mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-26 00:24:53 +08:00
Compare commits
83 Commits
v1.12.1
...
v1.6.0-rc6
| Author | SHA1 | Date | |
|---|---|---|---|
| 29fe90e2a2 | |||
| 35ad2d8586 | |||
| 994b37b36e | |||
| 8aa878fc93 | |||
| 7c7c9c3aa6 | |||
| a2922f589d | |||
| 8acfecaecb | |||
| 860e18a61b | |||
| 8f804baaa9 | |||
| a395e0903e | |||
| 2ca55430d2 | |||
| b8e77a42bd | |||
| 4081fdd3df | |||
| cefb9e0cd6 | |||
| d9e9e0087a | |||
| 43d746305c | |||
| 9409e03903 | |||
| c9a1853d2f | |||
| 7fa9b2923b | |||
| 40bf15a8ac | |||
| c164fc4d7f | |||
| e0b7480f34 | |||
| 89d7f194d8 | |||
| 59bb44a8e8 | |||
| 8f4d01d9f1 | |||
| 77ffb25925 | |||
| af9600b1f5 | |||
| 83262b1ba1 | |||
| f862a6ba4d | |||
| f3c1ea7455 | |||
| 2ed3ad2891 | |||
| a857af50a4 | |||
| d0045e5520 | |||
| 0406b69b79 | |||
| 6220cc4380 | |||
| eaf3f2fd34 | |||
| c35b4c770b | |||
| 11baccf1b5 | |||
| f0f0cbdd4a | |||
| 11b70b0041 | |||
| 01e9562313 | |||
| 3f13c9a2c8 | |||
| 63a94c021a | |||
| 2b175ba909 | |||
| 8c3f662224 | |||
| 0ffdd5aa1d | |||
| d53427c541 | |||
| b44b1d868e | |||
| 9184c9832e | |||
| e89c4f0dec | |||
| ea273c68f9 | |||
| 4dd37bfbf7 | |||
| 2533b9da83 | |||
| c5c8a85a82 | |||
| b4b8f5b9d4 | |||
| 41816dc97f | |||
| 31d9776c04 | |||
| ddea6c552f | |||
| 091537a764 | |||
| bf4d905ea1 | |||
| 415e499330 | |||
| eaf7dad5d6 | |||
| 75a074abdc | |||
| dede34eab7 | |||
| 0c90b6da5c | |||
| 4316199832 | |||
| f993e5ac88 | |||
| c5bd737f0c | |||
| fe45c2c986 | |||
| a9996bb482 | |||
| bdfcbfa18c | |||
| ea1b0dba18 | |||
| 6d85b2c989 | |||
| 44f79651a7 | |||
| 8682ac147b | |||
| 4cc605e80a | |||
| b0cce716f7 | |||
| 0dc93ac119 | |||
| bb848df10b | |||
| 2dc0b84aca | |||
| 168cddf5f1 | |||
| bc8760b3db | |||
| 4269b9a8fc |
26
.bazelrc
26
.bazelrc
@ -1,27 +1,3 @@
|
||||
build --cxxopt=--std=c++14
|
||||
build --copt=--std=c++14
|
||||
build --copt=-I.
|
||||
# Bazel does not support including its cc_library targets as system
|
||||
# headers. We work around this for generated code
|
||||
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
|
||||
# system include path.
|
||||
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
|
||||
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin
|
||||
build --experimental_ui_max_stdouterr_bytes=2048576
|
||||
|
||||
# Configuration to disable tty features for environments like CI
|
||||
build:no-tty --curses no
|
||||
build:no-tty --progress_report_interval 10
|
||||
build:no-tty --show_progress_rate_limit 10
|
||||
|
||||
# Configuration to build with GPU support
|
||||
build:gpu --define=cuda=true
|
||||
# define a separate build folder for faster switching between configs
|
||||
build:gpu --platform_suffix=-gpu
|
||||
# See the note on the config-less build for details about why we are
|
||||
# doing this. We must also do it for the "-gpu" platform suffix.
|
||||
build --copt=-isystem --copt=bazel-out/k8-fastbuild-gpu/bin
|
||||
# rules_cuda configuration
|
||||
build:gpu --@rules_cuda//cuda:enable_cuda
|
||||
build:gpu --@rules_cuda//cuda:cuda_targets=sm_52
|
||||
build:gpu --@rules_cuda//cuda:compiler=nvcc
|
||||
build:gpu --repo_env=CUDA_PATH=/usr/local/cuda
|
||||
|
||||
@ -1 +1 @@
|
||||
4.2.1
|
||||
3.1.0
|
||||
|
||||
@ -1,15 +0,0 @@
|
||||
[buildfile]
|
||||
name = BUILD.buck
|
||||
|
||||
[repositories]
|
||||
bazel_skylib = third_party/bazel-skylib/
|
||||
|
||||
[download]
|
||||
in_build = true
|
||||
|
||||
[cxx]
|
||||
cxxflags = -std=c++17
|
||||
should_remap_host_platform = true
|
||||
|
||||
[project]
|
||||
default_flavors_mode=all
|
||||
504
.circleci/README.md
Normal file
504
.circleci/README.md
Normal file
@ -0,0 +1,504 @@
|
||||
Structure of CI
|
||||
===============
|
||||
|
||||
setup job:
|
||||
1. Does a git checkout
|
||||
2. Persists CircleCI scripts (everything in `.circleci`) into a workspace. Why?
|
||||
We don't always do a Git checkout on all subjobs, but we usually
|
||||
still want to be able to call scripts one way or another in a subjob.
|
||||
Persisting files this way lets us have access to them without doing a
|
||||
checkout. This workspace is conventionally mounted on `~/workspace`
|
||||
(this is distinguished from `~/project`, which is the conventional
|
||||
working directory that CircleCI will default to starting your jobs
|
||||
in.)
|
||||
3. Write out the commit message to `.circleci/COMMIT_MSG`. This is so
|
||||
we can determine in subjobs if we should actually run the jobs or
|
||||
not, even if there isn't a Git checkout.
|
||||
|
||||
|
||||
|
||||
|
||||
CircleCI configuration generator
|
||||
================================
|
||||
|
||||
One may no longer make changes to the `.circleci/config.yml` file directly.
|
||||
Instead, one must edit these Python scripts or files in the `verbatim-sources/` directory.
|
||||
|
||||
|
||||
Usage
|
||||
----------
|
||||
|
||||
1. Make changes to these scripts.
|
||||
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
|
||||
|
||||
You'll see a build failure on TravisCI if the scripts don't agree with the checked-in version.
|
||||
|
||||
|
||||
Motivation
|
||||
----------
|
||||
|
||||
These scripts establish a single, authoritative source of documentation for the CircleCI configuration matrix.
|
||||
The documentation, in the form of diagrams, is automatically generated and cannot drift out of sync with the YAML content.
|
||||
|
||||
Furthermore, consistency is enforced within the YAML config itself, by using a single source of data to generate
|
||||
multiple parts of the file.
|
||||
|
||||
* Facilitates one-off culling/enabling of CI configs for testing PRs on special targets
|
||||
|
||||
Also see https://github.com/pytorch/pytorch/issues/17038
|
||||
|
||||
|
||||
Future direction
|
||||
----------------
|
||||
|
||||
### Declaring sparse config subsets
|
||||
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
|
||||
|
||||
In contrast with a full recursive tree traversal of configuration dimensions,
|
||||
> in the future future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
|
||||
|
||||
----------------
|
||||
----------------
|
||||
|
||||
# How do the binaries / nightlies / releases work?
|
||||
|
||||
### What is a binary?
|
||||
|
||||
A binary or package (used interchangeably) is a pre-built collection of c++ libraries, header files, python bits, and other files. We build these and distribute them so that users do not need to install from source.
|
||||
|
||||
A **binary configuration** is a collection of
|
||||
|
||||
* release or nightly
|
||||
* releases are stable, nightlies are beta and built every night
|
||||
* python version
|
||||
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
|
||||
* macos: 3.6, 3.7, 3.8
|
||||
* windows: 3.6, 3.7, 3.8
|
||||
* cpu version
|
||||
* cpu, cuda 9.0, cuda 10.0
|
||||
* The supported cuda versions occasionally change
|
||||
* operating system
|
||||
* Linux - these are all built on CentOS. There haven't been any problems in the past building on CentOS and using on Ubuntu
|
||||
* MacOS
|
||||
* Windows - these are built on Azure pipelines
|
||||
* devtoolset version (gcc compiler version)
|
||||
* This only matters on Linux cause only Linux uses gcc. tldr is gcc made a backwards incompatible change from gcc 4.8 to gcc 5, because it had to change how it implemented std::vector and std::string
|
||||
|
||||
### Where are the binaries?
|
||||
|
||||
The binaries are built in CircleCI. There are nightly binaries built every night at 9pm PST (midnight EST) and release binaries corresponding to Pytorch releases, usually every few months.
|
||||
|
||||
We have 3 types of binary packages
|
||||
|
||||
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
|
||||
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
|
||||
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
|
||||
* shared with dependencies (the only supported option for Windows)
|
||||
* static with dependencies
|
||||
* shared without dependencies
|
||||
* static without dependencies
|
||||
|
||||
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
|
||||
|
||||
# CircleCI structure of the binaries
|
||||
|
||||
Some quick vocab:
|
||||
|
||||
* A\**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on\https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
|
||||
* **jobs** are a sequence of '**steps**'
|
||||
* **steps** are usually just a bash script or a builtin CircleCI command.* All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
|
||||
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
|
||||
|
||||
## How are the workflows structured?
|
||||
|
||||
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
|
||||
|
||||
1. binarybuilds
|
||||
1. every day midnight EST
|
||||
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
|
||||
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
|
||||
4. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
|
||||
1. binary_linux_conda_3.7_cpu_build
|
||||
1. Builds the build. On linux jobs this uses the 'docker executor'.
|
||||
2. Persists the package to the workspace
|
||||
2. binary_linux_conda_3.7_cpu_test
|
||||
1. Loads the package to the workspace
|
||||
2. Spins up a docker image (on Linux), mapping the package and code repos into the docker
|
||||
3. Runs some smoke tests in the docker
|
||||
4. (Actually, for macos this is a step rather than a separate job)
|
||||
3. binary_linux_conda_3.7_cpu_upload
|
||||
1. Logs in to aws/conda
|
||||
2. Uploads the package
|
||||
2. update_s3_htmls
|
||||
1. every day 5am EST
|
||||
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
|
||||
3. See below for what these are for and why they're needed
|
||||
4. Three jobs that each examine the current contents of aws and the conda repo and update some html files in s3
|
||||
3. binarysmoketests
|
||||
1. every day
|
||||
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
|
||||
3. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
|
||||
1. smoke_linux_conda_3.7_cpu
|
||||
1. Downloads the package from the cloud, e.g. using the official pip or conda instructions
|
||||
2. Runs the smoke tests
|
||||
|
||||
## How are the jobs structured?
|
||||
|
||||
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources . Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
|
||||
|
||||
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
|
||||
* binary_linux_build.sh
|
||||
* binary_linux_test.sh
|
||||
* binary_linux_upload.sh
|
||||
* MacOS jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
|
||||
* binary_macos_build.sh
|
||||
* binary_macos_test.sh
|
||||
* binary_macos_upload.sh
|
||||
* Update html jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
|
||||
* These delegate from the pytorch/builder repo
|
||||
* https://github.com/pytorch/builder/blob/master/cron/update_s3_htmls.sh
|
||||
* https://github.com/pytorch/builder/blob/master/cron/upload_binary_sizes.sh
|
||||
* Smoke jobs (both linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
|
||||
* These delegate from the pytorch/builder repo
|
||||
* https://github.com/pytorch/builder/blob/master/run_tests.sh
|
||||
* https://github.com/pytorch/builder/blob/master/smoke_test.sh
|
||||
* https://github.com/pytorch/builder/blob/master/check_binary.sh
|
||||
* Common shared code (shared across linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-binary-build-defaults.yml
|
||||
* binary_checkout.sh - checks out pytorch/builder repo. Right now this also checks out pytorch/pytorch, but it shouldn't. pytorch/pytorch should just be shared through the workspace. This can handle being run before binary_populate_env.sh
|
||||
* binary_populate_env.sh - parses BUILD_ENVIRONMENT into the separate env variables that make up a binary configuration. Also sets lots of default values, the date, the version strings, the location of folders in s3, all sorts of things. This generally has to be run before other steps.
|
||||
* binary_install_miniconda.sh - Installs miniconda, cross platform. Also hacks this for the update_binary_sizes job that doesn't have the right env variables
|
||||
* binary_run_in_docker.sh - Takes a bash script file (the actual test code) from a hardcoded location, spins up a docker image, and runs the script inside the docker image
|
||||
|
||||
### **Why do the steps all refer to scripts?**
|
||||
|
||||
CircleCI creates a final yaml file by inlining every <<* segment, so if we were to keep all the code in the config.yml itself then the config size would go over 4 MB and cause infra problems.
|
||||
|
||||
### **What is binary_run_in_docker for?**
|
||||
|
||||
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
|
||||
|
||||
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
|
||||
* linux test jobs use the machine executor and spin up their own docker. Why this nonsense? It's cause we run nvidia-docker for our GPU tests; any code that calls into the CUDA runtime needs to be run on nvidia-docker. To run a nvidia-docker you need to install some nvidia packages on the host machine and then call docker with the '—runtime nvidia' argument. CircleCI doesn't support this, so we have to do it ourself.
|
||||
* This is not just a mere inconvenience. **This blocks all of our linux tests from using more than 2 cores.** But there is nothing that we can do about it, but wait for a fix on circleci's side. Right now, we only run some smoke tests (some simple imports) on the binaries, but this also affects non-binary test jobs.
|
||||
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
|
||||
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
|
||||
|
||||
binary_run_in_docker.sh is a way to share the docker start-up code between the binary test jobs and the binary smoke test jobs
|
||||
|
||||
### **Why does binary_checkout also checkout pytorch? Why shouldn't it?**
|
||||
|
||||
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
|
||||
|
||||
# Azure Pipelines structure of the binaries
|
||||
|
||||
TODO: fill in stuff
|
||||
|
||||
## How are the workflows structured?
|
||||
|
||||
TODO: fill in stuff
|
||||
|
||||
## How are the jobs structured?
|
||||
|
||||
TODO: fill in stuff
|
||||
|
||||
# Code structure of the binaries (circleci agnostic)
|
||||
|
||||
## Overview
|
||||
|
||||
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder) , which is a repo that defines how all the binaries are built. The relevant code is
|
||||
|
||||
|
||||
```
|
||||
# All code needed to set-up environments for build code to run in,
|
||||
# but only code that is specific to the current CI system
|
||||
pytorch/pytorch
|
||||
- .circleci/ # Folder that holds all circleci related stuff
|
||||
- config.yml # GENERATED file that actually controls all circleci behavior
|
||||
- verbatim-sources # Used to generate job/workflow sections in ^
|
||||
- scripts/ # Code needed to prepare circleci environments for binary build scripts
|
||||
|
||||
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
|
||||
- cmake files # used in normal building of pytorch
|
||||
|
||||
# All code needed to prepare a binary build, given an environment
|
||||
# with all the right variables/packages/paths.
|
||||
pytorch/builder
|
||||
|
||||
# Given an installed binary and a proper python env, runs some checks
|
||||
# to make sure the binary was built the proper way. Checks things like
|
||||
# the library dependencies, symbols present, etc.
|
||||
- check_binary.sh
|
||||
|
||||
# Given an installed binary, runs python tests to make sure everything
|
||||
# is in order. These should be de-duped. Right now they both run smoke
|
||||
# tests, but are called from different places. Usually just call some
|
||||
# import statements, but also has overlap with check_binary.sh above
|
||||
- run_tests.sh
|
||||
- smoke_test.sh
|
||||
|
||||
# Folders that govern how packages are built. See paragraphs below
|
||||
|
||||
- conda/
|
||||
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
|
||||
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
|
||||
- pytorch-nightly/ # Build-folder
|
||||
- manywheel/
|
||||
- build_cpu.sh # Entrypoint for cpu builds
|
||||
- build.sh # Entrypoint for CUDA builds
|
||||
- build_common.sh # Actual build script that ^^ call into
|
||||
- wheel/
|
||||
- build_wheel.sh # Entrypoint for wheel builds
|
||||
- windows/
|
||||
- build_pytorch.bat # Entrypoint for wheel builds on Windows
|
||||
```
|
||||
|
||||
Every type of package has an entrypoint build script that handles the all the important logic.
|
||||
|
||||
## Conda
|
||||
|
||||
Linux, MacOS and Windows use the same code flow for the conda builds.
|
||||
|
||||
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
|
||||
|
||||
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
|
||||
tldr; on conda-build is
|
||||
|
||||
1. Creates a brand new conda environment, based off of deps in the meta.yaml
|
||||
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
|
||||
2. If the build fails this environment will stick around. You can activate it for much easier debugging. The “General Python” section below explains what exactly a python “environment” is.
|
||||
2. Calls build.sh in the environment
|
||||
3. Copies the finished package to a new conda env, also specified by the meta.yaml
|
||||
4. Runs some simple import tests (if specified in the meta.yaml)
|
||||
5. Saves the finished package as a tarball
|
||||
|
||||
The build.sh we use is essentially a wrapper around ```python setup.py build``` , but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
|
||||
|
||||
The entrypoint file `builder/conda/build_conda.sh` is complicated because
|
||||
|
||||
* It works for Linux, MacOS and Windows
|
||||
* The mac builds used to create their own environments, since they all used to be on the same machine. There’s now a lot of extra logic to handle conda envs. This extra machinery could be removed
|
||||
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
|
||||
|
||||
## Manywheels (linux pip and libtorch packages)
|
||||
|
||||
Manywheels are pip packages for linux distros. Note that these manywheels are not actually manylinux compliant.
|
||||
|
||||
`builder/manywheel/build_cpu.sh` and `builder/manywheel/build.sh` (for CUDA builds) just set different env vars and then call into `builder/manywheel/build_common.sh`
|
||||
|
||||
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
|
||||
|
||||
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
|
||||
* The script is never used this way anymore. This extra machinery could be removed.
|
||||
* This used to handle testing the pip packages too. This is why there’s testing code at the end that messes with python installations and stuff
|
||||
* The script is never used this way anymore. This extra machinery could be removed.
|
||||
* This also builds libtorch packages
|
||||
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
|
||||
* There is a lot of messing with rpaths. This is necessary, but could be made much much simpler if the above issues were fixed.
|
||||
|
||||
## Wheels (MacOS pip and libtorch packages)
|
||||
|
||||
The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
|
||||
|
||||
* The mac builds used to all run on one machine (we didn’t have autoscaling mac machines till circleci). So this script handled siloing itself by setting-up and tearing-down its build env and siloing itself into its own build directory.
|
||||
* The script is never used this way anymore. This extra machinery could be removed.
|
||||
* This also builds libtorch packages
|
||||
* Ditto the comment above. This should definitely be separated out.
|
||||
|
||||
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
|
||||
|
||||
## Windows Wheels (Windows pip and libtorch packages)
|
||||
|
||||
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
|
||||
|
||||
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
|
||||
* The script is never used this way anymore. This extra machinery could be removed.
|
||||
* This used to handle testing the pip packages too. This is why there’s testing code at the end that messes with python installations and stuff
|
||||
* The script is never used this way anymore. This extra machinery could be removed.
|
||||
* This also builds libtorch packages
|
||||
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
|
||||
|
||||
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
|
||||
|
||||
## General notes
|
||||
|
||||
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
|
||||
|
||||
* These should all be consolidated
|
||||
* These must run on all OS types: MacOS, Linux, and Windows
|
||||
* These all run smoke tests at the moment. They inspect the packages some, maybe run a few import statements. They DO NOT run the python tests nor the cpp tests. The idea is that python tests on master and PR merges will catch all breakages. All these tests have to do is make sure the special binary machinery didn’t mess anything up.
|
||||
* There are separate run_tests.sh and smoke_test.sh because one used to be called by the smoke jobs and one used to be called by the binary test jobs (see circleci structure section above). This is still true actually, but these could be united into a single script that runs these checks, given an installed pytorch package.
|
||||
|
||||
### Note on libtorch
|
||||
|
||||
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
|
||||
|
||||
* It’s confusing. Most of those scripts deal with python specifics.
|
||||
* The extra conditionals everywhere severely complicate the wheel build scripts
|
||||
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
|
||||
|
||||
### Note on docker images / Dockerfiles
|
||||
|
||||
All linux builds occur in docker images. The docker images are
|
||||
|
||||
* pytorch/conda-cuda
|
||||
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
|
||||
* Also used for cpu builds
|
||||
* pytorch/manylinux-cuda90
|
||||
* pytorch/manylinux-cuda92
|
||||
* pytorch/manylinux-cuda100
|
||||
* Also used for cpu builds
|
||||
|
||||
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
|
||||
|
||||
### General Python
|
||||
|
||||
* This is still a good explanation of python installations https://caffe2.ai/docs/faq.html#why-do-i-get-import-errors-in-python-when-i-try-to-use-caffe2
|
||||
|
||||
# How to manually rebuild the binaries
|
||||
|
||||
tldr; make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
|
||||
|
||||
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
|
||||
|
||||
## How to test changes to the binaries via .circleci
|
||||
|
||||
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using ```.circleci/regenerate.sh``` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
|
||||
|
||||
```
|
||||
# Make your changes
|
||||
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
|
||||
|
||||
# Regenerate the yaml, has to be in python 3.7
|
||||
.circleci/regenerate.sh
|
||||
|
||||
# Make a commit
|
||||
git add .circleci *
|
||||
git commit -m "My real changes"
|
||||
git push origin my_branch
|
||||
|
||||
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
|
||||
# Also eliminate ensure-consistency and should_run_job checks
|
||||
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
|
||||
|
||||
# Make a commit you won't keep
|
||||
git add .circleci
|
||||
git commit -m "[DO NOT LAND] testing binaries for above changes"
|
||||
git push origin my_branch
|
||||
|
||||
# Now you need to make some changes to the first commit.
|
||||
git rebase -i HEAD~2 # mark the first commit as 'edit'
|
||||
|
||||
# Make the changes
|
||||
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
|
||||
.circleci/regenerate.sh
|
||||
|
||||
# Ammend the commit and recontinue
|
||||
git add .circleci
|
||||
git commit --amend
|
||||
git rebase --continue
|
||||
|
||||
# Update the PR, need to force since the commits are different now
|
||||
git push origin my_branch --force
|
||||
```
|
||||
|
||||
The advantage of this flow is that you can make new changes to the base commit and regenerate the .circleci without having to re-write which binary jobs you want to test on. The downside is that all updates will be force pushes.
|
||||
|
||||
## How to build a binary locally
|
||||
|
||||
### Linux
|
||||
|
||||
You can build Linux binaries locally easily using docker.
|
||||
|
||||
```
|
||||
# Run the docker
|
||||
# Use the correct docker image, pytorch/conda-cuda used here as an example
|
||||
#
|
||||
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
|
||||
# machine that you're running the command on) accessible to the docker
|
||||
# container at path/to/bar. So if you then run `touch path/to/bar/baz`
|
||||
# in the docker container then you will see path/to/foo/baz on your local
|
||||
# machine. You could also clone the pytorch and builder repos in the docker.
|
||||
#
|
||||
# If you're building a CUDA binary then use `nvidia-docker run` instead, see below.
|
||||
#
|
||||
# If you know how, add ccache as a volume too and speed up everything
|
||||
docker run \
|
||||
-v your/pytorch/repo:/pytorch \
|
||||
-v your/builder/repo:/builder \
|
||||
-v where/you/want/packages/to/appear:/final_pkgs \
|
||||
-it pytorch/conda-cuda /bin/bash
|
||||
|
||||
# Export whatever variables are important to you. All variables that you'd
|
||||
# possibly need are in .circleci/scripts/binary_populate_env.sh
|
||||
# You should probably always export at least these 3 variables
|
||||
export PACKAGE_TYPE=conda
|
||||
export DESIRED_PYTHON=3.6
|
||||
export DESIRED_CUDA=cpu
|
||||
|
||||
# Call the entrypoint
|
||||
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
|
||||
# The builds generate lots of output so you probably need this when
|
||||
# building locally.
|
||||
/builder/conda/build_pytorch.sh |& tee build_output.log
|
||||
```
|
||||
|
||||
**Building CUDA binaries on docker**
|
||||
|
||||
To build a CUDA binary you need to use `nvidia-docker run` instead of just `docker run` (or you can manually pass `--runtime=nvidia`). This adds some needed libraries and things to build CUDA stuff.
|
||||
|
||||
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though it’s gonna take a loong time).
|
||||
|
||||
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
|
||||
|
||||
### MacOS
|
||||
|
||||
There’s no easy way to generate reproducible hermetic MacOS environments. If you have a Mac laptop then you can try emulating the .circleci environments as much as possible, but you probably have packages in /usr/local/, possibly installed by brew, that will probably interfere with the build. If you’re trying to repro an error on a Mac build in .circleci and you can’t seem to repro locally, then my best advice is actually to iterate on .circleci :/
|
||||
|
||||
But if you want to try, then I’d recommend
|
||||
|
||||
```
|
||||
# Create a new terminal
|
||||
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
|
||||
# know how to do
|
||||
|
||||
# Install a new miniconda
|
||||
# First remove any other python or conda installation from your PATH
|
||||
# Always install miniconda 3, even if building for Python <3
|
||||
new_conda="~/my_new_conda"
|
||||
conda_sh="$new_conda/install_miniconda.sh"
|
||||
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
|
||||
chmod +x "$conda_sh"
|
||||
"$conda_sh" -b -p "$MINICONDA_ROOT"
|
||||
rm -f "$conda_sh"
|
||||
export PATH="~/my_new_conda/bin:$PATH"
|
||||
|
||||
# Create a clean python env
|
||||
# All MacOS builds use conda to manage the python env and dependencies
|
||||
# that are built with, even the pip packages
|
||||
conda create -yn binary python=2.7
|
||||
conda activate binary
|
||||
|
||||
# Export whatever variables are important to you. All variables that you'd
|
||||
# possibly need are in .circleci/scripts/binary_populate_env.sh
|
||||
# You should probably always export at least these 3 variables
|
||||
export PACKAGE_TYPE=conda
|
||||
export DESIRED_PYTHON=3.6
|
||||
export DESIRED_CUDA=cpu
|
||||
|
||||
# Call the entrypoint you want
|
||||
path/to/builder/wheel/build_wheel.sh
|
||||
```
|
||||
|
||||
N.B. installing a brand new miniconda is important. This has to do with how conda installations work. See the “General Python” section above, but tldr; is that
|
||||
|
||||
1. You make the ‘conda’ command accessible by prepending `path/to/conda_root/bin` to your PATH.
|
||||
2. You make a new env and activate it, which then also gets prepended to your PATH. Now you have `path/to/conda_root/envs/new_env/bin:path/to/conda_root/bin:$PATH`
|
||||
3. Now say you (or some code that you ran) call python executable `foo`
|
||||
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
|
||||
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called ‘base’), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
|
||||
|
||||
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
|
||||
|
||||
### Windows
|
||||
|
||||
TODO: fill in
|
||||
@ -25,12 +25,38 @@ DEPS_INCLUSION_DIMENSIONS = [
|
||||
]
|
||||
|
||||
|
||||
def get_processor_arch_name(gpu_version):
|
||||
return "cpu" if not gpu_version else (
|
||||
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
|
||||
)
|
||||
def get_processor_arch_name(cuda_version):
|
||||
return "cpu" if not cuda_version else "cu" + cuda_version
|
||||
|
||||
|
||||
LINUX_PACKAGE_VARIANTS = OrderedDict(
|
||||
manywheel=[
|
||||
"3.6m",
|
||||
"3.7m",
|
||||
"3.8m",
|
||||
],
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
"3.7m",
|
||||
],
|
||||
)
|
||||
|
||||
CONFIG_TREE_DATA = OrderedDict(
|
||||
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
|
||||
macos=([None], OrderedDict(
|
||||
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
"3.7",
|
||||
],
|
||||
)),
|
||||
windows=(dimensions.CUDA_VERSIONS, OrderedDict(
|
||||
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
"3.7",
|
||||
],
|
||||
)),
|
||||
)
|
||||
|
||||
# GCC config variants:
|
||||
@ -67,12 +93,12 @@ class TopLevelNode(ConfigNode):
|
||||
|
||||
|
||||
class OSConfigNode(ConfigNode):
|
||||
def __init__(self, parent, os_name, gpu_versions, py_tree):
|
||||
def __init__(self, parent, os_name, cuda_versions, py_tree):
|
||||
super(OSConfigNode, self).__init__(parent, os_name)
|
||||
|
||||
self.py_tree = py_tree
|
||||
self.props["os_name"] = os_name
|
||||
self.props["gpu_versions"] = gpu_versions
|
||||
self.props["cuda_versions"] = cuda_versions
|
||||
|
||||
def get_children(self):
|
||||
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
|
||||
@ -85,14 +111,13 @@ class PackageFormatConfigNode(ConfigNode):
|
||||
self.props["python_versions"] = python_versions
|
||||
self.props["package_format"] = package_format
|
||||
|
||||
|
||||
def get_children(self):
|
||||
if self.find_prop("os_name") == "linux":
|
||||
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
|
||||
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
|
||||
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
|
||||
else:
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
|
||||
|
||||
|
||||
class LinuxGccConfigNode(ConfigNode):
|
||||
@ -102,22 +127,14 @@ class LinuxGccConfigNode(ConfigNode):
|
||||
self.props["gcc_config_variant"] = gcc_config_variant
|
||||
|
||||
def get_children(self):
|
||||
gpu_versions = self.find_prop("gpu_versions")
|
||||
cuda_versions = self.find_prop("cuda_versions")
|
||||
|
||||
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
|
||||
# see https://github.com/pytorch/pytorch/issues/20066
|
||||
if self.find_prop("gcc_config_variant") == 'devtoolset7':
|
||||
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
|
||||
cuda_versions = filter(lambda x: x != "90", cuda_versions)
|
||||
|
||||
# XXX disabling conda rocm build since docker images are not there
|
||||
if self.find_prop("package_format") == 'conda':
|
||||
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
|
||||
|
||||
# XXX libtorch rocm build is temporarily disabled
|
||||
if self.find_prop("package_format") == 'libtorch':
|
||||
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
|
||||
|
||||
return [ArchConfigNode(self, v) for v in gpu_versions]
|
||||
return [ArchConfigNode(self, v) for v in cuda_versions]
|
||||
|
||||
|
||||
class WindowsLibtorchConfigNode(ConfigNode):
|
||||
@ -127,14 +144,14 @@ class WindowsLibtorchConfigNode(ConfigNode):
|
||||
self.props["libtorch_config_variant"] = libtorch_config_variant
|
||||
|
||||
def get_children(self):
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
|
||||
|
||||
|
||||
class ArchConfigNode(ConfigNode):
|
||||
def __init__(self, parent, gpu):
|
||||
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
|
||||
def __init__(self, parent, cu):
|
||||
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
|
||||
|
||||
self.props["gpu"] = gpu
|
||||
self.props["cu"] = cu
|
||||
|
||||
def get_children(self):
|
||||
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
|
||||
|
||||
@ -6,10 +6,10 @@ import cimodel.lib.conf_tree as conf_tree
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
class Conf(object):
|
||||
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
|
||||
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
|
||||
|
||||
self.os = os
|
||||
self.gpu_version = gpu_version
|
||||
self.cuda_version = cuda_version
|
||||
self.pydistro = pydistro
|
||||
self.parms = parms
|
||||
self.smoke = smoke
|
||||
@ -18,7 +18,7 @@ class Conf(object):
|
||||
self.libtorch_config_variant = libtorch_config_variant
|
||||
|
||||
def gen_build_env_parms(self):
|
||||
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
|
||||
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
|
||||
if self.gcc_config_variant is not None:
|
||||
elems.append(str(self.gcc_config_variant))
|
||||
if self.libtorch_config_variant is not None:
|
||||
@ -27,19 +27,7 @@ class Conf(object):
|
||||
|
||||
def gen_docker_image(self):
|
||||
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
|
||||
if self.gpu_version is None:
|
||||
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
|
||||
else:
|
||||
return miniutils.quote(
|
||||
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
|
||||
)
|
||||
if self.pydistro == "conda":
|
||||
if self.gpu_version is None:
|
||||
return miniutils.quote("pytorch/conda-builder:cpu")
|
||||
else:
|
||||
return miniutils.quote(
|
||||
f"pytorch/conda-builder:{self.gpu_version}"
|
||||
)
|
||||
return miniutils.quote("pytorch/pytorch-binary-docker-image-ubuntu16.04:latest")
|
||||
|
||||
docker_word_substitution = {
|
||||
"manywheel": "manylinux",
|
||||
@ -49,12 +37,9 @@ class Conf(object):
|
||||
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
|
||||
|
||||
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
|
||||
# TODO cuda images should consolidate into tag-base images similar to rocm
|
||||
alt_docker_suffix = "cuda102" if not self.gpu_version else (
|
||||
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
|
||||
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
|
||||
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
|
||||
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
|
||||
alt_docker_suffix = self.cuda_version or "102"
|
||||
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
|
||||
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
|
||||
|
||||
def get_name_prefix(self):
|
||||
return "smoke" if self.smoke else "binary"
|
||||
@ -84,10 +69,14 @@ class Conf(object):
|
||||
"update_s3_htmls",
|
||||
]
|
||||
job_def["filters"] = branch_filters.gen_filter_dict(
|
||||
branches_list=["postnightly"],
|
||||
branches_list=["nightly"],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
)
|
||||
else:
|
||||
filter_branch = r"/.*/"
|
||||
if phase in ["upload"]:
|
||||
filter_branch = "nightly"
|
||||
else:
|
||||
filter_branch = r"/.*/"
|
||||
job_def["filters"] = branch_filters.gen_filter_dict(
|
||||
branches_list=[filter_branch],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
@ -100,61 +89,28 @@ class Conf(object):
|
||||
if not (self.smoke and self.os == "macos") and self.os != "windows":
|
||||
job_def["docker_image"] = self.gen_docker_image()
|
||||
|
||||
# fix this. only works on cuda not rocm
|
||||
if self.os != "windows" and self.gpu_version:
|
||||
if self.os != "windows" and self.cuda_version:
|
||||
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
else:
|
||||
if self.os == "linux" and phase != "upload":
|
||||
job_def["docker_image"] = self.gen_docker_image()
|
||||
|
||||
if phase == "test":
|
||||
if self.gpu_version:
|
||||
if self.cuda_version:
|
||||
if self.os == "windows":
|
||||
job_def["executor"] = "windows-with-nvidia-gpu"
|
||||
else:
|
||||
job_def["resource_class"] = "gpu.medium"
|
||||
if phase == "upload":
|
||||
job_def["context"] = "org-member"
|
||||
job_def["requires"] = [
|
||||
self.gen_build_name(upload_phase_dependency, nightly)
|
||||
]
|
||||
|
||||
os_name = miniutils.override(self.os, {"macos": "mac"})
|
||||
job_name = "_".join([self.get_name_prefix(), os_name, phase])
|
||||
return {job_name : job_def}
|
||||
|
||||
def gen_upload_job(self, phase, requires_dependency):
|
||||
"""Generate binary_upload job for configuration
|
||||
|
||||
Output looks similar to:
|
||||
|
||||
- binary_upload:
|
||||
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
|
||||
context: org-member
|
||||
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
|
||||
filters:
|
||||
branches:
|
||||
only:
|
||||
- nightly
|
||||
tags:
|
||||
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
|
||||
package_type: manywheel
|
||||
upload_subfolder: cu113
|
||||
"""
|
||||
return {
|
||||
"binary_upload": OrderedDict({
|
||||
"name": self.gen_build_name(phase, nightly=True),
|
||||
"context": "org-member",
|
||||
"requires": [self.gen_build_name(
|
||||
requires_dependency,
|
||||
nightly=True
|
||||
)],
|
||||
"filters": branch_filters.gen_filter_dict(
|
||||
branches_list=["nightly"],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
),
|
||||
"package_type": self.pydistro,
|
||||
"upload_subfolder": binary_build_data.get_processor_arch_name(
|
||||
self.gpu_version,
|
||||
),
|
||||
})
|
||||
}
|
||||
|
||||
def get_root(smoke, name):
|
||||
|
||||
return binary_build_data.TopLevelNode(
|
||||
@ -173,10 +129,10 @@ def gen_build_env_list(smoke):
|
||||
for c in config_list:
|
||||
conf = Conf(
|
||||
c.find_prop("os_name"),
|
||||
c.find_prop("gpu"),
|
||||
c.find_prop("cu"),
|
||||
c.find_prop("package_format"),
|
||||
[c.find_prop("pyver")],
|
||||
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
|
||||
c.find_prop("smoke"),
|
||||
c.find_prop("libtorch_variant"),
|
||||
c.find_prop("gcc_config_variant"),
|
||||
c.find_prop("libtorch_config_variant"),
|
||||
@ -193,19 +149,32 @@ def get_nightly_uploads():
|
||||
mylist = []
|
||||
for conf in configs:
|
||||
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
|
||||
mylist.append(conf.gen_upload_job("upload", phase_dependency))
|
||||
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
|
||||
|
||||
return mylist
|
||||
|
||||
def get_post_upload_jobs():
|
||||
"""Generate jobs to update HTML indices and report binary sizes"""
|
||||
configs = gen_build_env_list(False)
|
||||
common_job_def = {
|
||||
"context": "org-member",
|
||||
"filters": branch_filters.gen_filter_dict(
|
||||
branches_list=["nightly"],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
),
|
||||
"requires": [],
|
||||
}
|
||||
for conf in configs:
|
||||
upload_job_name = conf.gen_build_name(
|
||||
build_or_test="upload",
|
||||
nightly=True
|
||||
)
|
||||
common_job_def["requires"].append(upload_job_name)
|
||||
return [
|
||||
{
|
||||
"update_s3_htmls": {
|
||||
"name": "update_s3_htmls",
|
||||
"context": "org-member",
|
||||
"filters": branch_filters.gen_filter_dict(
|
||||
branches_list=["postnightly"],
|
||||
),
|
||||
**common_job_def,
|
||||
},
|
||||
},
|
||||
]
|
||||
@ -228,9 +197,7 @@ def get_jobs(toplevel_key, smoke):
|
||||
configs = gen_build_env_list(smoke)
|
||||
phase = "build" if toplevel_key == "binarybuilds" else "test"
|
||||
for build_config in configs:
|
||||
# don't test for macos_arm64 as it's cross compiled
|
||||
if phase != "test" or build_config.os != "macos_arm64":
|
||||
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
|
||||
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
|
||||
|
||||
return jobs_list
|
||||
|
||||
|
||||
91
.circleci/cimodel/data/caffe2_build_data.py
Normal file
91
.circleci/cimodel/data/caffe2_build_data.py
Normal file
@ -0,0 +1,91 @@
|
||||
from cimodel.lib.conf_tree import ConfigNode, XImportant
|
||||
from cimodel.lib.conf_tree import Ver
|
||||
|
||||
|
||||
CONFIG_TREE_DATA = [
|
||||
(Ver("ubuntu", "16.04"), [
|
||||
([Ver("clang", "7")], [XImportant("onnx_main_py3.6"),
|
||||
XImportant("onnx_ort1_py3.6"),
|
||||
XImportant("onnx_ort2_py3.6")]),
|
||||
]),
|
||||
]
|
||||
|
||||
|
||||
class TreeConfigNode(ConfigNode):
|
||||
def __init__(self, parent, node_name, subtree):
|
||||
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
|
||||
self.subtree = subtree
|
||||
self.init2(node_name)
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def modify_label(self, label):
|
||||
return str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
pass
|
||||
|
||||
def get_children(self):
|
||||
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
|
||||
|
||||
def is_build_only(self):
|
||||
if str(self.find_prop("language_version")) == "onnx_main_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
|
||||
return False
|
||||
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
|
||||
"clang3.8",
|
||||
"clang3.9",
|
||||
"clang7",
|
||||
"android",
|
||||
}) or self.find_prop("distro_version").name == "macos"
|
||||
|
||||
def is_test_only(self):
|
||||
if str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class TopLevelNode(TreeConfigNode):
|
||||
def __init__(self, node_name, subtree):
|
||||
super(TopLevelNode, self).__init__(None, node_name, subtree)
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return DistroConfigNode
|
||||
|
||||
|
||||
class DistroConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["distro_version"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return CompilerConfigNode
|
||||
|
||||
|
||||
class CompilerConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["compiler_version"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return LanguageConfigNode
|
||||
|
||||
|
||||
class LanguageConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["language_version"] = node_name
|
||||
self.props["build_only"] = self.is_build_only()
|
||||
self.props["test_only"] = self.is_test_only()
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ImportantConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["important"] = True
|
||||
|
||||
def get_children(self):
|
||||
return []
|
||||
174
.circleci/cimodel/data/caffe2_build_definitions.py
Normal file
174
.circleci/cimodel/data/caffe2_build_definitions.py
Normal file
@ -0,0 +1,174 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import cimodel.data.dimensions as dimensions
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
from cimodel.lib.conf_tree import Ver
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
|
||||
|
||||
DOCKER_IMAGE_VERSION = "376"
|
||||
|
||||
|
||||
@dataclass
|
||||
class Conf:
|
||||
language: str
|
||||
distro: Ver
|
||||
# There could be multiple compiler versions configured (e.g. nvcc
|
||||
# for gpu files and host compiler (gcc/clang) for cpu files)
|
||||
compilers: [Ver]
|
||||
build_only: bool
|
||||
test_only: bool
|
||||
is_important: bool
|
||||
|
||||
@property
|
||||
def compiler_names(self):
|
||||
return [c.name for c in self.compilers]
|
||||
|
||||
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
|
||||
def get_cudnn_insertion(self):
|
||||
|
||||
omit = self.language == "onnx_main_py3.6" \
|
||||
or self.language == "onnx_ort1_py3.6" \
|
||||
or self.language == "onnx_ort2_py3.6" \
|
||||
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
|
||||
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
|
||||
|
||||
return [] if omit else ["cudnn7"]
|
||||
|
||||
def get_build_name_root_parts(self):
|
||||
return [
|
||||
"caffe2",
|
||||
self.language,
|
||||
] + self.get_build_name_middle_parts()
|
||||
|
||||
def get_build_name_middle_parts(self):
|
||||
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
|
||||
|
||||
def construct_phase_name(self, phase):
|
||||
root_parts = self.get_build_name_root_parts()
|
||||
|
||||
build_name_substitutions = {
|
||||
"onnx_ort1_py3.6": "onnx_main_py3.6",
|
||||
"onnx_ort2_py3.6": "onnx_main_py3.6",
|
||||
}
|
||||
if phase == "build":
|
||||
root_parts = [miniutils.override(r, build_name_substitutions) for r in root_parts]
|
||||
return "_".join(root_parts + [phase]).replace(".", "_")
|
||||
|
||||
def get_platform(self):
|
||||
platform = self.distro.name
|
||||
if self.distro.name != "macos":
|
||||
platform = "linux"
|
||||
return platform
|
||||
|
||||
def gen_docker_image(self):
|
||||
|
||||
lang_substitutions = {
|
||||
"onnx_main_py3.6": "py3.6",
|
||||
"onnx_ort1_py3.6": "py3.6",
|
||||
"onnx_ort2_py3.6": "py3.6",
|
||||
"cmake": "py3",
|
||||
}
|
||||
|
||||
lang = miniutils.override(self.language, lang_substitutions)
|
||||
parts = [lang] + self.get_build_name_middle_parts()
|
||||
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
|
||||
|
||||
def gen_workflow_params(self, phase):
|
||||
parameters = OrderedDict()
|
||||
lang_substitutions = {
|
||||
"onnx_py3": "onnx-py3",
|
||||
"onnx_main_py3.6": "onnx-main-py3.6",
|
||||
"onnx_ort1_py3.6": "onnx-ort1-py3.6",
|
||||
"onnx_ort2_py3.6": "onnx-ort2-py3.6",
|
||||
}
|
||||
|
||||
lang = miniutils.override(self.language, lang_substitutions)
|
||||
|
||||
parts = [
|
||||
"caffe2",
|
||||
lang,
|
||||
] + self.get_build_name_middle_parts() + [phase]
|
||||
|
||||
build_env_name = "-".join(parts)
|
||||
parameters["build_environment"] = miniutils.quote(build_env_name)
|
||||
if "ios" in self.compiler_names:
|
||||
parameters["build_ios"] = miniutils.quote("1")
|
||||
if phase == "test":
|
||||
# TODO cuda should not be considered a compiler
|
||||
if "cuda" in self.compiler_names:
|
||||
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
|
||||
if self.distro.name != "macos":
|
||||
parameters["docker_image"] = self.gen_docker_image()
|
||||
if self.build_only:
|
||||
parameters["build_only"] = miniutils.quote("1")
|
||||
if phase == "test":
|
||||
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
|
||||
parameters["resource_class"] = resource_class
|
||||
|
||||
return parameters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
job_def = OrderedDict()
|
||||
job_def["name"] = self.construct_phase_name(phase)
|
||||
|
||||
if phase == "test":
|
||||
job_def["requires"] = [self.construct_phase_name("build")]
|
||||
job_name = "caffe2_" + self.get_platform() + "_test"
|
||||
else:
|
||||
job_name = "caffe2_" + self.get_platform() + "_build"
|
||||
|
||||
if not self.is_important:
|
||||
job_def["filters"] = gen_filter_dict()
|
||||
job_def.update(self.gen_workflow_params(phase))
|
||||
return {job_name : job_def}
|
||||
|
||||
|
||||
def get_root():
|
||||
return TopLevelNode("Caffe2 Builds", CONFIG_TREE_DATA)
|
||||
|
||||
|
||||
def instantiate_configs():
|
||||
|
||||
config_list = []
|
||||
|
||||
root = get_root()
|
||||
found_configs = conf_tree.dfs(root)
|
||||
for fc in found_configs:
|
||||
c = Conf(
|
||||
language=fc.find_prop("language_version"),
|
||||
distro=fc.find_prop("distro_version"),
|
||||
compilers=fc.find_prop("compiler_version"),
|
||||
build_only=fc.find_prop("build_only"),
|
||||
test_only=fc.find_prop("test_only"),
|
||||
is_important=fc.find_prop("important"),
|
||||
)
|
||||
|
||||
config_list.append(c)
|
||||
|
||||
return config_list
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
|
||||
configs = instantiate_configs()
|
||||
|
||||
x = []
|
||||
for conf_options in configs:
|
||||
phases = ["build"]
|
||||
if not conf_options.build_only:
|
||||
phases = dimensions.PHASES
|
||||
if conf_options.test_only:
|
||||
phases = ["test"]
|
||||
|
||||
for phase in phases:
|
||||
x.append(conf_options.gen_workflow_job(phase))
|
||||
|
||||
return x
|
||||
@ -1,23 +1,14 @@
|
||||
PHASES = ["build", "test"]
|
||||
|
||||
CUDA_VERSIONS = [
|
||||
None, # cpu build
|
||||
"92",
|
||||
"101",
|
||||
"102",
|
||||
"113",
|
||||
"116",
|
||||
]
|
||||
|
||||
ROCM_VERSIONS = [
|
||||
"4.3.1",
|
||||
"4.5.2",
|
||||
]
|
||||
|
||||
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
|
||||
|
||||
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
|
||||
|
||||
STANDARD_PYTHON_VERSIONS = [
|
||||
"3.6",
|
||||
"3.7",
|
||||
"3.8",
|
||||
"3.9",
|
||||
"3.10"
|
||||
"3.8"
|
||||
]
|
||||
|
||||
@ -1,7 +1,64 @@
|
||||
from cimodel.lib.conf_tree import ConfigNode
|
||||
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
|
||||
|
||||
|
||||
CONFIG_TREE_DATA = [
|
||||
("xenial", [
|
||||
(None, [
|
||||
X("nightly"),
|
||||
]),
|
||||
("gcc", [
|
||||
("5.4", [ # All this subtree rebases to master and then build
|
||||
XImportant("3.6"),
|
||||
("3.6", [
|
||||
("parallel_tbb", [X(True)]),
|
||||
("parallel_native", [X(True)]),
|
||||
]),
|
||||
]),
|
||||
# TODO: bring back libtorch test
|
||||
("7", [X("3.6")]),
|
||||
]),
|
||||
("clang", [
|
||||
("5", [
|
||||
XImportant("3.6"), # This is actually the ASAN build
|
||||
]),
|
||||
]),
|
||||
("cuda", [
|
||||
("9.2", [
|
||||
X("3.6"),
|
||||
("3.6", [
|
||||
("cuda_gcc_override", [X("gcc5.4")])
|
||||
])
|
||||
]),
|
||||
("10.1", [X("3.6")]),
|
||||
("10.2", [
|
||||
XImportant("3.6"),
|
||||
("3.6", [
|
||||
("libtorch", [XImportant(True)])
|
||||
]),
|
||||
]),
|
||||
("11.0", [
|
||||
X("3.8"),
|
||||
("3.8", [
|
||||
("libtorch", [X(True)])
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
("bionic", [
|
||||
("clang", [
|
||||
("9", [
|
||||
XImportant("3.6"),
|
||||
]),
|
||||
("9", [
|
||||
("3.6", [
|
||||
("xla", [XImportant(True)]),
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
("gcc", [
|
||||
("9", [XImportant("3.8")]),
|
||||
]),
|
||||
]),
|
||||
]
|
||||
|
||||
|
||||
@ -53,8 +110,6 @@ class PyVerConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["pyver"] = node_name
|
||||
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
|
||||
if node_name == "3.9":
|
||||
self.props["abbreviated_pyver"] = "py3.9"
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
@ -69,43 +124,17 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
|
||||
experimental_feature = self.find_prop("experimental_feature")
|
||||
|
||||
next_nodes = {
|
||||
"asan": AsanConfigNode,
|
||||
"xla": XlaConfigNode,
|
||||
"mps": MPSConfigNode,
|
||||
"vulkan": VulkanConfigNode,
|
||||
"parallel_tbb": ParallelTBBConfigNode,
|
||||
"crossref": CrossRefConfigNode,
|
||||
"parallel_native": ParallelNativeConfigNode,
|
||||
"onnx": ONNXConfigNode,
|
||||
"libtorch": LibTorchConfigNode,
|
||||
"important": ImportantConfigNode,
|
||||
"build_only": BuildOnlyConfigNode,
|
||||
"shard_test": ShardTestConfigNode,
|
||||
"cuda_gcc_override": CudaGccOverrideConfigNode,
|
||||
"pure_torch": PureTorchConfigNode,
|
||||
"slow_gradcheck": SlowGradcheckConfigNode,
|
||||
"cuda_gcc_override": CudaGccOverrideConfigNode
|
||||
}
|
||||
return next_nodes[experimental_feature]
|
||||
|
||||
|
||||
class SlowGradcheckConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["is_slow_gradcheck"] = True
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
class PureTorchConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "PURE_TORCH=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_pure_torch"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class XlaConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "XLA=" + str(label)
|
||||
@ -116,49 +145,6 @@ class XlaConfigNode(TreeConfigNode):
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
class MPSConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "MPS=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_mps"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class AsanConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Asan=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_asan"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class ONNXConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Onnx=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_onnx"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class VulkanConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Vulkan=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_vulkan"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ParallelTBBConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
@ -171,14 +157,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class CrossRefConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["is_crossref"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ParallelNativeConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "PARALLELNATIVE=" + str(label)
|
||||
@ -198,7 +176,7 @@ class LibTorchConfigNode(TreeConfigNode):
|
||||
self.props["is_libtorch"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class CudaGccOverrideConfigNode(TreeConfigNode):
|
||||
@ -206,21 +184,13 @@ class CudaGccOverrideConfigNode(TreeConfigNode):
|
||||
self.props["cuda_gcc_override"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
return ImportantConfigNode
|
||||
|
||||
class BuildOnlyConfigNode(TreeConfigNode):
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["build_only"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class ShardTestConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["shard_test"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
@ -237,6 +207,7 @@ class ImportantConfigNode(TreeConfigNode):
|
||||
|
||||
|
||||
class XenialCompilerConfigNode(TreeConfigNode):
|
||||
|
||||
def modify_label(self, label):
|
||||
return label or "<unspecified>"
|
||||
|
||||
@ -250,6 +221,7 @@ class XenialCompilerConfigNode(TreeConfigNode):
|
||||
|
||||
|
||||
class BionicCompilerConfigNode(TreeConfigNode):
|
||||
|
||||
def modify_label(self, label):
|
||||
return label or "<unspecified>"
|
||||
|
||||
|
||||
@ -1,13 +1,14 @@
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
|
||||
import cimodel.data.dimensions as dimensions
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
|
||||
from cimodel.data.simple.util.docker_constants import gen_docker_image
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict
|
||||
from cimodel.data.simple.util.docker_constants import gen_docker_image_path
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -17,25 +18,18 @@ class Conf:
|
||||
parms_list_ignored_for_docker_image: Optional[List[str]] = None
|
||||
pyver: Optional[str] = None
|
||||
cuda_version: Optional[str] = None
|
||||
rocm_version: Optional[str] = None
|
||||
# TODO expand this to cover all the USE_* that we want to test for
|
||||
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
|
||||
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
|
||||
is_xla: bool = False
|
||||
is_vulkan: bool = False
|
||||
is_pure_torch: bool = False
|
||||
vulkan: bool = False
|
||||
restrict_phases: Optional[List[str]] = None
|
||||
gpu_resource: Optional[str] = None
|
||||
dependent_tests: List = field(default_factory=list)
|
||||
parent_build: Optional["Conf"] = None
|
||||
parent_build: Optional['Conf'] = None
|
||||
is_libtorch: bool = False
|
||||
is_important: bool = False
|
||||
parallel_backend: Optional[str] = None
|
||||
build_only: bool = False
|
||||
|
||||
@staticmethod
|
||||
def is_test_phase(phase):
|
||||
return "test" in phase
|
||||
|
||||
# TODO: Eliminate the special casing for docker paths
|
||||
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
|
||||
@ -48,12 +42,8 @@ class Conf:
|
||||
leading.append("pytorch")
|
||||
if self.is_xla and not for_docker:
|
||||
leading.append("xla")
|
||||
if self.is_vulkan and not for_docker:
|
||||
leading.append("vulkan")
|
||||
if self.is_libtorch and not for_docker:
|
||||
leading.append("libtorch")
|
||||
if self.is_pure_torch and not for_docker:
|
||||
leading.append("pure_torch")
|
||||
if self.parallel_backend is not None and not for_docker:
|
||||
leading.append(self.parallel_backend)
|
||||
|
||||
@ -61,34 +51,23 @@ class Conf:
|
||||
if self.cuda_version:
|
||||
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
|
||||
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
|
||||
if self.rocm_version:
|
||||
cuda_parms.extend([f"rocm{self.rocm_version}"])
|
||||
result = leading + ["linux", self.distro] + cuda_parms + self.parms
|
||||
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
|
||||
result = result + self.parms_list_ignored_for_docker_image
|
||||
return result
|
||||
|
||||
def gen_docker_image_path(self):
|
||||
parms_source = self.parent_build or self
|
||||
base_build_env_name = "-".join(parms_source.get_parms(True))
|
||||
image_name, _ = gen_docker_image(base_build_env_name)
|
||||
return miniutils.quote(image_name)
|
||||
|
||||
def gen_docker_image_requires(self):
|
||||
parms_source = self.parent_build or self
|
||||
base_build_env_name = "-".join(parms_source.get_parms(True))
|
||||
_, requires = gen_docker_image(base_build_env_name)
|
||||
return miniutils.quote(requires)
|
||||
|
||||
return miniutils.quote(gen_docker_image_path(base_build_env_name))
|
||||
|
||||
def get_build_job_name_pieces(self, build_or_test):
|
||||
return self.get_parms(False) + [build_or_test]
|
||||
|
||||
def gen_build_name(self, build_or_test):
|
||||
return (
|
||||
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
|
||||
.replace(".", "_")
|
||||
.replace("-", "_")
|
||||
)
|
||||
return ("_".join(map(str, self.get_build_job_name_pieces(build_or_test)))).replace(".", "_").replace("-", "_")
|
||||
|
||||
def get_dependents(self):
|
||||
return self.dependent_tests or []
|
||||
@ -100,28 +79,20 @@ class Conf:
|
||||
build_env_name = "-".join(map(str, build_job_name_pieces))
|
||||
parameters["build_environment"] = miniutils.quote(build_env_name)
|
||||
parameters["docker_image"] = self.gen_docker_image_path()
|
||||
if Conf.is_test_phase(phase) and self.gpu_resource:
|
||||
if phase == "test" and self.gpu_resource:
|
||||
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
if Conf.is_test_phase(phase):
|
||||
if phase == "test":
|
||||
resource_class = "large"
|
||||
if self.gpu_resource:
|
||||
resource_class = "gpu." + self.gpu_resource
|
||||
if self.rocm_version is not None:
|
||||
resource_class = "pytorch/amd-gpu"
|
||||
parameters["resource_class"] = resource_class
|
||||
if phase == "build" and self.rocm_version is not None:
|
||||
parameters["resource_class"] = "xlarge"
|
||||
if hasattr(self, 'filters'):
|
||||
parameters['filters'] = self.filters
|
||||
if self.build_only:
|
||||
parameters['build_only'] = miniutils.quote(str(int(True)))
|
||||
return parameters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
job_def = OrderedDict()
|
||||
job_def["name"] = self.gen_build_name(phase)
|
||||
|
||||
if Conf.is_test_phase(phase):
|
||||
if phase == "test":
|
||||
|
||||
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
|
||||
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
|
||||
@ -133,85 +104,63 @@ class Conf:
|
||||
job_name = "pytorch_linux_test"
|
||||
else:
|
||||
job_name = "pytorch_linux_build"
|
||||
job_def["requires"] = [self.gen_docker_image_requires()]
|
||||
|
||||
if not self.is_important:
|
||||
job_def["filters"] = gen_filter_dict()
|
||||
job_def.update(self.gen_workflow_params(phase))
|
||||
|
||||
return {job_name: job_def}
|
||||
return {job_name : job_def}
|
||||
|
||||
|
||||
# TODO This is a hack to special case some configs just for the workflow list
|
||||
class HiddenConf(object):
|
||||
def __init__(self, name, parent_build=None, filters=None):
|
||||
def __init__(self, name, parent_build=None):
|
||||
self.name = name
|
||||
self.parent_build = parent_build
|
||||
self.filters = filters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
return {
|
||||
self.gen_build_name(phase): {
|
||||
"requires": [self.parent_build.gen_build_name("build")],
|
||||
"filters": self.filters,
|
||||
}
|
||||
}
|
||||
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
|
||||
|
||||
def gen_build_name(self, _):
|
||||
return self.name
|
||||
|
||||
class DocPushConf(object):
|
||||
def __init__(self, name, parent_build=None, branch="master"):
|
||||
self.name = name
|
||||
self.parent_build = parent_build
|
||||
self.branch = branch
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
return {
|
||||
"pytorch_doc_push": {
|
||||
"name": self.name,
|
||||
"branch": self.branch,
|
||||
"requires": [self.parent_build],
|
||||
"context": "org-member",
|
||||
"filters": gen_filter_dict(branches_list=["nightly"],
|
||||
tags_list=RC_PATTERN)
|
||||
}
|
||||
}
|
||||
# TODO Convert these to graph nodes
|
||||
def gen_dependent_configs(xenial_parent_config):
|
||||
|
||||
extra_parms = [
|
||||
(["multigpu"], "large"),
|
||||
(["NO_AVX2"], "medium"),
|
||||
(["NO_AVX", "NO_AVX2"], "medium"),
|
||||
(["slow"], "medium"),
|
||||
(["nogpu"], None),
|
||||
]
|
||||
|
||||
configs = []
|
||||
for parms, gpu in extra_parms:
|
||||
|
||||
c = Conf(
|
||||
xenial_parent_config.distro,
|
||||
["py3"] + parms,
|
||||
pyver="3.6",
|
||||
cuda_version=xenial_parent_config.cuda_version,
|
||||
restrict_phases=["test"],
|
||||
gpu_resource=gpu,
|
||||
parent_build=xenial_parent_config,
|
||||
is_important=xenial_parent_config.is_important,
|
||||
)
|
||||
|
||||
configs.append(c)
|
||||
|
||||
return configs
|
||||
|
||||
|
||||
def gen_docs_configs(xenial_parent_config):
|
||||
configs = []
|
||||
|
||||
configs.append(
|
||||
HiddenConf(
|
||||
"pytorch_python_doc_build",
|
||||
parent_build=xenial_parent_config,
|
||||
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
|
||||
tags_list=RC_PATTERN),
|
||||
)
|
||||
)
|
||||
configs.append(
|
||||
DocPushConf(
|
||||
"pytorch_python_doc_push",
|
||||
parent_build="pytorch_python_doc_build",
|
||||
branch="site",
|
||||
)
|
||||
)
|
||||
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push", "pytorch_doc_test"]:
|
||||
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
|
||||
|
||||
configs.append(
|
||||
HiddenConf(
|
||||
"pytorch_cpp_doc_build",
|
||||
parent_build=xenial_parent_config,
|
||||
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
|
||||
tags_list=RC_PATTERN),
|
||||
)
|
||||
)
|
||||
configs.append(
|
||||
DocPushConf(
|
||||
"pytorch_cpp_doc_push",
|
||||
parent_build="pytorch_cpp_doc_build",
|
||||
branch="master",
|
||||
)
|
||||
)
|
||||
return configs
|
||||
|
||||
|
||||
@ -225,7 +174,7 @@ def gen_tree():
|
||||
return configs_list
|
||||
|
||||
|
||||
def instantiate_configs(only_slow_gradcheck):
|
||||
def instantiate_configs():
|
||||
|
||||
config_list = []
|
||||
|
||||
@ -238,16 +187,11 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
compiler_name = fc.find_prop("compiler_name")
|
||||
compiler_version = fc.find_prop("compiler_version")
|
||||
is_xla = fc.find_prop("is_xla") or False
|
||||
is_asan = fc.find_prop("is_asan") or False
|
||||
is_crossref = fc.find_prop("is_crossref") or False
|
||||
is_onnx = fc.find_prop("is_onnx") or False
|
||||
is_pure_torch = fc.find_prop("is_pure_torch") or False
|
||||
is_vulkan = fc.find_prop("is_vulkan") or False
|
||||
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
|
||||
parms_list_ignored_for_docker_image = []
|
||||
|
||||
if only_slow_gradcheck ^ is_slow_gradcheck:
|
||||
continue
|
||||
vulkan = fc.find_prop("vulkan") or False
|
||||
if vulkan:
|
||||
parms_list_ignored_for_docker_image.append("vulkan")
|
||||
|
||||
python_version = None
|
||||
if compiler_name == "cuda" or compiler_name == "android":
|
||||
@ -257,14 +201,9 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
parms_list = ["py" + fc.find_prop("pyver")]
|
||||
|
||||
cuda_version = None
|
||||
rocm_version = None
|
||||
if compiler_name == "cuda":
|
||||
cuda_version = fc.find_prop("compiler_version")
|
||||
|
||||
elif compiler_name == "rocm":
|
||||
rocm_version = fc.find_prop("compiler_version")
|
||||
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
|
||||
|
||||
elif compiler_name == "android":
|
||||
android_ndk_version = fc.find_prop("compiler_version")
|
||||
# TODO: do we need clang to compile host binaries like protoc?
|
||||
@ -278,19 +217,11 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
|
||||
parms_list.append(gcc_version)
|
||||
|
||||
if is_asan:
|
||||
parms_list.append("asan")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
|
||||
if is_crossref:
|
||||
parms_list_ignored_for_docker_image.append("crossref")
|
||||
|
||||
if is_onnx:
|
||||
parms_list.append("onnx")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
restrict_phases = ["build", "ort_test1", "ort_test2"]
|
||||
# TODO: This is a nasty special case
|
||||
if gcc_version == 'clang5' and not is_xla:
|
||||
parms_list.append("asan")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
|
||||
if cuda_version:
|
||||
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
|
||||
@ -300,18 +231,9 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
is_important = fc.find_prop("is_important") or False
|
||||
parallel_backend = fc.find_prop("parallel_backend") or None
|
||||
build_only = fc.find_prop("build_only") or False
|
||||
shard_test = fc.find_prop("shard_test") or False
|
||||
# TODO: fix pure_torch python test packaging issue.
|
||||
if shard_test:
|
||||
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
|
||||
restrict_phases.extend(["test1", "test2"])
|
||||
if build_only or is_pure_torch:
|
||||
if build_only and restrict_phases is None:
|
||||
restrict_phases = ["build"]
|
||||
|
||||
if is_slow_gradcheck:
|
||||
parms_list_ignored_for_docker_image.append("old")
|
||||
parms_list_ignored_for_docker_image.append("gradcheck")
|
||||
|
||||
gpu_resource = None
|
||||
if cuda_version and cuda_version != "10":
|
||||
gpu_resource = "medium"
|
||||
@ -322,43 +244,50 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
parms_list_ignored_for_docker_image,
|
||||
python_version,
|
||||
cuda_version,
|
||||
rocm_version,
|
||||
is_xla,
|
||||
is_vulkan,
|
||||
is_pure_torch,
|
||||
vulkan,
|
||||
restrict_phases,
|
||||
gpu_resource,
|
||||
is_libtorch=is_libtorch,
|
||||
is_important=is_important,
|
||||
parallel_backend=parallel_backend,
|
||||
build_only=build_only,
|
||||
)
|
||||
|
||||
# run docs builds on "pytorch-linux-xenial-py3.7-gcc5.4". Docs builds
|
||||
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
|
||||
# should run on a CPU-only build that runs on all PRs.
|
||||
# XXX should this be updated to a more modern build?
|
||||
if (
|
||||
distro_name == "xenial"
|
||||
and fc.find_prop("pyver") == "3.7"
|
||||
and cuda_version is None
|
||||
and parallel_backend is None
|
||||
and not is_vulkan
|
||||
and not is_pure_torch
|
||||
and compiler_name == "gcc"
|
||||
and fc.find_prop("compiler_version") == "5.4"
|
||||
):
|
||||
c.filters = gen_filter_dict(branches_list=r"/.*/",
|
||||
tags_list=RC_PATTERN)
|
||||
if distro_name == 'xenial' and fc.find_prop("pyver") == '3.6' \
|
||||
and cuda_version is None \
|
||||
and parallel_backend is None \
|
||||
and compiler_name == 'gcc' \
|
||||
and fc.find_prop('compiler_version') == '5.4':
|
||||
c.dependent_tests = gen_docs_configs(c)
|
||||
|
||||
if cuda_version == "10.1" and python_version == "3.6" and not is_libtorch:
|
||||
c.dependent_tests = gen_dependent_configs(c)
|
||||
|
||||
if (compiler_name == "gcc"
|
||||
and compiler_version == "5.4"
|
||||
and not is_libtorch
|
||||
and parallel_backend is None):
|
||||
bc_breaking_check = Conf(
|
||||
"backward-compatibility-check",
|
||||
[],
|
||||
is_xla=False,
|
||||
restrict_phases=["test"],
|
||||
is_libtorch=False,
|
||||
is_important=True,
|
||||
parent_build=c,
|
||||
)
|
||||
c.dependent_tests.append(bc_breaking_check)
|
||||
|
||||
config_list.append(c)
|
||||
|
||||
return config_list
|
||||
|
||||
|
||||
def get_workflow_jobs(only_slow_gradcheck=False):
|
||||
def get_workflow_jobs():
|
||||
|
||||
config_list = instantiate_configs(only_slow_gradcheck)
|
||||
config_list = instantiate_configs()
|
||||
|
||||
x = []
|
||||
for conf_options in config_list:
|
||||
@ -368,7 +297,7 @@ def get_workflow_jobs(only_slow_gradcheck=False):
|
||||
for phase in phases:
|
||||
|
||||
# TODO why does this not have a test?
|
||||
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
|
||||
if phase == "test" and conf_options.cuda_version == "10":
|
||||
continue
|
||||
|
||||
x.append(conf_options.gen_workflow_job(phase))
|
||||
|
||||
@ -1,28 +0,0 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict
|
||||
from cimodel.lib.miniutils import quote
|
||||
|
||||
|
||||
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
|
||||
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
|
||||
|
||||
|
||||
def gen_workflow_job(channel: str):
|
||||
return OrderedDict(
|
||||
{
|
||||
"anaconda_prune": OrderedDict(
|
||||
{
|
||||
"name": f"anaconda-prune-{channel}",
|
||||
"context": quote("org-member"),
|
||||
"packages": quote(PACKAGES_TO_PRUNE),
|
||||
"channel": channel,
|
||||
"filters": gen_filter_dict(branches_list=["postnightly"]),
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]
|
||||
92
.circleci/cimodel/data/simple/android_definitions.py
Normal file
92
.circleci/cimodel/data/simple/android_definitions.py
Normal file
@ -0,0 +1,92 @@
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_NDK
|
||||
|
||||
|
||||
class AndroidJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
template_name,
|
||||
is_master_only=True):
|
||||
|
||||
self.variant = variant
|
||||
self.template_name = template_name
|
||||
self.is_master_only = is_master_only
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3",
|
||||
"clang5",
|
||||
"android",
|
||||
"ndk",
|
||||
"r19c",
|
||||
] + self.variant + [
|
||||
"build",
|
||||
]
|
||||
|
||||
full_job_name = "_".join(base_name_parts)
|
||||
build_env_name = "-".join(base_name_parts)
|
||||
|
||||
props_dict = {
|
||||
"name": full_job_name,
|
||||
"build_environment": "\"{}\"".format(build_env_name),
|
||||
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
|
||||
}
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
class AndroidGradleJob:
|
||||
def __init__(self,
|
||||
job_name,
|
||||
template_name,
|
||||
dependencies,
|
||||
is_master_only=True):
|
||||
|
||||
self.job_name = job_name
|
||||
self.template_name = template_name
|
||||
self.dependencies = dependencies
|
||||
self.is_master_only = is_master_only
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
props_dict = {
|
||||
"name": self.job_name,
|
||||
"requires": self.dependencies,
|
||||
}
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
|
||||
AndroidJob(["x86_64"], "pytorch_linux_build"),
|
||||
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
|
||||
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
|
||||
AndroidJob(["vulkan", "x86_32"], "pytorch_linux_build", is_master_only=False),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
|
||||
"pytorch_android_gradle_build-x86_32",
|
||||
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
|
||||
is_master_only=False),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
|
||||
"pytorch_android_gradle_build",
|
||||
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
63
.circleci/cimodel/data/simple/bazel_definitions.py
Normal file
63
.circleci/cimodel/data/simple/bazel_definitions.py
Normal file
@ -0,0 +1,63 @@
|
||||
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_GCC7
|
||||
|
||||
|
||||
def gen_job_name(phase):
|
||||
job_name_parts = [
|
||||
"pytorch",
|
||||
"bazel",
|
||||
phase,
|
||||
]
|
||||
|
||||
return "_".join(job_name_parts)
|
||||
|
||||
|
||||
class BazelJob:
|
||||
def __init__(self, phase, extra_props=None):
|
||||
self.phase = phase
|
||||
self.extra_props = extra_props or {}
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
template_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"bazel",
|
||||
self.phase,
|
||||
]
|
||||
|
||||
build_env_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3.6",
|
||||
"gcc7",
|
||||
"bazel",
|
||||
self.phase,
|
||||
]
|
||||
|
||||
full_job_name = gen_job_name(self.phase)
|
||||
build_env_name = "-".join(build_env_parts)
|
||||
|
||||
extra_requires = [gen_job_name("build")] if self.phase == "test" else []
|
||||
|
||||
props_dict = {
|
||||
"build_environment": build_env_name,
|
||||
"docker_image": DOCKER_IMAGE_GCC7,
|
||||
"name": full_job_name,
|
||||
"requires": extra_requires,
|
||||
}
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
template_name = "_".join(template_parts)
|
||||
return [{template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
BazelJob("build", {"resource_class": "large"}),
|
||||
BazelJob("test"),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
193
.circleci/cimodel/data/simple/binary_smoketest.py
Normal file
193
.circleci/cimodel/data/simple/binary_smoketest.py
Normal file
@ -0,0 +1,193 @@
|
||||
"""
|
||||
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
|
||||
instead of doing one offs here
|
||||
Binary builds (subset, to smoke test that they'll work)
|
||||
|
||||
NB: If you modify this file, you need to also modify
|
||||
the binary_and_smoke_tests_on_pr variable in
|
||||
pytorch-ci-hud to adjust the list of whitelisted builds
|
||||
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
|
||||
|
||||
Note:
|
||||
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
|
||||
- binary_linux_conda_3_6_cu90_devtoolset7_build
|
||||
- binary_linux_conda_3_6_cu90_devtoolset7_test
|
||||
|
||||
TODO
|
||||
we should test a libtorch cuda build, but they take too long
|
||||
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
|
||||
"""
|
||||
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
|
||||
|
||||
class SmoketestJob:
|
||||
def __init__(self,
|
||||
template_name,
|
||||
build_env_parts,
|
||||
docker_image,
|
||||
job_name,
|
||||
is_master_only=False,
|
||||
requires=None,
|
||||
has_libtorch_variant=False,
|
||||
extra_props=None):
|
||||
|
||||
self.template_name = template_name
|
||||
self.build_env_parts = build_env_parts
|
||||
self.docker_image = docker_image
|
||||
self.job_name = job_name
|
||||
self.is_master_only = is_master_only
|
||||
self.requires = requires or []
|
||||
self.has_libtorch_variant = has_libtorch_variant
|
||||
self.extra_props = extra_props or {}
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
props_dict = {
|
||||
"build_environment": " ".join(self.build_env_parts),
|
||||
"name": self.job_name,
|
||||
"requires": self.requires,
|
||||
}
|
||||
|
||||
if self.docker_image:
|
||||
props_dict["docker_image"] = self.docker_image
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
if self.has_libtorch_variant:
|
||||
props_dict["libtorch_variant"] = "shared-with-deps"
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["manywheel", "3.7m", "cu102", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["libtorch", "3.7m", "cpu", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
|
||||
is_master_only=False,
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
|
||||
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
|
||||
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
|
||||
is_master_only=False,
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_mac_build",
|
||||
["wheel", "3.7", "cpu"],
|
||||
None,
|
||||
"binary_macos_wheel_3_7_cpu_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
# This job has an average run time of 3 hours o.O
|
||||
# Now only running this on master to reduce overhead
|
||||
SmoketestJob(
|
||||
"binary_mac_build",
|
||||
["libtorch", "3.7", "cpu"],
|
||||
None,
|
||||
"binary_macos_libtorch_3_7_cpu_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["libtorch", "3.7", "cpu", "debug"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_debug_build",
|
||||
is_master_only=False,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["libtorch", "3.7", "cpu", "release"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_release_build",
|
||||
is_master_only=False,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["wheel", "3.7", "cu102"],
|
||||
None,
|
||||
"binary_windows_wheel_3_7_cu102_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["libtorch", "3.7", "cpu", "debug"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_debug_test",
|
||||
is_master_only=False,
|
||||
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["libtorch", "3.7", "cpu", "release"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_release_test",
|
||||
is_master_only=False,
|
||||
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["wheel", "3.7", "cu102"],
|
||||
None,
|
||||
"binary_windows_wheel_3_7_cu102_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_windows_wheel_3_7_cu102_build"],
|
||||
extra_props={
|
||||
"executor": "windows-with-nvidia-gpu",
|
||||
},
|
||||
),
|
||||
|
||||
|
||||
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["manywheel", "3.7m", "cu102", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
|
||||
extra_props={
|
||||
"resource_class": "gpu.medium",
|
||||
"use_cuda_docker_runtime": miniutils.quote((str(1))),
|
||||
},
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["libtorch", "3.7m", "cpu", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
|
||||
is_master_only=False,
|
||||
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
|
||||
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
|
||||
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
|
||||
is_master_only=False,
|
||||
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,39 +1,44 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
from cimodel.lib.miniutils import quote
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
|
||||
|
||||
|
||||
# NOTE: All hardcoded docker image builds have been migrated to GHA
|
||||
# TODO: make this generated from a matrix rather than just a static list
|
||||
IMAGE_NAMES = [
|
||||
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9",
|
||||
"pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9",
|
||||
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9",
|
||||
"pytorch-linux-bionic-py3.6-clang9",
|
||||
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
|
||||
"pytorch-linux-bionic-py3.8-gcc9",
|
||||
"pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4",
|
||||
"pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7",
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
|
||||
"pytorch-linux-xenial-py3-clang5-asan",
|
||||
"pytorch-linux-xenial-py3.8",
|
||||
"pytorch-linux-xenial-py3.6-clang7",
|
||||
"pytorch-linux-xenial-py3.6-gcc4.8",
|
||||
"pytorch-linux-xenial-py3.6-gcc5.4",
|
||||
"pytorch-linux-xenial-py3.6-gcc7.2",
|
||||
"pytorch-linux-xenial-py3.6-gcc7",
|
||||
"pytorch-linux-xenial-pynightly",
|
||||
"pytorch-linux-xenial-rocm3.3-py3.6",
|
||||
]
|
||||
|
||||
# This entry should be an element from the list above
|
||||
# This should contain the image matching the "slow_gradcheck" entry in
|
||||
# pytorch_build_data.py
|
||||
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
|
||||
|
||||
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
|
||||
def get_workflow_jobs():
|
||||
"""Generates a list of docker image build definitions"""
|
||||
ret = []
|
||||
for image_name in images:
|
||||
if image_name.startswith('docker-'):
|
||||
image_name = image_name.lstrip('docker-')
|
||||
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
|
||||
continue
|
||||
|
||||
parameters = OrderedDict({
|
||||
"name": quote(f"docker-{image_name}"),
|
||||
"image_name": quote(image_name),
|
||||
})
|
||||
if image_name == "pytorch-linux-xenial-py3.7-gcc5.4":
|
||||
# pushing documentation on tags requires CircleCI to also
|
||||
# build all the dependencies on tags, including this docker image
|
||||
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
|
||||
tags_list=RC_PATTERN)
|
||||
ret.append(OrderedDict(
|
||||
return [
|
||||
OrderedDict(
|
||||
{
|
||||
"docker_build_job": parameters
|
||||
"docker_build_job": OrderedDict(
|
||||
{"name": quote(image_name), "image_name": quote(image_name)}
|
||||
)
|
||||
}
|
||||
))
|
||||
return ret
|
||||
)
|
||||
for image_name in IMAGE_NAMES
|
||||
]
|
||||
|
||||
103
.circleci/cimodel/data/simple/ge_config_tests.py
Normal file
103
.circleci/cimodel/data/simple/ge_config_tests.py
Normal file
@ -0,0 +1,103 @@
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.simple.util.versions import MultiPartVersion, CudaVersion
|
||||
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_BASIC, DOCKER_IMAGE_CUDA_10_2
|
||||
|
||||
|
||||
class GeConfigTestJob:
|
||||
def __init__(self,
|
||||
py_version,
|
||||
gcc_version,
|
||||
cuda_version,
|
||||
variant_parts,
|
||||
extra_requires,
|
||||
use_cuda_docker=False,
|
||||
build_env_override=None):
|
||||
|
||||
self.py_version = py_version
|
||||
self.gcc_version = gcc_version
|
||||
self.cuda_version = cuda_version
|
||||
self.variant_parts = variant_parts
|
||||
self.extra_requires = extra_requires
|
||||
self.use_cuda_docker = use_cuda_docker
|
||||
self.build_env_override = build_env_override
|
||||
|
||||
def get_all_parts(self, with_dots):
|
||||
|
||||
maybe_py_version = self.py_version.render_dots_or_parts(with_dots) if self.py_version else []
|
||||
maybe_gcc_version = self.gcc_version.render_dots_or_parts(with_dots) if self.gcc_version else []
|
||||
maybe_cuda_version = self.cuda_version.render_dots_or_parts(with_dots) if self.cuda_version else []
|
||||
|
||||
common_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
] + maybe_cuda_version + maybe_py_version + maybe_gcc_version
|
||||
|
||||
return common_parts + self.variant_parts
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
resource_class = "gpu.medium" if self.use_cuda_docker else "large"
|
||||
docker_image = DOCKER_IMAGE_CUDA_10_2 if self.use_cuda_docker else DOCKER_IMAGE_BASIC
|
||||
full_name = "_".join(self.get_all_parts(False))
|
||||
build_env = self.build_env_override or "-".join(self.get_all_parts(True))
|
||||
|
||||
props_dict = {
|
||||
"name": full_name,
|
||||
"build_environment": build_env,
|
||||
"requires": self.extra_requires,
|
||||
"resource_class": resource_class,
|
||||
"docker_image": docker_image,
|
||||
}
|
||||
|
||||
if self.use_cuda_docker:
|
||||
props_dict["use_cuda_docker_runtime"] = miniutils.quote(str(1))
|
||||
|
||||
return [{"pytorch_linux_test": props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
GeConfigTestJob(
|
||||
MultiPartVersion([3, 6], "py"),
|
||||
MultiPartVersion([5, 4], "gcc"),
|
||||
None,
|
||||
["ge_config_legacy", "test"],
|
||||
["pytorch_linux_xenial_py3_6_gcc5_4_build"]),
|
||||
GeConfigTestJob(
|
||||
MultiPartVersion([3, 6], "py"),
|
||||
MultiPartVersion([5, 4], "gcc"),
|
||||
None,
|
||||
["ge_config_profiling", "test"],
|
||||
["pytorch_linux_xenial_py3_6_gcc5_4_build"]),
|
||||
GeConfigTestJob(
|
||||
MultiPartVersion([3, 6], "py"),
|
||||
MultiPartVersion([5, 4], "gcc"),
|
||||
None,
|
||||
["ge_config_simple", "test"],
|
||||
["pytorch_linux_xenial_py3_6_gcc5_4_build"],
|
||||
),
|
||||
GeConfigTestJob(
|
||||
None,
|
||||
None,
|
||||
CudaVersion(10, 2),
|
||||
["cudnn7", "py3", "ge_config_legacy", "test"],
|
||||
["pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7_build"],
|
||||
use_cuda_docker=True,
|
||||
# TODO Why does the build environment specify cuda10.1, while the
|
||||
# job name is cuda10_2?
|
||||
build_env_override="pytorch-linux-xenial-cuda10.1-cudnn7-ge_config_legacy-test"),
|
||||
GeConfigTestJob(
|
||||
None,
|
||||
None,
|
||||
CudaVersion(10, 2),
|
||||
["cudnn7", "py3", "ge_config_profiling", "test"],
|
||||
["pytorch_linux_xenial_cuda10_2_cudnn7_py3_gcc7_build"],
|
||||
use_cuda_docker=True,
|
||||
# TODO Why does the build environment specify cuda10.1, while the
|
||||
# job name is cuda10_2?
|
||||
build_env_override="pytorch-linux-xenial-cuda10.1-cudnn7-ge_config_profiling-test"),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,16 +1,16 @@
|
||||
from cimodel.data.simple.util.versions import MultiPartVersion
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
XCODE_VERSION = MultiPartVersion([12, 5, 1])
|
||||
|
||||
IOS_VERSION = MultiPartVersion([11, 2, 1])
|
||||
|
||||
|
||||
class ArchVariant:
|
||||
def __init__(self, name, custom_build_name=""):
|
||||
def __init__(self, name, is_custom=False):
|
||||
self.name = name
|
||||
self.custom_build_name = custom_build_name
|
||||
self.is_custom = is_custom
|
||||
|
||||
def render(self):
|
||||
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
|
||||
extra_parts = ["custom"] if self.is_custom else []
|
||||
return "_".join([self.name] + extra_parts)
|
||||
|
||||
|
||||
@ -19,15 +19,15 @@ def get_platform(arch_variant_name):
|
||||
|
||||
|
||||
class IOSJob:
|
||||
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
|
||||
self.xcode_version = xcode_version
|
||||
def __init__(self, ios_version, arch_variant, is_org_member_context=True, extra_props=None):
|
||||
self.ios_version = ios_version
|
||||
self.arch_variant = arch_variant
|
||||
self.is_org_member_context = is_org_member_context
|
||||
self.extra_props = extra_props
|
||||
|
||||
def gen_name_parts(self, with_version_dots):
|
||||
|
||||
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
|
||||
version_parts = self.ios_version.render_dots_or_parts(with_version_dots)
|
||||
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
|
||||
|
||||
return [
|
||||
@ -61,26 +61,9 @@ class IOSJob:
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(False)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
|
||||
"use_metal": miniutils.quote(str(int(True))),
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(False)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
|
||||
"op_list": "mobilenetv2.yaml",
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "coreml"), is_org_member_context=False, extra_props={
|
||||
"use_coreml": miniutils.quote(str(int(True))),
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
|
||||
"use_coreml": miniutils.quote(str(int(True))),
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(IOS_VERSION, ArchVariant("x86_64"), is_org_member_context=False),
|
||||
IOSJob(IOS_VERSION, ArchVariant("arm64")),
|
||||
IOSJob(IOS_VERSION, ArchVariant("arm64", True), extra_props={"op_list": "mobilenetv2.yaml"}),
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -1,22 +1,14 @@
|
||||
class MacOsJob:
|
||||
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
|
||||
# extra_props is tuple type, because mutable data structures for argument defaults
|
||||
# is not recommended.
|
||||
def __init__(self, os_version, is_test=False):
|
||||
self.os_version = os_version
|
||||
self.is_build = is_build
|
||||
self.is_test = is_test
|
||||
self.extra_props = dict(extra_props)
|
||||
|
||||
def gen_tree(self):
|
||||
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
|
||||
|
||||
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
|
||||
full_job_name_list = non_phase_parts + extra_name_list + [
|
||||
'build' if self.is_build else None,
|
||||
'test' if self.is_test else None,
|
||||
]
|
||||
phase_name = "test" if self.is_test else "build"
|
||||
|
||||
full_job_name = "_".join(list(filter(None, full_job_name_list)))
|
||||
full_job_name = "_".join(non_phase_parts + [phase_name])
|
||||
|
||||
test_build_dependency = "_".join(non_phase_parts + ["build"])
|
||||
extra_dependencies = [test_build_dependency] if self.is_test else []
|
||||
@ -29,23 +21,7 @@ class MacOsJob:
|
||||
return [{full_job_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
MacOsJob("10_15", is_build=True),
|
||||
MacOsJob("10_13", is_build=True),
|
||||
MacOsJob(
|
||||
"10_13",
|
||||
is_build=False,
|
||||
is_test=True,
|
||||
),
|
||||
MacOsJob(
|
||||
"10_13",
|
||||
is_build=True,
|
||||
is_test=True,
|
||||
extra_props=tuple({
|
||||
"lite_interpreter": True
|
||||
}.items()),
|
||||
)
|
||||
]
|
||||
WORKFLOW_DATA = [MacOsJob("10_13"), MacOsJob("10_13", True)]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
|
||||
@ -4,17 +4,12 @@ PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
|
||||
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_ASAN, DOCKER_IMAGE_NDK
|
||||
|
||||
|
||||
class MobileJob:
|
||||
def __init__(
|
||||
self,
|
||||
docker_image,
|
||||
docker_requires,
|
||||
variant_parts,
|
||||
is_master_only=False):
|
||||
def __init__(self, docker_image, variant_parts, is_master_only=False):
|
||||
self.docker_image = docker_image
|
||||
self.docker_requires = docker_requires
|
||||
self.variant_parts = variant_parts
|
||||
self.is_master_only = is_master_only
|
||||
|
||||
@ -35,7 +30,6 @@ class MobileJob:
|
||||
"build_environment": build_env_name,
|
||||
"build_only": miniutils.quote(str(int(True))),
|
||||
"docker_image": self.docker_image,
|
||||
"requires": self.docker_requires,
|
||||
"name": full_job_name,
|
||||
}
|
||||
|
||||
@ -46,6 +40,15 @@ class MobileJob:
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
MobileJob(DOCKER_IMAGE_ASAN, ["build"]),
|
||||
MobileJob(DOCKER_IMAGE_ASAN, ["custom", "build", "static"]),
|
||||
|
||||
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
|
||||
MobileJob(DOCKER_IMAGE_NDK, ["custom", "build", "dynamic"]),
|
||||
|
||||
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
|
||||
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
|
||||
MobileJob(DOCKER_IMAGE_NDK, ["code", "analysis"], True),
|
||||
]
|
||||
|
||||
|
||||
|
||||
73
.circleci/cimodel/data/simple/nightly_android.py
Normal file
73
.circleci/cimodel/data/simple/nightly_android.py
Normal file
@ -0,0 +1,73 @@
|
||||
from cimodel.data.simple.util.docker_constants import DOCKER_IMAGE_NDK
|
||||
|
||||
|
||||
class AndroidNightlyJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
template_name,
|
||||
extra_props=None,
|
||||
with_docker=True,
|
||||
requires=None,
|
||||
no_build_suffix=False):
|
||||
|
||||
self.variant = variant
|
||||
self.template_name = template_name
|
||||
self.extra_props = extra_props or {}
|
||||
self.with_docker = with_docker
|
||||
self.requires = requires
|
||||
self.no_build_suffix = no_build_suffix
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3",
|
||||
"clang5",
|
||||
"android",
|
||||
"ndk",
|
||||
"r19c",
|
||||
] + self.variant
|
||||
|
||||
build_suffix = [] if self.no_build_suffix else ["build"]
|
||||
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
|
||||
build_env_name = "-".join(base_name_parts)
|
||||
|
||||
props_dict = {
|
||||
"name": full_job_name,
|
||||
"requires": self.requires,
|
||||
"filters": {"branches": {"only": "nightly"}},
|
||||
}
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
if self.with_docker:
|
||||
props_dict["docker_image"] = DOCKER_IMAGE_NDK
|
||||
props_dict["build_environment"] = build_env_name
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
AndroidNightlyJob(["x86_32"], "pytorch_linux_build"),
|
||||
AndroidNightlyJob(["x86_64"], "pytorch_linux_build"),
|
||||
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build"),
|
||||
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build"),
|
||||
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
|
||||
with_docker=False,
|
||||
requires=[
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
|
||||
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
|
||||
extra_props={"context": "org-member"},
|
||||
with_docker=False,
|
||||
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
|
||||
no_build_suffix=True),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,15 +1,12 @@
|
||||
import cimodel.data.simple.ios_definitions as ios_definitions
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
|
||||
class IOSNightlyJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
is_full_jit=False,
|
||||
is_upload=False):
|
||||
|
||||
self.variant = variant
|
||||
self.is_full_jit = is_full_jit
|
||||
self.is_upload = is_upload
|
||||
|
||||
def get_phase_name(self):
|
||||
@ -19,12 +16,9 @@ class IOSNightlyJob:
|
||||
|
||||
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
|
||||
|
||||
extra_name = ["full_jit"] if self.is_full_jit else []
|
||||
|
||||
common_name_pieces = [
|
||||
"ios",
|
||||
] + extra_name + [
|
||||
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
|
||||
] + ios_definitions.IOS_VERSION.render_dots_or_parts(with_version_dots) + [
|
||||
"nightly",
|
||||
self.variant,
|
||||
"build",
|
||||
@ -36,8 +30,7 @@ class IOSNightlyJob:
|
||||
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
|
||||
|
||||
def gen_tree(self):
|
||||
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
|
||||
extra_requires = [x.gen_job_name() for x in build_configs] if self.is_upload else []
|
||||
extra_requires = [x.gen_job_name() for x in BUILD_CONFIGS] if self.is_upload else []
|
||||
|
||||
props_dict = {
|
||||
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
|
||||
@ -50,11 +43,6 @@ class IOSNightlyJob:
|
||||
props_dict["ios_arch"] = self.variant
|
||||
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
|
||||
props_dict["name"] = self.gen_job_name()
|
||||
props_dict["use_metal"] = miniutils.quote(str(int(True)))
|
||||
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
|
||||
|
||||
if self.is_full_jit:
|
||||
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
|
||||
|
||||
template_name = "_".join([
|
||||
"binary",
|
||||
@ -70,14 +58,9 @@ BUILD_CONFIGS = [
|
||||
IOSNightlyJob("arm64"),
|
||||
]
|
||||
|
||||
BUILD_CONFIGS_FULL_JIT = [
|
||||
IOSNightlyJob("x86_64", is_full_jit=True),
|
||||
IOSNightlyJob("arm64", is_full_jit=True),
|
||||
]
|
||||
|
||||
WORKFLOW_DATA = BUILD_CONFIGS + BUILD_CONFIGS_FULL_JIT + [
|
||||
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
|
||||
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
|
||||
WORKFLOW_DATA = BUILD_CONFIGS + [
|
||||
IOSNightlyJob("binary", is_upload=True),
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -1,15 +1,9 @@
|
||||
NON_PR_BRANCH_LIST = [
|
||||
"main",
|
||||
"master",
|
||||
r"/ci-all\/.*/",
|
||||
r"/release\/.*/",
|
||||
]
|
||||
|
||||
PR_BRANCH_LIST = [
|
||||
r"/gh\/.*\/head/",
|
||||
r"/pull\/.*/",
|
||||
]
|
||||
|
||||
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
|
||||
|
||||
def gen_filter_dict(
|
||||
|
||||
@ -1,33 +1,30 @@
|
||||
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
|
||||
|
||||
def gen_docker_image(container_type):
|
||||
return (
|
||||
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
|
||||
f"docker-{container_type}",
|
||||
)
|
||||
|
||||
def gen_docker_image_requires(image_name):
|
||||
return [f"docker-{image_name}"]
|
||||
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
|
||||
# TOP OF .circleci/config.yml
|
||||
DOCKER_IMAGE_TAG = "209062ef-ab58-422a-b295-36c4eed6e906"
|
||||
|
||||
|
||||
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
|
||||
"pytorch-linux-xenial-py3.7-gcc5.4"
|
||||
)
|
||||
|
||||
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
|
||||
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
|
||||
)
|
||||
|
||||
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
|
||||
"pytorch-linux-xenial-py3.7-gcc7"
|
||||
)
|
||||
def gen_docker_image_path(container_type):
|
||||
return "/".join([
|
||||
AWS_DOCKER_HOST,
|
||||
"pytorch",
|
||||
container_type + ":" + DOCKER_IMAGE_TAG,
|
||||
])
|
||||
|
||||
|
||||
def gen_mobile_docker(specifier):
|
||||
DOCKER_IMAGE_BASIC = gen_docker_image_path("pytorch-linux-xenial-py3.6-gcc5.4")
|
||||
|
||||
DOCKER_IMAGE_CUDA_10_2 = gen_docker_image_path("pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7")
|
||||
|
||||
DOCKER_IMAGE_GCC7 = gen_docker_image_path("pytorch-linux-xenial-py3.6-gcc7")
|
||||
|
||||
|
||||
def gen_mobile_docker_name(specifier):
|
||||
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
|
||||
return gen_docker_image(container_type)
|
||||
return gen_docker_image_path(container_type)
|
||||
|
||||
|
||||
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
|
||||
DOCKER_IMAGE_ASAN = gen_mobile_docker_name("asan")
|
||||
|
||||
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")
|
||||
DOCKER_IMAGE_NDK = gen_mobile_docker_name("android-ndk-r19c")
|
||||
|
||||
@ -9,7 +9,7 @@ class MultiPartVersion:
|
||||
with the prefix string.
|
||||
"""
|
||||
if self.parts:
|
||||
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
|
||||
return [self.prefix + str(self.parts[0])] + list(map(str, self.parts[1:]))
|
||||
else:
|
||||
return [self.prefix]
|
||||
|
||||
@ -29,6 +29,3 @@ class CudaVersion(MultiPartVersion):
|
||||
self.minor = minor
|
||||
|
||||
super().__init__([self.major, self.minor], "cuda")
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.major}.{self.minor}"
|
||||
|
||||
142
.circleci/cimodel/data/windows_build_definitions.py
Normal file
142
.circleci/cimodel/data/windows_build_definitions.py
Normal file
@ -0,0 +1,142 @@
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.simple.util.versions import CudaVersion
|
||||
|
||||
|
||||
class WindowsJob:
|
||||
def __init__(
|
||||
self,
|
||||
test_index,
|
||||
vscode_spec,
|
||||
cuda_version,
|
||||
force_on_cpu=False,
|
||||
master_only_pred=lambda job: job.vscode_spec.year != 2019,
|
||||
):
|
||||
self.test_index = test_index
|
||||
self.vscode_spec = vscode_spec
|
||||
self.cuda_version = cuda_version
|
||||
self.force_on_cpu = force_on_cpu
|
||||
self.master_only_pred = master_only_pred
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_phase = "build" if self.test_index is None else "test"
|
||||
numbered_phase = (
|
||||
base_phase if self.test_index is None else base_phase + str(self.test_index)
|
||||
)
|
||||
|
||||
key_name = "_".join(["pytorch", "windows", base_phase])
|
||||
|
||||
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
|
||||
|
||||
target_arch = self.cuda_version.render_dots() if self.cuda_version else "cpu"
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"windows",
|
||||
self.vscode_spec.render(),
|
||||
"py36",
|
||||
target_arch,
|
||||
]
|
||||
|
||||
prerequisite_jobs = []
|
||||
if base_phase == "test":
|
||||
prerequisite_jobs.append("_".join(base_name_parts + ["build"]))
|
||||
|
||||
arch_env_elements = (
|
||||
["cuda" + str(self.cuda_version.major), "cudnn7"]
|
||||
if self.cuda_version
|
||||
else ["cpu"]
|
||||
)
|
||||
|
||||
build_environment_string = "-".join(
|
||||
["pytorch", "win"]
|
||||
+ self.vscode_spec.get_elements()
|
||||
+ arch_env_elements
|
||||
+ ["py3"]
|
||||
)
|
||||
|
||||
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
|
||||
|
||||
props_dict = {
|
||||
"build_environment": build_environment_string,
|
||||
"python_version": miniutils.quote("3.6"),
|
||||
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
|
||||
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
|
||||
"vc_product": self.vscode_spec.get_product(),
|
||||
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
|
||||
"requires": prerequisite_jobs,
|
||||
}
|
||||
|
||||
if self.master_only_pred(self):
|
||||
props_dict[
|
||||
"filters"
|
||||
] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
|
||||
|
||||
if base_phase == "test":
|
||||
test_name = "-".join(["pytorch", "windows", numbered_phase])
|
||||
props_dict["test_name"] = test_name
|
||||
|
||||
if is_running_on_cuda:
|
||||
props_dict["executor"] = "windows-with-nvidia-gpu"
|
||||
|
||||
props_dict["cuda_version"] = (
|
||||
miniutils.quote(str(self.cuda_version.major))
|
||||
if self.cuda_version
|
||||
else "cpu"
|
||||
)
|
||||
props_dict["name"] = "_".join(name_parts)
|
||||
|
||||
return [{key_name: props_dict}]
|
||||
|
||||
|
||||
class VcSpec:
|
||||
def __init__(self, year, version_elements=None):
|
||||
self.year = year
|
||||
self.version_elements = version_elements or []
|
||||
|
||||
def get_elements(self):
|
||||
return [self.prefixed_year()] + self.version_elements
|
||||
|
||||
def get_product(self):
|
||||
return "Community" if self.year == 2019 else "BuildTools"
|
||||
|
||||
def dotted_version(self):
|
||||
return ".".join(self.version_elements)
|
||||
|
||||
def prefixed_year(self):
|
||||
return "vs" + str(self.year)
|
||||
|
||||
def render(self):
|
||||
return "_".join(filter(None, [self.prefixed_year(), self.dotted_version()]))
|
||||
|
||||
def FalsePred(_):
|
||||
return False
|
||||
|
||||
def TruePred(_):
|
||||
return True
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
# VS2017 CUDA-10.1
|
||||
WindowsJob(None, VcSpec(2017, ["14", "11"]), CudaVersion(10, 1), master_only_pred=FalsePred),
|
||||
WindowsJob(1, VcSpec(2017, ["14", "11"]), CudaVersion(10, 1)),
|
||||
# VS2017 no-CUDA (builds only)
|
||||
WindowsJob(None, VcSpec(2017, ["14", "16"]), CudaVersion(10, 1)),
|
||||
WindowsJob(None, VcSpec(2017, ["14", "16"]), None),
|
||||
# VS2019 CUDA-10.1
|
||||
WindowsJob(None, VcSpec(2019), CudaVersion(10, 1)),
|
||||
WindowsJob(1, VcSpec(2019), CudaVersion(10, 1)),
|
||||
WindowsJob(2, VcSpec(2019), CudaVersion(10, 1)),
|
||||
# VS2019 CPU-only
|
||||
WindowsJob(None, VcSpec(2019), None),
|
||||
WindowsJob(1, VcSpec(2019), None),
|
||||
WindowsJob(2, VcSpec(2019), None, master_only_pred=TruePred),
|
||||
WindowsJob(1, VcSpec(2019), CudaVersion(10, 1), force_on_cpu=True),
|
||||
WindowsJob(2, VcSpec(2019), CudaVersion(10, 1), force_on_cpu=True, master_only_pred=TruePred),
|
||||
]
|
||||
|
||||
|
||||
def get_windows_workflows():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
7493
.circleci/config.yml
7493
.circleci/config.yml
File diff suppressed because it is too large
Load Diff
@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
|
||||
|
||||
See `build.sh` for valid build environments (it's the giant switch).
|
||||
|
||||
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
|
||||
|
||||
## Contents
|
||||
|
||||
* `build.sh` -- dispatch script to launch all builds
|
||||
* `common` -- scripts used to execute individual Docker build stages
|
||||
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# Build a specific image
|
||||
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
|
||||
|
||||
# Set flags (see build.sh) and build image
|
||||
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
|
||||
```
|
||||
|
||||
@ -20,8 +20,10 @@ buildscript {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
classpath 'com.android.tools.build:gradle:4.1.2'
|
||||
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
|
||||
classpath 'com.android.tools.build:gradle:3.3.2'
|
||||
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
|
||||
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
|
||||
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
|
||||
}
|
||||
}
|
||||
|
||||
@ -51,9 +53,9 @@ android {
|
||||
dependencies {
|
||||
implementation 'com.android.support:appcompat-v7:28.0.0'
|
||||
implementation 'androidx.appcompat:appcompat:1.0.0'
|
||||
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
|
||||
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
|
||||
implementation 'com.google.code.findbugs:jsr305:3.0.1'
|
||||
implementation 'com.facebook.soloader:nativeloader:0.10.1'
|
||||
implementation 'com.facebook.soloader:nativeloader:0.8.0'
|
||||
|
||||
implementation 'junit:junit:' + rootProject.junitVersion
|
||||
implementation 'androidx.test:core:' + rootProject.coreVersion
|
||||
|
||||
@ -10,43 +10,18 @@ if [ -z "${image}" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
function extract_version_from_image_name() {
|
||||
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
|
||||
if [ "x${!2}" = x ]; then
|
||||
echo "variable '$2' not correctly parsed from image='$image'"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
function extract_all_from_image_name() {
|
||||
# parts $image into array, splitting on '-'
|
||||
keep_IFS="$IFS"
|
||||
IFS="-"
|
||||
declare -a parts=($image)
|
||||
IFS="$keep_IFS"
|
||||
unset keep_IFS
|
||||
|
||||
for part in "${parts[@]}"; do
|
||||
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
|
||||
vername="${name^^}_VERSION"
|
||||
# "py" is the odd one out, needs this special case
|
||||
if [ "x${name}" = xpy ]; then
|
||||
vername=ANACONDA_PYTHON_VERSION
|
||||
fi
|
||||
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
|
||||
if [ -n "${name}" ]; then
|
||||
extract_version_from_image_name "${name}" "${vername}"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
# Use the same pre-built XLA test image from PyTorch/XLA
|
||||
if [[ "$image" == *xla* ]]; then
|
||||
echo "Using pre-built XLA test image..."
|
||||
exit 0
|
||||
# TODO: Generalize
|
||||
OS="ubuntu"
|
||||
DOCKERFILE="${OS}/Dockerfile"
|
||||
if [[ "$image" == *-cuda* ]]; then
|
||||
DOCKERFILE="${OS}-cuda/Dockerfile"
|
||||
elif [[ "$image" == *-rocm* ]]; then
|
||||
DOCKERFILE="${OS}-rocm/Dockerfile"
|
||||
fi
|
||||
|
||||
if [[ "$image" == *-xenial* ]]; then
|
||||
if [[ "$image" == *-trusty* ]]; then
|
||||
UBUNTU_VERSION=14.04
|
||||
elif [[ "$image" == *-xenial* ]]; then
|
||||
UBUNTU_VERSION=16.04
|
||||
elif [[ "$image" == *-artful* ]]; then
|
||||
UBUNTU_VERSION=17.10
|
||||
@ -54,30 +29,6 @@ elif [[ "$image" == *-bionic* ]]; then
|
||||
UBUNTU_VERSION=18.04
|
||||
elif [[ "$image" == *-focal* ]]; then
|
||||
UBUNTU_VERSION=20.04
|
||||
elif [[ "$image" == *ubuntu* ]]; then
|
||||
extract_version_from_image_name ubuntu UBUNTU_VERSION
|
||||
elif [[ "$image" == *centos* ]]; then
|
||||
extract_version_from_image_name centos CENTOS_VERSION
|
||||
fi
|
||||
|
||||
if [ -n "${UBUNTU_VERSION}" ]; then
|
||||
OS="ubuntu"
|
||||
elif [ -n "${CENTOS_VERSION}" ]; then
|
||||
OS="centos"
|
||||
else
|
||||
echo "Unable to derive operating system base..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
DOCKERFILE="${OS}/Dockerfile"
|
||||
if [[ "$image" == *cuda* ]]; then
|
||||
DOCKERFILE="${OS}-cuda/Dockerfile"
|
||||
elif [[ "$image" == *rocm* ]]; then
|
||||
DOCKERFILE="${OS}-rocm/Dockerfile"
|
||||
fi
|
||||
|
||||
if [[ "$image" == *xenial* ]] || [[ "$image" == *bionic* ]]; then
|
||||
CMAKE_VERSION=3.13.5
|
||||
fi
|
||||
|
||||
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
|
||||
@ -87,66 +38,98 @@ TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/u
|
||||
# from scratch
|
||||
case "$image" in
|
||||
pytorch-linux-xenial-py3.8)
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
# TODO: This is a hack, get rid of this as soon as you get rid of the travis downloads
|
||||
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/16.04/x86_64"
|
||||
TRAVIS_PYTHON_VERSION=3.8
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py3.7-gcc5.4)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-xenial-py3.6-gcc4.8)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=4.8
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-gcc5.4)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=5
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3.7-gcc7.2)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-xenial-py3.6-gcc7.2)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py3.7-gcc7)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-xenial-py3.6-gcc7)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-pynightly)
|
||||
TRAVIS_PYTHON_VERSION=nightly
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc5.4)
|
||||
CUDA_VERSION=9.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=5
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=9.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.0
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.1
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
|
||||
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
|
||||
pytorch-linux-xenial-cuda11.0-cudnn8-py3-gcc7)
|
||||
UBUNTU_VERSION=16.04-rc
|
||||
CUDA_VERSION=11.0
|
||||
CUDNN_VERSION=8
|
||||
TENSORRT_VERSION=8.0.1.6
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda11.3-cudnn8-py3-clang9)
|
||||
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
|
||||
CUDNN_VERSION=8
|
||||
TENSORRT_VERSION=8.0.1.6
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
CLANG_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda11.6-cudnn8-py3-gcc7)
|
||||
CUDA_VERSION=11.6.0
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
@ -154,51 +137,36 @@ case "$image" in
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang5-asan)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=5.0
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang7-asan)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
CLANG_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang7-onnx)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
CLANG_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=5.0
|
||||
LLVMDEV=yes
|
||||
PROTOBUF=yes
|
||||
ANDROID=yes
|
||||
ANDROID_NDK_VERSION=r19c
|
||||
GRADLE_VERSION=6.8.3
|
||||
GRADLE_VERSION=4.10.3
|
||||
CMAKE_VERSION=3.7.0
|
||||
NINJA_VERSION=1.9.0
|
||||
;;
|
||||
pytorch-linux-xenial-py3.7-clang7)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-xenial-py3.6-clang7)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-py3.7-clang9)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-bionic-py3.6-clang9)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
VULKAN_SDK_VERSION=1.2.162.1
|
||||
SWIFTSHADER=yes
|
||||
;;
|
||||
pytorch-linux-bionic-py3.8-gcc9)
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
@ -207,81 +175,62 @@ case "$image" in
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.7-clang9)
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.8-gcc9)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-rocm5.0-py3.7)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=5.0
|
||||
;;
|
||||
pytorch-linux-bionic-rocm5.1-py3.7)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
|
||||
UBUNTU_VERSION=18.04-rc
|
||||
CUDA_VERSION=11.0
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=5.1.1
|
||||
;;
|
||||
pytorch-linux-focal-py3.7-gcc7)
|
||||
ANACONDA_PYTHON_VERSION=3.7
|
||||
CMAKE_VERSION=3.12.4 # To make sure XNNPACK is enabled for the BACKWARDS_COMPAT_TEST used with this image
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
*)
|
||||
# Catch-all for builds that are not hardcoded.
|
||||
pytorch-linux-bionic-cuda11.0-cudnn8-py3.8-gcc9)
|
||||
UBUNTU_VERSION=18.04-rc
|
||||
CUDA_VERSION=11.0
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
echo "image '$image' did not match an existing build configuration"
|
||||
if [[ "$image" == *py* ]]; then
|
||||
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
|
||||
fi
|
||||
if [[ "$image" == *cuda* ]]; then
|
||||
extract_version_from_image_name cuda CUDA_VERSION
|
||||
extract_version_from_image_name cudnn CUDNN_VERSION
|
||||
fi
|
||||
if [[ "$image" == *rocm* ]]; then
|
||||
extract_version_from_image_name rocm ROCM_VERSION
|
||||
fi
|
||||
if [[ "$image" == *gcc* ]]; then
|
||||
extract_version_from_image_name gcc GCC_VERSION
|
||||
fi
|
||||
if [[ "$image" == *clang* ]]; then
|
||||
extract_version_from_image_name clang CLANG_VERSION
|
||||
fi
|
||||
if [[ "$image" == *devtoolset* ]]; then
|
||||
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
|
||||
fi
|
||||
if [[ "$image" == *glibc* ]]; then
|
||||
extract_version_from_image_name glibc GLIBC_VERSION
|
||||
fi
|
||||
if [[ "$image" == *cmake* ]]; then
|
||||
extract_version_from_image_name cmake CMAKE_VERSION
|
||||
fi
|
||||
;;
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-rocm3.3-py3.6)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=3.3
|
||||
# newer cmake version required
|
||||
CMAKE_VERSION=3.6.3
|
||||
;;
|
||||
pytorch-linux-bionic-rocm3.3-py3.6)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=3.3
|
||||
;;
|
||||
esac
|
||||
|
||||
# Set Jenkins UID and GID if running Jenkins
|
||||
@ -290,15 +239,7 @@ if [ -n "${JENKINS:-}" ]; then
|
||||
JENKINS_GID=$(id -g jenkins)
|
||||
fi
|
||||
|
||||
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
|
||||
|
||||
#when using cudnn version 8 install it separately from cuda
|
||||
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
|
||||
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
|
||||
if [[ ${CUDNN_VERSION} == 8 ]]; then
|
||||
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
|
||||
fi
|
||||
fi
|
||||
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
|
||||
|
||||
# Build image
|
||||
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
|
||||
@ -318,45 +259,29 @@ docker build \
|
||||
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
|
||||
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
|
||||
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
|
||||
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
|
||||
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
|
||||
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
|
||||
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
|
||||
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
|
||||
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
|
||||
--build-arg "GCC_VERSION=${GCC_VERSION}" \
|
||||
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
|
||||
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
|
||||
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
|
||||
--build-arg "ANDROID=${ANDROID}" \
|
||||
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
|
||||
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
|
||||
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
|
||||
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
|
||||
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx900;gfx906}" \
|
||||
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
|
||||
-f $(dirname ${DOCKERFILE})/Dockerfile \
|
||||
-t "$tmp_tag" \
|
||||
"$@" \
|
||||
.
|
||||
|
||||
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
|
||||
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
|
||||
# find the correct image. As a result, here we have to replace the
|
||||
# "$UBUNTU_VERSION" == "18.04-rc"
|
||||
# with
|
||||
# "$UBUNTU_VERSION" == "18.04"
|
||||
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
|
||||
|
||||
function drun() {
|
||||
docker run --rm "$tmp_tag" $*
|
||||
}
|
||||
|
||||
if [[ "$OS" == "ubuntu" ]]; then
|
||||
|
||||
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
|
||||
echo "OS=ubuntu, but:"
|
||||
drun lsb_release -a
|
||||
@ -369,6 +294,19 @@ if [[ "$OS" == "ubuntu" ]]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
|
||||
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
|
||||
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
|
||||
drun python --version
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "Please manually check nightly is OK:"
|
||||
drun python --version
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
|
||||
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
|
||||
|
||||
@ -13,7 +13,7 @@ retry () {
|
||||
|
||||
#until we find a way to reliably reuse previous build, this last_tag is not in use
|
||||
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
|
||||
tag="${DOCKER_TAG}"
|
||||
tag="${CIRCLE_WORKFLOW_ID}"
|
||||
|
||||
|
||||
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
|
||||
@ -26,14 +26,11 @@ login() {
|
||||
docker login -u AWS --password-stdin "$1"
|
||||
}
|
||||
|
||||
# Retry on timeouts (can happen on job stampede).
|
||||
retry login "${registry}"
|
||||
|
||||
# Only run these steps if not on github actions
|
||||
if [[ -z "${GITHUB_ACTIONS}" ]]; then
|
||||
# Retry on timeouts (can happen on job stampede).
|
||||
retry login "${registry}"
|
||||
# Logout on exit
|
||||
trap "docker logout ${registry}" EXIT
|
||||
fi
|
||||
# Logout on exit
|
||||
trap "docker logout ${registry}" EXIT
|
||||
|
||||
# export EC2=1
|
||||
# export JENKINS=1
|
||||
@ -48,8 +45,9 @@ fi
|
||||
|
||||
docker push "${image}:${tag}"
|
||||
|
||||
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
|
||||
trap "rm -rf ${IMAGE_NAME}:${tag}.tar" EXIT
|
||||
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
|
||||
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
|
||||
fi
|
||||
# TODO: Get rid of duplicate tagging once ${DOCKER_TAG} becomes the default
|
||||
docker tag "${image}:${tag}" "${image}:${DOCKER_TAG}"
|
||||
docker push "${image}:${DOCKER_TAG}"
|
||||
|
||||
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
|
||||
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
|
||||
|
||||
@ -1,105 +0,0 @@
|
||||
ARG CENTOS_VERSION
|
||||
|
||||
FROM centos:${CENTOS_VERSION}
|
||||
|
||||
ARG CENTOS_VERSION
|
||||
|
||||
# Set AMD gpu targets to build for
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
|
||||
|
||||
# Install required packages to build Caffe2
|
||||
|
||||
# Install common dependencies (so that this step can be cached separately)
|
||||
ARG EC2
|
||||
ADD ./common/install_base.sh install_base.sh
|
||||
RUN bash ./install_base.sh && rm install_base.sh
|
||||
|
||||
# Update CentOS git version
|
||||
RUN yum -y remove git
|
||||
RUN yum -y remove git-*
|
||||
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm
|
||||
RUN yum install -y git
|
||||
|
||||
# Install devtoolset
|
||||
ARG DEVTOOLSET_VERSION
|
||||
ADD ./common/install_devtoolset.sh install_devtoolset.sh
|
||||
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
|
||||
ENV BASH_ENV "/etc/profile"
|
||||
|
||||
# (optional) Install non-default glibc version
|
||||
ARG GLIBC_VERSION
|
||||
ADD ./common/install_glibc.sh install_glibc.sh
|
||||
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
|
||||
RUN rm install_glibc.sh
|
||||
|
||||
# Install user
|
||||
ADD ./common/install_user.sh install_user.sh
|
||||
RUN bash ./install_user.sh && rm install_user.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, pytest)
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
RUN rm /opt/conda/requirements-ci.txt
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
ADD ./common/install_protobuf.sh install_protobuf.sh
|
||||
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
|
||||
RUN rm install_protobuf.sh
|
||||
ENV INSTALLED_PROTOBUF ${PROTOBUF}
|
||||
|
||||
# (optional) Install database packages like LMDB and LevelDB
|
||||
ARG DB
|
||||
ADD ./common/install_db.sh install_db.sh
|
||||
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
|
||||
RUN rm install_db.sh
|
||||
ENV INSTALLED_DB ${DB}
|
||||
|
||||
# (optional) Install vision packages like OpenCV and ffmpeg
|
||||
ARG VISION
|
||||
ADD ./common/install_vision.sh install_vision.sh
|
||||
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# Install rocm
|
||||
ARG ROCM_VERSION
|
||||
ADD ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh
|
||||
RUN rm install_rocm.sh
|
||||
ENV PATH /opt/rocm/bin:$PATH
|
||||
ENV PATH /opt/rocm/hcc/bin:$PATH
|
||||
ENV PATH /opt/rocm/hip/bin:$PATH
|
||||
ENV PATH /opt/rocm/opencl/bin:$PATH
|
||||
ENV PATH /opt/rocm/llvm/bin:$PATH
|
||||
ENV MAGMA_HOME /opt/rocm/magma
|
||||
ENV LANG en_US.utf8
|
||||
ENV LC_ALL en_US.utf8
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
|
||||
RUN rm install_cmake.sh
|
||||
|
||||
# (optional) Install non-default Ninja version
|
||||
ARG NINJA_VERSION
|
||||
ADD ./common/install_ninja.sh install_ninja.sh
|
||||
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
|
||||
RUN rm install_ninja.sh
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
RUN bash ./install_cache.sh && rm install_cache.sh
|
||||
|
||||
# Include BUILD_ENVIRONMENT environment variable in image
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
@ -4,15 +4,13 @@ set -ex
|
||||
|
||||
[ -n "${ANDROID_NDK}" ]
|
||||
|
||||
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
|
||||
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
pushd /tmp
|
||||
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
|
||||
curl -Os --retry 3 https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
|
||||
popd
|
||||
_ndk_dir=/opt/ndk
|
||||
mkdir -p "$_ndk_dir"
|
||||
@ -47,22 +45,43 @@ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
|
||||
# Installing android sdk
|
||||
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
|
||||
|
||||
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
|
||||
_sdk_version=sdk-tools-linux-3859397.zip
|
||||
_android_home=/opt/android/sdk
|
||||
|
||||
rm -rf $_android_home
|
||||
sudo mkdir -p $_android_home
|
||||
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
|
||||
sudo unzip -q $_tmp_sdk_zip -d $_android_home
|
||||
rm $_tmp_sdk_zip
|
||||
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
|
||||
sudo unzip -q /tmp/$_sdk_version -d $_android_home
|
||||
rm /tmp/$_sdk_version
|
||||
|
||||
sudo chmod -R 777 $_android_home
|
||||
|
||||
export ANDROID_HOME=$_android_home
|
||||
export ADB_INSTALL_TIMEOUT=120
|
||||
|
||||
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
|
||||
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
|
||||
echo "PATH:${PATH}"
|
||||
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
|
||||
|
||||
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
|
||||
sudo chmod -R 777 ~/.android
|
||||
|
||||
yes | sdkmanager --licenses
|
||||
yes | sdkmanager --update
|
||||
|
||||
sdkmanager \
|
||||
"tools" \
|
||||
"platform-tools" \
|
||||
"emulator"
|
||||
|
||||
sdkmanager \
|
||||
"build-tools;28.0.3" \
|
||||
"build-tools;29.0.2"
|
||||
|
||||
sdkmanager \
|
||||
"platforms;android-28" \
|
||||
"platforms;android-29"
|
||||
sdkmanager --list
|
||||
|
||||
# Installing Gradle
|
||||
echo "GRADLE_VERSION:${GRADLE_VERSION}"
|
||||
@ -70,7 +89,8 @@ _gradle_home=/opt/gradle
|
||||
sudo rm -rf $gradle_home
|
||||
sudo mkdir -p $_gradle_home
|
||||
|
||||
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
|
||||
wget --no-verbose --output-document=/tmp/gradle.zip \
|
||||
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
|
||||
|
||||
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
|
||||
rm /tmp/gradle.zip
|
||||
@ -99,7 +119,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
chown -R jenkins /var/lib/jenkins/gradledeps
|
||||
chgrp -R jenkins /var/lib/jenkins/gradledeps
|
||||
|
||||
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
|
||||
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
|
||||
|
||||
chown -R jenkins /var/lib/jenkins/.gradle
|
||||
chgrp -R jenkins /var/lib/jenkins/.gradle
|
||||
|
||||
@ -2,133 +2,74 @@
|
||||
|
||||
set -ex
|
||||
|
||||
install_ubuntu() {
|
||||
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
|
||||
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
|
||||
# find the correct image. As a result, here we have to check for
|
||||
# "$UBUNTU_VERSION" == "18.04"*
|
||||
# instead of
|
||||
# "$UBUNTU_VERSION" == "18.04"
|
||||
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
|
||||
cmake3="cmake=3.10*"
|
||||
maybe_libiomp_dev="libiomp-dev"
|
||||
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
|
||||
cmake3="cmake=3.16*"
|
||||
maybe_libiomp_dev=""
|
||||
else
|
||||
cmake3="cmake=3.5*"
|
||||
maybe_libiomp_dev="libiomp-dev"
|
||||
fi
|
||||
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
|
||||
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
|
||||
# find the correct image. As a result, here we have to check for
|
||||
# "$UBUNTU_VERSION" == "18.04"*
|
||||
# instead of
|
||||
# "$UBUNTU_VERSION" == "18.04"
|
||||
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
|
||||
cmake3="cmake=3.10*"
|
||||
else
|
||||
cmake3="cmake=3.5*"
|
||||
fi
|
||||
|
||||
# TODO: Remove this once nvidia package repos are back online
|
||||
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
|
||||
# shellcheck disable=SC2046
|
||||
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
|
||||
|
||||
# Install common dependencies
|
||||
apt-get update
|
||||
# TODO: Some of these may not be necessary
|
||||
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
|
||||
numpy_deps="gfortran"
|
||||
apt-get install -y --no-install-recommends \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
${cmake3} \
|
||||
apt-transport-https \
|
||||
autoconf \
|
||||
automake \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
curl \
|
||||
git \
|
||||
libatlas-base-dev \
|
||||
libc6-dbg \
|
||||
${maybe_libiomp_dev} \
|
||||
libyaml-dev \
|
||||
libz-dev \
|
||||
libjpeg-dev \
|
||||
libasound2-dev \
|
||||
libsndfile-dev \
|
||||
software-properties-common \
|
||||
wget \
|
||||
sudo \
|
||||
vim
|
||||
|
||||
# Should resolve issues related to various apt package repository cert issues
|
||||
# see: https://github.com/pytorch/pytorch/issues/65931
|
||||
apt-get install -y libgnutls30
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
# Need EPEL for many packages we depend on.
|
||||
# See http://fedoraproject.org/wiki/EPEL
|
||||
yum --enablerepo=extras install -y epel-release
|
||||
|
||||
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
|
||||
numpy_deps="gcc-gfortran"
|
||||
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
|
||||
# for Caffe2. That said, we still install them to make sure the build
|
||||
# system opts to build/use protoc and libprotobuf from third-party.
|
||||
yum install -y \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
autoconf \
|
||||
automake \
|
||||
bzip2 \
|
||||
cmake \
|
||||
cmake3 \
|
||||
curl \
|
||||
gcc \
|
||||
gcc-c++ \
|
||||
gflags-devel \
|
||||
git \
|
||||
glibc-devel \
|
||||
glibc-headers \
|
||||
glog-devel \
|
||||
hiredis-devel \
|
||||
libstdc++-devel \
|
||||
libsndfile-devel \
|
||||
make \
|
||||
opencv-devel \
|
||||
sudo \
|
||||
wget \
|
||||
vim
|
||||
|
||||
# Cleanup
|
||||
yum clean all
|
||||
rm -rf /var/cache/yum
|
||||
rm -rf /var/lib/yum/yumdb
|
||||
rm -rf /var/lib/yum/history
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
# Install common dependencies
|
||||
apt-get update
|
||||
# TODO: Some of these may not be necessary
|
||||
# TODO: libiomp also gets installed by conda, aka there's a conflict
|
||||
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
|
||||
numpy_deps="gfortran"
|
||||
apt-get install -y --no-install-recommends \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
${cmake3} \
|
||||
apt-transport-https \
|
||||
autoconf \
|
||||
automake \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
curl \
|
||||
git \
|
||||
libatlas-base-dev \
|
||||
libc6-dbg \
|
||||
libiomp-dev \
|
||||
libyaml-dev \
|
||||
libz-dev \
|
||||
libjpeg-dev \
|
||||
libasound2-dev \
|
||||
libsndfile-dev \
|
||||
python \
|
||||
python-dev \
|
||||
python-setuptools \
|
||||
python-wheel \
|
||||
software-properties-common \
|
||||
sudo \
|
||||
wget \
|
||||
vim
|
||||
|
||||
# Install Valgrind separately since the apt-get version is too old.
|
||||
mkdir valgrind_build && cd valgrind_build
|
||||
VALGRIND_VERSION=3.16.1
|
||||
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
VALGRIND_VERSION=3.15.0
|
||||
if ! wget http://valgrind.org/downloads/valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
then
|
||||
wget https://sourceware.org/ftp/valgrind/valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
fi
|
||||
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
cd valgrind-${VALGRIND_VERSION}
|
||||
./configure --prefix=/usr/local
|
||||
make -j6
|
||||
make -j 4
|
||||
sudo make install
|
||||
cd ../../
|
||||
rm -rf valgrind_build
|
||||
alias valgrind="/usr/local/bin/valgrind"
|
||||
|
||||
# TODO: THIS IS A HACK!!!
|
||||
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
|
||||
if dpkg -s libnccl-dev; then
|
||||
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
|
||||
fi
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
@ -2,51 +2,17 @@
|
||||
|
||||
set -ex
|
||||
|
||||
install_ubuntu() {
|
||||
echo "Preparing to build sccache from source"
|
||||
apt-get update
|
||||
apt-get install -y cargo pkg-config libssl-dev
|
||||
echo "Checking out sccache repo"
|
||||
git clone https://github.com/pytorch/sccache
|
||||
cd sccache
|
||||
echo "Building sccache"
|
||||
cargo build --release
|
||||
cp target/release/sccache /opt/cache/bin
|
||||
echo "Cleaning up"
|
||||
cd ..
|
||||
rm -rf sccache
|
||||
apt-get remove -y cargo rustc
|
||||
apt-get autoclean && apt-get clean
|
||||
}
|
||||
|
||||
install_binary() {
|
||||
echo "Downloading sccache binary from S3 repo"
|
||||
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
|
||||
}
|
||||
|
||||
mkdir -p /opt/cache/bin
|
||||
mkdir -p /opt/cache/lib
|
||||
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
|
||||
export PATH="/opt/cache/bin:$PATH"
|
||||
|
||||
# Setup compiler cache
|
||||
if [ -n "$ROCM_VERSION" ]; then
|
||||
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
|
||||
else
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
*)
|
||||
install_binary
|
||||
;;
|
||||
esac
|
||||
fi
|
||||
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
|
||||
chmod a+x /opt/cache/bin/sccache
|
||||
|
||||
function write_sccache_stub() {
|
||||
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
|
||||
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
|
||||
chmod a+x "/opt/cache/bin/$1"
|
||||
}
|
||||
|
||||
@ -54,12 +20,8 @@ write_sccache_stub cc
|
||||
write_sccache_stub c++
|
||||
write_sccache_stub gcc
|
||||
write_sccache_stub g++
|
||||
|
||||
# NOTE: See specific ROCM_VERSION case below.
|
||||
if [ "x$ROCM_VERSION" = x ]; then
|
||||
write_sccache_stub clang
|
||||
write_sccache_stub clang++
|
||||
fi
|
||||
write_sccache_stub clang
|
||||
write_sccache_stub clang++
|
||||
|
||||
if [ -n "$CUDA_VERSION" ]; then
|
||||
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
|
||||
@ -68,50 +30,6 @@ if [ -n "$CUDA_VERSION" ]; then
|
||||
# where CUDA is installed. Instead, we install an nvcc symlink outside
|
||||
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
|
||||
|
||||
write_sccache_stub nvcc
|
||||
mv /opt/cache/bin/nvcc /opt/cache/lib/
|
||||
fi
|
||||
|
||||
if [ -n "$ROCM_VERSION" ]; then
|
||||
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
|
||||
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
|
||||
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
|
||||
# directly under /opt/rocm while also preserving the original compiler names.
|
||||
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
|
||||
# Final link in symlink chain must point back to original directory.
|
||||
|
||||
# Original compiler is moved one directory deeper. Wrapper replaces it.
|
||||
function write_sccache_stub_rocm() {
|
||||
OLDCOMP=$1
|
||||
COMPNAME=$(basename $OLDCOMP)
|
||||
TOPDIR=$(dirname $OLDCOMP)
|
||||
WRAPPED="$TOPDIR/original/$COMPNAME"
|
||||
mv "$OLDCOMP" "$WRAPPED"
|
||||
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
|
||||
chmod a+x "$OLDCOMP"
|
||||
}
|
||||
|
||||
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
|
||||
# ROCm 3.3 or earlier.
|
||||
mkdir /opt/rocm/hcc/bin/original
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
|
||||
# Fix last link in symlink chain, clang points to versioned clang in prior dir
|
||||
pushd /opt/rocm/hcc/bin/original
|
||||
ln -s ../$(readlink clang)
|
||||
popd
|
||||
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
|
||||
# ROCm 3.5 and beyond.
|
||||
mkdir /opt/rocm/llvm/bin/original
|
||||
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
|
||||
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
|
||||
# Fix last link in symlink chain, clang points to versioned clang in prior dir
|
||||
pushd /opt/rocm/llvm/bin/original
|
||||
ln -s ../$(readlink clang)
|
||||
popd
|
||||
else
|
||||
echo "Cannot find ROCm compiler."
|
||||
exit 1
|
||||
fi
|
||||
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
|
||||
chmod a+x /opt/cache/lib/nvcc
|
||||
fi
|
||||
|
||||
@ -4,9 +4,6 @@ set -ex
|
||||
|
||||
[ -n "$CMAKE_VERSION" ]
|
||||
|
||||
# Remove system cmake install so it won't get used instead
|
||||
apt-get remove cmake -y
|
||||
|
||||
# Turn 3.6.3 into v3.6
|
||||
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
|
||||
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
|
||||
|
||||
@ -21,23 +21,16 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
;;
|
||||
esac
|
||||
|
||||
mkdir -p /opt/conda
|
||||
mkdir /opt/conda
|
||||
chown jenkins:jenkins /opt/conda
|
||||
|
||||
# Work around bug where devtoolset replaces sudo and breaks it.
|
||||
if [ -n "$DEVTOOLSET_VERSION" ]; then
|
||||
SUDO=/bin/sudo
|
||||
else
|
||||
SUDO=sudo
|
||||
fi
|
||||
|
||||
as_jenkins() {
|
||||
# NB: unsetting the environment variables works around a conda bug
|
||||
# https://github.com/conda/conda/issues/6576
|
||||
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
|
||||
# NB: This must be run from a directory that jenkins has access to,
|
||||
# works around https://github.com/conda/conda-package-handling/pull/34
|
||||
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
}
|
||||
|
||||
pushd /tmp
|
||||
@ -56,10 +49,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
pushd /opt/conda
|
||||
|
||||
# Track latest conda update
|
||||
as_jenkins conda update -y -n base conda
|
||||
as_jenkins conda update -n base conda
|
||||
|
||||
# Install correct Python version
|
||||
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
|
||||
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
|
||||
|
||||
conda_install() {
|
||||
# Ensure that the install command don't upgrade/downgrade Python
|
||||
@ -68,45 +61,36 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
|
||||
}
|
||||
|
||||
pip_install() {
|
||||
as_jenkins pip install --progress-bar off $*
|
||||
}
|
||||
|
||||
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
|
||||
# DO NOT install cmake here as it would install a version newer than 3.10, but
|
||||
# we want to pin to version 3.10.
|
||||
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
|
||||
# DO NOT install cmake here as it would install a version newer than 3.5, but
|
||||
# we want to pin to version 3.5.
|
||||
if [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
|
||||
# DO NOT install typing if installing python-3.8, since its part of python-3.8 core packages
|
||||
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
|
||||
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
|
||||
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
|
||||
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
|
||||
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
|
||||
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
|
||||
conda_install numpy pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
|
||||
else
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
|
||||
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
|
||||
fi
|
||||
|
||||
# Magma package names are concatenation of CUDA major and minor ignoring revision
|
||||
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
|
||||
if [ -n "$CUDA_VERSION" ]; then
|
||||
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
|
||||
if [[ "$CUDA_VERSION" == 9.2* ]]; then
|
||||
conda_install magma-cuda92 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
|
||||
conda_install magma-cuda100 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
|
||||
conda_install magma-cuda101 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 10.2* ]]; then
|
||||
conda_install magma-cuda102 -c pytorch
|
||||
fi
|
||||
|
||||
# TODO: This isn't working atm
|
||||
conda_install nnpack -c killeent
|
||||
|
||||
# Install some other packages, including those needed for Python test reporting
|
||||
pip_install -r /opt/conda/requirements-ci.txt
|
||||
|
||||
# Update scikit-learn to a python-3.8 compatible version
|
||||
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
|
||||
pip_install -U scikit-learn
|
||||
else
|
||||
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
|
||||
pip_install scikit-learn==0.20.3
|
||||
fi
|
||||
# Install some other packages
|
||||
# TODO: Why is scipy pinned
|
||||
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
|
||||
# scikit-learn is pinned because of
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
|
||||
# only)
|
||||
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.46.0 llvmlite==0.30.0
|
||||
|
||||
popd
|
||||
fi
|
||||
|
||||
@ -1,18 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [[ ${CUDNN_VERSION} == 8 ]]; then
|
||||
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
|
||||
mkdir tmp_cudnn && cd tmp_cudnn
|
||||
CUDNN_NAME="cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive"
|
||||
curl -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/${CUDNN_NAME}.tar.xz
|
||||
tar xf ${CUDNN_NAME}.tar.xz
|
||||
cp -a ${CUDNN_NAME}/include/* /usr/include/
|
||||
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
|
||||
cp -a ${CUDNN_NAME}/include/* /usr/include/x86_64-linux-gnu/
|
||||
|
||||
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
|
||||
cp -a ${CUDNN_NAME}/lib/* /usr/lib/x86_64-linux-gnu/
|
||||
cd ..
|
||||
rm -rf tmp_cudnn
|
||||
ldconfig
|
||||
fi
|
||||
@ -2,6 +2,23 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
|
||||
# else it will fail with
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends \
|
||||
@ -34,16 +51,11 @@ install_centos() {
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -7,18 +7,14 @@ if [ -n "$GCC_VERSION" ]; then
|
||||
# Need the official toolchain repo to get alternate packages
|
||||
add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
apt-get update
|
||||
if [[ "$UBUNTU_VERSION" == "16.04" && "${GCC_VERSION:0:1}" == "5" ]]; then
|
||||
if [ "$UBUNTU_VERSION" = "16.04" -a "$GCC_VERSION" = "5" ]; then
|
||||
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
|
||||
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 50
|
||||
else
|
||||
apt-get install -y g++-$GCC_VERSION
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
|
||||
fi
|
||||
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
|
||||
@ -3,9 +3,6 @@
|
||||
set -ex
|
||||
|
||||
if [ -n "$KATEX" ]; then
|
||||
apt-get update
|
||||
# Ignore error if gpg-agent doesn't exist (for Ubuntu 16.04)
|
||||
apt-get install -y gpg-agent || :
|
||||
|
||||
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
|
||||
sudo apt-get install -y nodejs
|
||||
|
||||
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
|
||||
pushd lcov
|
||||
sudo make install # will be installed in /usr/local/bin/lcov
|
||||
popd
|
||||
30
.circleci/docker/common/install_llvm.sh
Normal file
30
.circleci/docker/common/install_llvm.sh
Normal file
@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
llvm_url="https://github.com/llvm/llvm-project/releases/download/llvmorg-9.0.1/llvm-9.0.1.src.tar.xz"
|
||||
|
||||
mkdir /opt/llvm
|
||||
|
||||
pushd /tmp
|
||||
wget --no-verbose --output-document=llvm.tar.xz "$llvm_url"
|
||||
mkdir llvm
|
||||
tar -xf llvm.tar.xz -C llvm --strip-components 1
|
||||
rm -f llvm.tar.xz
|
||||
|
||||
cd llvm
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G "Unix Makefiles" \
|
||||
-DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DLLVM_ENABLE_ASSERTIONS=ON \
|
||||
-DCMAKE_INSTALL_PREFIX=/opt/llvm \
|
||||
-DLLVM_TARGETS_TO_BUILD="host" \
|
||||
-DLLVM_BUILD_TOOLS=OFF \
|
||||
-DLLVM_BUILD_UTILS=OFF \
|
||||
-DLLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN=ON \
|
||||
../
|
||||
|
||||
make -j4
|
||||
sudo make install
|
||||
|
||||
popd
|
||||
@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
sudo apt-get update
|
||||
# also install ssh to avoid error of:
|
||||
# --------------------------------------------------------------------------
|
||||
# The value of the MCA parameter "plm_rsh_agent" was set to a path
|
||||
# that could not be found:
|
||||
# plm_rsh_agent: ssh : rsh
|
||||
sudo apt-get install -y ssh
|
||||
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev
|
||||
@ -1,14 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
OPENSSL=openssl-1.1.1k
|
||||
|
||||
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
|
||||
tar xf "${OPENSSL}.tar.gz"
|
||||
cd "${OPENSSL}"
|
||||
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
|
||||
# NOTE: openssl install errors out when built with the -j option
|
||||
make -j6; make install_sw
|
||||
cd ..
|
||||
rm -rf "${OPENSSL}"
|
||||
@ -2,8 +2,8 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 3.17
|
||||
install_protobuf_317() {
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
@ -12,45 +12,45 @@ install_protobuf_317() {
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
|
||||
# -j6 to balance memory usage and speed.
|
||||
# naked `-j` seems to use too much memory.
|
||||
pushd "$pb_dir" && ./configure && make -j6 && make -j6 check && sudo make -j6 install && sudo ldconfig
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
|
||||
# Ubuntu 14.04 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
|
||||
# so we install that here if on 14.04
|
||||
# Ubuntu 14.04 also has cmake 2.8.12 as the default option, so we will
|
||||
# install cmake3 here and use cmake3.
|
||||
apt-get update
|
||||
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
|
||||
apt-get install -y --no-install-recommends cmake3
|
||||
install_protobuf_26
|
||||
else
|
||||
apt-get install -y --no-install-recommends \
|
||||
libprotobuf-dev \
|
||||
protobuf-compiler
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
install_protobuf_317
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
install_protobuf_317
|
||||
# Centos7 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
|
||||
# so we always install install that here
|
||||
install_protobuf_26
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -2,141 +2,75 @@
|
||||
|
||||
set -ex
|
||||
|
||||
install_magma() {
|
||||
# "install" hipMAGMA into /opt/rocm/magma by copying after build
|
||||
git clone https://bitbucket.org/icl/magma.git
|
||||
pushd magma
|
||||
# Fixes memory leaks of magma found while executing linalg UTs
|
||||
git checkout 5959b8783e45f1809812ed96ae762f38ee701972
|
||||
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
|
||||
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
|
||||
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
|
||||
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
|
||||
export PATH="${PATH}:/opt/rocm/bin"
|
||||
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
|
||||
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
|
||||
else
|
||||
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
|
||||
fi
|
||||
for arch in $amdgpu_targets; do
|
||||
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc
|
||||
done
|
||||
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
|
||||
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
|
||||
make -f make.gen.hipMAGMA -j $(nproc)
|
||||
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
|
||||
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
|
||||
popd
|
||||
mv magma /opt/rocm
|
||||
}
|
||||
|
||||
ver() {
|
||||
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
|
||||
}
|
||||
|
||||
# Map ROCm version to AMDGPU version
|
||||
declare -A AMDGPU_VERSIONS=( ["4.5.2"]="21.40.2" ["5.0"]="21.50" ["5.1.1"]="22.10.1" )
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
if [[ $UBUNTU_VERSION == 18.04 ]]; then
|
||||
# gpg-agent is not available by default on 18.04
|
||||
apt-get install -y --no-install-recommends gpg-agent
|
||||
fi
|
||||
if [[ $UBUNTU_VERSION == 20.04 ]]; then
|
||||
# gpg-agent is not available by default on 20.04
|
||||
apt-get install -y --no-install-recommends gpg-agent
|
||||
fi
|
||||
apt-get install -y kmod
|
||||
apt-get install -y wget
|
||||
apt-get install -y libopenblas-dev
|
||||
|
||||
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
|
||||
apt-get install -y libc++1
|
||||
apt-get install -y libc++abi1
|
||||
|
||||
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
|
||||
# Add amdgpu repository
|
||||
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
|
||||
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
|
||||
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
|
||||
fi
|
||||
|
||||
ROCM_REPO="ubuntu"
|
||||
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
|
||||
ROCM_REPO="xenial"
|
||||
fi
|
||||
|
||||
DEB_ROCM_REPO=http://repo.radeon.com/rocm/apt/${ROCM_VERSION}
|
||||
# Add rocm repository
|
||||
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
|
||||
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
|
||||
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
|
||||
wget -qO - $DEB_ROCM_REPO/rocm.gpg.key | apt-key add -
|
||||
echo "deb [arch=amd64] $DEB_ROCM_REPO xenial main" > /etc/apt/sources.list.d/rocm.list
|
||||
apt-get update --allow-insecure-repositories
|
||||
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
|
||||
rocm-dev \
|
||||
rocm-utils \
|
||||
rocm-libs \
|
||||
rocfft \
|
||||
miopen-hip \
|
||||
rocblas \
|
||||
hipsparse \
|
||||
rocrand \
|
||||
hipcub \
|
||||
rocthrust \
|
||||
rccl \
|
||||
rocprofiler-dev \
|
||||
roctracer-dev
|
||||
|
||||
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
|
||||
# if search fails it will abort this script; use true to avoid case where search fails
|
||||
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
|
||||
if [[ "x${MIOPENKERNELS}" = x ]]; then
|
||||
echo "miopenkernels package not available"
|
||||
else
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
|
||||
fi
|
||||
|
||||
install_magma
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
|
||||
yum update -y
|
||||
yum install -y kmod
|
||||
yum install -y wget
|
||||
yum install -y openblas-devel
|
||||
|
||||
yum install -y epel-release
|
||||
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
|
||||
|
||||
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
|
||||
# Add amdgpu repository
|
||||
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
|
||||
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
|
||||
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
|
||||
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
|
||||
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
|
||||
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
|
||||
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
|
||||
fi
|
||||
|
||||
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
|
||||
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
|
||||
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "baseurl=http://repo.radeon.com/rocm/yum/rpm/" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "gpgcheck=0" >> /etc/yum.repos.d/rocm.repo
|
||||
|
||||
yum update -y
|
||||
|
||||
yum install -y \
|
||||
rocm-dev \
|
||||
rocm-utils \
|
||||
rocm-libs \
|
||||
rocfft \
|
||||
miopen-hip \
|
||||
rocblas \
|
||||
hipsparse \
|
||||
rocrand \
|
||||
rccl \
|
||||
hipcub \
|
||||
rocthrust \
|
||||
rocprofiler-dev \
|
||||
roctracer-dev
|
||||
|
||||
install_magma
|
||||
|
||||
# Cleanup
|
||||
yum clean all
|
||||
rm -rf /var/cache/yum
|
||||
@ -145,16 +79,11 @@ install_centos() {
|
||||
}
|
||||
|
||||
# Install Python packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -1,24 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
[ -n "${SWIFTSHADER}" ]
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
|
||||
|
||||
# SwiftShader
|
||||
_swiftshader_dir=/var/lib/jenkins/swiftshader
|
||||
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
|
||||
mkdir -p $_swiftshader_dir
|
||||
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
|
||||
|
||||
curl --silent --show-error --location --fail --retry 3 \
|
||||
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
|
||||
|
||||
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
|
||||
|
||||
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"
|
||||
97
.circleci/docker/common/install_travis_python.sh
Executable file
97
.circleci/docker/common/install_travis_python.sh
Executable file
@ -0,0 +1,97 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
as_jenkins() {
|
||||
# NB: Preserve PATH and LD_LIBRARY_PATH changes
|
||||
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
}
|
||||
|
||||
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
|
||||
|
||||
mkdir -p /opt/python
|
||||
chown jenkins:jenkins /opt/python
|
||||
|
||||
# Download Python binary from Travis
|
||||
pushd tmp
|
||||
as_jenkins wget --quiet ${TRAVIS_DL_URL_PREFIX}/python-$TRAVIS_PYTHON_VERSION.tar.bz2
|
||||
# NB: The tarball also comes with /home/travis virtualenv that we
|
||||
# don't care about. (Maybe we should, but we've worked around the
|
||||
# "how do I install to python" issue by making this entire directory
|
||||
# user-writable "lol")
|
||||
# NB: Relative ordering of opt/python and flags matters
|
||||
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
|
||||
popd
|
||||
|
||||
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
|
||||
ldconfig
|
||||
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
|
||||
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
|
||||
|
||||
python --version
|
||||
pip --version
|
||||
|
||||
# Install pip from source.
|
||||
# The python-pip package on Ubuntu Trusty is old
|
||||
# and upon install numpy doesn't use the binary
|
||||
# distribution, and fails to compile it from source.
|
||||
pushd tmp
|
||||
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
|
||||
as_jenkins tar zxf pip-9.0.1.tar.gz
|
||||
pushd pip-9.0.1
|
||||
as_jenkins python setup.py install
|
||||
popd
|
||||
rm -rf pip-9.0.1*
|
||||
popd
|
||||
|
||||
# Install pip packages
|
||||
as_jenkins pip install --upgrade pip
|
||||
|
||||
pip --version
|
||||
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
|
||||
# These two packages have broken Cythonizations uploaded
|
||||
# to PyPi, see:
|
||||
#
|
||||
# - https://github.com/numpy/numpy/issues/10500
|
||||
# - https://github.com/yaml/pyyaml/issues/117
|
||||
#
|
||||
# Furthermore, the released version of Cython does not
|
||||
# have these issues fixed.
|
||||
#
|
||||
# While we are waiting on fixes for these, we build
|
||||
# from Git for now. Feel free to delete this conditional
|
||||
# branch if things start working again (you may need
|
||||
# to do this if these packages regress on Git HEAD.)
|
||||
as_jenkins pip install git+https://github.com/cython/cython.git
|
||||
as_jenkins pip install git+https://github.com/numpy/numpy.git
|
||||
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
|
||||
else
|
||||
as_jenkins pip install numpy pyyaml
|
||||
fi
|
||||
|
||||
as_jenkins pip install \
|
||||
future \
|
||||
hypothesis \
|
||||
protobuf \
|
||||
pytest \
|
||||
pillow \
|
||||
typing
|
||||
|
||||
as_jenkins pip install mkl mkl-devel
|
||||
|
||||
# SciPy does not support Python 3.7 or Python 2.7.9
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
|
||||
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
|
||||
fi
|
||||
|
||||
# Install psutil for dataloader tests
|
||||
as_jenkins pip install psutil
|
||||
|
||||
# Install dill for serialization tests
|
||||
as_jenkins pip install "dill>=0.3.1"
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
fi
|
||||
@ -3,11 +3,8 @@
|
||||
set -ex
|
||||
|
||||
# Mirror jenkins user in container
|
||||
# jenkins user as ec2-user should have the same user-id
|
||||
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
|
||||
echo "jenkins:x:1000:" >> /etc/group
|
||||
# Needed on focal or newer
|
||||
echo "jenkins:*:19110:0:99999:7:::" >>/etc/shadow
|
||||
echo "jenkins:x:1014:1014::/var/lib/jenkins:" >> /etc/passwd
|
||||
echo "jenkins:x:1014:" >> /etc/group
|
||||
|
||||
# Create $HOME
|
||||
mkdir -p /var/lib/jenkins
|
||||
@ -21,6 +18,3 @@ chown jenkins:jenkins /usr/local
|
||||
# Allow sudo
|
||||
# TODO: Maybe we shouldn't
|
||||
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins
|
||||
|
||||
# Test that sudo works
|
||||
sudo -u jenkins sudo -v
|
||||
|
||||
@ -2,6 +2,23 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
|
||||
# else it will fail with
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends \
|
||||
@ -30,16 +47,11 @@ install_centos() {
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -1,24 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
[ -n "${VULKAN_SDK_VERSION}" ]
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
|
||||
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
|
||||
|
||||
curl \
|
||||
--silent \
|
||||
--show-error \
|
||||
--location \
|
||||
--fail \
|
||||
--retry 3 \
|
||||
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
|
||||
|
||||
mkdir -p "${_vulkansdk_dir}"
|
||||
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
|
||||
rm -rf "${_tmp_vulkansdk_targz}"
|
||||
@ -1,212 +0,0 @@
|
||||
# Python dependencies required for unit tests
|
||||
|
||||
#awscli==1.6 #this breaks some platforms
|
||||
#Description: AWS command line interface
|
||||
#Pinned versions: 1.6
|
||||
#test that import:
|
||||
|
||||
boto3==1.19.12
|
||||
#Description: AWS SDK for python
|
||||
#Pinned versions: 1.19.12, 1.16.34
|
||||
#test that import:
|
||||
|
||||
click
|
||||
#Description: Command Line Interface Creation Kit
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
coremltools==5.0b5
|
||||
#Description: Apple framework for ML integration
|
||||
#Pinned versions: 5.0b5
|
||||
#test that import:
|
||||
|
||||
#dataclasses #this breaks some platforms
|
||||
#Description: Provides decorators for auto adding special methods to user classes
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
expecttest==0.1.3
|
||||
#Description: method for writing tests where test framework auto populates
|
||||
# the expected output based on previous runs
|
||||
#Pinned versions: 0.1.3
|
||||
#test that import:
|
||||
|
||||
flatbuffers==2.0
|
||||
#Description: cross platform serialization library
|
||||
#Pinned versions: 2.0
|
||||
#test that import:
|
||||
|
||||
#future #this breaks linux-bionic-rocm4.5-py3.7
|
||||
#Description: compatibility layer between python 2 and python 3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
hypothesis==4.53.2
|
||||
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
|
||||
#Description: advanced library for generating parametrized tests
|
||||
#Pinned versions: 3.44.6, 4.53.2
|
||||
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
|
||||
|
||||
junitparser==2.1.1
|
||||
#Description: unitparser handles JUnit/xUnit Result XML files
|
||||
#Pinned versions: 2.1.1
|
||||
#test that import:
|
||||
|
||||
librosa>=0.6.2
|
||||
#Description: A python package for music and audio analysis
|
||||
#Pinned versions: >=0.6.2
|
||||
#test that import: test_spectral_ops.py
|
||||
|
||||
#mkl #this breaks linux-bionic-rocm4.5-py3.7
|
||||
#Description: Intel oneAPI Math Kernel Library
|
||||
#Pinned versions:
|
||||
#test that import: test_profiler.py, test_public_bindings.py, test_testing.py,
|
||||
#test_nn.py, test_mkldnn.py, test_jit.py, test_fx_experimental.py,
|
||||
#test_autograd.py
|
||||
|
||||
#mkl-devel
|
||||
# see mkl
|
||||
|
||||
#mock # breaks ci/circleci: docker-pytorch-linux-xenial-py3-clang5-android-ndk-r19c
|
||||
#Description: A testing library that allows you to replace parts of your
|
||||
#system under test with mock objects
|
||||
#Pinned versions:
|
||||
#test that import: test_module_init.py, test_modules.py, test_nn.py,
|
||||
#test_testing.py
|
||||
|
||||
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
|
||||
#Description: collects runtime types of function arguments and return
|
||||
#values, and can automatically generate stub files
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
mypy==0.812
|
||||
# Pin MyPy version because new errors are likely to appear with each release
|
||||
#Description: linter
|
||||
#Pinned versions: 0.812
|
||||
#test that import: test_typing.py, test_type_hints.py
|
||||
|
||||
#networkx
|
||||
#Description: creation, manipulation, and study of
|
||||
#the structure, dynamics, and functions of complex networks
|
||||
#Pinned versions: 2.0
|
||||
#test that import:
|
||||
|
||||
#ninja
|
||||
#Description: build system. Note that it install from
|
||||
#here breaks things so it is commented out
|
||||
#Pinned versions: 1.10.0.post1
|
||||
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
|
||||
|
||||
numba==0.49.0 ; python_version < "3.9"
|
||||
numba==0.54.1 ; python_version == "3.9"
|
||||
#Description: Just-In-Time Compiler for Numerical Functions
|
||||
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
|
||||
#test that import: test_numba_integration.py
|
||||
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
|
||||
|
||||
#numpy
|
||||
#Description: Provides N-dimensional arrays and linear algebra
|
||||
#Pinned versions: 1.20
|
||||
#test that import: test_view_ops.py, test_unary_ufuncs.py, test_type_promotion.py,
|
||||
#test_type_info.py, test_torch.py, test_tensorexpr_pybind.py, test_tensorexpr.py,
|
||||
#test_tensorboard.py, test_tensor_creation_ops.py, test_static_runtime.py,
|
||||
#test_spectral_ops.py, test_sort_and_select.py, test_shape_ops.py,
|
||||
#test_segment_reductions.py, test_reductions.py, test_pruning_op.py,
|
||||
#test_overrides.py, test_numpy_interop.py, test_numba_integration.py
|
||||
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
|
||||
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
|
||||
#test_binary_ufuncs.py
|
||||
|
||||
#onnxruntime
|
||||
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
|
||||
#Pinned versions: 1.9.0
|
||||
#test that import:
|
||||
|
||||
#pillow
|
||||
#Description: Python Imaging Library fork
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#protobuf
|
||||
#Description: Google’s data interchange format
|
||||
#Pinned versions:
|
||||
#test that import: test_tensorboard.py
|
||||
|
||||
psutil
|
||||
#Description: information on running processes and system utilization
|
||||
#Pinned versions:
|
||||
#test that import: test_profiler.py, test_openmp.py, test_dataloader.py
|
||||
|
||||
pytest
|
||||
#Description: testing framework
|
||||
#Pinned versions:
|
||||
#test that import: test_typing.py, test_cpp_extensions_aot.py, run_test.py
|
||||
|
||||
#pytest-benchmark
|
||||
#Description: fixture for benchmarking code
|
||||
#Pinned versions: 3.2.3
|
||||
#test that import:
|
||||
|
||||
#pytest-sugar
|
||||
#Description: shows failures and errors instantly
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#PyYAML
|
||||
#Description: data serialization format
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#requests
|
||||
#Description: HTTP library
|
||||
#Pinned versions:
|
||||
#test that import: test_type_promotion.py
|
||||
|
||||
#rich
|
||||
#Description: rich text and beautiful formatting in the terminal
|
||||
#Pinned versions: 10.9.0
|
||||
#test that import:
|
||||
|
||||
scikit-image
|
||||
#Description: image processing routines
|
||||
#Pinned versions:
|
||||
#test that import: test_nn.py
|
||||
|
||||
#scikit-learn
|
||||
#Description: machine learning package
|
||||
#Pinned versions: 0.20.3
|
||||
#test that import:
|
||||
|
||||
scipy==1.6.3
|
||||
# Pin SciPy because of failing distribution tests (see #60347)
|
||||
#Description: scientific python
|
||||
#Pinned versions: 1.6.3
|
||||
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
|
||||
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
|
||||
#test_linalg.py, test_binary_ufuncs.py
|
||||
|
||||
#tabulate
|
||||
#Description: Pretty-print tabular data
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
tb-nightly
|
||||
#Description: TensorBoard
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#typing-extensions
|
||||
#Description: type hints for python
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#virtualenv
|
||||
#Description: virtual environment for python
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
unittest-xml-reporting<=3.2.0,>=2.0.0
|
||||
#Description: saves unit test results to xml
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
@ -1,11 +1,12 @@
|
||||
ARG UBUNTU_VERSION
|
||||
ARG CUDA_VERSION
|
||||
ARG IMAGE_NAME
|
||||
ARG CUDNN_VERSION
|
||||
|
||||
FROM ${IMAGE_NAME}
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
ARG UBUNTU_VERSION
|
||||
ARG CUDA_VERSION
|
||||
ARG CUDNN_VERSION
|
||||
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
|
||||
@ -23,13 +24,11 @@ ARG KATEX
|
||||
ADD ./common/install_katex.sh install_katex.sh
|
||||
RUN bash ./install_katex.sh && rm install_katex.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, pytest)
|
||||
# Install conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
RUN rm /opt/conda/requirements-ci.txt
|
||||
|
||||
# Install gcc
|
||||
ARG GCC_VERSION
|
||||
@ -41,6 +40,12 @@ ARG CLANG_VERSION
|
||||
ADD ./common/install_clang.sh install_clang.sh
|
||||
RUN bash ./install_clang.sh && rm install_clang.sh
|
||||
|
||||
# Install non-standard Python versions (via Travis binaries)
|
||||
ARG TRAVIS_PYTHON_VERSION
|
||||
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
|
||||
ADD ./common/install_travis_python.sh install_travis_python.sh
|
||||
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
ADD ./common/install_protobuf.sh install_protobuf.sh
|
||||
@ -62,32 +67,17 @@ RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
ENV OPENSSL_ROOT_DIR /opt/openssl
|
||||
RUN bash ./install_openssl.sh
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
|
||||
RUN rm install_cmake.sh
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
RUN bash ./install_cache.sh && rm install_cache.sh
|
||||
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
|
||||
ENV CUDA_NVCC_EXECUTABLE=/opt/cache/lib/nvcc
|
||||
|
||||
# Add jni.h for java host build
|
||||
ADD ./common/install_jni.sh install_jni.sh
|
||||
ADD ./java/jni.h jni.h
|
||||
RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
|
||||
# Install Open MPI for CUDA
|
||||
ADD ./common/install_openmpi.sh install_openmpi.sh
|
||||
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
|
||||
RUN rm install_openmpi.sh
|
||||
|
||||
# Include BUILD_ENVIRONMENT environment variable in image
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
@ -95,16 +85,10 @@ ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
# AWS specific CUDA build guidance
|
||||
ENV TORCH_CUDA_ARCH_LIST Maxwell
|
||||
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
|
||||
ENV CUDA_PATH /usr/local/cuda
|
||||
|
||||
# Install LLVM dev version (Defined in the pytorch/builder github repository)
|
||||
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
|
||||
|
||||
# Install CUDNN
|
||||
ARG CUDNN_VERSION
|
||||
ADD ./common/install_cudnn.sh install_cudnn.sh
|
||||
RUN if [ "${CUDNN_VERSION}" -eq 8 ]; then bash install_cudnn.sh; fi
|
||||
RUN rm install_cudnn.sh
|
||||
# Install LLVM dev version
|
||||
ADD ./common/install_llvm.sh install_llvm.sh
|
||||
RUN bash ./install_llvm.sh
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
|
||||
@ -6,10 +6,6 @@ ARG UBUNTU_VERSION
|
||||
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
|
||||
# Set AMD gpu targets to build for
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
|
||||
|
||||
# Install common dependencies (so that this step can be cached separately)
|
||||
ARG EC2
|
||||
ADD ./common/install_base.sh install_base.sh
|
||||
@ -25,18 +21,11 @@ RUN bash ./install_clang.sh && rm install_clang.sh
|
||||
ADD ./common/install_user.sh install_user.sh
|
||||
RUN bash ./install_user.sh && rm install_user.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, pytest)
|
||||
# Install conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
RUN rm /opt/conda/requirements-ci.txt
|
||||
|
||||
# Install gcc
|
||||
ARG GCC_VERSION
|
||||
ADD ./common/install_gcc.sh install_gcc.sh
|
||||
RUN bash ./install_gcc.sh && rm install_gcc.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
@ -68,8 +57,7 @@ ENV PATH /opt/rocm/bin:$PATH
|
||||
ENV PATH /opt/rocm/hcc/bin:$PATH
|
||||
ENV PATH /opt/rocm/hip/bin:$PATH
|
||||
ENV PATH /opt/rocm/opencl/bin:$PATH
|
||||
ENV PATH /opt/rocm/llvm/bin:$PATH
|
||||
ENV MAGMA_HOME /opt/rocm/magma
|
||||
ENV HIP_PLATFORM hcc
|
||||
ENV LANG C.UTF-8
|
||||
ENV LC_ALL C.UTF-8
|
||||
|
||||
|
||||
@ -33,22 +33,23 @@ ARG KATEX
|
||||
ADD ./common/install_katex.sh install_katex.sh
|
||||
RUN bash ./install_katex.sh && rm install_katex.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, pytest)
|
||||
# Install conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
RUN rm /opt/conda/requirements-ci.txt
|
||||
|
||||
# Install gcc
|
||||
ARG GCC_VERSION
|
||||
ADD ./common/install_gcc.sh install_gcc.sh
|
||||
RUN bash ./install_gcc.sh && rm install_gcc.sh
|
||||
|
||||
# Install lcov for C++ code coverage
|
||||
ADD ./common/install_lcov.sh install_lcov.sh
|
||||
RUN bash ./install_lcov.sh && rm install_lcov.sh
|
||||
# Install non-standard Python versions (via Travis binaries)
|
||||
ARG TRAVIS_PYTHON_VERSION
|
||||
ARG TRAVIS_DL_URL_PREFIX
|
||||
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
|
||||
ADD ./common/install_travis_python.sh install_travis_python.sh
|
||||
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
@ -84,18 +85,6 @@ RUN rm AndroidManifest.xml
|
||||
RUN rm build.gradle
|
||||
ENV INSTALLED_ANDROID ${ANDROID}
|
||||
|
||||
# (optional) Install Vulkan SDK
|
||||
ARG VULKAN_SDK_VERSION
|
||||
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
|
||||
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
|
||||
RUN rm install_vulkan_sdk.sh
|
||||
|
||||
# (optional) Install swiftshader
|
||||
ARG SWIFTSHADER
|
||||
ADD ./common/install_swiftshader.sh install_swiftshader.sh
|
||||
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
|
||||
RUN rm install_swiftshader.sh
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
@ -108,10 +97,6 @@ ADD ./common/install_ninja.sh install_ninja.sh
|
||||
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
|
||||
RUN rm install_ninja.sh
|
||||
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh
|
||||
ENV OPENSSL_ROOT_DIR /opt/openssl
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
@ -126,8 +111,9 @@ RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
|
||||
# Install LLVM dev version (Defined in the pytorch/builder github repository)
|
||||
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
|
||||
# Install LLVM dev version
|
||||
ADD ./common/install_llvm.sh install_llvm.sh
|
||||
RUN bash ./install_llvm.sh
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
|
||||
13
.circleci/ecr_gc_docker/Dockerfile
Normal file
13
.circleci/ecr_gc_docker/Dockerfile
Normal file
@ -0,0 +1,13 @@
|
||||
FROM ubuntu:16.04
|
||||
|
||||
RUN apt-get update && apt-get install -y python-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
|
||||
|
||||
ADD requirements.txt /requirements.txt
|
||||
|
||||
RUN pip install -r /requirements.txt
|
||||
|
||||
ADD gc.py /usr/bin/gc.py
|
||||
|
||||
ADD docker_hub.py /usr/bin/docker_hub.py
|
||||
|
||||
ENTRYPOINT ["/usr/bin/gc.py"]
|
||||
125
.circleci/ecr_gc_docker/docker_hub.py
Executable file
125
.circleci/ecr_gc_docker/docker_hub.py
Executable file
@ -0,0 +1,125 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import boto3
|
||||
import requests
|
||||
import os
|
||||
|
||||
|
||||
IMAGE_INFO = namedtuple(
|
||||
"IMAGE_INFO", ("repo", "tag", "size", "last_updated_at", "last_updated_by")
|
||||
)
|
||||
|
||||
|
||||
def build_access_token(username, passwordtr):
|
||||
r = requests.post(
|
||||
"https://hub.docker.com/v2/users/login/",
|
||||
data={"username": username, "password": password},
|
||||
)
|
||||
r.raise_for_status()
|
||||
token = r.json().get("token")
|
||||
return {"Authorization": "JWT " + token}
|
||||
|
||||
|
||||
def list_repos(user, token):
|
||||
r = requests.get("https://hub.docker.com/v2/repositories/" + user, headers=token)
|
||||
r.raise_for_status()
|
||||
ret = sorted(
|
||||
repo["user"] + "/" + repo["name"] for repo in r.json().get("results", [])
|
||||
)
|
||||
if ret:
|
||||
print("repos found:")
|
||||
print("".join("\n\t" + r for r in ret))
|
||||
return ret
|
||||
|
||||
|
||||
def list_tags(repo, token):
|
||||
r = requests.get(
|
||||
"https://hub.docker.com/v2/repositories/" + repo + "/tags", headers=token
|
||||
)
|
||||
r.raise_for_status()
|
||||
return [
|
||||
IMAGE_INFO(
|
||||
repo=repo,
|
||||
tag=t["name"],
|
||||
size=t["full_size"],
|
||||
last_updated_at=t["last_updated"],
|
||||
last_updated_by=t["last_updater_username"],
|
||||
)
|
||||
for t in r.json().get("results", [])
|
||||
]
|
||||
|
||||
|
||||
def save_to_s3(tags):
|
||||
table_content = ""
|
||||
client = boto3.client("s3")
|
||||
for t in tags:
|
||||
table_content += (
|
||||
"<tr><td>{repo}</td><td>{tag}</td><td>{size}</td>"
|
||||
"<td>{last_updated_at}</td><td>{last_updated_by}</td></tr>"
|
||||
).format(
|
||||
repo=t.repo,
|
||||
tag=t.tag,
|
||||
size=t.size,
|
||||
last_updated_at=t.last_updated_at,
|
||||
last_updated_by=t.last_updated_by,
|
||||
)
|
||||
html_body = """
|
||||
<html>
|
||||
<head>
|
||||
<link rel="stylesheet"
|
||||
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
|
||||
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
|
||||
crossorigin="anonymous">
|
||||
<link rel="stylesheet" type="text/css"
|
||||
href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
|
||||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js">
|
||||
</script>
|
||||
<script type="text/javascript" charset="utf8"
|
||||
src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
|
||||
<title> docker image info</title>
|
||||
</head>
|
||||
<body>
|
||||
<table class="table table-striped table-hover" id="docker">
|
||||
<caption>Docker images on docker hub</caption>
|
||||
<thead class="thead-dark">
|
||||
<tr>
|
||||
<th scope="col">repo</th>
|
||||
<th scope="col">tag</th>
|
||||
<th scope="col">size</th>
|
||||
<th scope="col">last_updated_at</th>
|
||||
<th scope="col">last_updated_by</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{table_content}
|
||||
</tbody>
|
||||
</table>
|
||||
</body>
|
||||
<script>
|
||||
$(document).ready( function () {{
|
||||
$('#docker').DataTable({{paging: false}});
|
||||
}} );py
|
||||
</script>
|
||||
</html>
|
||||
""".format(
|
||||
table_content=table_content
|
||||
)
|
||||
client.put_object(
|
||||
Bucket="docker.pytorch.org",
|
||||
ACL="public-read",
|
||||
Key="docker_hub.html",
|
||||
Body=html_body,
|
||||
ContentType="text/html",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
username = os.environ.get("DOCKER_HUB_USERNAME")
|
||||
password = os.environ.get("DOCKER_HUB_PASSWORD")
|
||||
token = build_access_token(username, password)
|
||||
tags = []
|
||||
for repo in list_repos("pytorch", token):
|
||||
tags.extend(list_tags(repo, token))
|
||||
save_to_s3(tags)
|
||||
214
.circleci/ecr_gc_docker/gc.py
Executable file
214
.circleci/ecr_gc_docker/gc.py
Executable file
@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import boto3
|
||||
import pytz
|
||||
import sys
|
||||
import re
|
||||
|
||||
|
||||
def save_to_s3(project, data):
|
||||
table_content = ""
|
||||
client = boto3.client("s3")
|
||||
for repo, tag, window, age, pushed in data:
|
||||
table_content += "<tr><td>{repo}</td><td>{tag}</td><td>{window}</td><td>{age}</td><td>{pushed}</td></tr>".format(
|
||||
repo=repo, tag=tag, window=window, age=age, pushed=pushed
|
||||
)
|
||||
html_body = """
|
||||
<html>
|
||||
<head>
|
||||
<link rel="stylesheet"
|
||||
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
|
||||
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
|
||||
crossorigin="anonymous">
|
||||
<link rel="stylesheet" type="text/css" href="https://cdn.datatables.net/1.10.20/css/jquery.dataTables.css">
|
||||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
|
||||
<script type="text/javascript" charset="utf8" src="https://cdn.datatables.net/1.10.20/js/jquery.dataTables.js"></script>
|
||||
<title>{project} nightly and permanent docker image info</title>
|
||||
</head>
|
||||
<body>
|
||||
<table class="table table-striped table-hover" id="docker">
|
||||
<thead class="thead-dark">
|
||||
<tr>
|
||||
<th scope="col">repo</th>
|
||||
<th scope="col">tag</th>
|
||||
<th scope="col">keep window</th>
|
||||
<th scope="col">age</th>
|
||||
<th scope="col">pushed at</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{table_content}
|
||||
</tbody>
|
||||
</table>
|
||||
</body>
|
||||
<script>
|
||||
$(document).ready( function () {{
|
||||
$('#docker').DataTable({{paging: false}});
|
||||
}} );
|
||||
</script>
|
||||
</html>
|
||||
""".format(
|
||||
project=project, table_content=table_content
|
||||
)
|
||||
|
||||
# for pytorch, file can be found at
|
||||
# http://ossci-docker.s3-website.us-east-1.amazonaws.com/pytorch.html
|
||||
# and later one we can config docker.pytorch.org to point to the location
|
||||
|
||||
client.put_object(
|
||||
Bucket="docker.pytorch.org",
|
||||
ACL="public-read",
|
||||
Key="{project}.html".format(project=project),
|
||||
Body=html_body,
|
||||
ContentType="text/html",
|
||||
)
|
||||
|
||||
|
||||
def repos(client):
|
||||
paginator = client.get_paginator("describe_repositories")
|
||||
pages = paginator.paginate(registryId="308535385114")
|
||||
for page in pages:
|
||||
for repo in page["repositories"]:
|
||||
yield repo
|
||||
|
||||
|
||||
def images(client, repository):
|
||||
paginator = client.get_paginator("describe_images")
|
||||
pages = paginator.paginate(
|
||||
registryId="308535385114", repositoryName=repository["repositoryName"]
|
||||
)
|
||||
for page in pages:
|
||||
for image in page["imageDetails"]:
|
||||
yield image
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description="Delete old Docker tags from registry")
|
||||
parser.add_argument(
|
||||
"--dry-run", action="store_true", help="Dry run; print tags that would be deleted"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--keep-stable-days",
|
||||
type=int,
|
||||
default=14,
|
||||
help="Days of stable Docker tags to keep (non per-build images)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--keep-unstable-days",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Days of unstable Docker tags to keep (per-build images)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--filter-prefix",
|
||||
type=str,
|
||||
default="",
|
||||
help="Only run cleanup for repositories with this prefix",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore-tags",
|
||||
type=str,
|
||||
default="",
|
||||
help="Never cleanup these tags (comma separated)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.ignore_tags or not args.filter_prefix:
|
||||
print(
|
||||
"""
|
||||
Missing required arguments --ignore-tags and --filter-prefix
|
||||
|
||||
You must specify --ignore-tags and --filter-prefix to avoid accidentally
|
||||
pruning a stable Docker tag which is being actively used. This will
|
||||
make you VERY SAD. So pay attention.
|
||||
|
||||
First, which filter-prefix do you want? The list of valid prefixes
|
||||
is in jobs/private.groovy under the 'docker-registry-cleanup' job.
|
||||
You probably want either pytorch or caffe2.
|
||||
|
||||
Second, which ignore-tags do you want? It should be whatever the most
|
||||
up-to-date DockerVersion for the repository in question is. Follow
|
||||
the imports of jobs/pytorch.groovy to find them.
|
||||
"""
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
client = boto3.client("ecr", region_name="us-east-1")
|
||||
stable_window = datetime.timedelta(days=args.keep_stable_days)
|
||||
unstable_window = datetime.timedelta(days=args.keep_unstable_days)
|
||||
now = datetime.datetime.now(pytz.UTC)
|
||||
ignore_tags = args.ignore_tags.split(",")
|
||||
|
||||
|
||||
def chunks(chunkable, n):
|
||||
""" Yield successive n-sized chunks from l.
|
||||
"""
|
||||
for i in range(0, len(chunkable), n):
|
||||
yield chunkable[i : i + n]
|
||||
|
||||
SHA_PATTERN = re.compile(r'^[0-9a-f]{40}$')
|
||||
def looks_like_git_sha(tag):
|
||||
"""Returns a boolean to check if a tag looks like a git sha
|
||||
|
||||
For reference a sha1 is 40 characters with only 0-9a-f and contains no
|
||||
"-" characters
|
||||
"""
|
||||
return re.match(SHA_PATTERN, tag) is not None
|
||||
|
||||
stable_window_tags = []
|
||||
for repo in repos(client):
|
||||
repositoryName = repo["repositoryName"]
|
||||
if not repositoryName.startswith(args.filter_prefix):
|
||||
continue
|
||||
|
||||
# Keep list of image digests to delete for this repository
|
||||
digest_to_delete = []
|
||||
print(repositoryName)
|
||||
|
||||
for image in images(client, repo):
|
||||
tags = image.get("imageTags")
|
||||
if not isinstance(tags, (list,)) or len(tags) == 0:
|
||||
continue
|
||||
|
||||
tag = tags[0]
|
||||
created = image["imagePushedAt"]
|
||||
age = now - created
|
||||
if any([
|
||||
looks_like_git_sha(tag),
|
||||
tag.isdigit(),
|
||||
tag.count("-") == 4, # TODO: Remove, this no longer applies as tags are now built using a SHA1
|
||||
tag in ignore_tags]):
|
||||
window = stable_window
|
||||
if tag in ignore_tags:
|
||||
stable_window_tags.append((repositoryName, tag, "", age, created))
|
||||
elif age < window:
|
||||
stable_window_tags.append((repositoryName, tag, window, age, created))
|
||||
else:
|
||||
window = unstable_window
|
||||
|
||||
if tag in ignore_tags:
|
||||
print("Ignoring tag {}:{} (age: {})".format(repositoryName, tag, age))
|
||||
continue
|
||||
if age < window:
|
||||
print("Not deleting manifest for tag {}:{} (age: {})".format(repositoryName, tag, age))
|
||||
continue
|
||||
|
||||
if args.dry_run:
|
||||
print("(dry run) Deleting manifest for tag {}:{} (age: {})".format(repositoryName, tag, age))
|
||||
else:
|
||||
print("Deleting manifest for tag{}:{} (age: {})".format(repositoryName, tag, age))
|
||||
digest_to_delete.append(image["imageDigest"])
|
||||
|
||||
# Issue batch delete for all images to delete for this repository
|
||||
# Note that as of 2018-07-25, the maximum number of images you can
|
||||
# delete in a single batch is 100, so chunk our list into batches of
|
||||
# 100
|
||||
for c in chunks(digest_to_delete, 100):
|
||||
client.batch_delete_image(
|
||||
registryId="308535385114",
|
||||
repositoryName=repositoryName,
|
||||
imageIds=[{"imageDigest": digest} for digest in c],
|
||||
)
|
||||
|
||||
save_to_s3(args.filter_prefix, stable_window_tags)
|
||||
3
.circleci/ecr_gc_docker/requirements.txt
Normal file
3
.circleci/ecr_gc_docker/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
boto3
|
||||
pytz
|
||||
requests
|
||||
@ -8,12 +8,22 @@ Please see README.md in this directory for details.
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from collections import namedtuple
|
||||
from collections import OrderedDict, namedtuple
|
||||
|
||||
import cimodel.data.binary_build_definitions as binary_build_definitions
|
||||
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
|
||||
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
|
||||
import cimodel.data.simple.android_definitions
|
||||
import cimodel.data.simple.bazel_definitions
|
||||
import cimodel.data.simple.binary_smoketest
|
||||
import cimodel.data.simple.docker_definitions
|
||||
import cimodel.data.simple.ge_config_tests
|
||||
import cimodel.data.simple.ios_definitions
|
||||
import cimodel.data.simple.macos_definitions
|
||||
import cimodel.data.simple.mobile_definitions
|
||||
import cimodel.data.simple.nightly_android
|
||||
import cimodel.data.simple.nightly_ios
|
||||
import cimodel.data.simple.anaconda_prune_defintions
|
||||
import cimodel.data.windows_build_definitions as windows_build_definitions
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.lib.miniyaml as miniyaml
|
||||
|
||||
@ -70,96 +80,57 @@ class Header(object):
|
||||
for line in filter(None, lines):
|
||||
output_filehandle.write(line + "\n")
|
||||
|
||||
def _for_all_items(items, functor) -> None:
|
||||
if isinstance(items, list):
|
||||
for item in items:
|
||||
_for_all_items(item, functor)
|
||||
if isinstance(items, dict) and len(items) == 1:
|
||||
item_type, item = next(iter(items.items()))
|
||||
functor(item_type, item)
|
||||
|
||||
def filter_master_only_jobs(items):
|
||||
def _is_main_or_master_item(item):
|
||||
filters = item.get('filters', None)
|
||||
branches = filters.get('branches', None) if filters is not None else None
|
||||
branches_only = branches.get('only', None) if branches is not None else None
|
||||
return ('main' in branches_only or 'master' in branches_only) if branches_only is not None else False
|
||||
|
||||
master_deps = set()
|
||||
|
||||
def _save_requires_if_master(item_type, item):
|
||||
requires = item.get('requires', None)
|
||||
item_name = item.get("name", None)
|
||||
if not isinstance(requires, list):
|
||||
return
|
||||
if _is_main_or_master_item(item) or item_name in master_deps:
|
||||
master_deps.update([n.strip('"') for n in requires])
|
||||
|
||||
def _do_filtering(items):
|
||||
if isinstance(items, list):
|
||||
rc = [_do_filtering(item) for item in items]
|
||||
return [item for item in rc if len(item if item is not None else []) > 0]
|
||||
assert isinstance(items, dict) and len(items) == 1
|
||||
item_type, item = next(iter(items.items()))
|
||||
item_name = item.get("name", None)
|
||||
item_name = item_name.strip('"') if item_name is not None else None
|
||||
if not _is_main_or_master_item(item) and item_name not in master_deps:
|
||||
return None
|
||||
if 'filters' in item:
|
||||
item = item.copy()
|
||||
item.pop('filters')
|
||||
return {item_type: item}
|
||||
|
||||
# Scan of dependencies twice to pick up nested required jobs
|
||||
# I.e. jobs depending on jobs that main-only job depend on
|
||||
_for_all_items(items, _save_requires_if_master)
|
||||
_for_all_items(items, _save_requires_if_master)
|
||||
return _do_filtering(items)
|
||||
|
||||
def generate_required_docker_images(items):
|
||||
required_docker_images = set()
|
||||
|
||||
def _requires_docker_image(item_type, item):
|
||||
requires = item.get('requires', None)
|
||||
if not isinstance(requires, list):
|
||||
return
|
||||
for requirement in requires:
|
||||
requirement = requirement.replace('"', '')
|
||||
if requirement.startswith('docker-'):
|
||||
required_docker_images.add(requirement)
|
||||
|
||||
_for_all_items(items, _requires_docker_image)
|
||||
return required_docker_images
|
||||
|
||||
def gen_build_workflows_tree():
|
||||
build_workflows_functions = [
|
||||
pytorch_build_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.macos_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.android_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.ios_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.ge_config_tests.get_workflow_jobs,
|
||||
cimodel.data.simple.bazel_definitions.get_workflow_jobs,
|
||||
caffe2_build_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.binary_smoketest.get_workflow_jobs,
|
||||
cimodel.data.simple.nightly_ios.get_workflow_jobs,
|
||||
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
|
||||
cimodel.data.simple.nightly_android.get_workflow_jobs,
|
||||
windows_build_definitions.get_windows_workflows,
|
||||
]
|
||||
build_jobs = [f() for f in build_workflows_functions]
|
||||
build_jobs.extend(
|
||||
cimodel.data.simple.docker_definitions.get_workflow_jobs(
|
||||
# sort for consistency
|
||||
sorted(generate_required_docker_images(build_jobs))
|
||||
)
|
||||
)
|
||||
master_build_jobs = filter_master_only_jobs(build_jobs)
|
||||
|
||||
rc = {
|
||||
binary_build_functions = [
|
||||
binary_build_definitions.get_binary_build_jobs,
|
||||
binary_build_definitions.get_nightly_tests,
|
||||
binary_build_definitions.get_nightly_uploads,
|
||||
binary_build_definitions.get_post_upload_jobs,
|
||||
binary_build_definitions.get_binary_smoke_test_jobs,
|
||||
]
|
||||
|
||||
docker_builder_functions = [
|
||||
cimodel.data.simple.docker_definitions.get_workflow_jobs
|
||||
]
|
||||
|
||||
return {
|
||||
"workflows": {
|
||||
"build": {
|
||||
"when": r"<< pipeline.parameters.run_build >>",
|
||||
"jobs": build_jobs,
|
||||
"binary_builds": {
|
||||
"when": r"<< pipeline.parameters.run_binary_tests >>",
|
||||
"jobs": [f() for f in binary_build_functions],
|
||||
},
|
||||
"docker_build": OrderedDict(
|
||||
{
|
||||
"triggers": [
|
||||
{
|
||||
"schedule": {
|
||||
"cron": miniutils.quote("0 15 * * 0"),
|
||||
"filters": {"branches": {"only": ["master"]}},
|
||||
}
|
||||
}
|
||||
],
|
||||
"jobs": [f() for f in docker_builder_functions],
|
||||
}
|
||||
),
|
||||
"build": {"jobs": [f() for f in build_workflows_functions]},
|
||||
}
|
||||
}
|
||||
if len(master_build_jobs) > 0:
|
||||
rc["workflows"]["master_build"] = {
|
||||
"when": r"<< pipeline.parameters.run_master_build >>",
|
||||
"jobs": master_build_jobs,
|
||||
}
|
||||
return rc
|
||||
|
||||
|
||||
# Order of this list matters to the generated config.yml.
|
||||
@ -169,15 +140,22 @@ YAML_SOURCES = [
|
||||
File("nightly-binary-build-defaults.yml"),
|
||||
Header("Build parameters"),
|
||||
File("build-parameters/pytorch-build-params.yml"),
|
||||
File("build-parameters/caffe2-build-params.yml"),
|
||||
File("build-parameters/binary-build-params.yml"),
|
||||
File("build-parameters/promote-build-params.yml"),
|
||||
Header("Job specs"),
|
||||
File("job-specs/pytorch-job-specs.yml"),
|
||||
File("job-specs/caffe2-job-specs.yml"),
|
||||
File("job-specs/binary-job-specs.yml"),
|
||||
File("job-specs/job-specs-custom.yml"),
|
||||
File("job-specs/job-specs-promote.yml"),
|
||||
File("job-specs/binary_update_htmls.yml"),
|
||||
File("job-specs/binary-build-tests.yml"),
|
||||
File("job-specs/docker_jobs.yml"),
|
||||
Header("Workflows"),
|
||||
Treegen(gen_build_workflows_tree, 0),
|
||||
File("workflows/workflows-ecr-gc.yml"),
|
||||
File("workflows/workflows-promote.yml"),
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -1,5 +0,0 @@
|
||||
cd $PSScriptRoot;
|
||||
$NewFile = New-TemporaryFile;
|
||||
python generate_config_yml.py > $NewFile.name
|
||||
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
|
||||
Remove-Item $NewFile.name
|
||||
@ -1,17 +1,8 @@
|
||||
#!/bin/bash -e
|
||||
#!/bin/bash -xe
|
||||
|
||||
# Allows this script to be invoked from any directory:
|
||||
cd "$(dirname "$0")"
|
||||
|
||||
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
|
||||
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
|
||||
OLD_FILE=$(mktemp)
|
||||
cp config.yml "$OLD_FILE"
|
||||
echo "Uncommitted change detected in .circleci/config.yml"
|
||||
echo "It has been backed up to $OLD_FILE"
|
||||
fi
|
||||
cd $(dirname "$0")
|
||||
|
||||
NEW_FILE=$(mktemp)
|
||||
./generate_config_yml.py > "$NEW_FILE"
|
||||
cp "$NEW_FILE" config.yml
|
||||
echo "New config generated in .circleci/config.yml"
|
||||
./generate_config_yml.py > $NEW_FILE
|
||||
cp $NEW_FILE config.yml
|
||||
|
||||
@ -33,11 +33,6 @@ else
|
||||
export BUILDER_ROOT="$workdir/builder"
|
||||
fi
|
||||
|
||||
# Try to extract PR number from branch if not already set
|
||||
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
|
||||
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
|
||||
fi
|
||||
|
||||
# Clone the Pytorch branch
|
||||
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
|
||||
pushd "$PYTORCH_ROOT"
|
||||
@ -49,20 +44,19 @@ if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
|
||||
git reset --hard "$CIRCLE_SHA1"
|
||||
elif [[ -n "${CIRCLE_SHA1:-}" ]]; then
|
||||
# Scheduled workflows & "smoke" binary build on master on PR merges
|
||||
DEFAULT_BRANCH="$(git remote show $CIRCLE_REPOSITORY_URL | awk '/HEAD branch/ {print $NF}')"
|
||||
git reset --hard "$CIRCLE_SHA1"
|
||||
git checkout -q -B $DEFAULT_BRANCH
|
||||
git checkout -q -B master
|
||||
else
|
||||
echo "Can't tell what to checkout"
|
||||
exit 1
|
||||
fi
|
||||
retry git submodule update --init --recursive --jobs 0
|
||||
retry git submodule update --init --recursive
|
||||
echo "Using Pytorch from "
|
||||
git --no-pager log --max-count 1
|
||||
popd
|
||||
|
||||
# Clone the Builder master repo
|
||||
retry git clone -q https://github.com/pytorch/builder.git -b release/1.12 "$BUILDER_ROOT"
|
||||
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
|
||||
pushd "$BUILDER_ROOT"
|
||||
echo "Using builder from "
|
||||
git --no-pager log --max-count 1
|
||||
|
||||
@ -15,14 +15,13 @@ export PATH="~/anaconda/bin:${PATH}"
|
||||
source ~/anaconda/bin/activate
|
||||
|
||||
# Install dependencies
|
||||
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
|
||||
conda install -c conda-forge valgrind --yes
|
||||
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
|
||||
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
|
||||
|
||||
# sync submodules
|
||||
cd ${PROJ_ROOT}
|
||||
git submodule sync
|
||||
git submodule update --init --recursive --jobs 0
|
||||
git submodule update --init --recursive
|
||||
|
||||
# run build script
|
||||
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
|
||||
@ -31,12 +30,8 @@ cat ${PROJ_ROOT}/scripts/build_ios.sh
|
||||
echo "########################################################"
|
||||
echo "IOS_ARCH: ${IOS_ARCH}"
|
||||
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
|
||||
echo "USE_PYTORCH_METAL: ${USE_PYTORCH_METAL}"
|
||||
echo "USE_COREML_DELEGATE: ${USE_COREML_DELEGATE}"
|
||||
export IOS_ARCH=${IOS_ARCH}
|
||||
export IOS_PLATFORM=${IOS_PLATFORM}
|
||||
export USE_PYTORCH_METAL=${USE_PYTORCH_METAL}
|
||||
export USE_COREML_DELEGATE=${USE_COREML_DELEGATE}
|
||||
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
|
||||
|
||||
#store the binary
|
||||
|
||||
@ -8,23 +8,22 @@ cd ${PROJ_ROOT}/ios/TestApp
|
||||
# install fastlane
|
||||
sudo gem install bundler && bundle install
|
||||
# install certificates
|
||||
echo "${IOS_CERT_KEY_2022}" >> cert.txt
|
||||
echo "${IOS_CERT_KEY}" >> cert.txt
|
||||
base64 --decode cert.txt -o Certificates.p12
|
||||
rm cert.txt
|
||||
bundle exec fastlane install_root_cert
|
||||
bundle exec fastlane install_dev_cert
|
||||
bundle exec fastlane install_cert
|
||||
# install the provisioning profile
|
||||
PROFILE=PyTorch_CI_2022.mobileprovision
|
||||
PROFILE=TestApp_CI.mobileprovision
|
||||
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
|
||||
mkdir -pv "${PROVISIONING_PROFILES}"
|
||||
cd "${PROVISIONING_PROFILES}"
|
||||
echo "${IOS_SIGN_KEY_2022}" >> cert.txt
|
||||
echo "${IOS_SIGN_KEY}" >> cert.txt
|
||||
base64 --decode cert.txt -o ${PROFILE}
|
||||
rm cert.txt
|
||||
# run the ruby build script
|
||||
if ! [ -x "$(command -v xcodebuild)" ]; then
|
||||
echo 'Error: xcodebuild is not installed.'
|
||||
exit 1
|
||||
fi
|
||||
PROFILE=PyTorch_CI_2022
|
||||
fi
|
||||
PROFILE=TestApp_CI
|
||||
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}
|
||||
|
||||
@ -23,36 +23,18 @@ do
|
||||
fi
|
||||
done
|
||||
lipo -i ${ZIP_DIR}/install/lib/*.a
|
||||
echo "BUILD_LITE_INTERPRETER: ${BUILD_LITE_INTERPRETER}"
|
||||
# copy the umbrella header and license
|
||||
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
|
||||
cp ${PROJ_ROOT}/ios/LibTorch-Lite.h ${ZIP_DIR}/src/
|
||||
else
|
||||
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
|
||||
fi
|
||||
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
|
||||
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
|
||||
# zip the library
|
||||
export DATE="$(date -u +%Y%m%d)"
|
||||
export IOS_NIGHTLY_BUILD_VERSION="1.12.0.${DATE}"
|
||||
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
|
||||
# libtorch_lite_ios_nightly_1.11.0.20210810.zip
|
||||
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"
|
||||
else
|
||||
ZIPFILE="libtorch_ios_nightly_build.zip"
|
||||
fi
|
||||
ZIPFILE=libtorch_ios_nightly_build.zip
|
||||
cd ${ZIP_DIR}
|
||||
#for testing
|
||||
touch version.txt
|
||||
echo "${IOS_NIGHTLY_BUILD_VERSION}" > version.txt
|
||||
echo $(date +%s) > version.txt
|
||||
zip -r ${ZIPFILE} install src version.txt LICENSE
|
||||
# upload to aws
|
||||
# Install conda then 'conda install' awscli
|
||||
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
|
||||
chmod +x ~/conda.sh
|
||||
/bin/bash ~/conda.sh -b -p ~/anaconda
|
||||
export PATH="~/anaconda/bin:${PATH}"
|
||||
source ~/anaconda/bin/activate
|
||||
conda install -c conda-forge awscli --yes
|
||||
brew install awscli
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
|
||||
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
|
||||
@ -60,16 +42,3 @@ set +x
|
||||
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
|
||||
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
|
||||
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read
|
||||
|
||||
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
|
||||
# create a new LibTorch-Lite-Nightly.podspec from the template
|
||||
echo "cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec"
|
||||
cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
|
||||
# update pod version
|
||||
sed -i '' -e "s/IOS_NIGHTLY_BUILD_VERSION/${IOS_NIGHTLY_BUILD_VERSION}/g" ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
cat ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
|
||||
# push the new LibTorch-Lite-Nightly.podspec to CocoaPods
|
||||
pod trunk push --verbose --allow-warnings --use-libraries --skip-import-validation ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
fi
|
||||
|
||||
@ -4,31 +4,27 @@ echo "RUNNING ON $(uname -a) WITH $(nproc) CPUS AND $(free -m)"
|
||||
set -eux -o pipefail
|
||||
source /env
|
||||
|
||||
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
|
||||
MEMORY_LIMIT_MAX_JOBS=18
|
||||
NUM_CPUS=$(( $(nproc) - 2 ))
|
||||
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
|
||||
if [[ "${DESIRED_CUDA}" =~ cu11[0-9] ]]; then
|
||||
export BUILD_SPLIT_CUDA="ON"
|
||||
fi
|
||||
# Defaults here so they can be changed in one place
|
||||
export MAX_JOBS=12
|
||||
|
||||
# Parse the parameters
|
||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
|
||||
build_script='conda/build_pytorch.sh'
|
||||
elif [[ "$DESIRED_CUDA" == cpu ]]; then
|
||||
build_script='manywheel/build_cpu.sh'
|
||||
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
build_script='manywheel/build_rocm.sh'
|
||||
else
|
||||
build_script='manywheel/build.sh'
|
||||
fi
|
||||
|
||||
if [[ "$CIRCLE_BRANCH" == "main" ]] || [[ "$CIRCLE_BRANCH" == "master" ]] || [[ "$CIRCLE_BRANCH" == release/* ]]; then
|
||||
export BUILD_DEBUG_INFO=1
|
||||
# We want to call unbuffer, which calls tclsh which finds the expect
|
||||
# package. The expect was installed by yum into /usr/bin so we want to
|
||||
# find /usr/bin/tclsh, but this is shadowed by /opt/conda/bin/tclsh in
|
||||
# the conda docker images, so we prepend it to the path here.
|
||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
|
||||
mkdir /just_tclsh_bin
|
||||
ln -s /usr/bin/tclsh /just_tclsh_bin/tclsh
|
||||
export PATH=/just_tclsh_bin:$PATH
|
||||
fi
|
||||
|
||||
# Build the package
|
||||
SKIP_ALL_TESTS=1 "/builder/$build_script"
|
||||
SKIP_ALL_TESTS=1 unbuffer "/builder/$build_script" | ts
|
||||
|
||||
@ -1,31 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
OUTPUT_SCRIPT=${OUTPUT_SCRIPT:-/home/circleci/project/ci_test_script.sh}
|
||||
|
||||
# only source if file exists
|
||||
if [[ -f /home/circleci/project/env ]]; then
|
||||
source /home/circleci/project/env
|
||||
fi
|
||||
cat >"${OUTPUT_SCRIPT}" <<EOL
|
||||
source /home/circleci/project/env
|
||||
cat >/home/circleci/project/ci_test_script.sh <<EOL
|
||||
# =================== The following code will be executed inside Docker container ===================
|
||||
set -eux -o pipefail
|
||||
|
||||
retry () {
|
||||
"\$@" || (sleep 1 && "\$@") || (sleep 2 && "\$@")
|
||||
}
|
||||
|
||||
# Source binary env file here if exists
|
||||
if [[ -e "${BINARY_ENV_FILE:-/nofile}" ]]; then
|
||||
source "${BINARY_ENV_FILE:-/nofile}"
|
||||
fi
|
||||
|
||||
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
|
||||
# Set up Python
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda create -qyn testenv python="$DESIRED_PYTHON"
|
||||
source activate testenv >/dev/null
|
||||
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
|
||||
# Prior to Python 3.8 paths were suffixed with an 'm'
|
||||
if [[ -d "\${python_path}/bin" ]]; then
|
||||
@ -35,72 +20,31 @@ elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
EXTRA_CONDA_FLAGS=""
|
||||
NUMPY_PIN=""
|
||||
PROTOBUF_PACKAGE="defaults::protobuf"
|
||||
if [[ "\$python_nodot" = *310* ]]; then
|
||||
EXTRA_CONDA_FLAGS="-c=conda-forge"
|
||||
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
|
||||
# we set a lower boundary here just to be safe
|
||||
NUMPY_PIN=">=1.21.2"
|
||||
PROTOBUF_PACKAGE="protobuf>=3.19.0"
|
||||
fi
|
||||
|
||||
if [[ "\$python_nodot" = *39* ]]; then
|
||||
EXTRA_CONDA_FLAGS="-c=conda-forge"
|
||||
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
|
||||
# we set a lower boundary here just to be safe
|
||||
NUMPY_PIN=">=1.20"
|
||||
fi
|
||||
|
||||
if [[ "$DESIRED_CUDA" == "cu116" ]]; then
|
||||
EXTRA_CONDA_FLAGS="-c=conda-forge"
|
||||
fi
|
||||
|
||||
# Move debug wheels out of the the package dir so they don't get installed
|
||||
mkdir -p /tmp/debug_final_pkgs
|
||||
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
|
||||
|
||||
# Install the package
|
||||
# These network calls should not have 'retry's because they are installing
|
||||
# locally and aren't actually network calls
|
||||
# TODO there is duplicated and inconsistent test-python-env setup across this
|
||||
# file, builder/smoke_test.sh, and builder/run_tests.sh, and also in the
|
||||
# conda build scripts themselves. These should really be consolidated
|
||||
# Pick only one package of multiple available (which happens as result of workflow re-runs)
|
||||
pkg="/final_pkgs/\$(ls -1 /final_pkgs|sort|tail -1)"
|
||||
pkg="/final_pkgs/\$(ls /final_pkgs)"
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
(
|
||||
# For some reason conda likes to re-activate the conda environment when attempting this install
|
||||
# which means that a deactivate is run and some variables might not exist when that happens,
|
||||
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
|
||||
# it comes to the conda installation commands
|
||||
set +u
|
||||
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
|
||||
"numpy\${NUMPY_PIN}" \
|
||||
future \
|
||||
mkl>=2018 \
|
||||
ninja \
|
||||
dataclasses \
|
||||
typing-extensions \
|
||||
${PROTOBUF_PACKAGE} \
|
||||
six
|
||||
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
|
||||
retry conda install -c pytorch -y cpuonly
|
||||
conda install -y "\$pkg" --offline
|
||||
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
|
||||
retry conda install -y cpuonly -c pytorch
|
||||
fi
|
||||
retry conda install -yq future numpy protobuf six
|
||||
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
|
||||
# DESIRED_CUDA is in format cu90 or cu102
|
||||
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
|
||||
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
|
||||
else
|
||||
# DESIRED_CUDA is in format cu90 or cu102
|
||||
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
|
||||
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
|
||||
else
|
||||
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
|
||||
fi
|
||||
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "cudatoolkit=\${cu_ver}"
|
||||
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
|
||||
fi
|
||||
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
|
||||
)
|
||||
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
|
||||
fi
|
||||
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
pip install "\$pkg"
|
||||
retry pip install -q future numpy protobuf typing-extensions six
|
||||
retry pip install -q future numpy protobuf six
|
||||
fi
|
||||
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
pkg="\$(ls /final_pkgs/*-latest.zip)"
|
||||
@ -116,4 +60,4 @@ EOL
|
||||
echo
|
||||
echo
|
||||
echo "The script that will run in the next step is:"
|
||||
cat "${OUTPUT_SCRIPT}"
|
||||
cat /home/circleci/project/ci_test_script.sh
|
||||
|
||||
48
.circleci/scripts/binary_linux_upload.sh
Executable file
48
.circleci/scripts/binary_linux_upload.sh
Executable file
@ -0,0 +1,48 @@
|
||||
#!/bin/bash
|
||||
# Do NOT set -x
|
||||
source /home/circleci/project/env
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
export PATH="$MINICONDA_ROOT/bin:$PATH"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
BACKUP_BUCKET="s3://pytorch-backup"
|
||||
|
||||
retry pip install -q awscli
|
||||
# Upload the package to the final location
|
||||
pushd /home/circleci/project/final_pkgs
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
# Fetch platform (eg. win-64, linux-64, etc.) from index file
|
||||
# Because there's no actual conda command to read this
|
||||
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
|
||||
BACKUP_DIR="conda/${subdir}"
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
else
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
fi
|
||||
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
|
||||
retry aws s3 cp --recursive . "$s3_dir"
|
||||
fi
|
||||
@ -1,19 +1,24 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
source "${BINARY_ENV_FILE:-/Users/distiller/project/env}"
|
||||
source "/Users/distiller/project/env"
|
||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
|
||||
|
||||
if [[ -z "${IS_GHA:-}" ]]; then
|
||||
export PATH="${workdir:-${HOME}}/miniconda/bin:${PATH}"
|
||||
fi
|
||||
# For some reason `unbuffer` breaks if we change the PATH here, so we
|
||||
# write a script with the PATH change in it and unbuffer the whole
|
||||
# thing
|
||||
build_script="$workdir/build_script.sh"
|
||||
touch "$build_script"
|
||||
chmod +x "$build_script"
|
||||
|
||||
# Build
|
||||
export USE_PYTORCH_METAL_EXPORT=1
|
||||
export USE_COREML_DELEGATE=1
|
||||
cat >"$build_script" <<EOL
|
||||
export PATH="$workdir/miniconda/bin:$PATH"
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
"${BUILDER_ROOT}/conda/build_pytorch.sh"
|
||||
"$workdir/builder/conda/build_pytorch.sh"
|
||||
else
|
||||
export TORCH_PACKAGE_NAME="$(echo $TORCH_PACKAGE_NAME | tr '-' '_')"
|
||||
"${BUILDER_ROOT}/wheel/build_wheel.sh"
|
||||
"$workdir/builder/wheel/build_wheel.sh"
|
||||
fi
|
||||
EOL
|
||||
unbuffer "$build_script" | ts
|
||||
|
||||
@ -20,9 +20,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
unzip "$pkg" -d /tmp
|
||||
cd /tmp/libtorch
|
||||
elif [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
conda install -y "$pkg"
|
||||
conda install -y "$pkg" --offline
|
||||
else
|
||||
pip install "$pkg" -v
|
||||
pip install "$pkg" --no-index --no-dependencies -v
|
||||
fi
|
||||
|
||||
# Test
|
||||
|
||||
48
.circleci/scripts/binary_macos_upload.sh
Executable file
48
.circleci/scripts/binary_macos_upload.sh
Executable file
@ -0,0 +1,48 @@
|
||||
#!/bin/bash
|
||||
# Do NOT set -x
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
|
||||
source "/Users/distiller/project/env"
|
||||
export "PATH=$workdir/miniconda/bin:$PATH"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
BACKUP_BUCKET="s3://pytorch-backup"
|
||||
|
||||
retry pip install -q awscli
|
||||
pushd "$workdir/final_pkgs"
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
# Fetch platform (eg. win-64, linux-64, etc.) from index file
|
||||
# Because there's no actual conda command to read this
|
||||
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
|
||||
BACKUP_DIR="conda/${subdir}"
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
else
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
fi
|
||||
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
|
||||
retry aws s3 cp --recursive . "$s3_dir"
|
||||
fi
|
||||
@ -5,70 +5,53 @@ export TZ=UTC
|
||||
tagged_version() {
|
||||
# Grabs version from either the env variable CIRCLE_TAG
|
||||
# or the pytorch git described version
|
||||
if [[ "$OSTYPE" == "msys" && -z "${IS_GHA:-}" ]]; then
|
||||
GIT_DIR="${workdir}/p/.git"
|
||||
if [[ "$OSTYPE" == "msys" ]]; then
|
||||
GIT_DESCRIBE="git --git-dir ${workdir}/p/.git describe"
|
||||
else
|
||||
GIT_DIR="${workdir}/pytorch/.git"
|
||||
GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
|
||||
fi
|
||||
GIT_DESCRIBE="git --git-dir ${GIT_DIR} describe --tags --match v[0-9]*.[0-9]*.[0-9]*"
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
echo "${CIRCLE_TAG}"
|
||||
elif [[ ! -d "${GIT_DIR}" ]]; then
|
||||
echo "Abort, abort! Git dir ${GIT_DIR} does not exists!"
|
||||
kill $$
|
||||
elif ${GIT_DESCRIBE} --exact >/dev/null; then
|
||||
${GIT_DESCRIBE}
|
||||
elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
|
||||
${GIT_DESCRIBE} --tags
|
||||
else
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# These are only relevant for CircleCI
|
||||
# TODO: Remove these later once migrated fully to GHA
|
||||
if [[ -z ${IS_GHA:-} ]]; then
|
||||
# We need to write an envfile to persist these variables to following
|
||||
# steps, but the location of the envfile depends on the circleci executor
|
||||
if [[ "$(uname)" == Darwin ]]; then
|
||||
# macos executor (builds and tests)
|
||||
workdir="/Users/distiller/project"
|
||||
elif [[ "$OSTYPE" == "msys" ]]; then
|
||||
# windows executor (builds and tests)
|
||||
workdir="/c/w"
|
||||
elif [[ -d "/home/circleci/project" ]]; then
|
||||
# machine executor (binary tests)
|
||||
workdir="/home/circleci/project"
|
||||
else
|
||||
# docker executor (binary builds)
|
||||
workdir="/"
|
||||
fi
|
||||
envfile="$workdir/env"
|
||||
touch "$envfile"
|
||||
chmod +x "$envfile"
|
||||
# We need to write an envfile to persist these variables to following
|
||||
# steps, but the location of the envfile depends on the circleci executor
|
||||
if [[ "$(uname)" == Darwin ]]; then
|
||||
# macos executor (builds and tests)
|
||||
workdir="/Users/distiller/project"
|
||||
elif [[ "$OSTYPE" == "msys" ]]; then
|
||||
# windows executor (builds and tests)
|
||||
workdir="/c/w"
|
||||
elif [[ -d "/home/circleci/project" ]]; then
|
||||
# machine executor (binary tests)
|
||||
workdir="/home/circleci/project"
|
||||
else
|
||||
# docker executor (binary builds)
|
||||
workdir="/"
|
||||
fi
|
||||
envfile="$workdir/env"
|
||||
touch "$envfile"
|
||||
chmod +x "$envfile"
|
||||
|
||||
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
|
||||
configs=($BUILD_ENVIRONMENT)
|
||||
export PACKAGE_TYPE="${configs[0]}"
|
||||
export DESIRED_PYTHON="${configs[1]}"
|
||||
export DESIRED_CUDA="${configs[2]}"
|
||||
if [[ "${OSTYPE}" == "msys" ]]; then
|
||||
export DESIRED_DEVTOOLSET=""
|
||||
export LIBTORCH_CONFIG="${configs[3]:-}"
|
||||
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
|
||||
export DEBUG=1
|
||||
fi
|
||||
else
|
||||
export DESIRED_DEVTOOLSET="${configs[3]:-}"
|
||||
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
|
||||
configs=($BUILD_ENVIRONMENT)
|
||||
export PACKAGE_TYPE="${configs[0]}"
|
||||
export DESIRED_PYTHON="${configs[1]}"
|
||||
export DESIRED_CUDA="${configs[2]}"
|
||||
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
|
||||
export DESIRED_DEVTOOLSET=""
|
||||
export LIBTORCH_CONFIG="${configs[3]:-}"
|
||||
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
|
||||
export DEBUG=1
|
||||
fi
|
||||
else
|
||||
envfile=${BINARY_ENV_FILE:-/tmp/env}
|
||||
if [[ -n "${PYTORCH_ROOT}" ]]; then
|
||||
workdir=$(dirname "${PYTORCH_ROOT}")
|
||||
else
|
||||
# docker executor (binary builds)
|
||||
workdir="/"
|
||||
fi
|
||||
export DESIRED_DEVTOOLSET="${configs[3]:-}"
|
||||
fi
|
||||
|
||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
export BUILD_PYTHONLESS=1
|
||||
fi
|
||||
@ -79,25 +62,18 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
export DOCKER_IMAGE="pytorch/conda-cuda"
|
||||
elif [[ "$DESIRED_CUDA" == cpu ]]; then
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cpu"
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cuda100"
|
||||
else
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
|
||||
fi
|
||||
fi
|
||||
|
||||
USE_GOLD_LINKER="OFF"
|
||||
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
|
||||
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
|
||||
USE_GOLD_LINKER="ON"
|
||||
fi
|
||||
|
||||
|
||||
# Default to nightly, since that's where this normally uploads to
|
||||
PIP_UPLOAD_FOLDER='nightly/'
|
||||
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
|
||||
export DATE="$(date -u +%Y%m%d)"
|
||||
#TODO: We should be pulling semver version from the base version.txt
|
||||
BASE_BUILD_VERSION="1.12.0.dev$DATE"
|
||||
BASE_BUILD_VERSION="1.6.0.dev$DATE"
|
||||
# Change BASE_BUILD_VERSION to git tag when on a git tag
|
||||
# Use 'git -C' to make doubly sure we're in the correct directory for checking
|
||||
# the git tag
|
||||
@ -109,7 +85,7 @@ if tagged_version >/dev/null; then
|
||||
# Turns tag v1.6.0-rc1 -> v1.6.0
|
||||
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
|
||||
fi
|
||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
|
||||
else
|
||||
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
|
||||
@ -124,14 +100,8 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
POSSIBLE_JAVA_HOMES+=(/usr/local)
|
||||
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
|
||||
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
|
||||
# Add the Windows-specific JNI path
|
||||
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
|
||||
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
|
||||
if [[ -e "$JH/include/jni.h" ]] ; then
|
||||
# Skip if we're not on Windows but haven't found a JAVA_HOME
|
||||
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
|
||||
break
|
||||
fi
|
||||
echo "Found jni.h under $JH"
|
||||
JAVA_HOME="$JH"
|
||||
BUILD_JNI=ON
|
||||
@ -143,28 +113,24 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
cat >"$envfile" <<EOL
|
||||
cat >>"$envfile" <<EOL
|
||||
# =================== The following code will be executed inside Docker container ===================
|
||||
export TZ=UTC
|
||||
echo "Running on $(uname -a) at $(date)"
|
||||
|
||||
export PACKAGE_TYPE="$PACKAGE_TYPE"
|
||||
export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
|
||||
export DESIRED_PYTHON="$DESIRED_PYTHON"
|
||||
export DESIRED_CUDA="$DESIRED_CUDA"
|
||||
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
|
||||
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
|
||||
if [[ "${OSTYPE}" == "msys" ]]; then
|
||||
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
|
||||
if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
|
||||
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
|
||||
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
|
||||
export DEBUG=1
|
||||
fi
|
||||
export DESIRED_DEVTOOLSET=""
|
||||
else
|
||||
export DESIRED_DEVTOOLSET="${DESIRED_DEVTOOLSET:-}"
|
||||
export DEBUG="${DEBUG:-}"
|
||||
fi
|
||||
|
||||
export DATE="$DATE"
|
||||
export NIGHTLIES_DATE_PREAMBLE=1.12.0.dev
|
||||
export NIGHTLIES_DATE_PREAMBLE=1.6.0.dev
|
||||
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
|
||||
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
|
||||
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
|
||||
@ -172,7 +138,6 @@ export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
|
||||
# TODO: We don't need this anymore IIUC
|
||||
export TORCH_PACKAGE_NAME='torch'
|
||||
export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
|
||||
export ANACONDA_USER='pytorch'
|
||||
|
||||
export USE_FBGEMM=1
|
||||
export JAVA_HOME=$JAVA_HOME
|
||||
@ -180,48 +145,25 @@ export BUILD_JNI=$BUILD_JNI
|
||||
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
|
||||
export DOCKER_IMAGE="$DOCKER_IMAGE"
|
||||
|
||||
export workdir="$workdir"
|
||||
export MAC_PACKAGE_WORK_DIR="$workdir"
|
||||
if [[ "$OSTYPE" == "msys" ]]; then
|
||||
export PYTORCH_ROOT="$workdir/p"
|
||||
export BUILDER_ROOT="$workdir/b"
|
||||
else
|
||||
export PYTORCH_ROOT="$workdir/pytorch"
|
||||
export BUILDER_ROOT="$workdir/builder"
|
||||
fi
|
||||
export MINICONDA_ROOT="$workdir/miniconda"
|
||||
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
|
||||
|
||||
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
|
||||
export USE_GLOO_WITH_OPENSSL="ON"
|
||||
export CIRCLE_TAG="${CIRCLE_TAG:-}"
|
||||
export CIRCLE_SHA1="$CIRCLE_SHA1"
|
||||
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
|
||||
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
|
||||
# =================== The above code will be executed inside Docker container ===================
|
||||
EOL
|
||||
|
||||
# nproc doesn't exist on darwin
|
||||
if [[ "$(uname)" != Darwin ]]; then
|
||||
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
|
||||
MEMORY_LIMIT_MAX_JOBS=18
|
||||
NUM_CPUS=$(( $(nproc) - 2 ))
|
||||
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
|
||||
cat >>"$envfile" <<EOL
|
||||
export MAX_JOBS="${MAX_JOBS}"
|
||||
EOL
|
||||
fi
|
||||
|
||||
if [[ -z "${IS_GHA:-}" ]]; then
|
||||
cat >>"$envfile" <<EOL
|
||||
export workdir="$workdir"
|
||||
export MAC_PACKAGE_WORK_DIR="$workdir"
|
||||
if [[ "$OSTYPE" == "msys" ]]; then
|
||||
export PYTORCH_ROOT="$workdir/p"
|
||||
export BUILDER_ROOT="$workdir/b"
|
||||
else
|
||||
export PYTORCH_ROOT="$workdir/pytorch"
|
||||
export BUILDER_ROOT="$workdir/builder"
|
||||
fi
|
||||
export MINICONDA_ROOT="$workdir/miniconda"
|
||||
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
|
||||
|
||||
export CIRCLE_TAG="${CIRCLE_TAG:-}"
|
||||
export CIRCLE_SHA1="$CIRCLE_SHA1"
|
||||
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
|
||||
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
|
||||
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
|
||||
EOL
|
||||
fi
|
||||
|
||||
echo 'retry () {' >> "$envfile"
|
||||
echo ' $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)' >> "$envfile"
|
||||
echo '}' >> "$envfile"
|
||||
|
||||
@ -19,7 +19,7 @@ chmod +x /home/circleci/project/ci_test_script.sh
|
||||
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
|
||||
# Run the docker
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
else
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
fi
|
||||
|
||||
@ -1,102 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
|
||||
|
||||
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
|
||||
|
||||
# Designates whether to submit as a release candidate or a nightly build
|
||||
# Value should be `test` when uploading release candidates
|
||||
# currently set within `designate_upload_channel`
|
||||
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
|
||||
# Designates what subfolder to put packages into
|
||||
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
|
||||
UPLOAD_BUCKET="s3://pytorch"
|
||||
BACKUP_BUCKET="s3://pytorch-backup"
|
||||
|
||||
DRY_RUN=${DRY_RUN:-enabled}
|
||||
# Don't actually do work unless explicit
|
||||
ANACONDA="true anaconda"
|
||||
AWS_S3_CP="aws s3 cp --dryrun"
|
||||
if [[ "${DRY_RUN}" = "disabled" ]]; then
|
||||
ANACONDA="anaconda"
|
||||
AWS_S3_CP="aws s3 cp"
|
||||
fi
|
||||
|
||||
do_backup() {
|
||||
local backup_dir
|
||||
backup_dir=$1
|
||||
(
|
||||
pushd /tmp/workspace
|
||||
set -x
|
||||
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
|
||||
)
|
||||
}
|
||||
|
||||
conda_upload() {
|
||||
(
|
||||
set -x
|
||||
${ANACONDA} \
|
||||
upload \
|
||||
${PKG_DIR}/*.tar.bz2 \
|
||||
-u "pytorch-${UPLOAD_CHANNEL}" \
|
||||
--label main \
|
||||
--no-progress \
|
||||
--force
|
||||
)
|
||||
}
|
||||
|
||||
s3_upload() {
|
||||
local extension
|
||||
local pkg_type
|
||||
extension="$1"
|
||||
pkg_type="$2"
|
||||
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
|
||||
(
|
||||
for pkg in ${PKG_DIR}/*.${extension}; do
|
||||
(
|
||||
set -x
|
||||
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
|
||||
)
|
||||
done
|
||||
)
|
||||
}
|
||||
|
||||
# Install dependencies (should be a no-op if previously installed)
|
||||
conda install -yq anaconda-client
|
||||
pip install -q awscli
|
||||
|
||||
case "${PACKAGE_TYPE}" in
|
||||
conda)
|
||||
conda_upload
|
||||
# Fetch platform (eg. win-64, linux-64, etc.) from index file
|
||||
# Because there's no actual conda command to read this
|
||||
subdir=$(\
|
||||
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
|
||||
| grep subdir \
|
||||
| cut -d ':' -f2 \
|
||||
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
|
||||
)
|
||||
BACKUP_DIR="conda/${subdir}"
|
||||
;;
|
||||
libtorch)
|
||||
s3_upload "zip" "libtorch"
|
||||
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
|
||||
;;
|
||||
# wheel can either refer to wheel/manywheel
|
||||
*wheel)
|
||||
s3_upload "whl" "whl"
|
||||
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
|
||||
;;
|
||||
*)
|
||||
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
# CIRCLE_TAG is defined by upstream circleci,
|
||||
# this can be changed to recognize tagged versions
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
do_backup "${BACKUP_DIR}"
|
||||
fi
|
||||
@ -1,68 +1,29 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
source "${BINARY_ENV_FILE:-/c/w/env}"
|
||||
source "/c/w/env"
|
||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
|
||||
|
||||
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
|
||||
export USE_SCCACHE=1
|
||||
export SCCACHE_BUCKET=ossci-compiler-cache-windows
|
||||
export SCCACHE_IGNORE_SERVER_IO_ERROR=1
|
||||
export VC_YEAR=2019
|
||||
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
|
||||
|
||||
if [[ "${DESIRED_CUDA}" == *"cu11"* ]]; then
|
||||
export BUILD_SPLIT_CUDA=ON
|
||||
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
|
||||
export VC_YEAR=2017
|
||||
else
|
||||
export VC_YEAR=2019
|
||||
fi
|
||||
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
set -x
|
||||
|
||||
echo "Free Space for CUDA DEBUG BUILD"
|
||||
if [[ "${CIRCLECI:-}" == 'true' ]]; then
|
||||
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft.NET" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft.NET"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files\\dotnet" ]]; then
|
||||
rm -rf "C:\\Program Files\\dotnet"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\dotnet" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\dotnet"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft SQL Server" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft SQL Server"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Xamarin" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Xamarin"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Google" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Google"
|
||||
fi
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
set -x
|
||||
if [[ -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
|
||||
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
|
||||
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
fi
|
||||
if [[ -d "C:\\Microsoft" ]]; then
|
||||
# don't use quotes here
|
||||
rm -rf /c/Microsoft/AndroidNDK*
|
||||
fi
|
||||
if [[ "$CIRCLECI" == 'true' && -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
|
||||
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
|
||||
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
fi
|
||||
|
||||
echo "Free space on filesystem before build:"
|
||||
@ -70,10 +31,9 @@ df -h
|
||||
|
||||
pushd "$BUILDER_ROOT"
|
||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
|
||||
./windows/internal/build_conda.bat
|
||||
./windows/internal/build_conda.bat
|
||||
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
|
||||
./windows/internal/build_wheels.bat
|
||||
./windows/internal/build_wheels.bat
|
||||
fi
|
||||
|
||||
echo "Free space on filesystem after build:"
|
||||
|
||||
@ -1,10 +1,16 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
source "${BINARY_ENV_FILE:-/c/w/env}"
|
||||
source "/c/w/env"
|
||||
|
||||
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
|
||||
export VC_YEAR=2019
|
||||
export VC_YEAR=2017
|
||||
|
||||
if [[ "$CUDA_VERSION" == "92" || "$CUDA_VERSION" == "100" ]]; then
|
||||
export VC_YEAR=2017
|
||||
else
|
||||
export VC_YEAR=2019
|
||||
fi
|
||||
|
||||
pushd "$BUILDER_ROOT"
|
||||
|
||||
|
||||
47
.circleci/scripts/binary_windows_upload.sh
Normal file
47
.circleci/scripts/binary_windows_upload.sh
Normal file
@ -0,0 +1,47 @@
|
||||
#!/bin/bash
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
|
||||
source "/env"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly/}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
BACKUP_BUCKET="s3://pytorch-backup"
|
||||
|
||||
retry pip install -q awscli
|
||||
pushd /root/workspace/final_pkgs
|
||||
# Upload the package to the final location
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
# Fetch platform (eg. win-64, linux-64, etc.) from index file
|
||||
# Because there's no actual conda command to read this
|
||||
subdir=$(tar -xOf ./*.bz2 info/index.json | grep subdir | cut -d ':' -f2 | sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//')
|
||||
BACKUP_DIR="conda/${subdir}"
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
BACKUP_DIR="libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
else
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
BACKUP_DIR="whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
fi
|
||||
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
s3_dir="${BACKUP_BUCKET}/${CIRCLE_TAG}/${BACKUP_DIR}"
|
||||
retry aws s3 cp --recursive . "$s3_dir"
|
||||
fi
|
||||
@ -1,44 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
set -eux -o pipefail
|
||||
|
||||
env
|
||||
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
|
||||
|
||||
export ANDROID_NDK_HOME=/opt/ndk
|
||||
export ANDROID_NDK=/opt/ndk
|
||||
export ANDROID_HOME=/opt/android/sdk
|
||||
|
||||
# Must be in sync with GRADLE_VERSION in docker image for android
|
||||
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
|
||||
export GRADLE_VERSION=6.8.3
|
||||
export GRADLE_VERSION=4.10.3
|
||||
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
|
||||
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
|
||||
|
||||
# touch gradle cache files to prevent expiration
|
||||
while IFS= read -r -d '' file
|
||||
do
|
||||
touch "$file" || true
|
||||
done < <(find /var/lib/jenkins/.gradle -type f -print0)
|
||||
|
||||
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
|
||||
rm -f $GRADLE_LOCAL_PROPERTIES
|
||||
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
# Run custom build script
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
|
||||
# Install torch & torchvision - used to download & dump used ops from test model.
|
||||
retry pip install torch torchvision --progress-bar off
|
||||
|
||||
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
|
||||
fi
|
||||
|
||||
# Run default build
|
||||
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
|
||||
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
|
||||
|
||||
@ -73,6 +44,9 @@ ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
|
||||
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
|
||||
fi
|
||||
|
||||
env
|
||||
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
|
||||
|
||||
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
|
||||
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
|
||||
@ -82,6 +56,20 @@ if [ -n "{GRADLE_OFFLINE:-}" ]; then
|
||||
GRADLE_PARAMS+=" --offline"
|
||||
fi
|
||||
|
||||
# touch gradle cache files to prevent expiration
|
||||
while IFS= read -r -d '' file
|
||||
do
|
||||
touch "$file" || true
|
||||
done < <(find /var/lib/jenkins/.gradle -type f -print0)
|
||||
|
||||
env
|
||||
|
||||
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
|
||||
rm -f $GRADLE_LOCAL_PROPERTIES
|
||||
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
$GRADLE_PATH $GRADLE_PARAMS
|
||||
|
||||
find . -type f -name "*.a" -exec ls -lh {} \;
|
||||
|
||||
@ -10,36 +10,33 @@ pt_checkout="/var/lib/jenkins/workspace"
|
||||
# Since we're cat-ing this file, we need to escape all $'s
|
||||
echo "cpp_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
|
||||
# the order of operations goes:
|
||||
# 1. Check if there's an argument $1
|
||||
# 2. If no argument check for environment var DOCS_INSTALL_PATH
|
||||
# 3. If no environment var fall back to default 'docs/'
|
||||
|
||||
# NOTE: It might seem weird to gather the second argument before gathering the first argument
|
||||
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
|
||||
# try and gather it first, just so we don't potentially break people who rely on this script
|
||||
# Argument 2: What version of the Python API docs we are building.
|
||||
version="${2:-${DOCS_VERSION:-master}}"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Argument 1: Where to copy the built documentation for Python API to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
|
||||
install_path="$1"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: install_path (arg1) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
is_main_doc=false
|
||||
if [ "$version" == "master" ]; then
|
||||
is_main_doc=true
|
||||
# Argument 2: What version of the Python API docs we are building.
|
||||
version="$2"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version"
|
||||
is_master_doc=false
|
||||
if [ "$version" == "master" ]; then
|
||||
is_master_doc=true
|
||||
fi
|
||||
|
||||
# Argument 3: (optional) If present, we will NOT do any pushing. Used for testing.
|
||||
dry_run=false
|
||||
if [ "$3" != "" ]; then
|
||||
dry_run=true
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version dry_run: $dry_run"
|
||||
|
||||
# ======================== Building PyTorch C++ API Docs ========================
|
||||
|
||||
@ -56,21 +53,31 @@ sudo apt-get -y install doxygen
|
||||
# Generate ATen files
|
||||
pushd "${pt_checkout}"
|
||||
pip install -r requirements.txt
|
||||
time python -m torchgen.gen \
|
||||
time python aten/src/ATen/gen.py \
|
||||
-s aten/src/ATen \
|
||||
-d build/aten/src/ATen
|
||||
-d build/aten/src/ATen \
|
||||
aten/src/ATen/Declarations.cwrap \
|
||||
aten/src/THCUNN/generic/THCUNN.h \
|
||||
aten/src/ATen/nn.yaml \
|
||||
aten/src/ATen/native/native_functions.yaml
|
||||
|
||||
# Copy some required files
|
||||
cp aten/src/ATen/common_with_cwrap.py tools/shared/cwrap_common.py
|
||||
cp torch/_utils_internal.py tools/shared
|
||||
|
||||
# Generate PyTorch files
|
||||
time python tools/setup_helpers/generate_code.py \
|
||||
--native-functions-path aten/src/ATen/native/native_functions.yaml \
|
||||
--tags-path aten/src/ATen/native/tags.yaml
|
||||
--declarations-path build/aten/src/ATen/Declarations.yaml \
|
||||
--nn-path aten/src/
|
||||
|
||||
# Build the docs
|
||||
pushd docs/cpp
|
||||
pip install -r requirements.txt
|
||||
pip install breathe==4.13.0 bs4 lxml six
|
||||
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
|
||||
pip install exhale>=0.2.1
|
||||
pip install sphinx==2.4.4
|
||||
# Uncomment once it is fixed
|
||||
# pip install -r requirements.txt
|
||||
time make VERBOSE=1 html -j
|
||||
|
||||
popd
|
||||
@ -96,11 +103,23 @@ git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate C++ docs from pytorch/pytorch@${GITHUB_SHA}" || true
|
||||
git commit -m "Automatic sync on $(date)" || true
|
||||
git status
|
||||
|
||||
if [[ "${WITH_PUSH:-}" == true ]]; then
|
||||
git push -u origin
|
||||
if [ "$dry_run" = false ]; then
|
||||
echo "Pushing to https://github.com/pytorch/cppdocs"
|
||||
set +x
|
||||
/usr/bin/expect <<DONE
|
||||
spawn git push -u origin master
|
||||
expect "Username*"
|
||||
send "pytorchbot\n"
|
||||
expect "Password*"
|
||||
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
|
||||
expect eof
|
||||
DONE
|
||||
set -x
|
||||
else
|
||||
echo "Skipping push due to dry_run"
|
||||
fi
|
||||
|
||||
popd
|
||||
|
||||
@ -1,8 +0,0 @@
|
||||
set "DRIVER_DOWNLOAD_LINK=https://s3.amazonaws.com/ossci-windows/452.39-data-center-tesla-desktop-win10-64bit-international.exe"
|
||||
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output 452.39-data-center-tesla-desktop-win10-64bit-international.exe
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
start /wait 452.39-data-center-tesla-desktop-win10-64bit-international.exe -s -noreboot
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
del 452.39-data-center-tesla-desktop-win10-64bit-international.exe || ver > NUL
|
||||
@ -5,7 +5,7 @@ set -eu -o pipefail
|
||||
export ANDROID_NDK_HOME=/opt/ndk
|
||||
export ANDROID_HOME=/opt/android/sdk
|
||||
|
||||
export GRADLE_VERSION=6.8.3
|
||||
export GRADLE_VERSION=4.10.3
|
||||
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
|
||||
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
|
||||
|
||||
@ -35,9 +35,7 @@ else
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
|
||||
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
|
||||
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
|
||||
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
|
||||
|
||||
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
|
||||
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES
|
||||
|
||||
@ -7,72 +7,46 @@ sudo apt-get -y install expect-dev
|
||||
# This is where the local pytorch install in the docker image is located
|
||||
pt_checkout="/var/lib/jenkins/workspace"
|
||||
|
||||
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
|
||||
|
||||
echo "python_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex
|
||||
|
||||
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
|
||||
# the order of operations goes:
|
||||
# 1. Check if there's an argument $1
|
||||
# 2. If no argument check for environment var DOCS_INSTALL_PATH
|
||||
# 3. If no environment var fall back to default 'docs/'
|
||||
|
||||
# NOTE: It might seem weird to gather the second argument before gathering the first argument
|
||||
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
|
||||
# try and gather it first, just so we don't potentially break people who rely on this script
|
||||
# Argument 2: What version of the docs we are building.
|
||||
version="${2:-${DOCS_VERSION:-master}}"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: python_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Argument 1: Where to copy the built documentation to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
|
||||
install_path="$1"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
is_main_doc=false
|
||||
# Argument 2: What version of the docs we are building.
|
||||
version="$2"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: python_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
is_master_doc=false
|
||||
if [ "$version" == "master" ]; then
|
||||
is_main_doc=true
|
||||
is_master_doc=true
|
||||
fi
|
||||
|
||||
# Argument 3: The branch to push to. Usually is "site"
|
||||
branch="${3:-${DOCS_BRANCH:-site}}"
|
||||
branch="$3"
|
||||
if [ -z "$branch" ]; then
|
||||
echo "error: python_doc_push_script.sh: branch (arg3) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version"
|
||||
# Argument 4: (optional) If present, we will NOT do any pushing. Used for testing.
|
||||
dry_run=false
|
||||
if [ "$4" != "" ]; then
|
||||
dry_run=true
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version dry_run: $dry_run"
|
||||
|
||||
build_docs () {
|
||||
set +e
|
||||
set -o pipefail
|
||||
make $1 2>&1 | tee /tmp/docs_build.txt
|
||||
code=$?
|
||||
if [ $code -ne 0 ]; then
|
||||
set +x
|
||||
echo =========================
|
||||
grep "WARNING:" /tmp/docs_build.txt
|
||||
echo =========================
|
||||
echo Docs build failed. If the failure is not clear, scan back in the log
|
||||
echo for any WARNINGS or for the line "build finished with problems"
|
||||
echo "(tried to echo the WARNINGS above the ==== line)"
|
||||
echo =========================
|
||||
fi
|
||||
set -ex
|
||||
return $code
|
||||
}
|
||||
|
||||
|
||||
git clone https://github.com/pytorch/pytorch.github.io -b $branch --depth 1
|
||||
git clone https://github.com/pytorch/pytorch.github.io -b $branch
|
||||
pushd pytorch.github.io
|
||||
|
||||
export LC_ALL=C
|
||||
@ -80,15 +54,26 @@ export PATH=/opt/conda/bin:$PATH
|
||||
|
||||
rm -rf pytorch || true
|
||||
|
||||
# Install TensorBoard in python 3 so torch.utils.tensorboard classes render
|
||||
pip install -q https://s3.amazonaws.com/ossci-linux/wheels/tensorboard-1.14.0a0-py3-none-any.whl
|
||||
|
||||
# Get all the documentation sources, put them in one place
|
||||
pushd "$pt_checkout"
|
||||
git clone https://github.com/pytorch/vision
|
||||
pushd vision
|
||||
conda install -q pillow
|
||||
time python setup.py install
|
||||
popd
|
||||
pushd docs
|
||||
rm -rf source/torchvision
|
||||
cp -a ../vision/docs/source source/torchvision
|
||||
|
||||
# Build the docs
|
||||
pip -q install -r requirements.txt
|
||||
if [ "$is_main_doc" = true ]; then
|
||||
build_docs html
|
||||
[ $? -eq 0 ] || exit $?
|
||||
pip -q install -r requirements.txt || true
|
||||
if [ "$is_master_doc" = true ]; then
|
||||
# TODO: fix gh-38011 then enable this which changes warnings into errors
|
||||
# export SPHINXOPTS="-WT --keep-going"
|
||||
make html
|
||||
make coverage
|
||||
# Now we have the coverage report, we need to make sure it is empty.
|
||||
# Count the number of lines in the file and turn that number into a variable
|
||||
@ -109,9 +94,8 @@ if [ "$is_main_doc" = true ]; then
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
# skip coverage, format for stable or tags
|
||||
build_docs html-stable
|
||||
[ $? -eq 0 ] || exit $?
|
||||
# Don't fail the build on coverage problems
|
||||
make html-stable
|
||||
fi
|
||||
|
||||
# Move them into the docs repo
|
||||
@ -120,6 +104,14 @@ popd
|
||||
git rm -rf "$install_path" || true
|
||||
mv "$pt_checkout/docs/build/html" "$install_path"
|
||||
|
||||
# Add the version handler by search and replace.
|
||||
# XXX: Consider moving this to the docs Makefile or site build
|
||||
if [ "$is_master_doc" = true ]; then
|
||||
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>\1 \▼</a>@g"
|
||||
else
|
||||
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \▼</a>@g"
|
||||
fi
|
||||
|
||||
# Prevent Google from indexing $install_path/_modules. This folder contains
|
||||
# generated source files.
|
||||
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
|
||||
@ -131,11 +123,23 @@ git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
|
||||
git commit -m "auto-generating sphinx docs" || true
|
||||
git status
|
||||
|
||||
if [[ "${WITH_PUSH:-}" == true ]]; then
|
||||
git push -u origin "${branch}"
|
||||
if [ "$dry_run" = false ]; then
|
||||
echo "Pushing to pytorch.github.io:$branch"
|
||||
set +x
|
||||
/usr/bin/expect <<DONE
|
||||
spawn git push origin $branch
|
||||
expect "Username*"
|
||||
send "pytorchbot\n"
|
||||
expect "Password*"
|
||||
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
|
||||
expect eof
|
||||
DONE
|
||||
set -x
|
||||
else
|
||||
echo "Skipping push due to dry_run"
|
||||
fi
|
||||
|
||||
popd
|
||||
|
||||
@ -1,17 +1,20 @@
|
||||
#!/usr/bin/env bash
|
||||
set -ex -o pipefail
|
||||
|
||||
# Set up NVIDIA docker repo
|
||||
curl -s -L --retry 3 https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
# Remove unnecessary sources
|
||||
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
|
||||
sudo rm -f /etc/apt/heroku.list
|
||||
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
|
||||
sudo rm -f /etc/apt/partner.list
|
||||
|
||||
# To increase the network reliability, let apt decide which mirror is best to use
|
||||
sudo sed -i -e 's/http:\/\/.*archive/mirror:\/\/mirrors/' -e 's/\/ubuntu\//\/mirrors.txt/' /etc/apt/sources.list
|
||||
|
||||
retry () {
|
||||
$* || $* || $* || $* || $*
|
||||
$* || $* || $* || $* || $*
|
||||
}
|
||||
|
||||
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
|
||||
@ -19,85 +22,70 @@ retry () {
|
||||
# This is better than retrying the whole apt-get command
|
||||
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
|
||||
|
||||
retry sudo apt-get update -qq
|
||||
sudo apt-get -y update
|
||||
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
|
||||
# WARNING: Docker version is hardcoded here; you must update the
|
||||
# version number below for docker-ce and nvidia-docker2 to get newer
|
||||
# versions of Docker. We hardcode these numbers because we kept
|
||||
# getting broken CI when Docker would update their docker version,
|
||||
# and nvidia-docker2 would be out of date for a day until they
|
||||
# released a newer version of their package.
|
||||
#
|
||||
# How to figure out what the correct versions of these packages are?
|
||||
# My preferred method is to start a Docker instance of the correct
|
||||
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
|
||||
# apt what the packages you need are. Note that the CircleCI image
|
||||
# comes with Docker.
|
||||
#
|
||||
# Using 'retry' here as belt-and-suspenders even though we are
|
||||
# presumably retrying at the single-package level via the
|
||||
# apt.conf.d/80-retries technique.
|
||||
retry sudo apt-get -y install \
|
||||
linux-headers-$(uname -r) \
|
||||
linux-image-generic \
|
||||
moreutils \
|
||||
docker-ce=5:18.09.4~3-0~ubuntu-xenial \
|
||||
nvidia-container-runtime=2.0.0+docker18.09.4-1 \
|
||||
nvidia-docker2=2.0.3+docker18.09.4-1 \
|
||||
expect-dev
|
||||
|
||||
echo "== DOCKER VERSION =="
|
||||
docker version
|
||||
sudo pkill -SIGHUP dockerd
|
||||
|
||||
if ! command -v aws >/dev/null; then
|
||||
retry sudo pip3 -q install awscli==1.19.64
|
||||
fi
|
||||
|
||||
retry sudo pip -q install awscli==1.16.35
|
||||
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
DRIVER_FN="NVIDIA-Linux-x86_64-510.60.02.run"
|
||||
DRIVER_FN="NVIDIA-Linux-x86_64-440.59.run"
|
||||
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
|
||||
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
|
||||
nvidia-smi
|
||||
|
||||
# Taken directly from https://github.com/NVIDIA/nvidia-docker
|
||||
# Add the package repositories
|
||||
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
curl -s -L "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
retry sudo apt-get update -qq
|
||||
# Necessary to get the `--gpus` flag to function within docker
|
||||
retry sudo apt-get install -y nvidia-container-toolkit
|
||||
sudo systemctl restart docker
|
||||
else
|
||||
# Explicitly remove nvidia docker apt repositories if not building for cuda
|
||||
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
|
||||
fi
|
||||
|
||||
add_to_env_file() {
|
||||
local name=$1
|
||||
local value=$2
|
||||
case "$value" in
|
||||
*\ *)
|
||||
# BASH_ENV should be set by CircleCI
|
||||
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
|
||||
;;
|
||||
*)
|
||||
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
|
||||
;;
|
||||
esac
|
||||
}
|
||||
|
||||
add_to_env_file IN_CI 1
|
||||
add_to_env_file CI_MASTER "${CI_MASTER:-}"
|
||||
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
|
||||
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
|
||||
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
|
||||
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
|
||||
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
|
||||
|
||||
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
|
||||
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
|
||||
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
|
||||
add_to_env_file MAX_JOBS "${MAX_JOBS}"
|
||||
|
||||
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
|
||||
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
|
||||
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
|
||||
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
|
||||
fi
|
||||
export SCCACHE_MAX_JOBS=`expr $(nproc) - 1`
|
||||
export MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
|
||||
export MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
|
||||
echo "declare -x MAX_JOBS=${MAX_JOBS}" >> /home/circleci/project/env
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
|
||||
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
|
||||
set +x
|
||||
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
|
||||
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
|
||||
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
|
||||
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
|
||||
set -x
|
||||
else
|
||||
# This IAM user allows write access to S3 bucket for sccache
|
||||
set +x
|
||||
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
|
||||
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
|
||||
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
|
||||
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
|
||||
set -x
|
||||
fi
|
||||
fi
|
||||
@ -106,7 +94,5 @@ fi
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
|
||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
|
||||
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
|
||||
export AWS_REGION=us-east-1
|
||||
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
|
||||
eval $(aws ecr get-login --region us-east-1 --no-include-email)
|
||||
set -x
|
||||
|
||||
@ -33,7 +33,7 @@ systemctl list-units --all | cat
|
||||
sudo pkill apt-get || true
|
||||
|
||||
# For even better luck, purge unattended-upgrades
|
||||
sudo apt-get purge -y unattended-upgrades || true
|
||||
sudo apt-get purge -y unattended-upgrades
|
||||
|
||||
cat /etc/apt/sources.list
|
||||
|
||||
|
||||
@ -1,140 +0,0 @@
|
||||
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
|
||||
|
||||
import re
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import requests
|
||||
import time
|
||||
|
||||
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
|
||||
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
|
||||
PIPELINE_ID = "911"
|
||||
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
|
||||
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "main")
|
||||
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
|
||||
|
||||
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
|
||||
|
||||
s = requests.Session()
|
||||
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
|
||||
|
||||
def submit_build(pipeline_id, project_id, source_branch, source_version):
|
||||
print("Submitting build for branch: " + source_branch)
|
||||
print("Commit SHA1: ", source_version)
|
||||
|
||||
run_build_raw = s.post(build_base_url, json={
|
||||
"definition": {"id": pipeline_id},
|
||||
"project": {"id": project_id},
|
||||
"sourceBranch": source_branch,
|
||||
"sourceVersion": source_version
|
||||
})
|
||||
|
||||
try:
|
||||
run_build_json = run_build_raw.json()
|
||||
except json.decoder.JSONDecodeError as e:
|
||||
print(e)
|
||||
print("Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired.")
|
||||
sys.exit(-1)
|
||||
|
||||
build_id = run_build_json['id']
|
||||
|
||||
print("Submitted bulid: " + str(build_id))
|
||||
print("Bulid URL: " + run_build_json['url'])
|
||||
return build_id
|
||||
|
||||
def get_build(_id):
|
||||
get_build_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
|
||||
get_build_raw = s.get(get_build_url)
|
||||
return get_build_raw.json()
|
||||
|
||||
def get_build_logs(_id):
|
||||
get_build_logs_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
|
||||
get_build_logs_raw = s.get(get_build_logs_url)
|
||||
return get_build_logs_raw.json()
|
||||
|
||||
def get_log_content(url):
|
||||
resp = s.get(url)
|
||||
return resp.text
|
||||
|
||||
def wait_for_build(_id):
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
|
||||
while build_status == 'notStarted':
|
||||
print('Waiting for run to start: ' + str(_id))
|
||||
sys.stdout.flush()
|
||||
try:
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
except Exception as e:
|
||||
print("Error getting build")
|
||||
print(e)
|
||||
|
||||
time.sleep(30)
|
||||
|
||||
print("Bulid started: ", str(_id))
|
||||
|
||||
handled_logs = set()
|
||||
while build_status == 'inProgress':
|
||||
try:
|
||||
print("Waiting for log: " + str(_id))
|
||||
logs = get_build_logs(_id)
|
||||
except Exception as e:
|
||||
print("Error fetching logs")
|
||||
print(e)
|
||||
time.sleep(30)
|
||||
continue
|
||||
|
||||
for log in logs['value']:
|
||||
log_id = log['id']
|
||||
if log_id in handled_logs:
|
||||
continue
|
||||
handled_logs.add(log_id)
|
||||
print('Fetching log: \n' + log['url'])
|
||||
try:
|
||||
log_content = get_log_content(log['url'])
|
||||
print(log_content)
|
||||
except Exception as e:
|
||||
print("Error getting log content")
|
||||
print(e)
|
||||
sys.stdout.flush()
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
time.sleep(30)
|
||||
|
||||
build_result = build_detail['result']
|
||||
|
||||
print("Bulid status: " + build_status)
|
||||
print("Bulid result: " + build_result)
|
||||
|
||||
return build_status, build_result
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Convert the branch name for Azure DevOps
|
||||
match = re.search(r'pull/(\d+)', TARGET_BRANCH)
|
||||
if match is not None:
|
||||
pr_num = match.group(1)
|
||||
SOURCE_BRANCH = f'refs/pull/{pr_num}/head'
|
||||
else:
|
||||
SOURCE_BRANCH = f'refs/heads/{TARGET_BRANCH}'
|
||||
|
||||
MAX_RETRY = 2
|
||||
retry = MAX_RETRY
|
||||
|
||||
while retry > 0:
|
||||
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
|
||||
build_status, build_result = wait_for_build(build_id)
|
||||
|
||||
if build_result != 'succeeded':
|
||||
retry = retry - 1
|
||||
if retry > 0:
|
||||
print("Retrying... remaining attempt: " + str(retry))
|
||||
# Wait a bit before retrying
|
||||
time.sleep((MAX_RETRY - retry) * 120)
|
||||
continue
|
||||
else:
|
||||
print("No more chance to retry. Giving up.")
|
||||
sys.exit(-1)
|
||||
else:
|
||||
break
|
||||
145
.circleci/scripts/upload_binary_size_to_scuba.py
Normal file
145
.circleci/scripts/upload_binary_size_to_scuba.py
Normal file
@ -0,0 +1,145 @@
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import os.path
|
||||
import pathlib
|
||||
import re
|
||||
import sys
|
||||
import time
|
||||
import zipfile
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def get_size(file_dir):
|
||||
try:
|
||||
# we should only expect one file, if no, something is wrong
|
||||
file_name = glob.glob(os.path.join(file_dir, "*"))[0]
|
||||
return os.stat(file_name).st_size
|
||||
except:
|
||||
logging.exception(f"error getting file from: {file_dir}")
|
||||
return 0
|
||||
|
||||
|
||||
def build_message(size):
|
||||
pkg_type, py_ver, cu_ver, *_ = os.environ.get("BUILD_ENVIRONMENT", "").split() + [
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
]
|
||||
os_name = os.uname()[0].lower()
|
||||
if os_name == "darwin":
|
||||
os_name = "macos"
|
||||
return {
|
||||
"normal": {
|
||||
"os": os_name,
|
||||
"pkg_type": pkg_type,
|
||||
"py_ver": py_ver,
|
||||
"cu_ver": cu_ver,
|
||||
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
|
||||
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
|
||||
"sha1": os.environ.get("CIRCLE_SHA1"),
|
||||
"branch": os.environ.get("CIRCLE_BRANCH"),
|
||||
},
|
||||
"int": {
|
||||
"time": int(time.time()),
|
||||
"size": size,
|
||||
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def send_message(messages):
|
||||
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
|
||||
if not access_token:
|
||||
raise ValueError("Can't find access token from environment variable")
|
||||
url = "https://graph.facebook.com/scribe_logs"
|
||||
r = requests.post(
|
||||
url,
|
||||
data={
|
||||
"access_token": access_token,
|
||||
"logs": json.dumps(
|
||||
[
|
||||
{
|
||||
"category": "perfpipe_pytorch_binary_size",
|
||||
"message": json.dumps(message),
|
||||
"line_escape": False,
|
||||
}
|
||||
for message in messages
|
||||
]
|
||||
),
|
||||
},
|
||||
)
|
||||
print(r.text)
|
||||
r.raise_for_status()
|
||||
|
||||
|
||||
def report_android_sizes(file_dir):
|
||||
def gen_sizes():
|
||||
# we should only expect one file, if no, something is wrong
|
||||
aar_files = list(pathlib.Path(file_dir).rglob("pytorch_android-*.aar"))
|
||||
if len(aar_files) != 1:
|
||||
logging.exception(f"error getting aar files from: {file_dir} / {aar_files}")
|
||||
return
|
||||
|
||||
aar_file = aar_files[0]
|
||||
zf = zipfile.ZipFile(aar_file)
|
||||
for info in zf.infolist():
|
||||
# Scan ".so" libs in `jni` folder. Examples:
|
||||
# jni/arm64-v8a/libfbjni.so
|
||||
# jni/arm64-v8a/libpytorch_jni.so
|
||||
m = re.match(r"^jni/([^/]+)/(.*\.so)$", info.filename)
|
||||
if not m:
|
||||
continue
|
||||
arch, lib = m.groups()
|
||||
# report per architecture library size
|
||||
yield [arch, lib, info.compress_size, info.file_size]
|
||||
|
||||
# report whole package size
|
||||
yield ["aar", aar_file.name, os.stat(aar_file).st_size, 0]
|
||||
|
||||
def gen_messages():
|
||||
android_build_type = os.environ.get("ANDROID_BUILD_TYPE")
|
||||
for arch, lib, comp_size, uncomp_size in gen_sizes():
|
||||
print(android_build_type, arch, lib, comp_size, uncomp_size)
|
||||
yield {
|
||||
"normal": {
|
||||
"os": "android",
|
||||
# TODO: create dedicated columns
|
||||
"pkg_type": "{}/{}/{}".format(android_build_type, arch, lib),
|
||||
"cu_ver": "", # dummy value for derived field `build_name`
|
||||
"py_ver": "", # dummy value for derived field `build_name`
|
||||
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
|
||||
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
|
||||
"sha1": os.environ.get("CIRCLE_SHA1"),
|
||||
"branch": os.environ.get("CIRCLE_BRANCH"),
|
||||
},
|
||||
"int": {
|
||||
"time": int(time.time()),
|
||||
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
|
||||
"size": comp_size,
|
||||
"raw_size": uncomp_size,
|
||||
},
|
||||
}
|
||||
|
||||
send_message(list(gen_messages()))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
file_dir = os.environ.get(
|
||||
"PYTORCH_FINAL_PACKAGE_DIR", "/home/circleci/project/final_pkgs"
|
||||
)
|
||||
if len(sys.argv) == 2:
|
||||
file_dir = sys.argv[1]
|
||||
print("checking dir: " + file_dir)
|
||||
|
||||
if "-android" in os.environ.get("BUILD_ENVIRONMENT", ""):
|
||||
report_android_sizes(file_dir)
|
||||
else:
|
||||
size = get_size(file_dir)
|
||||
if size != 0:
|
||||
try:
|
||||
send_message([build_message(size)])
|
||||
except:
|
||||
logging.exception("can't send message")
|
||||
@ -1,10 +1,7 @@
|
||||
# https://developercommunity.visualstudio.com/t/install-specific-version-of-vs-component/1142479
|
||||
# Where to find the links: https://docs.microsoft.com/en-us/visualstudio/releases/2019/history#release-dates-and-build-numbers
|
||||
|
||||
# BuildTools from S3
|
||||
$VS_DOWNLOAD_LINK = "https://s3.amazonaws.com/ossci-windows/vs${env:VS_VERSION}_BuildTools.exe"
|
||||
$VS_DOWNLOAD_LINK = "https://aka.ms/vs/15/release/vs_buildtools.exe"
|
||||
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
|
||||
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
|
||||
"--add Microsoft.VisualStudio.Component.VC.Tools.14.11",
|
||||
"--add Microsoft.Component.MSBuild",
|
||||
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
|
||||
"--add Microsoft.VisualStudio.Component.TextTemplating",
|
||||
@ -14,45 +11,17 @@ $VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStud
|
||||
"--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
|
||||
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Win81")
|
||||
|
||||
if (${env:INSTALL_WINDOWS_SDK} -eq "1") {
|
||||
$VS_INSTALL_ARGS += "--add Microsoft.VisualStudio.Component.Windows10SDK.19041"
|
||||
}
|
||||
|
||||
if (Test-Path "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe") {
|
||||
$VS_VERSION_major = [int] ${env:VS_VERSION}.split(".")[0]
|
||||
$existingPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -version "[${env:VS_VERSION}, ${env:VS_VERSION_major + 1})" -property installationPath
|
||||
if (($existingPath -ne $null) -and (!${env:CIRCLECI})) {
|
||||
echo "Found correctly versioned existing BuildTools installation in $existingPath"
|
||||
exit 0
|
||||
}
|
||||
$pathToRemove = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -property installationPath
|
||||
}
|
||||
|
||||
echo "Downloading VS installer from S3."
|
||||
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
|
||||
if ($LASTEXITCODE -ne 0) {
|
||||
echo "Download of the VS 2019 Version ${env:VS_VERSION} installer failed"
|
||||
echo "Download of the VS 2017 installer failed"
|
||||
exit 1
|
||||
}
|
||||
|
||||
if ($pathToRemove -ne $null) {
|
||||
echo "Uninstalling $pathToRemove."
|
||||
$VS_UNINSTALL_ARGS = @("uninstall", "--installPath", "`"$pathToRemove`"", "--quiet","--wait")
|
||||
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_UNINSTALL_ARGS -NoNewWindow -Wait -PassThru
|
||||
$exitCode = $process.ExitCode
|
||||
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
|
||||
echo "Original BuildTools uninstall failed with code $exitCode"
|
||||
exit 1
|
||||
}
|
||||
echo "Other versioned BuildTools uninstalled."
|
||||
}
|
||||
|
||||
echo "Installing Visual Studio version ${env:VS_VERSION}."
|
||||
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
|
||||
Remove-Item -Path vs_installer.exe -Force
|
||||
$exitCode = $process.ExitCode
|
||||
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
|
||||
echo "VS 2019 installer exited with code $exitCode, which should be one of [0, 3010]."
|
||||
echo "VS 2017 installer exited with code $exitCode, which should be one of [0, 3010]."
|
||||
curl.exe --retry 3 -kL $COLLECT_DOWNLOAD_LINK --output Collect.exe
|
||||
if ($LASTEXITCODE -ne 0) {
|
||||
echo "Download of the VS Collect tool failed."
|
||||
@ -60,6 +29,6 @@ if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
|
||||
}
|
||||
Start-Process "${PWD}\Collect.exe" -NoNewWindow -Wait -PassThru
|
||||
New-Item -Path "C:\w\build-results" -ItemType "directory" -Force
|
||||
Copy-Item -Path "${env:TEMP}\vslogs.zip" -Destination "C:\w\build-results\"
|
||||
Copy-Item -Path "C:\Users\circleci\AppData\Local\Temp\vslogs.zip" -Destination "C:\w\build-results\"
|
||||
exit 1
|
||||
}
|
||||
|
||||
@ -1,5 +0,0 @@
|
||||
$CMATH_DOWNLOAD_LINK = "https://raw.githubusercontent.com/microsoft/STL/12c684bba78f9b032050526abdebf14f58ca26a3/stl/inc/cmath"
|
||||
$VC14_28_INSTALL_PATH="C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.28.29910\include"
|
||||
|
||||
curl.exe --retry 3 -kL $CMATH_DOWNLOAD_LINK --output "$home\cmath"
|
||||
Move-Item -Path "$home\cmath" -Destination "$VC14_28_INSTALL_PATH" -Force
|
||||
@ -1,70 +1,37 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
case ${CUDA_VERSION} in
|
||||
10.2)
|
||||
cuda_installer_name="cuda_10.2.89_441.22_win10"
|
||||
cuda_install_packages="nvcc_10.2 cuobjdump_10.2 nvprune_10.2 cupti_10.2 cublas_10.2 cublas_dev_10.2 cudart_10.2 cufft_10.2 cufft_dev_10.2 curand_10.2 curand_dev_10.2 cusolver_10.2 cusolver_dev_10.2 cusparse_10.2 cusparse_dev_10.2 nvgraph_10.2 nvgraph_dev_10.2 npp_10.2 npp_dev_10.2 nvrtc_10.2 nvrtc_dev_10.2 nvml_dev_10.2"
|
||||
;;
|
||||
11.3)
|
||||
cuda_installer_name="cuda_11.3.0_465.89_win10"
|
||||
cuda_install_packages="thrust_11.3 nvcc_11.3 cuobjdump_11.3 nvprune_11.3 nvprof_11.3 cupti_11.3 cublas_11.3 cublas_dev_11.3 cudart_11.3 cufft_11.3 cufft_dev_11.3 curand_11.3 curand_dev_11.3 cusolver_11.3 cusolver_dev_11.3 cusparse_11.3 cusparse_dev_11.3 npp_11.3 npp_dev_11.3 nvrtc_11.3 nvrtc_dev_11.3 nvml_dev_11.3"
|
||||
;;
|
||||
11.6)
|
||||
cuda_installer_name="cuda_11.6.0_511.23_windows"
|
||||
cuda_install_packages="thrust_11.6 nvcc_11.6 cuobjdump_11.6 nvprune_11.6 nvprof_11.6 cupti_11.6 cublas_11.6 cublas_dev_11.6 cudart_11.6 cufft_11.6 cufft_dev_11.6 curand_11.6 curand_dev_11.6 cusolver_11.6 cusolver_dev_11.6 cusparse_11.6 cusparse_dev_11.6 npp_11.6 npp_dev_11.6 nvrtc_11.6 nvrtc_dev_11.6 nvml_dev_11.6"
|
||||
;;
|
||||
*)
|
||||
echo "CUDA_VERSION $CUDA_VERSION is not supported yet"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/cuda_10.1.243_426.00_win10.exe
|
||||
7z x cuda_10.1.243_426.00_win10.exe -ocuda_10.1.243_426.00_win10
|
||||
cd cuda_10.1.243_426.00_win10
|
||||
mkdir cuda_install_logs
|
||||
|
||||
set +e
|
||||
|
||||
if [[ -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
|
||||
echo "Existing CUDA v${CUDA_VERSION} installation found, skipping install"
|
||||
./setup.exe -s nvcc_10.1 cuobjdump_10.1 nvprune_10.1 cupti_10.1 cublas_10.1 cublas_dev_10.1 cudart_10.1 cufft_10.1 cufft_dev_10.1 curand_10.1 curand_dev_10.1 cusolver_10.1 cusolver_dev_10.1 cusparse_10.1 cusparse_dev_10.1 nvgraph_10.1 nvgraph_dev_10.1 npp_10.1 npp_dev_10.1 nvrtc_10.1 nvrtc_dev_10.1 nvml_dev_10.1 -loglevel:6 -log:"$(pwd -W)/cuda_install_logs"
|
||||
|
||||
set -e
|
||||
|
||||
if [[ "${VC_YEAR}" == "2017" ]]; then
|
||||
cp -r CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions/* "C:/Program Files (x86)/Microsoft Visual Studio/2017/${VC_PRODUCT}/Common7/IDE/VC/VCTargets/BuildCustomizations/"
|
||||
else
|
||||
tmp_dir=$(mktemp -d)
|
||||
(
|
||||
# no need to popd after, the subshell shouldn't affect the parent shell
|
||||
pushd "${tmp_dir}"
|
||||
cuda_installer_link="https://ossci-windows.s3.amazonaws.com/${cuda_installer_name}.exe"
|
||||
|
||||
curl --retry 3 -kLO $cuda_installer_link
|
||||
7z x ${cuda_installer_name}.exe -o${cuda_installer_name}
|
||||
pushd ${cuda_installer_name}
|
||||
mkdir cuda_install_logs
|
||||
|
||||
set +e
|
||||
|
||||
# This breaks for some reason if you quote cuda_install_packages
|
||||
# shellcheck disable=SC2086
|
||||
./setup.exe -s ${cuda_install_packages} -loglevel:6 -log:"$(pwd -W)/cuda_install_logs"
|
||||
|
||||
set -e
|
||||
|
||||
if [[ ! -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
|
||||
echo "CUDA installation failed"
|
||||
mkdir -p /c/w/build-results
|
||||
7z a "c:\\w\\build-results\\cuda_install_logs.7z" cuda_install_logs
|
||||
exit 1
|
||||
fi
|
||||
)
|
||||
rm -rf "${tmp_dir}"
|
||||
cp -r CUDAVisualStudioIntegration/extras/visual_studio_integration/MSBuildExtensions/* "C:/Program Files (x86)/Microsoft Visual Studio/2019/${VC_PRODUCT}/MSBuild/Microsoft/VC/v160/BuildCustomizations/"
|
||||
fi
|
||||
|
||||
if [[ -f "/c/Program Files/NVIDIA Corporation/NvToolsExt/bin/x64/nvToolsExt64_1.dll" ]]; then
|
||||
echo "Existing nvtools installation found, skipping install"
|
||||
else
|
||||
# create tmp dir for download
|
||||
tmp_dir=$(mktemp -d)
|
||||
(
|
||||
# no need to popd after, the subshell shouldn't affect the parent shell
|
||||
pushd "${tmp_dir}"
|
||||
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/NvToolsExt.7z
|
||||
7z x NvToolsExt.7z -oNvToolsExt
|
||||
mkdir -p "C:/Program Files/NVIDIA Corporation/NvToolsExt"
|
||||
cp -r NvToolsExt/* "C:/Program Files/NVIDIA Corporation/NvToolsExt/"
|
||||
)
|
||||
rm -rf "${tmp_dir}"
|
||||
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/NvToolsExt.7z
|
||||
7z x NvToolsExt.7z -oNvToolsExt
|
||||
mkdir -p "C:/Program Files/NVIDIA Corporation/NvToolsExt"
|
||||
cp -r NvToolsExt/* "C:/Program Files/NVIDIA Corporation/NvToolsExt/"
|
||||
export NVTOOLSEXT_PATH="C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\"
|
||||
|
||||
if ! ls "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.1/bin/nvcc.exe"
|
||||
then
|
||||
echo "CUDA installation failed"
|
||||
mkdir -p /c/w/build-results
|
||||
7z a "c:\\w\\build-results\\cuda_install_logs.7z" cuda_install_logs
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cd ..
|
||||
rm -rf ./cuda_10.1.243_426.00_win10
|
||||
rm -f ./cuda_10.1.243_426.00_win10.exe
|
||||
|
||||
@ -1,48 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
|
||||
windows_s3_link="https://ossci-windows.s3.amazonaws.com"
|
||||
|
||||
case ${CUDA_VERSION} in
|
||||
10.2)
|
||||
cudnn_file_name="cudnn-${CUDA_VERSION}-windows10-x64-v7.6.5.32"
|
||||
;;
|
||||
11.3)
|
||||
# Use cudnn8.3 with hard-coded cuda11.3 version
|
||||
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
|
||||
;;
|
||||
11.6)
|
||||
# Use cudnn8.3 with hard-coded cuda11.5 version
|
||||
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
|
||||
;;
|
||||
*)
|
||||
echo "CUDA_VERSION: ${CUDA_VERSION} not supported yet"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
cudnn_installer_name="cudnn_installer.zip"
|
||||
cudnn_installer_link="${windows_s3_link}/${cudnn_file_name}.zip"
|
||||
cudnn_install_folder="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/"
|
||||
|
||||
if [[ -f "${cudnn_install_folder}/include/cudnn.h" ]]; then
|
||||
echo "Existing cudnn installation found, skipping install..."
|
||||
else
|
||||
tmp_dir=$(mktemp -d)
|
||||
(
|
||||
pushd "${tmp_dir}"
|
||||
curl --retry 3 -o "${cudnn_installer_name}" "$cudnn_installer_link"
|
||||
7z x "${cudnn_installer_name}" -ocudnn
|
||||
# Use '${var:?}/*' to avoid potentially expanding to '/*'
|
||||
# Remove all of the directories before attempting to copy files
|
||||
rm -rf "${cudnn_install_folder:?}/*"
|
||||
cp -rf cudnn/cuda/* "${cudnn_install_folder}"
|
||||
|
||||
#Make sure windows path contains zlib dll
|
||||
curl -k -L "${windows_s3_link}/zlib123dllx64.zip" --output "${tmp_dir}\zlib123dllx64.zip"
|
||||
7z x "${tmp_dir}\zlib123dllx64.zip" -o"${tmp_dir}\zlib"
|
||||
xcopy /Y "${tmp_dir}\zlib\dll_x64\*.dll" "C:\Windows\System32"
|
||||
)
|
||||
rm -rf "${tmp_dir}"
|
||||
fi
|
||||
45
.circleci/validate-docker-version.py
Executable file
45
.circleci/validate-docker-version.py
Executable file
@ -0,0 +1,45 @@
|
||||
#!/usr/bin/env python3
|
||||
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
|
||||
import cimodel.data.simple.util.docker_constants as pytorch_docker_constants
|
||||
|
||||
from yaml import load
|
||||
|
||||
try:
|
||||
from yaml import CLoader as Loader
|
||||
except ImportError:
|
||||
from yaml import Loader
|
||||
|
||||
|
||||
def load_config(filename=".circleci/config.yml"):
|
||||
with open(filename, "r") as fh:
|
||||
return load("".join(fh.readlines()), Loader)
|
||||
|
||||
|
||||
def load_tags_for_projects(workflow_config):
|
||||
return {
|
||||
v["ecr_gc_job"]["project"]: v["ecr_gc_job"]["tags_to_keep"]
|
||||
for v in workflow_config["workflows"]["ecr_gc"]["jobs"]
|
||||
if isinstance(v, dict) and "ecr_gc_job" in v
|
||||
}
|
||||
|
||||
|
||||
def check_version(job, tags, expected_version):
|
||||
valid_versions = tags[job].split(",")
|
||||
if expected_version not in valid_versions:
|
||||
raise RuntimeError(
|
||||
"We configured {} to use Docker version {}; but this "
|
||||
"version is not configured in job ecr_gc_job_for_{}. Non-deployed versions will be "
|
||||
"garbage collected two weeks after they are created. DO NOT LAND "
|
||||
"THIS TO MASTER without also updating ossci-job-dsl with this version."
|
||||
"\n\nDeployed versions: {}".format(job, expected_version, job, tags[job])
|
||||
)
|
||||
|
||||
|
||||
def validate_docker_version():
|
||||
tags = load_tags_for_projects(load_config())
|
||||
check_version("pytorch", tags, pytorch_docker_constants.DOCKER_IMAGE_TAG)
|
||||
check_version("caffe2", tags, caffe2_build_definitions.DOCKER_IMAGE_VERSION)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
validate_docker_version()
|
||||
@ -59,7 +59,8 @@ binary_windows_params: &binary_windows_params
|
||||
default: ""
|
||||
executor:
|
||||
type: string
|
||||
default: "windows-xlarge-cpu-with-nvidia-cuda"
|
||||
default: "windows-cpu-with-nvidia-cuda"
|
||||
environment:
|
||||
BUILD_ENVIRONMENT: << parameters.build_environment >>
|
||||
BUILD_FOR_SYSTEM: windows
|
||||
JOB_EXECUTOR: <<parameters.executor>>
|
||||
|
||||
@ -0,0 +1,27 @@
|
||||
caffe2_params: &caffe2_params
|
||||
parameters:
|
||||
build_environment:
|
||||
type: string
|
||||
default: ""
|
||||
build_ios:
|
||||
type: string
|
||||
default: ""
|
||||
docker_image:
|
||||
type: string
|
||||
default: ""
|
||||
use_cuda_docker_runtime:
|
||||
type: string
|
||||
default: ""
|
||||
build_only:
|
||||
type: string
|
||||
default: ""
|
||||
resource_class:
|
||||
type: string
|
||||
default: "large"
|
||||
environment:
|
||||
BUILD_ENVIRONMENT: << parameters.build_environment >>
|
||||
BUILD_IOS: << parameters.build_ios >>
|
||||
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
|
||||
DOCKER_IMAGE: << parameters.docker_image >>
|
||||
BUILD_ONLY: << parameters.build_only >>
|
||||
resource_class: << parameters.resource_class >>
|
||||
@ -0,0 +1,14 @@
|
||||
|
||||
promote_common: &promote_common
|
||||
docker:
|
||||
- image: pytorch/release
|
||||
parameters:
|
||||
package_name:
|
||||
description: "package name to promote"
|
||||
type: string
|
||||
default: ""
|
||||
environment:
|
||||
PACKAGE_NAME: << parameters.package_name >>
|
||||
ANACONDA_API_TOKEN: ${CONDA_PYTORCHBOT_TOKEN}
|
||||
AWS_ACCESS_KEY_ID: ${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}
|
||||
AWS_SECRET_ACCESS_KEY: ${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}
|
||||
@ -15,15 +15,11 @@ pytorch_params: &pytorch_params
|
||||
build_only:
|
||||
type: string
|
||||
default: ""
|
||||
ci_master:
|
||||
type: string
|
||||
default: ""
|
||||
environment:
|
||||
BUILD_ENVIRONMENT: << parameters.build_environment >>
|
||||
DOCKER_IMAGE: << parameters.docker_image >>
|
||||
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
|
||||
BUILD_ONLY: << parameters.build_only >>
|
||||
CI_MASTER: << pipeline.parameters.run_master_build >>
|
||||
resource_class: << parameters.resource_class >>
|
||||
|
||||
pytorch_ios_params: &pytorch_ios_params
|
||||
@ -40,29 +36,17 @@ pytorch_ios_params: &pytorch_ios_params
|
||||
op_list:
|
||||
type: string
|
||||
default: ""
|
||||
use_metal:
|
||||
type: string
|
||||
default: "0"
|
||||
lite_interpreter:
|
||||
type: string
|
||||
default: "1"
|
||||
use_coreml:
|
||||
type: string
|
||||
default: "0"
|
||||
environment:
|
||||
BUILD_ENVIRONMENT: << parameters.build_environment >>
|
||||
IOS_ARCH: << parameters.ios_arch >>
|
||||
IOS_PLATFORM: << parameters.ios_platform >>
|
||||
SELECTED_OP_LIST: << parameters.op_list >>
|
||||
USE_PYTORCH_METAL: << parameters.use_metal >>
|
||||
BUILD_LITE_INTERPRETER: << parameters.lite_interpreter >>
|
||||
USE_COREML_DELEGATE: << parameters.use_coreml >>
|
||||
|
||||
pytorch_windows_params: &pytorch_windows_params
|
||||
parameters:
|
||||
executor:
|
||||
type: string
|
||||
default: "windows-xlarge-cpu-with-nvidia-cuda"
|
||||
default: "windows-cpu-with-nvidia-cuda"
|
||||
build_environment:
|
||||
type: string
|
||||
default: ""
|
||||
@ -71,19 +55,16 @@ pytorch_windows_params: &pytorch_windows_params
|
||||
default: ""
|
||||
cuda_version:
|
||||
type: string
|
||||
default: "10.1"
|
||||
default: "10"
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.8"
|
||||
vs_version:
|
||||
type: string
|
||||
default: "16.8.6"
|
||||
default: "3.6"
|
||||
vc_version:
|
||||
type: string
|
||||
default: "14.16"
|
||||
default: "14.11"
|
||||
vc_year:
|
||||
type: string
|
||||
default: "2019"
|
||||
default: "2017"
|
||||
vc_product:
|
||||
type: string
|
||||
default: "BuildTools"
|
||||
@ -95,11 +76,10 @@ pytorch_windows_params: &pytorch_windows_params
|
||||
SCCACHE_BUCKET: "ossci-compiler-cache"
|
||||
CUDA_VERSION: <<parameters.cuda_version>>
|
||||
PYTHON_VERSION: <<parameters.python_version>>
|
||||
VS_VERSION: <<parameters.vs_version>>
|
||||
VC_VERSION: <<parameters.vc_version>>
|
||||
VC_YEAR: <<parameters.vc_year>>
|
||||
VC_PRODUCT: <<parameters.vc_product>>
|
||||
USE_CUDA: <<parameters.use_cuda>>
|
||||
TORCH_CUDA_ARCH_LIST: "5.2 7.5"
|
||||
TORCH_CUDA_ARCH_LIST: "7.5"
|
||||
JOB_BASE_NAME: <<parameters.test_name>>
|
||||
JOB_EXECUTOR: <<parameters.executor>>
|
||||
|
||||
@ -1,26 +1,23 @@
|
||||
commands:
|
||||
|
||||
calculate_docker_image_tag:
|
||||
description: "Calculates the docker image tag"
|
||||
# Must be run after attaching workspace from previous steps
|
||||
load_shared_env:
|
||||
description: "Loads .circleci/shared/env_file into ${BASH_ENV}"
|
||||
parameters:
|
||||
# For some weird reason we decide to reattach our workspace to ~/workspace so
|
||||
# in the vein of making it simple let's assume our share env_file is here
|
||||
root:
|
||||
type: string
|
||||
default: "~/workspace"
|
||||
steps:
|
||||
- run:
|
||||
name: "Calculate docker image hash"
|
||||
name: "Load .circleci/shared/env_file into ${BASH_ENV}"
|
||||
command: |
|
||||
DOCKER_TAG=$(git rev-parse HEAD:.circleci/docker)
|
||||
echo "DOCKER_TAG=${DOCKER_TAG}" >> "${BASH_ENV}"
|
||||
|
||||
designate_upload_channel:
|
||||
description: "inserts the correct upload channel into ${BASH_ENV}"
|
||||
steps:
|
||||
- run:
|
||||
name: adding UPLOAD_CHANNEL to BASH_ENV
|
||||
command: |
|
||||
our_upload_channel=nightly
|
||||
# On tags upload to test instead
|
||||
if [[ -n "${CIRCLE_TAG}" ]]; then
|
||||
our_upload_channel=test
|
||||
if [[ -f "<< parameters.root >>/.circleci/shared/env_file" ]]; then
|
||||
cat << parameters.root >>/.circleci/shared/env_file >> ${BASH_ENV}
|
||||
else
|
||||
echo "We didn't have a shared env file, that's weird"
|
||||
fi
|
||||
echo "export UPLOAD_CHANNEL=${our_upload_channel}" >> ${BASH_ENV}
|
||||
|
||||
# This system setup script is meant to run before the CI-related scripts, e.g.,
|
||||
# installing Git client, checking out code, setting up CI env, and
|
||||
@ -103,7 +100,7 @@ commands:
|
||||
name: (Optional) Merge target branch
|
||||
no_output_timeout: "10m"
|
||||
command: |
|
||||
if [[ -n "$CIRCLE_PULL_REQUEST" && "$CIRCLE_BRANCH" != "nightly" ]]; then
|
||||
if [ -n "$CIRCLE_PULL_REQUEST" ]; then
|
||||
PR_NUM=$(basename $CIRCLE_PULL_REQUEST)
|
||||
CIRCLE_PR_BASE_BRANCH=$(curl -s https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$PR_NUM | jq -r '.base.ref')
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *"xla"* || "${BUILD_ENVIRONMENT}" == *"gcc5"* ]] ; then
|
||||
@ -133,42 +130,4 @@ commands:
|
||||
echo "This is not a pull request, skipping..."
|
||||
fi
|
||||
|
||||
upload_binary_size_for_android_build:
|
||||
description: "Upload binary size data for Android build"
|
||||
parameters:
|
||||
build_type:
|
||||
type: string
|
||||
default: ""
|
||||
artifacts:
|
||||
type: string
|
||||
default: ""
|
||||
steps:
|
||||
- run:
|
||||
name: "Binary Size - Install Dependencies"
|
||||
no_output_timeout: "5m"
|
||||
command: |
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
retry pip3 install requests
|
||||
- run:
|
||||
name: "Binary Size - Untar Artifacts"
|
||||
no_output_timeout: "5m"
|
||||
command: |
|
||||
# The artifact file is created inside docker container, which contains the result binaries.
|
||||
# Now unpackage it into the project folder. The subsequent script will scan project folder
|
||||
# to locate result binaries and report their sizes.
|
||||
# If artifact file is not provided it assumes that the project folder has been mounted in
|
||||
# the docker during build and already contains the result binaries, so this step can be skipped.
|
||||
export ARTIFACTS="<< parameters.artifacts >>"
|
||||
if [ -n "${ARTIFACTS}" ]; then
|
||||
tar xf "${ARTIFACTS}" -C ~/project
|
||||
fi
|
||||
- run:
|
||||
name: "Binary Size - Upload << parameters.build_type >>"
|
||||
no_output_timeout: "5m"
|
||||
command: |
|
||||
cd ~/project
|
||||
export ANDROID_BUILD_TYPE="<< parameters.build_type >>"
|
||||
export COMMIT_TIME=$(git log --max-count=1 --format=%ct || echo 0)
|
||||
python3 -m tools.stats.upload_binary_size_to_scuba android
|
||||
|
||||
|
||||
@ -11,31 +11,24 @@ parameters:
|
||||
run_binary_tests:
|
||||
type: boolean
|
||||
default: false
|
||||
run_build:
|
||||
type: boolean
|
||||
default: true
|
||||
run_master_build:
|
||||
type: boolean
|
||||
default: false
|
||||
run_slow_gradcheck_build:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
docker_config_defaults: &docker_config_defaults
|
||||
user: jenkins
|
||||
aws_auth:
|
||||
# This IAM user only allows read-write access to ECR
|
||||
aws_access_key_id: ${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4}
|
||||
aws_secret_access_key: ${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4}
|
||||
|
||||
executors:
|
||||
windows-with-nvidia-gpu:
|
||||
machine:
|
||||
resource_class: windows.gpu.nvidia.medium
|
||||
image: windows-server-2019-nvidia:previous
|
||||
image: windows-server-2019-nvidia:stable
|
||||
shell: bash.exe
|
||||
|
||||
windows-xlarge-cpu-with-nvidia-cuda:
|
||||
windows-cpu-with-nvidia-cuda:
|
||||
machine:
|
||||
# we will change to CPU host when it's ready
|
||||
resource_class: windows.xlarge
|
||||
image: windows-server-2019-vs2019:stable
|
||||
shell: bash.exe
|
||||
|
||||
windows-medium-cpu-with-nvidia-cuda:
|
||||
machine:
|
||||
resource_class: windows.medium
|
||||
image: windows-server-2019-vs2019:stable
|
||||
shell: bash.exe
|
||||
|
||||
@ -3,12 +3,12 @@
|
||||
# binary_linux_libtorch_3.6m_cpu_test:
|
||||
# environment:
|
||||
# BUILD_ENVIRONMENT: "libtorch 3.6m cpu"
|
||||
# resource_class: gpu.nvidia.small
|
||||
# resource_class: gpu.medium
|
||||
# <<: *binary_linux_test
|
||||
#
|
||||
# binary_linux_libtorch_3.6m_cu90_test:
|
||||
# environment:
|
||||
# BUILD_ENVIRONMENT: "libtorch 3.6m cu90"
|
||||
# resource_class: gpu.nvidia.small
|
||||
# resource_class: gpu.medium
|
||||
# <<: *binary_linux_test
|
||||
#
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user