e32c95.
2020-04-09 11:33:55 -04:00
7d638d2596 [v1.5.0] fix is_float_scale_factor warning (python and c++) (#36274)
* fix is_float_scale_factor warning

* fix python impl

Co-authored-by: Robin Lobel <divide@divideconcept.net>
Co-authored-by: Will Feng <willfeng@fb.com>
2020-04-09 11:31:13 -04:00
bad005d331 .circleci: Add binary builds/tests to run on release branches (#36283)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-08 16:37:24 -07:00
16d8a52407 [pytorch] Add error when PyTorch used with Python 2 (#36151)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36151

Python 2 has reached end-of-life and is no longer supported by PyTorch. To avoid confusing behavior when trying to use PyTorch with Python 2, detect this case early and fail with a clear message.  This commit covers `import torch` only and not C++  for now.

Test Plan: waitforsandcastle

Reviewed By: dreiss

Differential Revision: D20894381

fbshipit-source-id: a1073b7a648e07cf10cda5a99a2cf4eee5a89230
2020-04-08 18:55:58 -04:00
a33b264588 Revert "Update docs for 1.5 to remove Python 2 references (#36116)"
This reverts commit 63dcd9eccc90136afdfb5d8130077ff1e917ba2e.
2020-04-08 18:51:13 -04:00
3a67e00889 [1.5 cherrypick] C++ Adam optimizer - corrected messages for check of default options (#36245)
* Corrected messages for check of default options

* Added 0<= betas < 1 range check, match python messages for check of betas

Co-authored-by: meganset <meganset@gmail.com>
2020-04-08 18:06:16 -04:00
6bd039551d Remove determine_from from test/run_test.py (#36256)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-08 14:58:23 -07:00
b6c3058d61 Exclude torch/csrc/cuda/*nccl* from clang-tidy (#36251)
Since workflow configures pytorch with 'USE_NCCL` set to 0, we can not tidy those files

(cherry picked from commit e172a6ef920b6838b67eb8f0020d78031df8cde5)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-08 13:37:16 -07:00
ed908b4fbc [release/1.5] Move all nccl from torch_python to torch_cuda (#36229)
* Remote dead code

`THCPModule_useNccl()` doesn't seem to be used anywhere

* Move all nccl calls from `torch_python` to `torch_cuda`

Because `torch_python` is supposed to be thin wrapper around torch

This ensures API parity between C++ and Python, as well as reduces `torch_python` binary size

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-08 10:39:20 -07:00
b66e0af58b s/repo.continuum.io/repo.anaconda.com/
Followup after  https://github.com/pytorch/pytorch/pull/36201

Per https://github.com/conda/conda/issues/6886  `repo.anaconda.com` should have been used since Feb 2019

Test Plan: CI
2020-04-08 13:05:04 -04:00
bf8a5ede96 [ONNX] fix size for opset 11 (#35984)
Summary:
Fixing size, as the aten op has updated to support 0 inputs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35984

Reviewed By: hl475

Differential Revision: D20858214

Pulled By: houseroad

fbshipit-source-id: 8ad0a0174a569455e89da6798eed403c8b162a47
2020-04-08 11:50:59 -04:00
c2bc5c56c5 Use repo.anaconda.com instead of repo.continuum.io (#36201)
Summary:
Per https://github.com/conda/conda/issues/6886  `repo.anaconda.com` should have been used since Feb 2019
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36201

Test Plan: CI

Differential Revision: D20910667

Pulled By: malfet

fbshipit-source-id: 3a191e2cae293e6f96dbb323853e84c07cd7aabc
2020-04-08 08:39:52 -07:00
db3c3ed662 Move test to test_jit_py3.py 2020-04-08 11:15:33 -04:00
9de4770bbd [v1.5.0] Group libraries in TOC and add PyTorch Elastic
Move XLA out of Notes and group with other libraries. Also adds link to PyTorch Elastic.
2020-04-08 11:08:39 -04:00
911a2a6b63 [BugFix] Fix compare_exchange_weak in DispatchStub.h (#35794)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35794

### Summary

As PyTorch has gone in production on iOS for about week, we've spotted a few crashes (90 out of 20.3k ) related to DispatchStub.h. The major part of the crash log is pasted below (full crash information can be found at `bunnylol logview 1d285dc9172c877b679d0f8539da58f0`):

```
FBCameraFramework void at::native::DispatchStub<void (*)(at::TensorIterator&, c10::Scalar), at::native::add_stub>::operator()<at::TensorIterator&, c10::Scalar&>(c10::DeviceType, at::TensorIterator&, c10::Scalar&)(DispatchStub.h:0)
+FBCameraFramework at::native::add(at::Tensor const&, at::Tensor const&, c10::Scalar)(BinaryOps.cpp:53)
+FBCameraFramework at::CPUType::add_Tensor(at::Tensor const&, at::Tensor const&, c10::Scalar)(CPUType.cpp:55)
+FBCameraFramework at::add(at::Tensor const&, at::Tensor const&, c10::Scalar)(Functions.h:1805)
+FBCameraFramework [inlined] c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::intrusive_ptr(c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>&&)(intrusive_ptr.h:0)
+FBCameraFramework [inlined] c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::intrusive_ptr(c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>&&)(intrusive_ptr.h:221)
+FBCameraFramework [inlined] at::Tensor::Tensor(at::Tensor&&)(TensorBody.h:93)
+FBCameraFramework [inlined] at::Tensor::Tensor(at::Tensor&&)(TensorBody.h:93)
+FBCameraFramework c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >::operator()(at::Tensor, at::Tensor, c10::Scalar)(kernel_lambda.h:23)
+FBCameraFramework [inlined] c10::guts::infer_function_traits<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> > >::type::return_type c10::detail::call_functor_with_args_from_stack_<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false, 0ul, 1ul, 2ul>(c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*, std::__1::vector<c10::IValue, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::allocator<std::__1::vector> >*, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::integer_sequence<unsigned long, 0ul, 1ul, 2ul>)(kernel_functor.h:210)
+FBCameraFramework [inlined] c10::guts::infer_function_traits<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> > >::type::return_type c10::detail::call_functor_with_args_from_stack<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false>(c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*, std::__1::vector<c10::IValue, c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >*::allocator<std::__1::vector> >*)(kernel_functor.h:218)
+FBCameraFramework c10::detail::make_boxed_from_unboxed_functor<c10::detail::WrapRuntimeKernelFunctor_<(anonymous namespace)::$_3, at::Tensor, c10::guts::typelist::typelist<at::Tensor, at::Tensor, c10::Scalar> >, false, void>::call(c10::OperatorKernel*, c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(kernel_functor.h:250)
+FBCameraFramework [inlined] (anonymous namespace)::variable_fallback_kernel(c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(VariableFallbackKernel.cpp:32)
+FBCameraFramework void c10::KernelFunction::make_boxed_function<&((anonymous namespace)::variable_fallback_kernel(c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*))>(c10::OperatorKernel*, c10::OperatorHandle const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >*)(KernelFunction_impl.h:21)
+FBCameraFramework torch::jit::mobile::InterpreterState::run(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >&)(interpreter.cpp:0)
+FBCameraFramework torch::jit::mobile::Function::run(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >&) const(function.cpp:59)
+FBCameraFramework torch::jit::mobile::Module::run_method(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >)(module.cpp:51)
+FBCameraFramework [inlined] torch::jit::mobile::Module::forward(std::__1::vector<c10::IValue, std::__1::allocator<c10::IValue> >)(module.h:28)
```
The problem is `compare_exchange_weak` is not guaranteed to be successful in one shot, as described in  [C++ Concurrency in Action (2nd Edition)](https://livebook.manning.com/book/c-plus-plus-concurrency-in-action-second-edition/chapter-5/79). This might result in `cpu_dispatch_ptr` being null pointer in concurrent situations, thus leading to the crash. As suggested in the book, due to spurious failure, the `compare_exchange_weak` is typically used in a loop.  There is also a [stackoverflow discussion](https://stackoverflow.com/questions/25199838/understanding-stdatomiccompare-exchange-weak-in-c11) about this. Feel free to drop comments below if there is a better option.

### The original PR

- [Enhance DispatchStub to be thread safe from a TSAN point of view](https://github.com/pytorch/pytorch/pull/32148)

### Test Plan

- Keep observing the crash reports in QE

Test Plan: Imported from OSS

Differential Revision: D20808751

Pulled By: xta0

fbshipit-source-id: 52f5c865b70c59b332ef9f0865315e76d97f6eaa
2020-04-08 10:56:07 -04:00
60375bcfdf [1.5.0] Attempt to fix the pytorch_cpp_doc_push build by pinning breathe. 2020-04-08 10:54:56 -04:00
63dcd9eccc Update docs for 1.5 to remove Python 2 references (#36116) 2020-04-07 16:03:44 -07:00
e8236d2ed4 fix max_pool2d cuda version Dimension out of range issue(#36046) (#36095)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36095

Test Plan: Imported from OSS

Differential Revision: D20876733

Pulled By: glaringlee

fbshipit-source-id: a2b92fd2dd0254c5443af469e3fb2faa2323e5c9
2020-04-07 18:52:21 -04:00
0058b1bb7e [1.5 cherrypick][JIT] Fix fake_range() 2020-04-07 18:47:22 -04:00
419283e291 Improve C++ API autograd and indexing docs (#35777)
Summary:
This PR adds docs for the following components:
1. Tensor autograd APIs (such as `is_leaf` / `backward` / `detach` / `detach_` / `retain_grad` / `grad` / `register_hook` / `remove_hook`)
2. Autograd APIs: `torch::autograd::backward` / `grad` / `Function` / `AutogradContext`, `torch::NoGradGuard` / `torch::AutoGradMode`
3. Tensor indexing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35777

Differential Revision: D20810616

Pulled By: yf225

fbshipit-source-id: 60526ec0c5b051021901d89bc3b56861c68758e8
2020-04-07 18:37:27 -04:00
0e6f6ba218 [pytorch] Remove python2 support from tests and torch.jit (#35042) (#36162)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35042

Removing python2 tests and some compat code in torch.jit. Check if dependent projects and external tests have any issues after these changes.

Test Plan: waitforsandcastle

Reviewed By: suo, seemethere

Differential Revision: D18942633

fbshipit-source-id: d76cc41ff20bee147dd8d44d70563c10d8a95a35
(cherry picked from commit 8240db11e193b0334a60a33d9fc907ebc6ba6987)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Orion Reblitz-Richardson <orionr@fb.com>
2020-04-07 13:55:50 -07:00
ec8dbaf920 Add more alternative filters in places people forgot to add them. (#36082) (#36148)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36082

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20874618

Pulled By: ezyang

fbshipit-source-id: b6f12100a247564428eb7272f803a03c9cad3a97
(cherry picked from commit 449a4ca3408774ed961f1702ca31a549f5818b80)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Edward Yang <ezyang@fb.com>
2020-04-07 09:59:33 -07:00
7e168d134f Pin Sphinx to 2.4.4 (take 2), fix docs CIs (#36072)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36072

Update to https://github.com/pytorch/pytorch/pull/36065/ which was
almost there

Test Plan: - Wait for CI

Differential Revision: D20871661

Pulled By: zou3519

fbshipit-source-id: 2bf5ce382e879aafd232700ff1c0d61fc17ea52d
2020-04-07 10:54:36 -04:00
6daae58871 Remove __nv_relfatbin section from nccl_static library (#35907)
Test Plan: CI

(cherry picked from commit 04e06b419990328157f0e2108a95b2848f66d75f)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-04-06 16:57:03 -07:00
fee0ff1bf6 May fix TopKTypeConfig<at::Half> without an additional Bitfield specialization 2020-04-06 19:41:17 -04:00
deaf3b65cf Compile THCTensorTopK per dtype.
ROCm builds fail inconsistently on this file by timing out.

ghstack-source-id: 4a8f22731aa82c02d464a8cba522e856afbe49b8
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36074
2020-04-06 19:41:17 -04:00
dca9c2501d Revert "Revert "Fix handling of non-finite values in topk (#35253)" (#35582)"
This reverts commit dacdbc22d195f80e0b529b4e9111c8ca9a172914.
2020-04-06 19:41:17 -04:00
842cd47416 Refactor and turn on C++ API parity test in CI
gh-metadata: pytorch pytorch 35190 gh/yf225/106/head
2020-04-06 15:40:35 -04:00
a30b49085c Move NewModuleTest and NewCriterionTest from test_nn.py to common_nn.py (#35189)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35189

Test Plan: Imported from OSS

Differential Revision: D20588197

Pulled By: yf225

fbshipit-source-id: 5a28159b653895678c250cbc0c1ddd51bc7a3123
2020-04-06 15:40:35 -04:00
82626f8ad9 More generic dedupe MKL fix (#35966)
* Stop linking against MKL

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Perform test for build size

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* fixup

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* One more MSVC fix

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Revert "Perform test for build size"

This reverts commit 8b5ed8eac81cc880b5cedb33cb3b86f584abacb7.
2020-04-06 11:50:48 -07:00
27fddfda4f Use std::abs instead of abs in lbfgs.cpp (#35974)
Summary:
This supersedes https://github.com/pytorch/pytorch/pull/35698.

`abs` is a C-style function that takes only integral argument
`std::abs` is polymorphic and can be applied to both integral and floating point types

This PR also increases `kBatchSize` in `test_optimizer_xor` function in `test/cpp/api/optim.cpp` to fix `OptimTest.XORConvergence_LBFGS` failure under ASAN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35974

Test Plan: CI

Reviewed By: pbelevich

Differential Revision: D20853570

Pulled By: yf225

fbshipit-source-id: 6135588df2426c5b974e4e097b416955d1907bd4
2020-04-06 14:50:18 -04:00
7ecf6a1c10 [release/1.5] Bump libtorch to 3.7, remove python2 (#36080)
* .cirlceci: Remove Python 2.7 builds, switch libtorch to 3.7

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

* .circleci: Bump libtorch builds to 3.7

The image is actually using Python 3.7.2 so we should reflect that
within our circleci configs

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
(cherry picked from commit b3f2572aaf83d1f5383369187f6263e6f926103b)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-04-06 11:10:48 -07:00
beb07a44c4 Ports integer division callsite cleanup 2020-04-02 20:17:31 -04:00
a01c3bd1fe [BC] Fix the BC test for 1.5 (#35733)
* [BC] Fix the BC test for 1.5

* Skip RRef

* Skip more

* Skip more

* Fix whitelist

* Fix whitelist
2020-04-02 19:36:18 -04:00
ffd010f8a0 Make test_leaky_relu_inplace_with_neg_slope device-generic and skipIfRocm. (#35816)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35816

Fixes https://github.com/pytorch/pytorch/issues/35689.

Test Plan: Imported from OSS

Differential Revision: D20796656

Pulled By: gchanan

fbshipit-source-id: 474790fe07899d9944644f6b3d7a15db1c2b96db
2020-04-02 17:05:23 -04:00
8ad59f03a8 Skip ROCm test in test/test_cpp_extensions_aot.py (#35838)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35838

It may be flaky.

Test Plan: Imported from OSS

Differential Revision: D20807409

Pulled By: gchanan

fbshipit-source-id: f085d05bcb6a04d304f3cd048c38d2e8453125d6
2020-04-02 17:04:54 -04:00
ed3640df68 Fix another case of float2::x and float2::y may not be the same on ROCm (#35785)
Summary:
This is another case of the issue fixed in https://github.com/pytorch/pytorch/pull/35783. Mirroring 35786.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35785

Differential Revision: D20800317

Pulled By: ezyang

fbshipit-source-id: de5f32839755d5ff5aefff8408df69adbab4d0a1
2020-04-02 17:01:27 -04:00
fb88942f6c Fix typo 2020-04-02 13:53:13 -04:00
5d05c51887 Refactored rpc docs (#35109)
Summary:
Reorganize as per jlin27 's comments. Screenshots added in comments.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35109

Differential Revision: D20788774

Pulled By: rohan-varma

fbshipit-source-id: 7d64be70ef76ed6ff303d05d39c338293c234766
2020-04-02 13:53:13 -04:00
df5986fbf3 [1.5 Release] Disabled complex tensor construction (#35579)
* disabled complex tensor construction

* minor

* doc fix

* added docs back and updated complex dtype check

* removed test_complex.py

* removed complexfloat reg test

* debug
2020-04-01 11:11:05 -04:00
165403f614 [v1.5.0] float2::x and float2::y may not be the same as float on ROCm (#35593)
Summary:
This causes ambiguity and can be triggered sometimes (e.g., by https://github.com/pytorch/pytorch/issues/35217). Explicitly convert them to float.

    error: conditional expression is ambiguous; 'const
    hip_impl::Scalar_accessor<float, Native_vec_, 0>' can be converted to
    'float' and vice versa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35593

Differential Revision: D20735663

Pulled By: ezyang

fbshipit-source-id: ae6a38a08e59821bae13eb0b9f9bdf21a008d5c0
2020-03-31 19:58:40 -04:00
fbf18c34ff ports disabling imag 2020-03-31 18:55:45 -04:00
84f806c821 ports real and imag fixes 2020-03-31 13:34:39 -04:00
94139a7d95 Add warnings that amp is incomplete in 1.5 2020-03-31 10:49:45 -04:00
75e36186b2 [v1.5.0] Fix Caffe2 mobile compilation
Ports #35288
2020-03-30 17:17:59 -04:00
f4a0b406dd Warn a known autograd issue on XLA backend. 2020-03-30 17:16:39 -04:00
e884e720f0 [Windows] make torch_cuda's forced link also work for CMake
Was only working for ninja
2020-03-30 17:13:51 -04:00
dacdbc22d1 Revert "Fix handling of non-finite values in topk (#35253)" (#35582)
This reverts commit b12579da5398ff23b421332e21e18dc619a0b960.

This patch in-and-of itself looks fine, but it's causing some AMP tests to fail.
2020-03-27 17:44:03 -07:00
2a789cd0e0 [C++ API Parity] [Optimizers] Merged Optimizer and LossClosureOptimizer (#34957)
Summary:
1. Removed LossClosureOptimizer, and merged Optimizer into OptimizerBase (and renamed the merged class to Optimizer)
2. Merged the LBFGS-specific serialize test function and the generic test_serialize_optimizer function.
3. BC-compatibility serialization test for LBFGS
4. Removed mentions of parameters_ in optimizer.cpp, de-virtualize all functions
5. Made defaults_ optional argument in all optimizers except SGD

**TODO**: add BC-breaking notes for this PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34957

Test Plan: Imported from GitHub, without a `Test Plan:` line.

Differential Revision: D20678162

Pulled By: yf225

fbshipit-source-id: 74e062e42d86dc118f0fbaddd794e438b2eaf35a
2020-03-27 12:30:29 -04:00
f9b010f399 enforce rref JIT pickling to be in the scope of rpc calls (#34689)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34689

rref JIT pickling is only allowed inside rpc calls. enforcing this by adding a thread local variable isInRpcCall and set it as True when converting rpc requests or responses to message, before calling JIT::pickle(). Inside JIT::pickle(), it allowes to pickle RRef only when the isInRpcCall is true.
ghstack-source-id: 100481001

Test Plan: unit tests

Differential Revision: D20429826

fbshipit-source-id: dbc04612ed15de5d6c7d75a4732041ccd4ef3f8c
2020-03-27 11:13:01 -04:00
55614ff306 Enforce rref python pickling to be in the scope of RPC call (#34755)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34755

This diff disallows to use python pickler to pickle RRef. RRef can only be pickled in the scope of RPC call using _InternalRPCPickler.
ghstack-source-id: 100481337

Test Plan: unit tests

Differential Revision: D20453806

fbshipit-source-id: ebd4115ee01457ba6958cde805afd0a87c686612
2020-03-27 11:12:36 -04:00
b12579da53 Fix handling of non-finite values in topk (#35253)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/34191

`at::native::radixSelect` basically uses integer comparison which creates a defined ordering of non-finite float values. This isn't compatible with IEEE float comparison, so mixing the two leads to unwritten values in the output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35253

Differential Revision: D20645554

Pulled By: ezyang

fbshipit-source-id: 651bcb1742ed67086ec89cc318d862caae65b981
2020-03-27 10:53:18 -04:00
920e3eb761 Making sure all tensors in torch.cat sequence have the same dtype. (#35150)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35150

Fixes #35014

Test Plan: Imported from OSS

Differential Revision: D20578589

Pulled By: z-a-f

fbshipit-source-id: edeaef133d1cf5152dcbafab2b969f1424ee2836
2020-03-26 16:49:11 -04:00
bec01e755a Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions
gh-metadata: pytorch pytorch 35163 gh/yf225/104/head
2020-03-26 14:31:21 -04:00
6a880e1bc9 Add inplace tests for several torch::nn modules / functionals
gh-metadata: pytorch pytorch 35147 gh/yf225/101/head
2020-03-26 14:31:21 -04:00
fa86e32a4e Fix F::interpolate and torch::nn::Upsample implementation
gh-metadata: pytorch pytorch 35025 gh/yf225/100/head
2020-03-26 14:31:21 -04:00
5aabaf2b18 Fix fractional_max_pool3d_with_indices implementation
gh-metadata: pytorch pytorch 35024 gh/yf225/99/head
2020-03-26 14:31:21 -04:00
4a707e8f95 Fix Conv and ConvTranspose implementation
gh-metadata: pytorch pytorch 35023 gh/yf225/98/head
2020-03-26 14:31:21 -04:00
db127b21eb Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation
gh-metadata: pytorch pytorch 35022 gh/yf225/97/head
2020-03-26 14:31:21 -04:00
45313cd9e1 [1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35440)
* add xor_convergence test for lbfgs

* increased batchsize to 6

* minor

* increased batch size

Co-authored-by: anjali411 <chourdiaanjali123@gmail.com>
2020-03-26 14:22:55 -04:00
df531973e1 [ONNX] update producer version (#35059)
Summary:
Updating producer version
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35059

Reviewed By: hl475

Differential Revision: D20585173

Pulled By: houseroad

fbshipit-source-id: af0c4e3860beb899548466ea99be2050150f905d
2020-03-26 13:56:57 -04:00
9e3c577caa Fix torch.mm export to ONNX (#34661)
Summary:
torch.mm is exported as Gemm operator in ONNX and both have an optional input: out.
out is considered as broadcastable in Gemm and during graph optimization the optional input (out) would get selected. Since out is optional, in case when it is not defined in torch.mm that would result in the following exception:
IndexError: vector::_M_range_check: __n (which is 2) >= this->size() (which is 2)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34661

Reviewed By: hl475

Differential Revision: D20496398

Pulled By: houseroad

fbshipit-source-id: e677aef0a6aefb1f83a54033153aaabe5c23bc0f
2020-03-26 13:55:18 -04:00
5357b8e4d9 .circleci: Remove python 2 binary builds (#35475)
Python 2 is EOL soon so we're dropping support as of v1.5.0

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-26 10:50:34 -07:00
0f23d23db4 Add docs to resize_ and resize_as_ (#35392)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/35392

Test Plan: Imported from OSS

Differential Revision: D20650097

Pulled By: VitalyFedyunin

fbshipit-source-id: cff4f555d355dfee42394f6070fe3e466949aeb5
2020-03-26 12:23:04 -04:00
7c24280a3f Add docs about memory format (#34818)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34818

Test Plan: Imported from OSS

Differential Revision: D20601336

Pulled By: VitalyFedyunin

fbshipit-source-id: d34ad226be950bf134c6b383a4810ea6aa75599e
2020-03-26 12:23:04 -04:00
7100f0be13 ports true_divide method variant to 1.5 (#35390)
Co-authored-by: Mike Ruberry <mruberry@devfair044.maas>
2020-03-26 11:50:00 -04:00
f7f611c2ec torch.cat: disallow inputs on different devices (#35053)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/35045
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35053

Differential Revision: D20545517

Pulled By: ngimel

fbshipit-source-id: eee3fc87c7e578ff44d69d5ce6f92a8f496fa97b
2020-03-26 10:58:33 -04:00
acb982d0b0 Add TORCH_CUDA_API to FilterDescriptor (#35131)
Summary:
`FilterDescriptor` is missing a `TORCH_CUDA_API`, so this symbol is not exported from `torch_cuda.so`, and users could have trouble building cpp_extension when using cudnn.

cc: ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35131

Differential Revision: D20604439

Pulled By: ezyang

fbshipit-source-id: c57414fc8a9df9cb1e910e2ec0a48cfdbe7d1779
2020-03-26 10:57:59 -04:00
aa8b7ad989 Fix thread_local initializtion in C10 WarningHandler. (#34822)
Summary:
The Windows + MSVC-specific bug discussed here: https://github.com/pytorch/pytorch/issues/19394 and fixed here: https://github.com/pytorch/pytorch/issues/22405 still appears in C10's warning handler class. This results in a crash if a user attempts to run code which would print a warning when that code is running inside a thread created by a DLL. This PR applies a similar fix to that of https://github.com/pytorch/pytorch/issues/22405.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34822

Test Plan:
* Tested locally by running CodecverseWorkbench Unity app with patched build.
* CI

Differential Revision: D20627971

Pulled By: HapeMask

fbshipit-source-id: 64dfca531ed7eebbe9e0ecac3d3d4d025c683883
2020-03-25 20:02:45 -07:00
2d403ed8be Add python excepiton handling catch block to resolve deadlock (#35283) (#35402)
Summary:
Note: This PR has been merged into master after the 1.5.0 branch cut at
36e3c00 (see original PR: #35283). This PR is to cherry pick it into 1.5.

---- Original Commit Description Follows ---

Pull Request resolved: https://github.com/pytorch/pytorch/pull/35283

https://github.com/pytorch/pytorch/issues/34260

Deadlock on destructing py::error_already_set.

There are request callback impls in Python, where Python exceptions
could be thrown. For releasing Python exception py::objects, GIL must
be held.

Differential Revision: D7753253

fbshipit-source-id: 4bfaaaf027e4254f5e3fedaca80228c8b4282e39

Co-authored-by: Shihao Xu <shihaoxu@fb.com>
2020-03-25 17:05:18 -07:00
c25a664f77 Trying pinning pyyaml and setuptools on macos to older version (#35296) (#35400)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35296

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20624843

Pulled By: ezyang

fbshipit-source-id: 9028f1dd62d0c25e916eb4927fd8dd6acbd88886
(cherry picked from commit 3f896ef7435201b2c3f51851f80dc674dfadfd40)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Edward Yang <ezyang@fb.com>
2020-03-25 16:04:06 -07:00
ab660ae394 Fix Tensor __radd__ type hint issue (#35231)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35231

Fixes #35213

(Note: this ignores all push blocking failures!)

Test Plan: `mypy -c "import torch; ten = torch.tensor([1.0, 2.0, 3.0]); print(7 + ten)"` should not produce any warnings

Differential Revision: D20604924

Pulled By: pbelevich

fbshipit-source-id: 53a293a99b3f2ab6ca5516b31f3a92f67eb67a39
2020-03-25 18:37:07 -04:00
3c476a8858 PyTorch should always depend on future (#35057) (#35412)
Summary:
Because `past` is used in `caffe2.python.core`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35057

Test Plan: CI

Differential Revision: D20547042

Pulled By: malfet

fbshipit-source-id: cad2123c7b88271fea37f21e616df551075383a8
(cherry picked from commit d3f5045bf55e4a5dfb53ceccb6130e4e408cf466)
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Co-authored-by: Nikita Shulga <nshulga@fb.com>
2020-03-25 14:54:26 -07:00
651fa88645 Load all DLLs in the lib directory for Windows (v.1.5.0) 2020-03-25 16:23:22 -04:00
565c3400b4 Update view op list. 2020-03-25 16:14:08 -04:00
3e332778b4 non blocking copy from #35144 2020-03-25 14:54:41 -04:00
f598738920 UBSAN deliberate float to int fix 2020-03-25 11:24:30 -04:00
4c6bfa0187 [1.5 cherrypick][JIT] Namespaces for TorchBind 2020-03-25 11:23:03 -04:00
6f25003682 [1.5 cherrypick][JIT] BC shim for TorchBind classes 2020-03-25 11:23:03 -04:00
752c129fa1 Update docs about DP and DDP for CUDA (#35063)
Summary:
We should recommend DDP instead of DP. Hope we can also cherry-pick this for 1.5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35063

Differential Revision: D20549621

Pulled By: ngimel

fbshipit-source-id: 86b1b2134664065cc6070ea4212895f993eaf543
2020-03-25 11:18:17 -04:00
fb59a9caca .circleci: Change default CUDA for pip, cu101 -> cu102 (#35310)
So that packages are correctly marked when looking through the html
pages.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-24 15:05:25 -07:00
4d30dbdd35 Pin XLA CI to use r1.5 release branch. 2020-03-24 17:54:31 -04:00
b7f4a1a397 .circleci: Switch master to release/1.5 for git merge (#35320)
Since we're on a release branch we'll need to fix this up to do a merge
for release/1.5 instead of master.

TODO: In the future we should have a dynamic way of gathering the base
branch for PRs.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-24 14:52:24 -07:00
afda1dc943 Revert "Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation"
This reverts commit e2184ba08352d730d7165455c14f783b3e54082a.
2020-03-24 14:09:18 -04:00
d506ae882b Revert "Fix Conv and ConvTranspose implementation"
This reverts commit 88778854546b08bc6dd9f68e0a64311902c7d30c.
2020-03-24 14:09:18 -04:00
36e5abe531 Revert "Fix fractional_max_pool3d_with_indices implementation"
This reverts commit b89eb7c654b846fb3391cf4cc5aeb536cc41f1d7.
2020-03-24 14:09:18 -04:00
6e6f62230e Revert "Fix F::interpolate and torch::nn::Upsample implementation"
This reverts commit 75148df1f56c91f54965b530d606a6b9a4c8e269.
2020-03-24 14:09:18 -04:00
5d15577e6c Revert "Add inplace tests for several torch::nn modules / functionals"
This reverts commit 48590d6a9b939fb8097e4f2108872721ea5a516f.
2020-03-24 14:09:18 -04:00
6aa5298c5c Revert "Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions"
This reverts commit 5ca901431886d60687275b9a310eac5b5aeba02f.
2020-03-24 14:09:18 -04:00
f3df13725b Revert "[1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35113)"
This reverts commit 246b824644c3731b00be6119f69795afd4eac9b6.
2020-03-24 14:08:56 -04:00
4eee3caa11 [release/1.5] .circleci: Fix unbound CIRCLE_TAG variable (#35242)
Was failing when trying to execute this script on a non-tag

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-23 16:21:44 -07:00
4d96463130 Updating fbgemm 2020-03-23 13:31:24 -07:00
246b824644 [1.5 cherrypick] [C++ API Parity] Add xor_convergence test for lbfgs (#35113)
* add xor_convergence test for lbfgs

* increased batchsize to 6

* minor

* increased batch size
2020-03-23 16:00:57 -04:00
5ca9014318 Renaming: MultiLabelMarginLossFuncOptions -> MultilabelMarginLossFuncOptions, MultiLabelSoftMarginLossFuncOptions -> MultilabelSoftMarginLossFuncOptions 2020-03-23 15:55:18 -04:00
48590d6a9b Add inplace tests for several torch::nn modules / functionals
gh-metadata: pytorch pytorch 35147 gh/yf225/101/head
2020-03-23 15:55:18 -04:00
75148df1f5 Fix F::interpolate and torch::nn::Upsample implementation
gh-metadata: pytorch pytorch 35025 gh/yf225/100/head
2020-03-23 15:55:18 -04:00
b89eb7c654 Fix fractional_max_pool3d_with_indices implementation
gh-metadata: pytorch pytorch 35024 gh/yf225/99/head
2020-03-23 15:55:18 -04:00
8877885454 Fix Conv and ConvTranspose implementation
gh-metadata: pytorch pytorch 35023 gh/yf225/98/head
2020-03-23 15:55:18 -04:00
e2184ba083 Fix AdaptiveAvgPool{2,3}d and AdaptiveMaxPool{2,3}d implementation
gh-metadata: pytorch pytorch 35022 gh/yf225/97/head
2020-03-23 15:55:18 -04:00
8ef47ad2f0 Updating fbgemm 2020-03-23 10:08:52 -07:00
6725b6f503 .cirlceci: Refactor how to grab the tagged version
Discovered that the upload scripts do not do well when there's no
pytorch repository to actually do git operations on.

CirlceCI however provides a nice environment variable with the name of
the current tag so let's just use that when it's available and fall back
on the git describe functionality if that fails.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 16:34:57 -07:00
bcd3f6da1a .circleci: Remove quotes from --git-dir
git doesn't handle the escapes correctly so let's just not put them
altogether.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:39:31 -07:00
0b3d2f7b7d .circleci: Make sure to add .git to --git-dir
--git-dir only works when it points directly to a .git folder

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:28:23 -07:00
f522651a7e .circleci: Switch git -C -> git --git-dir
Older versions of git do not contain the '-C' flag so let's switch to a
flag that is pre-historic and will run on any version of RHEL that is
still supported in the modern era.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:22:44 -07:00
01c8ef2757 .circleci: One more -C to add to get correct git info
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 15:08:02 -07:00
7cfe68ce3a .circleci: Hardcode directory to /pytorch to ensure git
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 14:54:57 -07:00
6f3120c6b9 .circleci: Ensure describe happens in pytorch repo
Found an issue where the git describe wasn't properly executed since the
binary_populate_env.sh script was being executed from a different
directory.

'git -C' forces the describe to run in the running directory for the
script which should contain the correct git information

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
2020-03-19 14:24:18 -07:00
10339 changed files with 343355 additions and 1908838 deletions

115
.bazelrc
View File

@ -1,115 +0,0 @@
build --cxxopt=--std=c++14
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin
build --experimental_ui_max_stdouterr_bytes=2048576
# Configuration to disable tty features for environments like CI
build:no-tty --curses no
build:no-tty --progress_report_interval 10
build:no-tty --show_progress_rate_limit 10
# Build with GPU support by default.
build --define=cuda=true
# rules_cuda configuration
build --@rules_cuda//cuda:enable_cuda
build --@rules_cuda//cuda:cuda_targets=sm_52
build --@rules_cuda//cuda:compiler=nvcc
build --repo_env=CUDA_PATH=/usr/local/cuda
# Configuration to build without GPU support
build:cpu-only --define=cuda=false
# define a separate build folder for faster switching between configs
build:cpu-only --platform_suffix=-cpu-only
# See the note on the config-less build for details about why we are
# doing this. We must also do it for the "-cpu-only" platform suffix.
build --copt=-isystem --copt=bazel-out/k8-fastbuild-cpu-only/bin
# rules_cuda configuration
build:cpu-only --@rules_cuda//cuda:enable_cuda=False
# Definition of --config=shell
# interactive shell immediately before execution
build:shell --run_under="//tools/bazel_tools:shellwrap"
# Disable all warnings for external repositories. We don't care about
# their warnings.
build --per_file_copt=^external/@-w
# Set additional warnings to error level.
#
# Implementation notes:
# * we use file extensions to determine if we are using the C++
# compiler or the cuda compiler
# * we use ^// at the start of the regex to only permit matching
# PyTorch files. This excludes external repos.
#
# Note that because this is logically a command-line flag, it is
# considered the word on what warnings are enabled. This has the
# unfortunate consequence of preventing us from disabling an error at
# the target level because those flags will come before these flags in
# the action invocation. Instead we provide per-file exceptions after
# this.
#
# On the bright side, this means we don't have to more broadly apply
# the exceptions to an entire target.
#
# Looking for CUDA flags? We have a cu_library macro that we can edit
# directly. Look in //tools/rules:cu.bzl for details. Editing the
# macro over this has the following advantages:
# * making changes does not require discarding the Bazel analysis
# cache
# * it allows for selective overrides on individual targets since the
# macro-level opts will come earlier than target level overrides
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=all
# The following warnings come from -Wall. We downgrade them from error
# to warnings here.
#
# sign-compare has a tremendous amount of violations in the
# codebase. It will be a lot of work to fix them, just disable it for
# now.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-sign-compare
# We intentionally use #pragma unroll, which is compiler specific.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-error=unknown-pragmas
build --per_file_copt='^//.*\.(cpp|cc)$'@-Werror=extra
# The following warnings come from -Wextra. We downgrade them from error
# to warnings here.
#
# unused-parameter-compare has a tremendous amount of violations in the
# codebase. It will be a lot of work to fix them, just disable it for
# now.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-unused-parameter
# missing-field-parameters has both a large number of violations in
# the codebase, but it also is used pervasively in the Python C
# API. There are a couple of catches though:
# * we use multiple versions of the Python API and hence have
# potentially multiple different versions of each relevant
# struct. They may have different numbers of fields. It will be
# unwieldy to support multiple versions in the same source file.
# * Python itself for many of these structs recommends only
# initializing a subset of the fields. We should respect the API
# usage conventions of our dependencies.
#
# Hence, we just disable this warning altogether. We may want to clean
# up some of the clear-cut cases that could be risky, but we still
# likely want to have this disabled for the most part.
build --per_file_copt='^//.*\.(cpp|cc)$'@-Wno-missing-field-initializers
build --per_file_copt='//:aten/src/ATen/RegisterCompositeExplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterCompositeImplicitAutograd\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterMkldnnCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseCsrCPU\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterNestedTensorMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterSparseMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterQuantizedMeta\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:aten/src/ATen/RegisterZeroTensor\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterAutogradLazy\.cpp$'@-Wno-error=unused-function
build --per_file_copt='//:torch/csrc/lazy/generated/RegisterLazy\.cpp$'@-Wno-error=unused-function

View File

@ -1 +0,0 @@
4.2.1

View File

@ -1,25 +0,0 @@
[pt]
is_oss=1
[buildfile]
name = BUCK.oss
includes = //tools/build_defs/select.bzl
[repositories]
bazel_skylib = third_party/bazel-skylib/
ovr_config = .
[download]
in_build = true
[cxx]
cxxflags = -std=c++17
should_remap_host_platform = true
cpp = /usr/bin/clang
cc = /usr/bin/clang
cxx = /usr/bin/clang++
cxxpp = /usr/bin/clang++
ld = /usr/bin/clang++
[project]
default_flavors_mode=all

504
.circleci/README.md Normal file
View File

@ -0,0 +1,504 @@
Structure of CI
===============
setup job:
1. Does a git checkout
2. Persists CircleCI scripts (everything in `.circleci`) into a workspace. Why?
We don't always do a Git checkout on all subjobs, but we usually
still want to be able to call scripts one way or another in a subjob.
Persisting files this way lets us have access to them without doing a
checkout. This workspace is conventionally mounted on `~/workspace`
(this is distinguished from `~/project`, which is the conventional
working directory that CircleCI will default to starting your jobs
in.)
3. Write out the commit message to `.circleci/COMMIT_MSG`. This is so
we can determine in subjobs if we should actually run the jobs or
not, even if there isn't a Git checkout.
CircleCI configuration generator
================================
One may no longer make changes to the `.circleci/config.yml` file directly.
Instead, one must edit these Python scripts or files in the `verbatim-sources/` directory.
Usage
----------
1. Make changes to these scripts.
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
You'll see a build failure on TravisCI if the scripts don't agree with the checked-in version.
Motivation
----------
These scripts establish a single, authoritative source of documentation for the CircleCI configuration matrix.
The documentation, in the form of diagrams, is automatically generated and cannot drift out of sync with the YAML content.
Furthermore, consistency is enforced within the YAML config itself, by using a single source of data to generate
multiple parts of the file.
* Facilitates one-off culling/enabling of CI configs for testing PRs on special targets
Also see https://github.com/pytorch/pytorch/issues/17038
Future direction
----------------
### Declaring sparse config subsets
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
# How do the binaries / nightlies / releases work?
### What is a binary?
A binary or package (used interchangeably) is a pre-built collection of c++ libraries, header files, python bits, and other files. We build these and distribute them so that users do not need to install from source.
A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 2.7m, 2.7mu, 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 2.7, 3.5, 3.6, 3.7
* windows: 3.5, 3.6, 3.7
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
* operating system
* Linux - these are all built on CentOS. There haven't been any problems in the past building on CentOS and using on Ubuntu
* MacOS
* Windows - these are built on Azure pipelines
* devtoolset version (gcc compiler version)
* This only matters on Linux cause only Linux uses gcc. tldr is gcc made a backwards incompatible change from gcc 4.8 to gcc 5, because it had to change how it implemented std::vector and std::string
### Where are the binaries?
The binaries are built in CircleCI. There are nightly binaries built every night at 9pm PST (midnight EST) and release binaries corresponding to Pytorch releases, usually every few months.
We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
* static with dependencies
* shared without dependencies
* static without dependencies
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
# CircleCI structure of the binaries
Some quick vocab:
* A\**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on\https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
* **jobs** are a sequence of '**steps**'
* **steps** are usually just a bash script or a builtin CircleCI command.* All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
## How are the workflows structured?
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
1. binarybuilds
1. every day midnight EST
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
4. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. binary_linux_conda_3.7_cpu_build
1. Builds the build. On linux jobs this uses the 'docker executor'.
2. Persists the package to the workspace
2. binary_linux_conda_3.7_cpu_test
1. Loads the package to the workspace
2. Spins up a docker image (on Linux), mapping the package and code repos into the docker
3. Runs some smoke tests in the docker
4. (Actually, for macos this is a step rather than a separate job)
3. binary_linux_conda_3.7_cpu_upload
1. Logs in to aws/conda
2. Uploads the package
2. update_s3_htmls
1. every day 5am EST
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
3. See below for what these are for and why they're needed
4. Three jobs that each examine the current contents of aws and the conda repo and update some html files in s3
3. binarysmoketests
1. every day
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
3. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. smoke_linux_conda_3.7_cpu
1. Downloads the package from the cloud, e.g. using the official pip or conda instructions
2. Runs the smoke tests
## How are the jobs structured?
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources . Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
* binary_linux_build.sh
* binary_linux_test.sh
* binary_linux_upload.sh
* MacOS jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
* binary_macos_build.sh
* binary_macos_test.sh
* binary_macos_upload.sh
* Update html jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/cron/update_s3_htmls.sh
* https://github.com/pytorch/builder/blob/master/cron/upload_binary_sizes.sh
* Smoke jobs (both linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/run_tests.sh
* https://github.com/pytorch/builder/blob/master/smoke_test.sh
* https://github.com/pytorch/builder/blob/master/check_binary.sh
* Common shared code (shared across linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-binary-build-defaults.yml
* binary_checkout.sh - checks out pytorch/builder repo. Right now this also checks out pytorch/pytorch, but it shouldn't. pytorch/pytorch should just be shared through the workspace. This can handle being run before binary_populate_env.sh
* binary_populate_env.sh - parses BUILD_ENVIRONMENT into the separate env variables that make up a binary configuration. Also sets lots of default values, the date, the version strings, the location of folders in s3, all sorts of things. This generally has to be run before other steps.
* binary_install_miniconda.sh - Installs miniconda, cross platform. Also hacks this for the update_binary_sizes job that doesn't have the right env variables
* binary_run_in_docker.sh - Takes a bash script file (the actual test code) from a hardcoded location, spins up a docker image, and runs the script inside the docker image
### **Why do the steps all refer to scripts?**
CircleCI creates a final yaml file by inlining every <<* segment, so if we were to keep all the code in the config.yml itself then the config size would go over 4 MB and cause infra problems.
### **What is binary_run_in_docker for?**
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
* linux test jobs use the machine executor and spin up their own docker. Why this nonsense? It's cause we run nvidia-docker for our GPU tests; any code that calls into the CUDA runtime needs to be run on nvidia-docker. To run a nvidia-docker you need to install some nvidia packages on the host machine and then call docker with the '—runtime nvidia' argument. CircleCI doesn't support this, so we have to do it ourself.
* This is not just a mere inconvenience. **This blocks all of our linux tests from using more than 2 cores.** But there is nothing that we can do about it, but wait for a fix on circleci's side. Right now, we only run some smoke tests (some simple imports) on the binaries, but this also affects non-binary test jobs.
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
binary_run_in_docker.sh is a way to share the docker start-up code between the binary test jobs and the binary smoke test jobs
### **Why does binary_checkout also checkout pytorch? Why shouldn't it?**
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Azure Pipelines structure of the binaries
TODO: fill in stuff
## How are the workflows structured?
TODO: fill in stuff
## How are the jobs structured?
TODO: fill in stuff
# Code structure of the binaries (circleci agnostic)
## Overview
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder) , which is a repo that defines how all the binaries are built. The relevant code is
```
# All code needed to set-up environments for build code to run in,
# but only code that is specific to the current CI system
pytorch/pytorch
- .circleci/ # Folder that holds all circleci related stuff
- config.yml # GENERATED file that actually controls all circleci behavior
- verbatim-sources # Used to generate job/workflow sections in ^
- scripts/ # Code needed to prepare circleci environments for binary build scripts
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
- cmake files # used in normal building of pytorch
# All code needed to prepare a binary build, given an environment
# with all the right variables/packages/paths.
pytorch/builder
# Given an installed binary and a proper python env, runs some checks
# to make sure the binary was built the proper way. Checks things like
# the library dependencies, symbols present, etc.
- check_binary.sh
# Given an installed binary, runs python tests to make sure everything
# is in order. These should be de-duped. Right now they both run smoke
# tests, but are called from different places. Usually just call some
# import statements, but also has overlap with check_binary.sh above
- run_tests.sh
- smoke_test.sh
# Folders that govern how packages are built. See paragraphs below
- conda/
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
- pytorch-nightly/ # Build-folder
- manywheel/
- build_cpu.sh # Entrypoint for cpu builds
- build.sh # Entrypoint for CUDA builds
- build_common.sh # Actual build script that ^^ call into
- wheel/
- build_wheel.sh # Entrypoint for wheel builds
- windows/
- build_pytorch.bat # Entrypoint for wheel builds on Windows
```
Every type of package has an entrypoint build script that handles the all the important logic.
## Conda
Linux, MacOS and Windows use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
tldr; on conda-build is
1. Creates a brand new conda environment, based off of deps in the meta.yaml
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
2. If the build fails this environment will stick around. You can activate it for much easier debugging. The “General Python” section below explains what exactly a python “environment” is.
2. Calls build.sh in the environment
3. Copies the finished package to a new conda env, also specified by the meta.yaml
4. Runs some simple import tests (if specified in the meta.yaml)
5. Saves the finished package as a tarball
The build.sh we use is essentially a wrapper around ```python setup.py build``` , but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The entrypoint file `builder/conda/build_conda.sh` is complicated because
* It works for Linux, MacOS and Windows
* The mac builds used to create their own environments, since they all used to be on the same machine. Theres now a lot of extra logic to handle conda envs. This extra machinery could be removed
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
## Manywheels (linux pip and libtorch packages)
Manywheels are pip packages for linux distros. Note that these manywheels are not actually manylinux compliant.
`builder/manywheel/build_cpu.sh` and `builder/manywheel/build.sh` (for CUDA builds) just set different env vars and then call into `builder/manywheel/build_common.sh`
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
* There is a lot of messing with rpaths. This is necessary, but could be made much much simpler if the above issues were fixed.
## Wheels (MacOS pip and libtorch packages)
The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
* The mac builds used to all run on one machine (we didnt have autoscaling mac machines till circleci). So this script handled siloing itself by setting-up and tearing-down its build env and siloing itself into its own build directory.
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* Ditto the comment above. This should definitely be separated out.
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## Windows Wheels (Windows pip and libtorch packages)
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## General notes
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
* These should all be consolidated
* These must run on all OS types: MacOS, Linux, and Windows
* These all run smoke tests at the moment. They inspect the packages some, maybe run a few import statements. They DO NOT run the python tests nor the cpp tests. The idea is that python tests on master and PR merges will catch all breakages. All these tests have to do is make sure the special binary machinery didnt mess anything up.
* There are separate run_tests.sh and smoke_test.sh because one used to be called by the smoke jobs and one used to be called by the binary test jobs (see circleci structure section above). This is still true actually, but these could be united into a single script that runs these checks, given an installed pytorch package.
### Note on libtorch
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
* Its confusing. Most of those scripts deal with python specifics.
* The extra conditionals everywhere severely complicate the wheel build scripts
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
### Note on docker images / Dockerfiles
All linux builds occur in docker images. The docker images are
* pytorch/conda-cuda
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
* Also used for cpu builds
* pytorch/manylinux-cuda90
* pytorch/manylinux-cuda92
* pytorch/manylinux-cuda100
* Also used for cpu builds
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
### General Python
* This is still a good explanation of python installations https://caffe2.ai/docs/faq.html#why-do-i-get-import-errors-in-python-when-i-try-to-use-caffe2
# How to manually rebuild the binaries
tldr; make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
## How to test changes to the binaries via .circleci
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using ```.circleci/regenerate.sh``` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
```
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
# Regenerate the yaml, has to be in python 3.7
.circleci/regenerate.sh
# Make a commit
git add .circleci *
git commit -m "My real changes"
git push origin my_branch
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
# Also eliminate ensure-consistency and should_run_job checks
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
# Make a commit you won't keep
git add .circleci
git commit -m "[DO NOT LAND] testing binaries for above changes"
git push origin my_branch
# Now you need to make some changes to the first commit.
git rebase -i HEAD~2 # mark the first commit as 'edit'
# Make the changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
.circleci/regenerate.sh
# Ammend the commit and recontinue
git add .circleci
git commit --amend
git rebase --continue
# Update the PR, need to force since the commits are different now
git push origin my_branch --force
```
The advantage of this flow is that you can make new changes to the base commit and regenerate the .circleci without having to re-write which binary jobs you want to test on. The downside is that all updates will be force pushes.
## How to build a binary locally
### Linux
You can build Linux binaries locally easily using docker.
```
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
#
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
# machine that you're running the command on) accessible to the docker
# container at path/to/bar. So if you then run `touch path/to/bar/baz`
# in the docker container then you will see path/to/foo/baz on your local
# machine. You could also clone the pytorch and builder repos in the docker.
#
# If you're building a CUDA binary then use `nvidia-docker run` instead, see below.
#
# If you know how, add ccache as a volume too and speed up everything
docker run \
-v your/pytorch/repo:/pytorch \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
# The builds generate lots of output so you probably need this when
# building locally.
/builder/conda/build_pytorch.sh |& tee build_output.log
```
**Building CUDA binaries on docker**
To build a CUDA binary you need to use `nvidia-docker run` instead of just `docker run` (or you can manually pass `--runtime=nvidia`). This adds some needed libraries and things to build CUDA stuff.
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a loong time).
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
### MacOS
Theres no easy way to generate reproducible hermetic MacOS environments. If you have a Mac laptop then you can try emulating the .circleci environments as much as possible, but you probably have packages in /usr/local/, possibly installed by brew, that will probably interfere with the build. If youre trying to repro an error on a Mac build in .circleci and you cant seem to repro locally, then my best advice is actually to iterate on .circleci :/
But if you want to try, then Id recommend
```
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
# Install a new miniconda
# First remove any other python or conda installation from your PATH
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
export PATH="~/my_new_conda/bin:$PATH"
# Create a clean python env
# All MacOS builds use conda to manage the python env and dependencies
# that are built with, even the pip packages
conda create -yn binary python=2.7
conda activate binary
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint you want
path/to/builder/wheel/build_wheel.sh
```
N.B. installing a brand new miniconda is important. This has to do with how conda installations work. See the “General Python” section above, but tldr; is that
1. You make the conda command accessible by prepending `path/to/conda_root/bin` to your PATH.
2. You make a new env and activate it, which then also gets prepended to your PATH. Now you have `path/to/conda_root/envs/new_env/bin:path/to/conda_root/bin:$PATH`
3. Now say you (or some code that you ran) call python executable `foo`
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called base), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
### Windows
TODO: fill in

View File

@ -5,6 +5,9 @@ for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
In addition to generating config.yml content, the tree is also traversed
to produce a visualization of config dimensions.
"""
from collections import OrderedDict
@ -25,14 +28,44 @@ DEPS_INCLUSION_DIMENSIONS = [
]
def get_processor_arch_name(gpu_version):
return "cpu" if not gpu_version else (
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
)
def get_processor_arch_name(cuda_version):
return "cpu" if not cuda_version else "cu" + cuda_version
LINUX_PACKAGE_VARIANTS = OrderedDict(
manywheel=[
"3.5m",
"3.6m",
"3.7m",
"3.8m",
],
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7m",
],
)
CONFIG_TREE_DATA = OrderedDict(
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)),
windows=(dimensions.CUDA_VERSIONS, OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)),
)
CONFIG_TREE_DATA_NO_WINDOWS = CONFIG_TREE_DATA.copy()
CONFIG_TREE_DATA_NO_WINDOWS.pop("windows")
# GCC config variants:
#
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
@ -67,12 +100,12 @@ class TopLevelNode(ConfigNode):
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
def __init__(self, parent, os_name, cuda_versions, py_tree):
super(OSConfigNode, self).__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
self.props["gpu_versions"] = gpu_versions
self.props["cuda_versions"] = cuda_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
@ -85,14 +118,13 @@ class PackageFormatConfigNode(ConfigNode):
self.props["python_versions"] = python_versions
self.props["package_format"] = package_format
def get_children(self):
if self.find_prop("os_name") == "linux":
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class LinuxGccConfigNode(ConfigNode):
@ -102,22 +134,14 @@ class LinuxGccConfigNode(ConfigNode):
self.props["gcc_config_variant"] = gcc_config_variant
def get_children(self):
gpu_versions = self.find_prop("gpu_versions")
cuda_versions = self.find_prop("cuda_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == 'devtoolset7':
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
cuda_versions = filter(lambda x: x != "90", cuda_versions)
# XXX disabling conda rocm build since docker images are not there
if self.find_prop("package_format") == 'conda':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
# XXX libtorch rocm build is temporarily disabled
if self.find_prop("package_format") == 'libtorch':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
return [ArchConfigNode(self, v) for v in gpu_versions]
return [ArchConfigNode(self, v) for v in cuda_versions]
class WindowsLibtorchConfigNode(ConfigNode):
@ -127,14 +151,14 @@ class WindowsLibtorchConfigNode(ConfigNode):
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
def __init__(self, parent, cu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
self.props["gpu"] = gpu
self.props["cu"] = cu
def get_children(self):
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
@ -147,6 +171,8 @@ class PyVersionConfigNode(ConfigNode):
self.props["pyver"] = pyver
def get_children(self):
smoke = self.find_prop("smoke")
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")

View File

@ -1,15 +1,15 @@
from collections import OrderedDict
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.data.binary_build_data as binary_build_data
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
class Conf(object):
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
self.os = os
self.gpu_version = gpu_version
self.cuda_version = cuda_version
self.pydistro = pydistro
self.parms = parms
self.smoke = smoke
@ -18,7 +18,7 @@ class Conf(object):
self.libtorch_config_variant = libtorch_config_variant
def gen_build_env_parms(self):
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
@ -27,19 +27,7 @@ class Conf(object):
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(
f"pytorch/conda-builder:{self.gpu_version}"
)
return miniutils.quote("pytorch/pytorch-binary-docker-image-ubuntu16.04:latest")
docker_word_substitution = {
"manywheel": "manylinux",
@ -49,12 +37,9 @@ class Conf(object):
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
# TODO cuda images should consolidate into tag-base images similar to rocm
alt_docker_suffix = "cuda102" if not self.gpu_version else (
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
alt_docker_suffix = self.cuda_version or "102"
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
@ -79,89 +64,67 @@ class Conf(object):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
job_def["requires"] = ["setup"]
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["postnightly"],
)
job_def["requires"].append("update_s3_htmls_for_nightlies")
job_def["requires"].append("update_s3_htmls_for_nightlies_devtoolset7")
job_def["filters"] = {"branches": {"only": "postnightly"}}
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
filter_branches = ["nightly"]
# we only want to add the release branch filter if we aren't
# uploading
if phase not in ["upload"]:
filter_branches.append(r"/release\/.*/")
job_def["filters"] = {
"branches": {
"only": filter_branches
},
# Will run on tags like v1.5.0-rc1, etc.
"tags": {
# Using a raw string here to avoid having to escape
# anything
"only": r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
}
}
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["requires"].append(self.gen_build_name("build", nightly))
if not (self.smoke and self.os == "macos"):
job_def["docker_image"] = self.gen_docker_image()
# fix this. only works on cuda not rocm
if self.os != "windows" and self.gpu_version:
if self.cuda_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.gpu_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
if self.cuda_version:
job_def["resource_class"] = "gpu.medium"
if phase == "upload":
job_def["context"] = "org-member"
job_def["requires"] = ["setup", self.gen_build_name(upload_phase_dependency, nightly)]
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name : job_def}
def gen_upload_job(self, phase, requires_dependency):
"""Generate binary_upload job for configuration
Output looks similar to:
- binary_upload:
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
context: org-member
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
filters:
branches:
only:
- nightly
tags:
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
package_type: manywheel
upload_subfolder: cu113
"""
return {
"binary_upload": OrderedDict({
"name": self.gen_build_name(phase, nightly=True),
"context": "org-member",
"requires": [self.gen_build_name(
requires_dependency,
nightly=True
)],
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"package_type": self.pydistro,
"upload_subfolder": binary_build_data.get_processor_arch_name(
self.gpu_version,
),
})
}
def get_root(smoke, name):
return binary_build_data.TopLevelNode(
name,
binary_build_data.CONFIG_TREE_DATA,
smoke,
)
if smoke:
return binary_build_data.TopLevelNode(
name,
binary_build_data.CONFIG_TREE_DATA_NO_WINDOWS,
smoke,
)
else:
return binary_build_data.TopLevelNode(
name,
binary_build_data.CONFIG_TREE_DATA,
smoke,
)
def gen_build_env_list(smoke):
@ -173,10 +136,10 @@ def gen_build_env_list(smoke):
for c in config_list:
conf = Conf(
c.find_prop("os_name"),
c.find_prop("gpu"),
c.find_prop("cu"),
c.find_prop("package_format"),
[c.find_prop("pyver")],
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
c.find_prop("smoke"),
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
@ -185,35 +148,24 @@ def gen_build_env_list(smoke):
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def predicate_exclude_nonlinux_and_libtorch(config):
return config.os == "linux"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_upload_job("upload", phase_dependency))
phase_dependency = "test" if predicate_exclude_nonlinux_and_libtorch(conf) else "build"
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
return mylist
def get_post_upload_jobs():
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["postnightly"],
),
},
},
]
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
filtered_configs = filter(predicate_exclude_nonlinux_and_libtorch, configs)
tests = []
for conf_options in filtered_configs:
@ -228,9 +180,7 @@ def get_jobs(toplevel_key, smoke):
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
# don't test for macos_arm64 as it's cross compiled
if phase != "test" or build_config.os != "macos_arm64":
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
return jobs_list

View File

@ -0,0 +1,91 @@
from cimodel.lib.conf_tree import ConfigNode, XImportant
from cimodel.lib.conf_tree import Ver
CONFIG_TREE_DATA = [
(Ver("ubuntu", "16.04"), [
([Ver("clang", "7")], [XImportant("onnx_main_py3.6"),
XImportant("onnx_ort1_py3.6"),
XImportant("onnx_ort2_py3.6")]),
]),
]
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
# noinspection PyMethodMayBeStatic
def modify_label(self, label):
return str(label)
def init2(self, node_name):
pass
def get_children(self):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
def is_build_only(self):
if str(self.find_prop("language_version")) == "onnx_main_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
return False
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
"clang3.8",
"clang3.9",
"clang7",
"android",
}) or self.find_prop("distro_version").name == "macos"
def is_test_only(self):
if str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
return True
return False
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super(TopLevelNode, self).__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return DistroConfigNode
class DistroConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["distro_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return CompilerConfigNode
class CompilerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return LanguageConfigNode
class LanguageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["language_version"] = node_name
self.props["build_only"] = self.is_build_only()
self.props["test_only"] = self.is_test_only()
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["important"] = True
def get_children(self):
return []

View File

@ -0,0 +1,175 @@
from collections import OrderedDict
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
from cimodel.lib.conf_tree import Ver
import cimodel.lib.miniutils as miniutils
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
from dataclasses import dataclass
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
DOCKER_IMAGE_VERSION = "345"
@dataclass
class Conf:
language: str
distro: Ver
# There could be multiple compiler versions configured (e.g. nvcc
# for gpu files and host compiler (gcc/clang) for cpu files)
compilers: [Ver]
build_only: bool
test_only: bool
is_important: bool
@property
def compiler_names(self):
return [c.name for c in self.compilers]
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
def get_cudnn_insertion(self):
omit = self.language == "onnx_main_py3.6" \
or self.language == "onnx_ort1_py3.6" \
or self.language == "onnx_ort2_py3.6" \
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
return [] if omit else ["cudnn7"]
def get_build_name_root_parts(self):
return [
"caffe2",
self.language,
] + self.get_build_name_middle_parts()
def get_build_name_middle_parts(self):
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
def construct_phase_name(self, phase):
root_parts = self.get_build_name_root_parts()
build_name_substitutions = {
"onnx_ort1_py3.6": "onnx_main_py3.6",
"onnx_ort2_py3.6": "onnx_main_py3.6",
}
if phase == "build":
root_parts = [miniutils.override(r, build_name_substitutions) for r in root_parts]
return "_".join(root_parts + [phase]).replace(".", "_")
def get_platform(self):
platform = self.distro.name
if self.distro.name != "macos":
platform = "linux"
return platform
def gen_docker_image(self):
lang_substitutions = {
"onnx_main_py3.6": "py3.6",
"onnx_ort1_py3.6": "py3.6",
"onnx_ort2_py3.6": "py3.6",
"cmake": "py3",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [lang] + self.get_build_name_middle_parts()
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
def gen_workflow_params(self, phase):
parameters = OrderedDict()
lang_substitutions = {
"onnx_py3": "onnx-py3",
"onnx_main_py3.6": "onnx-main-py3.6",
"onnx_ort1_py3.6": "onnx-ort1-py3.6",
"onnx_ort2_py3.6": "onnx-ort2-py3.6",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [
"caffe2",
lang,
] + self.get_build_name_middle_parts() + [phase]
build_env_name = "-".join(parts)
parameters["build_environment"] = miniutils.quote(build_env_name)
if "ios" in self.compiler_names:
parameters["build_ios"] = miniutils.quote("1")
if phase == "test":
# TODO cuda should not be considered a compiler
if "cuda" in self.compiler_names:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if self.distro.name != "macos":
parameters["docker_image"] = self.gen_docker_image()
if self.build_only:
parameters["build_only"] = miniutils.quote("1")
if phase == "test":
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
parameters["resource_class"] = resource_class
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.construct_phase_name(phase)
job_def["requires"] = ["setup"]
if phase == "test":
job_def["requires"].append(self.construct_phase_name("build"))
job_name = "caffe2_" + self.get_platform() + "_test"
else:
job_name = "caffe2_" + self.get_platform() + "_build"
if not self.is_important:
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name : job_def}
def get_root():
return TopLevelNode("Caffe2 Builds", CONFIG_TREE_DATA)
def instantiate_configs():
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
c = Conf(
language=fc.find_prop("language_version"),
distro=fc.find_prop("distro_version"),
compilers=fc.find_prop("compiler_version"),
build_only=fc.find_prop("build_only"),
test_only=fc.find_prop("test_only"),
is_important=fc.find_prop("important"),
)
config_list.append(c)
return config_list
def get_workflow_jobs():
configs = instantiate_configs()
x = []
for conf_options in configs:
phases = ["build"]
if not conf_options.build_only:
phases = dimensions.PHASES
if conf_options.test_only:
phases = ["test"]
for phase in phases:
x.append(conf_options.gen_workflow_job(phase))
return x

View File

@ -1,24 +1,15 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
None, # cpu build
"92",
"101",
"102",
"113",
"116",
"117",
]
ROCM_VERSIONS = [
"4.3.1",
"4.5.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = [
"3.5",
"3.6",
"3.7",
"3.8",
"3.9",
"3.10"
"3.8"
]

View File

@ -1,7 +1,64 @@
from cimodel.lib.conf_tree import ConfigNode
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
CONFIG_TREE_DATA = [
("xenial", [
(None, [
X("3.5"),
X("nightly"),
]),
("gcc", [
("5.4", [ # All this subtree rebases to master and then build
XImportant("3.6"),
("3.6", [
("parallel_tbb", [X(True)]),
("parallel_native", [X(True)]),
]),
]),
# TODO: bring back libtorch test
("7", [X("3.6")]),
]),
("clang", [
("5", [
XImportant("3.6"), # This is actually the ASAN build
]),
("7", [
("3.6", [
("xla", [XImportant(True)]),
]),
]),
]),
("cuda", [
("9", [
# Note there are magic strings here
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L21
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L143
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L153
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453144)
X("3.6"),
]),
("9.2", [X("3.6")]),
("10.1", [X("3.6")]),
("10.2", [
XImportant("3.6"),
("3.6", [
("libtorch", [XImportant(True)])
]),
]),
]),
("android", [
("r19c", [
("3.6", [
("android_abi", [XImportant("x86_32")]),
("android_abi", [X("x86_64")]),
("android_abi", [X("arm-v7a")]),
("android_abi", [X("arm-v8a")]),
])
]),
]),
]),
]
@ -44,7 +101,6 @@ class DistroConfigNode(TreeConfigNode):
next_nodes = {
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
@ -53,8 +109,6 @@ class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
@ -69,44 +123,16 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
experimental_feature = self.find_prop("experimental_feature")
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mps": MPSConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"crossref": CrossRefConfigNode,
"dynamo": DynamoConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"pure_torch": PureTorchConfigNode,
"slow_gradcheck": SlowGradcheckConfigNode,
"android_abi": AndroidAbiConfigNode,
}
return next_nodes[experimental_feature]
class SlowGradcheckConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_slow_gradcheck"] = True
def child_constructor(self):
return ExperimentalFeatureConfigNode
class PureTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PURE_TORCH=" + str(label)
def init2(self, node_name):
self.props["is_pure_torch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class XlaConfigNode(TreeConfigNode):
def modify_label(self, label):
return "XLA=" + str(label)
@ -117,50 +143,6 @@ class XlaConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class MPSConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MPS=" + str(label)
def init2(self, node_name):
self.props["is_mps"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Asan=" + str(label)
def init2(self, node_name):
self.props["is_asan"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ONNXConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Onnx=" + str(label)
def init2(self, node_name):
self.props["is_onnx"] = node_name
def child_constructor(self):
return ImportantConfigNode
class VulkanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Vulkan=" + str(label)
def init2(self, node_name):
self.props["is_vulkan"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
@ -171,23 +153,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class CrossRefConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_crossref"] = node_name
def child_constructor(self):
return ImportantConfigNode
class DynamoConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_dynamo"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
@ -198,7 +163,6 @@ class ParallelNativeConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
@ -207,33 +171,16 @@ class LibTorchConfigNode(TreeConfigNode):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
return ImportantConfigNode
class AndroidAbiConfigNode(TreeConfigNode):
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ShardTestConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["shard_test"] = node_name
self.props["android_abi"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)
@ -246,6 +193,7 @@ class ImportantConfigNode(TreeConfigNode):
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
@ -258,19 +206,6 @@ class XenialCompilerConfigNode(TreeConfigNode):
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class XenialCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
@ -278,12 +213,3 @@ class XenialCompilerVersionConfigNode(TreeConfigNode):
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -1,13 +1,19 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Optional
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.data.simple.util.docker_constants import gen_docker_image
from dataclasses import dataclass, field
from typing import List, Optional
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/"
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
# TOP OF .circleci/config.yml
DOCKER_IMAGE_VERSION = "f990c76a-a798-42bb-852f-5be5006f8026"
@dataclass
@ -17,25 +23,17 @@ class Conf:
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
rocm_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
is_vulkan: bool = False
is_pure_torch: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional["Conf"] = None
parent_build: Optional['Conf'] = None
is_libtorch: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
build_only: bool = False
@staticmethod
def is_test_phase(phase):
return "test" in phase
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
@ -48,47 +46,31 @@ class Conf:
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_vulkan and not for_docker:
leading.append("vulkan")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.is_pure_torch and not for_docker:
leading.append("pure_torch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
cuda_parms = []
if self.cuda_version:
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
if self.rocm_version:
cuda_parms.extend([f"rocm{self.rocm_version}"])
cuda_parms.extend(["cuda" + self.cuda_version, "cudnn7"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
if (not for_docker and self.parms_list_ignored_for_docker_image is not None):
result = result + self.parms_list_ignored_for_docker_image
return result
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
image_name, _ = gen_docker_image(base_build_env_name)
return miniutils.quote(image_name)
def gen_docker_image_requires(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
_, requires = gen_docker_image(base_build_env_name)
return miniutils.quote(requires)
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + base_build_env_name + ":" + str(DOCKER_IMAGE_VERSION))
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
def gen_build_name(self, build_or_test):
return (
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
.replace(".", "_")
.replace("-", "_")
)
return ("_".join(map(str, self.get_build_job_name_pieces(build_or_test)))).replace(".", "_").replace("-", "_")
def get_dependents(self):
return self.dependent_tests or []
@ -100,28 +82,22 @@ class Conf:
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if Conf.is_test_phase(phase) and self.gpu_resource:
if phase == "test" and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if Conf.is_test_phase(phase):
if phase == "test":
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
if self.rocm_version is not None:
resource_class = "pytorch/amd-gpu"
parameters["resource_class"] = resource_class
if phase == "build" and self.rocm_version is not None:
parameters["resource_class"] = "xlarge"
if hasattr(self, 'filters'):
parameters['filters'] = self.filters
if self.build_only:
parameters['build_only'] = miniutils.quote(str(int(True)))
return parameters
def gen_workflow_job(self, phase):
# All jobs require the setup job
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
job_def["requires"] = ["setup"]
if Conf.is_test_phase(phase):
if phase == "test":
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
@ -129,89 +105,69 @@ class Conf:
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_def["requires"].append(dependency_build.gen_build_name("build"))
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
job_def["requires"] = [self.gen_docker_image_requires()]
if not self.is_important:
job_def["filters"] = gen_filter_dict()
# If you update this, update
# caffe2_build_definitions.py too
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name: job_def}
return {job_name : job_def}
# TODO This is a hack to special case some configs just for the workflow list
class HiddenConf(object):
def __init__(self, name, parent_build=None, filters=None):
def __init__(self, name, parent_build=None):
self.name = name
self.parent_build = parent_build
self.filters = filters
def gen_workflow_job(self, phase):
return {
self.gen_build_name(phase): {
"requires": [self.parent_build.gen_build_name("build")],
"filters": self.filters,
}
}
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
def gen_build_name(self, _):
return self.name
class DocPushConf(object):
def __init__(self, name, parent_build=None, branch="master"):
self.name = name
self.parent_build = parent_build
self.branch = branch
def gen_workflow_job(self, phase):
return {
"pytorch_doc_push": {
"name": self.name,
"branch": self.branch,
"requires": [self.parent_build],
"context": "org-member",
"filters": gen_filter_dict(branches_list=["nightly"],
tags_list=RC_PATTERN)
}
}
# TODO Convert these to graph nodes
def gen_dependent_configs(xenial_parent_config):
extra_parms = [
(["multigpu"], "large"),
(["NO_AVX2"], "medium"),
(["NO_AVX", "NO_AVX2"], "medium"),
(["slow"], "medium"),
(["nogpu"], None),
]
configs = []
for parms, gpu in extra_parms:
c = Conf(
xenial_parent_config.distro,
["py3"] + parms,
pyver="3.6",
cuda_version=xenial_parent_config.cuda_version,
restrict_phases=["test"],
gpu_resource=gpu,
parent_build=xenial_parent_config,
is_important=xenial_parent_config.is_important,
)
configs.append(c)
return configs
def gen_docs_configs(xenial_parent_config):
configs = []
configs.append(
HiddenConf(
"pytorch_python_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_python_doc_push",
parent_build="pytorch_python_doc_build",
branch="site",
)
)
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
configs.append(
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_cpp_doc_push",
parent_build="pytorch_cpp_doc_build",
branch="master",
)
)
return configs
@ -225,31 +181,21 @@ def gen_tree():
return configs_list
def instantiate_configs(only_slow_gradcheck):
def instantiate_configs():
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
restrict_phases = None
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_crossref = fc.find_prop("is_crossref") or False
is_dynamo = fc.find_prop("is_dynamo") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
parms_list_ignored_for_docker_image = []
if only_slow_gradcheck ^ is_slow_gradcheck:
continue
python_version = None
if compiler_name == "cuda" or compiler_name == "android":
python_version = fc.find_prop("pyver")
@ -258,14 +204,9 @@ def instantiate_configs(only_slow_gradcheck):
parms_list = ["py" + fc.find_prop("pyver")]
cuda_version = None
rocm_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
elif compiler_name == "rocm":
rocm_version = fc.find_prop("compiler_version")
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
elif compiler_name == "android":
android_ndk_version = fc.find_prop("compiler_version")
# TODO: do we need clang to compile host binaries like protoc?
@ -279,42 +220,19 @@ def instantiate_configs(only_slow_gradcheck):
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
parms_list.append(gcc_version)
if is_asan:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
# TODO: This is a nasty special case
if compiler_name == "clang" and not is_xla:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_crossref:
parms_list_ignored_for_docker_image.append("crossref")
if is_dynamo:
parms_list_ignored_for_docker_image.append("dynamo")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
restrict_phases = ["build", "ort_test1", "ort_test2"]
if cuda_version:
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
if cuda_version in ["9.2", "10", "10.1", "10.2"]:
# TODO The gcc version is orthogonal to CUDA version?
parms_list.append("gcc7")
is_libtorch = fc.find_prop("is_libtorch") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
shard_test = fc.find_prop("shard_test") or False
# TODO: fix pure_torch python test packaging issue.
if shard_test:
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
restrict_phases.extend(["test1", "test2"])
if build_only or is_pure_torch:
restrict_phases = ["build"]
if is_slow_gradcheck:
parms_list_ignored_for_docker_image.append("old")
parms_list_ignored_for_docker_image.append("gradcheck")
gpu_resource = None
if cuda_version and cuda_version != "10":
@ -326,43 +244,49 @@ def instantiate_configs(only_slow_gradcheck):
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
rocm_version,
is_xla,
is_vulkan,
is_pure_torch,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
is_important=is_important,
parallel_backend=parallel_backend,
build_only=build_only,
)
# run docs builds on "pytorch-linux-xenial-py3.7-gcc5.4". Docs builds
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build?
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.7"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
and not is_pure_torch
and compiler_name == "gcc"
and fc.find_prop("compiler_version") == "5.4"
):
c.filters = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
if distro_name == 'xenial' and fc.find_prop("pyver") == '3.6' \
and cuda_version is None \
and parallel_backend is None \
and compiler_name == 'gcc' \
and fc.find_prop('compiler_version') == '5.4':
c.dependent_tests = gen_docs_configs(c)
if cuda_version == "10.1" and python_version == "3.6" and not is_libtorch:
c.dependent_tests = gen_dependent_configs(c)
if (compiler_name == "gcc"
and compiler_version == "5.4"
and not is_libtorch
and parallel_backend is None):
bc_breaking_check = Conf(
"backward-compatibility-check",
[],
is_xla=False,
restrict_phases=["test"],
is_libtorch=False,
is_important=True,
parent_build=c,
)
c.dependent_tests.append(bc_breaking_check)
config_list.append(c)
return config_list
def get_workflow_jobs(only_slow_gradcheck=False):
def get_workflow_jobs():
config_list = instantiate_configs(only_slow_gradcheck)
config_list = instantiate_configs()
x = []
for conf_options in config_list:
@ -372,7 +296,7 @@ def get_workflow_jobs(only_slow_gradcheck=False):
for phase in phases:
# TODO why does this not have a test?
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
if phase == "test" and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))

View File

@ -1,28 +0,0 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.lib.miniutils import quote
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
def gen_workflow_job(channel: str):
return OrderedDict(
{
"anaconda_prune": OrderedDict(
{
"name": f"anaconda-prune-{channel}",
"context": quote("org-member"),
"packages": quote(PACKAGES_TO_PRUNE),
"channel": channel,
"filters": gen_filter_dict(branches_list=["postnightly"]),
}
)
}
)
def get_workflow_jobs():
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]

View File

@ -1,39 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# NOTE: All hardcoded docker image builds have been migrated to GHA
IMAGE_NAMES = [
]
# This entry should be an element from the list above
# This should contain the image matching the "slow_gradcheck" entry in
# pytorch_build_data.py
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
"""Generates a list of docker image build definitions"""
ret = []
for image_name in images:
if image_name.startswith('docker-'):
image_name = image_name.lstrip('docker-')
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
continue
parameters = OrderedDict({
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
})
if image_name == "pytorch-linux-xenial-py3.7-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
ret.append(OrderedDict(
{
"docker_build_job": parameters
}
))
return ret

View File

@ -1,82 +0,0 @@
from cimodel.data.simple.util.versions import MultiPartVersion
from cimodel.data.simple.util.branch_filters import gen_filter_dict_exclude
import cimodel.lib.miniutils as miniutils
XCODE_VERSION = MultiPartVersion([12, 5, 1])
class ArchVariant:
def __init__(self, name, custom_build_name=""):
self.name = name
self.custom_build_name = custom_build_name
def render(self):
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
return "-".join([self.name] + extra_parts).replace("_", "-")
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
self.xcode_version = xcode_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self):
version_parts = self.xcode_version.render_dots_or_parts("-")
build_variant_suffix = self.arch_variant.render()
return [
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "-".join(self.gen_name_parts())
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"name": self.gen_job_name(),
"build_environment": self.gen_job_name(),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
props_dict["filters"] = gen_filter_dict_exclude()
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
# "use_metal": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom-ops"), extra_props={
# "op_list": "mobilenetv2.yaml",
# "lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "coreml"), is_org_member_context=False, extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
# "use_coreml": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,148 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict_exclude
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = (
non_phase_parts
+ extra_name_list
+ [
"build" if self.is_build else None,
"test" if self.is_test else None,
]
)
full_job_name = "_".join(list(filter(None, full_job_name_list)))
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({"lite_interpreter": True}.items()),
),
]
def get_new_workflow_jobs():
return [
OrderedDict(
{
"mac_build": OrderedDict(
{
"name": "macos-12-py3-x86-64-build",
"build-environment": "macos-12-py3-x86-64",
"xcode-version": quote("13.3.1"),
"filters": gen_filter_dict_exclude()
}
)
}
),
OrderedDict(
{
"mac_test": OrderedDict(
{
"name": "macos-12-py3-x86-64-test-1-2-default",
"build-environment": "macos-12-py3-x86-64",
"xcode-version": quote("13.3.1"),
"shard-number": quote("1"),
"num-test-shards": quote("2"),
"requires": ["macos-12-py3-x86-64-build"],
"filters": gen_filter_dict_exclude()
}
)
}
),
OrderedDict(
{
"mac_test": OrderedDict(
{
"name": "macos-12-py3-x86-64-test-2-2-default",
"build-environment": "macos-12-py3-x86-64",
"xcode-version": quote("13.3.1"),
"shard-number": quote("2"),
"num-test-shards": quote("2"),
"requires": ["macos-12-py3-x86-64-build"],
"filters": gen_filter_dict_exclude()
}
)
}
),
OrderedDict(
{
"mac_test": OrderedDict(
{
"name": "macos-12-py3-x86-64-test-1-1-functorch",
"build-environment": "macos-12-py3-x86-64",
"xcode-version": quote("13.3.1"),
"shard-number": quote("1"),
"num-test-shards": quote("1"),
"test-config": "functorch",
"requires": ["macos-12-py3-x86-64-build"],
"filters": gen_filter_dict_exclude()
}
)
}
),
OrderedDict(
{
"mac_build": OrderedDict(
{
"name": "macos-12-py3-x86-64-lite-interpreter-build-test",
"build-environment": "macos-12-py3-lite-interpreter-x86-64",
"xcode-version": quote("13.3.1"),
"build-generates-artifacts": "false",
"filters": gen_filter_dict_exclude()
}
)
}
),
OrderedDict(
{
"mac_build": OrderedDict(
{
"name": "macos-12-py3-arm64-build",
"build-environment": "macos-12-py3-arm64",
"xcode-version": quote("13.3.1"),
"python-version": quote("3.9.12"),
"filters": gen_filter_dict_exclude()
}
)
}
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,53 +0,0 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class MobileJob:
def __init__(
self,
docker_image,
docker_requires,
variant_parts,
is_master_only=False):
self.docker_image = docker_image
self.docker_requires = docker_requires
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"requires": self.docker_requires,
"name": full_job_name,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = [
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,85 +0,0 @@
import cimodel.data.simple.ios_definitions as ios_definitions
import cimodel.lib.miniutils as miniutils
class IOSNightlyJob:
def __init__(self,
variant,
is_full_jit=False,
is_upload=False):
self.variant = variant
self.is_full_jit = is_full_jit
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, sep):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
extra_name = ["full_jit"] if self.is_full_jit else []
common_name_pieces = [
"ios",
] + extra_name + [
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(sep) + [
"nightly",
self.variant,
"build",
] + extra_name_suffix
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(None))
def gen_tree(self):
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
extra_requires = [x.gen_job_name() for x in build_configs] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(".")),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
props_dict["use_metal"] = miniutils.quote(str(int(True)))
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
if self.is_full_jit:
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
template_name = "_".join([
"binary",
"ios",
self.get_phase_name(),
])
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
BUILD_CONFIGS_FULL_JIT = [
IOSNightlyJob("x86_64", is_full_jit=True),
IOSNightlyJob("arm64", is_full_jit=True),
]
WORKFLOW_DATA = BUILD_CONFIGS + BUILD_CONFIGS_FULL_JIT + [
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,22 +0,0 @@
from typing import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict_exclude
def get_workflow_job():
return [
OrderedDict(
{
"upload_test_stats": OrderedDict(
{
"name": "upload test status",
"requires": [
"macos-12-py3-x86-64-test-1-2-default",
"macos-12-py3-x86-64-test-2-2-default",
"macos-12-py3-x86-64-test-1-1-functorch",
],
"filters": gen_filter_dict_exclude()
}
)
}
),
]

View File

@ -1,39 +0,0 @@
NON_PR_BRANCH_LIST = [
"main",
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
PR_BRANCH_LIST = [
r"/gh\/.*\/head/",
r"/pull\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
MAC_IOS_EXCLUSION_LIST = ["nightly", "postnightly"]
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict
def gen_filter_dict_exclude(branches_list=MAC_IOS_EXCLUSION_LIST):
return {
"branches": {
"ignore": branches_list,
},
}

View File

@ -1,33 +0,0 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
def gen_docker_image(container_type):
return (
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
f"docker-{container_type}",
)
def gen_docker_image_requires(image_name):
return [f"docker-{image_name}"]
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc7"
)
def gen_mobile_docker(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image(container_type)
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")

View File

@ -1,34 +0,0 @@
from typing import Optional
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
else:
return [self.prefix]
def render_dots_or_parts(self, sep: Optional[str] = None):
if sep is None:
return self.prefixed_parts()
else:
return [sep.join(self.prefixed_parts())]
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")
def __str__(self):
return f"{self.major}.{self.minor}"

View File

@ -1,7 +1,5 @@
from collections import OrderedDict
import cimodel.lib.miniutils as miniutils
LIST_MARKER = "- "
INDENTATION_WIDTH = 2
@ -31,8 +29,7 @@ def render(fh, data, depth, is_list_member=False):
tuples.sort()
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
@ -46,7 +43,5 @@ def render(fh, data, depth, is_list_member=False):
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")
fh.write(list_member_prefix + str(data) + "\n")

View File

@ -0,0 +1,84 @@
"""
This module encapsulates dependencies on pygraphviz
"""
import colorsys
import cimodel.lib.conf_tree as conf_tree
def rgb2hex(rgb_tuple):
def to_hex(f):
return "%02x" % int(f * 255)
return "#" + "".join(map(to_hex, list(rgb_tuple)))
def handle_missing_graphviz(f):
"""
If the user has not installed pygraphviz, this causes
calls to the draw() method of the returned object to do nothing.
"""
try:
import pygraphviz # noqa: F401
return f
except ModuleNotFoundError:
class FakeGraph:
def draw(self, *args, **kwargs):
pass
return lambda _: FakeGraph()
@handle_missing_graphviz
def generate_graph(toplevel_config_node):
"""
Traverses the graph once first just to find the max depth
"""
config_list = conf_tree.dfs(toplevel_config_node)
max_depth = 0
for config in config_list:
max_depth = max(max_depth, config.get_depth())
# color the nodes using the max depth
from pygraphviz import AGraph
dot = AGraph()
def node_discovery_callback(node, sibling_index, sibling_count):
depth = node.get_depth()
sat_min, sat_max = 0.1, 0.6
sat_range = sat_max - sat_min
saturation_fraction = sibling_index / float(sibling_count - 1) if sibling_count > 1 else 1
saturation = sat_min + sat_range * saturation_fraction
# TODO Use a hash of the node label to determine the color
hue = depth / float(max_depth + 1)
rgb_tuple = colorsys.hsv_to_rgb(hue, saturation, 1)
this_node_key = node.get_node_key()
dot.add_node(
this_node_key,
label=node.get_label(),
style="filled",
# fillcolor=hex_color + ":orange",
fillcolor=rgb2hex(rgb_tuple),
penwidth=3,
color=rgb2hex(colorsys.hsv_to_rgb(hue, saturation, 0.9))
)
def child_callback(node, child):
this_node_key = node.get_node_key()
child_node_key = child.get_node_key()
dot.add_edge((this_node_key, child_node_key))
conf_tree.dfs_recurse(toplevel_config_node, lambda x: None, node_discovery_callback, child_callback)
return dot

View File

@ -1,17 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
DIFF_TOOL=meld
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
popd

View File

@ -1,24 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], '..'))
import cimodel.lib.miniyaml as miniyaml
def regurgitate(depth, use_pyyaml_formatter=False):
data = yaml.safe_load(sys.stdin)
if use_pyyaml_formatter:
output = yaml.dump(data, sort_keys=True)
sys.stdout.write(output)
else:
miniyaml.render(sys.stdout, data, depth)
if __name__ == "__main__":
regurgitate(3)

View File

@ -1,15 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=$1
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
TEMP_FILENAME=$(mktemp)
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
mv $TEMP_FILENAME $YAML_FILENAME
popd

File diff suppressed because it is too large Load Diff

View File

@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -20,8 +20,10 @@ buildscript {
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
classpath 'com.android.tools.build:gradle:3.3.2'
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
}
}
@ -51,9 +53,9 @@ android {
dependencies {
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
implementation 'com.google.code.findbugs:jsr305:3.0.1'
implementation 'com.facebook.soloader:nativeloader:0.10.4'
implementation 'com.facebook.soloader:nativeloader:0.8.0'
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion

View File

@ -10,321 +10,172 @@ if [ -z "${image}" ]; then
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
# Use the same pre-built XLA test image from PyTorch/XLA
if [[ "$image" == *xla* ]]; then
echo "Using pre-built XLA test image..."
exit 0
# TODO: Generalize
OS="ubuntu"
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *-cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
fi
if [[ "$image" == *-xenial* ]]; then
if [[ "$image" == *-trusty* ]]; then
UBUNTU_VERSION=14.04
elif [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
# When using ubuntu - 22.04, start from Ubuntu docker image, instead of nvidia/cuda docker image.
if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
if [[ "$image" == *xenial* ]] || [[ "$image" == *bionic* ]]; then
CMAKE_VERSION=3.13.5
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
_UCX_COMMIT=31e74cac7bee0ef66bef2af72e7d86d9c282e5ab
_UCC_COMMIT=12944da33f911daf505d9bbc51411233d0ed85e1
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
ANACONDA_PYTHON_VERSION=3.8
pytorch-linux-bionic-clang9-thrift-llvmdev)
CLANG_VERSION=9
THRIFT=yes
LLVMDEV=yes
PROTOBUF=yes
;;
pytorch-linux-xenial-py2.7.9)
TRAVIS_PYTHON_VERSION=2.7.9
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc7.2)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc7)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py2.7)
TRAVIS_PYTHON_VERSION=2.7
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.5)
TRAVIS_PYTHON_VERSION=3.5
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.8)
# TODO: This is a hack, get rid of this as soon as you get rid of the travis downloads
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/16.04/x86_64"
TRAVIS_PYTHON_VERSION=3.8
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc4.8)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=4.8
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.6-gcc5.4)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc7)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-pynightly)
TRAVIS_PYTHON_VERSION=nightly
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py2)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=2.7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py3)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
CUDA_VERSION=10.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
CUDA_VERSION=10.1
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
TENSORRT_VERSION=8.0.1.6
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.3-cudnn8-py3-clang9)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
TENSORRT_VERSION=8.0.1.6
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.6-cudnn8-py3-gcc7)
CUDA_VERSION=11.6.2
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
;;
pytorch-linux-bionic-cuda11.7-cudnn8-py3-gcc7)
CUDA_VERSION=11.7.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-focal-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-focal-py3-clang10-onnx)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=10
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
GRADLE_VERSION=4.10.3
CMAKE_VERSION=3.7.0
NINJA_VERSION=1.9.0
;;
pytorch-linux-xenial-py3.7-clang7)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py3.6-clang7)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.7-clang9)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.7-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-focal-rocm5.1-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.1.1
;;
pytorch-linux-focal-rocm5.2-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.2
;;
pytorch-linux-focal-py3.7-gcc7)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.16.9 # Required for precompiled header support
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-jammy-cuda11.6-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.6
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-jammy-cuda11.7-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.7
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
VISION=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
# Set Jenkins UID and GID if running Jenkins
@ -333,22 +184,11 @@ if [ -n "${JENKINS:-}" ]; then
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 8 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
@ -361,47 +201,28 @@ docker build \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx906}" \
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
@ -414,6 +235,19 @@ if [[ "$OS" == "ubuntu" ]]; then
fi
fi
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
else
echo "Please manually check nightly is OK:"
drun python --version
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"

View File

@ -13,12 +13,11 @@ retry () {
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
tag="${CIRCLE_WORKFLOW_ID}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
image="${registry}/pytorch/${IMAGE_NAME}"
ghcr_image="ghcr.io/pytorch/ci-image"
login() {
aws ecr get-authorization-token --region us-east-1 --output text --query 'authorizationData[].authorizationToken' |
@ -27,14 +26,11 @@ login() {
docker login -u AWS --password-stdin "$1"
}
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Only run these steps if not on github actions
if [[ -z "${GITHUB_ACTIONS}" ]]; then
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
fi
# Logout on exit
trap "docker logout ${registry}" EXIT
# export EC2=1
# export JENKINS=1
@ -47,25 +43,7 @@ fi
# Build new image
./build.sh ${IMAGE_NAME} -t "${image}:${tag}"
# Only push if `DOCKER_SKIP_PUSH` = false
if [ "${DOCKER_SKIP_PUSH:-true}" = "false" ]; then
# Only push if docker image doesn't exist already.
# ECR image tags are immutable so this will avoid pushing if only just testing if the docker jobs work
# NOTE: The only workflow that should push these images should be the docker-builds.yml workflow
if ! docker manifest inspect "${image}:${tag}" >/dev/null 2>/dev/null; then
docker push "${image}:${tag}"
fi
docker push "${image}:${tag}"
if [ "${PUSH_GHCR_IMAGE:-}" = "true" ]; then
# Push docker image to the ghcr.io
echo $GHCR_PAT | docker login ghcr.io -u pytorch --password-stdin
docker tag "${image}:${tag}" "${ghcr_image}:${IMAGE_NAME}-${tag}"
docker push "${ghcr_image}:${IMAGE_NAME}-${tag}"
fi
fi
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
trap "rm -rf ${IMAGE_NAME}:${tag}.tar" EXIT
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read

View File

@ -1,108 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
ARG EC2
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm
RUN yum install -y git
# Install devtoolset
ARG DEVTOOLSET_VERSION
COPY ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
COPY ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -4,15 +4,13 @@ set -ex
[ -n "${ANDROID_NDK}" ]
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
apt-get update
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
pushd /tmp
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
curl -Os --retry 3 https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
popd
_ndk_dir=/opt/ndk
mkdir -p "$_ndk_dir"
@ -47,22 +45,43 @@ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# Installing android sdk
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
_sdk_version=sdk-tools-linux-3859397.zip
_android_home=/opt/android/sdk
rm -rf $_android_home
sudo mkdir -p $_android_home
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
sudo unzip -q $_tmp_sdk_zip -d $_android_home
rm $_tmp_sdk_zip
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
sudo unzip -q /tmp/$_sdk_version -d $_android_home
rm /tmp/$_sdk_version
sudo chmod -R 777 $_android_home
export ANDROID_HOME=$_android_home
export ADB_INSTALL_TIMEOUT=120
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
echo "PATH:${PATH}"
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
sudo chmod -R 777 ~/.android
yes | sdkmanager --licenses
yes | sdkmanager --update
sdkmanager \
"tools" \
"platform-tools" \
"emulator"
sdkmanager \
"build-tools;28.0.3" \
"build-tools;29.0.2"
sdkmanager \
"platforms;android-28" \
"platforms;android-29"
sdkmanager --list
# Installing Gradle
echo "GRADLE_VERSION:${GRADLE_VERSION}"
@ -70,7 +89,8 @@ _gradle_home=/opt/gradle
sudo rm -rf $gradle_home
sudo mkdir -p $_gradle_home
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
wget --no-verbose --output-document=/tmp/gradle.zip \
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
rm /tmp/gradle.zip
@ -99,7 +119,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle

View File

@ -2,163 +2,74 @@
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
maybe_libiomp_dev="libiomp-dev"
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
fi
if [[ "$UBUNTU_VERSION" == "14.04" ]]; then
# cmake 2 is too old
cmake3=cmake3
else
cmake3=cmake
fi
if [[ "$CLANG_VERSION" == 12 ]]; then
maybe_libomp_dev="libomp-12-dev"
elif [[ "$CLANG_VERSION" == 10 ]]; then
maybe_libomp_dev="libomp-10-dev"
else
maybe_libomp_dev=""
fi
if [[ "$UBUNTU_VERSION" == "18.04" ]]; then
cmake3="cmake=3.10*"
else
cmake3="${cmake3}=3.5*"
fi
# TODO: Remove this once nvidia package repos are back online
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
deploy_deps="libffi-dev libbz2-dev libreadline-dev libncurses5-dev libncursesw5-dev libgdbm-dev libsqlite3-dev uuid-dev tk-dev"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${deploy_deps} \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
software-properties-common \
wget \
sudo \
vim \
jq \
libtool
# Should resolve issues related to various apt package repository cert issues
# see: https://github.com/pytorch/pytorch/issues/65931
apt-get install -y libgnutls30
# cuda-toolkit does not work with gcc-11.2.0 which is default in Ubunutu 22.04
# see: https://github.com/NVlabs/instant-ngp/issues/119
if [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
apt-get install -y g++-10
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 30
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 30
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-10 30
# https://www.spinics.net/lists/libreoffice/msg07549.html
sudo rm -rf /usr/lib/gcc/x86_64-linux-gnu/11
wget https://github.com/gcc-mirror/gcc/commit/2b2d97fc545635a0f6aa9c9ee3b017394bc494bf.patch -O noexecpt.patch
sudo patch /usr/include/c++/10/bits/range_access.h noexecpt.patch
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
# TODO: libiomp also gets installed by conda, aka there's a conflict
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
python \
python-dev \
python-setuptools \
python-wheel \
software-properties-common \
sudo \
wget \
vim
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.16.1
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
if ! wget http://valgrind.org/downloads/valgrind-3.14.0.tar.bz2
then
wget https://sourceware.org/ftp/valgrind/valgrind-3.14.0.tar.bz2
fi
tar -xjf valgrind-3.14.0.tar.bz2
cd valgrind-3.14.0
./configure --prefix=/usr/local
make -j6
make
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"
# TODO: THIS IS A HACK!!!
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
if dpkg -s libnccl-dev; then
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

View File

@ -2,55 +2,17 @@
set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
# libssl-dev will not work as it is upgraded to libssl3 in Ubuntu-22.04.
# Instead use lib and headers from OpenSSL1.1 installed in `install_openssl.sh``
apt-get install -y cargo
echo "Checking out sccache repo"
git clone https://github.com/pytorch/sccache
cd sccache
echo "Building sccache"
cargo build --release
cp target/release/sccache /opt/cache/bin
echo "Cleaning up"
cd ..
rm -rf sccache
apt-get remove -y cargo rustc
apt-get autoclean && apt-get clean
}
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
}
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
if [ -n "$ROCM_VERSION" ]; then
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
else
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
*)
install_binary
;;
esac
fi
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
# Unset LD_PRELOAD for ps because of asan + ps issues
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90589
printf "#!/bin/sh\nif [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}
@ -58,12 +20,8 @@ write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
# NOTE: See specific ROCM_VERSION case below.
if [ "x$ROCM_VERSION" = x ]; then
write_sccache_stub clang
write_sccache_stub clang++
fi
write_sccache_stub clang
write_sccache_stub clang++
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
@ -72,50 +30,6 @@ if [ -n "$CUDA_VERSION" ]; then
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
write_sccache_stub nvcc
mv /opt/cache/bin/nvcc /opt/cache/lib/
fi
if [ -n "$ROCM_VERSION" ]; then
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
# directly under /opt/rocm while also preserving the original compiler names.
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
# Final link in symlink chain must point back to original directory.
# Original compiler is moved one directory deeper. Wrapper replaces it.
function write_sccache_stub_rocm() {
OLDCOMP=$1
COMPNAME=$(basename $OLDCOMP)
TOPDIR=$(dirname $OLDCOMP)
WRAPPED="$TOPDIR/original/$COMPNAME"
mv "$OLDCOMP" "$WRAPPED"
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
chmod a+x "$OLDCOMP"
}
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
# ROCm 3.3 or earlier.
mkdir /opt/rocm/hcc/bin/original
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/hcc/bin/original
ln -s ../$(readlink clang)
popd
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
# ROCm 3.5 and beyond.
mkdir /opt/rocm/llvm/bin/original
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/llvm/bin/original
ln -s ../$(readlink clang)
popd
else
echo "Cannot find ROCm compiler."
exit 1
fi
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
chmod a+x /opt/cache/lib/nvcc
fi

View File

@ -13,9 +13,6 @@ if [ -n "$CLANG_VERSION" ]; then
sudo apt-get install -y --no-install-recommends gpg-agent
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
apt-add-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-${CLANG_VERSION} main"
elif [[ $UBUNTU_VERSION == 22.04 ]]; then
# work around ubuntu apt-get conflicts
sudo apt-get -y -f install
fi
sudo apt-get update

View File

@ -4,9 +4,6 @@ set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
apt-get remove cmake -y
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"

View File

@ -21,23 +21,16 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
;;
esac
mkdir -p /opt/conda
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
@ -55,13 +48,11 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Prevent conda from updating to 4.14.0, which causes docker build failures
# See https://hud.pytorch.org/pytorch/pytorch/commit/754d7f05b6841e555cea5a4b2c505dd9e0baec1d
# Uncomment the below when resolved to track the latest conda update
# as_jenkins conda update -y -n base conda
# Track latest conda update
as_jenkins conda update -n base conda
# Install correct Python version
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
@ -70,47 +61,32 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
}
pip_install() {
as_jenkins pip install --progress-bar off $*
}
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.13, but
# we want to pin to version 3.13.
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2022.0.1 mkl-include=2022.0.1 setuptools cffi future six"
if [ "$ANACONDA_PYTHON_VERSION" = "3.10" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 ${CONDA_COMMON_DEPS} llvmdev=8.0.0
else
# Install `typing_extensions` for 3.7
conda_install numpy=1.18.5 ${CONDA_COMMON_DEPS} typing_extensions
fi
# Magma package names are concatenation of CUDA major and minor ignoring revision
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
if [ -n "$CUDA_VERSION" ]; then
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
# DO NOT install cmake here as it would install a version newer than 3.5, but
# we want to pin to version 3.5.
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
if [[ "$CUDA_VERSION" == 9.0* ]]; then
conda_install magma-cuda90 -c pytorch
elif [[ "$CUDA_VERSION" == 9.1* ]]; then
conda_install magma-cuda91 -c pytorch
elif [[ "$CUDA_VERSION" == 9.2* ]]; then
conda_install magma-cuda92 -c pytorch
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install magma-cuda100 -c pytorch
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
conda_install magma-cuda101 -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
pip_install -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
pip_install scikit-learn==0.20.3
fi
# Install some other packages
# TODO: Why is scipy pinned
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
# scikit-learn is pinned because of
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
# only)
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.46.0 llvmlite==0.30.0
popd
fi

View File

@ -1,24 +0,0 @@
#!/bin/bash
if [[ ${CUDNN_VERSION} == 8 ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
CUDNN_NAME="cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive"
if [[ ${CUDA_VERSION:0:4} == "11.7" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-8.5.0.96_cuda11-archive"
curl -OLs https://ossci-linux.s3.amazonaws.com/${CUDNN_NAME}.tar.xz
else
curl -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/${CUDNN_NAME}.tar.xz
fi
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/include/
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/include/* /usr/include/x86_64-linux-gnu/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
cp -a ${CUDNN_NAME}/lib/* /usr/lib/x86_64-linux-gnu/
cd ..
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -2,6 +2,23 @@
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
@ -34,16 +51,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,25 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
apt-get update
# Ignore error if gpg-agent doesn't exist (for Ubuntu 16.04)
apt-get install -y gpg-agent || :
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
sudo apt-get -y install doxygen
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -7,18 +7,10 @@ if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [[ "$UBUNTU_VERSION" == "16.04" && "${GCC_VERSION:0:1}" == "5" ]]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 50
else
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
fi
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
# Cleanup package manager
apt-get autoclean && apt-get clean

View File

@ -0,0 +1,20 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,8 +0,0 @@
#!/bin/bash
set -ex
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
pushd lcov
sudo make install # will be installed in /usr/local/bin/lcov
popd

View File

@ -1,10 +0,0 @@
#!/bin/bash
sudo apt-get update
# also install ssh to avoid error of:
# --------------------------------------------------------------------------
# The value of the MCA parameter "plm_rsh_agent" was set to a path
# that could not be found:
# plm_rsh_agent: ssh : rsh
sudo apt-get install -y ssh
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev

View File

@ -1,16 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
make -j6; make install_sw
# Link the ssl libraries to the /usr/lib folder.
sudo ln -s /opt/openssl/lib/lib* /usr/lib
cd ..
rm -rf "${OPENSSL}"

View File

@ -2,8 +2,8 @@
set -ex
# This function installs protobuf 3.17
install_protobuf_317() {
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
@ -12,45 +12,45 @@ install_protobuf_317() {
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
# -j6 to balance memory usage and speed.
# naked `-j` seems to use too much memory.
pushd "$pb_dir" && ./configure && make -j6 && make -j6 check && sudo make -j6 install && sudo ldconfig
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
# Ubuntu 14.04 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we install that here if on 14.04
# Ubuntu 14.04 also has cmake 2.8.12 as the default option, so we will
# install cmake3 here and use cmake3.
apt-get update
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
apt-get install -y --no-install-recommends cmake3
install_protobuf_26
else
apt-get install -y --no-install-recommends \
libprotobuf-dev \
protobuf-compiler
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
install_protobuf_317
}
install_centos() {
install_protobuf_317
# Centos7 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we always install install that here
install_protobuf_26
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,128 +0,0 @@
#!/bin/bash
set -ex
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
# Map ROCm version to AMDGPU version
declare -A AMDGPU_VERSIONS=( ["5.0"]="21.50" ["5.1.1"]="22.10.1" ["5.2"]="22.20" )
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
fi
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available"
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
fi
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,29 +0,0 @@
#!/bin/bash
set -ex
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# Fixes memory leaks of magma found while executing linalg UTs
git checkout 5959b8783e45f1809812ed96ae762f38ee701972
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc
done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${SWIFTSHADER}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
# SwiftShader
_swiftshader_dir=/var/lib/jenkins/swiftshader
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
mkdir -p $_swiftshader_dir
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
curl --silent --show-error --location --fail --retry 3 \
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"

View File

@ -0,0 +1,97 @@
#!/bin/bash
set -ex
as_jenkins() {
# NB: Preserve PATH and LD_LIBRARY_PATH changes
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
mkdir -p /opt/python
chown jenkins:jenkins /opt/python
# Download Python binary from Travis
pushd tmp
as_jenkins wget --quiet ${TRAVIS_DL_URL_PREFIX}/python-$TRAVIS_PYTHON_VERSION.tar.bz2
# NB: The tarball also comes with /home/travis virtualenv that we
# don't care about. (Maybe we should, but we've worked around the
# "how do I install to python" issue by making this entire directory
# user-writable "lol")
# NB: Relative ordering of opt/python and flags matters
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
popd
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
python --version
pip --version
# Install pip from source.
# The python-pip package on Ubuntu Trusty is old
# and upon install numpy doesn't use the binary
# distribution, and fails to compile it from source.
pushd tmp
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
as_jenkins tar zxf pip-9.0.1.tar.gz
pushd pip-9.0.1
as_jenkins python setup.py install
popd
rm -rf pip-9.0.1*
popd
# Install pip packages
as_jenkins pip install --upgrade pip
pip --version
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
# These two packages have broken Cythonizations uploaded
# to PyPi, see:
#
# - https://github.com/numpy/numpy/issues/10500
# - https://github.com/yaml/pyyaml/issues/117
#
# Furthermore, the released version of Cython does not
# have these issues fixed.
#
# While we are waiting on fixes for these, we build
# from Git for now. Feel free to delete this conditional
# branch if things start working again (you may need
# to do this if these packages regress on Git HEAD.)
as_jenkins pip install git+https://github.com/cython/cython.git
as_jenkins pip install git+https://github.com/numpy/numpy.git
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
else
as_jenkins pip install numpy pyyaml
fi
as_jenkins pip install \
future \
hypothesis \
protobuf \
pytest \
pillow \
typing
as_jenkins pip install mkl mkl-devel
# SciPy does not support Python 3.7 or Python 2.7.9
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
fi
# Install psutil for dataloader tests
as_jenkins pip install psutil
# Install dill for serialization tests
as_jenkins pip install "dill>=0.3.1"
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,48 +0,0 @@
#!/bin/bash
set -ex
if [[ -d "/usr/local/cuda/" ]]; then
with_cuda=/usr/local/cuda/
else
with_cuda=no
fi
function install_ucx() {
set -ex
git clone --recursive https://github.com/openucx/ucx.git
pushd ucx
git checkout ${UCX_COMMIT}
git submodule update --init --recursive
./autogen.sh
./configure --prefix=$UCX_HOME \
--enable-mt \
--with-cuda=$with_cuda \
--enable-profiling \
--enable-stats
time make -j
sudo make install
popd
rm -rf ucx
}
function install_ucc() {
set -ex
git clone --recursive https://github.com/openucx/ucc.git
pushd ucc
git checkout ${UCC_COMMIT}
git submodule update --init --recursive
./autogen.sh
./configure --prefix=$UCC_HOME --with-ucx=$UCX_HOME --with-cuda=$with_cuda
time make -j
sudo make install
popd
rm -rf ucc
}
install_ucx
install_ucc

View File

@ -3,11 +3,8 @@
set -ex
# Mirror jenkins user in container
# jenkins user as ec2-user should have the same user-id
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1000:" >> /etc/group
# Needed on focal or newer
echo "jenkins:*:19110:0:99999:7:::" >>/etc/shadow
echo "jenkins:x:1014:1014::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1014:" >> /etc/group
# Create $HOME
mkdir -p /var/lib/jenkins
@ -21,6 +18,3 @@ chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins
# Test that sudo works
sudo -u jenkins sudo -v

View File

@ -2,6 +2,23 @@
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
@ -30,16 +47,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${VULKAN_SDK_VERSION}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"

View File

@ -1,244 +0,0 @@
# Python dependencies required for unit tests
#awscli==1.6 #this breaks some platforms
#Description: AWS command line interface
#Pinned versions: 1.6
#test that import:
boto3==1.19.12
#Description: AWS SDK for python
#Pinned versions: 1.19.12, 1.16.34
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
#test that import:
coremltools==5.0b5
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
#dataclasses #this breaks some platforms
#Description: Provides decorators for auto adding special methods to user classes
#Pinned versions:
#test that import:
expecttest==0.1.3
#Description: method for writing tests where test framework auto populates
# the expected output based on previous runs
#Pinned versions: 0.1.3
#test that import:
flatbuffers==2.0
#Description: cross platform serialization library
#Pinned versions: 2.0
#test that import:
#future #this breaks linux-bionic-rocm4.5-py3.7
#Description: compatibility layer between python 2 and python 3
#Pinned versions:
#test that import:
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
#Description: unitparser handles JUnit/xUnit Result XML files
#Pinned versions: 2.1.1
#test that import:
librosa>=0.6.2
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
#Pinned versions:
#test that import: test_profiler.py, test_public_bindings.py, test_testing.py,
#test_nn.py, test_mkldnn.py, test_jit.py, test_fx_experimental.py,
#test_autograd.py
#mkl-devel
# see mkl
#mock # breaks ci/circleci: docker-pytorch-linux-xenial-py3-clang5-android-ndk-r19c
#Description: A testing library that allows you to replace parts of your
#system under test with mock objects
#Pinned versions:
#test that import: test_module_init.py, test_modules.py, test_nn.py,
#test_testing.py
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
#Description: collects runtime types of function arguments and return
#values, and can automatically generate stub files
#Pinned versions:
#test that import:
mypy==0.960
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 0.960
#test that import: test_typing.py, test_type_hints.py
networkx==2.6.3
#Description: creation, manipulation, and study of
#the structure, dynamics, and functions of complex networks
#Pinned versions: 2.6.3 (latest version that works with Python 3.7+)
#test that import: functorch
#ninja
#Description: build system. Note that it install from
#here breaks things so it is commented out
#Pinned versions: 1.10.0.post1
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9"
numba==0.54.1 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#numpy
#Description: Provides N-dimensional arrays and linear algebra
#Pinned versions: 1.20
#test that import: test_view_ops.py, test_unary_ufuncs.py, test_type_promotion.py,
#test_type_info.py, test_torch.py, test_tensorexpr_pybind.py, test_tensorexpr.py,
#test_tensorboard.py, test_tensor_creation_ops.py, test_static_runtime.py,
#test_spectral_ops.py, test_sort_and_select.py, test_shape_ops.py,
#test_segment_reductions.py, test_reductions.py, test_pruning_op.py,
#test_overrides.py, test_numpy_interop.py, test_numba_integration.py
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
#Pinned versions: 1.9.0
#test that import:
opt-einsum==3.3
#Description: Python library to optimize tensor contraction order, used in einsum
#Pinned versions: 3.3
#test that import: test_linalg.py
#pillow
#Description: Python Imaging Library fork
#Pinned versions:
#test that import:
protobuf==3.20.2
#Description: Googles data interchange format
#Pinned versions: 3.20.1
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
#Pinned versions:
#test that import: test_profiler.py, test_openmp.py, test_dataloader.py
pytest
#Description: testing framework
#Pinned versions:
#test that import: test_typing.py, test_cpp_extensions_aot.py, run_test.py
pytest-xdist
#Description: plugin for running pytest in parallel
#Pinned versions:
#test that import:
pytest-shard
#Description: plugin spliting up tests in pytest
#Pinned versions:
#test that import:
pytest-rerunfailures
#Description: plugin for rerunning tests in pytest
#Pinned versions:
#test that import:
#pytest-benchmark
#Description: fixture for benchmarking code
#Pinned versions: 3.2.3
#test that import:
#pytest-sugar
#Description: shows failures and errors instantly
#Pinned versions:
#test that import:
xdoctest==1.0.2
#Description: runs doctests in pytest
#Pinned versions: 1.0.2
#test that import:
pygments==2.12.0
#Description: support doctest highlighting
#Pinned versions: 2.12.0
#test that import: the doctests
#PyYAML
#Description: data serialization format
#Pinned versions:
#test that import:
#requests
#Description: HTTP library
#Pinned versions:
#test that import: test_type_promotion.py
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 10.9.0
#test that import:
scikit-image
#Description: image processing routines
#Pinned versions:
#test that import: test_nn.py
#scikit-learn
#Description: machine learning package
#Pinned versions: 0.20.3
#test that import:
scipy==1.6.3 ; python_version < "3.10"
scipy==1.8.1 ; python_version == "3.10"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.6.3
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
#test_linalg.py, test_binary_ufuncs.py
#tabulate
#Description: Pretty-print tabular data
#Pinned versions:
#test that import:
tb-nightly
#Description: TensorBoard
#Pinned versions:
#test that import:
#typing-extensions
#Description: type hints for python
#Pinned versions:
#test that import:
#virtualenv
#Description: virtual environment for python
#Pinned versions:
#test that import:
unittest-xml-reporting<=3.2.0,>=2.0.0
#Description: saves unit test results to xml
#Pinned versions:
#test that import:

View File

@ -1,109 +1,78 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
ARG CUDNN_VERSION
FROM ${IMAGE_NAME}
FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
COPY ./common/install_base.sh install_base.sh
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
ENV CUDA_NVCC_EXECUTABLE=/opt/cache/lib/nvcc
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
@ -111,21 +80,6 @@ ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ "${CUDNN_VERSION}" -eq 8 ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
USER jenkins
CMD ["bash"]

View File

@ -1,101 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install common dependencies (so that this step can be cached separately)
ARG EC2
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -6,86 +6,68 @@ ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
ARG CLANG_VERSION
# Install common dependencies (so that this step can be cached separately)
ARG EC2
COPY ./common/install_base.sh install_base.sh
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install thrift.
ARG THRIFT
COPY ./common/install_thrift.sh install_thrift.sh
ADD ./common/install_thrift.sh install_thrift.sh
RUN if [ -n "${THRIFT}" ]; then bash ./install_thrift.sh; fi
RUN rm install_thrift.sh
ENV INSTALLED_THRIFT ${THRIFT}
# Install user
COPY ./common/install_user.sh install_user.sh
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
COPY ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# Install cuda and cudnn
ARG CUDA_VERSION
RUN wget -q https://raw.githubusercontent.com/pytorch/builder/main/common/install_cuda.sh -O install_cuda.sh
RUN bash ./install_cuda.sh ${CUDA_VERSION} && rm install_cuda.sh
ENV DESIRED_CUDA ${CUDA_VERSION}
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ARG TRAVIS_DL_URL_PREFIX
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
COPY ./common/install_protobuf.sh install_protobuf.sh
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh install_vision.sh
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
@ -94,75 +76,40 @@ ENV INSTALLED_VISION ${VISION}
ARG ANDROID
ARG ANDROID_NDK
ARG GRADLE_VERSION
COPY ./common/install_android.sh install_android.sh
COPY ./android/AndroidManifest.xml AndroidManifest.xml
COPY ./android/build.gradle build.gradle
ADD ./common/install_android.sh install_android.sh
ADD ./android/AndroidManifest.xml AndroidManifest.xml
ADD ./android/build.gradle build.gradle
RUN if [ -n "${ANDROID}" ]; then bash ./install_android.sh; fi
RUN rm install_android.sh
RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
COPY ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
COPY ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
COPY ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
USER jenkins
CMD ["bash"]

View File

@ -0,0 +1,13 @@
FROM ubuntu:16.04
RUN apt-get update && apt-get install -y python-pip && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
ADD requirements.txt /requirements.txt
RUN pip install -r /requirements.txt
ADD gc.py /usr/bin/gc.py
ADD docker_hub.py /usr/bin/docker_hub.py
ENTRYPOINT ["/usr/bin/gc.py"]

View File

@ -0,0 +1,125 @@
#!/usr/bin/env python
from collections import namedtuple
import boto3
import requests
import os
IMAGE_INFO = namedtuple(
"IMAGE_INFO", ("repo", "tag", "size", "last_updated_at", "last_updated_by")
)
def build_access_token(username, passwordtr):
r = requests.post(
"https://hub.docker.com/v2/users/login/",
data={"username": username, "password": password},
)
r.raise_for_status()
token = r.json().get("token")
return {"Authorization": "JWT " + token}
def list_repos(user, token):
r = requests.get("https://hub.docker.com/v2/repositories/" + user, headers=token)
r.raise_for_status()
ret = sorted(
repo["user"] + "/" + repo["name"] for repo in r.json().get("results", [])
)
if ret:
print("repos found:")
print("".join("\n\t" + r for r in ret))
return ret
def list_tags(repo, token):
r = requests.get(
"https://hub.docker.com/v2/repositories/" + repo + "/tags", headers=token
)
r.raise_for_status()
return [
IMAGE_INFO(
repo=repo,
tag=t["name"],
size=t["full_size"],
last_updated_at=t["last_updated"],
last_updated_by=t["last_updater_username"],
)
for t in r.json().get("results", [])
]
def save_to_s3(tags):
table_content = ""
client = boto3.client("s3")
for t in tags:
table_content += (
"<tr><td>{repo}</td><td>{tag}</td><td>{size}</td>"
"<td>{last_updated_at}</td><td>{last_updated_by}</td></tr>"
).format(
repo=t.repo,
tag=t.tag,
size=t.size,
last_updated_at=t.last_updated_at,
last_updated_by=t.last_updated_by,
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css"
href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
</script>
<script type="text/javascript" charset="utf8"
src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title> docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<caption>Docker images on docker hub</caption>
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">size</th>
<th scope="col">last_updated_at</th>
<th scope="col">last_updated_by</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );py
</script>
</html>
""".format(
table_content=table_content
)
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="docker_hub.html",
Body=html_body,
ContentType="text/html",
)
if __name__ == "__main__":
username = os.environ.get("DOCKER_HUB_USERNAME")
password = os.environ.get("DOCKER_HUB_PASSWORD")
token = build_access_token(username, password)
tags = []
for repo in list_repos("pytorch", token):
tags.extend(list_tags(repo, token))
save_to_s3(tags)

202
.circleci/ecr_gc_docker/gc.py Executable file
View File

@ -0,0 +1,202 @@
#!/usr/bin/env python
import argparse
import datetime
import boto3
import pytz
import sys
def save_to_s3(project, data):
table_content = ""
client = boto3.client("s3")
for repo, tag, window, age, pushed in data:
table_content += "<tr><td>{repo}</td><td>{tag}</td><td>{window}</td><td>{age}</td><td>{pushed}</td></tr>".format(
repo=repo, tag=tag, window=window, age=age, pushed=pushed
)
html_body = """
<html>
<head>
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
<script type="text/javascript" charset="utf8" src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
<title>{project} nightly and permanent docker image info</title>
</head>
<body>
<table class="table table-striped table-hover" id="docker">
<thead class="thead-dark">
<tr>
<th scope="col">repo</th>
<th scope="col">tag</th>
<th scope="col">keep window</th>
<th scope="col">age</th>
<th scope="col">pushed at</th>
</tr>
</thead>
<tbody>
{table_content}
</tbody>
</table>
</body>
<script>
$(document).ready( function () {{
$('#docker').DataTable({{paging: false}});
}} );
</script>
</html>
""".format(
project=project, table_content=table_content
)
# for pytorch, file can be found at
# http://ossci-docker.s3-website.us-east-1.amazonaws.com/pytorch.html
# and later one we can config docker.pytorch.org to point to the location
client.put_object(
Bucket="docker.pytorch.org",
ACL="public-read",
Key="{project}.html".format(project=project),
Body=html_body,
ContentType="text/html",
)
def repos(client):
paginator = client.get_paginator("describe_repositories")
pages = paginator.paginate(registryId="308535385114")
for page in pages:
for repo in page["repositories"]:
yield repo
def images(client, repository):
paginator = client.get_paginator("describe_images")
pages = paginator.paginate(
registryId="308535385114", repositoryName=repository["repositoryName"]
)
for page in pages:
for image in page["imageDetails"]:
yield image
parser = argparse.ArgumentParser(description="Delete old Docker tags from registry")
parser.add_argument(
"--dry-run", action="store_true", help="Dry run; print tags that would be deleted"
)
parser.add_argument(
"--keep-stable-days",
type=int,
default=14,
help="Days of stable Docker tags to keep (non per-build images)",
)
parser.add_argument(
"--keep-unstable-days",
type=int,
default=1,
help="Days of unstable Docker tags to keep (per-build images)",
)
parser.add_argument(
"--filter-prefix",
type=str,
default="",
help="Only run cleanup for repositories with this prefix",
)
parser.add_argument(
"--ignore-tags",
type=str,
default="",
help="Never cleanup these tags (comma separated)",
)
args = parser.parse_args()
if not args.ignore_tags or not args.filter_prefix:
print(
"""
Missing required arguments --ignore-tags and --filter-prefix
You must specify --ignore-tags and --filter-prefix to avoid accidentally
pruning a stable Docker tag which is being actively used. This will
make you VERY SAD. So pay attention.
First, which filter-prefix do you want? The list of valid prefixes
is in jobs/private.groovy under the 'docker-registry-cleanup' job.
You probably want either pytorch or caffe2.
Second, which ignore-tags do you want? It should be whatever the most
up-to-date DockerVersion for the repository in question is. Follow
the imports of jobs/pytorch.groovy to find them.
"""
)
sys.exit(1)
client = boto3.client("ecr", region_name="us-east-1")
stable_window = datetime.timedelta(days=args.keep_stable_days)
unstable_window = datetime.timedelta(days=args.keep_unstable_days)
now = datetime.datetime.now(pytz.UTC)
ignore_tags = args.ignore_tags.split(",")
def chunks(chunkable, n):
""" Yield successive n-sized chunks from l.
"""
for i in range(0, len(chunkable), n):
yield chunkable[i : i + n]
stable_window_tags = []
for repo in repos(client):
repositoryName = repo["repositoryName"]
if not repositoryName.startswith(args.filter_prefix):
continue
# Keep list of image digests to delete for this repository
digest_to_delete = []
print(repositoryName)
for image in images(client, repo):
tags = image.get("imageTags")
if not isinstance(tags, (list,)) or len(tags) == 0:
continue
tag = tags[0]
created = image["imagePushedAt"]
age = now - created
# new images build on circle ci use workflow ID as tag, which has 4 "-"
if tag.isdigit() or tag.count("-") == 4 or tag in ignore_tags:
window = stable_window
if tag in ignore_tags:
stable_window_tags.append((repositoryName, tag, "", age, created))
elif age < window:
stable_window_tags.append((repositoryName, tag, window, age, created))
else:
window = unstable_window
if tag in ignore_tags:
print("Ignoring tag {} (age: {})".format(tag, age))
continue
if age < window:
print("Not deleting manifest for tag {} (age: {})".format(tag, age))
continue
if args.dry_run:
print("(dry run) Deleting manifest for tag {} (age: {})".format(tag, age))
else:
print("Deleting manifest for tag {} (age: {})".format(tag, age))
digest_to_delete.append(image["imageDigest"])
# Issue batch delete for all images to delete for this repository
# Note that as of 2018-07-25, the maximum number of images you can
# delete in a single batch is 100, so chunk our list into batches of
# 100
for c in chunks(digest_to_delete, 100):
client.batch_delete_image(
registryId="308535385114",
repositoryName=repositoryName,
imageIds=[{"imageDigest": digest} for digest in c],
)
save_to_s3(args.filter_prefix, stable_window_tags)

View File

@ -0,0 +1,3 @@
boto3
pytz
requests

View File

@ -6,17 +6,13 @@ Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import namedtuple
import shutil
from collections import namedtuple, OrderedDict
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_ios
import cimodel.data.simple.anaconda_prune_defintions
import cimodel.data.simple.macos_definitions
import cimodel.data.simple.upload_test_stats_definition
import cimodel.data.simple.ios_definitions
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
@ -25,7 +21,6 @@ class File(object):
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
@ -34,7 +29,7 @@ class File(object):
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
class FunctionGen(namedtuple('FunctionGen', 'function depth')):
__slots__ = ()
@ -44,14 +39,15 @@ class Treegen(FunctionGen):
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
build_dict = OrderedDict()
self.function(build_dict)
miniyaml.render(output_filehandle, build_dict, self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
@ -61,6 +57,7 @@ def horizontal_rule():
class Header(object):
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
@ -74,120 +71,48 @@ class Header(object):
output_filehandle.write(line + "\n")
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def filter_master_only_jobs(items):
def _is_main_or_master_item(item):
filters = item.get('filters', None)
branches = filters.get('branches', None) if filters is not None else None
branches_only = branches.get('only', None) if branches is not None else None
return ('main' in branches_only or 'master' in branches_only) if branches_only is not None else False
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get('requires', None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_main_or_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_main_or_master_item(item) and item_name not in master_deps:
return None
if 'filters' in item:
item = item.copy()
item.pop('filters')
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that main-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def generate_required_docker_images(items):
required_docker_images = set()
def _requires_docker_image(item_type, item):
requires = item.get('requires', None)
if not isinstance(requires, list):
return
for requirement in requires:
requirement = requirement.replace('"', '')
if requirement.startswith('docker-'):
required_docker_images.add(requirement)
_for_all_items(items, _requires_docker_image)
return required_docker_images
def gen_build_workflows_tree():
build_workflows_functions = [
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
cimodel.data.simple.macos_definitions.get_new_workflow_jobs,
cimodel.data.simple.upload_test_stats_definition.get_workflow_job,
cimodel.data.simple.ios_definitions.get_workflow_jobs,
]
build_jobs = [f() for f in build_workflows_functions]
build_jobs.extend(
cimodel.data.simple.docker_definitions.get_workflow_jobs(
# sort for consistency
sorted(generate_required_docker_images(build_jobs))
)
)
master_build_jobs = filter_master_only_jobs(build_jobs)
rc = {
"workflows": {
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
}
}
if len(master_build_jobs) > 0:
rc["workflows"]["master_build"] = {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
}
return rc
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
File("header-section.yml"),
File("commands.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
File("pytorch-build-params.yml"),
File("caffe2-build-params.yml"),
File("binary-build-params.yml"),
Header("Job specs"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("pytorch-job-specs.yml"),
File("caffe2-job-specs.yml"),
File("binary-job-specs.yml"),
File("job-specs-setup.yml"),
File("job-specs-custom.yml"),
File("binary_update_htmls.yml"),
File("binary-build-tests.yml"),
File("docker_jobs.yml"),
File("workflows.yml"),
File("workflows-setup-job.yml"),
File("windows-build-test.yml"),
Listgen(pytorch_build_definitions.get_workflow_jobs, 3),
File("workflows-pytorch-macos-builds.yml"),
File("workflows-pytorch-android-gradle-build.yml"),
File("workflows-pytorch-ios-builds.yml"),
File("workflows-pytorch-mobile-builds.yml"),
File("workflows-pytorch-ge-config-tests.yml"),
Listgen(caffe2_build_definitions.get_workflow_jobs, 3),
File("workflows-binary-builds-smoke-subset.yml"),
Listgen(binary_build_definitions.get_binary_smoke_test_jobs, 3),
Listgen(binary_build_definitions.get_binary_build_jobs, 3),
File("workflows-nightly-ios-binary-builds.yml"),
File("workflows-nightly-android-binary-builds.yml"),
Header("Nightly tests"),
Listgen(binary_build_definitions.get_nightly_tests, 3),
File("workflows-nightly-uploads-header.yml"),
Listgen(binary_build_definitions.get_nightly_uploads, 3),
File("workflows-s3-html.yml"),
File("workflows-docker-builder.yml"),
File("workflows-ecr-gc.yml"),
]

View File

@ -1,5 +0,0 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

View File

@ -1,17 +1,8 @@
#!/bin/bash -e
#!/bin/bash -xe
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
cd $(dirname "$0")
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"
./generate_config_yml.py > $NEW_FILE
cp $NEW_FILE config.yml

View File

@ -33,11 +33,6 @@ else
export BUILDER_ROOT="$workdir/builder"
fi
# Try to extract PR number from branch if not already set
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
fi
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
@ -49,20 +44,19 @@ if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
git reset --hard "$CIRCLE_SHA1"
elif [[ -n "${CIRCLE_SHA1:-}" ]]; then
# Scheduled workflows & "smoke" binary build on master on PR merges
DEFAULT_BRANCH="$(git remote show $CIRCLE_REPOSITORY_URL | awk '/HEAD branch/ {print $NF}')"
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B $DEFAULT_BRANCH
git checkout -q -B master
else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive --jobs 0
retry git submodule update --init --recursive
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git -b release/1.13 "$BUILDER_ROOT"
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
echo "Using builder from "
git --no-pager log --max-count 1

View File

@ -15,14 +15,13 @@ export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
conda install -c conda-forge valgrind --yes
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive --jobs 0
git submodule update --init --recursive
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
@ -31,12 +30,8 @@ cat ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
echo "USE_PYTORCH_METAL: ${USE_PYTORCH_METAL}"
echo "USE_COREML_DELEGATE: ${USE_COREML_DELEGATE}"
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
export USE_PYTORCH_METAL=${USE_PYTORCH_METAL}
export USE_COREML_DELEGATE=${USE_COREML_DELEGATE}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
#store the binary

View File

@ -1,19 +1,29 @@
#!/bin/bash
set -ex -o pipefail
if ! [ "$IOS_PLATFORM" == "SIMULATOR" ]; then
exit 0
fi
echo ""
echo "DIR: $(pwd)"
PROJ_ROOT=/Users/distiller/project
cd ${PROJ_ROOT}/ios/TestApp
# install fastlane
sudo gem install bundler && bundle install
# install certificates
echo "${IOS_CERT_KEY}" >> cert.txt
base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_cert
# install the provisioning profile
PROFILE=TestApp_CI.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
echo "${IOS_SIGN_KEY}" >> cert.txt
base64 --decode cert.txt -o ${PROFILE}
rm cert.txt
# run the ruby build script
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM}
fi
PROFILE=TestApp_CI
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -14,7 +14,7 @@ mkdir -p ${ZIP_DIR}/src
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
# build a FAT bianry
cd ${ZIP_DIR}/install/lib
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
for lib in ${target_libs[*]}
do
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
@ -22,37 +22,21 @@ do
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
fi
done
# for nnpack, we only support arm64 build
cp ${ARTIFACTS_DIR}/arm64/lib/libnnpack.a ./
lipo -i ${ZIP_DIR}/install/lib/*.a
echo "BUILD_LITE_INTERPRETER: ${BUILD_LITE_INTERPRETER}"
# copy the umbrella header and license
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
cp ${PROJ_ROOT}/ios/LibTorch-Lite.h ${ZIP_DIR}/src/
else
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
fi
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
# zip the library
export DATE="$(date -u +%Y%m%d)"
export IOS_NIGHTLY_BUILD_VERSION="1.13.0.${DATE}"
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# libtorch_lite_ios_nightly_1.11.0.20210810.zip
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"
else
ZIPFILE="libtorch_ios_nightly_build.zip"
fi
ZIPFILE=libtorch_ios_nightly_build.zip
cd ${ZIP_DIR}
#for testing
touch version.txt
echo "${IOS_NIGHTLY_BUILD_VERSION}" > version.txt
echo $(date +%s) > version.txt
zip -r ${ZIPFILE} install src version.txt LICENSE
# upload to aws
# Install conda then 'conda install' awscli
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
conda install -c conda-forge awscli --yes
brew install awscli
set +x
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
@ -60,16 +44,3 @@ set +x
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# create a new LibTorch-Lite-Nightly.podspec from the template
echo "cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec"
cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# update pod version
sed -i '' -e "s/IOS_NIGHTLY_BUILD_VERSION/${IOS_NIGHTLY_BUILD_VERSION}/g" ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
cat ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# push the new LibTorch-Lite-Nightly.podspec to CocoaPods
pod trunk push --verbose --allow-warnings --use-libraries --skip-import-validation ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
fi

View File

@ -4,31 +4,27 @@ echo "RUNNING ON $(uname -a) WITH $(nproc) CPUS AND $(free -m)"
set -eux -o pipefail
source /env
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
if [[ "${DESIRED_CUDA}" =~ cu11[0-9] ]]; then
export BUILD_SPLIT_CUDA="ON"
fi
# Defaults here so they can be changed in one place
export MAX_JOBS=12
# Parse the parameters
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
build_script='conda/build_pytorch.sh'
elif [[ "$DESIRED_CUDA" == cpu ]]; then
build_script='manywheel/build_cpu.sh'
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
build_script='manywheel/build_rocm.sh'
else
build_script='manywheel/build.sh'
fi
if [[ "$CIRCLE_BRANCH" == "main" ]] || [[ "$CIRCLE_BRANCH" == "master" ]] || [[ "$CIRCLE_BRANCH" == release/* ]]; then
export BUILD_DEBUG_INFO=1
# We want to call unbuffer, which calls tclsh which finds the expect
# package. The expect was installed by yum into /usr/bin so we want to
# find /usr/bin/tclsh, but this is shadowed by /opt/conda/bin/tclsh in
# the conda docker images, so we prepend it to the path here.
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
mkdir /just_tclsh_bin
ln -s /usr/bin/tclsh /just_tclsh_bin/tclsh
export PATH=/just_tclsh_bin:$PATH
fi
# Build the package
SKIP_ALL_TESTS=1 "/builder/$build_script"
SKIP_ALL_TESTS=1 unbuffer "/builder/$build_script" | ts

View File

@ -1,31 +1,18 @@
#!/bin/bash
OUTPUT_SCRIPT=${OUTPUT_SCRIPT:-/home/circleci/project/ci_test_script.sh}
# only source if file exists
if [[ -f /home/circleci/project/env ]]; then
source /home/circleci/project/env
fi
cat >"${OUTPUT_SCRIPT}" <<EOL
source /home/circleci/project/env
cat >/home/circleci/project/ci_test_script.sh <<EOL
# =================== The following code will be executed inside Docker container ===================
set -eux -o pipefail
retry () {
"\$@" || (sleep 1 && "\$@") || (sleep 2 && "\$@")
}
# Source binary env file here if exists
if [[ -e "${BINARY_ENV_FILE:-/nofile}" ]]; then
source "${BINARY_ENV_FILE:-/nofile}"
fi
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
# Set up Python
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$DESIRED_PYTHON" == 2.7mu ]]; then
export PATH="/opt/python/cp27-cp27mu/bin:\$PATH"
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
# Prior to Python 3.8 paths were suffixed with an 'm'
if [[ -d "\${python_path}/bin" ]]; then
@ -35,71 +22,31 @@ elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
fi
fi
EXTRA_CONDA_FLAGS=""
NUMPY_PIN=""
PROTOBUF_PACKAGE="defaults::protobuf"
if [[ "\$python_nodot" = *310* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.21.2"
PROTOBUF_PACKAGE="protobuf>=3.19.0"
fi
if [[ "\$python_nodot" = *39* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.20"
fi
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
# Install the package
# These network calls should not have 'retry's because they are installing
# locally and aren't actually network calls
# TODO there is duplicated and inconsistent test-python-env setup across this
# file, builder/smoke_test.sh, and builder/run_tests.sh, and also in the
# conda build scripts themselves. These should really be consolidated
# Pick only one package of multiple available (which happens as result of workflow re-runs)
pkg="/final_pkgs/\$(ls -1 /final_pkgs|sort|tail -1)"
pkg="/final_pkgs/\$(ls /final_pkgs)"
if [[ "$PACKAGE_TYPE" == conda ]]; then
(
# For some reason conda likes to re-activate the conda environment when attempting this install
# which means that a deactivate is run and some variables might not exist when that happens,
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
# it comes to the conda installation commands
set +u
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
"numpy\${NUMPY_PIN}" \
future \
mkl>=2018 \
ninja \
dataclasses \
typing-extensions \
${PROTOBUF_PACKAGE} \
six
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -c pytorch -y cpuonly
conda install -y "\$pkg" --offline
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -y cpuonly -c pytorch
fi
retry conda install -yq future numpy protobuf six
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
# DESIRED_CUDA is in format cu90 or cu102
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
CUDA_PACKAGE="cudatoolkit"
if [[ "$DESIRED_CUDA" == "cu116" || "$DESIRED_CUDA" == "cu117" ]]; then
CUDA_PACKAGE="cuda"
fi
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "\${CUDA_PACKAGE}=\${cu_ver}"
fi
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
)
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
fi
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
pip install "\$pkg"
retry pip install -q future numpy protobuf typing-extensions six
retry pip install -q future numpy protobuf six
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"
@ -109,10 +56,9 @@ fi
# Test the package
/builder/check_binary.sh
# =================== The above code will be executed inside Docker container ===================
EOL
echo
echo
echo "The script that will run in the next step is:"
cat "${OUTPUT_SCRIPT}"
cat /home/circleci/project/ci_test_script.sh

View File

@ -0,0 +1,37 @@
#!/bin/bash
# Do NOT set -x
source /home/circleci/project/env
set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
export PATH="$MINICONDA_ROOT/bin:$PATH"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
# Upload the package to the final location
pushd /home/circleci/project/final_pkgs
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -1,19 +1,24 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/Users/distiller/project/env}"
source "/Users/distiller/project/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
if [[ -z "${GITHUB_ACTIONS:-}" ]]; then
export PATH="${workdir:-${HOME}}/miniconda/bin:${PATH}"
fi
# For some reason `unbuffer` breaks if we change the PATH here, so we
# write a script with the PATH change in it and unbuffer the whole
# thing
build_script="$workdir/build_script.sh"
touch "$build_script"
chmod +x "$build_script"
# Build
export USE_PYTORCH_METAL_EXPORT=1
export USE_COREML_DELEGATE=1
cat >"$build_script" <<EOL
export PATH="$workdir/miniconda/bin:$PATH"
if [[ "$PACKAGE_TYPE" == conda ]]; then
"${BUILDER_ROOT}/conda/build_pytorch.sh"
"$workdir/builder/conda/build_pytorch.sh"
else
export TORCH_PACKAGE_NAME="$(echo $TORCH_PACKAGE_NAME | tr '-' '_')"
"${BUILDER_ROOT}/wheel/build_wheel.sh"
"$workdir/builder/wheel/build_wheel.sh"
fi
EOL
unbuffer "$build_script" | ts

View File

@ -20,9 +20,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
unzip "$pkg" -d /tmp
cd /tmp/libtorch
elif [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "$pkg"
conda install -y "$pkg" --offline
else
pip install "$pkg" -v
pip install "$pkg" --no-index --no-dependencies -v
fi
# Test

View File

@ -0,0 +1,37 @@
#!/bin/bash
# Do NOT set -x
set -eu -o pipefail
set +x
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
pushd "$workdir/final_pkgs"
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -5,32 +5,53 @@ export TZ=UTC
tagged_version() {
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" && -z "${GITHUB_ACTIONS:-}" ]]; then
GIT_DIR="${workdir}/p/.git"
if [[ "$OSTYPE" == "msys" ]]; then
GIT_DESCRIBE="git --git-dir ${workdir}/p/.git describe"
else
GIT_DIR="${workdir}/pytorch/.git"
GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
fi
GIT_DESCRIBE="git --git-dir ${GIT_DIR} describe --tags --match v[0-9]*.[0-9]*.[0-9]*"
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif [[ ! -d "${GIT_DIR}" ]]; then
echo "Abort, abort! Git dir ${GIT_DIR} does not exists!"
kill $$
elif ${GIT_DESCRIBE} --exact >/dev/null; then
${GIT_DESCRIBE}
elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
${GIT_DESCRIBE} --tags
else
return 1
fi
}
envfile=${BINARY_ENV_FILE:-/tmp/env}
if [[ -n "${PYTORCH_ROOT}" ]]; then
workdir=$(dirname "${PYTORCH_ROOT}")
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
# docker executor (binary builds)
workdir="/"
fi
envfile="$workdir/env"
touch "$envfile"
chmod +x "$envfile"
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export DESIRED_DEVTOOLSET=""
export LIBTORCH_CONFIG="${configs[3]:-}"
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
export DEBUG=1
fi
else
export DESIRED_DEVTOOLSET="${configs[3]:-}"
fi
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
export BUILD_PYTHONLESS=1
fi
@ -41,25 +62,18 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="pytorch/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="pytorch/manylinux-cpu"
export DOCKER_IMAGE="pytorch/manylinux-cuda100"
else
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
fi
fi
USE_GOLD_LINKER="OFF"
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
USE_GOLD_LINKER="ON"
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.13.0.dev$DATE"
BASE_BUILD_VERSION="1.5.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
@ -67,20 +81,15 @@ if tagged_version >/dev/null; then
# Switch upload folder to 'test/' if we are on a tag
PIP_UPLOAD_FOLDER='test/'
# Grab git tag, remove prefixed v and remove everything after -
# Used to clean up tags that are for release candidates like v1.6.0-rc1
# Turns tag v1.6.0-rc1 -> v1.6.0
# Used to clean up tags that are for release candidates like v1.5.0-rc1
# Turns tag v1.5.0-rc1 -> v1.5.0
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
fi
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
fi
if [[ -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_BUILD_VERSION="${PYTORCH_BUILD_VERSION}-with-pypi-cudnn"
fi
export PYTORCH_BUILD_NUMBER=1
@ -91,14 +100,8 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
@ -110,28 +113,24 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
fi
fi
cat >"$envfile" <<EOL
cat >>"$envfile" <<EOL
# =================== The following code will be executed inside Docker container ===================
export TZ=UTC
echo "Running on $(uname -a) at $(date)"
export PACKAGE_TYPE="$PACKAGE_TYPE"
export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_PYTHON="$DESIRED_PYTHON"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
export DEBUG=1
fi
export DESIRED_DEVTOOLSET=""
else
export DESIRED_DEVTOOLSET="${DESIRED_DEVTOOLSET:-}"
export DEBUG="${DEBUG:-}"
fi
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}"
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.13.0.dev
export NIGHTLIES_DATE_PREAMBLE=1.5.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
@ -139,7 +138,6 @@ export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
# TODO: We don't need this anymore IIUC
export TORCH_PACKAGE_NAME='torch'
export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export ANACONDA_USER='pytorch'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
@ -147,48 +145,25 @@ export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
export USE_GLOO_WITH_OPENSSL="ON"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
# =================== The above code will be executed inside Docker container ===================
EOL
# nproc doesn't exist on darwin
if [[ "$(uname)" != Darwin ]]; then
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
cat >>"$envfile" <<EOL
export MAX_JOBS="${MAX_JOBS}"
EOL
fi
if [[ -z "${GITHUB_ACTIONS:-}" ]]; then
cat >>"$envfile" <<EOL
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
EOL
fi
echo 'retry () {' >> "$envfile"
echo ' $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)' >> "$envfile"
echo '}' >> "$envfile"

View File

@ -19,7 +19,7 @@ chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
fi

View File

@ -1,114 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
# Designates whether to submit as a release candidate or a nightly build
# Value should be `test` when uploading release candidates
# currently set within `designate_upload_channel`
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
# Designates what subfolder to put packages into
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
UPLOAD_BUCKET="s3://pytorch"
BACKUP_BUCKET="s3://pytorch-backup"
BUILD_NAME=${BUILD_NAME:-}
# this is temporary change to upload pypi-cudnn builds to separate folder
if [[ ${BUILD_NAME} == *with-pypi-cudnn* ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_pypi_cudnn"
fi
DRY_RUN=${DRY_RUN:-enabled}
# Don't actually do work unless explicit
ANACONDA="true anaconda"
AWS_S3_CP="aws s3 cp --dryrun"
if [[ "${DRY_RUN}" = "disabled" ]]; then
ANACONDA="anaconda"
AWS_S3_CP="aws s3 cp"
fi
# Sleep 2 minutes between retries for conda upload
retry () {
"$@" || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@") || (sleep 5m && "$@")
}
do_backup() {
local backup_dir
backup_dir=$1
(
pushd /tmp/workspace
set -x
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
)
}
conda_upload() {
(
set -x
retry \
${ANACONDA} \
upload \
${PKG_DIR}/*.tar.bz2 \
-u "pytorch-${UPLOAD_CHANNEL}" \
--label main \
--no-progress \
--force
)
}
s3_upload() {
local extension
local pkg_type
extension="$1"
pkg_type="$2"
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
(
for pkg in ${PKG_DIR}/*.${extension}; do
(
set -x
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
)
done
)
}
# Install dependencies (should be a no-op if previously installed)
conda install -yq anaconda-client
pip install -q awscli
case "${PACKAGE_TYPE}" in
conda)
conda_upload
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(\
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
| grep subdir \
| cut -d ':' -f2 \
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
)
BACKUP_DIR="conda/${subdir}"
;;
libtorch)
s3_upload "zip" "libtorch"
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
# wheel can either refer to wheel/manywheel
*wheel)
s3_upload "whl" "whl"
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
*)
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
exit 1
;;
esac
# CIRCLE_TAG is defined by upstream circleci,
# this can be changed to recognize tagged versions
if [[ -n "${CIRCLE_TAG:-}" ]]; then
do_backup "${BACKUP_DIR}"
fi

View File

@ -1,68 +1,22 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
source "/c/w/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2017
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache
export SCCACHE_IGNORE_SERVER_IO_ERROR=1
export VC_YEAR=2019
export SCCACHE_BUCKET=ossci-compiler-cache-windows
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
if [[ "${DESIRED_CUDA}" == *"cu11"* ]]; then
export BUILD_SPLIT_CUDA=ON
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
echo "Free Space for CUDA DEBUG BUILD"
if [[ "${CIRCLECI:-}" == 'true' ]]; then
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft.NET" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft.NET"
fi
if [[ -d "C:\\Program Files\\dotnet" ]]; then
rm -rf "C:\\Program Files\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\dotnet" ]]; then
rm -rf "C:\\Program Files (x86)\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft SQL Server" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft SQL Server"
fi
if [[ -d "C:\\Program Files (x86)\\Xamarin" ]]; then
rm -rf "C:\\Program Files (x86)\\Xamarin"
fi
if [[ -d "C:\\Program Files (x86)\\Google" ]]; then
rm -rf "C:\\Program Files (x86)\\Google"
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
if [[ -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
if [[ -d "C:\\Microsoft" ]]; then
# don't use quotes here
rm -rf /c/Microsoft/AndroidNDK*
fi
if [[ "$CIRCLECI" == 'true' && -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019"
fi
echo "Free space on filesystem before build:"
@ -70,10 +24,9 @@ df -h
pushd "$BUILDER_ROOT"
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
./windows/internal/build_conda.bat
./windows/internal/build_conda.bat
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
./windows/internal/build_wheels.bat
./windows/internal/build_wheels.bat
fi
echo "Free space on filesystem after build:"

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2019
pushd "$BUILDER_ROOT"
./windows/internal/smoke_test.bat
popd

View File

@ -0,0 +1,37 @@
#!/bin/bash
set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
source "/env"
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly/}
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
# The only difference is the trailing slash
# Strip trailing slashes if there
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
pushd /root/workspace/final_pkgs
# Upload the package to the final location
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry conda install -c conda-forge -yq awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry conda install -c conda-forge -yq awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -1,44 +1,15 @@
#!/usr/bin/env bash
set -eux -o pipefail
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_NDK=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
# Must be in sync with GRADLE_VERSION in docker image for android
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Run custom build script
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
# Install torch & torchvision - used to download & dump used ops from test model.
retry pip install torch torchvision --progress-bar off
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
fi
# Run default build
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
@ -73,15 +44,32 @@ ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
fi
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
fi
if [ -n "${GRADLE_OFFLINE:-}" ]; then
if [ -n "{GRADLE_OFFLINE:-}" ]; then
GRADLE_PARAMS+=" --offline"
fi
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
env
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
$GRADLE_PATH $GRADLE_PARAMS
find . -type f -name "*.a" -exec ls -lh {} \;

View File

@ -10,36 +10,33 @@ pt_checkout="/var/lib/jenkins/workspace"
# Since we're cat-ing this file, we need to escape all $'s
echo "cpp_doc_push_script.sh: Invoked with $*"
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
# the order of operations goes:
# 1. Check if there's an argument $1
# 2. If no argument check for environment var DOCS_INSTALL_PATH
# 3. If no environment var fall back to default 'docs/'
# NOTE: It might seem weird to gather the second argument before gathering the first argument
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
# try and gather it first, just so we don't potentially break people who rely on this script
# Argument 2: What version of the Python API docs we are building.
version="${2:-${DOCS_VERSION:-master}}"
if [ -z "$version" ]; then
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
# Argument 1: Where to copy the built documentation for Python API to
# (pytorch.github.io/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
install_path="$1"
if [ -z "$install_path" ]; then
echo "error: cpp_doc_push_script.sh: install_path (arg1) not specified"
exit 1
fi
is_main_doc=false
if [ "$version" == "master" ]; then
is_main_doc=true
# Argument 2: What version of the Python API docs we are building.
version="$2"
if [ -z "$version" ]; then
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
echo "install_path: $install_path version: $version"
is_master_doc=false
if [ "$version" == "master" ]; then
is_master_doc=true
fi
# Argument 3: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$3" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
# ======================== Building PyTorch C++ API Docs ========================
@ -51,24 +48,36 @@ git clone https://github.com/pytorch/cppdocs
set -ex
sudo apt-get -y install doxygen
# Generate ATen files
pushd "${pt_checkout}"
pip install -r requirements.txt
time python -m torchgen.gen \
time python aten/src/ATen/gen.py \
-s aten/src/ATen \
-d build/aten/src/ATen
-d build/aten/src/ATen \
aten/src/ATen/Declarations.cwrap \
aten/src/THCUNN/generic/THCUNN.h \
aten/src/ATen/nn.yaml \
aten/src/ATen/native/native_functions.yaml
# Copy some required files
cp aten/src/ATen/common_with_cwrap.py tools/shared/cwrap_common.py
cp torch/_utils_internal.py tools/shared
# Generate PyTorch files
time python tools/setup_helpers/generate_code.py \
--native-functions-path aten/src/ATen/native/native_functions.yaml \
--tags-path aten/src/ATen/native/tags.yaml
--declarations-path build/aten/src/ATen/Declarations.yaml \
--nn-path aten/src/
# Build the docs
pushd docs/cpp
pip install -r requirements.txt
pip install breathe==4.13.0 bs4 lxml six
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
pip install exhale>=0.2.1
pip install sphinx==2.4.4
# Uncomment once it is fixed
# pip install -r requirements.txt
time make VERBOSE=1 html -j
popd
@ -94,11 +103,23 @@ git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate C++ docs from pytorch/pytorch@${GITHUB_SHA}" || true
git commit -m "Automatic sync on $(date)" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin
if [ "$dry_run" = false ]; then
echo "Pushing to https://github.com/pytorch/cppdocs"
set +x
/usr/bin/expect <<DONE
spawn git push -u origin master
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd

View File

@ -1,8 +0,0 @@
set "DRIVER_DOWNLOAD_LINK=https://s3.amazonaws.com/ossci-windows/452.39-data-center-tesla-desktop-win10-64bit-international.exe"
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output 452.39-data-center-tesla-desktop-win10-64bit-international.exe
if errorlevel 1 exit /b 1
start /wait 452.39-data-center-tesla-desktop-win10-64bit-international.exe -s -noreboot
if errorlevel 1 exit /b 1
del 452.39-data-center-tesla-desktop-win10-64bit-international.exe || ver > NUL

View File

@ -1,47 +0,0 @@
#!/bin/bash
# =================== The following code **should** be executed inside Docker container ===================
# Install dependencies
sudo apt-get -y update
sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip -q install -r requirements.txt
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ $version == "master" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -5,7 +5,7 @@ set -eu -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
@ -35,9 +35,7 @@ else
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES

View File

@ -7,72 +7,46 @@ sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
echo "python_doc_push_script.sh: Invoked with $*"
set -ex
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
# the order of operations goes:
# 1. Check if there's an argument $1
# 2. If no argument check for environment var DOCS_INSTALL_PATH
# 3. If no environment var fall back to default 'docs/'
# NOTE: It might seem weird to gather the second argument before gathering the first argument
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
# try and gather it first, just so we don't potentially break people who rely on this script
# Argument 2: What version of the docs we are building.
version="${2:-${DOCS_VERSION:-master}}"
if [ -z "$version" ]; then
echo "error: python_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
# Argument 1: Where to copy the built documentation to
# (pytorch.github.io/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
install_path="$1"
if [ -z "$install_path" ]; then
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
exit 1
fi
is_main_doc=false
# Argument 2: What version of the docs we are building.
version="$2"
if [ -z "$version" ]; then
echo "error: python_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
is_master_doc=false
if [ "$version" == "master" ]; then
is_main_doc=true
is_master_doc=true
fi
# Argument 3: The branch to push to. Usually is "site"
branch="${3:-${DOCS_BRANCH:-site}}"
branch="$3"
if [ -z "$branch" ]; then
echo "error: python_doc_push_script.sh: branch (arg3) not specified"
exit 1
fi
echo "install_path: $install_path version: $version"
# Argument 4: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$4" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
build_docs () {
set +e
set -o pipefail
make $1 2>&1 | tee /tmp/docs_build.txt
code=$?
if [ $code -ne 0 ]; then
set +x
echo =========================
grep "WARNING:" /tmp/docs_build.txt
echo =========================
echo Docs build failed. If the failure is not clear, scan back in the log
echo for any WARNINGS or for the line "build finished with problems"
echo "(tried to echo the WARNINGS above the ==== line)"
echo =========================
fi
set -ex
return $code
}
git clone https://github.com/pytorch/pytorch.github.io -b $branch --depth 1
git clone https://github.com/pytorch/pytorch.github.io -b $branch
pushd pytorch.github.io
export LC_ALL=C
@ -80,38 +54,26 @@ export PATH=/opt/conda/bin:$PATH
rm -rf pytorch || true
# Install TensorBoard in python 3 so torch.utils.tensorboard classes render
pip install -q https://s3.amazonaws.com/ossci-linux/wheels/tensorboard-1.14.0a0-py3-none-any.whl
# Get all the documentation sources, put them in one place
pushd "$pt_checkout"
git clone https://github.com/pytorch/vision
pushd vision
conda install -q pillow
time python setup.py install
popd
pushd docs
rm -rf source/torchvision
cp -a ../vision/docs/source source/torchvision
# Build the docs
pip -q install -r requirements.txt
if [ "$is_main_doc" = true ]; then
build_docs html
[ $? -eq 0 ] || exit $?
make coverage
# Now we have the coverage report, we need to make sure it is empty.
# Count the number of lines in the file and turn that number into a variable
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
# Skip the report header by subtracting 2: the header will be output even if
# there are no undocumented items.
#
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
# be documented then removed from there.
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
undocumented=$(($lines - 2))
if [ $undocumented -lt 0 ]; then
echo coverage output not found
exit 1
elif [ $undocumented -gt 0 ]; then
echo undocumented objects found:
cat build/coverage/python.txt
exit 1
fi
pip -q install -r requirements.txt || true
if [ "$is_master_doc" = true ]; then
make html
else
# skip coverage, format for stable or tags
build_docs html-stable
[ $? -eq 0 ] || exit $?
make html-stable
fi
# Move them into the docs repo
@ -120,6 +82,14 @@ popd
git rm -rf "$install_path" || true
mv "$pt_checkout/docs/build/html" "$install_path"
# Add the version handler by search and replace.
# XXX: Consider moving this to the docs Makefile or site build
if [ "$is_master_doc" = true ]; then
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>\1 \&#x25BC</a>@g"
else
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \&#x25BC</a>@g"
fi
# Prevent Google from indexing $install_path/_modules. This folder contains
# generated source files.
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
@ -131,11 +101,23 @@ git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git commit -m "auto-generating sphinx docs" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin "${branch}"
if [ "$dry_run" = false ]; then
echo "Pushing to pytorch.github.io:$branch"
set +x
/usr/bin/expect <<DONE
spawn git push origin $branch
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd

View File

@ -1,102 +1,81 @@
#!/usr/bin/env bash
set -ex -o pipefail
# Set up NVIDIA docker repo
curl -s -L --retry 3 https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
# Remove unnecessary sources
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
sudo rm -f /etc/apt/heroku.list
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
sudo rm -f /etc/apt/partner.list
# To increase the network reliability, let apt decide which mirror is best to use
sudo sed -i -e 's/http:\/\/.*archive/mirror:\/\/mirrors/' -e 's/\/ubuntu\//\/mirrors.txt/' /etc/apt/sources.list
retry () {
$* || $* || $* || $* || $*
}
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
# (with use of tee to avoid permissions problems)
# This is better than retrying the whole apt-get command
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
retry sudo apt-get update -qq
retry sudo apt-get -y install \
sudo apt-get -y update
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
# WARNING: Docker version is hardcoded here; you must update the
# version number below for docker-ce and nvidia-docker2 to get newer
# versions of Docker. We hardcode these numbers because we kept
# getting broken CI when Docker would update their docker version,
# and nvidia-docker2 would be out of date for a day until they
# released a newer version of their package.
#
# How to figure out what the correct versions of these packages are?
# My preferred method is to start a Docker instance of the correct
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
# apt what the packages you need are. Note that the CircleCI image
# comes with Docker.
sudo apt-get -y install \
linux-headers-$(uname -r) \
linux-image-generic \
moreutils \
docker-ce=5:18.09.4~3-0~ubuntu-xenial \
nvidia-container-runtime=2.0.0+docker18.09.4-1 \
nvidia-docker2=2.0.3+docker18.09.4-1 \
expect-dev
echo "== DOCKER VERSION =="
docker version
sudo pkill -SIGHUP dockerd
if ! command -v aws >/dev/null; then
retry sudo pip3 -q install awscli==1.19.64
fi
retry () {
$* || $* || $* || $* || $*
}
retry sudo pip -q install awscli==1.16.35
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-515.57.run"
DRIVER_FN="NVIDIA-Linux-x86_64-440.59.run"
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
# Taken directly from https://github.com/NVIDIA/nvidia-docker
# Add the package repositories
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
retry sudo apt-get update -qq
# Necessary to get the `--gpus` flag to function within docker
retry sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
else
# Explicitly remove nvidia docker apt repositories if not building for cuda
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
fi
add_to_env_file() {
local name=$1
local value=$2
case "$value" in
*\ *)
# BASH_ENV should be set by CircleCI
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
;;
*)
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
;;
esac
}
add_to_env_file CI_MASTER "${CI_MASTER:-}"
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
add_to_env_file MAX_JOBS "${MAX_JOBS}"
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
fi
export SCCACHE_MAX_JOBS=`expr $(nproc) - 1`
export MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
export MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
echo "declare -x MAX_JOBS=${MAX_JOBS}" >> /home/circleci/project/env
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
set -x
fi
fi
@ -105,7 +84,5 @@ fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval $(aws ecr get-login --region us-east-1 --no-include-email)
set -x

View File

@ -33,7 +33,7 @@ systemctl list-units --all | cat
sudo pkill apt-get || true
# For even better luck, purge unattended-upgrades
sudo apt-get purge -y unattended-upgrades || true
sudo apt-get purge -y unattended-upgrades
cat /etc/apt/sources.list

View File

@ -1,140 +0,0 @@
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
import re
import json
import os
import sys
import requests
import time
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
PIPELINE_ID = "911"
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "main")
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
s = requests.Session()
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
def submit_build(pipeline_id, project_id, source_branch, source_version):
print("Submitting build for branch: " + source_branch)
print("Commit SHA1: ", source_version)
run_build_raw = s.post(build_base_url, json={
"definition": {"id": pipeline_id},
"project": {"id": project_id},
"sourceBranch": source_branch,
"sourceVersion": source_version
})
try:
run_build_json = run_build_raw.json()
except json.decoder.JSONDecodeError as e:
print(e)
print("Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired.")
sys.exit(-1)
build_id = run_build_json['id']
print("Submitted bulid: " + str(build_id))
print("Bulid URL: " + run_build_json['url'])
return build_id
def get_build(_id):
get_build_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
get_build_raw = s.get(get_build_url)
return get_build_raw.json()
def get_build_logs(_id):
get_build_logs_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
get_build_logs_raw = s.get(get_build_logs_url)
return get_build_logs_raw.json()
def get_log_content(url):
resp = s.get(url)
return resp.text
def wait_for_build(_id):
build_detail = get_build(_id)
build_status = build_detail['status']
while build_status == 'notStarted':
print('Waiting for run to start: ' + str(_id))
sys.stdout.flush()
try:
build_detail = get_build(_id)
build_status = build_detail['status']
except Exception as e:
print("Error getting build")
print(e)
time.sleep(30)
print("Bulid started: ", str(_id))
handled_logs = set()
while build_status == 'inProgress':
try:
print("Waiting for log: " + str(_id))
logs = get_build_logs(_id)
except Exception as e:
print("Error fetching logs")
print(e)
time.sleep(30)
continue
for log in logs['value']:
log_id = log['id']
if log_id in handled_logs:
continue
handled_logs.add(log_id)
print('Fetching log: \n' + log['url'])
try:
log_content = get_log_content(log['url'])
print(log_content)
except Exception as e:
print("Error getting log content")
print(e)
sys.stdout.flush()
build_detail = get_build(_id)
build_status = build_detail['status']
time.sleep(30)
build_result = build_detail['result']
print("Bulid status: " + build_status)
print("Bulid result: " + build_result)
return build_status, build_result
if __name__ == '__main__':
# Convert the branch name for Azure DevOps
match = re.search(r'pull/(\d+)', TARGET_BRANCH)
if match is not None:
pr_num = match.group(1)
SOURCE_BRANCH = f'refs/pull/{pr_num}/head'
else:
SOURCE_BRANCH = f'refs/heads/{TARGET_BRANCH}'
MAX_RETRY = 2
retry = MAX_RETRY
while retry > 0:
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
build_status, build_result = wait_for_build(build_id)
if build_result != 'succeeded':
retry = retry - 1
if retry > 0:
print("Retrying... remaining attempt: " + str(retry))
# Wait a bit before retrying
time.sleep((MAX_RETRY - retry) * 120)
continue
else:
print("No more chance to retry. Giving up.")
sys.exit(-1)
else:
break

View File

@ -0,0 +1,87 @@
import glob
import json
import logging
import os
import os.path
import re
import sys
import time
import requests
def get_size(file_dir):
try:
# we should only expect one file, if no, something is wrong
file_name = glob.glob(os.path.join(file_dir, "*"))[0]
return os.stat(file_name).st_size
except:
logging.exception(f"error getting file from: {file_dir}")
return 0
def build_message(size):
pkg_type, py_ver, cu_ver, *_ = os.environ.get("BUILD_ENVIRONMENT", "").split() + [
None,
None,
None,
]
os_name = os.uname()[0].lower()
if os_name == "darwin":
os_name = "macos"
return {
"normal": {
"os": os_name,
"pkg_type": pkg_type,
"py_ver": py_ver,
"cu_ver": cu_ver,
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
"sha1": os.environ.get("CIRCLE_SHA1"),
"branch": os.environ.get("CIRCLE_BRANCH"),
},
"int": {
"time": int(time.time()),
"size": size,
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
},
}
def send_message(message):
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
if not access_token:
raise ValueError("Can't find access token from environment variable")
url = "https://graph.facebook.com/scribe_logs"
r = requests.post(
url,
data={
"access_token": access_token,
"logs": json.dumps(
[
{
"category": "perfpipe_pytorch_binary_size",
"message": json.dumps(message),
"line_escape": False,
}
]
),
},
)
print(r.text)
r.raise_for_status()
if __name__ == "__main__":
file_dir = os.environ.get(
"PYTORCH_FINAL_PACKAGE_DIR", "/home/circleci/project/final_pkgs"
)
if len(sys.argv) == 2:
file_dir = sys.argv[1]
print("checking dir: " + file_dir)
size = get_size(file_dir)
if size != 0:
try:
send_message(build_message(size))
except:
logging.exception("can't send message")

View File

@ -1,10 +1,6 @@
# https://developercommunity.visualstudio.com/t/install-specific-version-of-vs-component/1142479
# Where to find the links: https://docs.microsoft.com/en-us/visualstudio/releases/2019/history#release-dates-and-build-numbers
# BuildTools from S3
$VS_DOWNLOAD_LINK = "https://s3.amazonaws.com/ossci-windows/vs${env:VS_VERSION}_BuildTools.exe"
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
$VS_DOWNLOAD_LINK = "https://aka.ms/vs/15/release/vs_buildtools.exe"
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
"--add Microsoft.VisualStudio.Component.VC.Tools.14.11",
"--add Microsoft.Component.MSBuild",
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
"--add Microsoft.VisualStudio.Component.TextTemplating",
@ -14,52 +10,16 @@ $VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStud
"--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Win81")
if (${env:INSTALL_WINDOWS_SDK} -eq "1") {
$VS_INSTALL_ARGS += "--add Microsoft.VisualStudio.Component.Windows10SDK.19041"
}
if (Test-Path "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe") {
$VS_VERSION_major = [int] ${env:VS_VERSION}.split(".")[0]
$existingPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -version "[${env:VS_VERSION}, ${env:VS_VERSION_major + 1})" -property installationPath
if (($existingPath -ne $null) -and (!${env:CIRCLECI})) {
echo "Found correctly versioned existing BuildTools installation in $existingPath"
exit 0
}
$pathToRemove = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -property installationPath
}
echo "Downloading VS installer from S3."
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS 2019 Version ${env:VS_VERSION} installer failed"
echo "Download of the VS 2017 installer failed"
exit 1
}
if ($pathToRemove -ne $null) {
echo "Uninstalling $pathToRemove."
$VS_UNINSTALL_ARGS = @("uninstall", "--installPath", "`"$pathToRemove`"", "--quiet","--wait")
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_UNINSTALL_ARGS -NoNewWindow -Wait -PassThru
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "Original BuildTools uninstall failed with code $exitCode"
exit 1
}
echo "Other versioned BuildTools uninstalled."
}
echo "Installing Visual Studio version ${env:VS_VERSION}."
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
Remove-Item -Path vs_installer.exe -Force
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "VS 2019 installer exited with code $exitCode, which should be one of [0, 3010]."
curl.exe --retry 3 -kL $COLLECT_DOWNLOAD_LINK --output Collect.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS Collect tool failed."
exit 1
}
Start-Process "${PWD}\Collect.exe" -NoNewWindow -Wait -PassThru
New-Item -Path "C:\w\build-results" -ItemType "directory" -Force
Copy-Item -Path "${env:TEMP}\vslogs.zip" -Destination "C:\w\build-results\"
echo "VS 2017 installer exited with code $exitCode, which should be one of [0, 3010]."
exit 1
}

View File

@ -1,5 +0,0 @@
$CMATH_DOWNLOAD_LINK = "https://raw.githubusercontent.com/microsoft/STL/12c684bba78f9b032050526abdebf14f58ca26a3/stl/inc/cmath"
$VC14_28_INSTALL_PATH="C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.28.29910\include"
curl.exe --retry 3 -kL $CMATH_DOWNLOAD_LINK --output "$home\cmath"
Move-Item -Path "$home\cmath" -Destination "$VC14_28_INSTALL_PATH" -Force

View File

@ -1,75 +0,0 @@
#!/bin/bash
set -eux -o pipefail
case ${CUDA_VERSION} in
10.2)
cuda_installer_name="cuda_10.2.89_441.22_win10"
cuda_install_packages="nvcc_10.2 cuobjdump_10.2 nvprune_10.2 cupti_10.2 cublas_10.2 cublas_dev_10.2 cudart_10.2 cufft_10.2 cufft_dev_10.2 curand_10.2 curand_dev_10.2 cusolver_10.2 cusolver_dev_10.2 cusparse_10.2 cusparse_dev_10.2 nvgraph_10.2 nvgraph_dev_10.2 npp_10.2 npp_dev_10.2 nvrtc_10.2 nvrtc_dev_10.2 nvml_dev_10.2"
;;
11.3)
cuda_installer_name="cuda_11.3.0_465.89_win10"
cuda_install_packages="thrust_11.3 nvcc_11.3 cuobjdump_11.3 nvprune_11.3 nvprof_11.3 cupti_11.3 cublas_11.3 cublas_dev_11.3 cudart_11.3 cufft_11.3 cufft_dev_11.3 curand_11.3 curand_dev_11.3 cusolver_11.3 cusolver_dev_11.3 cusparse_11.3 cusparse_dev_11.3 npp_11.3 npp_dev_11.3 nvrtc_11.3 nvrtc_dev_11.3 nvml_dev_11.3"
;;
11.6)
cuda_installer_name="cuda_11.6.0_511.23_windows"
cuda_install_packages="thrust_11.6 nvcc_11.6 cuobjdump_11.6 nvprune_11.6 nvprof_11.6 cupti_11.6 cublas_11.6 cublas_dev_11.6 cudart_11.6 cufft_11.6 cufft_dev_11.6 curand_11.6 curand_dev_11.6 cusolver_11.6 cusolver_dev_11.6 cusparse_11.6 cusparse_dev_11.6 npp_11.6 npp_dev_11.6 nvrtc_11.6 nvrtc_dev_11.6 nvml_dev_11.6"
;;
11.7)
cuda_installer_name="cuda_11.7.0_516.01_windows"
cuda_install_packages="thrust_11.7 nvcc_11.7 cuobjdump_11.7 nvprune_11.7 nvprof_11.7 cupti_11.7 cublas_11.7 cublas_dev_11.7 cudart_11.7 cufft_11.7 cufft_dev_11.7 curand_11.7 curand_dev_11.7 cusolver_11.7 cusolver_dev_11.7 cusparse_11.7 cusparse_dev_11.7 npp_11.7 npp_dev_11.7 nvrtc_11.7 nvrtc_dev_11.7 nvml_dev_11.7"
;;
*)
echo "CUDA_VERSION $CUDA_VERSION is not supported yet"
exit 1
;;
esac
if [[ -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
echo "Existing CUDA v${CUDA_VERSION} installation found, skipping install"
else
tmp_dir=$(mktemp -d)
(
# no need to popd after, the subshell shouldn't affect the parent shell
pushd "${tmp_dir}"
cuda_installer_link="https://ossci-windows.s3.amazonaws.com/${cuda_installer_name}.exe"
curl --retry 3 -kLO $cuda_installer_link
7z x ${cuda_installer_name}.exe -o${cuda_installer_name}
pushd ${cuda_installer_name}
mkdir cuda_install_logs
set +e
# This breaks for some reason if you quote cuda_install_packages
# shellcheck disable=SC2086
./setup.exe -s ${cuda_install_packages} -loglevel:6 -log:"$(pwd -W)/cuda_install_logs"
set -e
if [[ ! -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
echo "CUDA installation failed"
mkdir -p /c/w/build-results
7z a "c:\\w\\build-results\\cuda_install_logs.7z" cuda_install_logs
exit 1
fi
)
rm -rf "${tmp_dir}"
fi
if [[ -f "/c/Program Files/NVIDIA Corporation/NvToolsExt/bin/x64/nvToolsExt64_1.dll" ]]; then
echo "Existing nvtools installation found, skipping install"
else
# create tmp dir for download
tmp_dir=$(mktemp -d)
(
# no need to popd after, the subshell shouldn't affect the parent shell
pushd "${tmp_dir}"
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/NvToolsExt.7z
7z x NvToolsExt.7z -oNvToolsExt
mkdir -p "C:/Program Files/NVIDIA Corporation/NvToolsExt"
cp -r NvToolsExt/* "C:/Program Files/NVIDIA Corporation/NvToolsExt/"
)
rm -rf "${tmp_dir}"
fi

View File

@ -1,52 +0,0 @@
#!/bin/bash
set -eux -o pipefail
windows_s3_link="https://ossci-windows.s3.amazonaws.com"
case ${CUDA_VERSION} in
10.2)
cudnn_file_name="cudnn-${CUDA_VERSION}-windows10-x64-v7.6.5.32"
;;
11.3)
# Use cudnn8.3 with hard-coded cuda11.3 version
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
;;
11.6)
# Use cudnn8.3 with hard-coded cuda11.5 version
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
;;
11.7)
# Use cudnn8.3 with hard-coded cuda11.5 version
cudnn_file_name="cudnn-windows-x86_64-8.5.0.96_cuda11-archive"
;;
*)
echo "CUDA_VERSION: ${CUDA_VERSION} not supported yet"
exit 1
;;
esac
cudnn_installer_name="cudnn_installer.zip"
cudnn_installer_link="${windows_s3_link}/${cudnn_file_name}.zip"
cudnn_install_folder="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/"
if [[ -f "${cudnn_install_folder}/include/cudnn.h" ]]; then
echo "Existing cudnn installation found, skipping install..."
else
tmp_dir=$(mktemp -d)
(
pushd "${tmp_dir}"
curl --retry 3 -o "${cudnn_installer_name}" "$cudnn_installer_link"
7z x "${cudnn_installer_name}" -ocudnn
# Use '${var:?}/*' to avoid potentially expanding to '/*'
# Remove all of the directories before attempting to copy files
rm -rf "${cudnn_install_folder:?}/*"
cp -rf cudnn/cuda/* "${cudnn_install_folder}"
#Make sure windows path contains zlib dll
curl -k -L "${windows_s3_link}/zlib123dllx64.zip" --output "${tmp_dir}\zlib123dllx64.zip"
7z x "${tmp_dir}\zlib123dllx64.zip" -o"${tmp_dir}\zlib"
xcopy /Y "${tmp_dir}\zlib\dll_x64\*.dll" "C:\Windows\System32"
)
rm -rf "${tmp_dir}"
fi

View File

@ -0,0 +1,44 @@
#!/usr/bin/env python3
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
from yaml import load
try:
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader
def load_config(filename=".circleci/config.yml"):
with open(filename, "r") as fh:
return load("".join(fh.readlines()), Loader)
def load_tags_for_projects(workflow_config):
return {
v["ecr_gc_job"]["project"]: v["ecr_gc_job"]["tags_to_keep"]
for v in workflow_config["workflows"]["ecr_gc"]["jobs"]
if isinstance(v, dict) and "ecr_gc_job" in v
}
def check_version(job, tags, expected_version):
valid_versions = tags[job].split(",")
if expected_version not in valid_versions:
raise RuntimeError(
"We configured {} to use Docker version {}; but this "
"version is not configured in job ecr_gc_job_for_{}. Non-deployed versions will be "
"garbage collected two weeks after they are created. DO NOT LAND "
"THIS TO MASTER without also updating ossci-job-dsl with this version."
"\n\nDeployed versions: {}".format(job, expected_version, job, tags[job])
)
def validate_docker_version():
tags = load_tags_for_projects(load_config())
check_version("pytorch", tags, pytorch_build_definitions.DOCKER_IMAGE_VERSION)
check_version("caffe2", tags, caffe2_build_definitions.DOCKER_IMAGE_VERSION)
if __name__ == "__main__":
validate_docker_version()

View File

@ -57,9 +57,7 @@ binary_windows_params: &binary_windows_params
build_environment:
type: string
default: ""
executor:
type: string
default: "windows-xlarge-cpu-with-nvidia-cuda"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
JOB_EXECUTOR: <<parameters.executor>>
BUILD_FOR_SYSTEM: windows

View File

@ -0,0 +1,14 @@
# There is currently no testing for libtorch TODO
# binary_linux_libtorch_2.7m_cpu_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cpu"
# resource_class: gpu.medium
# <<: *binary_linux_test
#
# binary_linux_libtorch_2.7m_cu90_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cu90"
# resource_class: gpu.medium
# <<: *binary_linux_test
#

View File

@ -0,0 +1,320 @@
binary_linux_build:
<<: *binary_linux_build_params
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Install unbuffer and ts
command: |
set -eux -o pipefail
source /env
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum -q -y install epel-release
retry yum -q -y install expect moreutils
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
retry apt-get update
retry apt-get -y install expect moreutils
retry conda install -y -c eumetsat expect
retry conda install -y cmake
fi
- run:
name: Update compiler to devtoolset7
command: |
set -eux -o pipefail
source /env
if [[ "$DESIRED_DEVTOOLSET" == 'devtoolset7' ]]; then
source "/builder/update_compiler.sh"
# Env variables are not persisted into the next step
echo "export PATH=$PATH" >> /env
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH" >> /env
else
echo "Not updating compiler"
fi
- run:
name: Build
no_output_timeout: "1h"
command: |
source "/pytorch/.circleci/scripts/binary_linux_build.sh"
- run:
name: save binary size
no_output_timeout: "5m"
command: |
source /env
cd /pytorch && export COMMIT_TIME=$(git log --max-count=1 --format=%ct || echo 0)
pip3 install requests && \
SCRIBE_GRAPHQL_ACCESS_TOKEN=${SCRIBE_GRAPHQL_ACCESS_TOKEN} \
python3 /pytorch/.circleci/scripts/upload_binary_size_to_scuba.py || exit 0
- persist_to_workspace:
root: /
paths: final_pkgs
# This should really just be another step of the binary_linux_build job above.
# This isn't possible right now b/c the build job uses the docker executor
# (otherwise they'd be really really slow) but this one uses the macine
# executor (b/c we have to run the docker with --runtime=nvidia and we can't do
# that on the docker executor)
binary_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
# TODO: We shouldn't attach the workspace multiple times
- attach_workspace:
at: /home/circleci/project
- setup_linux_system_environment
- setup_ci_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Prepare test code
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/binary_linux_test.sh
- run:
<<: *binary_run_in_docker
binary_linux_upload:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- setup_linux_system_environment
- setup_ci_environment
- attach_workspace:
at: /home/circleci/project
- run:
<<: *binary_populate_env
- run:
<<: *binary_install_miniconda
- run:
name: Upload
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/binary_linux_upload.sh
# Nighlty build smoke tests defaults
# These are the second-round smoke tests. These make sure that the binaries are
# correct from a user perspective, testing that they exist from the cloud are
# are runnable. Note that the pytorch repo is never cloned into these jobs
##############################################################################
smoke_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- attach_workspace:
at: /home/circleci/project
- setup_linux_system_environment
- setup_ci_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Test
no_output_timeout: "1h"
command: |
set -ex
cat >/home/circleci/project/ci_test_script.sh \<<EOL
# The following code will be executed inside Docker container
set -eux -o pipefail
/builder/smoke_test.sh
# The above code will be executed inside Docker container
EOL
- run:
<<: *binary_run_in_docker
smoke_mac_test:
<<: *binary_linux_test_upload_params
macos:
xcode: "9.4.1"
steps:
- attach_workspace:
at: ~/workspace
- attach_workspace: # TODO - we can `cp` from ~/workspace
at: /Users/distiller/project
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- run:
name: Build
no_output_timeout: "1h"
command: |
set -ex
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
# TODO unbuffer and ts this, but it breaks cause miniconda overwrites
# tclsh. But unbuffer and ts aren't that important so they're just
# disabled for now
./builder/smoke_test.sh
binary_mac_build:
<<: *binary_mac_params
macos:
xcode: "9.4.1"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- run:
name: Build
no_output_timeout: "1h"
command: |
# Do not set -u here; there is some problem with CircleCI
# variable expansion with PROMPT_COMMAND
set -ex -o pipefail
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_build.sh"
cat "$script"
source "$script"
- run:
name: Test
no_output_timeout: "1h"
command: |
# Do not set -u here; there is some problem with CircleCI
# variable expansion with PROMPT_COMMAND
set -ex -o pipefail
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_test.sh"
cat "$script"
source "$script"
- persist_to_workspace:
root: /Users/distiller/project
paths: final_pkgs
binary_mac_upload: &binary_mac_upload
<<: *binary_mac_params
macos:
xcode: "9.4.1"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- attach_workspace: # TODO - we can `cp` from ~/workspace
at: /Users/distiller/project
- run:
name: Upload
no_output_timeout: "10m"
command: |
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_upload.sh"
cat "$script"
source "$script"
binary_ios_build:
<<: *pytorch_ios_params
macos:
xcode: "11.2.1"
steps:
- attach_workspace:
at: ~/workspace
- attach_scripts
- checkout
- run_brew_for_ios_build
- run:
name: Build
no_output_timeout: "1h"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_build.sh"
cat "$script"
source "$script"
- run:
name: Test
no_output_timeout: "30m"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_test.sh"
cat "$script"
source "$script"
- persist_to_workspace:
root: /Users/distiller/workspace/
paths: ios
binary_ios_upload:
<<: *pytorch_ios_params
macos:
xcode: "11.2.1"
steps:
- attach_workspace:
at: ~/workspace
- attach_scripts
- checkout
- run_brew_for_ios_build
- run:
name: Upload
no_output_timeout: "1h"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_upload.sh"
cat "$script"
source "$script"
binary_windows_build:
<<: *binary_windows_params
executor:
name: windows-cpu-with-nvidia-cuda
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Build
no_output_timeout: "1h"
command: |
set -eux -o pipefail
script="/c/w/p/.circleci/scripts/binary_windows_build.sh"
cat "$script"
source "$script"
- persist_to_workspace:
root: "C:/w"
paths: final_pkgs
binary_windows_upload:
<<: *binary_windows_params
docker:
- image: continuumio/miniconda
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- attach_scripts
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Upload
no_output_timeout: "10m"
command: |
set -eux -o pipefail
script="/pytorch/.circleci/scripts/binary_windows_upload.sh"
cat "$script"
source "$script"

Some files were not shown because too many files have changed in this diff Show More