Compare commits

..

59 Commits

Author SHA1 Message Date
74044638f7 Updating fbgemm 2020-03-23 11:05:29 -07:00
7f73f1d591 add python 3.8 workaround 2020-01-14 09:05:04 -08:00
ac15471de4 clarify when to use as_tuple in torch.nonzero (#32051)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31798

Differential Revision: D19272332

Pulled By: zou3519

fbshipit-source-id: 954d086a7b9f1a719e0dac303a4253bf7ec8e9f4
2020-01-14 11:07:33 -05:00
49364eb426 Fix typographical error in torch.triu docstring (#32067) (#32122)
Summary:
below --> above

Fixes https://github.com/pytorch/pytorch/issues/32032
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32067

Differential Revision: D19355788

Pulled By: zou3519

fbshipit-source-id: dc7a2538a78cd11e72d47ad923ef50599a5a87e2
2020-01-14 10:02:37 -05:00
bcf2d65446 disable two more tests 2020-01-13 21:57:12 -08:00
f7a33f1eef disable a few more tests because of OSX failures similar to #30604 2020-01-13 13:21:49 -08:00
bd584d52df Disable test_backward_per_tensor in test_fake_quant (#30594)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30594

This testcase started breaking, clean up for the build.
ghstack-source-id: 94736837

Test Plan: Unittest disabling change

Differential Revision: D18758635

fbshipit-source-id: 05df1158ff0ccd75e401f352da529fb663b1cae0
2020-01-13 13:15:20 -08:00
c697af4667 Temporarily disable test_numerical_consistency_per_tensor (#30600)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30600

test_numerical_consistency_per_tensor in test_fake_quant is failing on Windows.
ghstack-source-id: 94742124

Test Plan: CircleCI tests

Differential Revision: D18760287

fbshipit-source-id: 7f59355eab74e811bb370ad2836ed2f1def1f621
2020-01-13 13:15:14 -08:00
0f3f4ec64c Kill hypothesis deadline testing (#30890)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30890

We've received way too many complaints about this functionality making tests flaky, and it's not providing value to us anyway. Let's cut the shit and kill deadline testing

Test Plan: Imported from OSS

Differential Revision: D18857597

Pulled By: jamesr66a

fbshipit-source-id: 67e3412795ef2fb7b7ee896169651084e434d2f6
2020-01-13 13:12:14 -08:00
509df600bb Revert "Remove javasphinx extension (#31955)" (#32059)
This reverts commit 8ada95e95092f93780bd56bad568e2491880e9fd.
2020-01-10 14:31:35 -05:00
187101a88e [v1.4.0] Minimal changes in interpolate to support Keypointrcnn (#32010)
* Fix interpolate

* add keypointrcnn test

* update ort versio for test

* pin tv version

* Update test.sh

* Get rid of onnxruntime test changes.

* [v1.4.0] Added torchvision tests as part of ORT tests (#31835)

Summary:
Added torchvision tests as part of ORT tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31835

Reviewed By: hl475

Differential Revision: D19278607

Pulled By: houseroad

fbshipit-source-id: 18a6a85ce3019bcc9aee9517af1378964b585afd

* Remove faster_rcnn and mask_rcnn tests.

Co-authored-by: Lara Haidar <haidar.lara@gmail.com>
Co-authored-by: Negin Raoof <neginmr@utexas.edu>
2020-01-10 12:04:29 -05:00
e011d4a16e Restore CUDA half linspace+logspace and add coverage tests (#31959)
This PR restores the implementation of CUDA half linspace+logspace.

I added tests for the following:
- linspace+logspace have the same support for integral types on CPU/CUDA
- Precision tests for CUDA half, float, and double.

The precision for CUDA half seems bad, but I checked the numbers against
previous versions of pytorch. The output of CUDA Half linspace+logspace
are exactly the same when compared with 1.2.0.

Equivalent-ish PR on master:
https://github.com/pytorch/pytorch/pull/31962
2020-01-09 10:42:36 -05:00
8ada95e950 Remove javasphinx extension (#31955)
See PR [31581](https://github.com/pytorch/pytorch/pull/31581) for more details.
2020-01-08 14:09:19 -08:00
21c2481dfe Fix nvcc math functions for MSVC 2019 (#31704) (#31816)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/31108.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31704

Differential Revision: D19256110

Pulled By: mingbowan

fbshipit-source-id: a4aba2830aba002497f70a75ef995e5e7de08393
(cherry picked from commit 7a3ed36309f48cb833f1690991c7b0f59da6ce11)
2020-01-08 16:30:07 -05:00
398e8ba182 Include two caffe2 ops in v1.4.0 (#31716)
* move AliasWithNameOp to caffe2/operators

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31281

Reviewed By: houseroad

Differential Revision: D19053453

fbshipit-source-id: 350bfd5c001db9c17916dcae7ade8f56db1e9841

* move BatchPermutationOp to caffe2/operators

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31350

Reviewed By: houseroad

Differential Revision: D19053527

fbshipit-source-id: 50d11f137d0f5c07e8ad899a3a84d56a042bbc32

Co-authored-by: wat3rBro <wangyanghan6@gmail.com>
2020-01-08 13:28:13 -05:00
074b30cdcb Restructure docs organization and naming and add Javadoc (#31581)
* Restructure docs organization and naming and add Javadoc

- Rename “Other Languages” → “Language Bindings”
- Move the Community section to the bottom
- Move "Language Bindings" above "Python API"
- Add Javadoc url in index.rst

* Delete no longer needed java rst files. Remove javasphinx extension.
2020-01-08 10:22:35 -08:00
319bd5d431 Disable flaky TestMomentumSGD.test_fp16momentum_sgd (#31369) (#31637)
Summary:
Related to https://github.com/pytorch/pytorch/issues/31368
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31369

Co-authored-by: Vitaly Fedyunin <vitalyf@fb.com>
2019-12-26 13:20:37 -08:00
5a20bbd377 [v1.4.0 Support optional float parameters (float?, optional<double>). (#31530)
This is going to be used by upsample (which currently uses magic values to represent optionals).

For now, we just introduce a fake function for testing (torch._test_optional_float(x)).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517
2019-12-26 10:50:33 -08:00
fa59a9e190 Dump operator names of a script module, v1.4.0 pick request (#30747)
* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']

* Dump operator names of a script module

Summary:

Introduce function jit.export_opnames(module), which returns a list of all operator names used in the module and its submodules. One usage is to have mobile custom build to link only operators in the returned list to save the mobile size.

Example:
import torch
m = torch.jit.load("example.pt")
print(torch.jit.export_opnames(m))

The outputs are in alphabetical order:
['aten::_convolution', 'aten::add.Tensor', 'aten::add_.Tensor', 'aten::addmm', 'aten::append.Tensor', 'aten::cat', 'aten::dropout', 'aten::embedding', 'aten::matmul', 'aten::max.dim', 'aten::mul.Tensor', 'aten::permute', 'aten::relu', 'aten::t', 'aten::tanh', 'prim::ListConstruct', 'prim::TupleConstruct', 'prim::TupleUnpack']
2019-12-26 10:49:49 -08:00
143868c3df cherry pick 30320 (#31573) 2019-12-23 22:49:26 -08:00
964929fcc2 hacky way to fix android-ndk build (#31529)
* hacky way to fix android build

* should run!!!

* again!!
2019-12-20 18:01:32 -08:00
cd20ecb472 no xla build/test for v1.4.0 (#31518) 2019-12-20 10:43:36 -08:00
19d4fd4910 Specify ordering on singular values and eigenvalues output from torch… (#30389) (#30575)
Summary:
….svd/symeig respectively

Changelog:
- Adds a note to docstrings of the both functions specifying the ordering

Fixes https://github.com/pytorch/pytorch/issues/30301
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30389

Differential Revision: D18707608

Pulled By: zou3519

fbshipit-source-id: b0f73631578f39a24fae9af4997c6491de8be9a8
2019-12-19 16:10:07 -08:00
a7d187baa4 [v1.4.0] Fix reading __cuda_array_interface__ inferred strides, add test. (#31450)
This is a simpler fix than https://github.com/pytorch/pytorch/pull/24947, which both fixed the bug and updated the protocol version.
This also adds a test (which the previous PR did not).

So the plan is that master (1.5) will have the new protocol version (and a test), 1.4 will have the old protocol version and the test.
2019-12-19 16:09:37 -08:00
0541546ac5 Fix unflatten when dim is a negative integer (#31208) (#31432)
Summary:
Changelog:
- Wrap dim to be a positive integer when dim is negative
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31208

Test Plan:
- Updated tests in test_namedtensor.py

Fixes https://github.com/pytorch/pytorch/issues/31184

Differential Revision: D19036569

Pulled By: zou3519

fbshipit-source-id: 86e01e20988dee7c4b6c73232f66282d687f9a2c
2019-12-19 16:09:28 -08:00
369ab73efd Fix copy kernel speed regression introduced in #29631 (#31279) (#31322)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/31271

This fixes copy kernel speed regression introduced in https://github.com/pytorch/pytorch/issues/29631.

The previous implementation forces the compiler to instantiate `static_cast_with_inter_type` because it is passed as an argument of a function. This behavior makes it impossible for compilers to do optimizations like automatic vectorization, and, function call itself is expensive compared to a single casting instruction.

To check the change, run
```
readelf -Ws /home/xgao/anaconda3/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so | grep static_cast_with_inter_type
```

On nightly build, we have output
```
168217: 0000000001852bf0     5 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsdE5applyEd
168816: 0000000001852d30    33 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIfEaE5applyEa
168843: 00000000018531f0     7 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIblE5applyEl
168930: 0000000001852c20     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIslE5applyEl
168935: 00000000018528d0   124 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIfNS_4HalfEE5applyES1_
169023: 0000000001852f30    17 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdEhE5applyEh
169713: 00000000018525c0     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIahE5applyEh
170033: 0000000001852c10     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsiE5applyEi
170105: 0000000001852bd0     5 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIshE5applyEh
170980: 0000000001852fc0    27 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdES1_IfEE5applyES3_
171398: 0000000001852810    13 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIdbE5applyEb
171574: 00000000018532e0    35 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIbNS_8BFloat16EE5applyES1_
171734: 0000000001852b20     6 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIlSt7complexIdEE5applyES2_
172422: 0000000001853350    54 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_8BFloat16EaE5applyEa
172704: 00000000018533c0    38 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_8BFloat16EfE5applyEf
172976: 0000000001852890    10 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIflE5applyEl
173038: 0000000001852f80     9 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIdEfE5applyEf
173329: 00000000018531c0    20 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIbfE5applyEf
173779: 00000000018524d0     3 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIhiE5applyEi
174032: 0000000001852960    14 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIfNS_8BFloat16EE5applyES1_
174334: 0000000001852d60    29 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeISt7complexIfEdE5applyEd
174470: 0000000001852c60   124 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIsNS_4HalfEE5applyES1_
174770: 0000000001852bc0    15 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIlNS_8BFloat16EE5applyES1_
176408: 0000000001853980   144 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeINS_4HalfEbE5applyEb
176475: 0000000001852790   128 FUNC    LOCAL  DEFAULT    9 _ZN3c1027static_cast_with_inter_typeIdNS_4HalfEE5applyES1_
....
```

And after this PR, we get empty output
```
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31279

Differential Revision: D19075587

Pulled By: ngimel

fbshipit-source-id: c20088241f39fa40c1d055f0a46eb5b9ece52e71
2019-12-19 16:09:11 -08:00
9f558e1ee6 turn off profiling graph exec (#30750) 2019-12-19 16:08:59 -08:00
f0ddfff200 Fix exception message in Java Tensor (#30776)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30205

Test Plan: Imported from OSS

Reviewed By: linbinyu

Differential Revision: D18653568

Pulled By: dreiss

fbshipit-source-id: a5fcb809eba641a7fbd0e99e835eceeb248e680c
2019-12-19 16:08:49 -08:00
2de184b5a9 Update persons_of_interest.rst (#30648) 2019-12-19 16:08:39 -08:00
e0eeddfc78 torch.where changes made on 1.3.1 but not on master (#30729)
* Make zeros argument of torch.where same dtype as other argument (#30661)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30661

Cherry-picked from https://github.com/pytorch/pytorch/pull/29080

Test Plan: Imported from OSS

Differential Revision: D18781870

Pulled By: nairbv

fbshipit-source-id: 9de85aa91bf7e0856f35c7c6238a8923315ed27f

Co-authored-by: ifedan

* Added check for torch.where on CPU that both arguments have same dtype (#30662)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30662

Cherry picked from: https://github.com/pytorch/pytorch/pull/29081

Test Plan: Imported from OSS

Differential Revision: D18782295

Pulled By: nairbv

fbshipit-source-id: 897ab25ddf8819ca34f5e86c5d3f41debb56cb04

Co-authored-by: ifedan
2019-12-19 16:01:51 -08:00
7727b57d08 [v1.4.0 cherrypick] Fix BC for quantized linear (#30629) 2019-12-19 16:01:26 -08:00
9e7dc37f90 Updates to Quantization documentation (#30372)
* added entires to quantization.rst per issue #27938

* more minor tweaks to quantization.rst to reflect the quantization support list (#27938)

* added discussion about setting backend engine to QNNPACK to quantization.rst (#29735)

* added docstrings to the fused functions in torch/nn/intrinsic/modules/fused.py (#26899)

* fixed the docstring for  torch.nn.intrinsic.quantized.ConvReLU3d  (#27451)

* fixed the formatting on fuse_modules() (#26305)

* fixed rendering issue on QConfig (#30283)

* resolved feedback on PR #30288. Thanks Raghu
2019-12-19 16:01:09 -08:00
227017059f Fix BC test for v1.4.0 (#31442)
* Fix BC test for v1.4.0

* Print out all the broken ops

* White list the broken ones
2019-12-19 14:16:24 -08:00
aeeccc1486 Disable the rebase logic to make the CI pass (#31399) 2019-12-18 12:21:13 -08:00
0b91246cbd [v1.4.0] Fix coverage and hypothesis conflict (#31429)
Summary:
Temporarily enforcing versions for all envs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31320

Differential Revision: D19122781

Pulled By: VitalyFedyunin

fbshipit-source-id: fe6473b177367371387d4b3b873131e7ecfbc0f8
2019-12-18 12:16:05 -08:00
0856d6f53c use earlier docker image to make sure generated binary size is small (#31142)
* use earlier docker image to make sure generated binary size is small

* fix hypothesis version
2019-12-17 15:03:29 -08:00
336e0d2874 our setup requires actions/checkout@v1 to work correctly (#31371)
* checkout correct branch for linting

* try #2

* try #3

* try #4
2019-12-17 10:56:50 -08:00
3b36f2068d Revert "Merge branch 'v1.4.0' of https://github.com/pytorch/pytorch into lahaidar/cherry_pick_28324"
This reverts commit 6207945564b317f4300264e80d125b9a7225b81e, reversing
changes made to 27a2ecb0a5da9507a2b0a0315a7dfeab4b9f85f9.
2019-12-13 16:20:28 -08:00
6207945564 Merge branch 'v1.4.0' of https://github.com/pytorch/pytorch into lahaidar/cherry_pick_28324 2019-12-13 15:48:08 -08:00
aecae514ab Merge branch 'cherry_pick_28324' of https://github.com/houseroad/pytorch into lahaidar/cherry_pick_28324 2019-12-13 15:45:32 -08:00
27a2ecb0a5 Revert "[v1.4.0 cherrypick] ONNX Interpolate Add Scales Params (#31170)" (#31272)
This reverts commit e36fd7b0bae7b350886bf090f7ce222a0c6218df.
2019-12-13 15:14:42 -08:00
e36fd7b0ba [v1.4.0 cherrypick] ONNX Interpolate Add Scales Params (#31170)
The original PR is #28324

We hope we can cover torchvision models in PyTorch ONNX exporter with release 1.4. This PR is part of it.
2019-12-13 15:08:35 -08:00
799cb646a6 update expect files 2019-12-13 11:36:06 -08:00
f60c63155a ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-13 11:36:06 -08:00
954d9ea466 fix test ci by pinning hypothesis and correcting the import (#31201)
* fix test ci by pinning hypothesis and correcting the import, from https://github.com/pytorch/pytorch/pull/31137

* also update for windows build
2019-12-13 11:30:57 -08:00
71185fb2a0 update expect files 2019-12-12 10:54:17 -08:00
a06f26560c Make Conv{1,2,3}dOptions and ConvTranspose{1,2,3}dOptions different classes (#31005)
Summary:
Currently, both `Conv{1,2,3}dOptions` and `ConvTranspose{1,2,3}dOptions` are aliases of the `ConvOptions<{1,2,3}>` class, which causes confusion because the `ConvOptions` class has parameters such as `transposed` that shouldn't be exposed to the end user. (This has caused issues such as https://github.com/pytorch/pytorch/issues/30931.) This PR makes the following improvements:
1. Rename the original `torch::nn::ConvOptions<N>` class to `torch::nn::detail::ConvNdOptions<N>` class, to signify that it's an implementation detail and should not be used publicly.
2. Create new classes `torch::nn::ConvOptions<N>` and `torch::nn::ConvTransposeOptions<N>`, which have parameters that exactly match the constructor of `torch.nn.Conv{1,2,3}d` and `torch.nn.ConvTranspose{1,2,3}d` in Python API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31005

Differential Revision: D18898048

Pulled By: yf225

fbshipit-source-id: 7663d646304c8cb004ca7f4aa4e70d3612c7bc75
2019-12-12 11:46:33 -05:00
e4cec279c6 ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-11 22:05:47 -08:00
b8b50aa909 Fix missing virtual destructor (#30927)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30927

Classes that are used virtually (e.g. have virtual methods) must have a virtual destructor or bad things happen
ghstack-source-id: 95144736

Test Plan: waitforsandcastle

Differential Revision: D18870351

fbshipit-source-id: 333af4e95469fdd9103aa9ef17b40cbc4a343f82
2019-12-09 12:47:01 -08:00
db686de13f [1.4.0] Enable len(dataloader) for iterable dataset (#30828)
* enable len(dl) for iterable dataset

* warn if len was called
2019-12-06 18:25:14 -05:00
288e463693 Fix a clang 7 compiler bug for c++14 mode (#30891)
This is already fixed in master as part of bc2e6d10fa.

Before this fix, compiling PyTorch with `-std=c++14` failed on clang 7 due to a compiler bug in the optimizer. With this fix, it works and people can compile PyTorch (or PyTorch extensions) with `-std=c++14`.
2019-12-06 14:11:12 -05:00
73783d1048 Update persons_of_interest.rst 2019-12-05 21:27:01 -08:00
8891d4eeb1 fix AvgPool2d for 2^31-1 sized inputs, and get test_cuda_kernel_loop_overflow_large to working state (#30793) 2019-12-04 23:13:17 -05:00
2085a6f329 Add local shutdown to process group agent (#30330)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30330

This is now possible due to previous changes made in `gloo` and `ProcessGroupGloo`. We `abort` the listener thread that is waiting for a message, and join all other threads. The API is changed so that the previous `wait_all_workers` does not destroy the agent, and this is now done in a new `shutdown` method. All callsites are updated appropriately.

ghstack-source-id: 94673884
ghstack-source-id: 94673884

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18661775

fbshipit-source-id: 5aaa7c14603e18253394224994f6cd43234301c2
2019-12-04 19:23:58 -08:00
3eda9e7da2 By default ignore RRef leaks during shutdown (#30217)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30217

Before this commit, RRefContext throws an error if it detects any
RRef leak during shutdown. However, this requires applications to
make sure that is has freed all references to RRefs in application
code, which can be a bad debugging experience when for large
applications. Besides, this also relies on Python GC to free things
up in time, which might not always be true. After this commit,
RRefContext would ignore leaking RRefs during shutdown, as shutdown
is called when the application has finished training and no longer
care about local states. Hence, it should be OK to just ignore
those leaks and destroy OwnerRRefs. If application would like to
enforce no leaks, just set torch.distributed.rpc.api._ignore_rref_leak
to False.

Test Plan: Imported from OSS

Differential Revision: D18632546

Pulled By: mrshenli

fbshipit-source-id: 2744b2401dafdd16de0e0a76cf8e07777bed0f38
2019-12-04 13:33:31 -05:00
fb8aa0e98c Remove namespace F = torch::nn::functional from torch/nn/modules/batchhnorm.h (#30684)
Summary:
This PR removes `namespace F = torch::nn::functional` from `torch/nn/modules/batchhnorm.h`, so that people don't have to define `torch::nn::functional` as `F` if they don't want to.

Fixes https://github.com/pytorch/pytorch/issues/30682.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30684

Differential Revision: D18795717

Pulled By: yf225

fbshipit-source-id: c9feffbeb632cc6b4ce3e6c22c0a78533bab69ad
2019-12-04 11:35:19 -05:00
c79b79dadd add default arg for init_method (#30208)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30208

Adds default arg for init_method so users don't have to pass this in,
and moves it to `RpcBackendOptions` struct. Removes `init_method` arg from rpc.init_rpc. Also fixes some docs.
ghstack-source-id: 94500475

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18630074

fbshipit-source-id: 04b7dd7ec96f4c4da311b71d250233f1f262135a
2019-12-03 15:26:51 -08:00
21acca4528 Exclude undefined tensors in the result of Module::parameters() / named_paramters() / buffers() / named_buffers() (#30626)
Summary:
PR https://github.com/pytorch/pytorch/pull/30523 attempted to fix https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462, but the fix wasn't complete. This PR makes the following improvements:
1. Fixes https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462 properly by excluding undefined tensors in the result of `Module::parameters()` / `named_parameters()` / `buffers()` / `named_buffers()`, which mirrors the Python API behavior.
2. Audits all use sites of `Module::parameters_` / `buffers_` and change them to `Module::named_parameters(/*recurse=*/false)` / `named_buffers(/*recurse=*/false)` when appropriate, so that use sites of module parameters / buffers never need to worry about undefined tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30626

Differential Revision: D18777507

Pulled By: yf225

fbshipit-source-id: 55b64b69779e1186342efd3c44857f416334ed6b
2019-12-03 15:57:32 -05:00
f710757557 Skip undefined tensors when moving torch::nn module to a different device (#30523)
Summary:
This fixes high-pri issues such as https://github.com/pytorch/pytorch/issues/30508 and https://github.com/pytorch/pytorch/issues/30462.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30523

Differential Revision: D18732904

Pulled By: yf225

fbshipit-source-id: fe5a7a43838000f5803bd9c01ecfba0c3f02df5d
2019-12-03 15:57:32 -05:00
9675 changed files with 343438 additions and 1756047 deletions

View File

@ -1,27 +0,0 @@
build --cxxopt=--std=c++14
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin
build --experimental_ui_max_stdouterr_bytes=2048576
# Configuration to disable tty features for environments like CI
build:no-tty --curses no
build:no-tty --progress_report_interval 10
build:no-tty --show_progress_rate_limit 10
# Configuration to build with GPU support
build:gpu --define=cuda=true
# define a separate build folder for faster switching between configs
build:gpu --platform_suffix=-gpu
# See the note on the config-less build for details about why we are
# doing this. We must also do it for the "-gpu" platform suffix.
build --copt=-isystem --copt=bazel-out/k8-fastbuild-gpu/bin
# rules_cuda configuration
build:gpu --@rules_cuda//cuda:enable_cuda
build:gpu --@rules_cuda//cuda:cuda_targets=sm_52
build:gpu --@rules_cuda//cuda:compiler=nvcc
build:gpu --repo_env=CUDA_PATH=/usr/local/cuda

View File

@ -1 +0,0 @@
4.2.1

View File

@ -1,15 +0,0 @@
[buildfile]
name = BUILD.buck
[repositories]
bazel_skylib = third_party/bazel-skylib/
[download]
in_build = true
[cxx]
cxxflags = -std=c++17
should_remap_host_platform = true
[project]
default_flavors_mode=all

504
.circleci/README.md Normal file
View File

@ -0,0 +1,504 @@
Structure of CI
===============
setup job:
1. Does a git checkout
2. Persists CircleCI scripts (everything in `.circleci`) into a workspace. Why?
We don't always do a Git checkout on all subjobs, but we usually
still want to be able to call scripts one way or another in a subjob.
Persisting files this way lets us have access to them without doing a
checkout. This workspace is conventionally mounted on `~/workspace`
(this is distinguished from `~/project`, which is the conventional
working directory that CircleCI will default to starting your jobs
in.)
3. Write out the commit message to `.circleci/COMMIT_MSG`. This is so
we can determine in subjobs if we should actually run the jobs or
not, even if there isn't a Git checkout.
CircleCI configuration generator
================================
One may no longer make changes to the `.circleci/config.yml` file directly.
Instead, one must edit these Python scripts or files in the `verbatim-sources/` directory.
Usage
----------
1. Make changes to these scripts.
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
You'll see a build failure on TravisCI if the scripts don't agree with the checked-in version.
Motivation
----------
These scripts establish a single, authoritative source of documentation for the CircleCI configuration matrix.
The documentation, in the form of diagrams, is automatically generated and cannot drift out of sync with the YAML content.
Furthermore, consistency is enforced within the YAML config itself, by using a single source of data to generate
multiple parts of the file.
* Facilitates one-off culling/enabling of CI configs for testing PRs on special targets
Also see https://github.com/pytorch/pytorch/issues/17038
Future direction
----------------
### Declaring sparse config subsets
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
# How do the binaries / nightlies / releases work?
### What is a binary?
A binary or package (used interchangeably) is a pre-built collection of c++ libraries, header files, python bits, and other files. We build these and distribute them so that users do not need to install from source.
A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 2.7m, 2.7mu, 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 2.7, 3.5, 3.6, 3.7
* windows: 3.5, 3.6, 3.7
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
* operating system
* Linux - these are all built on CentOS. There haven't been any problems in the past building on CentOS and using on Ubuntu
* MacOS
* Windows - these are built on Azure pipelines
* devtoolset version (gcc compiler version)
* This only matters on Linux cause only Linux uses gcc. tldr is gcc made a backwards incompatible change from gcc 4.8 to gcc 5, because it had to change how it implemented std::vector and std::string
### Where are the binaries?
The binaries are built in CircleCI. There are nightly binaries built every night at 9pm PST (midnight EST) and release binaries corresponding to Pytorch releases, usually every few months.
We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
* static with dependencies
* shared without dependencies
* static without dependencies
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
# CircleCI structure of the binaries
Some quick vocab:
* A\**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on\https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
* **jobs** are a sequence of '**steps**'
* **steps** are usually just a bash script or a builtin CircleCI command.* All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
## How are the workflows structured?
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
1. binarybuilds
1. every day midnight EST
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
4. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. binary_linux_conda_3.7_cpu_build
1. Builds the build. On linux jobs this uses the 'docker executor'.
2. Persists the package to the workspace
2. binary_linux_conda_3.7_cpu_test
1. Loads the package to the workspace
2. Spins up a docker image (on Linux), mapping the package and code repos into the docker
3. Runs some smoke tests in the docker
4. (Actually, for macos this is a step rather than a separate job)
3. binary_linux_conda_3.7_cpu_upload
1. Logs in to aws/conda
2. Uploads the package
2. update_s3_htmls
1. every day 5am EST
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
3. See below for what these are for and why they're needed
4. Three jobs that each examine the current contents of aws and the conda repo and update some html files in s3
3. binarysmoketests
1. every day
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
3. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. smoke_linux_conda_3.7_cpu
1. Downloads the package from the cloud, e.g. using the official pip or conda instructions
2. Runs the smoke tests
## How are the jobs structured?
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources . Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
* binary_linux_build.sh
* binary_linux_test.sh
* binary_linux_upload.sh
* MacOS jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
* binary_macos_build.sh
* binary_macos_test.sh
* binary_macos_upload.sh
* Update html jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/cron/update_s3_htmls.sh
* https://github.com/pytorch/builder/blob/master/cron/upload_binary_sizes.sh
* Smoke jobs (both linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/run_tests.sh
* https://github.com/pytorch/builder/blob/master/smoke_test.sh
* https://github.com/pytorch/builder/blob/master/check_binary.sh
* Common shared code (shared across linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-binary-build-defaults.yml
* binary_checkout.sh - checks out pytorch/builder repo. Right now this also checks out pytorch/pytorch, but it shouldn't. pytorch/pytorch should just be shared through the workspace. This can handle being run before binary_populate_env.sh
* binary_populate_env.sh - parses BUILD_ENVIRONMENT into the separate env variables that make up a binary configuration. Also sets lots of default values, the date, the version strings, the location of folders in s3, all sorts of things. This generally has to be run before other steps.
* binary_install_miniconda.sh - Installs miniconda, cross platform. Also hacks this for the update_binary_sizes job that doesn't have the right env variables
* binary_run_in_docker.sh - Takes a bash script file (the actual test code) from a hardcoded location, spins up a docker image, and runs the script inside the docker image
### **Why do the steps all refer to scripts?**
CircleCI creates a final yaml file by inlining every <<* segment, so if we were to keep all the code in the config.yml itself then the config size would go over 4 MB and cause infra problems.
### **What is binary_run_in_docker for?**
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
* linux test jobs use the machine executor and spin up their own docker. Why this nonsense? It's cause we run nvidia-docker for our GPU tests; any code that calls into the CUDA runtime needs to be run on nvidia-docker. To run a nvidia-docker you need to install some nvidia packages on the host machine and then call docker with the '—runtime nvidia' argument. CircleCI doesn't support this, so we have to do it ourself.
* This is not just a mere inconvenience. **This blocks all of our linux tests from using more than 2 cores.** But there is nothing that we can do about it, but wait for a fix on circleci's side. Right now, we only run some smoke tests (some simple imports) on the binaries, but this also affects non-binary test jobs.
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
binary_run_in_docker.sh is a way to share the docker start-up code between the binary test jobs and the binary smoke test jobs
### **Why does binary_checkout also checkout pytorch? Why shouldn't it?**
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Azure Pipelines structure of the binaries
TODO: fill in stuff
## How are the workflows structured?
TODO: fill in stuff
## How are the jobs structured?
TODO: fill in stuff
# Code structure of the binaries (circleci agnostic)
## Overview
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder) , which is a repo that defines how all the binaries are built. The relevant code is
```
# All code needed to set-up environments for build code to run in,
# but only code that is specific to the current CI system
pytorch/pytorch
- .circleci/ # Folder that holds all circleci related stuff
- config.yml # GENERATED file that actually controls all circleci behavior
- verbatim-sources # Used to generate job/workflow sections in ^
- scripts/ # Code needed to prepare circleci environments for binary build scripts
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
- cmake files # used in normal building of pytorch
# All code needed to prepare a binary build, given an environment
# with all the right variables/packages/paths.
pytorch/builder
# Given an installed binary and a proper python env, runs some checks
# to make sure the binary was built the proper way. Checks things like
# the library dependencies, symbols present, etc.
- check_binary.sh
# Given an installed binary, runs python tests to make sure everything
# is in order. These should be de-duped. Right now they both run smoke
# tests, but are called from different places. Usually just call some
# import statements, but also has overlap with check_binary.sh above
- run_tests.sh
- smoke_test.sh
# Folders that govern how packages are built. See paragraphs below
- conda/
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
- pytorch-nightly/ # Build-folder
- manywheel/
- build_cpu.sh # Entrypoint for cpu builds
- build.sh # Entrypoint for CUDA builds
- build_common.sh # Actual build script that ^^ call into
- wheel/
- build_wheel.sh # Entrypoint for wheel builds
- windows/
- build_pytorch.bat # Entrypoint for wheel builds on Windows
```
Every type of package has an entrypoint build script that handles the all the important logic.
## Conda
Linux, MacOS and Windows use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
tldr; on conda-build is
1. Creates a brand new conda environment, based off of deps in the meta.yaml
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
2. If the build fails this environment will stick around. You can activate it for much easier debugging. The “General Python” section below explains what exactly a python “environment” is.
2. Calls build.sh in the environment
3. Copies the finished package to a new conda env, also specified by the meta.yaml
4. Runs some simple import tests (if specified in the meta.yaml)
5. Saves the finished package as a tarball
The build.sh we use is essentially a wrapper around ```python setup.py build``` , but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The entrypoint file `builder/conda/build_conda.sh` is complicated because
* It works for Linux, MacOS and Windows
* The mac builds used to create their own environments, since they all used to be on the same machine. Theres now a lot of extra logic to handle conda envs. This extra machinery could be removed
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
## Manywheels (linux pip and libtorch packages)
Manywheels are pip packages for linux distros. Note that these manywheels are not actually manylinux compliant.
`builder/manywheel/build_cpu.sh` and `builder/manywheel/build.sh` (for CUDA builds) just set different env vars and then call into `builder/manywheel/build_common.sh`
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
* There is a lot of messing with rpaths. This is necessary, but could be made much much simpler if the above issues were fixed.
## Wheels (MacOS pip and libtorch packages)
The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
* The mac builds used to all run on one machine (we didnt have autoscaling mac machines till circleci). So this script handled siloing itself by setting-up and tearing-down its build env and siloing itself into its own build directory.
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* Ditto the comment above. This should definitely be separated out.
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## Windows Wheels (Windows pip and libtorch packages)
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## General notes
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
* These should all be consolidated
* These must run on all OS types: MacOS, Linux, and Windows
* These all run smoke tests at the moment. They inspect the packages some, maybe run a few import statements. They DO NOT run the python tests nor the cpp tests. The idea is that python tests on master and PR merges will catch all breakages. All these tests have to do is make sure the special binary machinery didnt mess anything up.
* There are separate run_tests.sh and smoke_test.sh because one used to be called by the smoke jobs and one used to be called by the binary test jobs (see circleci structure section above). This is still true actually, but these could be united into a single script that runs these checks, given an installed pytorch package.
### Note on libtorch
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
* Its confusing. Most of those scripts deal with python specifics.
* The extra conditionals everywhere severely complicate the wheel build scripts
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
### Note on docker images / Dockerfiles
All linux builds occur in docker images. The docker images are
* pytorch/conda-cuda
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
* Also used for cpu builds
* pytorch/manylinux-cuda90
* pytorch/manylinux-cuda92
* pytorch/manylinux-cuda100
* Also used for cpu builds
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
### General Python
* This is still a good explanation of python installations https://caffe2.ai/docs/faq.html#why-do-i-get-import-errors-in-python-when-i-try-to-use-caffe2
# How to manually rebuild the binaries
tldr; make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
## How to test changes to the binaries via .circleci
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using ```.circleci/regenerate.sh``` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
```
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
# Regenerate the yaml, has to be in python 3.7
.circleci/regenerate.sh
# Make a commit
git add .circleci *
git commit -m "My real changes"
git push origin my_branch
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
# Also eliminate ensure-consistency and should_run_job checks
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
# Make a commit you won't keep
git add .circleci
git commit -m "[DO NOT LAND] testing binaries for above changes"
git push origin my_branch
# Now you need to make some changes to the first commit.
git rebase -i HEAD~2 # mark the first commit as 'edit'
# Make the changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
.circleci/regenerate.sh
# Ammend the commit and recontinue
git add .circleci
git commit --amend
git rebase --continue
# Update the PR, need to force since the commits are different now
git push origin my_branch --force
```
The advantage of this flow is that you can make new changes to the base commit and regenerate the .circleci without having to re-write which binary jobs you want to test on. The downside is that all updates will be force pushes.
## How to build a binary locally
### Linux
You can build Linux binaries locally easily using docker.
```
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
#
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
# machine that you're running the command on) accessible to the docker
# container at path/to/bar. So if you then run `touch path/to/bar/baz`
# in the docker container then you will see path/to/foo/baz on your local
# machine. You could also clone the pytorch and builder repos in the docker.
#
# If you're building a CUDA binary then use `nvidia-docker run` instead, see below.
#
# If you know how, add ccache as a volume too and speed up everything
docker run \
-v your/pytorch/repo:/pytorch \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
# The builds generate lots of output so you probably need this when
# building locally.
/builder/conda/build_pytorch.sh |& tee build_output.log
```
**Building CUDA binaries on docker**
To build a CUDA binary you need to use `nvidia-docker run` instead of just `docker run` (or you can manually pass `--runtime=nvidia`). This adds some needed libraries and things to build CUDA stuff.
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a loong time).
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
### MacOS
Theres no easy way to generate reproducible hermetic MacOS environments. If you have a Mac laptop then you can try emulating the .circleci environments as much as possible, but you probably have packages in /usr/local/, possibly installed by brew, that will probably interfere with the build. If youre trying to repro an error on a Mac build in .circleci and you cant seem to repro locally, then my best advice is actually to iterate on .circleci :/
But if you want to try, then Id recommend
```
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
# Install a new miniconda
# First remove any other python or conda installation from your PATH
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
export PATH="~/my_new_conda/bin:$PATH"
# Create a clean python env
# All MacOS builds use conda to manage the python env and dependencies
# that are built with, even the pip packages
conda create -yn binary python=2.7
conda activate binary
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint you want
path/to/builder/wheel/build_wheel.sh
```
N.B. installing a brand new miniconda is important. This has to do with how conda installations work. See the “General Python” section above, but tldr; is that
1. You make the conda command accessible by prepending `path/to/conda_root/bin` to your PATH.
2. You make a new env and activate it, which then also gets prepended to your PATH. Now you have `path/to/conda_root/envs/new_env/bin:path/to/conda_root/bin:$PATH`
3. Now say you (or some code that you ran) call python executable `foo`
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called base), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
### Windows
TODO: fill in

View File

@ -5,6 +5,9 @@ for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
In addition to generating config.yml content, the tree is also traversed
to produce a visualization of config dimensions.
"""
from collections import OrderedDict
@ -25,12 +28,33 @@ DEPS_INCLUSION_DIMENSIONS = [
]
def get_processor_arch_name(gpu_version):
return "cpu" if not gpu_version else (
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
)
def get_processor_arch_name(cuda_version):
return "cpu" if not cuda_version else "cu" + cuda_version
LINUX_PACKAGE_VARIANTS = OrderedDict(
manywheel=[
"2.7m",
"2.7mu",
"3.5m",
"3.6m",
"3.7m",
],
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"2.7m",
],
)
CONFIG_TREE_DATA = OrderedDict(
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"2.7",
],
)),
)
# GCC config variants:
@ -49,11 +73,6 @@ LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
],
)
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
"debug",
"release",
]
class TopLevelNode(ConfigNode):
def __init__(self, node_name, config_tree_data, smoke):
@ -67,12 +86,12 @@ class TopLevelNode(ConfigNode):
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
def __init__(self, parent, os_name, cuda_versions, py_tree):
super(OSConfigNode, self).__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
self.props["gpu_versions"] = gpu_versions
self.props["cuda_versions"] = cuda_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
@ -85,14 +104,11 @@ class PackageFormatConfigNode(ConfigNode):
self.props["python_versions"] = python_versions
self.props["package_format"] = package_format
def get_children(self):
if self.find_prop("os_name") == "linux":
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
class LinuxGccConfigNode(ConfigNode):
@ -102,39 +118,21 @@ class LinuxGccConfigNode(ConfigNode):
self.props["gcc_config_variant"] = gcc_config_variant
def get_children(self):
gpu_versions = self.find_prop("gpu_versions")
cuda_versions = self.find_prop("cuda_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == 'devtoolset7':
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
cuda_versions = filter(lambda x: x != "90", cuda_versions)
# XXX disabling conda rocm build since docker images are not there
if self.find_prop("package_format") == 'conda':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
# XXX libtorch rocm build is temporarily disabled
if self.find_prop("package_format") == 'libtorch':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
return [ArchConfigNode(self, v) for v in gpu_versions]
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
return [ArchConfigNode(self, v) for v in cuda_versions]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
def __init__(self, parent, cu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
self.props["gpu"] = gpu
self.props["cu"] = cu
def get_children(self):
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
@ -147,6 +145,8 @@ class PyVersionConfigNode(ConfigNode):
self.props["pyver"] = pyver
def get_children(self):
smoke = self.find_prop("smoke")
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")

View File

@ -1,45 +1,30 @@
from collections import OrderedDict
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.data.binary_build_data as binary_build_data
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
class Conf(object):
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant):
self.os = os
self.gpu_version = gpu_version
self.cuda_version = cuda_version
self.pydistro = pydistro
self.parms = parms
self.smoke = smoke
self.libtorch_variant = libtorch_variant
self.gcc_config_variant = gcc_config_variant
self.libtorch_config_variant = libtorch_config_variant
def gen_build_env_parms(self):
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
elems.append(str(self.libtorch_config_variant))
return elems
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(
f"pytorch/conda-builder:{self.gpu_version}"
)
return miniutils.quote("pytorch/conda-cuda-cxx11-ubuntu1604:latest")
docker_word_substitution = {
"manywheel": "manylinux",
@ -48,13 +33,12 @@ class Conf(object):
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
# TODO cuda images should consolidate into tag-base images similar to rocm
alt_docker_suffix = "cuda102" if not self.gpu_version else (
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
# The cpu nightlies are built on the pytorch/manylinux-cuda100 docker image
alt_docker_suffix = self.cuda_version or "100"
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
if self.cuda_version == "101":
return "soumith/manylinux-cuda101@sha256:5d62be90d5b7777121180e6137c7eed73d37aaf9f669c51b783611e37e0b4916"
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
@ -79,82 +63,38 @@ class Conf(object):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
job_def["requires"] = ["setup"]
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["postnightly"],
)
job_def["requires"].append("update_s3_htmls_for_nightlies")
job_def["requires"].append("update_s3_htmls_for_nightlies_devtoolset7")
job_def["filters"] = {"branches": {"only": "postnightly"}}
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
job_def["filters"] = {"branches": {"only": "nightly"}}
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["requires"].append(self.gen_build_name("build", nightly))
if not (self.smoke and self.os == "macos"):
job_def["docker_image"] = self.gen_docker_image()
# fix this. only works on cuda not rocm
if self.os != "windows" and self.gpu_version:
if self.cuda_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.gpu_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
if self.cuda_version:
job_def["resource_class"] = "gpu.medium"
if phase == "upload":
job_def["context"] = "org-member"
job_def["requires"] = ["setup", self.gen_build_name(upload_phase_dependency, nightly)]
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name : job_def}
def gen_upload_job(self, phase, requires_dependency):
"""Generate binary_upload job for configuration
Output looks similar to:
- binary_upload:
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
context: org-member
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
filters:
branches:
only:
- nightly
tags:
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
package_type: manywheel
upload_subfolder: cu113
"""
return {
"binary_upload": OrderedDict({
"name": self.gen_build_name(phase, nightly=True),
"context": "org-member",
"requires": [self.gen_build_name(
requires_dependency,
nightly=True
)],
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"package_type": self.pydistro,
"upload_subfolder": binary_build_data.get_processor_arch_name(
self.gpu_version,
),
})
}
def get_root(smoke, name):
return binary_build_data.TopLevelNode(
@ -173,47 +113,35 @@ def gen_build_env_list(smoke):
for c in config_list:
conf = Conf(
c.find_prop("os_name"),
c.find_prop("gpu"),
c.find_prop("cu"),
c.find_prop("package_format"),
[c.find_prop("pyver")],
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
c.find_prop("smoke"),
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
)
newlist.append(conf)
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def predicate_exclude_nonlinux_and_libtorch(config):
return config.os == "linux"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_upload_job("upload", phase_dependency))
phase_dependency = "test" if predicate_exclude_nonlinux_and_libtorch(conf) else "build"
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
return mylist
def get_post_upload_jobs():
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["postnightly"],
),
},
},
]
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
filtered_configs = filter(predicate_exclude_nonlinux_and_libtorch, configs)
tests = []
for conf_options in filtered_configs:
@ -228,9 +156,7 @@ def get_jobs(toplevel_key, smoke):
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
# don't test for macos_arm64 as it's cross compiled
if phase != "test" or build_config.os != "macos_arm64":
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
return jobs_list

View File

@ -0,0 +1,81 @@
from cimodel.lib.conf_tree import ConfigNode, XImportant
from cimodel.lib.conf_tree import Ver
CONFIG_TREE_DATA = [
(Ver("ubuntu", "16.04"), [
([Ver("gcc", "5")], [XImportant("onnx_py2")]),
([Ver("clang", "7")], [XImportant("onnx_py3.6")]),
]),
]
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
# noinspection PyMethodMayBeStatic
def modify_label(self, label):
return str(label)
def init2(self, node_name):
pass
def get_children(self):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
def is_build_only(self):
if str(self.find_prop("language_version")) == "onnx_py3.6":
return False
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
"clang3.8",
"clang3.9",
"clang7",
"android",
}) or self.find_prop("distro_version").name == "macos"
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super(TopLevelNode, self).__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return DistroConfigNode
class DistroConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["distro_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return CompilerConfigNode
class CompilerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return LanguageConfigNode
class LanguageConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["language_version"] = node_name
self.props["build_only"] = self.is_build_only()
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["important"] = True
def get_children(self):
return []

View File

@ -0,0 +1,161 @@
from collections import OrderedDict
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
from cimodel.lib.conf_tree import Ver
import cimodel.lib.miniutils as miniutils
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
from dataclasses import dataclass
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
DOCKER_IMAGE_VERSION = 345
@dataclass
class Conf:
language: str
distro: Ver
# There could be multiple compiler versions configured (e.g. nvcc
# for gpu files and host compiler (gcc/clang) for cpu files)
compilers: [Ver]
build_only: bool
is_important: bool
@property
def compiler_names(self):
return [c.name for c in self.compilers]
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
def get_cudnn_insertion(self):
omit = self.language == "onnx_py2" \
or self.language == "onnx_py3.6" \
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
return [] if omit else ["cudnn7"]
def get_build_name_root_parts(self):
return [
"caffe2",
self.language,
] + self.get_build_name_middle_parts()
def get_build_name_middle_parts(self):
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
def construct_phase_name(self, phase):
root_parts = self.get_build_name_root_parts()
return "_".join(root_parts + [phase]).replace(".", "_")
def get_platform(self):
platform = self.distro.name
if self.distro.name != "macos":
platform = "linux"
return platform
def gen_docker_image(self):
lang_substitutions = {
"onnx_py2": "py2",
"onnx_py3.6": "py3.6",
"cmake": "py2",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [lang] + self.get_build_name_middle_parts()
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
def gen_workflow_params(self, phase):
parameters = OrderedDict()
lang_substitutions = {
"onnx_py2": "onnx-py2",
"onnx_py3.6": "onnx-py3.6",
}
lang = miniutils.override(self.language, lang_substitutions)
parts = [
"caffe2",
lang,
] + self.get_build_name_middle_parts() + [phase]
build_env_name = "-".join(parts)
parameters["build_environment"] = miniutils.quote(build_env_name)
if "ios" in self.compiler_names:
parameters["build_ios"] = miniutils.quote("1")
if phase == "test":
# TODO cuda should not be considered a compiler
if "cuda" in self.compiler_names:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if self.distro.name != "macos":
parameters["docker_image"] = self.gen_docker_image()
if self.build_only:
parameters["build_only"] = miniutils.quote("1")
if phase == "test":
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
parameters["resource_class"] = resource_class
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.construct_phase_name(phase)
job_def["requires"] = ["setup"]
if phase == "test":
job_def["requires"].append(self.construct_phase_name("build"))
job_name = "caffe2_" + self.get_platform() + "_test"
else:
job_name = "caffe2_" + self.get_platform() + "_build"
if not self.is_important:
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name : job_def}
def get_root():
return TopLevelNode("Caffe2 Builds", CONFIG_TREE_DATA)
def instantiate_configs():
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
c = Conf(
language=fc.find_prop("language_version"),
distro=fc.find_prop("distro_version"),
compilers=fc.find_prop("compiler_version"),
build_only=fc.find_prop("build_only"),
is_important=fc.find_prop("important"),
)
config_list.append(c)
return config_list
def get_workflow_jobs():
configs = instantiate_configs()
x = []
for conf_options in configs:
phases = ["build"]
if not conf_options.build_only:
phases = dimensions.PHASES
for phase in phases:
x.append(conf_options.gen_workflow_job(phase))
return x

View File

@ -1,23 +1,15 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
"102",
"113",
"116",
None, # cpu build
"92",
"100",
"101",
]
ROCM_VERSIONS = [
"4.3.1",
"4.5.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = [
"2.7",
"3.5",
"3.6",
"3.7",
"3.8",
"3.9",
"3.10"
]

View File

@ -1,7 +1,64 @@
from cimodel.lib.conf_tree import ConfigNode
from cimodel.lib.conf_tree import ConfigNode, X, XImportant
CONFIG_TREE_DATA = [
("xenial", [
(None, [
XImportant("2.7.9"),
X("2.7"),
XImportant("3.5"), # Not run on all PRs, but should be included on [test all]
X("nightly"),
]),
("gcc", [
("5.4", [ # All this subtree rebases to master and then build
XImportant("3.6"),
("3.6", [
("parallel_tbb", [XImportant(True)]),
("parallel_native", [XImportant(True)]),
]),
]),
# TODO: bring back libtorch test
("7", [X("3.6")]),
]),
("clang", [
("5", [
XImportant("3.6"), # This is actually the ASAN build
]),
# ("7", [
# ("3.6", [
# ("xla", [XImportant(True)]),
# ]),
# ]),
]),
("cuda", [
("9", [
# Note there are magic strings here
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L21
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L143
# and
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L153
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453144)
XImportant("3.6"),
("3.6", [
("libtorch", [XImportant(True)])
]),
]),
("9.2", [X("3.6")]),
("10", [X("3.6")]),
("10.1", [X("3.6")]),
]),
("android", [
("r19c", [
("3.6", [
("android_abi", [XImportant("x86_32")]),
("android_abi", [X("x86_64")]),
("android_abi", [X("arm-v7a")]),
("android_abi", [X("arm-v8a")]),
])
]),
]),
]),
]
@ -44,7 +101,6 @@ class DistroConfigNode(TreeConfigNode):
next_nodes = {
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
@ -53,8 +109,6 @@ class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
@ -69,43 +123,16 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
experimental_feature = self.find_prop("experimental_feature")
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mps": MPSConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"crossref": CrossRefConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"pure_torch": PureTorchConfigNode,
"slow_gradcheck": SlowGradcheckConfigNode,
"android_abi": AndroidAbiConfigNode,
}
return next_nodes[experimental_feature]
class SlowGradcheckConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_slow_gradcheck"] = True
def child_constructor(self):
return ExperimentalFeatureConfigNode
class PureTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PURE_TORCH=" + str(label)
def init2(self, node_name):
self.props["is_pure_torch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class XlaConfigNode(TreeConfigNode):
def modify_label(self, label):
return "XLA=" + str(label)
@ -116,50 +143,6 @@ class XlaConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class MPSConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MPS=" + str(label)
def init2(self, node_name):
self.props["is_mps"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Asan=" + str(label)
def init2(self, node_name):
self.props["is_asan"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ONNXConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Onnx=" + str(label)
def init2(self, node_name):
self.props["is_onnx"] = node_name
def child_constructor(self):
return ImportantConfigNode
class VulkanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Vulkan=" + str(label)
def init2(self, node_name):
self.props["is_vulkan"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
@ -170,15 +153,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class CrossRefConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_crossref"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
@ -189,7 +163,6 @@ class ParallelNativeConfigNode(TreeConfigNode):
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
@ -198,33 +171,16 @@ class LibTorchConfigNode(TreeConfigNode):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
return ImportantConfigNode
class AndroidAbiConfigNode(TreeConfigNode):
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ShardTestConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["shard_test"] = node_name
self.props["android_abi"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)
@ -237,6 +193,7 @@ class ImportantConfigNode(TreeConfigNode):
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
@ -249,19 +206,6 @@ class XenialCompilerConfigNode(TreeConfigNode):
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class XenialCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
@ -269,12 +213,3 @@ class XenialCompilerVersionConfigNode(TreeConfigNode):
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -1,13 +1,19 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Optional
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.data.simple.util.docker_constants import gen_docker_image
from dataclasses import dataclass, field
from typing import List, Optional
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/"
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
# TOP OF .circleci/config.yml
DOCKER_IMAGE_VERSION = 405
@dataclass
@ -17,25 +23,17 @@ class Conf:
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
rocm_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
is_vulkan: bool = False
is_pure_torch: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional["Conf"] = None
parent_build: Optional['Conf'] = None
is_libtorch: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
build_only: bool = False
@staticmethod
def is_test_phase(phase):
return "test" in phase
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
@ -48,47 +46,31 @@ class Conf:
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_vulkan and not for_docker:
leading.append("vulkan")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.is_pure_torch and not for_docker:
leading.append("pure_torch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
cuda_parms = []
if self.cuda_version:
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
if self.rocm_version:
cuda_parms.extend([f"rocm{self.rocm_version}"])
cuda_parms.extend(["cuda" + self.cuda_version, "cudnn7"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
if (not for_docker and self.parms_list_ignored_for_docker_image is not None):
result = result + self.parms_list_ignored_for_docker_image
return result
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
image_name, _ = gen_docker_image(base_build_env_name)
return miniutils.quote(image_name)
def gen_docker_image_requires(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
_, requires = gen_docker_image(base_build_env_name)
return miniutils.quote(requires)
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + base_build_env_name + ":" + str(DOCKER_IMAGE_VERSION))
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
def gen_build_name(self, build_or_test):
return (
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
.replace(".", "_")
.replace("-", "_")
)
return ("_".join(map(str, self.get_build_job_name_pieces(build_or_test)))).replace(".", "_").replace("-", "_")
def get_dependents(self):
return self.dependent_tests or []
@ -100,28 +82,22 @@ class Conf:
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if Conf.is_test_phase(phase) and self.gpu_resource:
if phase == "test" and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if Conf.is_test_phase(phase):
if phase == "test":
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
if self.rocm_version is not None:
resource_class = "pytorch/amd-gpu"
parameters["resource_class"] = resource_class
if phase == "build" and self.rocm_version is not None:
parameters["resource_class"] = "xlarge"
if hasattr(self, 'filters'):
parameters['filters'] = self.filters
if self.build_only:
parameters['build_only'] = miniutils.quote(str(int(True)))
return parameters
def gen_workflow_job(self, phase):
# All jobs require the setup job
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
job_def["requires"] = ["setup"]
if Conf.is_test_phase(phase):
if phase == "test":
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
@ -129,89 +105,64 @@ class Conf:
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_def["requires"].append(dependency_build.gen_build_name("build"))
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
job_def["requires"] = [self.gen_docker_image_requires()]
if not self.is_important:
job_def["filters"] = gen_filter_dict()
# If you update this, update
# caffe2_build_definitions.py too
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/"]}}
job_def.update(self.gen_workflow_params(phase))
return {job_name: job_def}
return {job_name : job_def}
# TODO This is a hack to special case some configs just for the workflow list
class HiddenConf(object):
def __init__(self, name, parent_build=None, filters=None):
def __init__(self, name, parent_build=None):
self.name = name
self.parent_build = parent_build
self.filters = filters
def gen_workflow_job(self, phase):
return {
self.gen_build_name(phase): {
"requires": [self.parent_build.gen_build_name("build")],
"filters": self.filters,
}
}
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
def gen_build_name(self, _):
return self.name
class DocPushConf(object):
def __init__(self, name, parent_build=None, branch="master"):
self.name = name
self.parent_build = parent_build
self.branch = branch
def gen_workflow_job(self, phase):
return {
"pytorch_doc_push": {
"name": self.name,
"branch": self.branch,
"requires": [self.parent_build],
"context": "org-member",
"filters": gen_filter_dict(branches_list=["nightly"],
tags_list=RC_PATTERN)
}
}
# TODO Convert these to graph nodes
def gen_dependent_configs(xenial_parent_config):
extra_parms = [
(["multigpu"], "large"),
(["NO_AVX2"], "medium"),
(["NO_AVX", "NO_AVX2"], "medium"),
(["slow"], "medium"),
(["nogpu"], None),
]
def gen_docs_configs(xenial_parent_config):
configs = []
for parms, gpu in extra_parms:
configs.append(
HiddenConf(
"pytorch_python_doc_build",
c = Conf(
xenial_parent_config.distro,
["py3"] + parms,
pyver="3.6",
cuda_version=xenial_parent_config.cuda_version,
restrict_phases=["test"],
gpu_resource=gpu,
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
tags_list=RC_PATTERN),
is_important=xenial_parent_config.is_important,
)
)
configs.append(
DocPushConf(
"pytorch_python_doc_push",
parent_build="pytorch_python_doc_build",
branch="site",
)
)
configs.append(
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "main", "nightly"],
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_cpp_doc_push",
parent_build="pytorch_cpp_doc_build",
branch="master",
)
)
configs.append(c)
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
return configs
@ -225,30 +176,21 @@ def gen_tree():
return configs_list
def instantiate_configs(only_slow_gradcheck):
def instantiate_configs():
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
restrict_phases = None
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_crossref = fc.find_prop("is_crossref") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
parms_list_ignored_for_docker_image = []
if only_slow_gradcheck ^ is_slow_gradcheck:
continue
python_version = None
if compiler_name == "cuda" or compiler_name == "android":
python_version = fc.find_prop("pyver")
@ -257,14 +199,9 @@ def instantiate_configs(only_slow_gradcheck):
parms_list = ["py" + fc.find_prop("pyver")]
cuda_version = None
rocm_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
elif compiler_name == "rocm":
rocm_version = fc.find_prop("compiler_version")
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
elif compiler_name == "android":
android_ndk_version = fc.find_prop("compiler_version")
# TODO: do we need clang to compile host binaries like protoc?
@ -273,44 +210,25 @@ def instantiate_configs(only_slow_gradcheck):
android_abi = fc.find_prop("android_abi")
parms_list_ignored_for_docker_image.append(android_abi)
restrict_phases = ["build"]
fc.props["is_important"] = True
elif compiler_name:
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
parms_list.append(gcc_version)
if is_asan:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
# TODO: This is a nasty special case
if compiler_name == "clang" and not is_xla:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_crossref:
parms_list_ignored_for_docker_image.append("crossref")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
restrict_phases = ["build", "ort_test1", "ort_test2"]
if cuda_version:
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
if cuda_version in ["9.2", "10", "10.1"]:
# TODO The gcc version is orthogonal to CUDA version?
parms_list.append("gcc7")
is_libtorch = fc.find_prop("is_libtorch") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
shard_test = fc.find_prop("shard_test") or False
# TODO: fix pure_torch python test packaging issue.
if shard_test:
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
restrict_phases.extend(["test1", "test2"])
if build_only or is_pure_torch:
restrict_phases = ["build"]
if is_slow_gradcheck:
parms_list_ignored_for_docker_image.append("old")
parms_list_ignored_for_docker_image.append("gradcheck")
gpu_resource = None
if cuda_version and cuda_version != "10":
@ -322,45 +240,42 @@ def instantiate_configs(only_slow_gradcheck):
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
rocm_version,
is_xla,
is_vulkan,
is_pure_torch,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
is_important=is_important,
parallel_backend=parallel_backend,
build_only=build_only,
)
# run docs builds on "pytorch-linux-xenial-py3.7-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build?
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.7"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
and not is_pure_torch
and compiler_name == "gcc"
and fc.find_prop("compiler_version") == "5.4"
):
c.filters = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
c.dependent_tests = gen_docs_configs(c)
if cuda_version == "9" and python_version == "3.6" and not is_libtorch:
c.dependent_tests = gen_dependent_configs(c)
if (compiler_name == "gcc"
and compiler_version == "5.4"
and not is_libtorch
and parallel_backend is None):
bc_breaking_check = Conf(
"backward-compatibility-check",
[],
is_xla=False,
restrict_phases=["test"],
is_libtorch=False,
is_important=True,
parent_build=c,
)
c.dependent_tests.append(bc_breaking_check)
config_list.append(c)
return config_list
def get_workflow_jobs(only_slow_gradcheck=False):
def get_workflow_jobs():
config_list = instantiate_configs(only_slow_gradcheck)
config_list = instantiate_configs()
x = []
x = ["setup"]
for conf_options in config_list:
phases = conf_options.restrict_phases or dimensions.PHASES
@ -368,7 +283,7 @@ def get_workflow_jobs(only_slow_gradcheck=False):
for phase in phases:
# TODO why does this not have a test?
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
if phase == "test" and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))

View File

@ -1,28 +0,0 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.lib.miniutils import quote
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
def gen_workflow_job(channel: str):
return OrderedDict(
{
"anaconda_prune": OrderedDict(
{
"name": f"anaconda-prune-{channel}",
"context": quote("org-member"),
"packages": quote(PACKAGES_TO_PRUNE),
"channel": channel,
"filters": gen_filter_dict(branches_list=["postnightly"]),
}
)
}
)
def get_workflow_jobs():
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]

View File

@ -1,39 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# NOTE: All hardcoded docker image builds have been migrated to GHA
IMAGE_NAMES = [
]
# This entry should be an element from the list above
# This should contain the image matching the "slow_gradcheck" entry in
# pytorch_build_data.py
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
"""Generates a list of docker image build definitions"""
ret = []
for image_name in images:
if image_name.startswith('docker-'):
image_name = image_name.lstrip('docker-')
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
continue
parameters = OrderedDict({
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
})
if image_name == "pytorch-linux-xenial-py3.7-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
ret.append(OrderedDict(
{
"docker_build_job": parameters
}
))
return ret

View File

@ -1,88 +0,0 @@
from cimodel.data.simple.util.versions import MultiPartVersion
import cimodel.lib.miniutils as miniutils
XCODE_VERSION = MultiPartVersion([12, 5, 1])
class ArchVariant:
def __init__(self, name, custom_build_name=""):
self.name = name
self.custom_build_name = custom_build_name
def render(self):
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
return "_".join([self.name] + extra_parts)
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
self.xcode_version = xcode_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self, with_version_dots):
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
return [
"pytorch",
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "_".join(self.gen_name_parts(False))
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"build_environment": "-".join(self.gen_name_parts(True)),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
"name": self.gen_job_name(),
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
"use_metal": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
"op_list": "mobilenetv2.yaml",
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "coreml"), is_org_member_context=False, extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,52 +0,0 @@
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = non_phase_parts + extra_name_list + [
'build' if self.is_build else None,
'test' if self.is_test else None,
]
full_job_name = "_".join(list(filter(None, full_job_name_list)))
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({
"lite_interpreter": True
}.items()),
)
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,53 +0,0 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class MobileJob:
def __init__(
self,
docker_image,
docker_requires,
variant_parts,
is_master_only=False):
self.docker_image = docker_image
self.docker_requires = docker_requires
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"requires": self.docker_requires,
"name": full_job_name,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = [
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,85 +0,0 @@
import cimodel.data.simple.ios_definitions as ios_definitions
import cimodel.lib.miniutils as miniutils
class IOSNightlyJob:
def __init__(self,
variant,
is_full_jit=False,
is_upload=False):
self.variant = variant
self.is_full_jit = is_full_jit
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, with_version_dots):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
extra_name = ["full_jit"] if self.is_full_jit else []
common_name_pieces = [
"ios",
] + extra_name + [
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
"nightly",
self.variant,
"build",
] + extra_name_suffix
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
def gen_tree(self):
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
extra_requires = [x.gen_job_name() for x in build_configs] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
props_dict["use_metal"] = miniutils.quote(str(int(True)))
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
if self.is_full_jit:
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
template_name = "_".join([
"binary",
"ios",
self.get_phase_name(),
])
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
BUILD_CONFIGS_FULL_JIT = [
IOSNightlyJob("x86_64", is_full_jit=True),
IOSNightlyJob("arm64", is_full_jit=True),
]
WORKFLOW_DATA = BUILD_CONFIGS + BUILD_CONFIGS_FULL_JIT + [
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,28 +0,0 @@
NON_PR_BRANCH_LIST = [
"main",
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
PR_BRANCH_LIST = [
r"/gh\/.*\/head/",
r"/pull\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict

View File

@ -1,33 +0,0 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
def gen_docker_image(container_type):
return (
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
f"docker-{container_type}",
)
def gen_docker_image_requires(image_name):
return [f"docker-{image_name}"]
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc7"
)
def gen_mobile_docker(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image(container_type)
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")

View File

@ -1,34 +0,0 @@
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
else:
return [self.prefix]
def render_dots(self):
return ".".join(self.prefixed_parts())
def render_dots_or_parts(self, with_dots):
if with_dots:
return [self.render_dots()]
else:
return self.prefixed_parts()
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")
def __str__(self):
return f"{self.major}.{self.minor}"

View File

@ -1,7 +1,5 @@
from collections import OrderedDict
import cimodel.lib.miniutils as miniutils
LIST_MARKER = "- "
INDENTATION_WIDTH = 2
@ -31,8 +29,7 @@ def render(fh, data, depth, is_list_member=False):
tuples.sort()
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
@ -46,7 +43,5 @@ def render(fh, data, depth, is_list_member=False):
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")
fh.write(list_member_prefix + str(data) + "\n")

View File

@ -0,0 +1,84 @@
"""
This module encapsulates dependencies on pygraphviz
"""
import colorsys
import cimodel.lib.conf_tree as conf_tree
def rgb2hex(rgb_tuple):
def to_hex(f):
return "%02x" % int(f * 255)
return "#" + "".join(map(to_hex, list(rgb_tuple)))
def handle_missing_graphviz(f):
"""
If the user has not installed pygraphviz, this causes
calls to the draw() method of the returned object to do nothing.
"""
try:
import pygraphviz # noqa: F401
return f
except ModuleNotFoundError:
class FakeGraph:
def draw(self, *args, **kwargs):
pass
return lambda _: FakeGraph()
@handle_missing_graphviz
def generate_graph(toplevel_config_node):
"""
Traverses the graph once first just to find the max depth
"""
config_list = conf_tree.dfs(toplevel_config_node)
max_depth = 0
for config in config_list:
max_depth = max(max_depth, config.get_depth())
# color the nodes using the max depth
from pygraphviz import AGraph
dot = AGraph()
def node_discovery_callback(node, sibling_index, sibling_count):
depth = node.get_depth()
sat_min, sat_max = 0.1, 0.6
sat_range = sat_max - sat_min
saturation_fraction = sibling_index / float(sibling_count - 1) if sibling_count > 1 else 1
saturation = sat_min + sat_range * saturation_fraction
# TODO Use a hash of the node label to determine the color
hue = depth / float(max_depth + 1)
rgb_tuple = colorsys.hsv_to_rgb(hue, saturation, 1)
this_node_key = node.get_node_key()
dot.add_node(
this_node_key,
label=node.get_label(),
style="filled",
# fillcolor=hex_color + ":orange",
fillcolor=rgb2hex(rgb_tuple),
penwidth=3,
color=rgb2hex(colorsys.hsv_to_rgb(hue, saturation, 0.9))
)
def child_callback(node, child):
this_node_key = node.get_node_key()
child_node_key = child.get_node_key()
dot.add_edge((this_node_key, child_node_key))
conf_tree.dfs_recurse(toplevel_config_node, lambda x: None, node_discovery_callback, child_callback)
return dot

View File

@ -1,17 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
DIFF_TOOL=meld
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
popd

View File

@ -1,24 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], '..'))
import cimodel.lib.miniyaml as miniyaml
def regurgitate(depth, use_pyyaml_formatter=False):
data = yaml.safe_load(sys.stdin)
if use_pyyaml_formatter:
output = yaml.dump(data, sort_keys=True)
sys.stdout.write(output)
else:
miniyaml.render(sys.stdout, data, depth)
if __name__ == "__main__":
regurgitate(3)

View File

@ -1,15 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=$1
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
TEMP_FILENAME=$(mktemp)
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
mv $TEMP_FILENAME $YAML_FILENAME
popd

File diff suppressed because it is too large Load Diff

View File

@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -20,8 +20,10 @@ buildscript {
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
classpath 'com.android.tools.build:gradle:3.3.2'
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
}
}
@ -51,9 +53,9 @@ android {
dependencies {
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
implementation 'com.facebook.fbjni:fbjni-java-only:0.0.3'
implementation 'com.google.code.findbugs:jsr305:3.0.1'
implementation 'com.facebook.soloader:nativeloader:0.10.1'
implementation 'com.facebook.soloader:nativeloader:0.8.0'
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion

View File

@ -10,278 +10,167 @@ if [ -z "${image}" ]; then
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
# Use the same pre-built XLA test image from PyTorch/XLA
if [[ "$image" == *xla* ]]; then
echo "Using pre-built XLA test image..."
exit 0
# TODO: Generalize
OS="ubuntu"
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *-cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
fi
if [[ "$image" == *-xenial* ]]; then
if [[ "$image" == *-trusty* ]]; then
UBUNTU_VERSION=14.04
elif [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
if [[ "$image" == *xenial* ]] || [[ "$image" == *bionic* ]]; then
CMAKE_VERSION=3.13.5
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
ANACONDA_PYTHON_VERSION=3.8
pytorch-linux-bionic-clang9-thrift-llvmdev)
CLANG_VERSION=9
THRIFT=yes
LLVMDEV=yes
PROTOBUF=yes
;;
pytorch-linux-xenial-py2.7.9)
TRAVIS_PYTHON_VERSION=2.7.9
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc5.4)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py2.7)
TRAVIS_PYTHON_VERSION=2.7
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.5)
TRAVIS_PYTHON_VERSION=3.5
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.6-gcc4.8)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=4.8
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3.6-gcc5.4)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3.7-gcc7.2)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py3.6-gcc7.2)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc7)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py3.6-gcc7)
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
pytorch-linux-xenial-pynightly)
TRAVIS_PYTHON_VERSION=nightly
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda8-cudnn7-py2)
CUDA_VERSION=8.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=7
ANACONDA_PYTHON_VERSION=2.7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda8-cudnn7-py3)
CUDA_VERSION=8.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py2)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=2.7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda9-cudnn7-py3)
CUDA_VERSION=9.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
TENSORRT_VERSION=8.0.1.6
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
CUDA_VERSION=9.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.3-cudnn8-py3-clang9)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
TENSORRT_VERSION=8.0.1.6
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.6-cudnn8-py3-gcc7)
CUDA_VERSION=11.6.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
CUDA_VERSION=10.0
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
CUDA_VERSION=10.1
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.6
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.7
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=5.0
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
GRADLE_VERSION=4.10.3
CMAKE_VERSION=3.7.0
NINJA_VERSION=1.9.0
;;
pytorch-linux-xenial-py3.7-clang7)
ANACONDA_PYTHON_VERSION=3.7
pytorch-linux-xenial-py3.6-clang7)
ANACONDA_PYTHON_VERSION=3.6
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.7-clang9)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.7-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-rocm5.0-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.0
;;
pytorch-linux-bionic-rocm5.1-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=5.1.1
;;
pytorch-linux-focal-py3.7-gcc7)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.12.4 # To make sure XNNPACK is enabled for the BACKWARDS_COMPAT_TEST used with this image
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
# Set Jenkins UID and GID if running Jenkins
@ -290,23 +179,11 @@ if [ -n "${JENKINS:-}" ]; then
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 8 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
@ -318,45 +195,28 @@ docker build \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx900;gfx906}" \
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
@ -369,6 +229,19 @@ if [[ "$OS" == "ubuntu" ]]; then
fi
fi
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
else
echo "Please manually check nightly is OK:"
drun python --version
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"

View File

@ -13,7 +13,7 @@ retry () {
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
tag="${CIRCLE_WORKFLOW_ID}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
@ -26,14 +26,11 @@ login() {
docker login -u AWS --password-stdin "$1"
}
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Only run these steps if not on github actions
if [[ -z "${GITHUB_ACTIONS}" ]]; then
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
fi
# Logout on exit
trap "docker logout ${registry}" EXIT
# export EC2=1
# export JENKINS=1
@ -48,8 +45,5 @@ fi
docker push "${image}:${tag}"
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
trap "rm -rf ${IMAGE_NAME}:${tag}.tar" EXIT
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read

View File

@ -1,105 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm
RUN yum install -y git
# Install devtoolset
ARG DEVTOOLSET_VERSION
ADD ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
ADD ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -4,15 +4,13 @@ set -ex
[ -n "${ANDROID_NDK}" ]
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
apt-get update
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
pushd /tmp
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
curl -Os https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
popd
_ndk_dir=/opt/ndk
mkdir -p "$_ndk_dir"
@ -47,22 +45,43 @@ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# Installing android sdk
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
_sdk_version=sdk-tools-linux-3859397.zip
_android_home=/opt/android/sdk
rm -rf $_android_home
sudo mkdir -p $_android_home
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
sudo unzip -q $_tmp_sdk_zip -d $_android_home
rm $_tmp_sdk_zip
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
sudo unzip -q /tmp/$_sdk_version -d $_android_home
rm /tmp/$_sdk_version
sudo chmod -R 777 $_android_home
export ANDROID_HOME=$_android_home
export ADB_INSTALL_TIMEOUT=120
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
echo "PATH:${PATH}"
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
sudo chmod -R 777 ~/.android
yes | sdkmanager --licenses
yes | sdkmanager --update
sdkmanager \
"tools" \
"platform-tools" \
"emulator"
sdkmanager \
"build-tools;28.0.3" \
"build-tools;29.0.2"
sdkmanager \
"platforms;android-28" \
"platforms;android-29"
sdkmanager --list
# Installing Gradle
echo "GRADLE_VERSION:${GRADLE_VERSION}"
@ -70,7 +89,8 @@ _gradle_home=/opt/gradle
sudo rm -rf $gradle_home
sudo mkdir -p $_gradle_home
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
wget --no-verbose --output-document=/tmp/gradle.zip \
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
rm /tmp/gradle.zip
@ -99,7 +119,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle

View File

@ -2,133 +2,74 @@
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
maybe_libiomp_dev="libiomp-dev"
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
fi
if [[ "$UBUNTU_VERSION" == "14.04" ]]; then
# cmake 2 is too old
cmake3=cmake3
else
cmake3=cmake
fi
# TODO: Remove this once nvidia package repos are back online
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
if [[ "$UBUNTU_VERSION" == "18.04" ]]; then
cmake3="cmake=3.10*"
else
cmake3="${cmake3}=3.5*"
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
software-properties-common \
wget \
sudo \
vim
# Should resolve issues related to various apt package repository cert issues
# see: https://github.com/pytorch/pytorch/issues/65931
apt-get install -y libgnutls30
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
# TODO: libiomp also gets installed by conda, aka there's a conflict
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
libiomp-dev \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
python \
python-dev \
python-setuptools \
python-wheel \
software-properties-common \
sudo \
wget \
vim
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.16.1
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
if ! wget http://valgrind.org/downloads/valgrind-3.14.0.tar.bz2
then
wget https://sourceware.org/ftp/valgrind/valgrind-3.14.0.tar.bz2
fi
tar -xjf valgrind-3.14.0.tar.bz2
cd valgrind-3.14.0
./configure --prefix=/usr/local
make -j6
make
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"
# TODO: THIS IS A HACK!!!
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
if dpkg -s libnccl-dev; then
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

View File

@ -2,51 +2,17 @@
set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
apt-get install -y cargo pkg-config libssl-dev
echo "Checking out sccache repo"
git clone https://github.com/pytorch/sccache
cd sccache
echo "Building sccache"
cargo build --release
cp target/release/sccache /opt/cache/bin
echo "Cleaning up"
cd ..
rm -rf sccache
apt-get remove -y cargo rustc
apt-get autoclean && apt-get clean
}
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
}
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
if [ -n "$ROCM_VERSION" ]; then
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
else
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
*)
install_binary
;;
esac
fi
curl https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}
@ -54,12 +20,8 @@ write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
# NOTE: See specific ROCM_VERSION case below.
if [ "x$ROCM_VERSION" = x ]; then
write_sccache_stub clang
write_sccache_stub clang++
fi
write_sccache_stub clang
write_sccache_stub clang++
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
@ -68,50 +30,6 @@ if [ -n "$CUDA_VERSION" ]; then
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
write_sccache_stub nvcc
mv /opt/cache/bin/nvcc /opt/cache/lib/
fi
if [ -n "$ROCM_VERSION" ]; then
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
# directly under /opt/rocm while also preserving the original compiler names.
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
# Final link in symlink chain must point back to original directory.
# Original compiler is moved one directory deeper. Wrapper replaces it.
function write_sccache_stub_rocm() {
OLDCOMP=$1
COMPNAME=$(basename $OLDCOMP)
TOPDIR=$(dirname $OLDCOMP)
WRAPPED="$TOPDIR/original/$COMPNAME"
mv "$OLDCOMP" "$WRAPPED"
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
chmod a+x "$OLDCOMP"
}
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
# ROCm 3.3 or earlier.
mkdir /opt/rocm/hcc/bin/original
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/hcc/bin/original
ln -s ../$(readlink clang)
popd
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
# ROCm 3.5 and beyond.
mkdir /opt/rocm/llvm/bin/original
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/llvm/bin/original
ln -s ../$(readlink clang)
popd
else
echo "Cannot find ROCm compiler."
exit 1
fi
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
chmod a+x /opt/cache/lib/nvcc
fi

View File

@ -4,16 +4,13 @@ set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
apt-get remove cmake -y
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
curl -Os "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -4,7 +4,7 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
BASE_URL="https://repo.continuum.io/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
@ -21,23 +21,16 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
;;
esac
mkdir -p /opt/conda
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
@ -56,10 +49,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
pushd /opt/conda
# Track latest conda update
as_jenkins conda update -y -n base conda
as_jenkins conda update -n base conda
# Install correct Python version
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
@ -68,45 +61,34 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
}
pip_install() {
as_jenkins pip install --progress-bar off $*
}
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.10, but
# we want to pin to version 3.10.
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
else
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
fi
# Magma package names are concatenation of CUDA major and minor ignoring revision
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
if [ -n "$CUDA_VERSION" ]; then
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
# DO NOT install cmake here as it would install a version newer than 3.5, but
# we want to pin to version 3.5.
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
if [[ "$CUDA_VERSION" == 8.0* ]]; then
conda_install magma-cuda80 -c pytorch
elif [[ "$CUDA_VERSION" == 9.0* ]]; then
conda_install magma-cuda90 -c pytorch
elif [[ "$CUDA_VERSION" == 9.1* ]]; then
conda_install magma-cuda91 -c pytorch
elif [[ "$CUDA_VERSION" == 9.2* ]]; then
conda_install magma-cuda92 -c pytorch
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
conda_install magma-cuda100 -c pytorch
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
conda_install magma-cuda101 -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
pip_install -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
pip_install scikit-learn==0.20.3
fi
# Install some other packages
# TODO: Why is scipy pinned
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
# scikit-learn is pinned because of
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
# only)
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.43.1 llvmlite==0.28.0
popd
fi

View File

@ -1,18 +0,0 @@
#!/bin/bash
if [[ ${CUDNN_VERSION} == 8 ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn && cd tmp_cudnn
CUDNN_NAME="cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive"
curl -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/include/
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/include/* /usr/include/x86_64-linux-gnu/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
cp -a ${CUDNN_NAME}/lib/* /usr/lib/x86_64-linux-gnu/
cd ..
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -2,6 +2,23 @@
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
@ -34,16 +51,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -7,18 +7,10 @@ if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [[ "$UBUNTU_VERSION" == "16.04" && "${GCC_VERSION:0:1}" == "5" ]]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 50
else
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
fi
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
# Cleanup package manager
apt-get autoclean && apt-get clean

View File

@ -3,9 +3,6 @@
set -ex
if [ -n "$KATEX" ]; then
apt-get update
# Ignore error if gpg-agent doesn't exist (for Ubuntu 16.04)
apt-get install -y gpg-agent || :
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs

View File

@ -1,8 +0,0 @@
#!/bin/bash
set -ex
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
pushd lcov
sudo make install # will be installed in /usr/local/bin/lcov
popd

View File

@ -1,10 +0,0 @@
#!/bin/bash
sudo apt-get update
# also install ssh to avoid error of:
# --------------------------------------------------------------------------
# The value of the MCA parameter "plm_rsh_agent" was set to a path
# that could not be found:
# plm_rsh_agent: ssh : rsh
sudo apt-get install -y ssh
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
make -j6; make install_sw
cd ..
rm -rf "${OPENSSL}"

View File

@ -2,8 +2,8 @@
set -ex
# This function installs protobuf 3.17
install_protobuf_317() {
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
@ -12,45 +12,45 @@ install_protobuf_317() {
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
# -j6 to balance memory usage and speed.
# naked `-j` seems to use too much memory.
pushd "$pb_dir" && ./configure && make -j6 && make -j6 check && sudo make -j6 install && sudo ldconfig
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
# Ubuntu 14.04 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we install that here if on 14.04
# Ubuntu 14.04 also has cmake 2.8.12 as the default option, so we will
# install cmake3 here and use cmake3.
apt-get update
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
apt-get install -y --no-install-recommends cmake3
install_protobuf_26
else
apt-get install -y --no-install-recommends \
libprotobuf-dev \
protobuf-compiler
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
install_protobuf_317
}
install_centos() {
install_protobuf_317
# Centos7 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
# so we always install install that here
install_protobuf_26
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,160 +0,0 @@
#!/bin/bash
set -ex
install_magma() {
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# Fixes memory leaks of magma found while executing linalg UTs
git checkout 5959b8783e45f1809812ed96ae762f38ee701972
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc
done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm
}
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
# Map ROCm version to AMDGPU version
declare -A AMDGPU_VERSIONS=( ["4.5.2"]="21.40.2" ["5.0"]="21.50" ["5.1.1"]="22.10.1" )
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
fi
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available"
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
install_magma
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
fi
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
install_magma
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${SWIFTSHADER}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
# SwiftShader
_swiftshader_dir=/var/lib/jenkins/swiftshader
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
mkdir -p $_swiftshader_dir
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
curl --silent --show-error --location --fail --retry 3 \
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"

View File

@ -0,0 +1,94 @@
#!/bin/bash
set -ex
as_jenkins() {
# NB: Preserve PATH and LD_LIBRARY_PATH changes
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
mkdir -p /opt/python
chown jenkins:jenkins /opt/python
# Download Python binary from Travis
pushd tmp
as_jenkins wget --quiet https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64/python-$TRAVIS_PYTHON_VERSION.tar.bz2
# NB: The tarball also comes with /home/travis virtualenv that we
# don't care about. (Maybe we should, but we've worked around the
# "how do I install to python" issue by making this entire directory
# user-writable "lol")
# NB: Relative ordering of opt/python and flags matters
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
popd
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
python --version
pip --version
# Install pip from source.
# The python-pip package on Ubuntu Trusty is old
# and upon install numpy doesn't use the binary
# distribution, and fails to compile it from source.
pushd tmp
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
as_jenkins tar zxf pip-9.0.1.tar.gz
pushd pip-9.0.1
as_jenkins python setup.py install
popd
rm -rf pip-9.0.1*
popd
# Install pip packages
as_jenkins pip install --upgrade pip
pip --version
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
# These two packages have broken Cythonizations uploaded
# to PyPi, see:
#
# - https://github.com/numpy/numpy/issues/10500
# - https://github.com/yaml/pyyaml/issues/117
#
# Furthermore, the released version of Cython does not
# have these issues fixed.
#
# While we are waiting on fixes for these, we build
# from Git for now. Feel free to delete this conditional
# branch if things start working again (you may need
# to do this if these packages regress on Git HEAD.)
as_jenkins pip install git+https://github.com/cython/cython.git
as_jenkins pip install git+https://github.com/numpy/numpy.git
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
else
as_jenkins pip install numpy pyyaml
fi
as_jenkins pip install \
future \
hypothesis \
protobuf \
pytest \
pillow \
typing
as_jenkins pip install mkl mkl-devel
# SciPy does not support Python 3.7 or Python 2.7.9
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
fi
# Install psutil for dataloader tests
as_jenkins pip install psutil
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -3,11 +3,8 @@
set -ex
# Mirror jenkins user in container
# jenkins user as ec2-user should have the same user-id
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1000:" >> /etc/group
# Needed on focal or newer
echo "jenkins:*:19110:0:99999:7:::" >>/etc/shadow
echo "jenkins:x:1014:1014::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1014:" >> /etc/group
# Create $HOME
mkdir -p /var/lib/jenkins
@ -21,6 +18,3 @@ chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins
# Test that sudo works
sudo -u jenkins sudo -v

View File

@ -2,6 +2,23 @@
set -ex
# This function installs protobuf 2.6
install_protobuf_26() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
@ -30,16 +47,11 @@ install_centos() {
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
if [ -f /etc/lsb-release ]; then
install_ubuntu
elif [ -f /etc/os-release ]; then
install_centos
else
echo "Unable to determine OS..."
exit 1
fi

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${VULKAN_SDK_VERSION}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"

View File

@ -1,212 +0,0 @@
# Python dependencies required for unit tests
#awscli==1.6 #this breaks some platforms
#Description: AWS command line interface
#Pinned versions: 1.6
#test that import:
boto3==1.19.12
#Description: AWS SDK for python
#Pinned versions: 1.19.12, 1.16.34
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
#test that import:
coremltools==5.0b5
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
#dataclasses #this breaks some platforms
#Description: Provides decorators for auto adding special methods to user classes
#Pinned versions:
#test that import:
expecttest==0.1.3
#Description: method for writing tests where test framework auto populates
# the expected output based on previous runs
#Pinned versions: 0.1.3
#test that import:
flatbuffers==2.0
#Description: cross platform serialization library
#Pinned versions: 2.0
#test that import:
#future #this breaks linux-bionic-rocm4.5-py3.7
#Description: compatibility layer between python 2 and python 3
#Pinned versions:
#test that import:
hypothesis==4.53.2
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
#Description: unitparser handles JUnit/xUnit Result XML files
#Pinned versions: 2.1.1
#test that import:
librosa>=0.6.2
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
#Pinned versions:
#test that import: test_profiler.py, test_public_bindings.py, test_testing.py,
#test_nn.py, test_mkldnn.py, test_jit.py, test_fx_experimental.py,
#test_autograd.py
#mkl-devel
# see mkl
#mock # breaks ci/circleci: docker-pytorch-linux-xenial-py3-clang5-android-ndk-r19c
#Description: A testing library that allows you to replace parts of your
#system under test with mock objects
#Pinned versions:
#test that import: test_module_init.py, test_modules.py, test_nn.py,
#test_testing.py
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
#Description: collects runtime types of function arguments and return
#values, and can automatically generate stub files
#Pinned versions:
#test that import:
mypy==0.812
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 0.812
#test that import: test_typing.py, test_type_hints.py
#networkx
#Description: creation, manipulation, and study of
#the structure, dynamics, and functions of complex networks
#Pinned versions: 2.0
#test that import:
#ninja
#Description: build system. Note that it install from
#here breaks things so it is commented out
#Pinned versions: 1.10.0.post1
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9"
numba==0.54.1 ; python_version == "3.9"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#numpy
#Description: Provides N-dimensional arrays and linear algebra
#Pinned versions: 1.20
#test that import: test_view_ops.py, test_unary_ufuncs.py, test_type_promotion.py,
#test_type_info.py, test_torch.py, test_tensorexpr_pybind.py, test_tensorexpr.py,
#test_tensorboard.py, test_tensor_creation_ops.py, test_static_runtime.py,
#test_spectral_ops.py, test_sort_and_select.py, test_shape_ops.py,
#test_segment_reductions.py, test_reductions.py, test_pruning_op.py,
#test_overrides.py, test_numpy_interop.py, test_numba_integration.py
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
#Pinned versions: 1.9.0
#test that import:
#pillow
#Description: Python Imaging Library fork
#Pinned versions:
#test that import:
#protobuf
#Description: Googles data interchange format
#Pinned versions:
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
#Pinned versions:
#test that import: test_profiler.py, test_openmp.py, test_dataloader.py
pytest
#Description: testing framework
#Pinned versions:
#test that import: test_typing.py, test_cpp_extensions_aot.py, run_test.py
#pytest-benchmark
#Description: fixture for benchmarking code
#Pinned versions: 3.2.3
#test that import:
#pytest-sugar
#Description: shows failures and errors instantly
#Pinned versions:
#test that import:
#PyYAML
#Description: data serialization format
#Pinned versions:
#test that import:
#requests
#Description: HTTP library
#Pinned versions:
#test that import: test_type_promotion.py
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 10.9.0
#test that import:
scikit-image
#Description: image processing routines
#Pinned versions:
#test that import: test_nn.py
#scikit-learn
#Description: machine learning package
#Pinned versions: 0.20.3
#test that import:
scipy==1.6.3
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.6.3
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
#test_linalg.py, test_binary_ufuncs.py
#tabulate
#Description: Pretty-print tabular data
#Pinned versions:
#test that import:
tb-nightly
#Description: TensorBoard
#Pinned versions:
#test that import:
#typing-extensions
#Description: type hints for python
#Pinned versions:
#test that import:
#virtualenv
#Description: virtual environment for python
#Pinned versions:
#test that import:
unittest-xml-reporting<=3.2.0,>=2.0.0
#Description: saves unit test results to xml
#Pinned versions:
#test that import:

View File

@ -1,11 +1,12 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
ARG CUDNN_VERSION
FROM ${IMAGE_NAME}
FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
ENV DEBIAN_FRONTEND noninteractive
@ -23,23 +24,22 @@ ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
@ -62,32 +62,17 @@ RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
ADD ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
ENV CUDA_NVCC_EXECUTABLE=/opt/cache/lib/nvcc
# Add jni.h for java host build
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
ADD ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
@ -95,16 +80,6 @@ ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ADD ./common/install_cudnn.sh install_cudnn.sh
RUN if [ "${CUDNN_VERSION}" -eq 8 ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
USER jenkins
CMD ["bash"]

View File

@ -1,98 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -33,22 +33,22 @@ ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
# Install conda
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD requirements-ci.txt /opt/conda/requirements-ci.txt
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN rm /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
ADD ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# Install non-standard Python versions (via Travis binaries)
ARG TRAVIS_PYTHON_VERSION
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
ADD ./common/install_travis_python.sh install_travis_python.sh
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
@ -84,18 +84,6 @@ RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
ADD ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
@ -108,10 +96,6 @@ ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
@ -126,8 +110,5 @@ RUN bash ./install_jni.sh && rm install_jni.sh
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -6,14 +6,13 @@ Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import namedtuple
import shutil
from collections import namedtuple, OrderedDict
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_ios
import cimodel.data.simple.anaconda_prune_defintions
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
@ -22,7 +21,6 @@ class File(object):
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
@ -31,7 +29,7 @@ class File(object):
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
class FunctionGen(namedtuple('FunctionGen', 'function depth')):
__slots__ = ()
@ -41,14 +39,15 @@ class Treegen(FunctionGen):
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
build_dict = OrderedDict()
self.function(build_dict)
miniyaml.render(output_filehandle, build_dict, self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
@ -58,6 +57,7 @@ def horizontal_rule():
class Header(object):
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
@ -70,97 +70,6 @@ class Header(object):
for line in filter(None, lines):
output_filehandle.write(line + "\n")
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def filter_master_only_jobs(items):
def _is_main_or_master_item(item):
filters = item.get('filters', None)
branches = filters.get('branches', None) if filters is not None else None
branches_only = branches.get('only', None) if branches is not None else None
return ('main' in branches_only or 'master' in branches_only) if branches_only is not None else False
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get('requires', None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_main_or_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_main_or_master_item(item) and item_name not in master_deps:
return None
if 'filters' in item:
item = item.copy()
item.pop('filters')
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that main-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def generate_required_docker_images(items):
required_docker_images = set()
def _requires_docker_image(item_type, item):
requires = item.get('requires', None)
if not isinstance(requires, list):
return
for requirement in requires:
requirement = requirement.replace('"', '')
if requirement.startswith('docker-'):
required_docker_images.add(requirement)
_for_all_items(items, _requires_docker_image)
return required_docker_images
def gen_build_workflows_tree():
build_workflows_functions = [
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
]
build_jobs = [f() for f in build_workflows_functions]
build_jobs.extend(
cimodel.data.simple.docker_definitions.get_workflow_jobs(
# sort for consistency
sorted(generate_required_docker_images(build_jobs))
)
)
master_build_jobs = filter_master_only_jobs(build_jobs)
rc = {
"workflows": {
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
}
}
if len(master_build_jobs) > 0:
rc["workflows"]["master_build"] = {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
}
return rc
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
@ -168,16 +77,37 @@ YAML_SOURCES = [
File("commands.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
File("pytorch-build-params.yml"),
File("caffe2-build-params.yml"),
File("binary-build-params.yml"),
Header("Job specs"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("pytorch-job-specs.yml"),
File("caffe2-job-specs.yml"),
File("binary-job-specs.yml"),
File("job-specs-setup.yml"),
File("job-specs-custom.yml"),
File("binary_update_htmls.yml"),
File("binary-build-tests.yml"),
File("docker_build_job.yml"),
File("workflows.yml"),
Listgen(pytorch_build_definitions.get_workflow_jobs, 3),
File("workflows-pytorch-macos-builds.yml"),
File("workflows-pytorch-android-gradle-build.yml"),
File("workflows-pytorch-ios-builds.yml"),
File("workflows-pytorch-mobile-builds.yml"),
File("workflows-pytorch-ge-config-tests.yml"),
Listgen(caffe2_build_definitions.get_workflow_jobs, 3),
File("workflows-binary-builds-smoke-subset.yml"),
Listgen(binary_build_definitions.get_binary_smoke_test_jobs, 3),
Listgen(binary_build_definitions.get_binary_build_jobs, 3),
File("workflows-nightly-ios-binary-builds.yml"),
File("workflows-nightly-android-binary-builds.yml"),
Header("Nightly tests"),
Listgen(binary_build_definitions.get_nightly_tests, 3),
File("workflows-nightly-uploads-header.yml"),
Listgen(binary_build_definitions.get_nightly_uploads, 3),
File("workflows-s3-html.yml"),
File("workflows-docker-builder.yml")
]

View File

@ -1,5 +0,0 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

View File

@ -1,17 +1,8 @@
#!/bin/bash -e
#!/bin/bash -xe
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
cd $(dirname "$0")
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"
./generate_config_yml.py > $NEW_FILE
cp $NEW_FILE config.yml

View File

@ -1,20 +1,9 @@
#!/bin/bash
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
rm -rf /c/w
ln -s "/c/Users/circleci/project" /c/w
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
@ -24,22 +13,11 @@ else
fi
# It is very important that this stays in sync with binary_populate_env.sh
if [[ "$OSTYPE" == "msys" ]]; then
# We need to make the paths as short as possible on Windows
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
# Try to extract PR number from branch if not already set
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
fi
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
# "smoke" binary build on PRs
@ -49,20 +27,19 @@ if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
git reset --hard "$CIRCLE_SHA1"
elif [[ -n "${CIRCLE_SHA1:-}" ]]; then
# Scheduled workflows & "smoke" binary build on master on PR merges
DEFAULT_BRANCH="$(git remote show $CIRCLE_REPOSITORY_URL | awk '/HEAD branch/ {print $NF}')"
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B $DEFAULT_BRANCH
git checkout -q -B master
else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive --jobs 0
git submodule update --init --recursive --quiet
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git -b release/1.12 "$BUILDER_ROOT"
git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
echo "Using builder from "
git --no-pager log --max-count 1

View File

@ -31,9 +31,9 @@ fi
conda_sh="$workdir/install_miniconda.sh"
if [[ "$(uname)" == Darwin ]]; then
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
else
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
retry curl -o "$conda_sh" https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
fi
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"

View File

@ -5,25 +5,20 @@ echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
export TCLLIBPATH="/usr/local/lib"
export TCLLIBPATH="/usr/local/lib"
# Install conda
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
curl -o ~/Downloads/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/Downloads/conda.sh
/bin/bash ~/Downloads/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
conda install -c conda-forge valgrind --yes
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive --jobs 0
git submodule update --init --recursive
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
@ -31,17 +26,13 @@ cat ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
echo "USE_PYTORCH_METAL: ${USE_PYTORCH_METAL}"
echo "USE_COREML_DELEGATE: ${USE_COREML_DELEGATE}"
export BUILD_PYTORCH_MOBILE=1
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
export USE_PYTORCH_METAL=${USE_PYTORCH_METAL}
export USE_COREML_DELEGATE=${USE_COREML_DELEGATE}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
#store the binary
cd ${WORKSPACE}
DEST_DIR=${WORKSPACE}/ios
mkdir -p ${DEST_DIR}
cp -R ${PROJ_ROOT}/build_ios/install ${DEST_DIR}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}

View File

@ -8,23 +8,22 @@ cd ${PROJ_ROOT}/ios/TestApp
# install fastlane
sudo gem install bundler && bundle install
# install certificates
echo "${IOS_CERT_KEY_2022}" >> cert.txt
echo "${IOS_CERT_KEY}" >> cert.txt
base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_root_cert
bundle exec fastlane install_dev_cert
bundle exec fastlane install_cert
# install the provisioning profile
PROFILE=PyTorch_CI_2022.mobileprovision
PROFILE=TestApp_CI.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
echo "${IOS_SIGN_KEY_2022}" >> cert.txt
echo "${IOS_SIGN_KEY}" >> cert.txt
base64 --decode cert.txt -o ${PROFILE}
rm cert.txt
# run the ruby build script
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
PROFILE=PyTorch_CI_2022
fi
PROFILE=TestApp_CI
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -14,45 +14,27 @@ mkdir -p ${ZIP_DIR}/src
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
# build a FAT bianry
cd ${ZIP_DIR}/install/lib
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpytorch_qnnpack.a libtorch.a)
for lib in ${target_libs[*]}
do
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
libs=("${ARTIFACTS_DIR}/x86_64/lib/${lib}" "${ARTIFACTS_DIR}/arm64/lib/${lib}")
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
fi
libs=(${ARTIFACTS_DIR}/x86_64/lib/${lib} ${ARTIFACTS_DIR}/arm64/lib/${lib})
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
done
# for nnpack, we only support arm64 build
cp ${ARTIFACTS_DIR}/arm64/lib/libnnpack.a ./
lipo -i ${ZIP_DIR}/install/lib/*.a
echo "BUILD_LITE_INTERPRETER: ${BUILD_LITE_INTERPRETER}"
# copy the umbrella header and license
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
cp ${PROJ_ROOT}/ios/LibTorch-Lite.h ${ZIP_DIR}/src/
else
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
fi
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
# zip the library
export DATE="$(date -u +%Y%m%d)"
export IOS_NIGHTLY_BUILD_VERSION="1.12.0.${DATE}"
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# libtorch_lite_ios_nightly_1.11.0.20210810.zip
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"
else
ZIPFILE="libtorch_ios_nightly_build.zip"
fi
ZIPFILE=libtorch_ios_nightly_build.zip
cd ${ZIP_DIR}
#for testing
touch version.txt
echo "${IOS_NIGHTLY_BUILD_VERSION}" > version.txt
echo $(date +%s) > version.txt
zip -r ${ZIPFILE} install src version.txt LICENSE
# upload to aws
# Install conda then 'conda install' awscli
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
conda install -c conda-forge awscli --yes
brew install awscli
set +x
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
@ -60,16 +42,3 @@ set +x
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# create a new LibTorch-Lite-Nightly.podspec from the template
echo "cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec"
cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# update pod version
sed -i '' -e "s/IOS_NIGHTLY_BUILD_VERSION/${IOS_NIGHTLY_BUILD_VERSION}/g" ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
cat ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# push the new LibTorch-Lite-Nightly.podspec to CocoaPods
pod trunk push --verbose --allow-warnings --use-libraries --skip-import-validation ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
fi

View File

@ -4,31 +4,27 @@ echo "RUNNING ON $(uname -a) WITH $(nproc) CPUS AND $(free -m)"
set -eux -o pipefail
source /env
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
if [[ "${DESIRED_CUDA}" =~ cu11[0-9] ]]; then
export BUILD_SPLIT_CUDA="ON"
fi
# Defaults here so they can be changed in one place
export MAX_JOBS=12
# Parse the parameters
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
build_script='conda/build_pytorch.sh'
elif [[ "$DESIRED_CUDA" == cpu ]]; then
build_script='manywheel/build_cpu.sh'
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
build_script='manywheel/build_rocm.sh'
else
build_script='manywheel/build.sh'
fi
if [[ "$CIRCLE_BRANCH" == "main" ]] || [[ "$CIRCLE_BRANCH" == "master" ]] || [[ "$CIRCLE_BRANCH" == release/* ]]; then
export BUILD_DEBUG_INFO=1
# We want to call unbuffer, which calls tclsh which finds the expect
# package. The expect was installed by yum into /usr/bin so we want to
# find /usr/bin/tclsh, but this is shadowed by /opt/conda/bin/tclsh in
# the conda docker images, so we prepend it to the path here.
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
mkdir /just_tclsh_bin
ln -s /usr/bin/tclsh /just_tclsh_bin/tclsh
export PATH=/just_tclsh_bin:$PATH
fi
# Build the package
SKIP_ALL_TESTS=1 "/builder/$build_script"
SKIP_ALL_TESTS=1 unbuffer "/builder/$build_script" | ts

View File

@ -1,106 +1,48 @@
#!/bin/bash
OUTPUT_SCRIPT=${OUTPUT_SCRIPT:-/home/circleci/project/ci_test_script.sh}
# only source if file exists
if [[ -f /home/circleci/project/env ]]; then
source /home/circleci/project/env
fi
cat >"${OUTPUT_SCRIPT}" <<EOL
source /home/circleci/project/env
cat >/home/circleci/project/ci_test_script.sh <<EOL
# =================== The following code will be executed inside Docker container ===================
set -eux -o pipefail
retry () {
"\$@" || (sleep 1 && "\$@") || (sleep 2 && "\$@")
}
# Source binary env file here if exists
if [[ -e "${BINARY_ENV_FILE:-/nofile}" ]]; then
source "${BINARY_ENV_FILE:-/nofile}"
fi
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
# Set up Python
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$DESIRED_PYTHON" == 2.7mu ]]; then
export PATH="/opt/python/cp27-cp27mu/bin:\$PATH"
elif [[ "$DESIRED_PYTHON" == 3.8m ]]; then
export PATH="/opt/python/cp38-cp38/bin:\$PATH"
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
# Prior to Python 3.8 paths were suffixed with an 'm'
if [[ -d "\${python_path}/bin" ]]; then
export PATH="\${python_path}/bin:\$PATH"
elif [[ -d "\${python_path}m/bin" ]]; then
export PATH="\${python_path}m/bin:\$PATH"
fi
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
export PATH="/opt/python/cp\$python_nodot-cp\${python_nodot}m/bin:\$PATH"
fi
EXTRA_CONDA_FLAGS=""
NUMPY_PIN=""
PROTOBUF_PACKAGE="defaults::protobuf"
if [[ "\$python_nodot" = *310* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.21.2"
PROTOBUF_PACKAGE="protobuf>=3.19.0"
fi
if [[ "\$python_nodot" = *39* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.20"
fi
if [[ "$DESIRED_CUDA" == "cu116" ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
fi
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
# Install the package
# These network calls should not have 'retry's because they are installing
# locally and aren't actually network calls
# TODO there is duplicated and inconsistent test-python-env setup across this
# file, builder/smoke_test.sh, and builder/run_tests.sh, and also in the
# conda build scripts themselves. These should really be consolidated
# Pick only one package of multiple available (which happens as result of workflow re-runs)
pkg="/final_pkgs/\$(ls -1 /final_pkgs|sort|tail -1)"
pkg="/final_pkgs/\$(ls /final_pkgs)"
if [[ "$PACKAGE_TYPE" == conda ]]; then
(
# For some reason conda likes to re-activate the conda environment when attempting this install
# which means that a deactivate is run and some variables might not exist when that happens,
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
# it comes to the conda installation commands
set +u
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
"numpy\${NUMPY_PIN}" \
future \
mkl>=2018 \
ninja \
dataclasses \
typing-extensions \
${PROTOBUF_PACKAGE} \
six
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -c pytorch -y cpuonly
conda install -y "\$pkg" --offline
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
conda install -y cpuonly -c pytorch
fi
retry conda install -yq future numpy protobuf six
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
# DESIRED_CUDA is in format cu90 or cu100
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
# DESIRED_CUDA is in format cu90 or cu102
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
fi
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "cudatoolkit=\${cu_ver}"
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
fi
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
)
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
fi
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
pip install "\$pkg"
retry pip install -q future numpy protobuf typing-extensions six
retry pip install -q future numpy protobuf six
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"
@ -110,10 +52,9 @@ fi
# Test the package
/builder/check_binary.sh
# =================== The above code will be executed inside Docker container ===================
EOL
echo
echo
echo "The script that will run in the next step is:"
cat "${OUTPUT_SCRIPT}"
cat /home/circleci/project/ci_test_script.sh

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Do NOT set -x
source /home/circleci/project/env
set -eu -o pipefail
set +x
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/home/circleci/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /home/circleci/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
export PATH="$MINICONDA_ROOT/bin:$PATH"
# Upload the package to the final location
pushd /home/circleci/project/final_pkgs
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry timeout 30 /home/circleci/project/login_to_anaconda.sh
anaconda upload "$(ls)" -u pytorch-nightly --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -1,19 +1,24 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/Users/distiller/project/env}"
source "/Users/distiller/project/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
if [[ -z "${IS_GHA:-}" ]]; then
export PATH="${workdir:-${HOME}}/miniconda/bin:${PATH}"
fi
# For some reason `unbuffer` breaks if we change the PATH here, so we
# write a script with the PATH change in it and unbuffer the whole
# thing
build_script="$workdir/build_script.sh"
touch "$build_script"
chmod +x "$build_script"
# Build
export USE_PYTORCH_METAL_EXPORT=1
export USE_COREML_DELEGATE=1
cat >"$build_script" <<EOL
export PATH="$workdir/miniconda/bin:$PATH"
if [[ "$PACKAGE_TYPE" == conda ]]; then
"${BUILDER_ROOT}/conda/build_pytorch.sh"
"$workdir/builder/conda/build_pytorch.sh"
else
export TORCH_PACKAGE_NAME="$(echo $TORCH_PACKAGE_NAME | tr '-' '_')"
"${BUILDER_ROOT}/wheel/build_wheel.sh"
"$workdir/builder/wheel/build_wheel.sh"
fi
EOL
unbuffer "$build_script" | ts

View File

@ -20,9 +20,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
unzip "$pkg" -d /tmp
cd /tmp/libtorch
elif [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "$pkg"
conda install -y "$pkg" --offline
else
pip install "$pkg" -v
pip install "$pkg" --no-index --no-dependencies -v
fi
# Test

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Do NOT set -x
set -eu -o pipefail
set +x
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
cat >/Users/distiller/project/login_to_anaconda.sh <<EOL
set +x
echo "Trying to login to Anaconda"
yes | anaconda login \
--username "$PYTORCH_BINARY_PJH5_CONDA_USERNAME" \
--password "$PYTORCH_BINARY_PJH5_CONDA_PASSWORD"
set -x
EOL
chmod +x /Users/distiller/project/login_to_anaconda.sh
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
# DO NOT TURN -x ON BEFORE THIS LINE
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
set -eux -o pipefail
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
pushd "$workdir/final_pkgs"
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda install -yq anaconda-client
retry /Users/distiller/project/login_to_anaconda.sh
retry anaconda upload "$(ls)" -u pytorch-nightly --label main --no-progress --force
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
retry pip install -q awscli
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
for pkg in $(ls); do
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
done
else
retry pip install -q awscli
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
fi

View File

@ -2,73 +2,28 @@
set -eux -o pipefail
export TZ=UTC
tagged_version() {
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" && -z "${IS_GHA:-}" ]]; then
GIT_DIR="${workdir}/p/.git"
else
GIT_DIR="${workdir}/pytorch/.git"
fi
GIT_DESCRIBE="git --git-dir ${GIT_DIR} describe --tags --match v[0-9]*.[0-9]*.[0-9]*"
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif [[ ! -d "${GIT_DIR}" ]]; then
echo "Abort, abort! Git dir ${GIT_DIR} does not exists!"
kill $$
elif ${GIT_DESCRIBE} --exact >/dev/null; then
${GIT_DESCRIBE}
else
return 1
fi
}
# These are only relevant for CircleCI
# TODO: Remove these later once migrated fully to GHA
if [[ -z ${IS_GHA:-} ]]; then
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
# docker executor (binary builds)
workdir="/"
fi
envfile="$workdir/env"
touch "$envfile"
chmod +x "$envfile"
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
if [[ "${OSTYPE}" == "msys" ]]; then
export DESIRED_DEVTOOLSET=""
export LIBTORCH_CONFIG="${configs[3]:-}"
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
export DEBUG=1
fi
else
export DESIRED_DEVTOOLSET="${configs[3]:-}"
fi
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
envfile=${BINARY_ENV_FILE:-/tmp/env}
if [[ -n "${PYTORCH_ROOT}" ]]; then
workdir=$(dirname "${PYTORCH_ROOT}")
else
# docker executor (binary builds)
workdir="/"
fi
# docker executor (binary builds)
workdir="/"
fi
envfile="$workdir/env"
touch "$envfile"
chmod +x "$envfile"
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
export DESIRED_DEVTOOLSET="${configs[3]:-}"
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
export BUILD_PYTHONLESS=1
fi
@ -79,40 +34,31 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="pytorch/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="pytorch/manylinux-cpu"
export DOCKER_IMAGE="pytorch/manylinux-cuda100"
else
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
fi
fi
USE_GOLD_LINKER="OFF"
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
USE_GOLD_LINKER="ON"
# Upload to parallel folder for devtoolsets
# All nightlies used to be devtoolset3, then devtoolset7 was added as a build
# option, so the upload was redirected to nightly/devtoolset7 to avoid
# conflicts with other binaries (there shouldn't be any conflicts). Now we are
# making devtoolset7 the default.
if [[ "$DESIRED_DEVTOOLSET" == 'devtoolset7' || "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* || "$(uname)" == 'Darwin' ]]; then
export PIP_UPLOAD_FOLDER='nightly/'
else
# On linux machines, this shouldn't actually be called anymore. This is just
# here for extra safety.
export PIP_UPLOAD_FOLDER='nightly/devtoolset3/'
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.12.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
if tagged_version >/dev/null; then
# Switch upload folder to 'test/' if we are on a tag
PIP_UPLOAD_FOLDER='test/'
# Grab git tag, remove prefixed v and remove everything after -
# Used to clean up tags that are for release candidates like v1.6.0-rc1
# Turns tag v1.6.0-rc1 -> v1.6.0
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
fi
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu101" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="1.4.0.dev$DATE"
else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
export PYTORCH_BUILD_VERSION="1.4.0.dev$DATE+$DESIRED_CUDA"
fi
export PYTORCH_BUILD_NUMBER=1
@ -124,14 +70,8 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
@ -143,28 +83,20 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
fi
fi
cat >"$envfile" <<EOL
cat >>"$envfile" <<EOL
# =================== The following code will be executed inside Docker container ===================
export TZ=UTC
echo "Running on $(uname -a) at $(date)"
export PACKAGE_TYPE="$PACKAGE_TYPE"
export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_PYTHON="$DESIRED_PYTHON"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
export DEBUG=1
fi
export DESIRED_DEVTOOLSET=""
else
export DESIRED_DEVTOOLSET="${DESIRED_DEVTOOLSET:-}"
fi
export DESIRED_DEVTOOLSET="$DESIRED_DEVTOOLSET"
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.12.0.dev
export NIGHTLIES_DATE_PREAMBLE=1.4.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
@ -172,7 +104,6 @@ export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
# TODO: We don't need this anymore IIUC
export TORCH_PACKAGE_NAME='torch'
export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export ANACONDA_USER='pytorch'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
@ -180,48 +111,20 @@ export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
export USE_GLOO_WITH_OPENSSL="ON"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
# =================== The above code will be executed inside Docker container ===================
EOL
# nproc doesn't exist on darwin
if [[ "$(uname)" != Darwin ]]; then
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
cat >>"$envfile" <<EOL
export MAX_JOBS="${MAX_JOBS}"
EOL
fi
if [[ -z "${IS_GHA:-}" ]]; then
cat >>"$envfile" <<EOL
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
EOL
fi
echo 'retry () {' >> "$envfile"
echo ' $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)' >> "$envfile"
echo '}' >> "$envfile"

View File

@ -16,12 +16,31 @@ set -eux -o pipefail
# Expect actual code to be written to this file
chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d "${DOCKER_IMAGE}")
fi
# Copy the envfile and script with all the code to run into the docker.
docker cp /home/circleci/project/. "$id:/circleci_stuff"
# Copy built packages into the docker to test. This should only exist on the
# binary test jobs. The package should've been created from a binary build job,
# whhich persisted the package to a CircleCI workspace, which this job then
# copies into a GPU enabled docker for testing
if [[ -d "/home/circleci/project/final_pkgs" ]]; then
docker cp /home/circleci/project/final_pkgs "$id:/final_pkgs"
fi
# Copy the needed repos into the docker. These do not exist in the smoke test
# jobs, since the smoke test jobs do not need the Pytorch source code.
if [[ -d "$PYTORCH_ROOT" ]]; then
docker cp "$PYTORCH_ROOT" "$id:/pytorch"
fi
if [[ -d "$BUILDER_ROOT" ]]; then
docker cp "$BUILDER_ROOT" "$id:/builder"
fi
# Execute the test script that was populated by an earlier section

View File

@ -1,102 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
# Designates whether to submit as a release candidate or a nightly build
# Value should be `test` when uploading release candidates
# currently set within `designate_upload_channel`
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
# Designates what subfolder to put packages into
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
UPLOAD_BUCKET="s3://pytorch"
BACKUP_BUCKET="s3://pytorch-backup"
DRY_RUN=${DRY_RUN:-enabled}
# Don't actually do work unless explicit
ANACONDA="true anaconda"
AWS_S3_CP="aws s3 cp --dryrun"
if [[ "${DRY_RUN}" = "disabled" ]]; then
ANACONDA="anaconda"
AWS_S3_CP="aws s3 cp"
fi
do_backup() {
local backup_dir
backup_dir=$1
(
pushd /tmp/workspace
set -x
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
)
}
conda_upload() {
(
set -x
${ANACONDA} \
upload \
${PKG_DIR}/*.tar.bz2 \
-u "pytorch-${UPLOAD_CHANNEL}" \
--label main \
--no-progress \
--force
)
}
s3_upload() {
local extension
local pkg_type
extension="$1"
pkg_type="$2"
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
(
for pkg in ${PKG_DIR}/*.${extension}; do
(
set -x
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
)
done
)
}
# Install dependencies (should be a no-op if previously installed)
conda install -yq anaconda-client
pip install -q awscli
case "${PACKAGE_TYPE}" in
conda)
conda_upload
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(\
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
| grep subdir \
| cut -d ':' -f2 \
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
)
BACKUP_DIR="conda/${subdir}"
;;
libtorch)
s3_upload "zip" "libtorch"
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
# wheel can either refer to wheel/manywheel
*wheel)
s3_upload "whl" "whl"
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
*)
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
exit 1
;;
esac
# CIRCLE_TAG is defined by upstream circleci,
# this can be changed to recognize tagged versions
if [[ -n "${CIRCLE_TAG:-}" ]]; then
do_backup "${BACKUP_DIR}"
fi

View File

@ -1,80 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache-windows
export SCCACHE_IGNORE_SERVER_IO_ERROR=1
export VC_YEAR=2019
if [[ "${DESIRED_CUDA}" == *"cu11"* ]]; then
export BUILD_SPLIT_CUDA=ON
fi
echo "Free Space for CUDA DEBUG BUILD"
if [[ "${CIRCLECI:-}" == 'true' ]]; then
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft.NET" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft.NET"
fi
if [[ -d "C:\\Program Files\\dotnet" ]]; then
rm -rf "C:\\Program Files\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\dotnet" ]]; then
rm -rf "C:\\Program Files (x86)\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft SQL Server" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft SQL Server"
fi
if [[ -d "C:\\Program Files (x86)\\Xamarin" ]]; then
rm -rf "C:\\Program Files (x86)\\Xamarin"
fi
if [[ -d "C:\\Program Files (x86)\\Google" ]]; then
rm -rf "C:\\Program Files (x86)\\Google"
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
if [[ -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
if [[ -d "C:\\Microsoft" ]]; then
# don't use quotes here
rm -rf /c/Microsoft/AndroidNDK*
fi
fi
echo "Free space on filesystem before build:"
df -h
pushd "$BUILDER_ROOT"
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
./windows/internal/build_conda.bat
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
./windows/internal/build_wheels.bat
fi
echo "Free space on filesystem after build:"
df -h

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2019
pushd "$BUILDER_ROOT"
./windows/internal/smoke_test.bat
popd

View File

@ -1,44 +1,15 @@
#!/usr/bin/env bash
set -eux -o pipefail
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_NDK=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
# Must be in sync with GRADLE_VERSION in docker image for android
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# Run custom build script
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
# Install torch & torchvision - used to download & dump used ops from test model.
retry pip install torch torchvision --progress-bar off
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
fi
# Run default build
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
@ -73,6 +44,9 @@ ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
fi
env
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
@ -82,6 +56,20 @@ if [ -n "{GRADLE_OFFLINE:-}" ]; then
GRADLE_PARAMS+=" --offline"
fi
# touch gradle cache files to prevent expiration
while IFS= read -r -d '' file
do
touch "$file" || true
done < <(find /var/lib/jenkins/.gradle -type f -print0)
env
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
$GRADLE_PATH $GRADLE_PARAMS
find . -type f -name "*.a" -exec ls -lh {} \;

View File

@ -10,36 +10,33 @@ pt_checkout="/var/lib/jenkins/workspace"
# Since we're cat-ing this file, we need to escape all $'s
echo "cpp_doc_push_script.sh: Invoked with $*"
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
# the order of operations goes:
# 1. Check if there's an argument $1
# 2. If no argument check for environment var DOCS_INSTALL_PATH
# 3. If no environment var fall back to default 'docs/'
# NOTE: It might seem weird to gather the second argument before gathering the first argument
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
# try and gather it first, just so we don't potentially break people who rely on this script
# Argument 2: What version of the Python API docs we are building.
version="${2:-${DOCS_VERSION:-master}}"
if [ -z "$version" ]; then
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
# Argument 1: Where to copy the built documentation for Python API to
# (pytorch.github.io/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
install_path="$1"
if [ -z "$install_path" ]; then
echo "error: cpp_doc_push_script.sh: install_path (arg1) not specified"
exit 1
fi
is_main_doc=false
if [ "$version" == "master" ]; then
is_main_doc=true
# Argument 2: What version of the Python API docs we are building.
version="$2"
if [ -z "$version" ]; then
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
echo "install_path: $install_path version: $version"
is_master_doc=false
if [ "$version" == "master" ]; then
is_master_doc=true
fi
# Argument 3: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$3" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
# ======================== Building PyTorch C++ API Docs ========================
@ -56,21 +53,32 @@ sudo apt-get -y install doxygen
# Generate ATen files
pushd "${pt_checkout}"
pip install -r requirements.txt
time python -m torchgen.gen \
time python aten/src/ATen/gen.py \
-s aten/src/ATen \
-d build/aten/src/ATen
-d build/aten/src/ATen \
aten/src/ATen/Declarations.cwrap \
aten/src/THNN/generic/THNN.h \
aten/src/THCUNN/generic/THCUNN.h \
aten/src/ATen/nn.yaml \
aten/src/ATen/native/native_functions.yaml
# Copy some required files
cp aten/src/ATen/common_with_cwrap.py tools/shared/cwrap_common.py
cp torch/_utils_internal.py tools/shared
# Generate PyTorch files
time python tools/setup_helpers/generate_code.py \
--native-functions-path aten/src/ATen/native/native_functions.yaml \
--tags-path aten/src/ATen/native/tags.yaml
--declarations-path build/aten/src/ATen/Declarations.yaml \
--nn-path aten/src/
# Build the docs
pushd docs/cpp
pip install -r requirements.txt
pip install breathe==4.11.1 bs4 lxml six
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
pip install exhale>=0.2.1
pip install sphinx==1.8.5
# Uncomment once it is fixed
# pip install -r requirements.txt
time make VERBOSE=1 html -j
popd
@ -96,11 +104,23 @@ git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate C++ docs from pytorch/pytorch@${GITHUB_SHA}" || true
git commit -m "Automatic sync on $(date)" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin
if [ "$dry_run" = false ]; then
echo "Pushing to https://github.com/pytorch/cppdocs"
set +x
/usr/bin/expect <<DONE
spawn git push -u origin master
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd

View File

@ -1,8 +0,0 @@
set "DRIVER_DOWNLOAD_LINK=https://s3.amazonaws.com/ossci-windows/452.39-data-center-tesla-desktop-win10-64bit-international.exe"
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output 452.39-data-center-tesla-desktop-win10-64bit-international.exe
if errorlevel 1 exit /b 1
start /wait 452.39-data-center-tesla-desktop-win10-64bit-international.exe -s -noreboot
if errorlevel 1 exit /b 1
del 452.39-data-center-tesla-desktop-win10-64bit-international.exe || ver > NUL

View File

@ -5,7 +5,7 @@ set -eu -o pipefail
export ANDROID_NDK_HOME=/opt/ndk
export ANDROID_HOME=/opt/android/sdk
export GRADLE_VERSION=6.8.3
export GRADLE_VERSION=4.10.3
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
@ -35,9 +35,7 @@ else
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES

View File

@ -7,72 +7,46 @@ sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
echo "python_doc_push_script.sh: Invoked with $*"
set -ex
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
# the order of operations goes:
# 1. Check if there's an argument $1
# 2. If no argument check for environment var DOCS_INSTALL_PATH
# 3. If no environment var fall back to default 'docs/'
# NOTE: It might seem weird to gather the second argument before gathering the first argument
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
# try and gather it first, just so we don't potentially break people who rely on this script
# Argument 2: What version of the docs we are building.
version="${2:-${DOCS_VERSION:-master}}"
if [ -z "$version" ]; then
echo "error: python_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
# Argument 1: Where to copy the built documentation to
# (pytorch.github.io/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
install_path="$1"
if [ -z "$install_path" ]; then
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
exit 1
fi
is_main_doc=false
# Argument 2: What version of the docs we are building.
version="$2"
if [ -z "$version" ]; then
echo "error: python_doc_push_script.sh: version (arg2) not specified"
exit 1
fi
is_master_doc=false
if [ "$version" == "master" ]; then
is_main_doc=true
is_master_doc=true
fi
# Argument 3: The branch to push to. Usually is "site"
branch="${3:-${DOCS_BRANCH:-site}}"
branch="$3"
if [ -z "$branch" ]; then
echo "error: python_doc_push_script.sh: branch (arg3) not specified"
exit 1
fi
echo "install_path: $install_path version: $version"
# Argument 4: (optional) If present, we will NOT do any pushing. Used for testing.
dry_run=false
if [ "$4" != "" ]; then
dry_run=true
fi
echo "install_path: $install_path version: $version dry_run: $dry_run"
build_docs () {
set +e
set -o pipefail
make $1 2>&1 | tee /tmp/docs_build.txt
code=$?
if [ $code -ne 0 ]; then
set +x
echo =========================
grep "WARNING:" /tmp/docs_build.txt
echo =========================
echo Docs build failed. If the failure is not clear, scan back in the log
echo for any WARNINGS or for the line "build finished with problems"
echo "(tried to echo the WARNINGS above the ==== line)"
echo =========================
fi
set -ex
return $code
}
git clone https://github.com/pytorch/pytorch.github.io -b $branch --depth 1
git clone https://github.com/pytorch/pytorch.github.io -b $branch
pushd pytorch.github.io
export LC_ALL=C
@ -80,38 +54,26 @@ export PATH=/opt/conda/bin:$PATH
rm -rf pytorch || true
# Install TensorBoard in python 3 so torch.utils.tensorboard classes render
pip install -q https://s3.amazonaws.com/ossci-linux/wheels/tensorboard-1.14.0a0-py3-none-any.whl
# Get all the documentation sources, put them in one place
pushd "$pt_checkout"
git clone https://github.com/pytorch/vision
pushd vision
conda install -q pillow
time python setup.py install
popd
pushd docs
rm -rf source/torchvision
cp -a ../vision/docs/source source/torchvision
# Build the docs
pip -q install -r requirements.txt
if [ "$is_main_doc" = true ]; then
build_docs html
[ $? -eq 0 ] || exit $?
make coverage
# Now we have the coverage report, we need to make sure it is empty.
# Count the number of lines in the file and turn that number into a variable
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
# Skip the report header by subtracting 2: the header will be output even if
# there are no undocumented items.
#
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
# be documented then removed from there.
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
undocumented=$(($lines - 2))
if [ $undocumented -lt 0 ]; then
echo coverage output not found
exit 1
elif [ $undocumented -gt 0 ]; then
echo undocumented objects found:
cat build/coverage/python.txt
exit 1
fi
pip -q install -r requirements.txt || true
if [ "$is_master_doc" = true ]; then
make html
else
# skip coverage, format for stable or tags
build_docs html-stable
[ $? -eq 0 ] || exit $?
make html-stable
fi
# Move them into the docs repo
@ -120,22 +82,36 @@ popd
git rm -rf "$install_path" || true
mv "$pt_checkout/docs/build/html" "$install_path"
# Prevent Google from indexing $install_path/_modules. This folder contains
# generated source files.
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
# One can `brew install gnu-sed` on a mac and then use "gsed" instead of "sed".
find "$install_path/_modules" -name "*.html" -print0 | xargs -0 sed -i '/<head>/a \ \ <meta name="robots" content="noindex">'
# Add the version handler by search and replace.
# XXX: Consider moving this to the docs Makefile or site build
if [ "$is_master_doc" = true ]; then
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>\1 \&#x25BC</a>@g"
else
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \&#x25BC</a>@g"
fi
git add "$install_path" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git commit -m "auto-generating sphinx docs" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin "${branch}"
if [ "$dry_run" = false ]; then
echo "Pushing to pytorch.github.io:$branch"
set +x
/usr/bin/expect <<DONE
spawn git push origin $branch
expect "Username*"
send "pytorchbot\n"
expect "Password*"
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
expect eof
DONE
set -x
else
echo "Skipping push due to dry_run"
fi
popd

View File

@ -1,103 +1,81 @@
#!/usr/bin/env bash
set -ex -o pipefail
# Set up NVIDIA docker repo
curl -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
# Remove unnecessary sources
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
sudo rm -f /etc/apt/heroku.list
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
sudo rm -f /etc/apt/partner.list
# To increase the network reliability, let apt decide which mirror is best to use
sudo sed -i -e 's/http:\/\/.*archive/mirror:\/\/mirrors/' -e 's/\/ubuntu\//\/mirrors.txt/' /etc/apt/sources.list
retry () {
$* || $* || $* || $* || $*
}
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
# (with use of tee to avoid permissions problems)
# This is better than retrying the whole apt-get command
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
retry sudo apt-get update -qq
retry sudo apt-get -y install \
sudo apt-get -y update
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
# WARNING: Docker version is hardcoded here; you must update the
# version number below for docker-ce and nvidia-docker2 to get newer
# versions of Docker. We hardcode these numbers because we kept
# getting broken CI when Docker would update their docker version,
# and nvidia-docker2 would be out of date for a day until they
# released a newer version of their package.
#
# How to figure out what the correct versions of these packages are?
# My preferred method is to start a Docker instance of the correct
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
# apt what the packages you need are. Note that the CircleCI image
# comes with Docker.
sudo apt-get -y install \
linux-headers-$(uname -r) \
linux-image-generic \
moreutils \
docker-ce=5:18.09.4~3-0~ubuntu-xenial \
nvidia-container-runtime=2.0.0+docker18.09.4-1 \
nvidia-docker2=2.0.3+docker18.09.4-1 \
expect-dev
echo "== DOCKER VERSION =="
docker version
sudo pkill -SIGHUP dockerd
if ! command -v aws >/dev/null; then
retry sudo pip3 -q install awscli==1.19.64
fi
retry () {
$* || $* || $* || $* || $*
}
retry sudo pip -q install awscli==1.16.35
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-510.60.02.run"
DRIVER_FN="NVIDIA-Linux-x86_64-430.40.run"
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
# Taken directly from https://github.com/NVIDIA/nvidia-docker
# Add the package repositories
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
retry sudo apt-get update -qq
# Necessary to get the `--gpus` flag to function within docker
retry sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
else
# Explicitly remove nvidia docker apt repositories if not building for cuda
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
fi
add_to_env_file() {
local name=$1
local value=$2
case "$value" in
*\ *)
# BASH_ENV should be set by CircleCI
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
;;
*)
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
;;
esac
}
add_to_env_file IN_CI 1
add_to_env_file CI_MASTER "${CI_MASTER:-}"
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
add_to_env_file MAX_JOBS "${MAX_JOBS}"
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
fi
export SCCACHE_MAX_JOBS=`expr $(nproc) - 1`
export MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
export MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
echo "declare -x MAX_JOBS=${MAX_JOBS}" >> /home/circleci/project/env
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
set -x
fi
fi
@ -106,7 +84,5 @@ fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
eval $(aws ecr get-login --region us-east-1 --no-include-email)
set -x

View File

@ -2,7 +2,7 @@
set -eux -o pipefail
# Set up CircleCI GPG keys for apt, if needed
curl --retry 3 -s -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
# Stop background apt updates. Hypothetically, the kill should not
# be necessary, because stop is supposed to send a kill signal to
@ -33,7 +33,7 @@ systemctl list-units --all | cat
sudo pkill apt-get || true
# For even better luck, purge unattended-upgrades
sudo apt-get purge -y unattended-upgrades || true
sudo apt-get purge -y unattended-upgrades
cat /etc/apt/sources.list

View File

@ -0,0 +1,140 @@
import argparse
import re
import sys
# Modify this variable if you want to change the set of default jobs
# which are run on all pull requests.
#
# WARNING: Actually, this is a lie; we're currently also controlling
# the set of jobs to run via the Workflows filters in CircleCI config.
default_set = set([
# PyTorch CPU
# Selected oldest Python 2 version to ensure Python 2 coverage
'pytorch-linux-xenial-py2.7.9',
# PyTorch CUDA
'pytorch-linux-xenial-cuda9-cudnn7-py3',
# PyTorch ASAN
'pytorch-linux-xenial-py3-clang5-asan',
# PyTorch DEBUG
'pytorch-linux-xenial-py3.6-gcc5.4',
# LibTorch
'pytorch-libtorch-linux-xenial-cuda9-cudnn7-py3',
# Caffe2 CPU
'caffe2-py2-mkl-ubuntu16.04',
# Caffe2 CUDA
'caffe2-py3.5-cuda10.1-cudnn7-ubuntu16.04',
# Caffe2 ONNX
'caffe2-onnx-py2-gcc5-ubuntu16.04',
'caffe2-onnx-py3.6-clang7-ubuntu16.04',
# Caffe2 Clang
'caffe2-py2-clang7-ubuntu16.04',
# Caffe2 CMake
'caffe2-cmake-cuda9.0-cudnn7-ubuntu16.04',
# Caffe2 CentOS
'caffe2-py3.6-devtoolset7-cuda9.0-cudnn7-centos7',
# Binaries
'manywheel 2.7mu cpu devtoolset7',
'libtorch 2.7m cpu devtoolset7',
'libtorch 2.7m cpu gcc5.4_cxx11-abi',
'libtorch 2.7 cpu',
'libtorch-ios-11.2.1-nightly-x86_64-build',
'libtorch-ios-11.2.1-nightly-arm64-build',
'libtorch-ios-11.2.1-nightly-binary-build-upload',
# Caffe2 Android
'caffe2-py2-android-ubuntu16.04',
# Caffe2 OSX
'caffe2-py2-system-macos10.13',
# PyTorch OSX
'pytorch-macos-10.13-py3',
'pytorch-macos-10.13-cuda9.2-cudnn7-py3',
# PyTorch Android
'pytorch-linux-xenial-py3-clang5-android-ndk-r19c-x86_32-build',
'pytorch-linux-xenial-py3-clang5-android-ndk-r19',
# PyTorch Android gradle
'pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-only-x86_32',
# Pytorch iOS builds
'pytorch-ios-11.2.1-x86_64_build',
'pytorch-ios-11.2.1-arm64_build',
# PyTorch Mobile builds
'pytorch-linux-xenial-py3-clang5-mobile-build',
# Pytorch backward compatibility check
'pytorch-linux-backward-compatibility-check-test',
# XLA
'pytorch-xla-linux-xenial-py3.6-clang7',
# GraphExecutor config jobs
'pytorch-linux-xenial-py3.6-gcc5.4-ge_config_simple-test',
'pytorch-linux-xenial-py3.6-gcc5.4-ge_config_legacy-test',
# Other checks
'pytorch-short-perf-test-gpu',
'pytorch-python-doc-push',
'pytorch-cpp-doc-push',
])
# Collection of jobs that are *temporarily* excluded from running on PRs.
# Use this if there is a long-running job breakage that we can't fix with a
# single revert.
skip_override = {
# example entry:
# 'pytorch-cpp-doc-push': "https://github.com/pytorch/pytorch/issues/<related issue>"
}
# Takes in commit message to analyze via stdin
#
# This script will query Git and attempt to determine if we should
# run the current CI job under question
#
# NB: Try to avoid hard-coding names here, so there's less place to update when jobs
# are updated/renamed
#
# Semantics in the presence of multiple tags:
# - Let D be the set of default builds
# - Let S be the set of explicitly specified builds
# - Let O be the set of temporarily skipped builds
# - Run S \/ (D - O)
parser = argparse.ArgumentParser()
parser.add_argument('build_environment')
args = parser.parse_args()
commit_msg = sys.stdin.read()
# Matches anything that looks like [foo ci] or [ci foo] or [foo test]
# or [test foo]
RE_MARKER = re.compile(r'\[(?:([^ \[\]]+) )?(?:ci|test)(?: ([^ \[\]]+))?\]')
markers = RE_MARKER.finditer(commit_msg)
for m in markers:
if m.group(1) and m.group(2):
print("Unrecognized marker: {}".format(m.group(0)))
continue
spec = m.group(1) or m.group(2)
if spec is None:
print("Unrecognized marker: {}".format(m.group(0)))
continue
if spec in args.build_environment or spec == 'all':
print("Accepting {} due to commit marker {}".format(args.build_environment, m.group(0)))
sys.exit(0)
skip_override_set = set(skip_override.keys())
should_run_set = default_set - skip_override_set
for spec in should_run_set:
if spec in args.build_environment:
print("Accepting {} as part of default set".format(args.build_environment))
sys.exit(0)
print("Rejecting {}".format(args.build_environment))
for spec, issue in skip_override.items():
if spec in args.build_environment:
print("This job is temporarily excluded from running on PRs. Reason: {}".format(issue))
break
sys.exit(1)

View File

@ -0,0 +1,29 @@
#!/usr/bin/env bash
set -exu -o pipefail
SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
# Check if we should actually run
echo "BUILD_ENVIRONMENT: ${BUILD_ENVIRONMENT:-}"
echo "CIRCLE_PULL_REQUEST: ${CIRCLE_PULL_REQUEST:-}"
if [ -z "${BUILD_ENVIRONMENT:-}" ]; then
echo "Cannot run should_run_job.sh if BUILD_ENVIRONMENT is not defined!"
echo "CircleCI scripts are probably misconfigured."
exit 1
fi
if ! [ -e "$SCRIPT_DIR/COMMIT_MSG" ]; then
echo "Cannot run should_run_job.sh if you don't have COMMIT_MSG"
echo "written out. Are you perhaps running the wrong copy of this script?"
echo "You should be running the copy in ~/workspace; SCRIPT_DIR=$SCRIPT_DIR"
exit 1
fi
if [ -n "${CIRCLE_PULL_REQUEST:-}" ]; then
if [[ $CIRCLE_BRANCH != "ci-all/"* ]] && [[ $CIRCLE_BRANCH != "nightly" ]] && [[ $CIRCLE_BRANCH != "postnightly" ]] ; then
# Don't swallow "script doesn't exist
[ -e "$SCRIPT_DIR/should_run_job.py" ]
if ! python "$SCRIPT_DIR/should_run_job.py" "${BUILD_ENVIRONMENT:-}" < "$SCRIPT_DIR/COMMIT_MSG" ; then
circleci step halt
exit
fi
fi
fi

View File

@ -1,140 +0,0 @@
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
import re
import json
import os
import sys
import requests
import time
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
PIPELINE_ID = "911"
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "main")
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
s = requests.Session()
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
def submit_build(pipeline_id, project_id, source_branch, source_version):
print("Submitting build for branch: " + source_branch)
print("Commit SHA1: ", source_version)
run_build_raw = s.post(build_base_url, json={
"definition": {"id": pipeline_id},
"project": {"id": project_id},
"sourceBranch": source_branch,
"sourceVersion": source_version
})
try:
run_build_json = run_build_raw.json()
except json.decoder.JSONDecodeError as e:
print(e)
print("Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired.")
sys.exit(-1)
build_id = run_build_json['id']
print("Submitted bulid: " + str(build_id))
print("Bulid URL: " + run_build_json['url'])
return build_id
def get_build(_id):
get_build_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
get_build_raw = s.get(get_build_url)
return get_build_raw.json()
def get_build_logs(_id):
get_build_logs_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
get_build_logs_raw = s.get(get_build_logs_url)
return get_build_logs_raw.json()
def get_log_content(url):
resp = s.get(url)
return resp.text
def wait_for_build(_id):
build_detail = get_build(_id)
build_status = build_detail['status']
while build_status == 'notStarted':
print('Waiting for run to start: ' + str(_id))
sys.stdout.flush()
try:
build_detail = get_build(_id)
build_status = build_detail['status']
except Exception as e:
print("Error getting build")
print(e)
time.sleep(30)
print("Bulid started: ", str(_id))
handled_logs = set()
while build_status == 'inProgress':
try:
print("Waiting for log: " + str(_id))
logs = get_build_logs(_id)
except Exception as e:
print("Error fetching logs")
print(e)
time.sleep(30)
continue
for log in logs['value']:
log_id = log['id']
if log_id in handled_logs:
continue
handled_logs.add(log_id)
print('Fetching log: \n' + log['url'])
try:
log_content = get_log_content(log['url'])
print(log_content)
except Exception as e:
print("Error getting log content")
print(e)
sys.stdout.flush()
build_detail = get_build(_id)
build_status = build_detail['status']
time.sleep(30)
build_result = build_detail['result']
print("Bulid status: " + build_status)
print("Bulid result: " + build_result)
return build_status, build_result
if __name__ == '__main__':
# Convert the branch name for Azure DevOps
match = re.search(r'pull/(\d+)', TARGET_BRANCH)
if match is not None:
pr_num = match.group(1)
SOURCE_BRANCH = f'refs/pull/{pr_num}/head'
else:
SOURCE_BRANCH = f'refs/heads/{TARGET_BRANCH}'
MAX_RETRY = 2
retry = MAX_RETRY
while retry > 0:
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
build_status, build_result = wait_for_build(build_id)
if build_result != 'succeeded':
retry = retry - 1
if retry > 0:
print("Retrying... remaining attempt: " + str(retry))
# Wait a bit before retrying
time.sleep((MAX_RETRY - retry) * 120)
continue
else:
print("No more chance to retry. Giving up.")
sys.exit(-1)
else:
break

View File

@ -1,65 +0,0 @@
# https://developercommunity.visualstudio.com/t/install-specific-version-of-vs-component/1142479
# Where to find the links: https://docs.microsoft.com/en-us/visualstudio/releases/2019/history#release-dates-and-build-numbers
# BuildTools from S3
$VS_DOWNLOAD_LINK = "https://s3.amazonaws.com/ossci-windows/vs${env:VS_VERSION}_BuildTools.exe"
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
"--add Microsoft.Component.MSBuild",
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
"--add Microsoft.VisualStudio.Component.TextTemplating",
"--add Microsoft.VisualStudio.Component.VC.CoreIde",
"--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core",
"--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Win81")
if (${env:INSTALL_WINDOWS_SDK} -eq "1") {
$VS_INSTALL_ARGS += "--add Microsoft.VisualStudio.Component.Windows10SDK.19041"
}
if (Test-Path "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe") {
$VS_VERSION_major = [int] ${env:VS_VERSION}.split(".")[0]
$existingPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -version "[${env:VS_VERSION}, ${env:VS_VERSION_major + 1})" -property installationPath
if (($existingPath -ne $null) -and (!${env:CIRCLECI})) {
echo "Found correctly versioned existing BuildTools installation in $existingPath"
exit 0
}
$pathToRemove = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -property installationPath
}
echo "Downloading VS installer from S3."
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS 2019 Version ${env:VS_VERSION} installer failed"
exit 1
}
if ($pathToRemove -ne $null) {
echo "Uninstalling $pathToRemove."
$VS_UNINSTALL_ARGS = @("uninstall", "--installPath", "`"$pathToRemove`"", "--quiet","--wait")
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_UNINSTALL_ARGS -NoNewWindow -Wait -PassThru
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "Original BuildTools uninstall failed with code $exitCode"
exit 1
}
echo "Other versioned BuildTools uninstalled."
}
echo "Installing Visual Studio version ${env:VS_VERSION}."
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
Remove-Item -Path vs_installer.exe -Force
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "VS 2019 installer exited with code $exitCode, which should be one of [0, 3010]."
curl.exe --retry 3 -kL $COLLECT_DOWNLOAD_LINK --output Collect.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS Collect tool failed."
exit 1
}
Start-Process "${PWD}\Collect.exe" -NoNewWindow -Wait -PassThru
New-Item -Path "C:\w\build-results" -ItemType "directory" -Force
Copy-Item -Path "${env:TEMP}\vslogs.zip" -Destination "C:\w\build-results\"
exit 1
}

View File

@ -1,5 +0,0 @@
$CMATH_DOWNLOAD_LINK = "https://raw.githubusercontent.com/microsoft/STL/12c684bba78f9b032050526abdebf14f58ca26a3/stl/inc/cmath"
$VC14_28_INSTALL_PATH="C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.28.29910\include"
curl.exe --retry 3 -kL $CMATH_DOWNLOAD_LINK --output "$home\cmath"
Move-Item -Path "$home\cmath" -Destination "$VC14_28_INSTALL_PATH" -Force

View File

@ -1,70 +0,0 @@
#!/bin/bash
set -eux -o pipefail
case ${CUDA_VERSION} in
10.2)
cuda_installer_name="cuda_10.2.89_441.22_win10"
cuda_install_packages="nvcc_10.2 cuobjdump_10.2 nvprune_10.2 cupti_10.2 cublas_10.2 cublas_dev_10.2 cudart_10.2 cufft_10.2 cufft_dev_10.2 curand_10.2 curand_dev_10.2 cusolver_10.2 cusolver_dev_10.2 cusparse_10.2 cusparse_dev_10.2 nvgraph_10.2 nvgraph_dev_10.2 npp_10.2 npp_dev_10.2 nvrtc_10.2 nvrtc_dev_10.2 nvml_dev_10.2"
;;
11.3)
cuda_installer_name="cuda_11.3.0_465.89_win10"
cuda_install_packages="thrust_11.3 nvcc_11.3 cuobjdump_11.3 nvprune_11.3 nvprof_11.3 cupti_11.3 cublas_11.3 cublas_dev_11.3 cudart_11.3 cufft_11.3 cufft_dev_11.3 curand_11.3 curand_dev_11.3 cusolver_11.3 cusolver_dev_11.3 cusparse_11.3 cusparse_dev_11.3 npp_11.3 npp_dev_11.3 nvrtc_11.3 nvrtc_dev_11.3 nvml_dev_11.3"
;;
11.6)
cuda_installer_name="cuda_11.6.0_511.23_windows"
cuda_install_packages="thrust_11.6 nvcc_11.6 cuobjdump_11.6 nvprune_11.6 nvprof_11.6 cupti_11.6 cublas_11.6 cublas_dev_11.6 cudart_11.6 cufft_11.6 cufft_dev_11.6 curand_11.6 curand_dev_11.6 cusolver_11.6 cusolver_dev_11.6 cusparse_11.6 cusparse_dev_11.6 npp_11.6 npp_dev_11.6 nvrtc_11.6 nvrtc_dev_11.6 nvml_dev_11.6"
;;
*)
echo "CUDA_VERSION $CUDA_VERSION is not supported yet"
exit 1
;;
esac
if [[ -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
echo "Existing CUDA v${CUDA_VERSION} installation found, skipping install"
else
tmp_dir=$(mktemp -d)
(
# no need to popd after, the subshell shouldn't affect the parent shell
pushd "${tmp_dir}"
cuda_installer_link="https://ossci-windows.s3.amazonaws.com/${cuda_installer_name}.exe"
curl --retry 3 -kLO $cuda_installer_link
7z x ${cuda_installer_name}.exe -o${cuda_installer_name}
pushd ${cuda_installer_name}
mkdir cuda_install_logs
set +e
# This breaks for some reason if you quote cuda_install_packages
# shellcheck disable=SC2086
./setup.exe -s ${cuda_install_packages} -loglevel:6 -log:"$(pwd -W)/cuda_install_logs"
set -e
if [[ ! -f "/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/bin/nvcc.exe" ]]; then
echo "CUDA installation failed"
mkdir -p /c/w/build-results
7z a "c:\\w\\build-results\\cuda_install_logs.7z" cuda_install_logs
exit 1
fi
)
rm -rf "${tmp_dir}"
fi
if [[ -f "/c/Program Files/NVIDIA Corporation/NvToolsExt/bin/x64/nvToolsExt64_1.dll" ]]; then
echo "Existing nvtools installation found, skipping install"
else
# create tmp dir for download
tmp_dir=$(mktemp -d)
(
# no need to popd after, the subshell shouldn't affect the parent shell
pushd "${tmp_dir}"
curl --retry 3 -kLO https://ossci-windows.s3.amazonaws.com/NvToolsExt.7z
7z x NvToolsExt.7z -oNvToolsExt
mkdir -p "C:/Program Files/NVIDIA Corporation/NvToolsExt"
cp -r NvToolsExt/* "C:/Program Files/NVIDIA Corporation/NvToolsExt/"
)
rm -rf "${tmp_dir}"
fi

View File

@ -1,48 +0,0 @@
#!/bin/bash
set -eux -o pipefail
windows_s3_link="https://ossci-windows.s3.amazonaws.com"
case ${CUDA_VERSION} in
10.2)
cudnn_file_name="cudnn-${CUDA_VERSION}-windows10-x64-v7.6.5.32"
;;
11.3)
# Use cudnn8.3 with hard-coded cuda11.3 version
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
;;
11.6)
# Use cudnn8.3 with hard-coded cuda11.5 version
cudnn_file_name="cudnn-windows-x86_64-8.3.2.44_cuda11.5-archive"
;;
*)
echo "CUDA_VERSION: ${CUDA_VERSION} not supported yet"
exit 1
;;
esac
cudnn_installer_name="cudnn_installer.zip"
cudnn_installer_link="${windows_s3_link}/${cudnn_file_name}.zip"
cudnn_install_folder="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${CUDA_VERSION}/"
if [[ -f "${cudnn_install_folder}/include/cudnn.h" ]]; then
echo "Existing cudnn installation found, skipping install..."
else
tmp_dir=$(mktemp -d)
(
pushd "${tmp_dir}"
curl --retry 3 -o "${cudnn_installer_name}" "$cudnn_installer_link"
7z x "${cudnn_installer_name}" -ocudnn
# Use '${var:?}/*' to avoid potentially expanding to '/*'
# Remove all of the directories before attempting to copy files
rm -rf "${cudnn_install_folder:?}/*"
cp -rf cudnn/cuda/* "${cudnn_install_folder}"
#Make sure windows path contains zlib dll
curl -k -L "${windows_s3_link}/zlib123dllx64.zip" --output "${tmp_dir}\zlib123dllx64.zip"
7z x "${tmp_dir}\zlib123dllx64.zip" -o"${tmp_dir}\zlib"
xcopy /Y "${tmp_dir}\zlib\dll_x64\*.dll" "C:\Windows\System32"
)
rm -rf "${tmp_dir}"
fi

View File

@ -0,0 +1,44 @@
#!/usr/bin/env python3
import urllib.request
import re
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
RE_VERSION = re.compile(r'allDeployedVersions = "([0-9,]+)"')
URL_TEMPLATE = (
"https://raw.githubusercontent.com/pytorch/ossci-job-dsl/"
"master/src/main/groovy/ossci/{}/DockerVersion.groovy"
)
def check_version(job, expected_version):
url = URL_TEMPLATE.format(job)
with urllib.request.urlopen(url) as f:
contents = f.read().decode('utf-8')
m = RE_VERSION.search(contents)
if not m:
raise RuntimeError(
"Unbelievable! I could not find the variable allDeployedVersions in "
"{}; did the organization of ossci-job-dsl change?\n\nFull contents:\n{}"
.format(url, contents)
)
valid_versions = [int(v) for v in m.group(1).split(',')]
if expected_version not in valid_versions:
raise RuntimeError(
"We configured {} to use Docker version {}; but this "
"version is not deployed in {}. Non-deployed versions will be "
"garbage collected two weeks after they are created. DO NOT LAND "
"THIS TO MASTER without also updating ossci-job-dsl with this version."
"\n\nDeployed versions: {}"
.format(job, expected_version, url, m.group(1))
)
def validate_docker_version():
check_version('pytorch', pytorch_build_definitions.DOCKER_IMAGE_VERSION)
check_version('caffe2', caffe2_build_definitions.DOCKER_IMAGE_VERSION)
if __name__ == "__main__":
validate_docker_version()

View File

@ -52,14 +52,3 @@ binary_mac_params: &binary_mac_params
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
binary_windows_params: &binary_windows_params
parameters:
build_environment:
type: string
default: ""
executor:
type: string
default: "windows-xlarge-cpu-with-nvidia-cuda"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
JOB_EXECUTOR: <<parameters.executor>>

View File

@ -0,0 +1,20 @@
# There is currently no testing for libtorch TODO
# binary_linux_libtorch_2.7m_cpu_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cpu"
# resource_class: gpu.medium
# <<: *binary_linux_test
#
# binary_linux_libtorch_2.7m_cu90_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cu90"
# resource_class: gpu.medium
# <<: *binary_linux_test
#
# binary_linux_libtorch_2.7m_cu100_test:
# environment:
# BUILD_ENVIRONMENT: "libtorch 2.7m cu100"
# resource_class: gpu.medium
# <<: *binary_linux_test

View File

@ -0,0 +1,267 @@
binary_linux_build:
<<: *binary_linux_build_params
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Install unbuffer and ts
command: |
set -eux -o pipefail
source /env
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum -q -y install epel-release
retry yum -q -y install expect moreutils
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
retry apt-get update
retry apt-get -y install expect moreutils
conda install -y -c eumetsat expect
conda install -y cmake
fi
- run:
name: Update compiler to devtoolset7
command: |
set -eux -o pipefail
source /env
if [[ "$DESIRED_DEVTOOLSET" == 'devtoolset7' ]]; then
source "/builder/update_compiler.sh"
# Env variables are not persisted into the next step
echo "export PATH=$PATH" >> /env
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH" >> /env
else
echo "Not updating compiler"
fi
- run:
name: Build
no_output_timeout: "1h"
command: |
source "/pytorch/.circleci/scripts/binary_linux_build.sh"
- persist_to_workspace:
root: /
paths: final_pkgs
# This should really just be another step of the binary_linux_build job above.
# This isn't possible right now b/c the build job uses the docker executor
# (otherwise they'd be really really slow) but this one uses the macine
# executor (b/c we have to run the docker with --runtime=nvidia and we can't do
# that on the docker executor)
binary_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
# TODO: We shouldn't attach the workspace multiple times
- attach_workspace:
at: /home/circleci/project
- setup_linux_system_environment
- setup_ci_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Prepare test code
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/binary_linux_test.sh
- run:
<<: *binary_run_in_docker
binary_linux_upload:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- attach_workspace:
at: /home/circleci/project
- run:
<<: *binary_populate_env
- run:
<<: *binary_install_miniconda
- run:
name: Upload
no_output_timeout: "1h"
command: ~/workspace/.circleci/scripts/binary_linux_upload.sh
# Nighlty build smoke tests defaults
# These are the second-round smoke tests. These make sure that the binaries are
# correct from a user perspective, testing that they exist from the cloud are
# are runnable. Note that the pytorch repo is never cloned into these jobs
##############################################################################
smoke_linux_test:
<<: *binary_linux_test_upload_params
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- attach_workspace:
at: /home/circleci/project
- setup_linux_system_environment
- setup_ci_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- run:
name: Test
no_output_timeout: "1h"
command: |
set -ex
cat >/home/circleci/project/ci_test_script.sh \<<EOL
# The following code will be executed inside Docker container
set -eux -o pipefail
/builder/smoke_test.sh
# The above code will be executed inside Docker container
EOL
- run:
<<: *binary_run_in_docker
smoke_mac_test:
<<: *binary_linux_test_upload_params
macos:
xcode: "9.0"
steps:
- attach_workspace:
at: ~/workspace
- attach_workspace: # TODO - we can `cp` from ~/workspace
at: /Users/distiller/project
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- run:
name: Build
no_output_timeout: "1h"
command: |
set -ex
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
# TODO unbuffer and ts this, but it breaks cause miniconda overwrites
# tclsh. But unbuffer and ts aren't that important so they're just
# disabled for now
./builder/smoke_test.sh
binary_mac_build:
<<: *binary_mac_params
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- run:
name: Build
no_output_timeout: "1h"
command: |
# Do not set -u here; there is some problem with CircleCI
# variable expansion with PROMPT_COMMAND
set -ex -o pipefail
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_build.sh"
cat "$script"
source "$script"
- run:
name: Test
no_output_timeout: "1h"
command: |
# Do not set -u here; there is some problem with CircleCI
# variable expansion with PROMPT_COMMAND
set -ex -o pipefail
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_test.sh"
cat "$script"
source "$script"
- persist_to_workspace:
root: /Users/distiller/project
paths: final_pkgs
binary_mac_upload: &binary_mac_upload
<<: *binary_mac_params
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- run:
<<: *binary_checkout
- run:
<<: *binary_populate_env
- brew_update
- run:
<<: *binary_install_miniconda
- attach_workspace: # TODO - we can `cp` from ~/workspace
at: /Users/distiller/project
- run:
name: Upload
no_output_timeout: "10m"
command: |
script="/Users/distiller/project/pytorch/.circleci/scripts/binary_macos_upload.sh"
cat "$script"
source "$script"
binary_ios_build:
<<: *pytorch_ios_params
macos:
xcode: "11.2.1"
steps:
- attach_workspace:
at: ~/workspace
- should_run_job
- checkout
- run_brew_for_ios_build
- run:
name: Build
no_output_timeout: "1h"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_build.sh"
cat "$script"
source "$script"
- run:
name: Test
no_output_timeout: "30m"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_test.sh"
cat "$script"
source "$script"
- persist_to_workspace:
root: /Users/distiller/workspace/
paths: ios
binary_ios_upload:
<<: *pytorch_ios_params
macos:
xcode: "11.2.1"
steps:
- attach_workspace:
at: ~/workspace
- should_run_job
- checkout
- run_brew_for_ios_build
- run:
name: Upload
no_output_timeout: "1h"
command: |
script="/Users/distiller/project/.circleci/scripts/binary_ios_upload.sh"
cat "$script"
source "$script"

View File

@ -0,0 +1,96 @@
# update_s3_htmls job
# These jobs create html files for every cpu/cu## folder in s3. The html
# files just store the names of all the files in that folder (which are
# binary files (.whl files)). This is to allow pip installs of the latest
# version in a folder without having to know the latest date. Pip has a flag
# -f that you can pass an html file listing a bunch of packages, and pip will
# then install the one with the most recent version.
update_s3_htmls: &update_s3_htmls
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- setup_linux_system_environment
- run:
<<: *binary_checkout
# N.B. we do not run binary_populate_env. The only variable we need is
# PIP_UPLOAD_FOLDER (which is 'nightly/' for the nightlies and '' for
# releases, and sometimes other things for special cases). Instead we
# expect PIP_UPLOAD_FOLDER to be passed directly in the env. This is
# because, unlike all the other binary jobs, these jobs only get run once,
# in a separate workflow. They are not a step in other binary jobs like
# build, test, upload.
#
# You could attach this to every job, or include it in the upload step if
# you wanted. You would need to add binary_populate_env in this case to
# make sure it has the same upload folder as the job it's attached to. This
# function is idempotent, so it won't hurt anything; it's just a little
# unnescessary"
- run:
name: Update s3 htmls
no_output_timeout: "1h"
command: |
set +x
echo "declare -x \"AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}\"" >> /home/circleci/project/env
echo "declare -x \"AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}\"" >> /home/circleci/project/env
source /home/circleci/project/env
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
retry pip install awscli==1.6
"/home/circleci/project/builder/cron/update_s3_htmls.sh"
# Update s3 htmls for the nightlies
update_s3_htmls_for_nightlies:
environment:
PIP_UPLOAD_FOLDER: "nightly/"
<<: *update_s3_htmls
# Update s3 htmls for the nightlies for devtoolset7
update_s3_htmls_for_nightlies_devtoolset7:
environment:
PIP_UPLOAD_FOLDER: "nightly/devtoolset7/"
<<: *update_s3_htmls
# upload_binary_logs job
# The builder hud at pytorch.org/builder shows the sizes of all the binaries
# over time. It gets this info from html files stored in S3, which this job
# populates every day.
upload_binary_sizes: &upload_binary_sizes
machine:
image: ubuntu-1604:201903-01
steps:
- attach_workspace:
at: ~/workspace
- setup_linux_system_environment
- run:
<<: *binary_checkout
- run:
<<: *binary_install_miniconda
- run:
name: Upload binary sizes
no_output_timeout: "1h"
command: |
set +x
echo "declare -x \"AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}\"" > /home/circleci/project/env
echo "declare -x \"AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}\"" >> /home/circleci/project/env
export DATE="$(date -u +%Y_%m_%d)"
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
source /home/circleci/project/env
set -eux -o pipefail
# This is hardcoded to match binary_install_miniconda.sh
export PATH="/home/circleci/project/miniconda/bin:$PATH"
# Not any awscli will work. Most won't. This one will work
retry conda create -qyn aws36 python=3.6
source activate aws36
pip install awscli==1.16.46
"/home/circleci/project/builder/cron/upload_binary_sizes.sh"

View File

@ -1,105 +0,0 @@
pytorch_params: &pytorch_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
resource_class:
type: string
default: "large"
use_cuda_docker_runtime:
type: string
default: ""
build_only:
type: string
default: ""
ci_master:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
DOCKER_IMAGE: << parameters.docker_image >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
BUILD_ONLY: << parameters.build_only >>
CI_MASTER: << pipeline.parameters.run_master_build >>
resource_class: << parameters.resource_class >>
pytorch_ios_params: &pytorch_ios_params
parameters:
build_environment:
type: string
default: ""
ios_arch:
type: string
default: ""
ios_platform:
type: string
default: ""
op_list:
type: string
default: ""
use_metal:
type: string
default: "0"
lite_interpreter:
type: string
default: "1"
use_coreml:
type: string
default: "0"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
IOS_ARCH: << parameters.ios_arch >>
IOS_PLATFORM: << parameters.ios_platform >>
SELECTED_OP_LIST: << parameters.op_list >>
USE_PYTORCH_METAL: << parameters.use_metal >>
BUILD_LITE_INTERPRETER: << parameters.lite_interpreter >>
USE_COREML_DELEGATE: << parameters.use_coreml >>
pytorch_windows_params: &pytorch_windows_params
parameters:
executor:
type: string
default: "windows-xlarge-cpu-with-nvidia-cuda"
build_environment:
type: string
default: ""
test_name:
type: string
default: ""
cuda_version:
type: string
default: "10.1"
python_version:
type: string
default: "3.8"
vs_version:
type: string
default: "16.8.6"
vc_version:
type: string
default: "14.16"
vc_year:
type: string
default: "2019"
vc_product:
type: string
default: "BuildTools"
use_cuda:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: <<parameters.build_environment>>
SCCACHE_BUCKET: "ossci-compiler-cache"
CUDA_VERSION: <<parameters.cuda_version>>
PYTHON_VERSION: <<parameters.python_version>>
VS_VERSION: <<parameters.vs_version>>
VC_VERSION: <<parameters.vc_version>>
VC_YEAR: <<parameters.vc_year>>
VC_PRODUCT: <<parameters.vc_product>>
USE_CUDA: <<parameters.use_cuda>>
TORCH_CUDA_ARCH_LIST: "5.2 7.5"
JOB_BASE_NAME: <<parameters.test_name>>
JOB_EXECUTOR: <<parameters.executor>>

View File

@ -0,0 +1,28 @@
caffe2_params: &caffe2_params
parameters:
build_environment:
type: string
default: ""
build_ios:
type: string
default: ""
docker_image:
type: string
default: ""
use_cuda_docker_runtime:
type: string
default: ""
build_only:
type: string
default: ""
resource_class:
type: string
default: "large"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
BUILD_IOS: << parameters.build_ios >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
DOCKER_IMAGE: << parameters.docker_image >>
BUILD_ONLY: << parameters.build_only >>
resource_class: << parameters.resource_class >>

View File

@ -0,0 +1,200 @@
caffe2_linux_build:
<<: *caffe2_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- checkout
- setup_ci_environment
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
cat >/home/circleci/project/ci_build_script.sh \<<EOL
# =================== The following code will be executed inside Docker container ===================
set -ex
export BUILD_ENVIRONMENT="$BUILD_ENVIRONMENT"
# Reinitialize submodules
git submodule sync && git submodule update -q --init --recursive
# conda must be added to the path for Anaconda builds (this location must be
# the same as that in install_anaconda.sh used to build the docker image)
if [[ "${BUILD_ENVIRONMENT}" == conda* ]]; then
export PATH=/opt/conda/bin:$PATH
sudo chown -R jenkins:jenkins '/opt/conda'
fi
# Build
./.jenkins/caffe2/build.sh
# Show sccache stats if it is running
if pgrep sccache > /dev/null; then
sccache --show-stats
fi
# =================== The above code will be executed inside Docker container ===================
EOL
chmod +x /home/circleci/project/ci_build_script.sh
echo "DOCKER_IMAGE: "${DOCKER_IMAGE}
time docker pull ${DOCKER_IMAGE} >/dev/null
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE})
docker cp /home/circleci/project/. $id:/var/lib/jenkins/workspace
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && ./ci_build_script.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Push intermediate Docker image for next phase to use
if [ -z "${BUILD_ONLY}" ]; then
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-cmake-${CIRCLE_SHA1}
else
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
fi
docker commit "$id" ${COMMIT_DOCKER_IMAGE}
time docker push ${COMMIT_DOCKER_IMAGE}
fi
caffe2_linux_test:
<<: *caffe2_params
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- run:
name: Test
no_output_timeout: "1h"
command: |
set -e
# TODO: merge this into Caffe2 test.sh
cat >/home/circleci/project/ci_test_script.sh \<<EOL
# =================== The following code will be executed inside Docker container ===================
set -ex
export BUILD_ENVIRONMENT="$BUILD_ENVIRONMENT"
# libdc1394 (dependency of OpenCV) expects /dev/raw1394 to exist...
sudo ln /dev/null /dev/raw1394
# conda must be added to the path for Anaconda builds (this location must be
# the same as that in install_anaconda.sh used to build the docker image)
if [[ "${BUILD_ENVIRONMENT}" == conda* ]]; then
export PATH=/opt/conda/bin:$PATH
fi
# Upgrade SSL module to avoid old SSL warnings
pip -q install --user --upgrade pyOpenSSL ndg-httpsclient pyasn1
pip -q install --user -b /tmp/pip_install_onnx "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
# Build
./.jenkins/caffe2/test.sh
# Remove benign core dumps.
# These are tests for signal handling (including SIGABRT).
rm -f ./crash/core.fatal_signal_as.*
rm -f ./crash/core.logging_test.*
# =================== The above code will be executed inside Docker container ===================
EOL
chmod +x /home/circleci/project/ci_test_script.sh
if [[ "$BUILD_ENVIRONMENT" == *cmake* ]]; then
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-cmake-${CIRCLE_SHA1}
else
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
fi
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
time docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
if [ -n "${USE_CUDA_DOCKER_RUNTIME}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
fi
docker cp /home/circleci/project/. "$id:/var/lib/jenkins/workspace"
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && ./ci_test_script.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
caffe2_macos_build:
<<: *caffe2_params
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- checkout
- run_brew_for_macos_build
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
brew install cmake
# Reinitialize submodules
git submodule sync && git submodule update -q --init --recursive
# Reinitialize path (see man page for path_helper(8))
eval `/usr/libexec/path_helper -s`
export PATH=/usr/local/opt/python/libexec/bin:/usr/local/bin:$PATH
# Install Anaconda if we need to
if [ -n "${CAFFE2_USE_ANACONDA}" ]; then
rm -rf ${TMPDIR}/anaconda
curl -o ${TMPDIR}/conda.sh https://repo.continuum.io/miniconda/Miniconda${ANACONDA_VERSION}-latest-MacOSX-x86_64.sh
chmod +x ${TMPDIR}/conda.sh
/bin/bash ${TMPDIR}/conda.sh -b -p ${TMPDIR}/anaconda
rm -f ${TMPDIR}/conda.sh
export PATH="${TMPDIR}/anaconda/bin:${PATH}"
source ${TMPDIR}/anaconda/bin/activate
fi
pip -q install numpy
# Install sccache
sudo curl https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
export SCCACHE_BIN=${PWD}/sccache_bin
mkdir -p ${SCCACHE_BIN}
if which sccache > /dev/null; then
printf "#!/bin/sh\nexec sccache $(which clang++) \$*" > "${SCCACHE_BIN}/clang++"
chmod a+x "${SCCACHE_BIN}/clang++"
printf "#!/bin/sh\nexec sccache $(which clang) \$*" > "${SCCACHE_BIN}/clang"
chmod a+x "${SCCACHE_BIN}/clang"
export PATH="${SCCACHE_BIN}:$PATH"
fi
# Build
if [ "${BUILD_IOS:-0}" -eq 1 ]; then
unbuffer scripts/build_ios.sh 2>&1 | ts
elif [ -n "${CAFFE2_USE_ANACONDA}" ]; then
# All conda build logic should be in scripts/build_anaconda.sh
unbuffer scripts/build_anaconda.sh 2>&1 | ts
else
unbuffer scripts/build_local.sh 2>&1 | ts
fi
# Show sccache stats if it is running
if which sccache > /dev/null; then
sccache --show-stats
fi

View File

@ -1,26 +1,18 @@
commands:
calculate_docker_image_tag:
description: "Calculates the docker image tag"
# NB: This command must be run as the first command in a job. It
# attaches the workspace at ~/workspace; this workspace is generated
# by the setup job. Note that ~/workspace is not the default working
# directory (that's ~/project).
should_run_job:
description: "Test if the job should run or not"
steps:
- attach_workspace:
name: Attaching workspace
at: ~/workspace
- run:
name: "Calculate docker image hash"
command: |
DOCKER_TAG=$(git rev-parse HEAD:.circleci/docker)
echo "DOCKER_TAG=${DOCKER_TAG}" >> "${BASH_ENV}"
designate_upload_channel:
description: "inserts the correct upload channel into ${BASH_ENV}"
steps:
- run:
name: adding UPLOAD_CHANNEL to BASH_ENV
command: |
our_upload_channel=nightly
# On tags upload to test instead
if [[ -n "${CIRCLE_TAG}" ]]; then
our_upload_channel=test
fi
echo "export UPLOAD_CHANNEL=${our_upload_channel}" >> ${BASH_ENV}
name: Should run job
no_output_timeout: "2m"
command: ~/workspace/.circleci/scripts/should_run_job.sh
# This system setup script is meant to run before the CI-related scripts, e.g.,
# installing Git client, checking out code, setting up CI env, and
@ -30,14 +22,14 @@ commands:
- run:
name: Set Up System Environment
no_output_timeout: "1h"
command: .circleci/scripts/setup_linux_system_environment.sh
command: ~/workspace/.circleci/scripts/setup_linux_system_environment.sh
setup_ci_environment:
steps:
- run:
name: Set Up CI Environment After attach_workspace
no_output_timeout: "1h"
command: .circleci/scripts/setup_ci_environment.sh
command: ~/workspace/.circleci/scripts/setup_ci_environment.sh
brew_update:
description: "Update Homebrew and install base formulae"
@ -96,79 +88,3 @@ commands:
- brew_update
- brew_install:
formulae: libtool
optional_merge_target_branch:
steps:
- run:
name: (Optional) Merge target branch
no_output_timeout: "10m"
command: |
if [[ -n "$CIRCLE_PULL_REQUEST" && "$CIRCLE_BRANCH" != "nightly" ]]; then
PR_NUM=$(basename $CIRCLE_PULL_REQUEST)
CIRCLE_PR_BASE_BRANCH=$(curl -s https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$PR_NUM | jq -r '.base.ref')
if [[ "${BUILD_ENVIRONMENT}" == *"xla"* || "${BUILD_ENVIRONMENT}" == *"gcc5"* ]] ; then
set -x
git config --global user.email "circleci.ossci@gmail.com"
git config --global user.name "CircleCI"
git config remote.origin.url https://github.com/pytorch/pytorch.git
git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
# PRs generated from ghstack has format CIRCLE_PR_BASE_BRANCH=gh/xxx/1234/base
if [[ "${CIRCLE_PR_BASE_BRANCH}" == "gh/"* ]]; then
CIRCLE_PR_BASE_BRANCH=master
fi
export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/$CIRCLE_PR_BASE_BRANCH`
echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}
export GIT_COMMIT=${CIRCLE_SHA1}
echo "GIT_COMMIT: " ${GIT_COMMIT}
git checkout -f ${GIT_COMMIT}
git reset --hard ${GIT_COMMIT}
git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET}
echo "Merged $CIRCLE_PR_BASE_BRANCH branch before building in environment $BUILD_ENVIRONMENT"
set +x
else
echo "No need to merge with $CIRCLE_PR_BASE_BRANCH, skipping..."
fi
else
echo "This is not a pull request, skipping..."
fi
upload_binary_size_for_android_build:
description: "Upload binary size data for Android build"
parameters:
build_type:
type: string
default: ""
artifacts:
type: string
default: ""
steps:
- run:
name: "Binary Size - Install Dependencies"
no_output_timeout: "5m"
command: |
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
retry pip3 install requests
- run:
name: "Binary Size - Untar Artifacts"
no_output_timeout: "5m"
command: |
# The artifact file is created inside docker container, which contains the result binaries.
# Now unpackage it into the project folder. The subsequent script will scan project folder
# to locate result binaries and report their sizes.
# If artifact file is not provided it assumes that the project folder has been mounted in
# the docker during build and already contains the result binaries, so this step can be skipped.
export ARTIFACTS="<< parameters.artifacts >>"
if [ -n "${ARTIFACTS}" ]; then
tar xf "${ARTIFACTS}" -C ~/project
fi
- run:
name: "Binary Size - Upload << parameters.build_type >>"
no_output_timeout: "5m"
command: |
cd ~/project
export ANDROID_BUILD_TYPE="<< parameters.build_type >>"
export COMMIT_TIME=$(git log --max-count=1 --format=%ct || echo 0)
python3 -m tools.stats.upload_binary_size_to_scuba android

View File

@ -0,0 +1,21 @@
docker_build_job:
parameters:
image_name:
type: string
default: ""
machine:
image: ubuntu-1604:201903-01
resource_class: large
environment:
IMAGE_NAME: << parameters.image_name >>
steps:
- checkout
- run:
name: build_docker_image_<< parameters.image_name >>
no_output_timeout: "1h"
command: |
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_DOCKER_BUILDER_V1}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_DOCKER_BUILDER_V1}
set -x
cd .circleci/docker && ./build_docker.sh

View File

@ -1,41 +1,21 @@
# WARNING: DO NOT EDIT THIS FILE DIRECTLY!!!
# See the README.md in this directory.
# IMPORTANT: To update Docker image version, please follow
# the instructions at
# https://github.com/pytorch/pytorch/wiki/Docker-image-build-on-CircleCI
# IMPORTANT: To update Docker image version, please first update
# https://github.com/pytorch/ossci-job-dsl/blob/master/src/main/groovy/ossci/pytorch/DockerVersion.groovy and
# https://github.com/pytorch/ossci-job-dsl/blob/master/src/main/groovy/ossci/caffe2/DockerVersion.groovy,
# and then update DOCKER_IMAGE_VERSION at the top of the following files:
# * cimodel/data/pytorch_build_definitions.py
# * cimodel/data/caffe2_build_definitions.py
# And the inline copies of the variable in
# * verbatim-sources/job-specs-custom.yml
# (grep for DOCKER_IMAGE)
version: 2.1
parameters:
run_binary_tests:
type: boolean
default: false
run_build:
type: boolean
default: true
run_master_build:
type: boolean
default: false
run_slow_gradcheck_build:
type: boolean
default: false
executors:
windows-with-nvidia-gpu:
machine:
resource_class: windows.gpu.nvidia.medium
image: windows-server-2019-nvidia:previous
shell: bash.exe
windows-xlarge-cpu-with-nvidia-cuda:
machine:
resource_class: windows.xlarge
image: windows-server-2019-vs2019:stable
shell: bash.exe
windows-medium-cpu-with-nvidia-cuda:
machine:
resource_class: windows.medium
image: windows-server-2019-vs2019:stable
shell: bash.exe
docker_config_defaults: &docker_config_defaults
user: jenkins
aws_auth:
# This IAM user only allows read-write access to ECR
aws_access_key_id: ${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4}
aws_secret_access_key: ${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4}

View File

@ -0,0 +1,474 @@
pytorch_python_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-python-doc-push
# TODO: stop hardcoding this
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:405"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- run:
name: Doc Build and Push
no_output_timeout: "1h"
command: |
set -ex
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
time docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
# master branch docs push
if [[ "${CIRCLE_BRANCH}" == "master" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/master master site") | docker exec -u jenkins -i "$id" bash) 2>&1'
# stable release docs push. Due to some circleci limitations, we keep
# an eternal PR open for merging v1.2.0 -> master for this job.
# XXX: The following code is only run on the v1.2.0 branch, which might
# not be exactly the same as what you see here.
elif [[ "${CIRCLE_BRANCH}" == "v1.2.0" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/stable 1.2.0 site dry_run") | docker exec -u jenkins -i "$id" bash) 2>&1'
# For open PRs: Do a dry_run of the docs build, don't push build
else
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/python_doc_push_script.sh docs/master master site dry_run") | docker exec -u jenkins -i "$id" bash) 2>&1'
fi
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Save the docs build so we can debug any problems
export DEBUG_COMMIT_DOCKER_IMAGE=${COMMIT_DOCKER_IMAGE}-debug
docker commit "$id" ${DEBUG_COMMIT_DOCKER_IMAGE}
time docker push ${DEBUG_COMMIT_DOCKER_IMAGE}
pytorch_cpp_doc_push:
environment:
BUILD_ENVIRONMENT: pytorch-cpp-doc-push
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-cuda9-cudnn7-py3:405"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- setup_linux_system_environment
- setup_ci_environment
- run:
name: Doc Build and Push
no_output_timeout: "1h"
command: |
set -ex
export COMMIT_DOCKER_IMAGE=${DOCKER_IMAGE}-${CIRCLE_SHA1}
echo "DOCKER_IMAGE: "${COMMIT_DOCKER_IMAGE}
time docker pull ${COMMIT_DOCKER_IMAGE} >/dev/null
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${COMMIT_DOCKER_IMAGE})
# master branch docs push
if [[ "${CIRCLE_BRANCH}" == "master" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/master master") | docker exec -u jenkins -i "$id" bash) 2>&1'
# stable release docs push. Due to some circleci limitations, we keep
# an eternal PR open (#16502) for merging v1.0.1 -> master for this job.
# XXX: The following code is only run on the v1.0.1 branch, which might
# not be exactly the same as what you see here.
elif [[ "${CIRCLE_BRANCH}" == "v1.0.1" ]]; then
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/stable 1.0.1") | docker exec -u jenkins -i "$id" bash) 2>&1'
# For open PRs: Do a dry_run of the docs build, don't push build
else
export COMMAND='((echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GITHUB_PYTORCHBOT_TOKEN=${GITHUB_PYTORCHBOT_TOKEN}" && echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace && cd workspace && . ./.circleci/scripts/cpp_doc_push_script.sh docs/master master dry_run") | docker exec -u jenkins -i "$id" bash) 2>&1'
fi
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# Save the docs build so we can debug any problems
export DEBUG_COMMIT_DOCKER_IMAGE=${COMMIT_DOCKER_IMAGE}-debug
docker commit "$id" ${DEBUG_COMMIT_DOCKER_IMAGE}
time docker push ${DEBUG_COMMIT_DOCKER_IMAGE}
pytorch_macos_10_13_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-build
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- checkout
- run_brew_for_macos_build
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# Install sccache
sudo curl https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
chmod a+x .jenkins/pytorch/macos-build.sh
unbuffer .jenkins/pytorch/macos-build.sh 2>&1 | ts
# copy with -a to preserve relative structure (e.g., symlinks), and be recursive
cp -a ~/project ~/workspace
- persist_to_workspace:
root: ~/workspace
paths:
- miniconda3
- project
pytorch_macos_10_13_py3_test:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-py3-test
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
# This workspace also carries binaries from the build job
- should_run_job
- run_brew_for_macos_build
- run:
name: Test
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# copy with -a to preserve relative structure (e.g., symlinks), and be recursive
cp -a ~/workspace/project/. ~/project
chmod a+x .jenkins/pytorch/macos-test.sh
unbuffer .jenkins/pytorch/macos-test.sh 2>&1 | ts
- store_test_results:
path: test/test-reports
pytorch_macos_10_13_cuda9_2_cudnn7_py3_build:
environment:
BUILD_ENVIRONMENT: pytorch-macos-10.13-cuda9.2-cudnn7-py3-build
macos:
xcode: "9.0"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- checkout
- run_brew_for_macos_build
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
# Install CUDA 9.2
sudo rm -rf ~/cuda_9.2.64_mac_installer.app || true
curl https://s3.amazonaws.com/ossci-macos/cuda_9.2.64_mac_installer.zip -o ~/cuda_9.2.64_mac_installer.zip
unzip ~/cuda_9.2.64_mac_installer.zip -d ~/
sudo ~/cuda_9.2.64_mac_installer.app/Contents/MacOS/CUDAMacOSXInstaller --accept-eula --no-window
sudo cp /usr/local/cuda/lib/libcuda.dylib /Developer/NVIDIA/CUDA-9.2/lib/libcuda.dylib
sudo rm -rf /usr/local/cuda || true
# Install cuDNN 7.1 for CUDA 9.2
curl https://s3.amazonaws.com/ossci-macos/cudnn-9.2-osx-x64-v7.1.tgz -o ~/cudnn-9.2-osx-x64-v7.1.tgz
rm -rf ~/cudnn-9.2-osx-x64-v7.1 && mkdir ~/cudnn-9.2-osx-x64-v7.1
tar -xzvf ~/cudnn-9.2-osx-x64-v7.1.tgz -C ~/cudnn-9.2-osx-x64-v7.1
sudo cp ~/cudnn-9.2-osx-x64-v7.1/cuda/include/cudnn.h /Developer/NVIDIA/CUDA-9.2/include/
sudo cp ~/cudnn-9.2-osx-x64-v7.1/cuda/lib/libcudnn* /Developer/NVIDIA/CUDA-9.2/lib/
sudo chmod a+r /Developer/NVIDIA/CUDA-9.2/include/cudnn.h /Developer/NVIDIA/CUDA-9.2/lib/libcudnn*
# Install sccache
sudo curl https://s3.amazonaws.com/ossci-macos/sccache --output /usr/local/bin/sccache
sudo chmod +x /usr/local/bin/sccache
export SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2
# This IAM user allows write access to S3 bucket for sccache
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4}
set -x
git submodule sync && git submodule update -q --init --recursive
chmod a+x .jenkins/pytorch/macos-build.sh
unbuffer .jenkins/pytorch/macos-build.sh 2>&1 | ts
pytorch_android_gradle_build:
environment:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c:405"
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
- should_run_job
- setup_linux_system_environment
- checkout
- setup_ci_environment
- run:
name: pytorch android gradle build
no_output_timeout: "1h"
command: |
set -eux
docker_image_commit=${DOCKER_IMAGE}-${CIRCLE_SHA1}
docker_image_libtorch_android_x86_32=${docker_image_commit}-android-x86_32
docker_image_libtorch_android_x86_64=${docker_image_commit}-android-x86_64
docker_image_libtorch_android_arm_v7a=${docker_image_commit}-android-arm-v7a
docker_image_libtorch_android_arm_v8a=${docker_image_commit}-android-arm-v8a
echo "docker_image_commit: "${docker_image_commit}
echo "docker_image_libtorch_android_x86_32: "${docker_image_libtorch_android_x86_32}
echo "docker_image_libtorch_android_x86_64: "${docker_image_libtorch_android_x86_64}
echo "docker_image_libtorch_android_arm_v7a: "${docker_image_libtorch_android_arm_v7a}
echo "docker_image_libtorch_android_arm_v8a: "${docker_image_libtorch_android_arm_v8a}
# x86_32
time docker pull ${docker_image_libtorch_android_x86_32} >/dev/null
export id_x86_32=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_x86_32})
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace") | docker exec -u jenkins -i "$id_x86_32" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
# arm-v7a
time docker pull ${docker_image_libtorch_android_arm_v7a} >/dev/null
export id_arm_v7a=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_arm_v7a})
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace") | docker exec -u jenkins -i "$id_arm_v7a" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
mkdir ~/workspace/build_android_install_arm_v7a
docker cp $id_arm_v7a:/var/lib/jenkins/workspace/build_android/install ~/workspace/build_android_install_arm_v7a
# x86_64
time docker pull ${docker_image_libtorch_android_x86_64} >/dev/null
export id_x86_64=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_x86_64})
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace") | docker exec -u jenkins -i "$id_x86_64" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
mkdir ~/workspace/build_android_install_x86_64
docker cp $id_x86_64:/var/lib/jenkins/workspace/build_android/install ~/workspace/build_android_install_x86_64
# arm-v8a
time docker pull ${docker_image_libtorch_android_arm_v8a} >/dev/null
export id_arm_v8a=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_arm_v8a})
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace") | docker exec -u jenkins -i "$id_arm_v8a" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
mkdir ~/workspace/build_android_install_arm_v8a
docker cp $id_arm_v8a:/var/lib/jenkins/workspace/build_android/install ~/workspace/build_android_install_arm_v8a
docker cp ~/workspace/build_android_install_arm_v7a $id_x86_32:/var/lib/jenkins/workspace/build_android_install_arm_v7a
docker cp ~/workspace/build_android_install_x86_64 $id_x86_32:/var/lib/jenkins/workspace/build_android_install_x86_64
docker cp ~/workspace/build_android_install_arm_v8a $id_x86_32:/var/lib/jenkins/workspace/build_android_install_arm_v8a
# run gradle buildRelease
export COMMAND='((echo "source ./workspace/env" && echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GRADLE_OFFLINE=1" && echo "sudo chown -R jenkins workspace && cd workspace && ./.circleci/scripts/build_android_gradle.sh") | docker exec -u jenkins -i "$id_x86_32" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
mkdir -p ~/workspace/build_android_artifacts
docker cp $id_x86_32:/var/lib/jenkins/workspace/android/artifacts.tgz ~/workspace/build_android_artifacts/
output_image=$docker_image_libtorch_android_x86_32-gradle
docker commit "$id_x86_32" ${output_image}
time docker push ${output_image}
- store_artifacts:
path: ~/workspace/build_android_artifacts/artifacts.tgz
destination: artifacts.tgz
pytorch_android_publish_snapshot:
environment:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-publish-snapshot
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c:405"
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
- should_run_job
- setup_linux_system_environment
- checkout
- setup_ci_environment
- run:
name: pytorch android gradle build
no_output_timeout: "1h"
command: |
set -eux
docker_image_commit=${DOCKER_IMAGE}-${CIRCLE_SHA1}
docker_image_libtorch_android_x86_32_gradle=${docker_image_commit}-android-x86_32-gradle
echo "docker_image_commit: "${docker_image_commit}
echo "docker_image_libtorch_android_x86_32_gradle: "${docker_image_libtorch_android_x86_32_gradle}
# x86_32
time docker pull ${docker_image_libtorch_android_x86_32_gradle} >/dev/null
export id_x86_32=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_x86_32_gradle})
export COMMAND='((echo "source ./workspace/env" && echo "sudo chown -R jenkins workspace" && echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" && echo "export SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" && echo "export ANDROID_SIGN_KEY=${ANDROID_SIGN_KEY}" && echo "export ANDROID_SIGN_PASS=${ANDROID_SIGN_PASS}" && echo "sudo chown -R jenkins workspace && cd workspace && ./.circleci/scripts/publish_android_snapshot.sh") | docker exec -u jenkins -i "$id_x86_32" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
output_image=${docker_image_libtorch_android_x86_32_gradle}-publish-snapshot
docker commit "$id_x86_32" ${output_image}
time docker push ${output_image}
pytorch_android_gradle_build-x86_32:
environment:
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-only-x86_32
DOCKER_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-xenial-py3-clang5-android-ndk-r19c:405"
PYTHON_VERSION: "3.6"
resource_class: large
machine:
image: ubuntu-1604:201903-01
steps:
- should_run_job
- run:
name: filter out not PR runs
no_output_timeout: "5m"
command: |
echo "CIRCLE_PULL_REQUEST: ${CIRCLE_PULL_REQUEST:-}"
if [ -z "${CIRCLE_PULL_REQUEST:-}" ]; then
circleci step halt
fi
- setup_linux_system_environment
- checkout
- setup_ci_environment
- run:
name: pytorch android gradle build only x86_32 (for PR)
no_output_timeout: "1h"
command: |
set -e
docker_image_libtorch_android_x86_32=${DOCKER_IMAGE}-${CIRCLE_SHA1}-android-x86_32
echo "docker_image_libtorch_android_x86_32: "${docker_image_libtorch_android_x86_32}
# x86
time docker pull ${docker_image_libtorch_android_x86_32} >/dev/null
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${docker_image_libtorch_android_x86_32})
export COMMAND='((echo "source ./workspace/env" && echo "export BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT}" && echo "export GRADLE_OFFLINE=1" && echo "sudo chown -R jenkins workspace && cd workspace && ./.circleci/scripts/build_android_gradle.sh") | docker exec -u jenkins -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts
mkdir -p ~/workspace/build_android_x86_32_artifacts
docker cp $id:/var/lib/jenkins/workspace/android/artifacts.tgz ~/workspace/build_android_x86_32_artifacts/
output_image=${docker_image_libtorch_android_x86_32}-gradle
docker commit "$id" ${output_image}
time docker push ${output_image}
- store_artifacts:
path: ~/workspace/build_android_x86_32_artifacts/artifacts.tgz
destination: artifacts.tgz
pytorch_ios_build:
<<: *pytorch_ios_params
macos:
xcode: "11.2.1"
steps:
# See Note [Workspace for CircleCI scripts] in job-specs-setup.yml
- should_run_job
- checkout
- run_brew_for_ios_build
- run:
name: Run Fastlane
no_output_timeout: "1h"
command: |
set -e
PROJ_ROOT=/Users/distiller/project
cd ${PROJ_ROOT}/ios/TestApp
# install fastlane
sudo gem install bundler && bundle install
# install certificates
echo ${IOS_CERT_KEY} >> cert.txt
base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_cert
# install the provisioning profile
PROFILE=TestApp_CI.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
echo ${IOS_SIGN_KEY} >> cert.txt
base64 --decode cert.txt -o ${PROFILE}
rm cert.txt
- run:
name: Build
no_output_timeout: "1h"
command: |
set -e
export IN_CIRCLECI=1
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
export TCLLIBPATH="/usr/local/lib"
# Install conda
curl -o ~/Downloads/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/Downloads/conda.sh
/bin/bash ~/Downloads/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive
# export
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
export BUILD_PYTORCH_MOBILE=1
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
- run:
name: Run Build Tests
no_output_timeout: "30m"
command: |
set -e
PROJ_ROOT=/Users/distiller/project
PROFILE=TestApp_CI
# run the ruby build script
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
echo ${IOS_DEV_TEAM_ID}
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}
if ! [ "$?" -eq "0" ]; then
echo 'xcodebuild failed!'
exit 1
fi
- run:
name: Run Simulator Tests
no_output_timeout: "2h"
command: |
set -e
if [ ${IOS_PLATFORM} != "SIMULATOR" ]; then
echo "not SIMULATOR build, skip it."
exit 0
fi
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
source ~/anaconda/bin/activate
#install the latest version of PyTorch and TorchVision
pip install torch torchvision
#run unit test
cd ${PROJ_ROOT}/ios/TestApp/benchmark
python trace_model.py
ruby setup.rb
cd ${PROJ_ROOT}/ios/TestApp
instruments -s -devices
fastlane scan

View File

@ -27,3 +27,4 @@
- persist_to_workspace:
root: .
paths: .circleci/scripts

Some files were not shown because too many files have changed in this diff Show More