Compare commits

..

81 Commits

Author SHA1 Message Date
af3964a872 Backport transposes optimization to v0.3.0 (#3994)
* Optimizer: optimize transposes in variety of circumstances (#3509)

* Optimizer: Optimize transposes in variety of circumstances

- No-op transposes
- Consecutive transposes (fuse them)
- Transposes into Gemm (fuse them into transA/transB parameter)

* touch up out of date comment

* Backporting optimizer changes
2017-12-04 00:00:43 -08:00
1645546aa9 Propagate volatile in zeros_like (#3984)
Gradients were becoming non-volatile because at::zeros_like returned a
Variable with volatile always set to false. The non-volatile gradients
accumulated history in the model which results in continuously
increasing memory usage,

See #3983, #3835, #3824

In v0.4 this will be more robustly solved by #3970
2017-12-04 00:00:43 -08:00
350fad8a22 fix softmax dim on 1D input 2017-12-01 16:17:49 -08:00
565d183042 Documentation updates for ONNX.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-12-01 00:16:31 -05:00
2ebda372f6 More ONNX support (#3928)
* Remove dilations for pooling in onnx export and other small fixes (#3698)

* fix optimization pass issues

* remove pool dilations

* Fix export for recent changes in ONNX (#3708)

* Fix symbolic for Embedding and Upsampling and improve error messages

* Record stack traces during JIT tracing (#3607)

* Update comments and size logic

* Record stack traces during JIT tracing

* Use string helper functions and AutoGIL

* Use SourceLocation object instead of storing in debugName

* Address zdevito comments

* Address comments

* Allow 1->N broadcasts at the beginning and end to be fused (#3616)

* Allow 1->N broadcasts at the beginning and end to be fused

* Update comments and size logic

* Implement bmm symbolic (#3681)

* Buildfix.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Now actually fix padding (the tests are added in onnx-pytorch) (#3893)

* Now actually fix padding (the tests are added in onnx-pytorch)

* fix test

* Fix exporting HalfTensor

* Fix padding according to https://github.com/onnx/onnx/issues/261

* Update ONNX IR we emit to version 0.0.2 (attribute discriminators) / fix Permute export (#3484)

* Regenerate ONNX nanopb from latest version.

But don't bump the IR version, we don't handle discriminators
yet.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add discriminator to AttributeProto.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Add back ONNX definition for permute

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* PyTorch now uses operator versioning.

Also move some of the exporter info out of the ModelProto constructor.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-12-01 00:05:04 -05:00
28b846c486 Corrected formatting in "docker image" section 2017-11-29 19:05:09 +01:00
9622eaa6fa Fix void* wrapping in autograd codegen
Also, add assertions here and there to make sure bad things
never happen again.
2017-11-24 13:33:30 +01:00
db8154df32 flake8 fix 2017-11-20 16:32:00 -08:00
b6eeea343d Always define outputs of ConvBackwardBackward (#3800) 2017-11-20 19:05:08 -05:00
1fe9991554 fix exception handling when c++filt not found on host 2017-11-19 20:31:09 -08:00
00118024f3 add PEP440 compatible versioning 2017-11-18 13:22:35 -08:00
87edf5a349 change versioning schem to be PEP440 compatible 2017-11-18 13:18:58 -08:00
20972878cc Rename pyro.distributions.Multinomial -> .Categorical (#3766)
* Rename distributions.Multinomial -> distributions.Categorical

* Rename Multinomial -> Categorical

* Update docs

* Update variable.py

* Update distributions.py

* Update variable.py
2017-11-18 13:11:44 -08:00
0d1128d25c fix cuDNN RNN weight tying test (#3774) 2017-11-18 11:43:03 -08:00
81dc60493d Detect aliasing in cuDNN RNN flatten_parameters (#3752)
* Detect aliasing in cuDNN RNN flatten_parameters

* add test
2017-11-17 19:32:59 -08:00
b18df1cedf add cuda9 options to nccl 2017-11-17 19:30:19 -08:00
3976d77509 add error checking for FusionCompiler on old CUDA 2017-11-16 19:52:02 -08:00
09c83673bf move static-libstdc++ to extra_link_args 2017-11-15 20:04:42 -08:00
5b9a8f918e update gloo submodule 2017-11-15 14:21:53 -08:00
f20fb2c1a1 fix half uniform for cuda 7.5 2017-11-14 11:36:49 -08:00
4e00120117 Support negative dimensions in softmax and log_softmax
Fixes #3677
2017-11-14 09:37:20 -08:00
2b3f35daea Fix elu double-backwards when applied in-place (#3687)
* Fix elu double-backwards when applied in-place

Removed unused "input" argument to elu_backwards. Also removed 'inplace'
argument from backwards functions, since we don't ever want to use it.

* Fix up additional calls to ELU_updateGradInput
2017-11-14 09:37:06 -08:00
c580437342 add linker version script 2017-11-13 20:07:50 -08:00
455e788fe6 add linker version script 2017-11-13 17:20:42 -08:00
c980fb359b [v0.3] Prevent segfaults from undefined aten tensors (#3675)
* [v0.3] Prevent segfaults from undefined aten tensors

* Move Undefined aten related files to proper place.
2017-11-13 17:49:04 -05:00
bae45bb106 add depthwise convolution terminology as a note 2017-11-12 20:28:30 -08:00
34557d80f4 Add border-padding for grid_sampler (#3599)
* adds border padding to spatial grid sampler

* fixes flake8 * adds docs
2017-11-12 15:49:54 -08:00
1e77879b2a fix build after cherry-pick 2017-11-12 14:51:44 -08:00
ff52d424b2 fix uninitialized warnings in THCUNN. (#3575) 2017-11-12 12:28:04 -08:00
4b7aa13b30 CPU all/any should work with empty tensors. (#3581) 2017-11-12 12:27:46 -08:00
e1f2d0916e Add missing documentation for replacement in WeightedRandomSampler (#3579)
* Update sampler.py

* fix lint
2017-11-12 12:27:21 -08:00
4b5b7e53f6 doc: Normalize all true/false in docstrings to `True|False` (#3593)
* doc: Normalize all true/false in docstrings to ``True|False``

This makes them more apparent in the documentation.

* doc: fix flake8
2017-11-12 12:26:43 -08:00
db66fa9436 docs: clarify the difference between net() and net.forward() (#3596) 2017-11-12 12:26:28 -08:00
392c89ab6a fix for unknown ssize_t in aten/src/TH/THMemoryFile.c (#3612)
* added sys/types.h include to fix unknown ssize_t in aten/src/TH/THMemoryFile.c

* now including <sys/types.h> only if _WIN32 is not #defined

* now including sys/types.h in aten/src/TH/THDiskFile.c (if _WIN32 is not defined) to fix undefined off_t
2017-11-12 12:25:22 -08:00
cddf501fc5 Expend autograd profiler docs (#3621) 2017-11-12 12:25:07 -08:00
d0907d2c34 added #define __STDC_FORMAT_MACROS to tensor and storage code templates to avoid problems with gcc 4.8.5 (#3629) 2017-11-12 12:24:36 -08:00
448a85a8e0 Fix module load_state_dict error information. 2017-11-12 12:24:20 -08:00
ea3138fd09 Remove redundant dimension check that produced maybe-uninitializd warnings 2017-11-12 12:23:55 -08:00
b89c96fe58 Fix for cuDNN half precision RNN for pre-volta archs (#3613)
* Fix for cuDNN half RNN on pre-volta archs

* Fix cuDNN versioning in rnn.

* lint fix
2017-11-12 12:23:31 -08:00
088f47bb89 fix selecting deterministic conv algo (#3631)
Conflicts:
	torch/csrc/cudnn/Conv.cpp
2017-11-12 12:22:59 -08:00
ddb3804f87 Allow torch.load and torch.save to take pathlib.Path (#3589)
* Allow torch.load to take pathlib.Path

pathlib has been python standard library for filesystem path since python 3.4
But `torch.load` currently cannot take `pathlib.Path` as its filename of state dictionary.
I changed `torch.load` and `_with_file_like` to check so that they can accept `pathlib.Path` typed filepath.

* Fix flake8: too long line & indentation
2017-11-12 11:28:39 -08:00
a896311d06 add warnings if device capability is less than ideal (#3601)
Conflicts:
	torch/csrc/cuda/Module.cpp
2017-11-12 11:27:37 -08:00
937b634b5d Fix cuda symeig (#3566)
* Fix cuda symeig

* Add symeig test

* Better check for magma
2017-11-12 11:26:16 -08:00
004dfdc7cc Fix ld* conditions for gemv ger gemm (#3604) 2017-11-12 11:24:49 -08:00
f8aa5e2ed7 Fix stride checks in gemm dispatch (#3548)
From https://software.intel.com/en-us/mkl-developer-reference-fortran-gemm:

 lda: "When transa = 'N' or 'n', then lda must be at least max(1, m),
       otherwise lda must be at least max(1, k)."

 ldb: "When transb = 'N' or 'n', then ldb must be at least max(1, k),
       otherwise ldb must be at least max(1, n)."

Partly addresses #3525
2017-11-12 11:24:30 -08:00
8a49309f81 Fix error when default_collate is passed a collection of numpy.str_ (#3404)
* Fix error when default_collate is passed a collection of numpy.str_

* Error if default_collate input is nested nparray containing non-numbers
2017-11-12 11:22:26 -08:00
14de24d89c fix linking order of nvrtc to force no-as-needed (#3583)
Conflicts:
	setup.py
2017-11-12 11:21:43 -08:00
c7cccc250e Fix uniform on CUDA tensor to return in range [0, 1) (#3547)
The curand_uniform function returns the range (0, 1]. Most RNG APIs have
the opposite bounds. Fixup the values in uniform_() so that they fall in
the more common bounds.
2017-11-12 11:19:23 -08:00
1f694e9a6e Bump version in v0.3.0 branch 2017-11-09 09:37:19 -08:00
1108bced80 Raise exception when Variable.reinforce is called (#3555)
Fixes #3554
2017-11-09 09:30:50 -08:00
c36d452224 add warnings if device capability is less than ideal for compiled cuda version 2017-11-09 07:58:52 -08:00
11955b86d2 THTensor_varOuterDim numeric stability (#3533) 2017-11-08 11:27:34 -05:00
9a6788202b Exposing emptyCache from allocator (#3518)
* Add empty_cache binding

* cuda.empty_cache document

* update docs
2017-11-07 15:44:52 -08:00
d58bad4073 avoid unnecessary multiplies in derivatives (#3545) 2017-11-07 15:44:45 -08:00
f95e252984 Document weights argument format for BCELoss (#3535) 2017-11-07 15:44:39 -08:00
b49f0f8154 Make distributions docstring raw (#3539) 2017-11-07 15:44:33 -08:00
269c25267b Add reduce keyword for KLDivLoss (#3330) 2017-11-07 15:44:26 -08:00
fde471ee2a add doc for sparse_adam (#3519) 2017-11-07 15:44:19 -08:00
eb24d2ff6e -1 indexing fix in THCApply for pre CUDA9 (#3457)
* THCApply fixes

* THCApply add undef
2017-11-07 15:44:12 -08:00
f768068c3b Fix float uniform generation in TH (#3541)
Generate random uniform floats in the range [0, 1) by generating random
uniform uint32 in the range [0, 2^24-1] and dividing by 2^24. This
ensures that the largest value is representable as a float32 less than
one.

This also changes the uniform double generation to use more bits of
randomness.
2017-11-07 13:28:05 -08:00
c456451915 [v.0.3] Don't expose 0-dim tensors to Variable API (#3523)
* [v0.3] Don't expose 0-dim tensors to Variable API.

* [v.0.3] Ensure grad_inputs are not ATen scalars and address review comments.

* Remove extra parentheses
2017-11-07 15:15:23 -05:00
f282d1dc7c Fix memory leak in THTensor_(addmm) (#3524)
THTensor_(newContiguous) always increments the refcount. It may return
the same pointer if the tensor is always contiguous. Since we added the
check for zero strides, it may be called when the tensor is already
contiguous. We need to make sure that THTensor_(free) is always called
in this case.

See #3498
2017-11-07 07:10:10 -05:00
2a3cae0f3e index_select does not return a view 2017-11-06 17:23:01 -08:00
3d9630abc2 Fix and speed-up norm_backwards (#3481)
Fixes #3264
2017-11-06 14:51:51 -08:00
da7a5147db Make THCTensor_varInnermostDim numerically stable using Welford's algorithm (#3425)
* Use Welford's algorithm when reducing along inner dimension for THCTensor's variance fn

* Use accreals in THCTensor's varInnermostDim

* Skip cuda tests if no cuda

* Variance testing
2017-11-06 14:51:42 -08:00
5df8e582cd Sparse Adam optimizer for sparse gradients (#3137)
* sparse adam

* Favor dense addition over sparse_mask
2017-11-06 14:48:39 -08:00
5dff261598 Fix error message for type mismatches with sparse tensors (#3504)
* Fix error messages

* Better fix for error checking
2017-11-06 14:48:21 -08:00
aa0c8920af Add single argument version of torch.arange (#3494) 2017-11-06 14:46:41 -08:00
a3b658bf3b Tidy up CUDA notes 2017-11-06 14:46:29 -08:00
94e89f3911 Add REINFORCE rule to distributions doc 2017-11-06 14:46:23 -08:00
f0956ad9ec Don't assume construction succeeded in __del__.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-11-06 14:46:11 -08:00
452ea78f43 Fix fill derivative (#3483) 2017-11-06 14:45:51 -08:00
3d5d66868e Add ONNX symbolic for Elu 2017-11-06 14:45:14 -08:00
cf373e25e2 fix copy-paste error in #3263 (#3476)
I have no idea how it worked on cuda 8, but apparently this fixes failures on cuda 9. cc @colesbury
2017-11-06 14:44:46 -08:00
91d764c781 Fix overflow when using magma (#3470)
* Fix types

* Make types better instead of casting to size_t
2017-11-06 14:44:33 -08:00
524235bb71 Install magma in cuda 9 docker (#3469) 2017-11-06 14:44:19 -08:00
e035fa028b Add assertion that 'pos' is in-bounds (#3466) 2017-11-06 14:44:09 -08:00
58a928c3b9 Fix warning in jit/ir.cpp 2017-11-06 14:43:57 -08:00
4f1eefa8ad Better error messages for Aten tensor types (#3449)
* Better error messages for Aten tensor types

* Address comments, add unit test
2017-11-06 14:43:46 -08:00
4251c151e3 Add gradient checks for take and put_ (#3460)
* Add gradient checks for take and put_

Fix the gradient formula for put_

* Make grad_output optional in gradgradcheck
2017-11-06 14:43:28 -08:00
c0931a3a4d Make grad_output optional in gradgradcheck (#3459) 2017-11-06 14:43:18 -08:00
11039 changed files with 222269 additions and 2403246 deletions

View File

@ -1,63 +0,0 @@
# PyTorch CI Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on select configurations
# 2) runs only TestTorch unit tests.
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_ci_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_ci_build: True
os: windows
cuda: cpu
customMatrixes:
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_ci_build: True
os: windows
cuda: gpu
customMatrixes:
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102

View File

@ -1,82 +0,0 @@
# PyTorch Daily Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) runs all PyTorch unit tests
stages:
- stage: 'BuildTest'
displayName: 'Build and Test PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_daily_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_daily_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_daily_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -1,134 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
container_endpoint: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
container:
image: $[variables['container_image']]
endpoint: ${{parameters.container_endpoint}}
steps:
# Build stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- bash: git submodule update --init --recursive --jobs 0
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode
- bash: python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- bash: python test/test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- bash: python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode and exclude test binaries
- bash: python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- bash: python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)/dist/
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- bash: python -m pip install $(Build.SourcesDirectory)/verify/torch*linux*.whl
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- bash: |
cd $(Build.SourcesDirectory)/verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)/publish
displayName: Download PyTorch Wheel
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- bash: |
export TORCH_VERSION=$(head -c 5 ./version.txt)
export LAST_COMMIT=$(git rev-parse --short HEAD)
export LAST_COMMIT_DATE=$(git log -1 --pretty=%ad --date=format:%Y%m%d)
cd $(Build.SourcesDirectory)/publish
export TORCH_WHEEL=$(echo torch*linux*whl)
az extension add -n azure-devops
echo $ADOTOKEN | az devops login
az artifacts universal publish --organization $AZURE_DEVOPS_ARTIFACTS_ORGANIZATION --project $AZURE_DEVOPS_ARTIFACTS_PROJECT --scope project --feed "PyTorch" --name $TORCH_WHEEL --description "PyTorch Official Build Artifact" --version $TORCH_VERSION-$LAST_COMMIT_DATE-$LAST_COMMIT --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch Official Build package to Azure Artifacts

View File

@ -1,150 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 3 parameters set as environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
parameters:
name: ''
pool: ''
os: ''
cuda: ''
is_ci_build: False
is_official_build: False
is_daily_build: False
build_stage: False
verify_stage: False
publish_stage: False
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 300
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
CMAKE_GENERATOR: Ninja
PACKAGE_PDBS: 0
steps:
# Prepare for PyTorch build on Windows
- template: prepare-build-template.yml
parameters:
configuration: $(configuration)
build_stage: ${{ parameters.build_stage}}
# Build Stage
- ${{ if eq(parameters.build_stage, 'True') }}:
# Set up environment variables for specific pipeline build
- template: set-environment-variables.yml
parameters:
os: ${{ parameters.os}}
cuda: ${{ parameters.cuda}}
is_official_build: ${{ parameters.is_official_build}}
# Sync and update PyTorch submodules
- script: git submodule update --init --recursive --jobs 0
displayName: Update PyTorch submodules
# Build PyTorch and run unit tests - no packaging
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
# Build PyTorch from source in develop mode with Ninja
- script: call activate $(configuration) && python setup.py develop
displayName: Build PyTorch from source
- ${{ if eq(parameters.is_ci_build, 'True') }}:
# Run TestTorch unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test\test_torch.py TestTorch
displayName: Run TestTorch unit tests
- ${{ if eq(parameters.is_daily_build, 'True') }}:
# Run all unit tests to demonstrate successful PyTorch build
- script: call activate $(configuration) && python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
displayName: Run all unit tests
# Run ComponentGovernance
- task: ComponentGovernanceComponentDetection@0
inputs:
scanType: 'Register'
verbosity: 'Verbose'
alertWarningLevel: 'High'
# Build PyTorch and produce artifacts for verification stage
- ${{ if eq(parameters.is_official_build, 'True') }}:
# Build PyTorch from source in install mode with Ninja and exclude test binaries
- script: call activate $(configuration) && python setup.py install
displayName: Build PyTorch from source without test binaries
# Package PyTorch Wheel
- script: call activate $(configuration) && python setup.py bdist_wheel
displayName: Package PyTorch Wheel
# Publish PyTorch Wheel
- task: PublishPipelineArtifact@1
inputs:
targetPath: $(Build.SourcesDirectory)\dist\
artifactName: Build_$(Build.BuildNumber)_$(configuration)
displayName: Publish PyTorch Wheel to Pipeline Artifacts
# Verification Stage
- ${{ if eq(parameters.verify_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\verify
displayName: Download PyTorch Wheel
# Install PyTorch Wheel on Windows
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
dir torch*win*.whl /b > whl.txt
set /p whl= < whl.txt
python -m pip install %whl%
displayName: Install PyTorch Wheel
# Ensure PyTorch installed correctly from produced wheel
- script: |
call activate $(configuration)
cd $(Build.SourcesDirectory)\verify
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
displayName: Check PyTorch correctly installed from wheel
# Publishing stage
- ${{ if eq(parameters.publish_stage, 'True') }}:
# Download PyTorch Wheel
- task: DownloadPipelineArtifact@2
inputs:
artifact: Build_$(Build.BuildNumber)_$(configuration)
path: $(Build.SourcesDirectory)\publish
displayName: Download PyTorch Wheel
# Set up Azure Artifacts for Windows
# The pip install --upgrade command is a bug fix for Azure CLI on Windows
# More info: https://github.com/Azure/azure-cli/issues/16858
- script: |
pip install --upgrade pip --target \opt\az\lib\python3.6\site-packages\
az extension add -n azure-devops
displayName: Set up Azure Artifacts download on Windows
# Publish wheel to Azure Artifacts
# The flag continueOnError=true is needed as the artifact to be published
# may already exist, because the artifact is differentiated based on the
# last commit date.
- script: |
set /p TORCH_VERSION= < version.txt
cd $(Build.SourcesDirectory)\publish
git rev-parse --short HEAD > last_commit.txt && set /p LAST_COMMIT= < last_commit.txt
git log -1 --pretty=%ad --date=format:%Y%m%d > last_commit_date.txt && set /p LAST_COMMIT_DATE= < last_commit_date.txt
dir torch*win*.whl /b > whl.txt && set /p TORCH_WHEEL= < whl.txt
echo %ADOTOKEN% | az devops login
az artifacts universal publish --organization %AZURE_DEVOPS_ARTIFACTS_ORGANIZATION% --project %AZURE_DEVOPS_ARTIFACTS_PROJECT% --scope project --feed "PyTorch" --name %TORCH_WHEEL% --description "PyTorch Official Build Artifact" --version %TORCH_VERSION:~0,5%-%LAST_COMMIT_DATE%-%LAST_COMMIT% --path .
env:
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
continueOnError: true
displayName: Upload PyTorch nigthly package to Azure Artifacts

View File

@ -1,17 +0,0 @@
dependencies:
- python=PYTHON_VERSION
- numpy
- ninja
- pyyaml
- mkl
- mkl-include
- setuptools
- cmake
- cffi
- typing_extensions
- future
- six
- requests
- dataclasses
- pip:
- -r ../../requirements.txt

View File

@ -1,26 +0,0 @@
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
- bash: |
bash $(Build.SourcesDirectory)/pytorch_tests/webapp/notify_webapp.sh
displayName: Notify Webapp

View File

@ -1,62 +0,0 @@
# Build prepare steps for PyTorch on Azure DevOps to build from source.
# These steps share between normal build process and semmle security scan tasks
parameters:
build_stage: False
configuration: ''
steps:
# End Python tasks that may be lingering over from previous runs
# Note: If python.exe isn't currently running, exit code becomes 128,
# which fails the run. Here exit code is set to 0 to avoid failed run.
- script: |
taskkill /f /im python.exe
IF %ERRORLEVEL% EQU 128 exit 0
displayName: End previous Python processes
# Clean up env directory in conda for fresh builds and set up conda environment YAML
- powershell: |
Remove-Item 'C:\Miniconda\envs' -Recurse -ErrorAction Ignore
$env:PYTHON_VERSION = $env:SYSTEM_JOBNAME.Substring(3,1) + '.' + $env:SYSTEM_JOBNAME.Substring(4,1)
(Get-Content .azure_pipelines\job_templates\common-packages.yml) -replace 'PYTHON_VERSION', $env:PYTHON_VERSION | Out-File -encoding ASCII .azure_pipelines\job_templates\common-packages.yml
displayName: Clean up previous environments and Set up conda environment YAML
# Make conda environment and install required packages
- script: |
call conda clean --all -y
call conda env create -n $(configuration) --file .azure_pipelines\job_templates\common-packages.yml
call activate $(configuration)
call conda install -c conda-forge libuv=1.39
displayName: Set up conda environment for building from source
- ${{ if eq(parameters.build_stage, 'True') }}:
# Install MKL
- script: |
rmdir /s /q mkl
del mkl_2020.2.254.7z
curl https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z -k -O
7z x -aoa mkl_2020.2.254.7z -omkl
displayName: Install MKL
# Install sccache and randomtemp
# Related PyTorch GitHub issue: https://github.com/pytorch/pytorch/issues/25393
# Related fix: https://github.com/pytorch/builder/pull/448/
- script: |
mkdir .\tmp_bin
curl -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output .\tmp_bin\sccache.exe
curl -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output .\tmp_bin\sccache-cl.exe
copy .\tmp_bin\sccache.exe .\tmp_bin\nvcc.exe
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.4/randomtemp.exe --output .\tmp_bin\randomtemp.exe
displayName: Install sccache and randomtemp
condition: not(eq(variables.CUDA_VERSION, ''))
# CUDA 11.2's CUB directory conflicts with CUDA 10.2 and 10.1
# builds, where CUDA 11.2's CUB is injected into non-CUDA
# 11.2 builds.
- powershell: Remove-Item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include\cub" -Recurse -ErrorAction Ignore
displayName: Remove conflicting CUB from CUDA installation
condition: not(eq(variables.CUDA_VERSION, ''))
- powershell: Copy-Item -Path "F:\cuda_11_2\cub\" -Destination "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include" -Recurse
displayName: Copy CUDA CUB for CUDA 11.2 build
condition: eq(variables.CUDA_VERSION, '112')

View File

@ -1,61 +0,0 @@
# PyTorch build steps template with Unix images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
container_endpoint: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
variables:
DECODE_PERCENTS: false
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- bash: rm -rf pytorch_tests/
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- bash: |
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- bash: bash $(Build.SourcesDirectory)/pytorch_tests/scripts/linux/run.sh
env:
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
_AZUREML_CLONE_PASSWORD: $(AZUREML_CLONE_PASSWORD)
_SPPASSWORD: $(SPPASSWORD)
displayName: Run PyTorch Unit Tests
# Tests results are available outside the docker container since
# the current directory is mounted as a volume of the container.
- task: PublishTestResults@2
condition: always()
inputs:
testResultsFiles: '**/test-*.xml'
testRunTitle: 'Publish test results for Python'

View File

@ -1,57 +0,0 @@
# PyTorch build steps template with Windows images Azure DevOps Instances
#
# This build depends on 5 parameters set as an environment variables in the pipeline:
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
parameters:
name: ''
pool: ''
customMatrixes: ''
jobs:
- job: ${{parameters.name}}
timeoutInMinutes: 600
strategy:
matrix:
${{ insert }}: ${{parameters.customMatrixes}}
pool:
name: ${{ parameters.pool}}
steps:
# Don't checkout repo contents to save time and CPU compute. Environment variables
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
- checkout: none
# Delete pytorch_tests repo from previous builds if exists
- script: if exist "pytorch_tests/" rmdir "pytorch_tests/" /q /s
displayName: Delete pytorch_tests repo from previous builds if exists
# Clone PyTorch Tests repository
- powershell: |
$env:B64Pat = [Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes(":$env:_ADOTOKEN"))
git -c http.extraHeader="Authorization: Basic $env:B64Pat" clone $env:AZURE_DEVOPS_pytorch_tests_REPO_URL
cd pytorch_tests
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
displayName: Clone PyTorch Tests repo
# Run PyTorch Unit Tests
- script: call $(Build.SourcesDirectory)\pytorch_tests\scripts\windows\run.bat
env:
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
_TS_P: $(TS_PAT)
_TS_SM_P: $(TS_SM_PAT)
displayName: Run PyTorch Unit Tests
# Tests results are available outside the docker container since
# the current directory is mounted as a volume of the container.
- task: PublishTestResults@2
condition: always()
inputs:
testResultsFiles: '**\test-*.xml'
testRunTitle: 'Publish test results for Python'

View File

@ -1,129 +0,0 @@
# Set environment variables for specific configurations
parameters:
is_official_build: False
os: ''
cuda: ''
steps:
# Environment configuration steps for Ubuntu builds
- ${{ if contains(parameters.os, 'ubuntu') }}:
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- bash: |
echo "##vso[task.setvariable variable=INSTALL_TEST;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
export PYTORCH_VERSION=$(head -c 5 ./version.txt)
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags.
- ${{ if contains(parameters.cuda, 'cpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]0"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU builds
- ${{ if contains(parameters.cuda, 'gpu') }}:
- bash: |
echo "##vso[task.setvariable variable=USE_CUDA;]1"
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU builds
# Set MKL environment variables
- bash: |
echo "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]/opt/intel/lib:$CMAKE_LIBRARY_PATH"
echo "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]/opt/intel/include:$CMAKE_INCLUDE_PATH"
displayName: Set MKL paths
# View current environment variables
- bash:
printenv
displayName: Show environment variables
# Environment configuration steps for Windows builds
- ${{ if contains(parameters.os, 'windows') }}:
# Set Conda Lib Path
- powershell: Write-Host "##vso[task.setvariable variable=CONDA_LIB_PATH;]C:\Miniconda\envs\$(configuration)\Library\bin"
displayName: Set Conda Lib Path
# Set configuration specific build flags
- ${{ if eq(parameters.is_official_build, True) }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=INSTALL_TEST;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
Set-Variable -Name PYTORCH_VERSION -Value (Get-Content .\version.txt).Substring(0,5)
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
displayName: Set configuration-specific build flags
# Set PyTorch CPU/GPU build flags..
- ${{ if contains(parameters.cuda, 'cpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]0"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
displayName: Set CUDA-specific build flag for CPU build
- ${{ if contains(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=USE_CUDA;]1"
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
displayName: Set CUDA-specific build flag for GPU build
# Set CUDA 11.2, 10.2 or 10.1 specific build flags
- ${{ if eq(parameters.cuda, 'gpu') }}:
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\"
displayName: Set CUDA 11.2 specific build flags
condition: eq(variables.CUDA_VERSION, '112')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\"
displayName: Set CUDA 10.2 specific build flags
condition: eq(variables.CUDA_VERSION, '102')
- powershell: |
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\"
displayName: Set CUDA 10.1 specific build flags
condition: eq(variables.CUDA_VERSION, '101')
- powershell: |
Write-Host "##vso[task.setvariable variable=CUDA_BIN_PATH;]$env:CUDA_PATH\bin\"
Write-Host "##vso[task.setvariable variable=CUDNN_ROOT;]$env:CUDA_PATH"
Write-Host "##vso[task.setvariable variable=CUDNN_INCLUDE_DIR;]$env:CUDA_PATH\include\"
Write-Host "##vso[task.setvariable variable=CUDNN_LIBRARY;]$env:CUDA_PATH\lib\x64\"
Write-Host "##vso[task.prependpath]$env:CUDA_PATH\bin"
Write-Host "##vso[task.setvariable variable=TORCH_NVCC_FLAGS;]-Xfatbin -compress-all --no-host-device-move-forward"
Write-Host "##vso[task.setvariable variable=THRUST_IGNORE_CUB_VERSION_CHECK;]1"
Write-Host "##vso[task.setvariable variable=NVTOOLSEXT_PATH;]C:\Program Files\NVIDIA Corporation\NvToolsExt\"
displayName: Set CUDA environment variables
- powershell: |
copy "$(CUDA_BIN_PATH)\cusparse*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cublas*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudart*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\curand*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cufft*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cusolver*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\cudnn*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CUDA_BIN_PATH)\nvrtc*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\libiomp*5md.dll" $(Build.SourcesDirectory)\torch\lib
copy "$(CONDA_LIB_PATH)\uv.dll" $(Build.SourcesDirectory)\torch\lib
displayName: Copy CUDA/cuDNN/libomp/libuv dlls to torch\lib
# Set MKL, sccache and randomtemp environment variables
- powershell: |
Write-Host "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]$(Build.SourcesDirectory)\mkl\include"
Write-Host "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]$(Build.SourcesDirectory)\mkl\lib;$env:CMAKE_LIBRARY_PATH"
Write-Host "##vso[task.setvariable variable=ADDITIONAL_PATH;]$(Build.SourcesDirectory)\tmp_bin"
Write-Host "##vso[task.setvariable variable=SCCACHE_IDLE_TIMEOUT;]1500"
Write-Host "##vso[task.setvariable variable=CMAKE_CUDA_COMPILER_LAUNCHER;]$(Build.SourcesDirectory)/tmp_bin/randomtemp.exe;$(Build.SourcesDirectory)/tmp_bin/sccache.exe"
displayName: Set MKL, sccache and randomtemp environment variables
# View current environment variables
- script:
set
displayName: Show environment variables

View File

@ -1,14 +0,0 @@
# Main logic to initiate wait for PR artifact to be ready
steps:
- task: InvokeRESTAPI@1
displayName: 'Wait for job success and wheel ready'
timeoutInMinutes: 60
inputs:
connectionType: 'connectedServiceName'
serviceConnection: circleciconn
method: 'POST'
headers: '{"Content-Type":"application/json", "BranchName":"$(_TARGET_BRANCH_TO_CHECK)", "JobName":"$(TARGET_CIRCLECI_BUILD_PR)", "PRNumber":"$(_TARGET_PR_NUMBER)", "TargetCommit":"$(_TARGET_COMMIT)", "PlanUrl":"$(System.CollectionUri)", "ProjectId":"$(System.TeamProjectId)", "HubName":"$(System.HostType)", "PlanId":"$(System.PlanId)", "JobId":"$(System.JobId)", "TimelineId":"$(System.TimelineId)", "TaskInstanceId":"$(System.TaskInstanceId)", "AuthToken":"$(System.AccessToken)"}'
body: ''
urlSuffix: 'api/JobStatus'
waitForCompletion: true

View File

@ -1,92 +0,0 @@
# Initiate 5 agentless-server waiting jobs to check on the
# status of PR artifact builds, for a maximum wait time of
# 11*60 min=660 mins. These jobs will pass immediately
# once targeted CircleCI build is ready.
jobs:
- job: checkjob1
pool: server
timeoutInMinutes: 60
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob2
pool: server
timeoutInMinutes: 60
dependsOn: checkjob1
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob3
pool: server
timeoutInMinutes: 60
dependsOn: checkjob2
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob4
pool: server
timeoutInMinutes: 60
dependsOn: checkjob3
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob5
pool: server
timeoutInMinutes: 60
dependsOn: checkjob4
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob6
pool: server
timeoutInMinutes: 60
dependsOn: checkjob5
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob7
pool: server
timeoutInMinutes: 60
dependsOn: checkjob6
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob8
pool: server
timeoutInMinutes: 60
dependsOn: checkjob7
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob9
pool: server
timeoutInMinutes: 60
dependsOn: checkjob8
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob10
pool: server
timeoutInMinutes: 60
dependsOn: checkjob9
continueOnError: true
steps:
- template: wheel-wait-job-template.yml
- job: checkjob11
pool: server
timeoutInMinutes: 60
dependsOn: checkjob10
continueOnError: true
steps:
- template: wheel-wait-job-template.yml

View File

@ -1,60 +0,0 @@
# PyTorch Nightly PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline runs custom PyTorch unit-tests on nightly
# PyTorch wheels.
stages:
- stage: 'NightlyCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_1)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_1)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_LIN_2)
customMatrixes:
Nightly_Custom_Tests:
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_2)
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_2)
_RUN_TESTS: $(RUN_TESTS_LIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_CPU
pool: $(BUILD_POOL_WIN_1)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_1)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_1)
_RUN_TESTS: $(RUN_TESTS_WIN)
- template: job_templates/pytorch-template-win.yml
parameters:
name: windows_2019_GPU
pool: $(BUILD_POOL_WIN_2)
customMatrixes:
Nightly_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_2)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_2)
_RUN_TESTS: $(RUN_TESTS_WIN)
- stage: 'NotifyWebapp'
displayName: 'Notify Webapp that pipeline is finished'
dependsOn: NightlyCustomTests
condition: succeededOrFailed()
jobs:
- template: job_templates/notify-webapp-template.yml
parameters:
name: ubuntu_1804_CPU
pool: $(BUILD_POOL_LIN_1)

View File

@ -1,62 +0,0 @@
# PyTorch PR PyTorch Tests Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) ensures that CircleCI builds for a given PR
# have finished, and that its artifacts are
# ready for download
# 2) runs custom PyTorch unit-tests on PyTorch
# wheels generated during PR builds.
resources:
webhooks:
- webhook: GitHubPyTorchPRTrigger
connection: GitHubPyTorchPRTriggerConnection
filters:
- path: repositoryName
value: pytorch_tests
stages:
- stage: 'EnsureArtifactsReady'
displayName: 'Ensure PyTorch PR Artifacts are ready'
jobs:
- template: job_templates/wheel-wait-template.yml
variables:
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
- stage: 'PRCustomTests'
displayName: 'Run custom unit tests on PyTorch wheels'
dependsOn: EnsureArtifactsReady
condition: succeeded()
jobs:
- template: job_templates/pytorch-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: $(BUILD_POOL_PR)
customMatrixes:
PR_Custom_Tests:
_PYTHON_VERSION: $(PYTHON_VERSION_PR)
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_PR)
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
_DOCKER_IMAGE: $(DOCKER_IMAGE_PR)
_RUN_TESTS: $(RUN_TESTS_PR)
- stage: 'NotifyWebapp'
displayName: 'Notify Webapp that pipeline is finished'
dependsOn: PRCustomTests
condition: succeededOrFailed()
jobs:
- template: job_templates/notify-webapp-template.yml
parameters:
name: ubuntu_1804_CPU
pool: $(BUILD_POOL_LIN_1)
customMatrixes:
PR_Notify_WebApp:
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}

View File

@ -1,224 +0,0 @@
# PyTorch Official Builds Pipeline on Azure DevOps
#
# This pipeline:
# 1) builds PyTorch on all available configurations
# 2) verifies PyTorch artifacts by installing them in a clean environment
# and checking torch.__version_
# 3) publishes official PyTorch artifacts to Azure DevOps Artifacts for consumption
stages:
- stage: 'Build'
displayName: 'Build PyTorch'
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: cpu
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
build_stage: True
is_official_build: True
os: ubuntu
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
build_stage: True
is_official_build: True
os: windows
cuda: cpu
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
build_stage: True
is_official_build: True
os: windows
cuda: gpu
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Verify'
displayName: 'Verify PyTorch wheels'
dependsOn: Build
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
verify_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101
- stage: 'Publish'
displayName: 'Publish PyTorch wheels'
dependsOn: Verify
condition: succeeded()
jobs:
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_CPU_docker
pool: 'PyTorch-Linux-CPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: ubuntu_1804_py_38_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
Py_37:
configuration: ubuntu_1804_py_37_cpu
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
- template: job_templates/build-verify-publish-template-unix.yml
parameters:
name: ubuntu_1804_GPU_docker
pool: 'PyTorch-Linux-GPU'
container_endpoint: pytorchms.azurecr.io
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_810:
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_765:
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
CUDA_VERSION: 101
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_CPU
pool: 'PyTorch-Win-CPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_38:
configuration: windows_2019_py_38_cpu
Py_37:
configuration: windows_2019_py_37_cpu
- template: job_templates/build-verify-publish-template-win.yml
parameters:
name: windows_2019_GPU
pool: 'PyTorch-Win-GPU'
publish_stage: True
is_official_build: True
customMatrixes:
Py_39_CUDA_112_cuDNN_810:
configuration: windows_2019_py_39_cuda_112_cudnn_810
CUDA_VERSION: 112
Py_38_CUDA_102_cuDNN_765:
configuration: windows_2019_py_38_cuda_102_cudnn_765
CUDA_VERSION: 102
Py_37_CUDA_101_cuDNN_764:
configuration: windows_2019_py_37_cuda_101_cudnn_764
CUDA_VERSION: 101

View File

@ -1,26 +0,0 @@
build --copt=--std=c++14
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --experimental_ui_max_stdouterr_bytes=2048576
# Configuration to disable tty features for environments like CI
build:no-tty --curses no
build:no-tty --progress_report_interval 10
build:no-tty --show_progress_rate_limit 10
# Configuration to build with GPU support
build:gpu --define=cuda=true
# define a separate build folder for faster switching between configs
build:gpu --platform_suffix=-gpu
# See the note on the config-less build for details about why we are
# doing this. We must also do it for the "-gpu" platform suffix.
build --copt=-isystem --copt=bazel-out/k8-fastbuild-gpu/bin
# rules_cuda configuration
build:gpu --@rules_cuda//cuda:enable_cuda
build:gpu --@rules_cuda//cuda:cuda_targets=sm_52
build:gpu --@rules_cuda//cuda:compiler=nvcc
build:gpu --repo_env=CUDA_PATH=/usr/local/cuda

View File

@ -1 +0,0 @@
4.2.1

View File

@ -1,2 +0,0 @@
*.svg
*.png

View File

@ -1,498 +0,0 @@
Structure of CI
===============
setup job:
1. Does a git checkout
2. Persists CircleCI scripts (everything in `.circleci`) into a workspace. Why?
We don't always do a Git checkout on all subjobs, but we usually
still want to be able to call scripts one way or another in a subjob.
Persisting files this way lets us have access to them without doing a
checkout. This workspace is conventionally mounted on `~/workspace`
(this is distinguished from `~/project`, which is the conventional
working directory that CircleCI will default to starting your jobs
in.)
3. Write out the commit message to `.circleci/COMMIT_MSG`. This is so
we can determine in subjobs if we should actually run the jobs or
not, even if there isn't a Git checkout.
CircleCI configuration generator
================================
One may no longer make changes to the `.circleci/config.yml` file directly.
Instead, one must edit these Python scripts or files in the `verbatim-sources/` directory.
Usage
----------
1. Make changes to these scripts.
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
You'll see a build failure on GitHub if the scripts don't agree with the checked-in version.
Motivation
----------
These scripts establish a single, authoritative source of documentation for the CircleCI configuration matrix.
The documentation, in the form of diagrams, is automatically generated and cannot drift out of sync with the YAML content.
Furthermore, consistency is enforced within the YAML config itself, by using a single source of data to generate
multiple parts of the file.
* Facilitates one-off culling/enabling of CI configs for testing PRs on special targets
Also see https://github.com/pytorch/pytorch/issues/17038
Future direction
----------------
### Declaring sparse config subsets
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
# How do the binaries / nightlies / releases work?
### What is a binary?
A binary or package (used interchangeably) is a pre-built collection of c++ libraries, header files, python bits, and other files. We build these and distribute them so that users do not need to install from source.
A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.6, 3.7, 3.8
* windows: 3.6, 3.7, 3.8
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
* operating system
* Linux - these are all built on CentOS. There haven't been any problems in the past building on CentOS and using on Ubuntu
* MacOS
* Windows - these are built on Azure pipelines
* devtoolset version (gcc compiler version)
* This only matters on Linux cause only Linux uses gcc. tldr is gcc made a backwards incompatible change from gcc 4.8 to gcc 5, because it had to change how it implemented std::vector and std::string
### Where are the binaries?
The binaries are built in CircleCI. There are nightly binaries built every night at 9pm PST (midnight EST) and release binaries corresponding to Pytorch releases, usually every few months.
We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f \<a s3 url\>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
* static with dependencies
* shared without dependencies
* static without dependencies
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
# CircleCI structure of the binaries
Some quick vocab:
* A \**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
* **jobs** are a sequence of '**steps**'
* **steps** are usually just a bash script or a builtin CircleCI command. *All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
## How are the workflows structured?
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
1. binary_builds
1. every day midnight EST
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
4. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. binary_linux_conda_3.7_cpu_build
1. Builds the build. On linux jobs this uses the 'docker executor'.
2. Persists the package to the workspace
2. binary_linux_conda_3.7_cpu_test
1. Loads the package to the workspace
2. Spins up a docker image (on Linux), mapping the package and code repos into the docker
3. Runs some smoke tests in the docker
4. (Actually, for macos this is a step rather than a separate job)
3. binary_linux_conda_3.7_cpu_upload
1. Logs in to aws/conda
2. Uploads the package
2. update_s3_htmls
1. every day 5am EST
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
3. See below for what these are for and why they're needed
4. Three jobs that each examine the current contents of aws and the conda repo and update some html files in s3
3. binarysmoketests
1. every day
2. https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
3. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. smoke_linux_conda_3.7_cpu
1. Downloads the package from the cloud, e.g. using the official pip or conda instructions
2. Runs the smoke tests
## How are the jobs structured?
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources. Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
* binary_linux_build.sh
* binary_linux_test.sh
* binary_linux_upload.sh
* MacOS jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
* binary_macos_build.sh
* binary_macos_test.sh
* binary_macos_upload.sh
* Update html jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/binary_update_htmls.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/cron/update_s3_htmls.sh
* https://github.com/pytorch/builder/blob/master/cron/upload_binary_sizes.sh
* Smoke jobs (both linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/master/run_tests.sh
* https://github.com/pytorch/builder/blob/master/smoke_test.sh
* https://github.com/pytorch/builder/blob/master/check_binary.sh
* Common shared code (shared across linux and macos): https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/nightly-binary-build-defaults.yml
* binary_checkout.sh - checks out pytorch/builder repo. Right now this also checks out pytorch/pytorch, but it shouldn't. pytorch/pytorch should just be shared through the workspace. This can handle being run before binary_populate_env.sh
* binary_populate_env.sh - parses BUILD_ENVIRONMENT into the separate env variables that make up a binary configuration. Also sets lots of default values, the date, the version strings, the location of folders in s3, all sorts of things. This generally has to be run before other steps.
* binary_install_miniconda.sh - Installs miniconda, cross platform. Also hacks this for the update_binary_sizes job that doesn't have the right env variables
* binary_run_in_docker.sh - Takes a bash script file (the actual test code) from a hardcoded location, spins up a docker image, and runs the script inside the docker image
### **Why do the steps all refer to scripts?**
CircleCI creates a final yaml file by inlining every <<* segment, so if we were to keep all the code in the config.yml itself then the config size would go over 4 MB and cause infra problems.
### **What is binary_run_in_docker for?**
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
* linux test jobs use the machine executor in order for them to properly interface with GPUs since docker executors cannot execute with attached GPUs
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
binary_run_in_docker.sh is a way to share the docker start-up code between the binary test jobs and the binary smoke test jobs
### **Why does binary_checkout also checkout pytorch? Why shouldn't it?**
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Azure Pipelines structure of the binaries
TODO: fill in stuff
## How are the workflows structured?
TODO: fill in stuff
## How are the jobs structured?
TODO: fill in stuff
# Code structure of the binaries (circleci agnostic)
## Overview
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder), which is a repo that defines how all the binaries are built. The relevant code is
```
# All code needed to set-up environments for build code to run in,
# but only code that is specific to the current CI system
pytorch/pytorch
- .circleci/ # Folder that holds all circleci related stuff
- config.yml # GENERATED file that actually controls all circleci behavior
- verbatim-sources # Used to generate job/workflow sections in ^
- scripts/ # Code needed to prepare circleci environments for binary build scripts
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
- cmake files # used in normal building of pytorch
# All code needed to prepare a binary build, given an environment
# with all the right variables/packages/paths.
pytorch/builder
# Given an installed binary and a proper python env, runs some checks
# to make sure the binary was built the proper way. Checks things like
# the library dependencies, symbols present, etc.
- check_binary.sh
# Given an installed binary, runs python tests to make sure everything
# is in order. These should be de-duped. Right now they both run smoke
# tests, but are called from different places. Usually just call some
# import statements, but also has overlap with check_binary.sh above
- run_tests.sh
- smoke_test.sh
# Folders that govern how packages are built. See paragraphs below
- conda/
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
- pytorch-nightly/ # Build-folder
- manywheel/
- build_cpu.sh # Entrypoint for cpu builds
- build.sh # Entrypoint for CUDA builds
- build_common.sh # Actual build script that ^^ call into
- wheel/
- build_wheel.sh # Entrypoint for wheel builds
- windows/
- build_pytorch.bat # Entrypoint for wheel builds on Windows
```
Every type of package has an entrypoint build script that handles the all the important logic.
## Conda
Linux, MacOS and Windows use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
tl;dr on conda-build is
1. Creates a brand new conda environment, based off of deps in the meta.yaml
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
2. If the build fails this environment will stick around. You can activate it for much easier debugging. The “General Python” section below explains what exactly a python “environment” is.
2. Calls build.sh in the environment
3. Copies the finished package to a new conda env, also specified by the meta.yaml
4. Runs some simple import tests (if specified in the meta.yaml)
5. Saves the finished package as a tarball
The build.sh we use is essentially a wrapper around `python setup.py build`, but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The entrypoint file `builder/conda/build_conda.sh` is complicated because
* It works for Linux, MacOS and Windows
* The mac builds used to create their own environments, since they all used to be on the same machine. Theres now a lot of extra logic to handle conda envs. This extra machinery could be removed
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
## Manywheels (linux pip and libtorch packages)
Manywheels are pip packages for linux distros. Note that these manywheels are not actually manylinux compliant.
`builder/manywheel/build_cpu.sh` and `builder/manywheel/build.sh` (for CUDA builds) just set different env vars and then call into `builder/manywheel/build_common.sh`
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
* There is a lot of messing with rpaths. This is necessary, but could be made much much simpler if the above issues were fixed.
## Wheels (MacOS pip and libtorch packages)
The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
* The mac builds used to all run on one machine (we didnt have autoscaling mac machines till circleci). So this script handled siloing itself by setting-up and tearing-down its build env and siloing itself into its own build directory.
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* Ditto the comment above. This should definitely be separated out.
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## Windows Wheels (Windows pip and libtorch packages)
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## General notes
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
* These should all be consolidated
* These must run on all OS types: MacOS, Linux, and Windows
* These all run smoke tests at the moment. They inspect the packages some, maybe run a few import statements. They DO NOT run the python tests nor the cpp tests. The idea is that python tests on master and PR merges will catch all breakages. All these tests have to do is make sure the special binary machinery didnt mess anything up.
* There are separate run_tests.sh and smoke_test.sh because one used to be called by the smoke jobs and one used to be called by the binary test jobs (see circleci structure section above). This is still true actually, but these could be united into a single script that runs these checks, given an installed pytorch package.
### Note on libtorch
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
* Its confusing. Most of those scripts deal with python specifics.
* The extra conditionals everywhere severely complicate the wheel build scripts
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
### Note on docker images / Dockerfiles
All linux builds occur in docker images. The docker images are
* pytorch/conda-cuda
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
* Also used for cpu builds
* pytorch/manylinux-cuda90
* pytorch/manylinux-cuda100
* Also used for cpu builds
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
### General Python
* This is still a good explanation of python installations https://caffe2.ai/docs/faq.html#why-do-i-get-import-errors-in-python-when-i-try-to-use-caffe2
# How to manually rebuild the binaries
tl;dr make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
## How to test changes to the binaries via .circleci
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using `.circleci/regenerate.sh` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
```sh
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
# Regenerate the yaml, has to be in python 3.7
.circleci/regenerate.sh
# Make a commit
git add .circleci *
git commit -m "My real changes"
git push origin my_branch
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
# Also eliminate ensure-consistency and should_run_job checks
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
# Make a commit you won't keep
git add .circleci
git commit -m "[DO NOT LAND] testing binaries for above changes"
git push origin my_branch
# Now you need to make some changes to the first commit.
git rebase -i HEAD~2 # mark the first commit as 'edit'
# Make the changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
.circleci/regenerate.sh
# Ammend the commit and recontinue
git add .circleci
git commit --amend
git rebase --continue
# Update the PR, need to force since the commits are different now
git push origin my_branch --force
```
The advantage of this flow is that you can make new changes to the base commit and regenerate the .circleci without having to re-write which binary jobs you want to test on. The downside is that all updates will be force pushes.
## How to build a binary locally
### Linux
You can build Linux binaries locally easily using docker.
```sh
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
#
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
# machine that you're running the command on) accessible to the docker
# container at path/to/bar. So if you then run `touch path/to/bar/baz`
# in the docker container then you will see path/to/foo/baz on your local
# machine. You could also clone the pytorch and builder repos in the docker.
#
# If you know how, add ccache as a volume too and speed up everything
docker run \
-v your/pytorch/repo:/pytorch \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
# The builds generate lots of output so you probably need this when
# building locally.
/builder/conda/build_pytorch.sh |& tee build_output.log
```
**Building CUDA binaries on docker**
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a long time).
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
### MacOS
Theres no easy way to generate reproducible hermetic MacOS environments. If you have a Mac laptop then you can try emulating the .circleci environments as much as possible, but you probably have packages in /usr/local/, possibly installed by brew, that will probably interfere with the build. If youre trying to repro an error on a Mac build in .circleci and you cant seem to repro locally, then my best advice is actually to iterate on .circleci :/
But if you want to try, then Id recommend
```sh
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
# Install a new miniconda
# First remove any other python or conda installation from your PATH
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
export PATH="~/my_new_conda/bin:$PATH"
# Create a clean python env
# All MacOS builds use conda to manage the python env and dependencies
# that are built with, even the pip packages
conda create -yn binary python=2.7
conda activate binary
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.6
export DESIRED_CUDA=cpu
# Call the entrypoint you want
path/to/builder/wheel/build_wheel.sh
```
N.B. installing a brand new miniconda is important. This has to do with how conda installations work. See the “General Python” section above, but tldr; is that
1. You make the conda command accessible by prepending `path/to/conda_root/bin` to your PATH.
2. You make a new env and activate it, which then also gets prepended to your PATH. Now you have `path/to/conda_root/envs/new_env/bin:path/to/conda_root/bin:$PATH`
3. Now say you (or some code that you ran) call python executable `foo`
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called base), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
### Windows
TODO: fill in

View File

@ -1,195 +0,0 @@
"""
This module models the tree of configuration variants
for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
"""
from collections import OrderedDict
from cimodel.lib.conf_tree import ConfigNode
import cimodel.data.dimensions as dimensions
LINKING_DIMENSIONS = [
"shared",
"static",
]
DEPS_INCLUSION_DIMENSIONS = [
"with-deps",
"without-deps",
]
def get_processor_arch_name(gpu_version):
return "cpu" if not gpu_version else (
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
)
CONFIG_TREE_DATA = OrderedDict(
macos=([None], OrderedDict(
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
conda=dimensions.STANDARD_PYTHON_VERSIONS,
libtorch=[
"3.7",
],
)),
macos_arm64=([None], OrderedDict(
wheel=[
"3.8",
"3.9",
],
conda=[
"3.8",
"3.9",
],
)),
windows=(
# Stop building Win+CU102, see https://github.com/pytorch/pytorch/issues/65648
[v for v in dimensions.GPU_VERSIONS if v not in dimensions.ROCM_VERSION_LABELS and v != "cuda102"],
OrderedDict(
conda=dimensions.STANDARD_PYTHON_VERSIONS,
)
),
)
# GCC config variants:
#
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
# which can only build with old gcc ABI. It is better than devtoolset3
# because it understands avx512, which is needed for good fbgemm performance.
#
# Libtorch with new gcc ABI is built with gcc 5.4 on Ubuntu 16.04.
LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
manywheel=['devtoolset7'],
conda=['devtoolset7'],
libtorch=[
"devtoolset7",
"gcc5.4_cxx11-abi",
],
)
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
"debug",
"release",
]
class TopLevelNode(ConfigNode):
def __init__(self, node_name, config_tree_data, smoke):
super(TopLevelNode, self).__init__(None, node_name)
self.config_tree_data = config_tree_data
self.props["smoke"] = smoke
def get_children(self):
return [OSConfigNode(self, x, c, p) for (x, (c, p)) in self.config_tree_data.items()]
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
super(OSConfigNode, self).__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
self.props["gpu_versions"] = gpu_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
class PackageFormatConfigNode(ConfigNode):
def __init__(self, parent, package_format, python_versions):
super(PackageFormatConfigNode, self).__init__(parent, package_format)
self.props["python_versions"] = python_versions
self.props["package_format"] = package_format
def get_children(self):
if self.find_prop("os_name") == "linux":
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
class LinuxGccConfigNode(ConfigNode):
def __init__(self, parent, gcc_config_variant):
super(LinuxGccConfigNode, self).__init__(parent, "GCC_CONFIG_VARIANT=" + str(gcc_config_variant))
self.props["gcc_config_variant"] = gcc_config_variant
def get_children(self):
gpu_versions = self.find_prop("gpu_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == 'devtoolset7':
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
# XXX disabling conda rocm build since docker images are not there
if self.find_prop("package_format") == 'conda':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
# XXX libtorch rocm build is temporarily disabled
if self.find_prop("package_format") == 'libtorch':
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
return [ArchConfigNode(self, v) for v in gpu_versions]
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super(WindowsLibtorchConfigNode, self).__init__(parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant))
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
self.props["gpu"] = gpu
def get_children(self):
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
class PyVersionConfigNode(ConfigNode):
def __init__(self, parent, pyver):
super(PyVersionConfigNode, self).__init__(parent, pyver)
self.props["pyver"] = pyver
def get_children(self):
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")
has_libtorch_variants = package_format == "libtorch" and os_name == "linux"
linking_variants = LINKING_DIMENSIONS if has_libtorch_variants else []
return [LinkingVariantConfigNode(self, v) for v in linking_variants]
class LinkingVariantConfigNode(ConfigNode):
def __init__(self, parent, linking_variant):
super(LinkingVariantConfigNode, self).__init__(parent, linking_variant)
def get_children(self):
return [DependencyInclusionConfigNode(self, v) for v in DEPS_INCLUSION_DIMENSIONS]
class DependencyInclusionConfigNode(ConfigNode):
def __init__(self, parent, deps_variant):
super(DependencyInclusionConfigNode, self).__init__(parent, deps_variant)
self.props["libtorch_variant"] = "-".join([self.parent.get_label(), self.get_label()])

View File

@ -1,243 +0,0 @@
from collections import OrderedDict
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.data.binary_build_data as binary_build_data
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
class Conf(object):
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
self.os = os
self.gpu_version = gpu_version
self.pydistro = pydistro
self.parms = parms
self.smoke = smoke
self.libtorch_variant = libtorch_variant
self.gcc_config_variant = gcc_config_variant
self.libtorch_config_variant = libtorch_config_variant
def gen_build_env_parms(self):
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
elems.append(str(self.libtorch_config_variant))
return elems
def gen_docker_image(self):
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(
f"pytorch/conda-builder:{self.gpu_version}"
)
docker_word_substitution = {
"manywheel": "manylinux",
"libtorch": "manylinux",
}
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
# TODO cuda images should consolidate into tag-base images similar to rocm
alt_docker_suffix = "cuda102" if not self.gpu_version else (
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
def gen_build_name(self, build_or_test, nightly):
parts = [self.get_name_prefix(), self.os] + self.gen_build_env_parms()
if nightly:
parts.append("nightly")
if self.libtorch_variant:
parts.append(self.libtorch_variant)
if not self.smoke:
parts.append(build_or_test)
joined = "_".join(parts)
return joined.replace(".", "_")
def gen_workflow_job(self, phase, upload_phase_dependency=None, nightly=False):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["postnightly"],
)
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["docker_image"] = self.gen_docker_image()
# fix this. only works on cuda not rocm
if self.os != "windows" and self.gpu_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.gpu_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name : job_def}
def gen_upload_job(self, phase, requires_dependency):
"""Generate binary_upload job for configuration
Output looks similar to:
- binary_upload:
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
context: org-member
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
filters:
branches:
only:
- nightly
tags:
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
package_type: manywheel
upload_subfolder: cu113
"""
return {
"binary_upload": OrderedDict({
"name": self.gen_build_name(phase, nightly=True),
"context": "org-member",
"requires": [self.gen_build_name(
requires_dependency,
nightly=True
)],
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"package_type": self.pydistro,
"upload_subfolder": binary_build_data.get_processor_arch_name(
self.gpu_version,
),
})
}
def get_root(smoke, name):
return binary_build_data.TopLevelNode(
name,
binary_build_data.CONFIG_TREE_DATA,
smoke,
)
def gen_build_env_list(smoke):
root = get_root(smoke, "N/A")
config_list = conf_tree.dfs(root)
newlist = []
for c in config_list:
conf = Conf(
c.find_prop("os_name"),
c.find_prop("gpu"),
c.find_prop("package_format"),
[c.find_prop("pyver")],
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
)
newlist.append(conf)
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_upload_job("upload", phase_dependency))
return mylist
def get_post_upload_jobs():
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["postnightly"],
),
},
},
]
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
tests = []
for conf_options in filtered_configs:
yaml_item = conf_options.gen_workflow_job("test", nightly=True)
tests.append(yaml_item)
return tests
def get_jobs(toplevel_key, smoke):
jobs_list = []
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
# don't test for macos_arm64 as it's cross compiled
if phase != "test" or build_config.os != "macos_arm64":
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
return jobs_list
def get_binary_build_jobs():
return get_jobs("binarybuilds", False)
def get_binary_smoke_test_jobs():
return get_jobs("binarysmoketests", True)

View File

@ -1,24 +0,0 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
"102",
"111",
"113",
"115",
]
ROCM_VERSIONS = [
"4.3.1",
"4.5.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = [
"3.7",
"3.8",
"3.9",
"3.10"
]

View File

@ -1,280 +0,0 @@
from cimodel.lib.conf_tree import ConfigNode
CONFIG_TREE_DATA = [
]
def get_major_pyver(dotted_version):
parts = dotted_version.split(".")
return "py" + parts[0]
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
def modify_label(self, label):
return label
def init2(self, node_name):
pass
def get_children(self):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super(TopLevelNode, self).__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return DistroConfigNode
class DistroConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["distro_name"] = node_name
def child_constructor(self):
distro = self.find_prop("distro_name")
next_nodes = {
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ExperimentalFeatureConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["experimental_feature"] = node_name
def child_constructor(self):
experimental_feature = self.find_prop("experimental_feature")
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mlc": MLCConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"noarch": NoarchConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"pure_torch": PureTorchConfigNode,
"slow_gradcheck": SlowGradcheckConfigNode,
}
return next_nodes[experimental_feature]
class SlowGradcheckConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_slow_gradcheck"] = True
def child_constructor(self):
return ExperimentalFeatureConfigNode
class PureTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PURE_TORCH=" + str(label)
def init2(self, node_name):
self.props["is_pure_torch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class XlaConfigNode(TreeConfigNode):
def modify_label(self, label):
return "XLA=" + str(label)
def init2(self, node_name):
self.props["is_xla"] = node_name
def child_constructor(self):
return ImportantConfigNode
class MLCConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MLC=" + str(label)
def init2(self, node_name):
self.props["is_mlc"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Asan=" + str(label)
def init2(self, node_name):
self.props["is_asan"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ONNXConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Onnx=" + str(label)
def init2(self, node_name):
self.props["is_onnx"] = node_name
def child_constructor(self):
return ImportantConfigNode
class VulkanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Vulkan=" + str(label)
def init2(self, node_name):
self.props["is_vulkan"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "paralleltbb"
def child_constructor(self):
return ImportantConfigNode
class NoarchConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_noarch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "parallelnative"
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
def init2(self, node_name):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ShardTestConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["shard_test"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)
def init2(self, node_name):
self.props["is_important"] = node_name
def get_children(self):
return []
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
class XenialCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -1,381 +0,0 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Optional
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.data.simple.util.docker_constants import gen_docker_image
@dataclass
class Conf:
distro: str
parms: List[str]
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
rocm_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
is_vulkan: bool = False
is_pure_torch: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional["Conf"] = None
is_libtorch: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
build_only: bool = False
@staticmethod
def is_test_phase(phase):
return "test" in phase
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
def get_parms(self, for_docker):
leading = []
# We just don't run non-important jobs on pull requests;
# previously we also named them in a way to make it obvious
# if self.is_important and not for_docker:
# leading.append("AAA")
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_vulkan and not for_docker:
leading.append("vulkan")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.is_pure_torch and not for_docker:
leading.append("pure_torch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
cuda_parms = []
if self.cuda_version:
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
if self.rocm_version:
cuda_parms.extend([f"rocm{self.rocm_version}"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
result = result + self.parms_list_ignored_for_docker_image
return result
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
image_name, _ = gen_docker_image(base_build_env_name)
return miniutils.quote(image_name)
def gen_docker_image_requires(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
_, requires = gen_docker_image(base_build_env_name)
return miniutils.quote(requires)
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
def gen_build_name(self, build_or_test):
return (
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
.replace(".", "_")
.replace("-", "_")
)
def get_dependents(self):
return self.dependent_tests or []
def gen_workflow_params(self, phase):
parameters = OrderedDict()
build_job_name_pieces = self.get_build_job_name_pieces(phase)
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if Conf.is_test_phase(phase) and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if Conf.is_test_phase(phase):
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
if self.rocm_version is not None:
resource_class = "pytorch/amd-gpu"
parameters["resource_class"] = resource_class
if phase == "build" and self.rocm_version is not None:
parameters["resource_class"] = "xlarge"
if hasattr(self, 'filters'):
parameters['filters'] = self.filters
if self.build_only:
parameters['build_only'] = miniutils.quote(str(int(True)))
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
if Conf.is_test_phase(phase):
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
# build of pytorch in the caffe2 build job, and just run the caffe2 tests off of a completed
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
job_def["requires"] = [self.gen_docker_image_requires()]
if not self.is_important:
job_def["filters"] = gen_filter_dict()
job_def.update(self.gen_workflow_params(phase))
return {job_name: job_def}
# TODO This is a hack to special case some configs just for the workflow list
class HiddenConf(object):
def __init__(self, name, parent_build=None, filters=None):
self.name = name
self.parent_build = parent_build
self.filters = filters
def gen_workflow_job(self, phase):
return {
self.gen_build_name(phase): {
"requires": [self.parent_build.gen_build_name("build")],
"filters": self.filters,
}
}
def gen_build_name(self, _):
return self.name
class DocPushConf(object):
def __init__(self, name, parent_build=None, branch="master"):
self.name = name
self.parent_build = parent_build
self.branch = branch
def gen_workflow_job(self, phase):
return {
"pytorch_doc_push": {
"name": self.name,
"branch": self.branch,
"requires": [self.parent_build],
"context": "org-member",
"filters": gen_filter_dict(branches_list=["nightly"],
tags_list=RC_PATTERN)
}
}
def gen_docs_configs(xenial_parent_config):
configs = []
configs.append(
HiddenConf(
"pytorch_python_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "nightly"],
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_python_doc_push",
parent_build="pytorch_python_doc_build",
branch="site",
)
)
configs.append(
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(branches_list=["master", "nightly"],
tags_list=RC_PATTERN),
)
)
configs.append(
DocPushConf(
"pytorch_cpp_doc_push",
parent_build="pytorch_cpp_doc_build",
branch="master",
)
)
return configs
def get_root():
return TopLevelNode("PyTorch Builds", CONFIG_TREE_DATA)
def gen_tree():
root = get_root()
configs_list = conf_tree.dfs(root)
return configs_list
def instantiate_configs(only_slow_gradcheck):
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_noarch = fc.find_prop("is_noarch") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
parms_list_ignored_for_docker_image = []
if only_slow_gradcheck ^ is_slow_gradcheck:
continue
python_version = None
if compiler_name == "cuda" or compiler_name == "android":
python_version = fc.find_prop("pyver")
parms_list = [fc.find_prop("abbreviated_pyver")]
else:
parms_list = ["py" + fc.find_prop("pyver")]
cuda_version = None
rocm_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
elif compiler_name == "rocm":
rocm_version = fc.find_prop("compiler_version")
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
elif compiler_name == "android":
android_ndk_version = fc.find_prop("compiler_version")
# TODO: do we need clang to compile host binaries like protoc?
parms_list.append("clang5")
parms_list.append("android-ndk-" + android_ndk_version)
android_abi = fc.find_prop("android_abi")
parms_list_ignored_for_docker_image.append(android_abi)
restrict_phases = ["build"]
elif compiler_name:
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
parms_list.append(gcc_version)
if is_asan:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_noarch:
parms_list_ignored_for_docker_image.append("noarch")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
restrict_phases = ["build", "ort_test1", "ort_test2"]
if cuda_version:
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
is_libtorch = fc.find_prop("is_libtorch") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
shard_test = fc.find_prop("shard_test") or False
# TODO: fix pure_torch python test packaging issue.
if shard_test:
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
restrict_phases.extend(["test1", "test2"])
if build_only or is_pure_torch:
restrict_phases = ["build"]
if is_slow_gradcheck:
parms_list_ignored_for_docker_image.append("old")
parms_list_ignored_for_docker_image.append("gradcheck")
gpu_resource = None
if cuda_version and cuda_version != "10":
gpu_resource = "medium"
c = Conf(
distro_name,
parms_list,
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
rocm_version,
is_xla,
is_vulkan,
is_pure_torch,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
is_important=is_important,
parallel_backend=parallel_backend,
build_only=build_only,
)
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build? Projects are
# beginning to drop python3.6
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.6"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
and not is_pure_torch
and compiler_name == "gcc"
and fc.find_prop("compiler_version") == "5.4"
):
c.filters = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
c.dependent_tests = gen_docs_configs(c)
config_list.append(c)
return config_list
def get_workflow_jobs(only_slow_gradcheck=False):
config_list = instantiate_configs(only_slow_gradcheck)
x = []
for conf_options in config_list:
phases = conf_options.restrict_phases or dimensions.PHASES
for phase in phases:
# TODO why does this not have a test?
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))
# TODO convert to recursion
for conf in conf_options.get_dependents():
x.append(conf.gen_workflow_job("test"))
return x

View File

@ -1,28 +0,0 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.lib.miniutils import quote
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
def gen_workflow_job(channel: str):
return OrderedDict(
{
"anaconda_prune": OrderedDict(
{
"name": f"anaconda-prune-{channel}",
"context": quote("org-member"),
"packages": quote(PACKAGES_TO_PRUNE),
"channel": channel,
"filters": gen_filter_dict(branches_list=["postnightly"]),
}
)
}
)
def get_workflow_jobs():
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]

View File

@ -1,103 +0,0 @@
import cimodel.data.simple.util.branch_filters as branch_filters
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK
)
class AndroidJob:
def __init__(self,
variant,
template_name,
is_master_only=True):
self.variant = variant
self.template_name = template_name
self.is_master_only = is_master_only
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant + [
"build",
]
full_job_name = "_".join(base_name_parts)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"build_environment": "\"{}\"".format(build_env_name),
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
"requires": [DOCKER_REQUIREMENT_NDK]
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
return [{self.template_name: props_dict}]
class AndroidGradleJob:
def __init__(self,
job_name,
template_name,
dependencies,
is_master_only=True,
is_pr_only=False,
extra_props=tuple()):
self.job_name = job_name
self.template_name = template_name
self.dependencies = dependencies
self.is_master_only = is_master_only
self.is_pr_only = is_pr_only
self.extra_props = dict(extra_props)
def gen_tree(self):
props_dict = {
"name": self.job_name,
"requires": self.dependencies,
}
if self.is_master_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
elif self.is_pr_only:
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.PR_BRANCH_LIST)
if self.extra_props:
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
AndroidJob(["x86_64"], "pytorch_linux_build"),
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
"pytorch_android_gradle_build-x86_32",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
is_master_only=False,
is_pr_only=True),
AndroidGradleJob(
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
"pytorch_android_gradle_build",
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,193 +0,0 @@
"""
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
instead of doing one offs here
Binary builds (subset, to smoke test that they'll work)
NB: If you modify this file, you need to also modify
the binary_and_smoke_tests_on_pr variable in
pytorch-ci-hud to adjust the allowed build list
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
Note:
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
- binary_linux_conda_3_6_cu90_devtoolset7_build
- binary_linux_conda_3_6_cu90_devtoolset7_test
TODO
we should test a libtorch cuda build, but they take too long
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class SmoketestJob:
def __init__(self,
template_name,
build_env_parts,
docker_image,
job_name,
is_master_only=False,
requires=None,
has_libtorch_variant=False,
extra_props=None):
self.template_name = template_name
self.build_env_parts = build_env_parts
self.docker_image = docker_image
self.job_name = job_name
self.is_master_only = is_master_only
self.requires = requires or []
self.has_libtorch_variant = has_libtorch_variant
self.extra_props = extra_props or {}
def gen_tree(self):
props_dict = {
"build_environment": " ".join(self.build_env_parts),
"name": self.job_name,
"requires": self.requires,
}
if self.docker_image:
props_dict["docker_image"] = self.docker_image
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
if self.has_libtorch_variant:
props_dict["libtorch_variant"] = "shared-with-deps"
props_dict.update(self.extra_props)
return [{self.template_name: props_dict}]
WORKFLOW_DATA = [
SmoketestJob(
"binary_linux_build",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
is_master_only=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
is_master_only=True,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_build",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
is_master_only=False,
has_libtorch_variant=True,
),
SmoketestJob(
"binary_mac_build",
["wheel", "3.7", "cpu"],
None,
"binary_macos_wheel_3_7_cpu_build",
is_master_only=True,
),
# This job has an average run time of 3 hours o.O
# Now only running this on master to reduce overhead
SmoketestJob(
"binary_mac_build",
["libtorch", "3.7", "cpu"],
None,
"binary_macos_libtorch_3_7_cpu_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_build",
["wheel", "3.7", "cu113"],
None,
"binary_windows_wheel_3_7_cu113_build",
is_master_only=True,
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "debug"],
None,
"binary_windows_libtorch_3_7_cpu_debug_test",
is_master_only=True,
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
),
SmoketestJob(
"binary_windows_test",
["libtorch", "3.7", "cpu", "release"],
None,
"binary_windows_libtorch_3_7_cpu_release_test",
is_master_only=False,
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
),
SmoketestJob(
"binary_windows_test",
["wheel", "3.7", "cu113"],
None,
"binary_windows_wheel_3_7_cu113_test",
is_master_only=True,
requires=["binary_windows_wheel_3_7_cu113_build"],
extra_props={
"executor": "windows-with-nvidia-gpu",
},
),
SmoketestJob(
"binary_linux_test",
["manywheel", "3.7m", "cu102", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
is_master_only=True,
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
extra_props={
"resource_class": "gpu.medium",
"use_cuda_docker_runtime": miniutils.quote((str(1))),
},
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "devtoolset7"],
"pytorch/manylinux-cuda102",
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
has_libtorch_variant=True,
),
SmoketestJob(
"binary_linux_test",
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
is_master_only=True,
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
has_libtorch_variant=True,
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,39 +0,0 @@
from collections import OrderedDict
from cimodel.lib.miniutils import quote
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
# NOTE: All hardcoded docker image builds have been migrated to GHA
IMAGE_NAMES = [
]
# This entry should be an element from the list above
# This should contain the image matching the "slow_gradcheck" entry in
# pytorch_build_data.py
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
"""Generates a list of docker image build definitions"""
ret = []
for image_name in images:
if image_name.startswith('docker-'):
image_name = image_name.lstrip('docker-')
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
continue
parameters = OrderedDict({
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
})
if image_name == "pytorch-linux-xenial-py3.6-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
tags_list=RC_PATTERN)
ret.append(OrderedDict(
{
"docker_build_job": parameters
}
))
return ret

View File

@ -1,88 +0,0 @@
from cimodel.data.simple.util.versions import MultiPartVersion
import cimodel.lib.miniutils as miniutils
XCODE_VERSION = MultiPartVersion([12, 5, 1])
class ArchVariant:
def __init__(self, name, custom_build_name=""):
self.name = name
self.custom_build_name = custom_build_name
def render(self):
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
return "_".join([self.name] + extra_parts)
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
self.xcode_version = xcode_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self, with_version_dots):
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
return [
"pytorch",
"ios",
] + version_parts + [
build_variant_suffix,
]
def gen_job_name(self):
return "_".join(self.gen_name_parts(False))
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"build_environment": "-".join(self.gen_name_parts(True)),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
"name": self.gen_job_name(),
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
"use_metal": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
"lite_interpreter": miniutils.quote(str(int(False)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
"op_list": "mobilenetv2.yaml",
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "coreml"), is_org_member_context=False, extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True)))}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,52 +0,0 @@
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = non_phase_parts + extra_name_list + [
'build' if self.is_build else None,
'test' if self.is_test else None,
]
full_job_name = "_".join(list(filter(None, full_job_name_list)))
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({
"lite_interpreter": True
}.items()),
)
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,53 +0,0 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.lib.miniutils as miniutils
import cimodel.data.simple.util.branch_filters
class MobileJob:
def __init__(
self,
docker_image,
docker_requires,
variant_parts,
is_master_only=False):
self.docker_image = docker_image
self.docker_requires = docker_requires
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"requires": self.docker_requires,
"name": full_job_name,
}
if self.is_master_only:
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = [
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,77 +0,0 @@
from cimodel.data.simple.util.docker_constants import (
DOCKER_IMAGE_NDK,
DOCKER_REQUIREMENT_NDK
)
class AndroidNightlyJob:
def __init__(self,
variant,
template_name,
extra_props=None,
with_docker=True,
requires=None,
no_build_suffix=False):
self.variant = variant
self.template_name = template_name
self.extra_props = extra_props or {}
self.with_docker = with_docker
self.requires = requires
self.no_build_suffix = no_build_suffix
def gen_tree(self):
base_name_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"android",
"ndk",
"r19c",
] + self.variant
build_suffix = [] if self.no_build_suffix else ["build"]
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
build_env_name = "-".join(base_name_parts)
props_dict = {
"name": full_job_name,
"requires": self.requires,
"filters": {"branches": {"only": "nightly"}},
}
props_dict.update(self.extra_props)
if self.with_docker:
props_dict["docker_image"] = DOCKER_IMAGE_NDK
props_dict["build_environment"] = build_env_name
return [{self.template_name: props_dict}]
BASE_REQUIRES = [DOCKER_REQUIREMENT_NDK]
WORKFLOW_DATA = [
AndroidNightlyJob(["x86_32"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["x86_64"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build", requires=BASE_REQUIRES),
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
with_docker=False,
requires=[
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
extra_props={"context": "org-member"},
with_docker=False,
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
no_build_suffix=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,85 +0,0 @@
import cimodel.data.simple.ios_definitions as ios_definitions
import cimodel.lib.miniutils as miniutils
class IOSNightlyJob:
def __init__(self,
variant,
is_full_jit=False,
is_upload=False):
self.variant = variant
self.is_full_jit = is_full_jit
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, with_version_dots):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
extra_name = ["full_jit"] if self.is_full_jit else []
common_name_pieces = [
"ios",
] + extra_name + [
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
"nightly",
self.variant,
"build",
] + extra_name_suffix
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
def gen_tree(self):
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
extra_requires = [x.gen_job_name() for x in build_configs] if self.is_upload else []
props_dict = {
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
props_dict["use_metal"] = miniutils.quote(str(int(True)))
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
if self.is_full_jit:
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
template_name = "_".join([
"binary",
"ios",
self.get_phase_name(),
])
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
BUILD_CONFIGS_FULL_JIT = [
IOSNightlyJob("x86_64", is_full_jit=True),
IOSNightlyJob("arm64", is_full_jit=True),
]
WORKFLOW_DATA = BUILD_CONFIGS + BUILD_CONFIGS_FULL_JIT + [
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -1,27 +0,0 @@
NON_PR_BRANCH_LIST = [
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
PR_BRANCH_LIST = [
r"/gh\/.*\/head/",
r"/pull\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
def gen_filter_dict(
branches_list=NON_PR_BRANCH_LIST,
tags_list=None
):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict

View File

@ -1,33 +0,0 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
def gen_docker_image(container_type):
return (
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
f"docker-{container_type}",
)
def gen_docker_image_requires(image_name):
return [f"docker-{image_name}"]
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc7"
)
def gen_mobile_docker(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image(container_type)
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")

View File

@ -1,34 +0,0 @@
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
else:
return [self.prefix]
def render_dots(self):
return ".".join(self.prefixed_parts())
def render_dots_or_parts(self, with_dots):
if with_dots:
return [self.render_dots()]
else:
return self.prefixed_parts()
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")
def __str__(self):
return f"{self.major}.{self.minor}"

View File

@ -1,107 +0,0 @@
from dataclasses import dataclass, field
from typing import Optional, Dict
def X(val):
"""
Compact way to write a leaf node
"""
return val, []
def XImportant(name):
"""Compact way to write an important (run on PRs) leaf node"""
return (name, [("important", [X(True)])])
@dataclass
class Ver:
"""
Represents a product with a version number
"""
name: str
version: str = ""
def __str__(self):
return self.name + self.version
@dataclass
class ConfigNode:
parent: Optional['ConfigNode']
node_name: str
props: Dict[str, str] = field(default_factory=dict)
def get_label(self):
return self.node_name
# noinspection PyMethodMayBeStatic
def get_children(self):
return []
def get_parents(self):
return (self.parent.get_parents() + [self.parent.get_label()]) if self.parent else []
def get_depth(self):
return len(self.get_parents())
def get_node_key(self):
return "%".join(self.get_parents() + [self.get_label()])
def find_prop(self, propname, searched=None):
"""
Checks if its own dictionary has
the property, otherwise asks parent node.
"""
if searched is None:
searched = []
searched.append(self.node_name)
if propname in self.props:
return self.props[propname]
elif self.parent:
return self.parent.find_prop(propname, searched)
else:
# raise Exception('Property "%s" does not exist anywhere in the tree! Searched: %s' % (propname, searched))
return None
def dfs_recurse(
node,
leaf_callback=lambda x: None,
discovery_callback=lambda x, y, z: None,
child_callback=lambda x, y: None,
sibling_index=0,
sibling_count=1):
discovery_callback(node, sibling_index, sibling_count)
node_children = node.get_children()
if node_children:
for i, child in enumerate(node_children):
child_callback(node, child)
dfs_recurse(
child,
leaf_callback,
discovery_callback,
child_callback,
i,
len(node_children),
)
else:
leaf_callback(node)
def dfs(toplevel_config_node):
config_list = []
def leaf_callback(node):
config_list.append(node)
dfs_recurse(toplevel_config_node, leaf_callback)
return config_list

View File

@ -1,10 +0,0 @@
def quote(s):
return sandwich('"', s)
def sandwich(bread, jam):
return bread + jam + bread
def override(word, substitutions):
return substitutions.get(word, word)

View File

@ -1,52 +0,0 @@
from collections import OrderedDict
import cimodel.lib.miniutils as miniutils
LIST_MARKER = "- "
INDENTATION_WIDTH = 2
def is_dict(data):
return type(data) in [dict, OrderedDict]
def is_collection(data):
return is_dict(data) or type(data) is list
def render(fh, data, depth, is_list_member=False):
"""
PyYaml does not allow precise control over the quoting
behavior, especially for merge references.
Therefore, we use this custom YAML renderer.
"""
indentation = " " * INDENTATION_WIDTH * depth
if is_dict(data):
tuples = list(data.items())
if type(data) is not OrderedDict:
tuples.sort()
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
trailing_whitespace = "\n" if is_collection(v) else " "
fh.write(indentation + list_marker_prefix + k + ":" + trailing_whitespace)
render(fh, v, depth + 1 + int(is_list_member))
elif type(data) is list:
for v in data:
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")

View File

@ -1,17 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
DIFF_TOOL=meld
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
popd

View File

@ -1,24 +0,0 @@
#!/usr/bin/env python3
import os
import sys
import yaml
# Need to import modules that lie on an upward-relative path
sys.path.append(os.path.join(sys.path[0], '..'))
import cimodel.lib.miniyaml as miniyaml
def regurgitate(depth, use_pyyaml_formatter=False):
data = yaml.safe_load(sys.stdin)
if use_pyyaml_formatter:
output = yaml.dump(data, sort_keys=True)
sys.stdout.write(output)
else:
miniyaml.render(sys.stdout, data, depth)
if __name__ == "__main__":
regurgitate(3)

View File

@ -1,15 +0,0 @@
#!/bin/bash -xe
YAML_FILENAME=$1
# Allows this script to be invoked from any directory:
cd $(dirname "$0")
pushd ..
TEMP_FILENAME=$(mktemp)
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
mv $TEMP_FILENAME $YAML_FILENAME
popd

File diff suppressed because it is too large Load Diff

View File

@ -1,31 +0,0 @@
# Docker images for Jenkins
This directory contains everything needed to build the Docker images
that are used in our CI
The Dockerfiles located in subdirectories are parameterized to
conditionally run build stages depending on build arguments passed to
`docker build`. This lets us use only a few Dockerfiles for many
images. The different configurations are identified by a freeform
string that we call a _build environment_. This string is persisted in
each image as the `BUILD_ENVIRONMENT` environment variable.
See `build.sh` for valid build environments (it's the giant switch).
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
## Contents
* `build.sh` -- dispatch script to launch all builds
* `common` -- scripts used to execute individual Docker build stages
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
## Usage
```bash
# Build a specific image
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
# Set flags (see build.sh) and build image
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```

View File

@ -1 +0,0 @@
<manifest package="org.pytorch.deps" />

View File

@ -1,66 +0,0 @@
buildscript {
ext {
minSdkVersion = 21
targetSdkVersion = 28
compileSdkVersion = 28
buildToolsVersion = '28.0.3'
coreVersion = "1.2.0"
extJUnitVersion = "1.1.1"
runnerVersion = "1.2.0"
rulesVersion = "1.2.0"
junitVersion = "4.12"
}
repositories {
google()
mavenLocal()
mavenCentral()
jcenter()
}
dependencies {
classpath 'com.android.tools.build:gradle:4.1.2'
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
}
}
repositories {
google()
jcenter()
}
apply plugin: 'com.android.library'
android {
compileSdkVersion rootProject.compileSdkVersion
buildToolsVersion rootProject.buildToolsVersion
defaultConfig {
minSdkVersion minSdkVersion
targetSdkVersion targetSdkVersion
}
sourceSets {
main {
manifest.srcFile 'AndroidManifest.xml'
}
}
}
dependencies {
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'androidx.appcompat:appcompat:1.0.0'
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
implementation 'com.google.code.findbugs:jsr305:3.0.1'
implementation 'com.facebook.soloader:nativeloader:0.10.1'
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion
implementation 'junit:junit:' + rootProject.junitVersion
implementation 'androidx.test:core:' + rootProject.coreVersion
implementation 'androidx.test.ext:junit:' + rootProject.extJUnitVersion
implementation 'androidx.test:rules:' + rootProject.rulesVersion
implementation 'androidx.test:runner:' + rootProject.runnerVersion
}

View File

@ -1,406 +0,0 @@
#!/bin/bash
set -ex
image="$1"
shift
if [ -z "${image}" ]; then
echo "Usage: $0 IMAGE"
exit 1
fi
function extract_version_from_image_name() {
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
if [ "x${!2}" = x ]; then
echo "variable '$2' not correctly parsed from image='$image'"
exit 1
fi
}
function extract_all_from_image_name() {
# parts $image into array, splitting on '-'
keep_IFS="$IFS"
IFS="-"
declare -a parts=($image)
IFS="$keep_IFS"
unset keep_IFS
for part in "${parts[@]}"; do
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
vername="${name^^}_VERSION"
# "py" is the odd one out, needs this special case
if [ "x${name}" = xpy ]; then
vername=ANACONDA_PYTHON_VERSION
fi
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
if [ -n "${name}" ]; then
extract_version_from_image_name "${name}" "${vername}"
fi
done
}
# Use the same pre-built XLA test image from PyTorch/XLA
if [[ "$image" == *xla* ]]; then
echo "Using pre-built XLA test image..."
exit 0
fi
if [[ "$image" == *-xenial* ]]; then
UBUNTU_VERSION=16.04
elif [[ "$image" == *-artful* ]]; then
UBUNTU_VERSION=17.10
elif [[ "$image" == *-bionic* ]]; then
UBUNTU_VERSION=18.04
elif [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *cuda* ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
fi
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-xenial-py3.8)
ANACONDA_PYTHON_VERSION=3.8
CMAKE_VERSION=3.10.3
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc5.4)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=5
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3.7-gcc7.2)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
# Do not install PROTOBUF, DB, and VISION as a test
;;
pytorch-linux-xenial-py3.7-gcc7)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7)
CUDA_VERSION=11.1
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
CUDNN_VERSION=8
TENSORRT_VERSION=8.0.1.6
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-bionic-cuda11.5-cudnn8-py3-gcc7)
CUDA_VERSION=11.5.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
;;
pytorch-linux-xenial-py3-clang5-asan)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=5.0
CMAKE_VERSION=3.13.5
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-asan)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
CMAKE_VERSION=3.10.3
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang7-onnx)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=7
CMAKE_VERSION=3.10.3
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=5.0
CMAKE_VERSION=3.13.5
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
NINJA_VERSION=1.9.0
;;
pytorch-linux-xenial-py3.7-clang7)
ANACONDA_PYTHON_VERSION=3.7
CMAKE_VERSION=3.10.3
CLANG_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-py3.7-clang9)
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
VULKAN_SDK_VERSION=1.2.162.1
SWIFTSHADER=yes
;;
pytorch-linux-bionic-py3.8-gcc9)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.7-clang9)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.7
CLANG_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
CUDA_VERSION=10.2
CUDNN_VERSION=7
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
;;
pytorch-linux-bionic-cuda11.0-cudnn8-py3.7-gcc9)
CUDA_VERSION=11.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=3.9
;;
pytorch-linux-bionic-rocm4.3.1-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=4.3.1
;;
pytorch-linux-bionic-rocm4.5-py3.7)
ANACONDA_PYTHON_VERSION=3.7
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=4.5.2
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
DB=yes
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *xenial* ]]; then
CMAKE_VERSION=3.10.3
fi
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
if [[ "$image" == *cmake* ]]; then
extract_version_from_image_name cmake CMAKE_VERSION
fi
;;
esac
# Set Jenkins UID and GID if running Jenkins
if [ -n "${JENKINS:-}" ]; then
JENKINS_UID=$(id -u jenkins)
JENKINS_GID=$(id -g jenkins)
fi
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "EC2=${EC2:-}" \
--build-arg "JENKINS=${JENKINS:-}" \
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "ANDROID=${ANDROID}" \
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx900;gfx906}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"
# with
# "$UBUNTU_VERSION" == "18.04"
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
function drun() {
docker run --rm "$tmp_tag" $*
}
if [[ "$OS" == "ubuntu" ]]; then
if !(drun lsb_release -a 2>&1 | grep -qF Ubuntu); then
echo "OS=ubuntu, but:"
drun lsb_release -a
exit 1
fi
if !(drun lsb_release -a 2>&1 | grep -qF "$UBUNTU_VERSION"); then
echo "UBUNTU_VERSION=$UBUNTU_VERSION, but:"
drun lsb_release -a
exit 1
fi
fi
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
drun python --version
exit 1
fi
fi
if [ -n "$GCC_VERSION" ]; then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1
fi
fi
if [ -n "$CLANG_VERSION" ]; then
if !(drun clang --version 2>&1 | grep -qF "clang version $CLANG_VERSION"); then
echo "CLANG_VERSION=$CLANG_VERSION, but:"
drun clang --version
exit 1
fi
fi
if [ -n "$KATEX" ]; then
if !(drun katex --version); then
echo "KATEX=$KATEX, but:"
drun katex --version
exit 1
fi
fi

View File

@ -1,55 +0,0 @@
#!/bin/bash
set -ex
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*)
}
# If UPSTREAM_BUILD_ID is set (see trigger job), then we can
# use it to tag this build with the same ID used to tag all other
# base image builds. Also, we can try and pull the previous
# image first, to avoid rebuilding layers that haven't changed.
#until we find a way to reliably reuse previous build, this last_tag is not in use
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
tag="${DOCKER_TAG}"
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
image="${registry}/pytorch/${IMAGE_NAME}"
login() {
aws ecr get-authorization-token --region us-east-1 --output text --query 'authorizationData[].authorizationToken' |
base64 -d |
cut -d: -f2 |
docker login -u AWS --password-stdin "$1"
}
# Only run these steps if not on github actions
if [[ -z "${GITHUB_ACTIONS}" ]]; then
# Retry on timeouts (can happen on job stampede).
retry login "${registry}"
# Logout on exit
trap "docker logout ${registry}" EXIT
fi
# export EC2=1
# export JENKINS=1
# Try to pull the previous image (perhaps we can reuse some layers)
# if [ -n "${last_tag}" ]; then
# docker pull "${image}:${last_tag}" || true
# fi
# Build new image
./build.sh ${IMAGE_NAME} -t "${image}:${tag}"
docker push "${image}:${tag}"
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
trap "rm -rf ${IMAGE_NAME}:${tag}.tar" EXIT
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
fi

View File

@ -1,103 +0,0 @@
ARG CENTOS_VERSION
FROM centos:${CENTOS_VERSION}
ARG CENTOS_VERSION
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install required packages to build Caffe2
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Update CentOS git version
RUN yum -y remove git
RUN yum -y remove git-*
RUN yum -y install https://packages.endpoint.com/rhel/7/os/x86_64/endpoint-repo-1.9-1.x86_64.rpm
RUN yum install -y git
# Install devtoolset
ARG DEVTOOLSET_VERSION
ADD ./common/install_devtoolset.sh install_devtoolset.sh
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
ENV BASH_ENV "/etc/profile"
# (optional) Install non-default glibc version
ARG GLIBC_VERSION
ADD ./common/install_glibc.sh install_glibc.sh
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
RUN rm install_glibc.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG en_US.utf8
ENV LC_ALL en_US.utf8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1,109 +0,0 @@
#!/bin/bash
set -ex
[ -n "${ANDROID_NDK}" ]
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
apt-get update
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
pushd /tmp
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
popd
_ndk_dir=/opt/ndk
mkdir -p "$_ndk_dir"
unzip -qo /tmp/android*.zip -d "$_ndk_dir"
_versioned_dir=$(find "$_ndk_dir/" -mindepth 1 -maxdepth 1 -type d)
mv "$_versioned_dir"/* "$_ndk_dir"/
rmdir "$_versioned_dir"
rm -rf /tmp/*
# Install OpenJDK
# https://hub.docker.com/r/picoded/ubuntu-openjdk-8-jdk/dockerfile/
sudo apt-get update && \
apt-get install -y openjdk-8-jdk && \
apt-get install -y ant && \
apt-get clean && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /var/cache/oracle-jdk8-installer;
# Fix certificate issues, found as of
# https://bugs.launchpad.net/ubuntu/+source/ca-certificates-java/+bug/983302
sudo apt-get update && \
apt-get install -y ca-certificates-java && \
apt-get clean && \
update-ca-certificates -f && \
rm -rf /var/lib/apt/lists/* && \
rm -rf /var/cache/oracle-jdk8-installer;
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
# Installing android sdk
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
_android_home=/opt/android/sdk
rm -rf $_android_home
sudo mkdir -p $_android_home
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
sudo unzip -q $_tmp_sdk_zip -d $_android_home
rm $_tmp_sdk_zip
sudo chmod -R 777 $_android_home
export ANDROID_HOME=$_android_home
export ADB_INSTALL_TIMEOUT=120
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
echo "PATH:${PATH}"
# Installing Gradle
echo "GRADLE_VERSION:${GRADLE_VERSION}"
_gradle_home=/opt/gradle
sudo rm -rf $gradle_home
sudo mkdir -p $_gradle_home
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
rm /tmp/gradle.zip
sudo chmod -R 777 $_gradle_home
export GRADLE_HOME=$_gradle_home/gradle-$GRADLE_VERSION
alias gradle="${GRADLE_HOME}/bin/gradle"
export PATH="${GRADLE_HOME}/bin/:${PATH}"
echo "PATH:${PATH}"
gradle --version
mkdir /var/lib/jenkins/gradledeps
cp build.gradle /var/lib/jenkins/gradledeps
cp AndroidManifest.xml /var/lib/jenkins/gradledeps
pushd /var/lib/jenkins
export GRADLE_LOCAL_PROPERTIES=gradledeps/local.properties
rm -f $GRADLE_LOCAL_PROPERTIES
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
chown -R jenkins /var/lib/jenkins/gradledeps
chgrp -R jenkins /var/lib/jenkins/gradledeps
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
chown -R jenkins /var/lib/jenkins/.gradle
chgrp -R jenkins /var/lib/jenkins/.gradle
popd
rm -rf /var/lib/jenkins/.gradle/daemon

View File

@ -1,129 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
maybe_libiomp_dev="libiomp-dev"
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
numpy_deps="gfortran"
apt-get install -y --no-install-recommends \
$ccache_deps \
$numpy_deps \
${cmake3} \
apt-transport-https \
autoconf \
automake \
build-essential \
ca-certificates \
curl \
git \
libatlas-base-dev \
libc6-dbg \
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
software-properties-common \
sudo \
wget \
vim
# Should resolve issues related to various apt package repository cert issues
# see: https://github.com/pytorch/pytorch/issues/65931
apt-get install -y libgnutls30
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
numpy_deps="gcc-gfortran"
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
# for Caffe2. That said, we still install them to make sure the build
# system opts to build/use protoc and libprotobuf from third-party.
yum install -y \
$ccache_deps \
$numpy_deps \
autoconf \
automake \
bzip2 \
cmake \
cmake3 \
curl \
gcc \
gcc-c++ \
gflags-devel \
git \
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
opencv-devel \
sudo \
wget \
vim
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac
# Install Valgrind separately since the apt-get version is too old.
mkdir valgrind_build && cd valgrind_build
VALGRIND_VERSION=3.16.1
wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j6
sudo make install
cd ../../
rm -rf valgrind_build
alias valgrind="/usr/local/bin/valgrind"

View File

@ -1,117 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
echo "Preparing to build sccache from source"
apt-get update
apt-get install -y cargo pkg-config libssl-dev
echo "Checking out sccache repo"
git clone https://github.com/pytorch/sccache
cd sccache
echo "Building sccache"
cargo build --release
cp target/release/sccache /opt/cache/bin
echo "Cleaning up"
cd ..
rm -rf sccache
apt-get remove -y cargo rustc
apt-get autoclean && apt-get clean
}
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
}
mkdir -p /opt/cache/bin
mkdir -p /opt/cache/lib
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
export PATH="/opt/cache/bin:$PATH"
# Setup compiler cache
if [ -n "$ROCM_VERSION" ]; then
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
else
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
*)
install_binary
;;
esac
fi
chmod a+x /opt/cache/bin/sccache
function write_sccache_stub() {
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
chmod a+x "/opt/cache/bin/$1"
}
write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
# NOTE: See specific ROCM_VERSION case below.
if [ "x$ROCM_VERSION" = x ]; then
write_sccache_stub clang
write_sccache_stub clang++
fi
if [ -n "$CUDA_VERSION" ]; then
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
# implementation cannot find nvcc if it is setup this way, because it
# appears to search for the nvcc in PATH, and use its path to infer
# where CUDA is installed. Instead, we install an nvcc symlink outside
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
write_sccache_stub nvcc
mv /opt/cache/bin/nvcc /opt/cache/lib/
fi
if [ -n "$ROCM_VERSION" ]; then
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
# directly under /opt/rocm while also preserving the original compiler names.
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
# Final link in symlink chain must point back to original directory.
# Original compiler is moved one directory deeper. Wrapper replaces it.
function write_sccache_stub_rocm() {
OLDCOMP=$1
COMPNAME=$(basename $OLDCOMP)
TOPDIR=$(dirname $OLDCOMP)
WRAPPED="$TOPDIR/original/$COMPNAME"
mv "$OLDCOMP" "$WRAPPED"
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
chmod a+x "$OLDCOMP"
}
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
# ROCm 3.3 or earlier.
mkdir /opt/rocm/hcc/bin/original
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/hcc/bin/original
ln -s ../$(readlink clang)
popd
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
# ROCm 3.5 and beyond.
mkdir /opt/rocm/llvm/bin/original
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
# Fix last link in symlink chain, clang points to versioned clang in prior dir
pushd /opt/rocm/llvm/bin/original
ln -s ../$(readlink clang)
popd
else
echo "Cannot find ROCm compiler."
exit 1
fi
fi

View File

@ -1,44 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$CLANG_VERSION" ]; then
if [[ $CLANG_VERSION == 7 && $UBUNTU_VERSION == 16.04 ]]; then
wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
sudo apt-add-repository "deb http://apt.llvm.org/xenial/ llvm-toolchain-xenial-7 main"
elif [[ $CLANG_VERSION == 9 && $UBUNTU_VERSION == 18.04 ]]; then
sudo apt-get update
# gpg-agent is not available by default on 18.04
sudo apt-get install -y --no-install-recommends gpg-agent
wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -
apt-add-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-${CLANG_VERSION} main"
fi
sudo apt-get update
apt-get install -y --no-install-recommends clang-"$CLANG_VERSION"
apt-get install -y --no-install-recommends llvm-"$CLANG_VERSION"
# Install dev version of LLVM.
if [ -n "$LLVMDEV" ]; then
sudo apt-get install -y --no-install-recommends llvm-"$CLANG_VERSION"-dev
fi
# Use update-alternatives to make this version the default
# TODO: Decide if overriding gcc as well is a good idea
# update-alternatives --install /usr/bin/gcc gcc /usr/bin/clang-"$CLANG_VERSION" 50
# update-alternatives --install /usr/bin/g++ g++ /usr/bin/clang++-"$CLANG_VERSION" 50
update-alternatives --install /usr/bin/clang clang /usr/bin/clang-"$CLANG_VERSION" 50
update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-"$CLANG_VERSION" 50
# clang's packaging is a little messed up (the runtime libs aren't
# added into the linker path), so give it a little help
clang_lib=("/usr/lib/llvm-$CLANG_VERSION/lib/clang/"*"/lib/linux")
echo "$clang_lib" > /etc/ld.so.conf.d/clang.conf
ldconfig
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,19 +0,0 @@
#!/bin/bash
set -ex
[ -n "$CMAKE_VERSION" ]
# Remove system cmake install so it won't get used instead
apt-get remove cmake -y
# Turn 3.6.3 into v3.6
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
# Download and install specific CMake version in /usr/local
pushd /tmp
curl -Os --retry 3 "https://cmake.org/files/${path}/${file}"
tar -C /usr/local --strip-components 1 --no-same-owner -zxf cmake-*.tar.gz
rm -f cmake-*.tar.gz
popd

View File

@ -1,137 +0,0 @@
#!/bin/bash
set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
case "$MAJOR_PYTHON_VERSION" in
2)
CONDA_FILE="Miniconda2-latest-Linux-x86_64.sh"
;;
3)
if [ "$ANACONDA_PYTHON_VERSION" = "3.6" ]; then
# Latest release of Conda that still supports python-3.6
CONDA_FILE="Miniconda3-py37_4.10.3-Linux-x86_64.sh"
else
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
fi
;;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
mkdir /opt/conda
chown jenkins:jenkins /opt/conda
# Work around bug where devtoolset replaces sudo and breaks it.
if [ -n "$DEVTOOLSET_VERSION" ]; then
SUDO=/bin/sudo
else
SUDO=sudo
fi
as_jenkins() {
# NB: unsetting the environment variables works around a conda bug
# https://github.com/conda/conda/issues/6576
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
# NB: This must be run from a directory that jenkins has access to,
# works around https://github.com/conda/conda-package-handling/pull/34
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
}
pushd /tmp
wget -q "${BASE_URL}/${CONDA_FILE}"
chmod +x "${CONDA_FILE}"
as_jenkins ./"${CONDA_FILE}" -b -f -p "/opt/conda"
popd
# NB: Don't do this, rely on the rpath to get it right
#echo "/opt/conda/lib" > /etc/ld.so.conf.d/conda-python.conf
#ldconfig
sed -e 's|PATH="\(.*\)"|PATH="/opt/conda/bin:\1"|g' -i /etc/environment
export PATH="/opt/conda/bin:$PATH"
# Ensure we run conda in a directory that jenkins has write access to
pushd /opt/conda
# Track latest conda update
if [ "$ANACONDA_PYTHON_VERSION" != "3.6" ]; then
as_jenkins conda update -y -n base conda
fi
# Install correct Python version
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
conda_install() {
# Ensure that the install command don't upgrade/downgrade Python
# This should be called as
# conda_install pkg1 pkg2 ... [-c channel]
as_jenkins conda install -q -y python="$ANACONDA_PYTHON_VERSION" $*
}
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
# DO NOT install cmake here as it would install a version newer than 3.10, but
# we want to pin to version 3.10.
SCIPY_VERSION=1.1.0
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0 -c conda-forge
SCIPY_VERSION=1.6.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
else
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
fi
# Magma package names are concatenation of CUDA major and minor ignoring revision
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
if [ -n "$CUDA_VERSION" ]; then
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
fi
# TODO: This isn't working atm
conda_install nnpack -c killeent
# Install some other packages, including those needed for Python test reporting
# TODO: Why is scipy pinned
# Pin MyPy version because new errors are likely to appear with each release
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
as_jenkins pip install --progress-bar off pytest \
scipy==$SCIPY_VERSION \
scikit-image \
psutil \
unittest-xml-reporting \
boto3==1.16.34 \
hypothesis==4.53.2 \
expecttest==0.1.3 \
mypy==0.812 \
tb-nightly
# Install numba only on python-3.8 or below
# For numba issue see https://github.com/pytorch/pytorch/issues/51511
if [[ $(python -c "import sys; print(int(sys.version_info < (3, 9)))") == "1" ]]; then
as_jenkins pip install --progress-bar off numba==0.54.1 "librosa>=0.6.2,<0.9.0"
else
as_jenkins pip install --progress-bar off numba==0.49.0 "librosa>=0.6.2,<0.9.0"
fi
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
as_jenkins pip install --progress-bar off -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
as_jenkins pip install --progress-bar off scikit-learn==0.20.3
fi
popd
fi

View File

@ -1,49 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libhiredis-dev \
libleveldb-dev \
liblmdb-dev \
libsnappy-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
hiredis-devel \
leveldb-devel \
lmdb-devel \
snappy-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,10 +0,0 @@
#!/bin/bash
set -ex
[ -n "$DEVTOOLSET_VERSION" ]
yum install -y centos-release-scl
yum install -y devtoolset-$DEVTOOLSET_VERSION
echo "source scl_source enable devtoolset-$DEVTOOLSET_VERSION" > "/etc/profile.d/devtoolset-$DEVTOOLSET_VERSION.sh"

View File

@ -1,27 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$GCC_VERSION" ]; then
# Need the official toolchain repo to get alternate packages
add-apt-repository ppa:ubuntu-toolchain-r/test
apt-get update
if [[ "$UBUNTU_VERSION" == "16.04" && "${GCC_VERSION:0:1}" == "5" ]]; then
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-5 50
else
apt-get install -y g++-$GCC_VERSION
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
fi
# Cleanup package manager
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,34 +0,0 @@
#!/bin/bash
set -ex
[ -n "$GLIBC_VERSION" ]
if [[ -n "$CENTOS_VERSION" ]]; then
[ -n "$DEVTOOLSET_VERSION" ]
fi
yum install -y wget sed
mkdir -p /packages && cd /packages
wget -q http://ftp.gnu.org/gnu/glibc/glibc-$GLIBC_VERSION.tar.gz
tar xzf glibc-$GLIBC_VERSION.tar.gz
if [[ "$GLIBC_VERSION" == "2.26" ]]; then
cd glibc-$GLIBC_VERSION
sed -i 's/$name ne "nss_test1"/$name ne "nss_test1" \&\& $name ne "nss_test2"/' scripts/test-installation.pl
cd ..
fi
mkdir -p glibc-$GLIBC_VERSION-build && cd glibc-$GLIBC_VERSION-build
if [[ -n "$CENTOS_VERSION" ]]; then
export PATH=/opt/rh/devtoolset-$DEVTOOLSET_VERSION/root/usr/bin:$PATH
fi
../glibc-$GLIBC_VERSION/configure --prefix=/usr CFLAGS='-Wno-stringop-truncation -Wno-format-overflow -Wno-restrict -Wno-format-truncation -g -O2'
make -j$(nproc)
make install
# Cleanup
rm -rf /packages
rm -rf /var/cache/yum/*
rm -rf /var/lib/rpm/__db.*
yum clean all

View File

@ -1,6 +0,0 @@
#!/bin/bash
set -ex
mkdir -p /usr/local/include
cp jni.h /usr/local/include

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
if [ -n "$KATEX" ]; then
curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -
sudo apt-get install -y nodejs
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
apt-get update
apt-get install -y --no-install-recommends yarn
yarn global add katex --prefix /usr/local
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
fi

View File

@ -1,8 +0,0 @@
#!/bin/bash
set -ex
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
pushd lcov
sudo make install # will be installed in /usr/local/bin/lcov
popd

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -ex
[ -n "$NINJA_VERSION" ]
url="https://github.com/ninja-build/ninja/releases/download/v${NINJA_VERSION}/ninja-linux.zip"
pushd /tmp
wget --no-verbose --output-document=ninja-linux.zip "$url"
unzip ninja-linux.zip -d /usr/local/bin
rm -f ninja-linux.zip
popd

View File

@ -1,10 +0,0 @@
#!/bin/bash
sudo apt-get update
# also install ssh to avoid error of:
# --------------------------------------------------------------------------
# The value of the MCA parameter "plm_rsh_agent" was set to a path
# that could not be found:
# plm_rsh_agent: ssh : rsh
sudo apt-get install -y ssh
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev

View File

@ -1,14 +0,0 @@
#!/bin/bash
set -ex
OPENSSL=openssl-1.1.1k
wget -q -O "${OPENSSL}.tar.gz" "https://ossci-linux.s3.amazonaws.com/${OPENSSL}.tar.gz"
tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
make -j6; make install_sw
cd ..
rm -rf "${OPENSSL}"

View File

@ -1,56 +0,0 @@
#!/bin/bash
set -ex
# This function installs protobuf 3.17
install_protobuf_317() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz"
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
# -j6 to balance memory usage and speed.
# naked `-j` seems to use too much memory.
pushd "$pb_dir" && ./configure && make -j6 && make -j6 check && sudo make -j6 install && sudo ldconfig
popd
rm -rf $pb_dir
}
install_ubuntu() {
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
# install cmake3 here and use cmake3.
apt-get update
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
apt-get install -y --no-install-recommends cmake3
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
install_protobuf_317
}
install_centos() {
install_protobuf_317
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,160 +0,0 @@
#!/bin/bash
set -ex
install_magma() {
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# fix for magma_queue memory leak issue
git checkout c62d700d880c7283b33fb1d615d62fc9c7f7ca21
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`
fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc
done
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm
}
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
# Map ROCm version to AMDGPU version
declare -A AMDGPU_VERSIONS=( ["4.5.2"]="21.40.2" )
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
# gpg-agent is not available by default on 18.04
apt-get install -y --no-install-recommends gpg-agent
fi
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
apt-get install -y libc++1
apt-get install -y libc++abi1
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
fi
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available"
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
install_magma
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
yum update -y
yum install -y kmod
yum install -y wget
yum install -y openblas-devel
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
local amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
fi
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
echo "baseurl=${rocm_baseurl}" >> /etc/yum.repos.d/rocm.repo
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/rocm.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/rocm.repo
yum update -y
yum install -y \
rocm-dev \
rocm-utils \
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev
install_magma
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install Python packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${SWIFTSHADER}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
# SwiftShader
_swiftshader_dir=/var/lib/jenkins/swiftshader
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
mkdir -p $_swiftshader_dir
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
curl --silent --show-error --location --fail --retry 3 \
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"

View File

@ -1,7 +0,0 @@
#!/bin/bash
if [ -n "$TENSORRT_VERSION" ]; then
python3 -m pip install --upgrade setuptools pip
python3 -m pip install nvidia-pyindex
python3 -m pip install nvidia-tensorrt==${TENSORRT_VERSION} --extra-index-url https://pypi.ngc.nvidia.com
fi

View File

@ -1,14 +0,0 @@
apt-get update
apt-get install -y sudo wget libboost-dev libboost-test-dev libboost-program-options-dev libboost-filesystem-dev libboost-thread-dev libevent-dev automake libtool flex bison pkg-config g++ libssl-dev
wget https://www-us.apache.org/dist/thrift/0.12.0/thrift-0.12.0.tar.gz
tar -xvf thrift-0.12.0.tar.gz
cd thrift-0.12.0
for file in ./compiler/cpp/Makefile*; do
sed -i 's/\-Werror//' $file
done
./bootstrap.sh
./configure --without-php --without-java --without-python --without-nodejs --without-go --without-ruby
sudo make
sudo make install
cd ..
rm thrift-0.12.0.tar.gz

View File

@ -1,20 +0,0 @@
#!/bin/bash
set -ex
# Mirror jenkins user in container
echo "jenkins:x:1014:1014::/var/lib/jenkins:" >> /etc/passwd
echo "jenkins:x:1014:" >> /etc/group
# Create $HOME
mkdir -p /var/lib/jenkins
chown jenkins:jenkins /var/lib/jenkins
mkdir -p /var/lib/jenkins/.ccache
chown jenkins:jenkins /var/lib/jenkins/.ccache
# Allow writing to /usr/local (for make install)
chown jenkins:jenkins /usr/local
# Allow sudo
# TODO: Maybe we shouldn't
echo 'jenkins ALL=(ALL) NOPASSWD:ALL' > /etc/sudoers.d/jenkins

View File

@ -1,45 +0,0 @@
#!/bin/bash
set -ex
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libopencv-dev \
libavcodec-dev
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
install_centos() {
# Need EPEL for many packages we depend on.
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
opencv-devel \
ffmpeg-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
[ -n "${VULKAN_SDK_VERSION}" ]
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
curl \
--silent \
--show-error \
--location \
--fail \
--retry 3 \
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
mkdir -p "${_vulkansdk_dir}"
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
rm -rf "${_tmp_vulkansdk_targz}"

File diff suppressed because it is too large Load Diff

View File

@ -1,109 +0,0 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG CUDNN_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
ADD ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
# (optional) Install TensorRT
ARG TENSORRT_VERSION
ADD ./common/install_tensorrt.sh install_tensorrt.sh
RUN if [ -n "${TENSORRT_VERSION}" ]; then bash ./install_tensorrt.sh; fi
RUN rm install_tensorrt.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
# Add jni.h for java host build
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
ADD ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -1 +0,0 @@
*.sh

View File

@ -1,96 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Set AMD gpu targets to build for
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
ADD ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
ENV PATH /opt/rocm/opencl/bin:$PATH
ENV PATH /opt/rocm/llvm/bin:$PATH
ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
USER jenkins
CMD ["bash"]

View File

@ -1,131 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
ARG EC2
ADD ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
ARG CLANG_VERSION
ADD ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install thrift.
ARG THRIFT
ADD ./common/install_thrift.sh install_thrift.sh
RUN if [ -n "${THRIFT}" ]; then bash ./install_thrift.sh; fi
RUN rm install_thrift.sh
ENV INSTALLED_THRIFT ${THRIFT}
# Install user
ADD ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
ADD ./common/install_katex.sh install_katex.sh
RUN bash ./install_katex.sh && rm install_katex.sh
# Install conda and other packages (e.g., numpy, pytest)
ENV PATH /opt/conda/bin:$PATH
ARG ANACONDA_PYTHON_VERSION
ADD ./common/install_conda.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
# Install gcc
ARG GCC_VERSION
ADD ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
ADD ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
# (optional) Install protobuf for ONNX
ARG PROTOBUF
ADD ./common/install_protobuf.sh install_protobuf.sh
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
RUN rm install_protobuf.sh
ENV INSTALLED_PROTOBUF ${PROTOBUF}
# (optional) Install database packages like LMDB and LevelDB
ARG DB
ADD ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
ADD ./common/install_vision.sh install_vision.sh
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install Android NDK
ARG ANDROID
ARG ANDROID_NDK
ARG GRADLE_VERSION
ADD ./common/install_android.sh install_android.sh
ADD ./android/AndroidManifest.xml AndroidManifest.xml
ADD ./android/build.gradle build.gradle
RUN if [ -n "${ANDROID}" ]; then bash ./install_android.sh; fi
RUN rm install_android.sh
RUN rm AndroidManifest.xml
RUN rm build.gradle
ENV INSTALLED_ANDROID ${ANDROID}
# (optional) Install Vulkan SDK
ARG VULKAN_SDK_VERSION
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
RUN rm install_vulkan_sdk.sh
# (optional) Install swiftshader
ARG SWIFTSHADER
ADD ./common/install_swiftshader.sh install_swiftshader.sh
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
RUN rm install_swiftshader.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
ADD ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
ADD ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
# Install ccache/sccache (do this last, so we get priority in PATH)
ADD ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Add jni.h for java host build
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -1,39 +0,0 @@
#!/usr/bin/env python3
import os
import subprocess
import sys
import tempfile
import generate_config_yml
CHECKED_IN_FILE = "config.yml"
REGENERATION_SCRIPT = "regenerate.sh"
PARENT_DIR = os.path.basename(os.path.dirname(os.path.abspath(__file__)))
README_PATH = os.path.join(PARENT_DIR, "README.md")
ERROR_MESSAGE_TEMPLATE = """
The checked-in CircleCI "%s" file does not match what was generated by the scripts.
Please re-run the "%s" script in the "%s" directory and commit the result. See "%s" for more information.
"""
def check_consistency():
_, temp_filename = tempfile.mkstemp("-generated-config.yml")
with open(temp_filename, "w") as fh:
generate_config_yml.stitch_sources(fh)
try:
subprocess.check_call(["cmp", temp_filename, CHECKED_IN_FILE])
except subprocess.CalledProcessError:
sys.exit(ERROR_MESSAGE_TEMPLATE % (CHECKED_IN_FILE, REGENERATION_SCRIPT, PARENT_DIR, README_PATH))
finally:
os.remove(temp_filename)
if __name__ == "__main__":
check_consistency()

View File

@ -1,212 +0,0 @@
#!/usr/bin/env python3
"""
This script is the source of truth for config.yml.
Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import namedtuple
import cimodel.data.binary_build_definitions as binary_build_definitions
import cimodel.data.simple.android_definitions
import cimodel.data.simple.binary_smoketest
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_android
import cimodel.data.simple.nightly_ios
import cimodel.data.simple.anaconda_prune_defintions
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
class File(object):
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
def write(self, output_filehandle):
with open(os.path.join("verbatim-sources", self.filename)) as fh:
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
__slots__ = ()
class Treegen(FunctionGen):
"""
Insert the content of a YAML tree into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
def horizontal_rule():
return "".join("#" * 78)
class Header(object):
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
def write(self, output_filehandle):
text_lines = [self.title] + self.summary_lines
comment_lines = ["# " + x for x in text_lines]
lines = miniutils.sandwich([horizontal_rule()], comment_lines)
for line in filter(None, lines):
output_filehandle.write(line + "\n")
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def filter_master_only_jobs(items):
def _is_master_item(item):
filters = item.get('filters', None)
branches = filters.get('branches', None) if filters is not None else None
branches_only = branches.get('only', None) if branches is not None else None
return 'master' in branches_only if branches_only is not None else False
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get('requires', None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_master_item(item) and item_name not in master_deps:
return None
if 'filters' in item:
item = item.copy()
item.pop('filters')
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that master-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def generate_required_docker_images(items):
required_docker_images = set()
def _requires_docker_image(item_type, item):
requires = item.get('requires', None)
if not isinstance(requires, list):
return
for requirement in requires:
requirement = requirement.replace('"', '')
if requirement.startswith('docker-'):
required_docker_images.add(requirement)
_for_all_items(items, _requires_docker_image)
return required_docker_images
def gen_build_workflows_tree():
build_workflows_functions = [
cimodel.data.simple.android_definitions.get_workflow_jobs,
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.binary_smoketest.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.nightly_android.get_workflow_jobs,
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
binary_build_definitions.get_post_upload_jobs,
binary_build_definitions.get_binary_smoke_test_jobs,
]
build_jobs = [f() for f in build_workflows_functions]
build_jobs.extend(
cimodel.data.simple.docker_definitions.get_workflow_jobs(
# sort for consistency
sorted(generate_required_docker_images(build_jobs))
)
)
master_build_jobs = filter_master_only_jobs(build_jobs)
binary_build_functions = [
binary_build_definitions.get_binary_build_jobs,
binary_build_definitions.get_nightly_tests,
binary_build_definitions.get_nightly_uploads,
]
return {
"workflows": {
"binary_builds": {
"when": r"<< pipeline.parameters.run_binary_tests >>",
"jobs": [f() for f in binary_build_functions],
},
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
"master_build": {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
},
}
}
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
File("header-section.yml"),
File("commands.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
File("build-parameters/promote-build-params.yml"),
Header("Job specs"),
File("job-specs/pytorch-job-specs.yml"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/job-specs-promote.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
File("workflows/workflows-promote.yml"),
]
def stitch_sources(output_filehandle):
for f in YAML_SOURCES:
f.write(output_filehandle)
if __name__ == "__main__":
stitch_sources(sys.stdout)

View File

@ -1,5 +0,0 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

View File

@ -1,17 +0,0 @@
#!/bin/bash -e
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"

View File

@ -1,4 +0,0 @@
All the scripts in this directory are callable from `~/workspace/.circleci/scripts/foo.sh`.
Don't try to call them as `.circleci/scripts/foo.sh`, that won't
(necessarily) work. See Note [Workspace for CircleCI scripts] in
job-specs-setup.yml for more details.

View File

@ -1,68 +0,0 @@
#!/bin/bash
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
rm -rf /c/w
ln -s "/c/Users/circleci/project" /c/w
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
# docker executor (binary builds)
workdir="/"
fi
# It is very important that this stays in sync with binary_populate_env.sh
if [[ "$OSTYPE" == "msys" ]]; then
# We need to make the paths as short as possible on Windows
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
# Try to extract PR number from branch if not already set
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
fi
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
# "smoke" binary build on PRs
git fetch --force origin "pull/${CIRCLE_PR_NUMBER}/head:remotes/origin/pull/${CIRCLE_PR_NUMBER}"
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B "$CIRCLE_BRANCH"
git reset --hard "$CIRCLE_SHA1"
elif [[ -n "${CIRCLE_SHA1:-}" ]]; then
# Scheduled workflows & "smoke" binary build on master on PR merges
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B master
else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive --jobs 0
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder master repo
retry git clone -q https://github.com/pytorch/builder.git -b release/1.11 "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
echo "Using builder from "
git --no-pager log --max-count 1
popd

View File

@ -1,44 +0,0 @@
#!/bin/bash
set -eux -o pipefail
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
envfile="/Users/distiller/project/env"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
envfile="/home/circleci/project/env"
else
# docker executor (binary builds)
envfile="/env"
fi
# TODO this is super hacky and ugly. Basically, the binary_update_html job does
# not have an env file, since it does not call binary_populate_env.sh, since it
# does not have a BUILD_ENVIRONMENT. So for this one case, which we detect by a
# lack of an env file, we manually export the environment variables that we
# need to install miniconda
if [[ ! -f "$envfile" ]]; then
MINICONDA_ROOT="/home/circleci/project/miniconda"
workdir="/home/circleci/project"
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
export -f retry
else
source "$envfile"
fi
conda_sh="$workdir/install_miniconda.sh"
if [[ "$(uname)" == Darwin ]]; then
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
else
curl --retry 3 -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
fi
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
# We can't actually add miniconda to the PATH in the envfile, because that
# breaks 'unbuffer' in Mac jobs. This is probably because conda comes with
# a tclsh, which then gets inserted before the tclsh needed in /usr/bin

View File

@ -1,47 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
export TCLLIBPATH="/usr/local/lib"
# Install conda
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
# Install dependencies
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
conda install -c conda-forge valgrind --yes
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
# sync submodules
cd ${PROJ_ROOT}
git submodule sync
git submodule update --init --recursive --jobs 0
# run build script
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
cat ${PROJ_ROOT}/scripts/build_ios.sh
echo "########################################################"
echo "IOS_ARCH: ${IOS_ARCH}"
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
echo "USE_PYTORCH_METAL: ${USE_PYTORCH_METAL}"
echo "USE_COREML_DELEGATE: ${USE_COREML_DELEGATE}"
export IOS_ARCH=${IOS_ARCH}
export IOS_PLATFORM=${IOS_PLATFORM}
export USE_PYTORCH_METAL=${USE_PYTORCH_METAL}
export USE_COREML_DELEGATE=${USE_COREML_DELEGATE}
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
#store the binary
cd ${WORKSPACE}
DEST_DIR=${WORKSPACE}/ios
mkdir -p ${DEST_DIR}
cp -R ${PROJ_ROOT}/build_ios/install ${DEST_DIR}
mv ${DEST_DIR}/install ${DEST_DIR}/${IOS_ARCH}

View File

@ -1,30 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
PROJ_ROOT=/Users/distiller/project
cd ${PROJ_ROOT}/ios/TestApp
# install fastlane
sudo gem install bundler && bundle install
# install certificates
echo "${IOS_CERT_KEY_2022}" >> cert.txt
base64 --decode cert.txt -o Certificates.p12
rm cert.txt
bundle exec fastlane install_root_cert
bundle exec fastlane install_dev_cert
# install the provisioning profile
PROFILE=PyTorch_CI_2022.mobileprovision
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
mkdir -pv "${PROVISIONING_PROFILES}"
cd "${PROVISIONING_PROFILES}"
echo "${IOS_SIGN_KEY_2022}" >> cert.txt
base64 --decode cert.txt -o ${PROFILE}
rm cert.txt
# run the ruby build script
if ! [ -x "$(command -v xcodebuild)" ]; then
echo 'Error: xcodebuild is not installed.'
exit 1
fi
PROFILE=PyTorch_CI_2022
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}

View File

@ -1,75 +0,0 @@
#!/bin/bash
set -ex -o pipefail
echo ""
echo "DIR: $(pwd)"
WORKSPACE=/Users/distiller/workspace
PROJ_ROOT=/Users/distiller/project
ARTIFACTS_DIR=${WORKSPACE}/ios
ls ${ARTIFACTS_DIR}
ZIP_DIR=${WORKSPACE}/zip
mkdir -p ${ZIP_DIR}/install/lib
mkdir -p ${ZIP_DIR}/src
# copy header files
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
# build a FAT bianry
cd ${ZIP_DIR}/install/lib
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
for lib in ${target_libs[*]}
do
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
libs=("${ARTIFACTS_DIR}/x86_64/lib/${lib}" "${ARTIFACTS_DIR}/arm64/lib/${lib}")
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
fi
done
lipo -i ${ZIP_DIR}/install/lib/*.a
echo "BUILD_LITE_INTERPRETER: ${BUILD_LITE_INTERPRETER}"
# copy the umbrella header and license
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
cp ${PROJ_ROOT}/ios/LibTorch-Lite.h ${ZIP_DIR}/src/
else
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
fi
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
# zip the library
export DATE="$(date -u +%Y%m%d)"
export IOS_NIGHTLY_BUILD_VERSION="1.11.0.${DATE}"
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# libtorch_lite_ios_nightly_1.11.0.20210810.zip
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"
else
ZIPFILE="libtorch_ios_nightly_build.zip"
fi
cd ${ZIP_DIR}
#for testing
touch version.txt
echo "${IOS_NIGHTLY_BUILD_VERSION}" > version.txt
zip -r ${ZIPFILE} install src version.txt LICENSE
# upload to aws
# Install conda then 'conda install' awscli
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x ~/conda.sh
/bin/bash ~/conda.sh -b -p ~/anaconda
export PATH="~/anaconda/bin:${PATH}"
source ~/anaconda/bin/activate
conda install -c conda-forge awscli --yes
set +x
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
set +x
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# create a new LibTorch-Lite-Nightly.podspec from the template
echo "cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec"
cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# update pod version
sed -i '' -e "s/IOS_NIGHTLY_BUILD_VERSION/${IOS_NIGHTLY_BUILD_VERSION}/g" ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
cat ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
# push the new LibTorch-Lite-Nightly.podspec to CocoaPods
pod trunk push --verbose --allow-warnings --use-libraries --skip-import-validation ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
fi

View File

@ -1,34 +0,0 @@
#!/bin/bash
echo "RUNNING ON $(uname -a) WITH $(nproc) CPUS AND $(free -m)"
set -eux -o pipefail
source /env
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
if [[ "${DESIRED_CUDA}" =~ cu11[0-9] ]]; then
export BUILD_SPLIT_CUDA="ON"
fi
# Parse the parameters
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
build_script='conda/build_pytorch.sh'
elif [[ "$DESIRED_CUDA" == cpu ]]; then
build_script='manywheel/build_cpu.sh'
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
build_script='manywheel/build_rocm.sh'
else
build_script='manywheel/build.sh'
fi
if [[ "$CIRCLE_BRANCH" == "master" ]] || [[ "$CIRCLE_BRANCH" == release/* ]]; then
export BUILD_DEBUG_INFO=1
fi
# Build the package
SKIP_ALL_TESTS=1 "/builder/$build_script"

View File

@ -1,118 +0,0 @@
#!/bin/bash
OUTPUT_SCRIPT=${OUTPUT_SCRIPT:-/home/circleci/project/ci_test_script.sh}
# only source if file exists
if [[ -f /home/circleci/project/env ]]; then
source /home/circleci/project/env
fi
cat >"${OUTPUT_SCRIPT}" <<EOL
# =================== The following code will be executed inside Docker container ===================
set -eux -o pipefail
retry () {
"\$@" || (sleep 1 && "\$@") || (sleep 2 && "\$@")
}
# Source binary env file here if exists
if [[ -e "${BINARY_ENV_FILE:-/nofile}" ]]; then
source "${BINARY_ENV_FILE:-/nofile}"
fi
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
# Set up Python
if [[ "$PACKAGE_TYPE" == conda ]]; then
retry conda create -qyn testenv python="$DESIRED_PYTHON"
source activate testenv >/dev/null
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
# Prior to Python 3.8 paths were suffixed with an 'm'
if [[ -d "\${python_path}/bin" ]]; then
export PATH="\${python_path}/bin:\$PATH"
elif [[ -d "\${python_path}m/bin" ]]; then
export PATH="\${python_path}m/bin:\$PATH"
fi
fi
EXTRA_CONDA_FLAGS=""
NUMPY_PIN=""
PROTOBUF_PACKAGE="defaults::protobuf"
if [[ "\$python_nodot" = *310* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.21.2"
PROTOBUF_PACKAGE="protobuf>=3.19.0"
fi
if [[ "\$python_nodot" = *39* ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
# we set a lower boundary here just to be safe
NUMPY_PIN=">=1.20"
fi
if [[ "$DESIRED_CUDA" == "cu112" || "$DESIRED_CUDA" == "cu115" ]]; then
EXTRA_CONDA_FLAGS="-c=conda-forge"
fi
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
# Install the package
# These network calls should not have 'retry's because they are installing
# locally and aren't actually network calls
# TODO there is duplicated and inconsistent test-python-env setup across this
# file, builder/smoke_test.sh, and builder/run_tests.sh, and also in the
# conda build scripts themselves. These should really be consolidated
pkg="/final_pkgs/\$(ls /final_pkgs)"
if [[ "$PACKAGE_TYPE" == conda ]]; then
(
# For some reason conda likes to re-activate the conda environment when attempting this install
# which means that a deactivate is run and some variables might not exist when that happens,
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
# it comes to the conda installation commands
set +u
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
"numpy\${NUMPY_PIN}" \
future \
mkl>=2018 \
ninja \
dataclasses \
typing-extensions \
${PROTOBUF_PACKAGE} \
six
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -c pytorch -y cpuonly
else
# DESIRED_CUDA is in format cu90 or cu102
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
else
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
fi
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "cudatoolkit=\${cu_ver}"
fi
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
)
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
pip install "\$pkg"
retry pip install -q future numpy protobuf typing-extensions six
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"
unzip "\$pkg" -d /tmp
cd /tmp/libtorch
fi
# Test the package
/builder/check_binary.sh
# =================== The above code will be executed inside Docker container ===================
EOL
echo
echo
echo "The script that will run in the next step is:"
cat "${OUTPUT_SCRIPT}"

View File

@ -1,28 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/Users/distiller/project/env"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
# For some reason `unbuffer` breaks if we change the PATH here, so we
# write a script with the PATH change in it and unbuffer the whole
# thing
build_script="$workdir/build_script.sh"
touch "$build_script"
chmod +x "$build_script"
# Build
cat >"$build_script" <<EOL
export PATH="$workdir/miniconda/bin:$PATH"
if [[ "$CIRCLE_BRANCH" == "nightly" ]]; then
export USE_PYTORCH_METAL_EXPORT=1
export USE_COREML_DELEGATE=1
fi
if [[ "$PACKAGE_TYPE" == conda ]]; then
"$workdir/builder/conda/build_pytorch.sh"
else
export TORCH_PACKAGE_NAME="$(echo $TORCH_PACKAGE_NAME | tr '-' '_')"
"$workdir/builder/wheel/build_wheel.sh"
fi
EOL
unbuffer "$build_script" | ts

View File

@ -1,34 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "/Users/distiller/project/env"
export "PATH=$workdir/miniconda/bin:$PATH"
pkg="$workdir/final_pkgs/$(ls $workdir/final_pkgs)"
# Create a new test env
# TODO cut all this out into a separate test job and have an entirely different
# miniconda
if [[ "$PACKAGE_TYPE" != libtorch ]]; then
source deactivate || true
conda create -qyn test python="$DESIRED_PYTHON"
source activate test >/dev/null
fi
# Install the package
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="$(ls $workdir/final_pkgs/*-latest.zip)"
unzip "$pkg" -d /tmp
cd /tmp/libtorch
elif [[ "$PACKAGE_TYPE" == conda ]]; then
conda install -y "$pkg"
else
pip install "$pkg" -v
fi
# Test
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
$workdir/builder/check_binary.sh
else
pushd "$workdir/pytorch"
$workdir/builder/run_tests.sh "$PACKAGE_TYPE" "$DESIRED_PYTHON" "$DESIRED_CUDA"
fi

View File

@ -1,236 +0,0 @@
#!/bin/bash
set -eux -o pipefail
export TZ=UTC
tagged_version() {
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" && -z "${IS_GHA:-}" ]]; then
GIT_DIR="${workdir}/p/.git"
else
GIT_DIR="${workdir}/pytorch/.git"
fi
GIT_DESCRIBE="git --git-dir ${GIT_DIR} describe --tags --match v[0-9]*.[0-9]*.[0-9]*"
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif [[ ! -d "${GIT_DIR}" ]]; then
echo "Abort, abort! Git dir ${GIT_DIR} does not exists!"
kill $$
elif ${GIT_DESCRIBE} --exact >/dev/null; then
${GIT_DESCRIBE}
else
return 1
fi
}
# These are only relevant for CircleCI
# TODO: Remove these later once migrated fully to GHA
if [[ -z ${IS_GHA:-} ]]; then
# We need to write an envfile to persist these variables to following
# steps, but the location of the envfile depends on the circleci executor
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
# docker executor (binary builds)
workdir="/"
fi
envfile="$workdir/env"
touch "$envfile"
chmod +x "$envfile"
# Parse the BUILD_ENVIRONMENT to package type, python, and cuda
configs=($BUILD_ENVIRONMENT)
export PACKAGE_TYPE="${configs[0]}"
export DESIRED_PYTHON="${configs[1]}"
export DESIRED_CUDA="${configs[2]}"
if [[ "${OSTYPE}" == "msys" ]]; then
export DESIRED_DEVTOOLSET=""
export LIBTORCH_CONFIG="${configs[3]:-}"
if [[ "$LIBTORCH_CONFIG" == 'debug' ]]; then
export DEBUG=1
fi
else
export DESIRED_DEVTOOLSET="${configs[3]:-}"
fi
else
envfile=${BINARY_ENV_FILE:-/tmp/env}
if [[ -n "${PYTORCH_ROOT}" ]]; then
workdir=$(dirname "${PYTORCH_ROOT}")
else
# docker executor (binary builds)
workdir="/"
fi
fi
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
export BUILD_PYTHONLESS=1
fi
# Pick docker image
export DOCKER_IMAGE=${DOCKER_IMAGE:-}
if [[ -z "$DOCKER_IMAGE" ]]; then
if [[ "$PACKAGE_TYPE" == conda ]]; then
export DOCKER_IMAGE="pytorch/conda-cuda"
elif [[ "$DESIRED_CUDA" == cpu ]]; then
export DOCKER_IMAGE="pytorch/manylinux-cpu"
else
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
fi
fi
USE_GOLD_LINKER="OFF"
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
USE_GOLD_LINKER="ON"
fi
USE_WHOLE_CUDNN="OFF"
# Link whole cuDNN for CUDA-11.1 to include fp16 fast kernels
if [[ "$(uname)" == "Linux" && "${DESIRED_CUDA}" == "cu111" ]]; then
USE_WHOLE_CUDNN="ON"
fi
# Default to nightly, since that's where this normally uploads to
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="1.11.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
if tagged_version >/dev/null; then
# Switch upload folder to 'test/' if we are on a tag
PIP_UPLOAD_FOLDER='test/'
# Grab git tag, remove prefixed v and remove everything after -
# Used to clean up tags that are for release candidates like v1.6.0-rc1
# Turns tag v1.6.0-rc1 -> v1.6.0
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
fi
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
fi
export PYTORCH_BUILD_NUMBER=1
JAVA_HOME=
BUILD_JNI=OFF
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
# Add the Windows-specific JNI path
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
if [[ -e "$JH/include/jni.h" ]] ; then
# Skip if we're not on Windows but haven't found a JAVA_HOME
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
break
fi
echo "Found jni.h under $JH"
JAVA_HOME="$JH"
BUILD_JNI=ON
break
fi
done
if [ -z "$JAVA_HOME" ]; then
echo "Did not find jni.h"
fi
fi
cat >"$envfile" <<EOL
# =================== The following code will be executed inside Docker container ===================
export TZ=UTC
echo "Running on $(uname -a) at $(date)"
export PACKAGE_TYPE="$PACKAGE_TYPE"
export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then
export DEBUG=1
fi
export DESIRED_DEVTOOLSET=""
else
export DESIRED_DEVTOOLSET="${DESIRED_DEVTOOLSET:-}"
fi
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.11.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
# TODO: We don't need this anymore IIUC
export TORCH_PACKAGE_NAME='torch'
export TORCH_CONDA_BUILD_FOLDER='pytorch-nightly'
export ANACONDA_USER='pytorch'
export USE_FBGEMM=1
export JAVA_HOME=$JAVA_HOME
export BUILD_JNI=$BUILD_JNI
export PIP_UPLOAD_FOLDER="$PIP_UPLOAD_FOLDER"
export DOCKER_IMAGE="$DOCKER_IMAGE"
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
export USE_GLOO_WITH_OPENSSL="ON"
export USE_WHOLE_CUDNN="${USE_WHOLE_CUDNN}"
# =================== The above code will be executed inside Docker container ===================
EOL
# nproc doesn't exist on darwin
if [[ "$(uname)" != Darwin ]]; then
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
cat >>"$envfile" <<EOL
export MAX_JOBS="${MAX_JOBS}"
EOL
fi
if [[ -z "${IS_GHA:-}" ]]; then
cat >>"$envfile" <<EOL
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
EOL
fi
echo 'retry () {' >> "$envfile"
echo ' $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)' >> "$envfile"
echo '}' >> "$envfile"
echo 'export -f retry' >> "$envfile"
cat "$envfile"

View File

@ -1,29 +0,0 @@
#!/bin/bash
# This section is used in the binary_test and smoke_test jobs. It expects
# 'binary_populate_env' to have populated /home/circleci/project/env and it
# expects another section to populate /home/circleci/project/ci_test_script.sh
# with the code to run in the docker
# Expect all needed environment variables to be written to this file
source /home/circleci/project/env
echo "Running the following code in Docker"
cat /home/circleci/project/ci_test_script.sh
echo
echo
set -eux -o pipefail
# Expect actual code to be written to this file
chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
fi
# Execute the test script that was populated by an earlier section
export COMMAND='((echo "source /circleci_stuff/env && /circleci_stuff/ci_test_script.sh") | docker exec -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts

View File

@ -1,102 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
# Designates whether to submit as a release candidate or a nightly build
# Value should be `test` when uploading release candidates
# currently set within `designate_upload_channel`
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
# Designates what subfolder to put packages into
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
UPLOAD_BUCKET="s3://pytorch"
BACKUP_BUCKET="s3://pytorch-backup"
DRY_RUN=${DRY_RUN:-enabled}
# Don't actually do work unless explicit
ANACONDA="true anaconda"
AWS_S3_CP="aws s3 cp --dryrun"
if [[ "${DRY_RUN}" = "disabled" ]]; then
ANACONDA="anaconda"
AWS_S3_CP="aws s3 cp"
fi
do_backup() {
local backup_dir
backup_dir=$1
(
pushd /tmp/workspace
set -x
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
)
}
conda_upload() {
(
set -x
${ANACONDA} \
upload \
${PKG_DIR}/*.tar.bz2 \
-u "pytorch-${UPLOAD_CHANNEL}" \
--label main \
--no-progress \
--force
)
}
s3_upload() {
local extension
local pkg_type
extension="$1"
pkg_type="$2"
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
(
for pkg in ${PKG_DIR}/*.${extension}; do
(
set -x
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
)
done
)
}
# Install dependencies (should be a no-op if previously installed)
conda install -yq anaconda-client
pip install -q awscli
case "${PACKAGE_TYPE}" in
conda)
conda_upload
# Fetch platform (eg. win-64, linux-64, etc.) from index file
# Because there's no actual conda command to read this
subdir=$(\
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
| grep subdir \
| cut -d ':' -f2 \
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
)
BACKUP_DIR="conda/${subdir}"
;;
libtorch)
s3_upload "zip" "libtorch"
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
# wheel can either refer to wheel/manywheel
*wheel)
s3_upload "whl" "whl"
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
;;
*)
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
exit 1
;;
esac
# CIRCLE_TAG is defined by upstream circleci,
# this can be changed to recognize tagged versions
if [[ -n "${CIRCLE_TAG:-}" ]]; then
do_backup "${BACKUP_DIR}"
fi

View File

@ -1,77 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache-windows
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
export VC_YEAR=2019
if [[ "${DESIRED_CUDA}" == *"cu11"* ]]; then
export BUILD_SPLIT_CUDA=ON
fi
echo "Free Space for CUDA DEBUG BUILD"
if [[ "${CIRCLECI:-}" == 'true' ]]; then
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft.NET" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft.NET"
fi
if [[ -d "C:\\Program Files\\dotnet" ]]; then
rm -rf "C:\\Program Files\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\dotnet" ]]; then
rm -rf "C:\\Program Files (x86)\\dotnet"
fi
if [[ -d "C:\\Program Files (x86)\\Microsoft SQL Server" ]]; then
rm -rf "C:\\Program Files (x86)\\Microsoft SQL Server"
fi
if [[ -d "C:\\Program Files (x86)\\Xamarin" ]]; then
rm -rf "C:\\Program Files (x86)\\Xamarin"
fi
if [[ -d "C:\\Program Files (x86)\\Google" ]]; then
rm -rf "C:\\Program Files (x86)\\Google"
fi
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
set -x
if [[ -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
fi
if [[ -d "C:\\Microsoft" ]]; then
# don't use quotes here
rm -rf /c/Microsoft/AndroidNDK*
fi
fi
echo "Free space on filesystem before build:"
df -h
pushd "$BUILDER_ROOT"
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
./windows/internal/build_conda.bat
elif [[ "$PACKAGE_TYPE" == 'wheel' || "$PACKAGE_TYPE" == 'libtorch' ]]; then
./windows/internal/build_wheels.bat
fi
echo "Free space on filesystem after build:"
df -h

View File

@ -1,13 +0,0 @@
#!/bin/bash
set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2019
pushd "$BUILDER_ROOT"
./windows/internal/smoke_test.bat
popd

Some files were not shown because too many files have changed in this diff Show More