mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-24 07:27:32 +08:00
Compare commits
126 Commits
v1.10.2
...
v1.5.0-rc5
| Author | SHA1 | Date | |
|---|---|---|---|
| 4ff3872a20 | |||
| d7bdffabed | |||
| 9ba0a89489 | |||
| c164fbccb1 | |||
| 9a51e477ac | |||
| 375566fb78 | |||
| dfdc788076 | |||
| 9e6ef814cc | |||
| 31461800f6 | |||
| e741839b0e | |||
| 8eb39c9cfd | |||
| b5e4c0993d | |||
| 6bc6832bda | |||
| 593594839c | |||
| cf65c8ef15 | |||
| ca0dc1fcdc | |||
| b58f89b2e4 | |||
| 87b6685c6b | |||
| f746f1b746 | |||
| 1379415150 | |||
| 7d638d2596 | |||
| bad005d331 | |||
| 16d8a52407 | |||
| a33b264588 | |||
| 3a67e00889 | |||
| 6bd039551d | |||
| b6c3058d61 | |||
| ed908b4fbc | |||
| b66e0af58b | |||
| bf8a5ede96 | |||
| c2bc5c56c5 | |||
| db3c3ed662 | |||
| 9de4770bbd | |||
| 911a2a6b63 | |||
| 60375bcfdf | |||
| 63dcd9eccc | |||
| e8236d2ed4 | |||
| 0058b1bb7e | |||
| 419283e291 | |||
| 0e6f6ba218 | |||
| ec8dbaf920 | |||
| 7e168d134f | |||
| 6daae58871 | |||
| fee0ff1bf6 | |||
| deaf3b65cf | |||
| dca9c2501d | |||
| 842cd47416 | |||
| a30b49085c | |||
| 82626f8ad9 | |||
| 27fddfda4f | |||
| 7ecf6a1c10 | |||
| beb07a44c4 | |||
| a01c3bd1fe | |||
| ffd010f8a0 | |||
| 8ad59f03a8 | |||
| ed3640df68 | |||
| fb88942f6c | |||
| 5d05c51887 | |||
| df5986fbf3 | |||
| 165403f614 | |||
| fbf18c34ff | |||
| 84f806c821 | |||
| 94139a7d95 | |||
| 75e36186b2 | |||
| f4a0b406dd | |||
| e884e720f0 | |||
| dacdbc22d1 | |||
| 2a789cd0e0 | |||
| f9b010f399 | |||
| 55614ff306 | |||
| b12579da53 | |||
| 920e3eb761 | |||
| bec01e755a | |||
| 6a880e1bc9 | |||
| fa86e32a4e | |||
| 5aabaf2b18 | |||
| 4a707e8f95 | |||
| db127b21eb | |||
| 45313cd9e1 | |||
| df531973e1 | |||
| 9e3c577caa | |||
| 5357b8e4d9 | |||
| 0f23d23db4 | |||
| 7c24280a3f | |||
| 7100f0be13 | |||
| f7f611c2ec | |||
| acb982d0b0 | |||
| aa8b7ad989 | |||
| 2d403ed8be | |||
| c25a664f77 | |||
| ab660ae394 | |||
| 3c476a8858 | |||
| 651fa88645 | |||
| 565c3400b4 | |||
| 3e332778b4 | |||
| f598738920 | |||
| 4c6bfa0187 | |||
| 6f25003682 | |||
| 752c129fa1 | |||
| fb59a9caca | |||
| 4d30dbdd35 | |||
| b7f4a1a397 | |||
| afda1dc943 | |||
| d506ae882b | |||
| 36e5abe531 | |||
| 6e6f62230e | |||
| 5d15577e6c | |||
| 6aa5298c5c | |||
| f3df13725b | |||
| 4eee3caa11 | |||
| 4d96463130 | |||
| 246b824644 | |||
| 5ca9014318 | |||
| 48590d6a9b | |||
| 75148df1f5 | |||
| b89eb7c654 | |||
| 8877885454 | |||
| e2184ba083 | |||
| 8ef47ad2f0 | |||
| 6725b6f503 | |||
| bcd3f6da1a | |||
| 0b3d2f7b7d | |||
| f522651a7e | |||
| 01c8ef2757 | |||
| 7cfe68ce3a | |||
| 6f3120c6b9 |
@ -1,63 +0,0 @@
|
||||
# PyTorch CI Builds Pipeline on Azure DevOps
|
||||
#
|
||||
# This pipeline:
|
||||
# 1) builds PyTorch on select configurations
|
||||
# 2) runs only TestTorch unit tests.
|
||||
|
||||
stages:
|
||||
- stage: 'Build'
|
||||
displayName: 'Build PyTorch'
|
||||
jobs:
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: 'PyTorch-Linux-CPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_ci_build: True
|
||||
os: ubuntu
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: ubuntu_1804_py_38_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
|
||||
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: 'PyTorch-Linux-GPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_ci_build: True
|
||||
os: ubuntu
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
|
||||
CUDA_VERSION: 112
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: 'PyTorch-Win-CPU'
|
||||
build_stage: True
|
||||
is_ci_build: True
|
||||
os: windows
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_37:
|
||||
configuration: windows_2019_py_37_cpu
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: 'PyTorch-Win-GPU'
|
||||
build_stage: True
|
||||
is_ci_build: True
|
||||
os: windows
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_38_CUDA_102_cuDNN_765:
|
||||
configuration: windows_2019_py_38_cuda_102_cudnn_765
|
||||
CUDA_VERSION: 102
|
||||
@ -1,82 +0,0 @@
|
||||
# PyTorch Daily Builds Pipeline on Azure DevOps
|
||||
#
|
||||
# This pipeline:
|
||||
# 1) builds PyTorch on all available configurations
|
||||
# 2) runs all PyTorch unit tests
|
||||
|
||||
stages:
|
||||
- stage: 'BuildTest'
|
||||
displayName: 'Build and Test PyTorch'
|
||||
jobs:
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: 'PyTorch-Linux-CPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_daily_build: True
|
||||
os: ubuntu
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: ubuntu_1804_py_38_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
|
||||
Py_37:
|
||||
configuration: ubuntu_1804_py_37_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
|
||||
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: 'PyTorch-Linux-GPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_daily_build: True
|
||||
os: ubuntu
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_765:
|
||||
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: 'PyTorch-Win-CPU'
|
||||
build_stage: True
|
||||
is_daily_build: True
|
||||
os: windows
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: windows_2019_py_38_cpu
|
||||
Py_37:
|
||||
configuration: windows_2019_py_37_cpu
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: 'PyTorch-Win-GPU'
|
||||
build_stage: True
|
||||
is_daily_build: True
|
||||
os: windows
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: windows_2019_py_39_cuda_112_cudnn_810
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_765:
|
||||
configuration: windows_2019_py_38_cuda_102_cudnn_765
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_764:
|
||||
configuration: windows_2019_py_37_cuda_101_cudnn_764
|
||||
CUDA_VERSION: 101
|
||||
@ -1,134 +0,0 @@
|
||||
# PyTorch build steps template with Unix images Azure DevOps Instances
|
||||
#
|
||||
# This build depends on 3 parameters set as environment variables in the pipeline:
|
||||
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
|
||||
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
|
||||
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
|
||||
|
||||
parameters:
|
||||
name: ''
|
||||
pool: ''
|
||||
container_endpoint: ''
|
||||
os: ''
|
||||
cuda: ''
|
||||
is_ci_build: False
|
||||
is_official_build: False
|
||||
is_daily_build: False
|
||||
build_stage: False
|
||||
verify_stage: False
|
||||
publish_stage: False
|
||||
customMatrixes: ''
|
||||
|
||||
jobs:
|
||||
- job: ${{parameters.name}}
|
||||
timeoutInMinutes: 300
|
||||
strategy:
|
||||
matrix:
|
||||
${{ insert }}: ${{parameters.customMatrixes}}
|
||||
pool:
|
||||
name: ${{ parameters.pool}}
|
||||
variables:
|
||||
DECODE_PERCENTS: false
|
||||
container:
|
||||
image: $[variables['container_image']]
|
||||
endpoint: ${{parameters.container_endpoint}}
|
||||
|
||||
steps:
|
||||
# Build stage
|
||||
- ${{ if eq(parameters.build_stage, 'True') }}:
|
||||
# Set up environment variables for specific pipeline build
|
||||
- template: set-environment-variables.yml
|
||||
parameters:
|
||||
os: ${{ parameters.os}}
|
||||
cuda: ${{ parameters.cuda}}
|
||||
is_official_build: ${{ parameters.is_official_build}}
|
||||
|
||||
# Sync and update PyTorch submodules
|
||||
- bash: git submodule update --init --recursive --jobs 0
|
||||
displayName: Update PyTorch submodules
|
||||
|
||||
# Build PyTorch and run unit tests - no packaging
|
||||
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
|
||||
# Build PyTorch from source in develop mode
|
||||
- bash: python setup.py develop
|
||||
displayName: Build PyTorch from source
|
||||
|
||||
- ${{ if eq(parameters.is_ci_build, 'True') }}:
|
||||
# Run TestTorch unit tests to demonstrate successful PyTorch build
|
||||
- bash: python test/test_torch.py TestTorch
|
||||
displayName: Run TestTorch unit tests
|
||||
|
||||
- ${{ if eq(parameters.is_daily_build, 'True') }}:
|
||||
# Run all unit tests to demonstrate successful PyTorch build
|
||||
- bash: python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
|
||||
displayName: Run all unit tests
|
||||
|
||||
# Run ComponentGovernance
|
||||
- task: ComponentGovernanceComponentDetection@0
|
||||
inputs:
|
||||
scanType: 'Register'
|
||||
verbosity: 'Verbose'
|
||||
alertWarningLevel: 'High'
|
||||
|
||||
# Build PyTorch and produce artifacts for verification stage
|
||||
- ${{ if eq(parameters.is_official_build, 'True') }}:
|
||||
# Build PyTorch from source in install mode and exclude test binaries
|
||||
- bash: python setup.py install
|
||||
displayName: Build PyTorch from source without test binaries
|
||||
|
||||
# Package PyTorch Wheel
|
||||
- bash: python setup.py bdist_wheel
|
||||
displayName: Package PyTorch Wheel
|
||||
|
||||
# Publish PyTorch Wheel
|
||||
- task: PublishPipelineArtifact@1
|
||||
inputs:
|
||||
targetPath: $(Build.SourcesDirectory)/dist/
|
||||
artifactName: Build_$(Build.BuildNumber)_$(configuration)
|
||||
displayName: Publish PyTorch Wheel to Pipeline Artifacts
|
||||
|
||||
# Verification stage
|
||||
- ${{ if eq(parameters.verify_stage, 'True') }}:
|
||||
# Download PyTorch Wheel
|
||||
- task: DownloadPipelineArtifact@2
|
||||
inputs:
|
||||
artifact: Build_$(Build.BuildNumber)_$(configuration)
|
||||
path: $(Build.SourcesDirectory)/verify
|
||||
displayName: Download PyTorch Wheel
|
||||
|
||||
# Install PyTorch Wheel on Windows
|
||||
- bash: python -m pip install $(Build.SourcesDirectory)/verify/torch*linux*.whl
|
||||
displayName: Install PyTorch Wheel
|
||||
|
||||
# Ensure PyTorch installed correctly from produced wheel
|
||||
- bash: |
|
||||
cd $(Build.SourcesDirectory)/verify
|
||||
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
|
||||
displayName: Check PyTorch correctly installed from wheel
|
||||
|
||||
# Publishing stage
|
||||
- ${{ if eq(parameters.publish_stage, 'True') }}:
|
||||
# Download PyTorch Wheel
|
||||
- task: DownloadPipelineArtifact@2
|
||||
inputs:
|
||||
artifact: Build_$(Build.BuildNumber)_$(configuration)
|
||||
path: $(Build.SourcesDirectory)/publish
|
||||
displayName: Download PyTorch Wheel
|
||||
|
||||
# Publish wheel to Azure Artifacts
|
||||
# The flag continueOnError=true is needed as the artifact to be published
|
||||
# may already exist, because the artifact is differentiated based on the
|
||||
# last commit date.
|
||||
- bash: |
|
||||
export TORCH_VERSION=$(head -c 5 ./version.txt)
|
||||
export LAST_COMMIT=$(git rev-parse --short HEAD)
|
||||
export LAST_COMMIT_DATE=$(git log -1 --pretty=%ad --date=format:%Y%m%d)
|
||||
cd $(Build.SourcesDirectory)/publish
|
||||
export TORCH_WHEEL=$(echo torch*linux*whl)
|
||||
az extension add -n azure-devops
|
||||
echo $ADOTOKEN | az devops login
|
||||
az artifacts universal publish --organization $AZURE_DEVOPS_ARTIFACTS_ORGANIZATION --project $AZURE_DEVOPS_ARTIFACTS_PROJECT --scope project --feed "PyTorch" --name $TORCH_WHEEL --description "PyTorch Official Build Artifact" --version $TORCH_VERSION-$LAST_COMMIT_DATE-$LAST_COMMIT --path .
|
||||
env:
|
||||
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
continueOnError: true
|
||||
displayName: Upload PyTorch Official Build package to Azure Artifacts
|
||||
@ -1,150 +0,0 @@
|
||||
# PyTorch build steps template with Windows images Azure DevOps Instances
|
||||
#
|
||||
# This build depends on 3 parameters set as environment variables in the pipeline:
|
||||
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
|
||||
# - AZURE_DEVOPS_ARTIFACTS_ORGANIZATION: Azure Artifacts Organization name to publish artifacts
|
||||
# - AZURE_DEVOPS_ARTIFACTS_PROJECT: Azure Artifacts Project name to publish artifacts
|
||||
|
||||
parameters:
|
||||
name: ''
|
||||
pool: ''
|
||||
os: ''
|
||||
cuda: ''
|
||||
is_ci_build: False
|
||||
is_official_build: False
|
||||
is_daily_build: False
|
||||
build_stage: False
|
||||
verify_stage: False
|
||||
publish_stage: False
|
||||
customMatrixes: ''
|
||||
|
||||
jobs:
|
||||
- job: ${{parameters.name}}
|
||||
timeoutInMinutes: 300
|
||||
strategy:
|
||||
matrix:
|
||||
${{ insert }}: ${{parameters.customMatrixes}}
|
||||
pool:
|
||||
name: ${{ parameters.pool}}
|
||||
variables:
|
||||
CMAKE_GENERATOR: Ninja
|
||||
PACKAGE_PDBS: 0
|
||||
|
||||
steps:
|
||||
# Prepare for PyTorch build on Windows
|
||||
- template: prepare-build-template.yml
|
||||
parameters:
|
||||
configuration: $(configuration)
|
||||
build_stage: ${{ parameters.build_stage}}
|
||||
|
||||
# Build Stage
|
||||
- ${{ if eq(parameters.build_stage, 'True') }}:
|
||||
# Set up environment variables for specific pipeline build
|
||||
- template: set-environment-variables.yml
|
||||
parameters:
|
||||
os: ${{ parameters.os}}
|
||||
cuda: ${{ parameters.cuda}}
|
||||
is_official_build: ${{ parameters.is_official_build}}
|
||||
|
||||
# Sync and update PyTorch submodules
|
||||
- script: git submodule update --init --recursive --jobs 0
|
||||
displayName: Update PyTorch submodules
|
||||
|
||||
# Build PyTorch and run unit tests - no packaging
|
||||
- ${{ if or(eq(parameters.is_ci_build, 'True'), eq(parameters.is_daily_build, 'True')) }}:
|
||||
# Build PyTorch from source in develop mode with Ninja
|
||||
- script: call activate $(configuration) && python setup.py develop
|
||||
displayName: Build PyTorch from source
|
||||
|
||||
- ${{ if eq(parameters.is_ci_build, 'True') }}:
|
||||
# Run TestTorch unit tests to demonstrate successful PyTorch build
|
||||
- script: call activate $(configuration) && python test\test_torch.py TestTorch
|
||||
displayName: Run TestTorch unit tests
|
||||
|
||||
- ${{ if eq(parameters.is_daily_build, 'True') }}:
|
||||
# Run all unit tests to demonstrate successful PyTorch build
|
||||
- script: call activate $(configuration) && python test/run_test.py --continue-through-error --exclude-jit-executor --verbose
|
||||
displayName: Run all unit tests
|
||||
|
||||
# Run ComponentGovernance
|
||||
- task: ComponentGovernanceComponentDetection@0
|
||||
inputs:
|
||||
scanType: 'Register'
|
||||
verbosity: 'Verbose'
|
||||
alertWarningLevel: 'High'
|
||||
|
||||
# Build PyTorch and produce artifacts for verification stage
|
||||
- ${{ if eq(parameters.is_official_build, 'True') }}:
|
||||
# Build PyTorch from source in install mode with Ninja and exclude test binaries
|
||||
- script: call activate $(configuration) && python setup.py install
|
||||
displayName: Build PyTorch from source without test binaries
|
||||
|
||||
# Package PyTorch Wheel
|
||||
- script: call activate $(configuration) && python setup.py bdist_wheel
|
||||
displayName: Package PyTorch Wheel
|
||||
|
||||
# Publish PyTorch Wheel
|
||||
- task: PublishPipelineArtifact@1
|
||||
inputs:
|
||||
targetPath: $(Build.SourcesDirectory)\dist\
|
||||
artifactName: Build_$(Build.BuildNumber)_$(configuration)
|
||||
displayName: Publish PyTorch Wheel to Pipeline Artifacts
|
||||
|
||||
# Verification Stage
|
||||
- ${{ if eq(parameters.verify_stage, 'True') }}:
|
||||
# Download PyTorch Wheel
|
||||
- task: DownloadPipelineArtifact@2
|
||||
inputs:
|
||||
artifact: Build_$(Build.BuildNumber)_$(configuration)
|
||||
path: $(Build.SourcesDirectory)\verify
|
||||
displayName: Download PyTorch Wheel
|
||||
|
||||
# Install PyTorch Wheel on Windows
|
||||
- script: |
|
||||
call activate $(configuration)
|
||||
cd $(Build.SourcesDirectory)\verify
|
||||
dir torch*win*.whl /b > whl.txt
|
||||
set /p whl= < whl.txt
|
||||
python -m pip install %whl%
|
||||
displayName: Install PyTorch Wheel
|
||||
|
||||
# Ensure PyTorch installed correctly from produced wheel
|
||||
- script: |
|
||||
call activate $(configuration)
|
||||
cd $(Build.SourcesDirectory)\verify
|
||||
python -c "import torch; print('Installed Torch version: ' + torch.__version__)"
|
||||
displayName: Check PyTorch correctly installed from wheel
|
||||
|
||||
# Publishing stage
|
||||
- ${{ if eq(parameters.publish_stage, 'True') }}:
|
||||
# Download PyTorch Wheel
|
||||
- task: DownloadPipelineArtifact@2
|
||||
inputs:
|
||||
artifact: Build_$(Build.BuildNumber)_$(configuration)
|
||||
path: $(Build.SourcesDirectory)\publish
|
||||
displayName: Download PyTorch Wheel
|
||||
|
||||
# Set up Azure Artifacts for Windows
|
||||
# The pip install --upgrade command is a bug fix for Azure CLI on Windows
|
||||
# More info: https://github.com/Azure/azure-cli/issues/16858
|
||||
- script: |
|
||||
pip install --upgrade pip --target \opt\az\lib\python3.6\site-packages\
|
||||
az extension add -n azure-devops
|
||||
displayName: Set up Azure Artifacts download on Windows
|
||||
|
||||
# Publish wheel to Azure Artifacts
|
||||
# The flag continueOnError=true is needed as the artifact to be published
|
||||
# may already exist, because the artifact is differentiated based on the
|
||||
# last commit date.
|
||||
- script: |
|
||||
set /p TORCH_VERSION= < version.txt
|
||||
cd $(Build.SourcesDirectory)\publish
|
||||
git rev-parse --short HEAD > last_commit.txt && set /p LAST_COMMIT= < last_commit.txt
|
||||
git log -1 --pretty=%ad --date=format:%Y%m%d > last_commit_date.txt && set /p LAST_COMMIT_DATE= < last_commit_date.txt
|
||||
dir torch*win*.whl /b > whl.txt && set /p TORCH_WHEEL= < whl.txt
|
||||
echo %ADOTOKEN% | az devops login
|
||||
az artifacts universal publish --organization %AZURE_DEVOPS_ARTIFACTS_ORGANIZATION% --project %AZURE_DEVOPS_ARTIFACTS_PROJECT% --scope project --feed "PyTorch" --name %TORCH_WHEEL% --description "PyTorch Official Build Artifact" --version %TORCH_VERSION:~0,5%-%LAST_COMMIT_DATE%-%LAST_COMMIT% --path .
|
||||
env:
|
||||
ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
continueOnError: true
|
||||
displayName: Upload PyTorch nigthly package to Azure Artifacts
|
||||
@ -1,17 +0,0 @@
|
||||
dependencies:
|
||||
- python=PYTHON_VERSION
|
||||
- numpy
|
||||
- ninja
|
||||
- pyyaml
|
||||
- mkl
|
||||
- mkl-include
|
||||
- setuptools
|
||||
- cmake
|
||||
- cffi
|
||||
- typing_extensions
|
||||
- future
|
||||
- six
|
||||
- requests
|
||||
- dataclasses
|
||||
- pip:
|
||||
- -r ../../requirements.txt
|
||||
@ -1,26 +0,0 @@
|
||||
parameters:
|
||||
name: ''
|
||||
pool: ''
|
||||
customMatrixes: ''
|
||||
|
||||
jobs:
|
||||
- job: ${{parameters.name}}
|
||||
timeoutInMinutes: 600
|
||||
strategy:
|
||||
matrix:
|
||||
${{ insert }}: ${{parameters.customMatrixes}}
|
||||
pool:
|
||||
name: ${{ parameters.pool}}
|
||||
steps:
|
||||
# Clone PyTorch Tests repository
|
||||
- bash: |
|
||||
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
|
||||
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
|
||||
cd pytorch_tests
|
||||
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
|
||||
env:
|
||||
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
displayName: Clone PyTorch Tests repo
|
||||
- bash: |
|
||||
bash $(Build.SourcesDirectory)/pytorch_tests/webapp/notify_webapp.sh
|
||||
displayName: Notify Webapp
|
||||
@ -1,62 +0,0 @@
|
||||
# Build prepare steps for PyTorch on Azure DevOps to build from source.
|
||||
# These steps share between normal build process and semmle security scan tasks
|
||||
|
||||
parameters:
|
||||
build_stage: False
|
||||
configuration: ''
|
||||
|
||||
steps:
|
||||
# End Python tasks that may be lingering over from previous runs
|
||||
# Note: If python.exe isn't currently running, exit code becomes 128,
|
||||
# which fails the run. Here exit code is set to 0 to avoid failed run.
|
||||
- script: |
|
||||
taskkill /f /im python.exe
|
||||
IF %ERRORLEVEL% EQU 128 exit 0
|
||||
displayName: End previous Python processes
|
||||
|
||||
# Clean up env directory in conda for fresh builds and set up conda environment YAML
|
||||
- powershell: |
|
||||
Remove-Item 'C:\Miniconda\envs' -Recurse -ErrorAction Ignore
|
||||
$env:PYTHON_VERSION = $env:SYSTEM_JOBNAME.Substring(3,1) + '.' + $env:SYSTEM_JOBNAME.Substring(4,1)
|
||||
(Get-Content .azure_pipelines\job_templates\common-packages.yml) -replace 'PYTHON_VERSION', $env:PYTHON_VERSION | Out-File -encoding ASCII .azure_pipelines\job_templates\common-packages.yml
|
||||
displayName: Clean up previous environments and Set up conda environment YAML
|
||||
|
||||
# Make conda environment and install required packages
|
||||
- script: |
|
||||
call conda clean --all -y
|
||||
call conda env create -n $(configuration) --file .azure_pipelines\job_templates\common-packages.yml
|
||||
call activate $(configuration)
|
||||
call conda install -c conda-forge libuv=1.39
|
||||
displayName: Set up conda environment for building from source
|
||||
|
||||
- ${{ if eq(parameters.build_stage, 'True') }}:
|
||||
# Install MKL
|
||||
- script: |
|
||||
rmdir /s /q mkl
|
||||
del mkl_2020.2.254.7z
|
||||
curl https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z -k -O
|
||||
7z x -aoa mkl_2020.2.254.7z -omkl
|
||||
displayName: Install MKL
|
||||
|
||||
# Install sccache and randomtemp
|
||||
# Related PyTorch GitHub issue: https://github.com/pytorch/pytorch/issues/25393
|
||||
# Related fix: https://github.com/pytorch/builder/pull/448/
|
||||
- script: |
|
||||
mkdir .\tmp_bin
|
||||
curl -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output .\tmp_bin\sccache.exe
|
||||
curl -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output .\tmp_bin\sccache-cl.exe
|
||||
copy .\tmp_bin\sccache.exe .\tmp_bin\nvcc.exe
|
||||
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.3/randomtemp.exe --output .\tmp_bin\randomtemp.exe
|
||||
displayName: Install sccache and randomtemp
|
||||
condition: not(eq(variables.CUDA_VERSION, ''))
|
||||
|
||||
# CUDA 11.2's CUB directory conflicts with CUDA 10.2 and 10.1
|
||||
# builds, where CUDA 11.2's CUB is injected into non-CUDA
|
||||
# 11.2 builds.
|
||||
- powershell: Remove-Item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include\cub" -Recurse -ErrorAction Ignore
|
||||
displayName: Remove conflicting CUB from CUDA installation
|
||||
condition: not(eq(variables.CUDA_VERSION, ''))
|
||||
|
||||
- powershell: Copy-Item -Path "F:\cuda_11_2\cub\" -Destination "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include" -Recurse
|
||||
displayName: Copy CUDA CUB for CUDA 11.2 build
|
||||
condition: eq(variables.CUDA_VERSION, '112')
|
||||
@ -1,61 +0,0 @@
|
||||
# PyTorch build steps template with Unix images Azure DevOps Instances
|
||||
#
|
||||
# This build depends on 5 parameters set as an environment variables in the pipeline:
|
||||
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
|
||||
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
|
||||
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
|
||||
|
||||
parameters:
|
||||
name: ''
|
||||
pool: ''
|
||||
container_endpoint: ''
|
||||
customMatrixes: ''
|
||||
|
||||
jobs:
|
||||
- job: ${{parameters.name}}
|
||||
timeoutInMinutes: 600
|
||||
strategy:
|
||||
matrix:
|
||||
${{ insert }}: ${{parameters.customMatrixes}}
|
||||
pool:
|
||||
name: ${{ parameters.pool}}
|
||||
variables:
|
||||
DECODE_PERCENTS: false
|
||||
|
||||
steps:
|
||||
# Don't checkout repo contents to save time and CPU compute. Environment variables
|
||||
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
|
||||
- checkout: none
|
||||
|
||||
# Delete pytorch_tests repo from previous builds if exists
|
||||
- bash: rm -rf pytorch_tests/
|
||||
displayName: Delete pytorch_tests repo from previous builds if exists
|
||||
|
||||
# Clone PyTorch Tests repository
|
||||
- bash: |
|
||||
B64_PAT=$(echo -n ":$_ADOTOKEN" | base64)
|
||||
git -c http.extraHeader="Authorization: Basic ${B64_PAT}" clone $(AZURE_DEVOPS_PYTORCH_TESTS_REPO_URL)
|
||||
cd pytorch_tests
|
||||
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
|
||||
env:
|
||||
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
displayName: Clone PyTorch Tests repo
|
||||
|
||||
# Run PyTorch Unit Tests
|
||||
- bash: bash $(Build.SourcesDirectory)/pytorch_tests/scripts/linux/run.sh
|
||||
env:
|
||||
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
|
||||
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
|
||||
_TS_P: $(TS_PAT)
|
||||
_TS_SM_P: $(TS_SM_PAT)
|
||||
_AZUREML_CLONE_PASSWORD: $(AZUREML_CLONE_PASSWORD)
|
||||
_SPPASSWORD: $(SPPASSWORD)
|
||||
displayName: Run PyTorch Unit Tests
|
||||
|
||||
# Tests results are available outside the docker container since
|
||||
# the current directory is mounted as a volume of the container.
|
||||
- task: PublishTestResults@2
|
||||
condition: always()
|
||||
inputs:
|
||||
testResultsFiles: '**/test-*.xml'
|
||||
testRunTitle: 'Publish test results for Python'
|
||||
@ -1,57 +0,0 @@
|
||||
# PyTorch build steps template with Windows images Azure DevOps Instances
|
||||
#
|
||||
# This build depends on 5 parameters set as an environment variables in the pipeline:
|
||||
# - AZURE_DEVOPS_CLI_PAT: Secret var for authenticating to Azure DevOps
|
||||
# - AZURE_STORAGE_KEY: Secret var for authenticating to Azure Storage
|
||||
# - _TS_CLONE_P, _TS_P, _TS_SM_P: Secret vars for specific unit tests
|
||||
|
||||
parameters:
|
||||
name: ''
|
||||
pool: ''
|
||||
customMatrixes: ''
|
||||
|
||||
jobs:
|
||||
- job: ${{parameters.name}}
|
||||
timeoutInMinutes: 600
|
||||
strategy:
|
||||
matrix:
|
||||
${{ insert }}: ${{parameters.customMatrixes}}
|
||||
pool:
|
||||
name: ${{ parameters.pool}}
|
||||
|
||||
steps:
|
||||
# Don't checkout repo contents to save time and CPU compute. Environment variables
|
||||
# related to checkout branch such as $(BUILD_SOURCEBRANCH) are still available.
|
||||
- checkout: none
|
||||
|
||||
# Delete pytorch_tests repo from previous builds if exists
|
||||
- script: if exist "pytorch_tests/" rmdir "pytorch_tests/" /q /s
|
||||
displayName: Delete pytorch_tests repo from previous builds if exists
|
||||
|
||||
# Clone PyTorch Tests repository
|
||||
- powershell: |
|
||||
$env:B64Pat = [Convert]::ToBase64String([System.Text.Encoding]::UTF8.GetBytes(":$env:_ADOTOKEN"))
|
||||
git -c http.extraHeader="Authorization: Basic $env:B64Pat" clone $env:AZURE_DEVOPS_pytorch_tests_REPO_URL
|
||||
cd pytorch_tests
|
||||
git checkout $(PYTORCH_TESTS_CHECKOUT_BRANCH)
|
||||
env:
|
||||
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
displayName: Clone PyTorch Tests repo
|
||||
|
||||
# Run PyTorch Unit Tests
|
||||
- script: call $(Build.SourcesDirectory)\pytorch_tests\scripts\windows\run.bat
|
||||
env:
|
||||
_ADOTOKEN: $(AZURE_DEVOPS_CLI_PAT)
|
||||
_AZURE_STORAGE_KEY: $(AZURE_STORAGE_KEY)
|
||||
_TS_CLONE_P: $(TS_CLONE_PASSWORD)
|
||||
_TS_P: $(TS_PAT)
|
||||
_TS_SM_P: $(TS_SM_PAT)
|
||||
displayName: Run PyTorch Unit Tests
|
||||
|
||||
# Tests results are available outside the docker container since
|
||||
# the current directory is mounted as a volume of the container.
|
||||
- task: PublishTestResults@2
|
||||
condition: always()
|
||||
inputs:
|
||||
testResultsFiles: '**\test-*.xml'
|
||||
testRunTitle: 'Publish test results for Python'
|
||||
@ -1,131 +0,0 @@
|
||||
# Set environment variables for specific configurations
|
||||
|
||||
parameters:
|
||||
is_official_build: False
|
||||
os: ''
|
||||
cuda: ''
|
||||
|
||||
steps:
|
||||
# Environment configuration steps for Ubuntu builds
|
||||
- ${{ if contains(parameters.os, 'ubuntu') }}:
|
||||
# Set configuration specific build flags
|
||||
- ${{ if eq(parameters.is_official_build, True) }}:
|
||||
- bash: |
|
||||
echo "##vso[task.setvariable variable=INSTALL_TEST;]0"
|
||||
echo "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
|
||||
export PYTORCH_VERSION=$(head -c 5 ./version.txt)
|
||||
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
|
||||
displayName: Set configuration-specific build flags
|
||||
|
||||
# Set PyTorch CPU/GPU build flags.
|
||||
- ${{ if contains(parameters.cuda, 'cpu') }}:
|
||||
- bash: |
|
||||
echo "##vso[task.setvariable variable=USE_CUDA;]0"
|
||||
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
|
||||
displayName: Set CUDA-specific build flag for CPU builds
|
||||
|
||||
- ${{ if contains(parameters.cuda, 'gpu') }}:
|
||||
- bash: |
|
||||
echo "##vso[task.setvariable variable=USE_CUDA;]1"
|
||||
echo "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
|
||||
displayName: Set CUDA-specific build flag for GPU builds
|
||||
|
||||
# Set MKL environment variables
|
||||
- bash: |
|
||||
echo "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]/opt/intel/lib:$CMAKE_LIBRARY_PATH"
|
||||
echo "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]/opt/intel/include:$CMAKE_INCLUDE_PATH"
|
||||
displayName: Set MKL paths
|
||||
|
||||
# View current environment variables
|
||||
- bash:
|
||||
printenv
|
||||
displayName: Show environment variables
|
||||
|
||||
# Environment configuration steps for Windows builds
|
||||
- ${{ if contains(parameters.os, 'windows') }}:
|
||||
# Set Conda Lib Path
|
||||
- powershell: Write-Host "##vso[task.setvariable variable=CONDA_LIB_PATH;]C:\Miniconda\envs\$(configuration)\Library\bin"
|
||||
displayName: Set Conda Lib Path
|
||||
|
||||
# Set configuration specific build flags
|
||||
- ${{ if eq(parameters.is_official_build, True) }}:
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=INSTALL_TEST;]0"
|
||||
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_NUMBER;]1"
|
||||
Set-Variable -Name PYTORCH_VERSION -Value (Get-Content .\version.txt).Substring(0,5)
|
||||
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$PYTORCH_VERSION.dev"
|
||||
displayName: Set configuration-specific build flags
|
||||
|
||||
# Set PyTorch CPU/GPU build flags..
|
||||
- ${{ if contains(parameters.cuda, 'cpu') }}:
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=USE_CUDA;]0"
|
||||
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cpu"
|
||||
displayName: Set CUDA-specific build flag for CPU build
|
||||
|
||||
- ${{ if contains(parameters.cuda, 'gpu') }}:
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=USE_CUDA;]1"
|
||||
Write-Host "##vso[task.setvariable variable=PYTORCH_BUILD_VERSION;]$(PYTORCH_BUILD_VERSION).cu$(CUDA_VERSION)"
|
||||
displayName: Set CUDA-specific build flag for GPU build
|
||||
|
||||
# Set CUDA 11.2, 10.2 or 10.1 specific build flags
|
||||
- ${{ if eq(parameters.cuda, 'gpu') }}:
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6"
|
||||
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\"
|
||||
displayName: Set CUDA 11.2 specific build flags
|
||||
condition: eq(variables.CUDA_VERSION, '112')
|
||||
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
|
||||
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\"
|
||||
displayName: Set CUDA 10.2 specific build flags
|
||||
condition: eq(variables.CUDA_VERSION, '102')
|
||||
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=TORCH_CUDA_ARCH_LIST;]3.7+PTX;5.0;6.0;6.1;7.0;7.5"
|
||||
Write-Host "##vso[task.setvariable variable=CUDA_PATH;]C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\"
|
||||
displayName: Set CUDA 10.1 specific build flags
|
||||
condition: eq(variables.CUDA_VERSION, '101')
|
||||
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=CUDA_BIN_PATH;]$env:CUDA_PATH\bin\"
|
||||
Write-Host "##vso[task.setvariable variable=CUDNN_ROOT;]$env:CUDA_PATH"
|
||||
Write-Host "##vso[task.setvariable variable=CUDNN_INCLUDE_DIR;]$env:CUDA_PATH\include\"
|
||||
Write-Host "##vso[task.setvariable variable=CUDNN_LIBRARY;]$env:CUDA_PATH\lib\x64\"
|
||||
Write-Host "##vso[task.prependpath]$env:CUDA_PATH\bin"
|
||||
Write-Host "##vso[task.setvariable variable=TORCH_NVCC_FLAGS;]-Xfatbin -compress-all --no-host-device-move-forward"
|
||||
Write-Host "##vso[task.setvariable variable=THRUST_IGNORE_CUB_VERSION_CHECK;]1"
|
||||
Write-Host "##vso[task.setvariable variable=NVTOOLSEXT_PATH;]C:\Program Files\NVIDIA Corporation\NvToolsExt\"
|
||||
displayName: Set CUDA environment variables
|
||||
|
||||
- powershell: |
|
||||
copy "$(CUDA_BIN_PATH)\cusparse*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\cublas*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\cudart*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\curand*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\cufft*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\cusolver*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\cudnn*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CUDA_BIN_PATH)\nvrtc*64_*.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CONDA_LIB_PATH)\libiomp*5md.dll" $(Build.SourcesDirectory)\torch\lib
|
||||
copy "$(CONDA_LIB_PATH)\uv.dll" $(Build.SourcesDirectory)\torch\lib
|
||||
displayName: Copy CUDA/cuDNN/libomp/libuv dlls to torch\lib
|
||||
|
||||
# Set MKL, sccache and randomtemp environment variables
|
||||
- powershell: |
|
||||
Write-Host "##vso[task.setvariable variable=CMAKE_INCLUDE_PATH;]$(Build.SourcesDirectory)\mkl\include"
|
||||
Write-Host "##vso[task.setvariable variable=CMAKE_LIBRARY_PATH;]$(Build.SourcesDirectory)\mkl\lib;$env:CMAKE_LIBRARY_PATH"
|
||||
Write-Host "##vso[task.setvariable variable=ADDITIONAL_PATH;]$(Build.SourcesDirectory)\tmp_bin"
|
||||
Write-Host "##vso[task.setvariable variable=SCCACHE_IDLE_TIMEOUT;]1500"
|
||||
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\nvcc.exe"
|
||||
Write-Host "##vso[task.setvariable variable=CUDA_NVCC_EXECUTABLE;]$(Build.SourcesDirectory)\tmp_bin\randomtemp.exe"
|
||||
Write-Host "##vso[task.setvariable variable=RANDOMTEMP_BASEDIR;]$(Build.SourcesDirectory)\tmp_bin"
|
||||
displayName: Set MKL, sccache and randomtemp environment variables
|
||||
|
||||
# View current environment variables
|
||||
- script:
|
||||
set
|
||||
displayName: Show environment variables
|
||||
@ -1,14 +0,0 @@
|
||||
# Main logic to initiate wait for PR artifact to be ready
|
||||
|
||||
steps:
|
||||
- task: InvokeRESTAPI@1
|
||||
displayName: 'Wait for job success and wheel ready'
|
||||
timeoutInMinutes: 60
|
||||
inputs:
|
||||
connectionType: 'connectedServiceName'
|
||||
serviceConnection: circleciconn
|
||||
method: 'POST'
|
||||
headers: '{"Content-Type":"application/json", "BranchName":"$(_TARGET_BRANCH_TO_CHECK)", "JobName":"$(TARGET_CIRCLECI_BUILD_PR)", "PRNumber":"$(_TARGET_PR_NUMBER)", "TargetCommit":"$(_TARGET_COMMIT)", "PlanUrl":"$(System.CollectionUri)", "ProjectId":"$(System.TeamProjectId)", "HubName":"$(System.HostType)", "PlanId":"$(System.PlanId)", "JobId":"$(System.JobId)", "TimelineId":"$(System.TimelineId)", "TaskInstanceId":"$(System.TaskInstanceId)", "AuthToken":"$(System.AccessToken)"}'
|
||||
body: ''
|
||||
urlSuffix: 'api/JobStatus'
|
||||
waitForCompletion: true
|
||||
@ -1,92 +0,0 @@
|
||||
# Initiate 5 agentless-server waiting jobs to check on the
|
||||
# status of PR artifact builds, for a maximum wait time of
|
||||
# 11*60 min=660 mins. These jobs will pass immediately
|
||||
# once targeted CircleCI build is ready.
|
||||
|
||||
jobs:
|
||||
- job: checkjob1
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob2
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob1
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob3
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob2
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob4
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob3
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob5
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob4
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob6
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob5
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob7
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob6
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob8
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob7
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob9
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob8
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob10
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob9
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
|
||||
- job: checkjob11
|
||||
pool: server
|
||||
timeoutInMinutes: 60
|
||||
dependsOn: checkjob10
|
||||
continueOnError: true
|
||||
steps:
|
||||
- template: wheel-wait-job-template.yml
|
||||
@ -1,60 +0,0 @@
|
||||
# PyTorch Nightly PyTorch Tests Builds Pipeline on Azure DevOps
|
||||
#
|
||||
# This pipeline runs custom PyTorch unit-tests on nightly
|
||||
# PyTorch wheels.
|
||||
|
||||
stages:
|
||||
- stage: 'NightlyCustomTests'
|
||||
displayName: 'Run custom unit tests on PyTorch wheels'
|
||||
jobs:
|
||||
- template: job_templates/pytorch-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: $(BUILD_POOL_LIN_1)
|
||||
customMatrixes:
|
||||
Nightly_Custom_Tests:
|
||||
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_1)
|
||||
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_1)
|
||||
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_1)
|
||||
_RUN_TESTS: $(RUN_TESTS_LIN)
|
||||
|
||||
- template: job_templates/pytorch-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: $(BUILD_POOL_LIN_2)
|
||||
customMatrixes:
|
||||
Nightly_Custom_Tests:
|
||||
_DOCKER_IMAGE: $(DOCKER_IMAGE_LIN_2)
|
||||
_PYTHON_VERSION: $(PYTHON_VERSION_LIN_2)
|
||||
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_LIN_2)
|
||||
_RUN_TESTS: $(RUN_TESTS_LIN)
|
||||
|
||||
- template: job_templates/pytorch-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: $(BUILD_POOL_WIN_1)
|
||||
customMatrixes:
|
||||
Nightly_Custom_Tests:
|
||||
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_1)
|
||||
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_1)
|
||||
_RUN_TESTS: $(RUN_TESTS_WIN)
|
||||
|
||||
- template: job_templates/pytorch-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: $(BUILD_POOL_WIN_2)
|
||||
customMatrixes:
|
||||
Nightly_Custom_Tests:
|
||||
_PYTHON_VERSION: $(PYTHON_VERSION_WIN_2)
|
||||
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_WIN_2)
|
||||
_RUN_TESTS: $(RUN_TESTS_WIN)
|
||||
|
||||
- stage: 'NotifyWebapp'
|
||||
displayName: 'Notify Webapp that pipeline is finished'
|
||||
dependsOn: NightlyCustomTests
|
||||
condition: succeededOrFailed()
|
||||
jobs:
|
||||
- template: job_templates/notify-webapp-template.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU
|
||||
pool: $(BUILD_POOL_LIN_1)
|
||||
@ -1,62 +0,0 @@
|
||||
# PyTorch PR PyTorch Tests Builds Pipeline on Azure DevOps
|
||||
#
|
||||
# This pipeline:
|
||||
# 1) ensures that CircleCI builds for a given PR
|
||||
# have finished, and that its artifacts are
|
||||
# ready for download
|
||||
# 2) runs custom PyTorch unit-tests on PyTorch
|
||||
# wheels generated during PR builds.
|
||||
|
||||
resources:
|
||||
webhooks:
|
||||
- webhook: GitHubPyTorchPRTrigger
|
||||
connection: GitHubPyTorchPRTriggerConnection
|
||||
filters:
|
||||
- path: repositoryName
|
||||
value: pytorch_tests
|
||||
|
||||
stages:
|
||||
- stage: 'EnsureArtifactsReady'
|
||||
displayName: 'Ensure PyTorch PR Artifacts are ready'
|
||||
jobs:
|
||||
- template: job_templates/wheel-wait-template.yml
|
||||
variables:
|
||||
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
|
||||
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
|
||||
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
|
||||
|
||||
- stage: 'PRCustomTests'
|
||||
displayName: 'Run custom unit tests on PyTorch wheels'
|
||||
dependsOn: EnsureArtifactsReady
|
||||
condition: succeeded()
|
||||
jobs:
|
||||
- template: job_templates/pytorch-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: $(BUILD_POOL_PR)
|
||||
customMatrixes:
|
||||
PR_Custom_Tests:
|
||||
_PYTHON_VERSION: $(PYTHON_VERSION_PR)
|
||||
_CUDA_BUILD_VERSION: $(CUDA_BUILD_VERSION_PR)
|
||||
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
|
||||
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
|
||||
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
|
||||
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
|
||||
_DOCKER_IMAGE: $(DOCKER_IMAGE_PR)
|
||||
_RUN_TESTS: $(RUN_TESTS_PR)
|
||||
|
||||
- stage: 'NotifyWebapp'
|
||||
displayName: 'Notify Webapp that pipeline is finished'
|
||||
dependsOn: PRCustomTests
|
||||
condition: succeededOrFailed()
|
||||
jobs:
|
||||
- template: job_templates/notify-webapp-template.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU
|
||||
pool: $(BUILD_POOL_LIN_1)
|
||||
customMatrixes:
|
||||
PR_Notify_WebApp:
|
||||
_TARGET_CIRCLECI_BUILD: $(TARGET_CIRCLECI_BUILD_PR)
|
||||
_TARGET_BRANCH_TO_CHECK: ${{parameters.GitHubPyTorchPRTrigger.TARGET_BRANCH_TO_CHECK_AZ_DEVOPS_PR}}
|
||||
_TARGET_PR_NUMBER: ${{parameters.GitHubPyTorchPRTrigger.PR_NUMBER}}
|
||||
_TARGET_COMMIT: ${{parameters.GitHubPyTorchPRTrigger.TARGET_COMMIT}}
|
||||
@ -1,224 +0,0 @@
|
||||
# PyTorch Official Builds Pipeline on Azure DevOps
|
||||
#
|
||||
# This pipeline:
|
||||
# 1) builds PyTorch on all available configurations
|
||||
# 2) verifies PyTorch artifacts by installing them in a clean environment
|
||||
# and checking torch.__version_
|
||||
# 3) publishes official PyTorch artifacts to Azure DevOps Artifacts for consumption
|
||||
|
||||
stages:
|
||||
- stage: 'Build'
|
||||
displayName: 'Build PyTorch'
|
||||
jobs:
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: 'PyTorch-Linux-CPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_official_build: True
|
||||
os: ubuntu
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: ubuntu_1804_py_38_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
|
||||
Py_37:
|
||||
configuration: ubuntu_1804_py_37_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
|
||||
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: 'PyTorch-Linux-GPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
build_stage: True
|
||||
is_official_build: True
|
||||
os: ubuntu
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_765:
|
||||
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: 'PyTorch-Win-CPU'
|
||||
build_stage: True
|
||||
is_official_build: True
|
||||
os: windows
|
||||
cuda: cpu
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: windows_2019_py_38_cpu
|
||||
Py_37:
|
||||
configuration: windows_2019_py_37_cpu
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: 'PyTorch-Win-GPU'
|
||||
build_stage: True
|
||||
is_official_build: True
|
||||
os: windows
|
||||
cuda: gpu
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: windows_2019_py_39_cuda_112_cudnn_810
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_765:
|
||||
configuration: windows_2019_py_38_cuda_102_cudnn_765
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_764:
|
||||
configuration: windows_2019_py_37_cuda_101_cudnn_764
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- stage: 'Verify'
|
||||
displayName: 'Verify PyTorch wheels'
|
||||
dependsOn: Build
|
||||
condition: succeeded()
|
||||
jobs:
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: 'PyTorch-Linux-CPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
verify_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: ubuntu_1804_py_38_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
|
||||
Py_37:
|
||||
configuration: ubuntu_1804_py_37_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
|
||||
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: 'PyTorch-Linux-GPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
verify_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_765:
|
||||
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: 'PyTorch-Win-CPU'
|
||||
verify_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: windows_2019_py_38_cpu
|
||||
Py_37:
|
||||
configuration: windows_2019_py_37_cpu
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: 'PyTorch-Win-GPU'
|
||||
verify_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: windows_2019_py_39_cuda_112_cudnn_810
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_765:
|
||||
configuration: windows_2019_py_38_cuda_102_cudnn_765
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_764:
|
||||
configuration: windows_2019_py_37_cuda_101_cudnn_764
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- stage: 'Publish'
|
||||
displayName: 'Publish PyTorch wheels'
|
||||
dependsOn: Verify
|
||||
condition: succeeded()
|
||||
jobs:
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_CPU_docker
|
||||
pool: 'PyTorch-Linux-CPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
publish_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: ubuntu_1804_py_38_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cpu_dev
|
||||
Py_37:
|
||||
configuration: ubuntu_1804_py_37_cpu
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cpu_dev
|
||||
|
||||
- template: job_templates/build-verify-publish-template-unix.yml
|
||||
parameters:
|
||||
name: ubuntu_1804_GPU_docker
|
||||
pool: 'PyTorch-Linux-GPU'
|
||||
container_endpoint: pytorchms.azurecr.io
|
||||
publish_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_39_cuda_112_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_39_cuda_112_cudnn_8_dev
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_810:
|
||||
configuration: ubuntu_1804_py_38_cuda_102_cudnn_810
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_38_cuda_102_cudnn_8_dev
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_765:
|
||||
configuration: ubuntu_1804_py_37_cuda_101_cudnn_765
|
||||
container_image: pytorchms.azurecr.io/ubuntu_1804_py_37_cuda_101_cudnn_7_dev
|
||||
CUDA_VERSION: 101
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_CPU
|
||||
pool: 'PyTorch-Win-CPU'
|
||||
publish_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_38:
|
||||
configuration: windows_2019_py_38_cpu
|
||||
Py_37:
|
||||
configuration: windows_2019_py_37_cpu
|
||||
|
||||
- template: job_templates/build-verify-publish-template-win.yml
|
||||
parameters:
|
||||
name: windows_2019_GPU
|
||||
pool: 'PyTorch-Win-GPU'
|
||||
publish_stage: True
|
||||
is_official_build: True
|
||||
customMatrixes:
|
||||
Py_39_CUDA_112_cuDNN_810:
|
||||
configuration: windows_2019_py_39_cuda_112_cudnn_810
|
||||
CUDA_VERSION: 112
|
||||
Py_38_CUDA_102_cuDNN_765:
|
||||
configuration: windows_2019_py_38_cuda_102_cudnn_765
|
||||
CUDA_VERSION: 102
|
||||
Py_37_CUDA_101_cuDNN_764:
|
||||
configuration: windows_2019_py_37_cuda_101_cudnn_764
|
||||
CUDA_VERSION: 101
|
||||
13
.bazelrc
13
.bazelrc
@ -1,13 +0,0 @@
|
||||
build --copt=--std=c++14
|
||||
build --copt=-I.
|
||||
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
|
||||
|
||||
# Configuration to disable tty features for environments like CI
|
||||
build:no-tty --curses no
|
||||
build:no-tty --progress_report_interval 10
|
||||
build:no-tty --show_progress_rate_limit 10
|
||||
|
||||
# Configuration to build with GPU support
|
||||
build:gpu --define=cuda=true
|
||||
# define a separate build folder for faster switching between configs
|
||||
build:gpu --platform_suffix=-gpu
|
||||
@ -1 +0,0 @@
|
||||
4.2.1
|
||||
@ -31,7 +31,7 @@ Usage
|
||||
1. Make changes to these scripts.
|
||||
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
|
||||
|
||||
You'll see a build failure on GitHub if the scripts don't agree with the checked-in version.
|
||||
You'll see a build failure on TravisCI if the scripts don't agree with the checked-in version.
|
||||
|
||||
|
||||
Motivation
|
||||
@ -55,7 +55,7 @@ Future direction
|
||||
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
|
||||
|
||||
In contrast with a full recursive tree traversal of configuration dimensions,
|
||||
> in the future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
|
||||
> in the future future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
|
||||
|
||||
----------------
|
||||
----------------
|
||||
@ -71,9 +71,9 @@ A **binary configuration** is a collection of
|
||||
* release or nightly
|
||||
* releases are stable, nightlies are beta and built every night
|
||||
* python version
|
||||
* linux: 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
|
||||
* macos: 3.6, 3.7, 3.8
|
||||
* windows: 3.6, 3.7, 3.8
|
||||
* linux: 2.7m, 2.7mu, 3.5m, 3.6m 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
|
||||
* macos: 2.7, 3.5, 3.6, 3.7
|
||||
* windows: 3.5, 3.6, 3.7
|
||||
* cpu version
|
||||
* cpu, cuda 9.0, cuda 10.0
|
||||
* The supported cuda versions occasionally change
|
||||
@ -90,7 +90,7 @@ The binaries are built in CircleCI. There are nightly binaries built every night
|
||||
|
||||
We have 3 types of binary packages
|
||||
|
||||
* pip packages - nightlies are stored on s3 (pip install -f \<a s3 url\>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
|
||||
* pip packages - nightlies are stored on s3 (pip install -f <a s3 url>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
|
||||
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
|
||||
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
|
||||
* shared with dependencies (the only supported option for Windows)
|
||||
@ -104,16 +104,16 @@ All binaries are built in CircleCI workflows except Windows. There are checked-i
|
||||
|
||||
Some quick vocab:
|
||||
|
||||
* A \**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
|
||||
* A\**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on\https://github.com/pytorch/pytorch/blob/master/.circleci/config.yml to see the workflows.
|
||||
* **jobs** are a sequence of '**steps**'
|
||||
* **steps** are usually just a bash script or a builtin CircleCI command. *All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
|
||||
* **steps** are usually just a bash script or a builtin CircleCI command.* All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
|
||||
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
|
||||
|
||||
## How are the workflows structured?
|
||||
|
||||
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
|
||||
|
||||
1. binary_builds
|
||||
1. binarybuilds
|
||||
1. every day midnight EST
|
||||
2. linux: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
|
||||
3. macos: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/macos-binary-build-defaults.yml
|
||||
@ -144,7 +144,7 @@ The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build,
|
||||
|
||||
## How are the jobs structured?
|
||||
|
||||
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources. Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
|
||||
The jobs are in https://github.com/pytorch/pytorch/tree/master/.circleci/verbatim-sources . Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/master/.circleci/scripts .
|
||||
|
||||
* Linux jobs: https://github.com/pytorch/pytorch/blob/master/.circleci/verbatim-sources/linux-binary-build-defaults.yml
|
||||
* binary_linux_build.sh
|
||||
@ -178,7 +178,8 @@ CircleCI creates a final yaml file by inlining every <<* segment, so if we were
|
||||
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
|
||||
|
||||
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
|
||||
* linux test jobs use the machine executor in order for them to properly interface with GPUs since docker executors cannot execute with attached GPUs
|
||||
* linux test jobs use the machine executor and spin up their own docker. Why this nonsense? It's cause we run nvidia-docker for our GPU tests; any code that calls into the CUDA runtime needs to be run on nvidia-docker. To run a nvidia-docker you need to install some nvidia packages on the host machine and then call docker with the '—runtime nvidia' argument. CircleCI doesn't support this, so we have to do it ourself.
|
||||
* This is not just a mere inconvenience. **This blocks all of our linux tests from using more than 2 cores.** But there is nothing that we can do about it, but wait for a fix on circleci's side. Right now, we only run some smoke tests (some simple imports) on the binaries, but this also affects non-binary test jobs.
|
||||
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
|
||||
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
|
||||
|
||||
@ -204,7 +205,7 @@ TODO: fill in stuff
|
||||
|
||||
## Overview
|
||||
|
||||
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder), which is a repo that defines how all the binaries are built. The relevant code is
|
||||
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder) , which is a repo that defines how all the binaries are built. The relevant code is
|
||||
|
||||
|
||||
```
|
||||
@ -260,7 +261,7 @@ Linux, MacOS and Windows use the same code flow for the conda builds.
|
||||
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
|
||||
|
||||
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
|
||||
tl;dr on conda-build is
|
||||
tldr; on conda-build is
|
||||
|
||||
1. Creates a brand new conda environment, based off of deps in the meta.yaml
|
||||
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
|
||||
@ -270,7 +271,7 @@ tl;dr on conda-build is
|
||||
4. Runs some simple import tests (if specified in the meta.yaml)
|
||||
5. Saves the finished package as a tarball
|
||||
|
||||
The build.sh we use is essentially a wrapper around `python setup.py build`, but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
|
||||
The build.sh we use is essentially a wrapper around ```python setup.py build``` , but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
|
||||
|
||||
The entrypoint file `builder/conda/build_conda.sh` is complicated because
|
||||
|
||||
@ -343,6 +344,7 @@ All linux builds occur in docker images. The docker images are
|
||||
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
|
||||
* Also used for cpu builds
|
||||
* pytorch/manylinux-cuda90
|
||||
* pytorch/manylinux-cuda92
|
||||
* pytorch/manylinux-cuda100
|
||||
* Also used for cpu builds
|
||||
|
||||
@ -354,15 +356,15 @@ The Dockerfiles are available in pytorch/builder, but there is no circleci job o
|
||||
|
||||
# How to manually rebuild the binaries
|
||||
|
||||
tl;dr make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
|
||||
tldr; make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
|
||||
|
||||
Sometimes we want to push a change to master and then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/master/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
|
||||
|
||||
## How to test changes to the binaries via .circleci
|
||||
|
||||
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using `.circleci/regenerate.sh` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
|
||||
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using ```.circleci/regenerate.sh``` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
|
||||
|
||||
```sh
|
||||
```
|
||||
# Make your changes
|
||||
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
|
||||
|
||||
@ -407,7 +409,7 @@ The advantage of this flow is that you can make new changes to the base commit a
|
||||
|
||||
You can build Linux binaries locally easily using docker.
|
||||
|
||||
```sh
|
||||
```
|
||||
# Run the docker
|
||||
# Use the correct docker image, pytorch/conda-cuda used here as an example
|
||||
#
|
||||
@ -417,6 +419,8 @@ You can build Linux binaries locally easily using docker.
|
||||
# in the docker container then you will see path/to/foo/baz on your local
|
||||
# machine. You could also clone the pytorch and builder repos in the docker.
|
||||
#
|
||||
# If you're building a CUDA binary then use `nvidia-docker run` instead, see below.
|
||||
#
|
||||
# If you know how, add ccache as a volume too and speed up everything
|
||||
docker run \
|
||||
-v your/pytorch/repo:/pytorch \
|
||||
@ -440,7 +444,9 @@ export DESIRED_CUDA=cpu
|
||||
|
||||
**Building CUDA binaries on docker**
|
||||
|
||||
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though it’s gonna take a long time).
|
||||
To build a CUDA binary you need to use `nvidia-docker run` instead of just `docker run` (or you can manually pass `--runtime=nvidia`). This adds some needed libraries and things to build CUDA stuff.
|
||||
|
||||
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though it’s gonna take a loong time).
|
||||
|
||||
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
|
||||
|
||||
@ -450,7 +456,7 @@ There’s no easy way to generate reproducible hermetic MacOS environments. If y
|
||||
|
||||
But if you want to try, then I’d recommend
|
||||
|
||||
```sh
|
||||
```
|
||||
# Create a new terminal
|
||||
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
|
||||
# know how to do
|
||||
|
||||
@ -5,6 +5,9 @@ for "smoketest" builds.
|
||||
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
|
||||
These tree nodes encapsulate the logic for whether a branch of the hierarchy
|
||||
should be "pruned".
|
||||
|
||||
In addition to generating config.yml content, the tree is also traversed
|
||||
to produce a visualization of config dimensions.
|
||||
"""
|
||||
|
||||
from collections import OrderedDict
|
||||
@ -25,17 +28,16 @@ DEPS_INCLUSION_DIMENSIONS = [
|
||||
]
|
||||
|
||||
|
||||
def get_processor_arch_name(gpu_version):
|
||||
return "cpu" if not gpu_version else (
|
||||
"cu" + gpu_version.strip("cuda") if gpu_version.startswith("cuda") else gpu_version
|
||||
)
|
||||
def get_processor_arch_name(cuda_version):
|
||||
return "cpu" if not cuda_version else "cu" + cuda_version
|
||||
|
||||
|
||||
LINUX_PACKAGE_VARIANTS = OrderedDict(
|
||||
manywheel=[
|
||||
"3.5m",
|
||||
"3.6m",
|
||||
"3.7m",
|
||||
"3.8m",
|
||||
"3.9m"
|
||||
],
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
@ -44,7 +46,7 @@ LINUX_PACKAGE_VARIANTS = OrderedDict(
|
||||
)
|
||||
|
||||
CONFIG_TREE_DATA = OrderedDict(
|
||||
linux=(dimensions.GPU_VERSIONS, LINUX_PACKAGE_VARIANTS),
|
||||
linux=(dimensions.CUDA_VERSIONS, LINUX_PACKAGE_VARIANTS),
|
||||
macos=([None], OrderedDict(
|
||||
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
@ -52,28 +54,18 @@ CONFIG_TREE_DATA = OrderedDict(
|
||||
"3.7",
|
||||
],
|
||||
)),
|
||||
macos_arm64=([None], OrderedDict(
|
||||
wheel=[
|
||||
"3.8",
|
||||
"3.9",
|
||||
],
|
||||
conda=[
|
||||
"3.8",
|
||||
"3.9",
|
||||
windows=(dimensions.CUDA_VERSIONS, OrderedDict(
|
||||
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
"3.7",
|
||||
],
|
||||
)),
|
||||
windows=(
|
||||
[v for v in dimensions.GPU_VERSIONS if v not in dimensions.ROCM_VERSION_LABELS],
|
||||
OrderedDict(
|
||||
wheel=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
conda=dimensions.STANDARD_PYTHON_VERSIONS,
|
||||
libtorch=[
|
||||
"3.7",
|
||||
],
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
CONFIG_TREE_DATA_NO_WINDOWS = CONFIG_TREE_DATA.copy()
|
||||
CONFIG_TREE_DATA_NO_WINDOWS.pop("windows")
|
||||
|
||||
# GCC config variants:
|
||||
#
|
||||
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
|
||||
@ -108,12 +100,12 @@ class TopLevelNode(ConfigNode):
|
||||
|
||||
|
||||
class OSConfigNode(ConfigNode):
|
||||
def __init__(self, parent, os_name, gpu_versions, py_tree):
|
||||
def __init__(self, parent, os_name, cuda_versions, py_tree):
|
||||
super(OSConfigNode, self).__init__(parent, os_name)
|
||||
|
||||
self.py_tree = py_tree
|
||||
self.props["os_name"] = os_name
|
||||
self.props["gpu_versions"] = gpu_versions
|
||||
self.props["cuda_versions"] = cuda_versions
|
||||
|
||||
def get_children(self):
|
||||
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
|
||||
@ -126,14 +118,13 @@ class PackageFormatConfigNode(ConfigNode):
|
||||
self.props["python_versions"] = python_versions
|
||||
self.props["package_format"] = package_format
|
||||
|
||||
|
||||
def get_children(self):
|
||||
if self.find_prop("os_name") == "linux":
|
||||
return [LinuxGccConfigNode(self, v) for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]]
|
||||
elif self.find_prop("os_name") == "windows" and self.find_prop("package_format") == "libtorch":
|
||||
return [WindowsLibtorchConfigNode(self, v) for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS]
|
||||
else:
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
|
||||
|
||||
|
||||
class LinuxGccConfigNode(ConfigNode):
|
||||
@ -143,22 +134,14 @@ class LinuxGccConfigNode(ConfigNode):
|
||||
self.props["gcc_config_variant"] = gcc_config_variant
|
||||
|
||||
def get_children(self):
|
||||
gpu_versions = self.find_prop("gpu_versions")
|
||||
cuda_versions = self.find_prop("cuda_versions")
|
||||
|
||||
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
|
||||
# see https://github.com/pytorch/pytorch/issues/20066
|
||||
if self.find_prop("gcc_config_variant") == 'devtoolset7':
|
||||
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
|
||||
cuda_versions = filter(lambda x: x != "90", cuda_versions)
|
||||
|
||||
# XXX disabling conda rocm build since docker images are not there
|
||||
if self.find_prop("package_format") == 'conda':
|
||||
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
|
||||
|
||||
# XXX libtorch rocm build is temporarily disabled
|
||||
if self.find_prop("package_format") == 'libtorch':
|
||||
gpu_versions = filter(lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions)
|
||||
|
||||
return [ArchConfigNode(self, v) for v in gpu_versions]
|
||||
return [ArchConfigNode(self, v) for v in cuda_versions]
|
||||
|
||||
|
||||
class WindowsLibtorchConfigNode(ConfigNode):
|
||||
@ -168,14 +151,14 @@ class WindowsLibtorchConfigNode(ConfigNode):
|
||||
self.props["libtorch_config_variant"] = libtorch_config_variant
|
||||
|
||||
def get_children(self):
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
|
||||
return [ArchConfigNode(self, v) for v in self.find_prop("cuda_versions")]
|
||||
|
||||
|
||||
class ArchConfigNode(ConfigNode):
|
||||
def __init__(self, parent, gpu):
|
||||
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(gpu))
|
||||
def __init__(self, parent, cu):
|
||||
super(ArchConfigNode, self).__init__(parent, get_processor_arch_name(cu))
|
||||
|
||||
self.props["gpu"] = gpu
|
||||
self.props["cu"] = cu
|
||||
|
||||
def get_children(self):
|
||||
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
|
||||
@ -188,6 +171,8 @@ class PyVersionConfigNode(ConfigNode):
|
||||
self.props["pyver"] = pyver
|
||||
|
||||
def get_children(self):
|
||||
|
||||
smoke = self.find_prop("smoke")
|
||||
package_format = self.find_prop("package_format")
|
||||
os_name = self.find_prop("os_name")
|
||||
|
||||
|
||||
@ -1,15 +1,15 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import cimodel.data.simple.util.branch_filters as branch_filters
|
||||
import cimodel.data.binary_build_data as binary_build_data
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
|
||||
class Conf(object):
|
||||
def __init__(self, os, gpu_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
|
||||
def __init__(self, os, cuda_version, pydistro, parms, smoke, libtorch_variant, gcc_config_variant, libtorch_config_variant):
|
||||
|
||||
self.os = os
|
||||
self.gpu_version = gpu_version
|
||||
self.cuda_version = cuda_version
|
||||
self.pydistro = pydistro
|
||||
self.parms = parms
|
||||
self.smoke = smoke
|
||||
@ -18,7 +18,7 @@ class Conf(object):
|
||||
self.libtorch_config_variant = libtorch_config_variant
|
||||
|
||||
def gen_build_env_parms(self):
|
||||
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.gpu_version)]
|
||||
elems = [self.pydistro] + self.parms + [binary_build_data.get_processor_arch_name(self.cuda_version)]
|
||||
if self.gcc_config_variant is not None:
|
||||
elems.append(str(self.gcc_config_variant))
|
||||
if self.libtorch_config_variant is not None:
|
||||
@ -27,19 +27,7 @@ class Conf(object):
|
||||
|
||||
def gen_docker_image(self):
|
||||
if self.gcc_config_variant == 'gcc5.4_cxx11-abi':
|
||||
if self.gpu_version is None:
|
||||
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
|
||||
else:
|
||||
return miniutils.quote(
|
||||
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
|
||||
)
|
||||
if self.pydistro == "conda":
|
||||
if self.gpu_version is None:
|
||||
return miniutils.quote("pytorch/conda-builder:cpu")
|
||||
else:
|
||||
return miniutils.quote(
|
||||
f"pytorch/conda-builder:{self.gpu_version}"
|
||||
)
|
||||
return miniutils.quote("pytorch/pytorch-binary-docker-image-ubuntu16.04:latest")
|
||||
|
||||
docker_word_substitution = {
|
||||
"manywheel": "manylinux",
|
||||
@ -49,12 +37,9 @@ class Conf(object):
|
||||
docker_distro_prefix = miniutils.override(self.pydistro, docker_word_substitution)
|
||||
|
||||
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
|
||||
# TODO cuda images should consolidate into tag-base images similar to rocm
|
||||
alt_docker_suffix = "cuda102" if not self.gpu_version else (
|
||||
"rocm:" + self.gpu_version.strip("rocm") if self.gpu_version.startswith("rocm") else self.gpu_version)
|
||||
docker_distro_suffix = alt_docker_suffix if self.pydistro != "conda" else (
|
||||
"cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
|
||||
return miniutils.quote("pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix)
|
||||
alt_docker_suffix = self.cuda_version or "102"
|
||||
docker_distro_suffix = "" if self.pydistro == "conda" else alt_docker_suffix
|
||||
return miniutils.quote("pytorch/" + docker_distro_prefix + "-cuda" + docker_distro_suffix)
|
||||
|
||||
def get_name_prefix(self):
|
||||
return "smoke" if self.smoke else "binary"
|
||||
@ -79,89 +64,67 @@ class Conf(object):
|
||||
job_def = OrderedDict()
|
||||
job_def["name"] = self.gen_build_name(phase, nightly)
|
||||
job_def["build_environment"] = miniutils.quote(" ".join(self.gen_build_env_parms()))
|
||||
job_def["requires"] = ["setup"]
|
||||
if self.smoke:
|
||||
job_def["requires"] = [
|
||||
"update_s3_htmls",
|
||||
]
|
||||
job_def["filters"] = branch_filters.gen_filter_dict(
|
||||
branches_list=["postnightly"],
|
||||
)
|
||||
job_def["requires"].append("update_s3_htmls_for_nightlies")
|
||||
job_def["requires"].append("update_s3_htmls_for_nightlies_devtoolset7")
|
||||
job_def["filters"] = {"branches": {"only": "postnightly"}}
|
||||
else:
|
||||
filter_branch = r"/.*/"
|
||||
job_def["filters"] = branch_filters.gen_filter_dict(
|
||||
branches_list=[filter_branch],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
)
|
||||
filter_branches = ["nightly"]
|
||||
# we only want to add the release branch filter if we aren't
|
||||
# uploading
|
||||
if phase not in ["upload"]:
|
||||
filter_branches.append(r"/release\/.*/")
|
||||
job_def["filters"] = {
|
||||
"branches": {
|
||||
"only": filter_branches
|
||||
},
|
||||
# Will run on tags like v1.5.0-rc1, etc.
|
||||
"tags": {
|
||||
# Using a raw string here to avoid having to escape
|
||||
# anything
|
||||
"only": r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
|
||||
}
|
||||
}
|
||||
if self.libtorch_variant:
|
||||
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
|
||||
if phase == "test":
|
||||
if not self.smoke:
|
||||
job_def["requires"] = [self.gen_build_name("build", nightly)]
|
||||
if not (self.smoke and self.os == "macos") and self.os != "windows":
|
||||
job_def["requires"].append(self.gen_build_name("build", nightly))
|
||||
if not (self.smoke and self.os == "macos"):
|
||||
job_def["docker_image"] = self.gen_docker_image()
|
||||
|
||||
# fix this. only works on cuda not rocm
|
||||
if self.os != "windows" and self.gpu_version:
|
||||
if self.cuda_version:
|
||||
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
else:
|
||||
if self.os == "linux" and phase != "upload":
|
||||
job_def["docker_image"] = self.gen_docker_image()
|
||||
|
||||
if phase == "test":
|
||||
if self.gpu_version:
|
||||
if self.os == "windows":
|
||||
job_def["executor"] = "windows-with-nvidia-gpu"
|
||||
else:
|
||||
job_def["resource_class"] = "gpu.medium"
|
||||
if self.cuda_version:
|
||||
job_def["resource_class"] = "gpu.medium"
|
||||
if phase == "upload":
|
||||
job_def["context"] = "org-member"
|
||||
job_def["requires"] = ["setup", self.gen_build_name(upload_phase_dependency, nightly)]
|
||||
|
||||
os_name = miniutils.override(self.os, {"macos": "mac"})
|
||||
job_name = "_".join([self.get_name_prefix(), os_name, phase])
|
||||
return {job_name : job_def}
|
||||
|
||||
def gen_upload_job(self, phase, requires_dependency):
|
||||
"""Generate binary_upload job for configuration
|
||||
|
||||
Output looks similar to:
|
||||
|
||||
- binary_upload:
|
||||
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
|
||||
context: org-member
|
||||
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
|
||||
filters:
|
||||
branches:
|
||||
only:
|
||||
- nightly
|
||||
tags:
|
||||
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
|
||||
package_type: manywheel
|
||||
upload_subfolder: cu113
|
||||
"""
|
||||
return {
|
||||
"binary_upload": OrderedDict({
|
||||
"name": self.gen_build_name(phase, nightly=True),
|
||||
"context": "org-member",
|
||||
"requires": [self.gen_build_name(
|
||||
requires_dependency,
|
||||
nightly=True
|
||||
)],
|
||||
"filters": branch_filters.gen_filter_dict(
|
||||
branches_list=["nightly"],
|
||||
tags_list=[branch_filters.RC_PATTERN],
|
||||
),
|
||||
"package_type": self.pydistro,
|
||||
"upload_subfolder": binary_build_data.get_processor_arch_name(
|
||||
self.gpu_version,
|
||||
),
|
||||
})
|
||||
}
|
||||
|
||||
def get_root(smoke, name):
|
||||
|
||||
return binary_build_data.TopLevelNode(
|
||||
name,
|
||||
binary_build_data.CONFIG_TREE_DATA,
|
||||
smoke,
|
||||
)
|
||||
if smoke:
|
||||
return binary_build_data.TopLevelNode(
|
||||
name,
|
||||
binary_build_data.CONFIG_TREE_DATA_NO_WINDOWS,
|
||||
smoke,
|
||||
)
|
||||
else:
|
||||
return binary_build_data.TopLevelNode(
|
||||
name,
|
||||
binary_build_data.CONFIG_TREE_DATA,
|
||||
smoke,
|
||||
)
|
||||
|
||||
|
||||
def gen_build_env_list(smoke):
|
||||
@ -173,10 +136,10 @@ def gen_build_env_list(smoke):
|
||||
for c in config_list:
|
||||
conf = Conf(
|
||||
c.find_prop("os_name"),
|
||||
c.find_prop("gpu"),
|
||||
c.find_prop("cu"),
|
||||
c.find_prop("package_format"),
|
||||
[c.find_prop("pyver")],
|
||||
c.find_prop("smoke") and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
|
||||
c.find_prop("smoke"),
|
||||
c.find_prop("libtorch_variant"),
|
||||
c.find_prop("gcc_config_variant"),
|
||||
c.find_prop("libtorch_config_variant"),
|
||||
@ -185,35 +148,24 @@ def gen_build_env_list(smoke):
|
||||
|
||||
return newlist
|
||||
|
||||
def predicate_exclude_macos(config):
|
||||
return config.os == "linux" or config.os == "windows"
|
||||
|
||||
def predicate_exclude_nonlinux_and_libtorch(config):
|
||||
return config.os == "linux"
|
||||
|
||||
|
||||
def get_nightly_uploads():
|
||||
configs = gen_build_env_list(False)
|
||||
mylist = []
|
||||
for conf in configs:
|
||||
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
|
||||
mylist.append(conf.gen_upload_job("upload", phase_dependency))
|
||||
phase_dependency = "test" if predicate_exclude_nonlinux_and_libtorch(conf) else "build"
|
||||
mylist.append(conf.gen_workflow_job("upload", phase_dependency, nightly=True))
|
||||
|
||||
return mylist
|
||||
|
||||
def get_post_upload_jobs():
|
||||
return [
|
||||
{
|
||||
"update_s3_htmls": {
|
||||
"name": "update_s3_htmls",
|
||||
"context": "org-member",
|
||||
"filters": branch_filters.gen_filter_dict(
|
||||
branches_list=["postnightly"],
|
||||
),
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
def get_nightly_tests():
|
||||
|
||||
configs = gen_build_env_list(False)
|
||||
filtered_configs = filter(predicate_exclude_macos, configs)
|
||||
filtered_configs = filter(predicate_exclude_nonlinux_and_libtorch, configs)
|
||||
|
||||
tests = []
|
||||
for conf_options in filtered_configs:
|
||||
@ -228,9 +180,7 @@ def get_jobs(toplevel_key, smoke):
|
||||
configs = gen_build_env_list(smoke)
|
||||
phase = "build" if toplevel_key == "binarybuilds" else "test"
|
||||
for build_config in configs:
|
||||
# don't test for macos_arm64 as it's cross compiled
|
||||
if phase != "test" or build_config.os != "macos_arm64":
|
||||
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
|
||||
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
|
||||
|
||||
return jobs_list
|
||||
|
||||
|
||||
91
.circleci/cimodel/data/caffe2_build_data.py
Normal file
91
.circleci/cimodel/data/caffe2_build_data.py
Normal file
@ -0,0 +1,91 @@
|
||||
from cimodel.lib.conf_tree import ConfigNode, XImportant
|
||||
from cimodel.lib.conf_tree import Ver
|
||||
|
||||
|
||||
CONFIG_TREE_DATA = [
|
||||
(Ver("ubuntu", "16.04"), [
|
||||
([Ver("clang", "7")], [XImportant("onnx_main_py3.6"),
|
||||
XImportant("onnx_ort1_py3.6"),
|
||||
XImportant("onnx_ort2_py3.6")]),
|
||||
]),
|
||||
]
|
||||
|
||||
|
||||
class TreeConfigNode(ConfigNode):
|
||||
def __init__(self, parent, node_name, subtree):
|
||||
super(TreeConfigNode, self).__init__(parent, self.modify_label(node_name))
|
||||
self.subtree = subtree
|
||||
self.init2(node_name)
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def modify_label(self, label):
|
||||
return str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
pass
|
||||
|
||||
def get_children(self):
|
||||
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
|
||||
|
||||
def is_build_only(self):
|
||||
if str(self.find_prop("language_version")) == "onnx_main_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
|
||||
return False
|
||||
return set(str(c) for c in self.find_prop("compiler_version")).intersection({
|
||||
"clang3.8",
|
||||
"clang3.9",
|
||||
"clang7",
|
||||
"android",
|
||||
}) or self.find_prop("distro_version").name == "macos"
|
||||
|
||||
def is_test_only(self):
|
||||
if str(self.find_prop("language_version")) == "onnx_ort1_py3.6" or \
|
||||
str(self.find_prop("language_version")) == "onnx_ort2_py3.6":
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class TopLevelNode(TreeConfigNode):
|
||||
def __init__(self, node_name, subtree):
|
||||
super(TopLevelNode, self).__init__(None, node_name, subtree)
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return DistroConfigNode
|
||||
|
||||
|
||||
class DistroConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["distro_version"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return CompilerConfigNode
|
||||
|
||||
|
||||
class CompilerConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["compiler_version"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return LanguageConfigNode
|
||||
|
||||
|
||||
class LanguageConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["language_version"] = node_name
|
||||
self.props["build_only"] = self.is_build_only()
|
||||
self.props["test_only"] = self.is_test_only()
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ImportantConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["important"] = True
|
||||
|
||||
def get_children(self):
|
||||
return []
|
||||
175
.circleci/cimodel/data/caffe2_build_definitions.py
Normal file
175
.circleci/cimodel/data/caffe2_build_definitions.py
Normal file
@ -0,0 +1,175 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import cimodel.data.dimensions as dimensions
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
from cimodel.lib.conf_tree import Ver
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.caffe2_build_data import CONFIG_TREE_DATA, TopLevelNode
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/caffe2/"
|
||||
|
||||
DOCKER_IMAGE_VERSION = "345"
|
||||
|
||||
|
||||
@dataclass
|
||||
class Conf:
|
||||
language: str
|
||||
distro: Ver
|
||||
# There could be multiple compiler versions configured (e.g. nvcc
|
||||
# for gpu files and host compiler (gcc/clang) for cpu files)
|
||||
compilers: [Ver]
|
||||
build_only: bool
|
||||
test_only: bool
|
||||
is_important: bool
|
||||
|
||||
@property
|
||||
def compiler_names(self):
|
||||
return [c.name for c in self.compilers]
|
||||
|
||||
# TODO: Eventually we can probably just remove the cudnn7 everywhere.
|
||||
def get_cudnn_insertion(self):
|
||||
|
||||
omit = self.language == "onnx_main_py3.6" \
|
||||
or self.language == "onnx_ort1_py3.6" \
|
||||
or self.language == "onnx_ort2_py3.6" \
|
||||
or set(self.compiler_names).intersection({"android", "mkl", "clang"}) \
|
||||
or str(self.distro) in ["ubuntu14.04", "macos10.13"]
|
||||
|
||||
return [] if omit else ["cudnn7"]
|
||||
|
||||
def get_build_name_root_parts(self):
|
||||
return [
|
||||
"caffe2",
|
||||
self.language,
|
||||
] + self.get_build_name_middle_parts()
|
||||
|
||||
def get_build_name_middle_parts(self):
|
||||
return [str(c) for c in self.compilers] + self.get_cudnn_insertion() + [str(self.distro)]
|
||||
|
||||
def construct_phase_name(self, phase):
|
||||
root_parts = self.get_build_name_root_parts()
|
||||
|
||||
build_name_substitutions = {
|
||||
"onnx_ort1_py3.6": "onnx_main_py3.6",
|
||||
"onnx_ort2_py3.6": "onnx_main_py3.6",
|
||||
}
|
||||
if phase == "build":
|
||||
root_parts = [miniutils.override(r, build_name_substitutions) for r in root_parts]
|
||||
return "_".join(root_parts + [phase]).replace(".", "_")
|
||||
|
||||
def get_platform(self):
|
||||
platform = self.distro.name
|
||||
if self.distro.name != "macos":
|
||||
platform = "linux"
|
||||
return platform
|
||||
|
||||
def gen_docker_image(self):
|
||||
|
||||
lang_substitutions = {
|
||||
"onnx_main_py3.6": "py3.6",
|
||||
"onnx_ort1_py3.6": "py3.6",
|
||||
"onnx_ort2_py3.6": "py3.6",
|
||||
"cmake": "py3",
|
||||
}
|
||||
|
||||
lang = miniutils.override(self.language, lang_substitutions)
|
||||
parts = [lang] + self.get_build_name_middle_parts()
|
||||
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + "-".join(parts) + ":" + str(DOCKER_IMAGE_VERSION))
|
||||
|
||||
def gen_workflow_params(self, phase):
|
||||
parameters = OrderedDict()
|
||||
lang_substitutions = {
|
||||
"onnx_py3": "onnx-py3",
|
||||
"onnx_main_py3.6": "onnx-main-py3.6",
|
||||
"onnx_ort1_py3.6": "onnx-ort1-py3.6",
|
||||
"onnx_ort2_py3.6": "onnx-ort2-py3.6",
|
||||
}
|
||||
|
||||
lang = miniutils.override(self.language, lang_substitutions)
|
||||
|
||||
parts = [
|
||||
"caffe2",
|
||||
lang,
|
||||
] + self.get_build_name_middle_parts() + [phase]
|
||||
|
||||
build_env_name = "-".join(parts)
|
||||
parameters["build_environment"] = miniutils.quote(build_env_name)
|
||||
if "ios" in self.compiler_names:
|
||||
parameters["build_ios"] = miniutils.quote("1")
|
||||
if phase == "test":
|
||||
# TODO cuda should not be considered a compiler
|
||||
if "cuda" in self.compiler_names:
|
||||
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
|
||||
if self.distro.name != "macos":
|
||||
parameters["docker_image"] = self.gen_docker_image()
|
||||
if self.build_only:
|
||||
parameters["build_only"] = miniutils.quote("1")
|
||||
if phase == "test":
|
||||
resource_class = "large" if "cuda" not in self.compiler_names else "gpu.medium"
|
||||
parameters["resource_class"] = resource_class
|
||||
|
||||
return parameters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
job_def = OrderedDict()
|
||||
job_def["name"] = self.construct_phase_name(phase)
|
||||
job_def["requires"] = ["setup"]
|
||||
|
||||
if phase == "test":
|
||||
job_def["requires"].append(self.construct_phase_name("build"))
|
||||
job_name = "caffe2_" + self.get_platform() + "_test"
|
||||
else:
|
||||
job_name = "caffe2_" + self.get_platform() + "_build"
|
||||
|
||||
if not self.is_important:
|
||||
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
|
||||
job_def.update(self.gen_workflow_params(phase))
|
||||
return {job_name : job_def}
|
||||
|
||||
|
||||
def get_root():
|
||||
return TopLevelNode("Caffe2 Builds", CONFIG_TREE_DATA)
|
||||
|
||||
|
||||
def instantiate_configs():
|
||||
|
||||
config_list = []
|
||||
|
||||
root = get_root()
|
||||
found_configs = conf_tree.dfs(root)
|
||||
for fc in found_configs:
|
||||
c = Conf(
|
||||
language=fc.find_prop("language_version"),
|
||||
distro=fc.find_prop("distro_version"),
|
||||
compilers=fc.find_prop("compiler_version"),
|
||||
build_only=fc.find_prop("build_only"),
|
||||
test_only=fc.find_prop("test_only"),
|
||||
is_important=fc.find_prop("important"),
|
||||
)
|
||||
|
||||
config_list.append(c)
|
||||
|
||||
return config_list
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
|
||||
configs = instantiate_configs()
|
||||
|
||||
x = []
|
||||
for conf_options in configs:
|
||||
phases = ["build"]
|
||||
if not conf_options.build_only:
|
||||
phases = dimensions.PHASES
|
||||
if conf_options.test_only:
|
||||
phases = ["test"]
|
||||
|
||||
for phase in phases:
|
||||
x.append(conf_options.gen_workflow_job(phase))
|
||||
|
||||
return x
|
||||
@ -1,24 +1,15 @@
|
||||
PHASES = ["build", "test"]
|
||||
|
||||
CUDA_VERSIONS = [
|
||||
None, # cpu build
|
||||
"92",
|
||||
"101",
|
||||
"102",
|
||||
"111",
|
||||
"113",
|
||||
]
|
||||
|
||||
ROCM_VERSIONS = [
|
||||
"4.0.1",
|
||||
"4.1",
|
||||
"4.2",
|
||||
]
|
||||
|
||||
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
|
||||
|
||||
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
|
||||
|
||||
STANDARD_PYTHON_VERSIONS = [
|
||||
"3.5",
|
||||
"3.6",
|
||||
"3.7",
|
||||
"3.8",
|
||||
"3.9"
|
||||
"3.8"
|
||||
]
|
||||
|
||||
@ -3,67 +3,61 @@ from cimodel.lib.conf_tree import ConfigNode, X, XImportant
|
||||
|
||||
CONFIG_TREE_DATA = [
|
||||
("xenial", [
|
||||
(None, [
|
||||
X("3.5"),
|
||||
X("nightly"),
|
||||
]),
|
||||
("gcc", [
|
||||
("5.4", [ # All this subtree rebases to master and then build
|
||||
XImportant("3.6"),
|
||||
("3.6", [
|
||||
("important", [X(True)]),
|
||||
("parallel_tbb", [X(True)]),
|
||||
("parallel_native", [X(True)]),
|
||||
]),
|
||||
]),
|
||||
# TODO: bring back libtorch test
|
||||
("7", [X("3.6")]),
|
||||
]),
|
||||
("clang", [
|
||||
("5", [
|
||||
XImportant("3.6"), # This is actually the ASAN build
|
||||
]),
|
||||
("7", [
|
||||
("3.6", [
|
||||
("asan", [
|
||||
(True, [
|
||||
("shard_test", [XImportant(True)]),
|
||||
]),
|
||||
]),
|
||||
("onnx", [XImportant(True)]),
|
||||
("xla", [XImportant(True)]),
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
("cuda", [
|
||||
("10.2", [
|
||||
("3.6", [
|
||||
# Build are needed for slow_gradcheck
|
||||
('build_only', [X(True)]),
|
||||
("slow_gradcheck", [
|
||||
# If you update this slow gradcheck, you should
|
||||
# also update docker_definitions.py to make sure
|
||||
# the docker image match the config used here
|
||||
(True, [
|
||||
('shard_test', [XImportant(True)]),
|
||||
]),
|
||||
]),
|
||||
# UNCOMMENT THE BELOW TO REENABLE LIBTORCH
|
||||
# ("libtorch", [
|
||||
# (True, [
|
||||
# ('build_only', [X(True)]),
|
||||
# ]),
|
||||
# ]),
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
("bionic", [
|
||||
("clang", [
|
||||
("9", [
|
||||
# Note there are magic strings here
|
||||
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L21
|
||||
# and
|
||||
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L143
|
||||
# and
|
||||
# https://github.com/pytorch/pytorch/blob/master/.jenkins/pytorch/build.sh#L153
|
||||
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453144)
|
||||
X("3.6"),
|
||||
]),
|
||||
("9.2", [X("3.6")]),
|
||||
("10.1", [X("3.6")]),
|
||||
("10.2", [
|
||||
XImportant("3.6"),
|
||||
("3.6", [
|
||||
("xla", [XImportant(True)]),
|
||||
("vulkan", [XImportant(True)]),
|
||||
("libtorch", [XImportant(True)])
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
# @jithunnair-amd believes Jenkins builds are sufficient
|
||||
# ("rocm", [
|
||||
# ("3.9", [
|
||||
# ("3.6", [
|
||||
# ('build_only', [XImportant(True)]),
|
||||
# ]),
|
||||
# ]),
|
||||
# ]),
|
||||
("android", [
|
||||
("r19c", [
|
||||
("3.6", [
|
||||
("android_abi", [XImportant("x86_32")]),
|
||||
("android_abi", [X("x86_64")]),
|
||||
("android_abi", [X("arm-v7a")]),
|
||||
("android_abi", [X("arm-v8a")]),
|
||||
])
|
||||
]),
|
||||
]),
|
||||
]),
|
||||
]
|
||||
|
||||
@ -107,7 +101,6 @@ class DistroConfigNode(TreeConfigNode):
|
||||
|
||||
next_nodes = {
|
||||
"xenial": XenialCompilerConfigNode,
|
||||
"bionic": BionicCompilerConfigNode,
|
||||
}
|
||||
return next_nodes[distro]
|
||||
|
||||
@ -116,8 +109,6 @@ class PyVerConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["pyver"] = node_name
|
||||
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
|
||||
if node_name == "3.9":
|
||||
self.props["abbreviated_pyver"] = "py3.9"
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
@ -132,44 +123,16 @@ class ExperimentalFeatureConfigNode(TreeConfigNode):
|
||||
experimental_feature = self.find_prop("experimental_feature")
|
||||
|
||||
next_nodes = {
|
||||
"asan": AsanConfigNode,
|
||||
"xla": XlaConfigNode,
|
||||
"mlc": MLCConfigNode,
|
||||
"vulkan": VulkanConfigNode,
|
||||
"parallel_tbb": ParallelTBBConfigNode,
|
||||
"noarch": NoarchConfigNode,
|
||||
"parallel_native": ParallelNativeConfigNode,
|
||||
"onnx": ONNXConfigNode,
|
||||
"libtorch": LibTorchConfigNode,
|
||||
"important": ImportantConfigNode,
|
||||
"build_only": BuildOnlyConfigNode,
|
||||
"shard_test": ShardTestConfigNode,
|
||||
"cuda_gcc_override": CudaGccOverrideConfigNode,
|
||||
"coverage": CoverageConfigNode,
|
||||
"pure_torch": PureTorchConfigNode,
|
||||
"slow_gradcheck": SlowGradcheckConfigNode,
|
||||
"android_abi": AndroidAbiConfigNode,
|
||||
}
|
||||
return next_nodes[experimental_feature]
|
||||
|
||||
|
||||
class SlowGradcheckConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["is_slow_gradcheck"] = True
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
class PureTorchConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "PURE_TORCH=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_pure_torch"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class XlaConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "XLA=" + str(label)
|
||||
@ -180,50 +143,6 @@ class XlaConfigNode(TreeConfigNode):
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
class MLCConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "MLC=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_mlc"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class AsanConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Asan=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_asan"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class ONNXConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Onnx=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_onnx"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class VulkanConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "Vulkan=" + str(label)
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["is_vulkan"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ParallelTBBConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "PARALLELTBB=" + str(label)
|
||||
@ -234,15 +153,6 @@ class ParallelTBBConfigNode(TreeConfigNode):
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class NoarchConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["is_noarch"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class ParallelNativeConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "PARALLELNATIVE=" + str(label)
|
||||
@ -253,7 +163,6 @@ class ParallelNativeConfigNode(TreeConfigNode):
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class LibTorchConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "BUILD_TEST_LIBTORCH=" + str(label)
|
||||
@ -262,41 +171,16 @@ class LibTorchConfigNode(TreeConfigNode):
|
||||
self.props["is_libtorch"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
return ImportantConfigNode
|
||||
|
||||
class AndroidAbiConfigNode(TreeConfigNode):
|
||||
|
||||
class CudaGccOverrideConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["cuda_gcc_override"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class BuildOnlyConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["build_only"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class ShardTestConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["shard_test"] = node_name
|
||||
self.props["android_abi"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ImportantConfigNode
|
||||
|
||||
|
||||
class CoverageConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["is_coverage"] = node_name
|
||||
|
||||
def child_constructor(self):
|
||||
return ExperimentalFeatureConfigNode
|
||||
|
||||
|
||||
class ImportantConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return "IMPORTANT=" + str(label)
|
||||
@ -309,6 +193,7 @@ class ImportantConfigNode(TreeConfigNode):
|
||||
|
||||
|
||||
class XenialCompilerConfigNode(TreeConfigNode):
|
||||
|
||||
def modify_label(self, label):
|
||||
return label or "<unspecified>"
|
||||
|
||||
@ -321,19 +206,6 @@ class XenialCompilerConfigNode(TreeConfigNode):
|
||||
return XenialCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
|
||||
|
||||
|
||||
class BionicCompilerConfigNode(TreeConfigNode):
|
||||
def modify_label(self, label):
|
||||
return label or "<unspecified>"
|
||||
|
||||
def init2(self, node_name):
|
||||
self.props["compiler_name"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
|
||||
return BionicCompilerVersionConfigNode if self.props["compiler_name"] else PyVerConfigNode
|
||||
|
||||
|
||||
class XenialCompilerVersionConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["compiler_version"] = node_name
|
||||
@ -341,12 +213,3 @@ class XenialCompilerVersionConfigNode(TreeConfigNode):
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return PyVerConfigNode
|
||||
|
||||
|
||||
class BionicCompilerVersionConfigNode(TreeConfigNode):
|
||||
def init2(self, node_name):
|
||||
self.props["compiler_version"] = node_name
|
||||
|
||||
# noinspection PyMethodMayBeStatic
|
||||
def child_constructor(self):
|
||||
return PyVerConfigNode
|
||||
|
||||
@ -1,13 +1,19 @@
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
from cimodel.data.pytorch_build_data import TopLevelNode, CONFIG_TREE_DATA
|
||||
import cimodel.data.dimensions as dimensions
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
|
||||
from cimodel.data.simple.util.docker_constants import gen_docker_image
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
DOCKER_IMAGE_PATH_BASE = "308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/"
|
||||
|
||||
# ARE YOU EDITING THIS NUMBER? MAKE SURE YOU READ THE GUIDANCE AT THE
|
||||
# TOP OF .circleci/config.yml
|
||||
DOCKER_IMAGE_VERSION = "f990c76a-a798-42bb-852f-5be5006f8026"
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -17,25 +23,17 @@ class Conf:
|
||||
parms_list_ignored_for_docker_image: Optional[List[str]] = None
|
||||
pyver: Optional[str] = None
|
||||
cuda_version: Optional[str] = None
|
||||
rocm_version: Optional[str] = None
|
||||
# TODO expand this to cover all the USE_* that we want to test for
|
||||
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
|
||||
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
|
||||
is_xla: bool = False
|
||||
is_vulkan: bool = False
|
||||
is_pure_torch: bool = False
|
||||
restrict_phases: Optional[List[str]] = None
|
||||
gpu_resource: Optional[str] = None
|
||||
dependent_tests: List = field(default_factory=list)
|
||||
parent_build: Optional["Conf"] = None
|
||||
parent_build: Optional['Conf'] = None
|
||||
is_libtorch: bool = False
|
||||
is_important: bool = False
|
||||
parallel_backend: Optional[str] = None
|
||||
build_only: bool = False
|
||||
|
||||
@staticmethod
|
||||
def is_test_phase(phase):
|
||||
return "test" in phase
|
||||
|
||||
# TODO: Eliminate the special casing for docker paths
|
||||
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
|
||||
@ -48,47 +46,31 @@ class Conf:
|
||||
leading.append("pytorch")
|
||||
if self.is_xla and not for_docker:
|
||||
leading.append("xla")
|
||||
if self.is_vulkan and not for_docker:
|
||||
leading.append("vulkan")
|
||||
if self.is_libtorch and not for_docker:
|
||||
leading.append("libtorch")
|
||||
if self.is_pure_torch and not for_docker:
|
||||
leading.append("pure_torch")
|
||||
if self.parallel_backend is not None and not for_docker:
|
||||
leading.append(self.parallel_backend)
|
||||
|
||||
cuda_parms = []
|
||||
if self.cuda_version:
|
||||
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
|
||||
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
|
||||
if self.rocm_version:
|
||||
cuda_parms.extend([f"rocm{self.rocm_version}"])
|
||||
cuda_parms.extend(["cuda" + self.cuda_version, "cudnn7"])
|
||||
result = leading + ["linux", self.distro] + cuda_parms + self.parms
|
||||
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
|
||||
if (not for_docker and self.parms_list_ignored_for_docker_image is not None):
|
||||
result = result + self.parms_list_ignored_for_docker_image
|
||||
return result
|
||||
|
||||
def gen_docker_image_path(self):
|
||||
parms_source = self.parent_build or self
|
||||
base_build_env_name = "-".join(parms_source.get_parms(True))
|
||||
image_name, _ = gen_docker_image(base_build_env_name)
|
||||
return miniutils.quote(image_name)
|
||||
|
||||
def gen_docker_image_requires(self):
|
||||
parms_source = self.parent_build or self
|
||||
base_build_env_name = "-".join(parms_source.get_parms(True))
|
||||
_, requires = gen_docker_image(base_build_env_name)
|
||||
return miniutils.quote(requires)
|
||||
|
||||
return miniutils.quote(DOCKER_IMAGE_PATH_BASE + base_build_env_name + ":" + str(DOCKER_IMAGE_VERSION))
|
||||
|
||||
def get_build_job_name_pieces(self, build_or_test):
|
||||
return self.get_parms(False) + [build_or_test]
|
||||
|
||||
def gen_build_name(self, build_or_test):
|
||||
return (
|
||||
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
|
||||
.replace(".", "_")
|
||||
.replace("-", "_")
|
||||
)
|
||||
return ("_".join(map(str, self.get_build_job_name_pieces(build_or_test)))).replace(".", "_").replace("-", "_")
|
||||
|
||||
def get_dependents(self):
|
||||
return self.dependent_tests or []
|
||||
@ -100,28 +82,22 @@ class Conf:
|
||||
build_env_name = "-".join(map(str, build_job_name_pieces))
|
||||
parameters["build_environment"] = miniutils.quote(build_env_name)
|
||||
parameters["docker_image"] = self.gen_docker_image_path()
|
||||
if Conf.is_test_phase(phase) and self.gpu_resource:
|
||||
if phase == "test" and self.gpu_resource:
|
||||
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
|
||||
if Conf.is_test_phase(phase):
|
||||
if phase == "test":
|
||||
resource_class = "large"
|
||||
if self.gpu_resource:
|
||||
resource_class = "gpu." + self.gpu_resource
|
||||
if self.rocm_version is not None:
|
||||
resource_class = "pytorch/amd-gpu"
|
||||
parameters["resource_class"] = resource_class
|
||||
if phase == "build" and self.rocm_version is not None:
|
||||
parameters["resource_class"] = "xlarge"
|
||||
if hasattr(self, 'filters'):
|
||||
parameters['filters'] = self.filters
|
||||
if self.build_only:
|
||||
parameters['build_only'] = miniutils.quote(str(int(True)))
|
||||
return parameters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
# All jobs require the setup job
|
||||
job_def = OrderedDict()
|
||||
job_def["name"] = self.gen_build_name(phase)
|
||||
job_def["requires"] = ["setup"]
|
||||
|
||||
if Conf.is_test_phase(phase):
|
||||
if phase == "test":
|
||||
|
||||
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
|
||||
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
|
||||
@ -129,89 +105,69 @@ class Conf:
|
||||
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
|
||||
|
||||
dependency_build = self.parent_build or self
|
||||
job_def["requires"] = [dependency_build.gen_build_name("build")]
|
||||
job_def["requires"].append(dependency_build.gen_build_name("build"))
|
||||
job_name = "pytorch_linux_test"
|
||||
else:
|
||||
job_name = "pytorch_linux_build"
|
||||
job_def["requires"] = [self.gen_docker_image_requires()]
|
||||
|
||||
|
||||
if not self.is_important:
|
||||
job_def["filters"] = gen_filter_dict()
|
||||
# If you update this, update
|
||||
# caffe2_build_definitions.py too
|
||||
job_def["filters"] = {"branches": {"only": ["master", r"/ci-all\/.*/", r"/release\/.*/"]}}
|
||||
job_def.update(self.gen_workflow_params(phase))
|
||||
|
||||
return {job_name: job_def}
|
||||
return {job_name : job_def}
|
||||
|
||||
|
||||
# TODO This is a hack to special case some configs just for the workflow list
|
||||
class HiddenConf(object):
|
||||
def __init__(self, name, parent_build=None, filters=None):
|
||||
def __init__(self, name, parent_build=None):
|
||||
self.name = name
|
||||
self.parent_build = parent_build
|
||||
self.filters = filters
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
return {
|
||||
self.gen_build_name(phase): {
|
||||
"requires": [self.parent_build.gen_build_name("build")],
|
||||
"filters": self.filters,
|
||||
}
|
||||
}
|
||||
return {self.gen_build_name(phase): {"requires": [self.parent_build.gen_build_name("build")]}}
|
||||
|
||||
def gen_build_name(self, _):
|
||||
return self.name
|
||||
|
||||
class DocPushConf(object):
|
||||
def __init__(self, name, parent_build=None, branch="master"):
|
||||
self.name = name
|
||||
self.parent_build = parent_build
|
||||
self.branch = branch
|
||||
|
||||
def gen_workflow_job(self, phase):
|
||||
return {
|
||||
"pytorch_doc_push": {
|
||||
"name": self.name,
|
||||
"branch": self.branch,
|
||||
"requires": [self.parent_build],
|
||||
"context": "org-member",
|
||||
"filters": gen_filter_dict(branches_list=["nightly"],
|
||||
tags_list=RC_PATTERN)
|
||||
}
|
||||
}
|
||||
# TODO Convert these to graph nodes
|
||||
def gen_dependent_configs(xenial_parent_config):
|
||||
|
||||
extra_parms = [
|
||||
(["multigpu"], "large"),
|
||||
(["NO_AVX2"], "medium"),
|
||||
(["NO_AVX", "NO_AVX2"], "medium"),
|
||||
(["slow"], "medium"),
|
||||
(["nogpu"], None),
|
||||
]
|
||||
|
||||
configs = []
|
||||
for parms, gpu in extra_parms:
|
||||
|
||||
c = Conf(
|
||||
xenial_parent_config.distro,
|
||||
["py3"] + parms,
|
||||
pyver="3.6",
|
||||
cuda_version=xenial_parent_config.cuda_version,
|
||||
restrict_phases=["test"],
|
||||
gpu_resource=gpu,
|
||||
parent_build=xenial_parent_config,
|
||||
is_important=xenial_parent_config.is_important,
|
||||
)
|
||||
|
||||
configs.append(c)
|
||||
|
||||
return configs
|
||||
|
||||
def gen_docs_configs(xenial_parent_config):
|
||||
configs = []
|
||||
|
||||
configs.append(
|
||||
HiddenConf(
|
||||
"pytorch_python_doc_build",
|
||||
parent_build=xenial_parent_config,
|
||||
filters=gen_filter_dict(branches_list=["master", "nightly"],
|
||||
tags_list=RC_PATTERN),
|
||||
)
|
||||
)
|
||||
configs.append(
|
||||
DocPushConf(
|
||||
"pytorch_python_doc_push",
|
||||
parent_build="pytorch_python_doc_build",
|
||||
branch="site",
|
||||
)
|
||||
)
|
||||
for x in ["pytorch_python_doc_push", "pytorch_cpp_doc_push"]:
|
||||
configs.append(HiddenConf(x, parent_build=xenial_parent_config))
|
||||
|
||||
configs.append(
|
||||
HiddenConf(
|
||||
"pytorch_cpp_doc_build",
|
||||
parent_build=xenial_parent_config,
|
||||
filters=gen_filter_dict(branches_list=["master", "nightly"],
|
||||
tags_list=RC_PATTERN),
|
||||
)
|
||||
)
|
||||
configs.append(
|
||||
DocPushConf(
|
||||
"pytorch_cpp_doc_push",
|
||||
parent_build="pytorch_cpp_doc_build",
|
||||
branch="master",
|
||||
)
|
||||
)
|
||||
return configs
|
||||
|
||||
|
||||
@ -225,31 +181,21 @@ def gen_tree():
|
||||
return configs_list
|
||||
|
||||
|
||||
def instantiate_configs(only_slow_gradcheck):
|
||||
def instantiate_configs():
|
||||
|
||||
config_list = []
|
||||
|
||||
root = get_root()
|
||||
found_configs = conf_tree.dfs(root)
|
||||
restrict_phases = None
|
||||
for fc in found_configs:
|
||||
|
||||
restrict_phases = None
|
||||
distro_name = fc.find_prop("distro_name")
|
||||
compiler_name = fc.find_prop("compiler_name")
|
||||
compiler_version = fc.find_prop("compiler_version")
|
||||
is_xla = fc.find_prop("is_xla") or False
|
||||
is_asan = fc.find_prop("is_asan") or False
|
||||
is_coverage = fc.find_prop("is_coverage") or False
|
||||
is_noarch = fc.find_prop("is_noarch") or False
|
||||
is_onnx = fc.find_prop("is_onnx") or False
|
||||
is_pure_torch = fc.find_prop("is_pure_torch") or False
|
||||
is_vulkan = fc.find_prop("is_vulkan") or False
|
||||
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
|
||||
parms_list_ignored_for_docker_image = []
|
||||
|
||||
if only_slow_gradcheck ^ is_slow_gradcheck:
|
||||
continue
|
||||
|
||||
python_version = None
|
||||
if compiler_name == "cuda" or compiler_name == "android":
|
||||
python_version = fc.find_prop("pyver")
|
||||
@ -258,14 +204,9 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
parms_list = ["py" + fc.find_prop("pyver")]
|
||||
|
||||
cuda_version = None
|
||||
rocm_version = None
|
||||
if compiler_name == "cuda":
|
||||
cuda_version = fc.find_prop("compiler_version")
|
||||
|
||||
elif compiler_name == "rocm":
|
||||
rocm_version = fc.find_prop("compiler_version")
|
||||
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
|
||||
|
||||
elif compiler_name == "android":
|
||||
android_ndk_version = fc.find_prop("compiler_version")
|
||||
# TODO: do we need clang to compile host binaries like protoc?
|
||||
@ -279,43 +220,19 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
|
||||
parms_list.append(gcc_version)
|
||||
|
||||
if is_asan:
|
||||
parms_list.append("asan")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
# TODO: This is a nasty special case
|
||||
if compiler_name == "clang" and not is_xla:
|
||||
parms_list.append("asan")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
|
||||
if is_coverage:
|
||||
parms_list_ignored_for_docker_image.append("coverage")
|
||||
python_version = fc.find_prop("pyver")
|
||||
|
||||
if is_noarch:
|
||||
parms_list_ignored_for_docker_image.append("noarch")
|
||||
|
||||
if is_onnx:
|
||||
parms_list.append("onnx")
|
||||
python_version = fc.find_prop("pyver")
|
||||
parms_list[0] = fc.find_prop("abbreviated_pyver")
|
||||
restrict_phases = ["build", "ort_test1", "ort_test2"]
|
||||
|
||||
if cuda_version:
|
||||
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
|
||||
parms_list.append(cuda_gcc_version)
|
||||
if cuda_version in ["9.2", "10", "10.1", "10.2"]:
|
||||
# TODO The gcc version is orthogonal to CUDA version?
|
||||
parms_list.append("gcc7")
|
||||
|
||||
is_libtorch = fc.find_prop("is_libtorch") or False
|
||||
is_important = fc.find_prop("is_important") or False
|
||||
parallel_backend = fc.find_prop("parallel_backend") or None
|
||||
build_only = fc.find_prop("build_only") or False
|
||||
shard_test = fc.find_prop("shard_test") or False
|
||||
# TODO: fix pure_torch python test packaging issue.
|
||||
if shard_test:
|
||||
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
|
||||
restrict_phases.extend(["test1", "test2"])
|
||||
if build_only or is_pure_torch:
|
||||
restrict_phases = ["build"]
|
||||
|
||||
if is_slow_gradcheck:
|
||||
parms_list_ignored_for_docker_image.append("old")
|
||||
parms_list_ignored_for_docker_image.append("gradcheck")
|
||||
|
||||
gpu_resource = None
|
||||
if cuda_version and cuda_version != "10":
|
||||
@ -327,49 +244,32 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
parms_list_ignored_for_docker_image,
|
||||
python_version,
|
||||
cuda_version,
|
||||
rocm_version,
|
||||
is_xla,
|
||||
is_vulkan,
|
||||
is_pure_torch,
|
||||
restrict_phases,
|
||||
gpu_resource,
|
||||
is_libtorch=is_libtorch,
|
||||
is_important=is_important,
|
||||
parallel_backend=parallel_backend,
|
||||
build_only=build_only,
|
||||
)
|
||||
|
||||
# run docs builds on "pytorch-linux-xenial-py3.6-gcc5.4". Docs builds
|
||||
# should run on a CPU-only build that runs on all PRs.
|
||||
# XXX should this be updated to a more modern build? Projects are
|
||||
# beginning to drop python3.6
|
||||
if (
|
||||
distro_name == "xenial"
|
||||
and fc.find_prop("pyver") == "3.6"
|
||||
and cuda_version is None
|
||||
and parallel_backend is None
|
||||
and not is_vulkan
|
||||
and not is_pure_torch
|
||||
and compiler_name == "gcc"
|
||||
and fc.find_prop("compiler_version") == "5.4"
|
||||
):
|
||||
c.filters = gen_filter_dict(branches_list=r"/.*/",
|
||||
tags_list=RC_PATTERN)
|
||||
if distro_name == 'xenial' and fc.find_prop("pyver") == '3.6' \
|
||||
and cuda_version is None \
|
||||
and parallel_backend is None \
|
||||
and compiler_name == 'gcc' \
|
||||
and fc.find_prop('compiler_version') == '5.4':
|
||||
c.dependent_tests = gen_docs_configs(c)
|
||||
|
||||
if (
|
||||
compiler_name != "clang"
|
||||
and not rocm_version
|
||||
and not is_libtorch
|
||||
and not is_vulkan
|
||||
and not is_pure_torch
|
||||
and not is_noarch
|
||||
and not is_slow_gradcheck
|
||||
and not only_slow_gradcheck
|
||||
and not build_only
|
||||
):
|
||||
distributed_test = Conf(
|
||||
c.gen_build_name("") + "distributed",
|
||||
if cuda_version == "10.1" and python_version == "3.6" and not is_libtorch:
|
||||
c.dependent_tests = gen_dependent_configs(c)
|
||||
|
||||
if (compiler_name == "gcc"
|
||||
and compiler_version == "5.4"
|
||||
and not is_libtorch
|
||||
and parallel_backend is None):
|
||||
bc_breaking_check = Conf(
|
||||
"backward-compatibility-check",
|
||||
[],
|
||||
is_xla=False,
|
||||
restrict_phases=["test"],
|
||||
@ -377,16 +277,16 @@ def instantiate_configs(only_slow_gradcheck):
|
||||
is_important=True,
|
||||
parent_build=c,
|
||||
)
|
||||
c.dependent_tests.append(distributed_test)
|
||||
c.dependent_tests.append(bc_breaking_check)
|
||||
|
||||
config_list.append(c)
|
||||
|
||||
return config_list
|
||||
|
||||
|
||||
def get_workflow_jobs(only_slow_gradcheck=False):
|
||||
def get_workflow_jobs():
|
||||
|
||||
config_list = instantiate_configs(only_slow_gradcheck)
|
||||
config_list = instantiate_configs()
|
||||
|
||||
x = []
|
||||
for conf_options in config_list:
|
||||
@ -396,7 +296,7 @@ def get_workflow_jobs(only_slow_gradcheck=False):
|
||||
for phase in phases:
|
||||
|
||||
# TODO why does this not have a test?
|
||||
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
|
||||
if phase == "test" and conf_options.cuda_version == "10":
|
||||
continue
|
||||
|
||||
x.append(conf_options.gen_workflow_job(phase))
|
||||
|
||||
@ -1,28 +0,0 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict
|
||||
from cimodel.lib.miniutils import quote
|
||||
|
||||
|
||||
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
|
||||
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
|
||||
|
||||
|
||||
def gen_workflow_job(channel: str):
|
||||
return OrderedDict(
|
||||
{
|
||||
"anaconda_prune": OrderedDict(
|
||||
{
|
||||
"name": f"anaconda-prune-{channel}",
|
||||
"context": quote("org-member"),
|
||||
"packages": quote(PACKAGES_TO_PRUNE),
|
||||
"channel": channel,
|
||||
"filters": gen_filter_dict(branches_list=["postnightly"]),
|
||||
}
|
||||
)
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]
|
||||
@ -1,119 +0,0 @@
|
||||
import cimodel.data.simple.util.branch_filters as branch_filters
|
||||
from cimodel.data.simple.util.docker_constants import (
|
||||
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK
|
||||
)
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
|
||||
class AndroidJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
template_name,
|
||||
is_master_only=True):
|
||||
|
||||
self.variant = variant
|
||||
self.template_name = template_name
|
||||
self.is_master_only = is_master_only
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3",
|
||||
"clang5",
|
||||
"android",
|
||||
"ndk",
|
||||
"r19c",
|
||||
] + self.variant + [
|
||||
"build",
|
||||
]
|
||||
|
||||
full_job_name = "_".join(base_name_parts)
|
||||
build_env_name = "-".join(base_name_parts)
|
||||
|
||||
props_dict = {
|
||||
"name": full_job_name,
|
||||
"build_environment": "\"{}\"".format(build_env_name),
|
||||
"docker_image": "\"{}\"".format(DOCKER_IMAGE_NDK),
|
||||
"requires": [DOCKER_REQUIREMENT_NDK]
|
||||
}
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
class AndroidGradleJob:
|
||||
def __init__(self,
|
||||
job_name,
|
||||
template_name,
|
||||
dependencies,
|
||||
is_master_only=True,
|
||||
is_pr_only=False,
|
||||
extra_props=tuple()):
|
||||
|
||||
self.job_name = job_name
|
||||
self.template_name = template_name
|
||||
self.dependencies = dependencies
|
||||
self.is_master_only = is_master_only
|
||||
self.is_pr_only = is_pr_only
|
||||
self.extra_props = dict(extra_props)
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
props_dict = {
|
||||
"name": self.job_name,
|
||||
"requires": self.dependencies,
|
||||
}
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.NON_PR_BRANCH_LIST)
|
||||
elif self.is_pr_only:
|
||||
props_dict["filters"] = branch_filters.gen_filter_dict(branch_filters.PR_BRANCH_LIST)
|
||||
if self.extra_props:
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
AndroidJob(["x86_32"], "pytorch_linux_build", is_master_only=False),
|
||||
AndroidJob(["x86_64"], "pytorch_linux_build"),
|
||||
AndroidJob(["arm", "v7a"], "pytorch_linux_build"),
|
||||
AndroidJob(["arm", "v8a"], "pytorch_linux_build"),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build-x86_32",
|
||||
"pytorch_android_gradle_build-x86_32",
|
||||
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build"],
|
||||
is_master_only=False,
|
||||
is_pr_only=True),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single",
|
||||
"pytorch_android_gradle_custom_build_single",
|
||||
[DOCKER_REQUIREMENT_NDK],
|
||||
is_master_only=False,
|
||||
is_pr_only=True),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-custom-build-single-full-jit",
|
||||
"pytorch_android_gradle_custom_build_single",
|
||||
[DOCKER_REQUIREMENT_NDK],
|
||||
is_master_only=False,
|
||||
is_pr_only=True,
|
||||
extra_props=tuple({
|
||||
"lite_interpreter": miniutils.quote(str(int(False)))
|
||||
}.items())),
|
||||
AndroidGradleJob(
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c-gradle-build",
|
||||
"pytorch_android_gradle_build",
|
||||
["pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
|
||||
"pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,69 +0,0 @@
|
||||
from cimodel.data.simple.util.docker_constants import (
|
||||
DOCKER_IMAGE_GCC7,
|
||||
DOCKER_REQUIREMENT_GCC7
|
||||
)
|
||||
|
||||
|
||||
def gen_job_name(phase):
|
||||
job_name_parts = [
|
||||
"pytorch",
|
||||
"bazel",
|
||||
phase,
|
||||
]
|
||||
|
||||
return "_".join(job_name_parts)
|
||||
|
||||
|
||||
class BazelJob:
|
||||
def __init__(self, phase, extra_props=None):
|
||||
self.phase = phase
|
||||
self.extra_props = extra_props or {}
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
template_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"bazel",
|
||||
self.phase,
|
||||
]
|
||||
|
||||
build_env_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3.6",
|
||||
"gcc7",
|
||||
"bazel",
|
||||
self.phase,
|
||||
]
|
||||
|
||||
full_job_name = gen_job_name(self.phase)
|
||||
build_env_name = "-".join(build_env_parts)
|
||||
|
||||
extra_requires = (
|
||||
[gen_job_name("build")] if self.phase == "test" else
|
||||
[DOCKER_REQUIREMENT_GCC7]
|
||||
)
|
||||
|
||||
props_dict = {
|
||||
"build_environment": build_env_name,
|
||||
"docker_image": DOCKER_IMAGE_GCC7,
|
||||
"name": full_job_name,
|
||||
"requires": extra_requires,
|
||||
}
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
template_name = "_".join(template_parts)
|
||||
return [{template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
BazelJob("build", {"resource_class": "large"}),
|
||||
BazelJob("test"),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,193 +0,0 @@
|
||||
"""
|
||||
TODO: Refactor circleci/cimodel/data/binary_build_data.py to generate this file
|
||||
instead of doing one offs here
|
||||
Binary builds (subset, to smoke test that they'll work)
|
||||
|
||||
NB: If you modify this file, you need to also modify
|
||||
the binary_and_smoke_tests_on_pr variable in
|
||||
pytorch-ci-hud to adjust the allowed build list
|
||||
at https://github.com/ezyang/pytorch-ci-hud/blob/master/src/BuildHistoryDisplay.js
|
||||
|
||||
Note:
|
||||
This binary build is currently broken, see https://github_com/pytorch/pytorch/issues/16710
|
||||
- binary_linux_conda_3_6_cu90_devtoolset7_build
|
||||
- binary_linux_conda_3_6_cu90_devtoolset7_test
|
||||
|
||||
TODO
|
||||
we should test a libtorch cuda build, but they take too long
|
||||
- binary_linux_libtorch_3_6m_cu90_devtoolset7_static-without-deps_build
|
||||
"""
|
||||
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
|
||||
|
||||
class SmoketestJob:
|
||||
def __init__(self,
|
||||
template_name,
|
||||
build_env_parts,
|
||||
docker_image,
|
||||
job_name,
|
||||
is_master_only=False,
|
||||
requires=None,
|
||||
has_libtorch_variant=False,
|
||||
extra_props=None):
|
||||
|
||||
self.template_name = template_name
|
||||
self.build_env_parts = build_env_parts
|
||||
self.docker_image = docker_image
|
||||
self.job_name = job_name
|
||||
self.is_master_only = is_master_only
|
||||
self.requires = requires or []
|
||||
self.has_libtorch_variant = has_libtorch_variant
|
||||
self.extra_props = extra_props or {}
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
props_dict = {
|
||||
"build_environment": " ".join(self.build_env_parts),
|
||||
"name": self.job_name,
|
||||
"requires": self.requires,
|
||||
}
|
||||
|
||||
if self.docker_image:
|
||||
props_dict["docker_image"] = self.docker_image
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
if self.has_libtorch_variant:
|
||||
props_dict["libtorch_variant"] = "shared-with-deps"
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["manywheel", "3.7m", "cu102", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_manywheel_3_7m_cu102_devtoolset7_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["libtorch", "3.7m", "cpu", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build",
|
||||
is_master_only=True,
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_build",
|
||||
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
|
||||
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
|
||||
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build",
|
||||
is_master_only=False,
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_mac_build",
|
||||
["wheel", "3.7", "cpu"],
|
||||
None,
|
||||
"binary_macos_wheel_3_7_cpu_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
# This job has an average run time of 3 hours o.O
|
||||
# Now only running this on master to reduce overhead
|
||||
SmoketestJob(
|
||||
"binary_mac_build",
|
||||
["libtorch", "3.7", "cpu"],
|
||||
None,
|
||||
"binary_macos_libtorch_3_7_cpu_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["libtorch", "3.7", "cpu", "debug"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_debug_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["libtorch", "3.7", "cpu", "release"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_release_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_build",
|
||||
["wheel", "3.7", "cu102"],
|
||||
None,
|
||||
"binary_windows_wheel_3_7_cu102_build",
|
||||
is_master_only=True,
|
||||
),
|
||||
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["libtorch", "3.7", "cpu", "debug"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_debug_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_windows_libtorch_3_7_cpu_debug_build"],
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["libtorch", "3.7", "cpu", "release"],
|
||||
None,
|
||||
"binary_windows_libtorch_3_7_cpu_release_test",
|
||||
is_master_only=False,
|
||||
requires=["binary_windows_libtorch_3_7_cpu_release_build"],
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_windows_test",
|
||||
["wheel", "3.7", "cu102"],
|
||||
None,
|
||||
"binary_windows_wheel_3_7_cu102_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_windows_wheel_3_7_cu102_build"],
|
||||
extra_props={
|
||||
"executor": "windows-with-nvidia-gpu",
|
||||
},
|
||||
),
|
||||
|
||||
|
||||
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["manywheel", "3.7m", "cu102", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_manywheel_3_7m_cu102_devtoolset7_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_linux_manywheel_3_7m_cu102_devtoolset7_build"],
|
||||
extra_props={
|
||||
"resource_class": "gpu.medium",
|
||||
"use_cuda_docker_runtime": miniutils.quote((str(1))),
|
||||
},
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["libtorch", "3.7m", "cpu", "devtoolset7"],
|
||||
"pytorch/manylinux-cuda102",
|
||||
"binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_linux_libtorch_3_7m_cpu_devtoolset7_shared-with-deps_build"],
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
SmoketestJob(
|
||||
"binary_linux_test",
|
||||
["libtorch", "3.7m", "cpu", "gcc5.4_cxx11-abi"],
|
||||
"pytorch/pytorch-binary-docker-image-ubuntu16.04:latest",
|
||||
"binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_test",
|
||||
is_master_only=True,
|
||||
requires=["binary_linux_libtorch_3_7m_cpu_gcc5_4_cxx11-abi_shared-with-deps_build"],
|
||||
has_libtorch_variant=True,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,56 +0,0 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
from cimodel.lib.miniutils import quote
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
|
||||
|
||||
|
||||
# TODO: make this generated from a matrix rather than just a static list
|
||||
IMAGE_NAMES = [
|
||||
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7",
|
||||
"pytorch-linux-bionic-py3.6-clang9",
|
||||
"pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9",
|
||||
"pytorch-linux-bionic-py3.8-gcc9",
|
||||
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7",
|
||||
"pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7",
|
||||
"pytorch-linux-xenial-py3-clang5-android-ndk-r19c",
|
||||
"pytorch-linux-xenial-py3-clang5-asan",
|
||||
"pytorch-linux-xenial-py3-clang7-asan",
|
||||
"pytorch-linux-xenial-py3-clang7-onnx",
|
||||
"pytorch-linux-xenial-py3.8",
|
||||
"pytorch-linux-xenial-py3.6-clang7",
|
||||
"pytorch-linux-xenial-py3.6-gcc5.4", # this one is used in doc builds
|
||||
"pytorch-linux-xenial-py3.6-gcc7.2",
|
||||
"pytorch-linux-xenial-py3.6-gcc7",
|
||||
"pytorch-linux-bionic-rocm4.1-py3.6",
|
||||
"pytorch-linux-bionic-rocm4.2-py3.6",
|
||||
"pytorch-linux-bionic-rocm4.3.1-py3.6",
|
||||
]
|
||||
|
||||
# This entry should be an element from the list above
|
||||
# This should contain the image matching the "slow_gradcheck" entry in
|
||||
# pytorch_build_data.py
|
||||
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
|
||||
|
||||
def get_workflow_jobs(only_slow_gradcheck=False):
|
||||
"""Generates a list of docker image build definitions"""
|
||||
ret = []
|
||||
for image_name in IMAGE_NAMES:
|
||||
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
|
||||
continue
|
||||
|
||||
parameters = OrderedDict({
|
||||
"name": quote(f"docker-{image_name}"),
|
||||
"image_name": quote(image_name),
|
||||
})
|
||||
if image_name == "pytorch-linux-xenial-py3.6-gcc5.4":
|
||||
# pushing documentation on tags requires CircleCI to also
|
||||
# build all the dependencies on tags, including this docker image
|
||||
parameters['filters'] = gen_filter_dict(branches_list=r"/.*/",
|
||||
tags_list=RC_PATTERN)
|
||||
ret.append(OrderedDict(
|
||||
{
|
||||
"docker_build_job": parameters
|
||||
}
|
||||
))
|
||||
return ret
|
||||
@ -1,82 +0,0 @@
|
||||
from cimodel.data.simple.util.versions import MultiPartVersion
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
XCODE_VERSION = MultiPartVersion([12, 5, 1])
|
||||
|
||||
|
||||
class ArchVariant:
|
||||
def __init__(self, name, custom_build_name=""):
|
||||
self.name = name
|
||||
self.custom_build_name = custom_build_name
|
||||
|
||||
def render(self):
|
||||
extra_parts = [self.custom_build_name] if len(self.custom_build_name) > 0 else []
|
||||
return "_".join([self.name] + extra_parts)
|
||||
|
||||
|
||||
def get_platform(arch_variant_name):
|
||||
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
|
||||
|
||||
|
||||
class IOSJob:
|
||||
def __init__(self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None):
|
||||
self.xcode_version = xcode_version
|
||||
self.arch_variant = arch_variant
|
||||
self.is_org_member_context = is_org_member_context
|
||||
self.extra_props = extra_props
|
||||
|
||||
def gen_name_parts(self, with_version_dots):
|
||||
|
||||
version_parts = self.xcode_version.render_dots_or_parts(with_version_dots)
|
||||
build_variant_suffix = "_".join([self.arch_variant.render(), "build"])
|
||||
|
||||
return [
|
||||
"pytorch",
|
||||
"ios",
|
||||
] + version_parts + [
|
||||
build_variant_suffix,
|
||||
]
|
||||
|
||||
def gen_job_name(self):
|
||||
return "_".join(self.gen_name_parts(False))
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
platform_name = get_platform(self.arch_variant.name)
|
||||
|
||||
props_dict = {
|
||||
"build_environment": "-".join(self.gen_name_parts(True)),
|
||||
"ios_arch": self.arch_variant.name,
|
||||
"ios_platform": platform_name,
|
||||
"name": self.gen_job_name(),
|
||||
}
|
||||
|
||||
if self.is_org_member_context:
|
||||
props_dict["context"] = "org-member"
|
||||
|
||||
if self.extra_props:
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
return [{"pytorch_ios_build": props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
IOSJob(XCODE_VERSION, ArchVariant("x86_64"), is_org_member_context=False, extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("x86_64", "full_jit"), is_org_member_context=False, extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(False)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
|
||||
"use_metal": miniutils.quote(str(int(True))),
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "full_jit"), extra_props={
|
||||
"lite_interpreter": miniutils.quote(str(int(False)))}),
|
||||
IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom"), extra_props={
|
||||
"op_list": "mobilenetv2.yaml",
|
||||
"lite_interpreter": miniutils.quote(str(int(True)))}),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,52 +0,0 @@
|
||||
class MacOsJob:
|
||||
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
|
||||
# extra_props is tuple type, because mutable data structures for argument defaults
|
||||
# is not recommended.
|
||||
self.os_version = os_version
|
||||
self.is_build = is_build
|
||||
self.is_test = is_test
|
||||
self.extra_props = dict(extra_props)
|
||||
|
||||
def gen_tree(self):
|
||||
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
|
||||
|
||||
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
|
||||
full_job_name_list = non_phase_parts + extra_name_list + [
|
||||
'build' if self.is_build else None,
|
||||
'test' if self.is_test else None,
|
||||
]
|
||||
|
||||
full_job_name = "_".join(list(filter(None, full_job_name_list)))
|
||||
|
||||
test_build_dependency = "_".join(non_phase_parts + ["build"])
|
||||
extra_dependencies = [test_build_dependency] if self.is_test else []
|
||||
job_dependencies = extra_dependencies
|
||||
|
||||
# Yes we name the job after itself, it needs a non-empty value in here
|
||||
# for the YAML output to work.
|
||||
props_dict = {"requires": job_dependencies, "name": full_job_name}
|
||||
|
||||
return [{full_job_name: props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
MacOsJob("10_15", is_build=True),
|
||||
MacOsJob("10_13", is_build=True),
|
||||
MacOsJob(
|
||||
"10_13",
|
||||
is_build=False,
|
||||
is_test=True,
|
||||
),
|
||||
MacOsJob(
|
||||
"10_13",
|
||||
is_build=True,
|
||||
is_test=True,
|
||||
extra_props=tuple({
|
||||
"lite_interpreter": True
|
||||
}.items()),
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,86 +0,0 @@
|
||||
"""
|
||||
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
|
||||
"""
|
||||
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.data.simple.util.branch_filters
|
||||
from cimodel.data.simple.util.docker_constants import (
|
||||
DOCKER_IMAGE_ASAN,
|
||||
DOCKER_REQUIREMENT_ASAN,
|
||||
DOCKER_IMAGE_NDK,
|
||||
DOCKER_REQUIREMENT_NDK
|
||||
)
|
||||
|
||||
|
||||
class MobileJob:
|
||||
def __init__(
|
||||
self,
|
||||
docker_image,
|
||||
docker_requires,
|
||||
variant_parts,
|
||||
is_master_only=False):
|
||||
self.docker_image = docker_image
|
||||
self.docker_requires = docker_requires
|
||||
self.variant_parts = variant_parts
|
||||
self.is_master_only = is_master_only
|
||||
|
||||
def gen_tree(self):
|
||||
non_phase_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3",
|
||||
"clang5",
|
||||
"mobile",
|
||||
] + self.variant_parts
|
||||
|
||||
full_job_name = "_".join(non_phase_parts)
|
||||
build_env_name = "-".join(non_phase_parts)
|
||||
|
||||
props_dict = {
|
||||
"build_environment": build_env_name,
|
||||
"build_only": miniutils.quote(str(int(True))),
|
||||
"docker_image": self.docker_image,
|
||||
"requires": self.docker_requires,
|
||||
"name": full_job_name,
|
||||
}
|
||||
|
||||
if self.is_master_only:
|
||||
props_dict["filters"] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
|
||||
|
||||
return [{"pytorch_linux_build": props_dict}]
|
||||
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
MobileJob(
|
||||
DOCKER_IMAGE_ASAN,
|
||||
[DOCKER_REQUIREMENT_ASAN],
|
||||
["build"]
|
||||
),
|
||||
|
||||
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
|
||||
MobileJob(
|
||||
DOCKER_IMAGE_NDK,
|
||||
[DOCKER_REQUIREMENT_NDK],
|
||||
["custom", "build", "dynamic"]
|
||||
),
|
||||
|
||||
MobileJob(
|
||||
DOCKER_IMAGE_NDK,
|
||||
[DOCKER_REQUIREMENT_NDK],
|
||||
["custom", "build", "static"]
|
||||
),
|
||||
|
||||
# Use LLVM-DEV toolchain in android-ndk-r19c docker image
|
||||
# Most of this CI is already covered by "mobile-custom-build-dynamic" job
|
||||
MobileJob(
|
||||
DOCKER_IMAGE_NDK,
|
||||
[DOCKER_REQUIREMENT_NDK],
|
||||
["code", "analysis"],
|
||||
True
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,77 +0,0 @@
|
||||
from cimodel.data.simple.util.docker_constants import (
|
||||
DOCKER_IMAGE_NDK,
|
||||
DOCKER_REQUIREMENT_NDK
|
||||
)
|
||||
|
||||
|
||||
class AndroidNightlyJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
template_name,
|
||||
extra_props=None,
|
||||
with_docker=True,
|
||||
requires=None,
|
||||
no_build_suffix=False):
|
||||
|
||||
self.variant = variant
|
||||
self.template_name = template_name
|
||||
self.extra_props = extra_props or {}
|
||||
self.with_docker = with_docker
|
||||
self.requires = requires
|
||||
self.no_build_suffix = no_build_suffix
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"linux",
|
||||
"xenial",
|
||||
"py3",
|
||||
"clang5",
|
||||
"android",
|
||||
"ndk",
|
||||
"r19c",
|
||||
] + self.variant
|
||||
|
||||
build_suffix = [] if self.no_build_suffix else ["build"]
|
||||
full_job_name = "_".join(["nightly"] + base_name_parts + build_suffix)
|
||||
build_env_name = "-".join(base_name_parts)
|
||||
|
||||
props_dict = {
|
||||
"name": full_job_name,
|
||||
"requires": self.requires,
|
||||
"filters": {"branches": {"only": "nightly"}},
|
||||
}
|
||||
|
||||
props_dict.update(self.extra_props)
|
||||
|
||||
if self.with_docker:
|
||||
props_dict["docker_image"] = DOCKER_IMAGE_NDK
|
||||
props_dict["build_environment"] = build_env_name
|
||||
|
||||
return [{self.template_name: props_dict}]
|
||||
|
||||
BASE_REQUIRES = [DOCKER_REQUIREMENT_NDK]
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
AndroidNightlyJob(["x86_32"], "pytorch_linux_build", requires=BASE_REQUIRES),
|
||||
AndroidNightlyJob(["x86_64"], "pytorch_linux_build", requires=BASE_REQUIRES),
|
||||
AndroidNightlyJob(["arm", "v7a"], "pytorch_linux_build", requires=BASE_REQUIRES),
|
||||
AndroidNightlyJob(["arm", "v8a"], "pytorch_linux_build", requires=BASE_REQUIRES),
|
||||
AndroidNightlyJob(["android_gradle"], "pytorch_android_gradle_build",
|
||||
with_docker=False,
|
||||
requires=[
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_32_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_x86_64_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v7a_build",
|
||||
"nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_arm_v8a_build"]),
|
||||
AndroidNightlyJob(["x86_32_android_publish_snapshot"], "pytorch_android_publish_snapshot",
|
||||
extra_props={"context": "org-member"},
|
||||
with_docker=False,
|
||||
requires=["nightly_pytorch_linux_xenial_py3_clang5_android_ndk_r19c_android_gradle_build"],
|
||||
no_build_suffix=True),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,71 +0,0 @@
|
||||
import cimodel.data.simple.ios_definitions as ios_definitions
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
|
||||
class IOSNightlyJob:
|
||||
def __init__(self,
|
||||
variant,
|
||||
is_upload=False):
|
||||
|
||||
self.variant = variant
|
||||
self.is_upload = is_upload
|
||||
|
||||
def get_phase_name(self):
|
||||
return "upload" if self.is_upload else "build"
|
||||
|
||||
def get_common_name_pieces(self, with_version_dots):
|
||||
|
||||
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
|
||||
|
||||
common_name_pieces = [
|
||||
"ios",
|
||||
] + ios_definitions.XCODE_VERSION.render_dots_or_parts(with_version_dots) + [
|
||||
"nightly",
|
||||
self.variant,
|
||||
"build",
|
||||
] + extra_name_suffix
|
||||
|
||||
return common_name_pieces
|
||||
|
||||
def gen_job_name(self):
|
||||
return "_".join(["pytorch"] + self.get_common_name_pieces(False))
|
||||
|
||||
def gen_tree(self):
|
||||
extra_requires = [x.gen_job_name() for x in BUILD_CONFIGS] if self.is_upload else []
|
||||
|
||||
props_dict = {
|
||||
"build_environment": "-".join(["libtorch"] + self.get_common_name_pieces(True)),
|
||||
"requires": extra_requires,
|
||||
"context": "org-member",
|
||||
"filters": {"branches": {"only": "nightly"}},
|
||||
}
|
||||
|
||||
if not self.is_upload:
|
||||
props_dict["ios_arch"] = self.variant
|
||||
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
|
||||
props_dict["name"] = self.gen_job_name()
|
||||
props_dict["use_metal"] = miniutils.quote(str(int(True)))
|
||||
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
|
||||
|
||||
template_name = "_".join([
|
||||
"binary",
|
||||
"ios",
|
||||
self.get_phase_name(),
|
||||
])
|
||||
|
||||
return [{template_name: props_dict}]
|
||||
|
||||
|
||||
BUILD_CONFIGS = [
|
||||
IOSNightlyJob("x86_64"),
|
||||
IOSNightlyJob("arm64"),
|
||||
]
|
||||
|
||||
|
||||
WORKFLOW_DATA = BUILD_CONFIGS + [
|
||||
IOSNightlyJob("binary", is_upload=True),
|
||||
]
|
||||
|
||||
|
||||
def get_workflow_jobs():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,27 +0,0 @@
|
||||
NON_PR_BRANCH_LIST = [
|
||||
"master",
|
||||
r"/ci-all\/.*/",
|
||||
r"/release\/.*/",
|
||||
]
|
||||
|
||||
PR_BRANCH_LIST = [
|
||||
r"/gh\/.*\/head/",
|
||||
r"/pull\/.*/",
|
||||
]
|
||||
|
||||
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
|
||||
|
||||
def gen_filter_dict(
|
||||
branches_list=NON_PR_BRANCH_LIST,
|
||||
tags_list=None
|
||||
):
|
||||
"""Generates a filter dictionary for use with CircleCI's job filter"""
|
||||
filter_dict = {
|
||||
"branches": {
|
||||
"only": branches_list,
|
||||
},
|
||||
}
|
||||
|
||||
if tags_list is not None:
|
||||
filter_dict["tags"] = {"only": tags_list}
|
||||
return filter_dict
|
||||
@ -1,33 +0,0 @@
|
||||
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
|
||||
|
||||
def gen_docker_image(container_type):
|
||||
return (
|
||||
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
|
||||
f"docker-{container_type}",
|
||||
)
|
||||
|
||||
def gen_docker_image_requires(image_name):
|
||||
return [f"docker-{image_name}"]
|
||||
|
||||
|
||||
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
|
||||
"pytorch-linux-xenial-py3.6-gcc5.4"
|
||||
)
|
||||
|
||||
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
|
||||
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
|
||||
)
|
||||
|
||||
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
|
||||
"pytorch-linux-xenial-py3.6-gcc7"
|
||||
)
|
||||
|
||||
|
||||
def gen_mobile_docker(specifier):
|
||||
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
|
||||
return gen_docker_image(container_type)
|
||||
|
||||
|
||||
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
|
||||
|
||||
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")
|
||||
@ -1,34 +0,0 @@
|
||||
class MultiPartVersion:
|
||||
def __init__(self, parts, prefix=""):
|
||||
self.parts = parts
|
||||
self.prefix = prefix
|
||||
|
||||
def prefixed_parts(self):
|
||||
"""
|
||||
Prepends the first element of the version list
|
||||
with the prefix string.
|
||||
"""
|
||||
if self.parts:
|
||||
return [self.prefix + str(self.parts[0])] + [str(part) for part in self.parts[1:]]
|
||||
else:
|
||||
return [self.prefix]
|
||||
|
||||
def render_dots(self):
|
||||
return ".".join(self.prefixed_parts())
|
||||
|
||||
def render_dots_or_parts(self, with_dots):
|
||||
if with_dots:
|
||||
return [self.render_dots()]
|
||||
else:
|
||||
return self.prefixed_parts()
|
||||
|
||||
|
||||
class CudaVersion(MultiPartVersion):
|
||||
def __init__(self, major, minor):
|
||||
self.major = major
|
||||
self.minor = minor
|
||||
|
||||
super().__init__([self.major, self.minor], "cuda")
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.major}.{self.minor}"
|
||||
@ -1,160 +0,0 @@
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN, NON_PR_BRANCH_LIST
|
||||
from cimodel.data.simple.util.versions import CudaVersion
|
||||
|
||||
|
||||
class WindowsJob:
|
||||
def __init__(
|
||||
self,
|
||||
test_index,
|
||||
vscode_spec,
|
||||
cuda_version,
|
||||
force_on_cpu=False,
|
||||
multi_gpu=False,
|
||||
master_only=False,
|
||||
nightly_only=False,
|
||||
master_and_nightly=False
|
||||
):
|
||||
self.test_index = test_index
|
||||
self.vscode_spec = vscode_spec
|
||||
self.cuda_version = cuda_version
|
||||
self.force_on_cpu = force_on_cpu
|
||||
self.multi_gpu = multi_gpu
|
||||
self.master_only = master_only
|
||||
self.nightly_only = nightly_only
|
||||
self.master_and_nightly = master_and_nightly
|
||||
|
||||
def gen_tree(self):
|
||||
|
||||
base_phase = "build" if self.test_index is None else "test"
|
||||
numbered_phase = (
|
||||
base_phase if self.test_index is None else base_phase + str(self.test_index)
|
||||
)
|
||||
|
||||
key_parts = ["pytorch", "windows", base_phase]
|
||||
if self.multi_gpu:
|
||||
key_parts.append('multigpu')
|
||||
key_name = "_".join(key_parts)
|
||||
|
||||
cpu_forcing_name_parts = ["on", "cpu"] if self.force_on_cpu else []
|
||||
|
||||
target_arch = self.cuda_version.render_dots() if self.cuda_version else "cpu"
|
||||
|
||||
python_version = "3.8"
|
||||
|
||||
base_name_parts = [
|
||||
"pytorch",
|
||||
"windows",
|
||||
self.vscode_spec.render(),
|
||||
"py" + python_version.replace(".", ""),
|
||||
target_arch,
|
||||
]
|
||||
|
||||
prerequisite_jobs = []
|
||||
if base_phase == "test":
|
||||
prerequisite_jobs.append("_".join(base_name_parts + ["build"]))
|
||||
|
||||
if self.cuda_version:
|
||||
self.cudnn_version = 8 if self.cuda_version.major == 11 else 7
|
||||
|
||||
arch_env_elements = (
|
||||
["cuda" + str(self.cuda_version.major) + "." + str(self.cuda_version.minor)]
|
||||
if self.cuda_version
|
||||
else ["cpu"]
|
||||
)
|
||||
|
||||
build_environment_string = "-".join(
|
||||
["pytorch", "win"]
|
||||
+ self.vscode_spec.get_elements()
|
||||
+ arch_env_elements
|
||||
+ ["py" + python_version.split(".")[0]]
|
||||
)
|
||||
|
||||
is_running_on_cuda = bool(self.cuda_version) and not self.force_on_cpu
|
||||
|
||||
if self.multi_gpu:
|
||||
props_dict = {"requires": prerequisite_jobs}
|
||||
else:
|
||||
props_dict = {
|
||||
"build_environment": build_environment_string,
|
||||
"python_version": miniutils.quote(python_version),
|
||||
"vs_version": miniutils.quote("16.8.6"),
|
||||
"vc_version": miniutils.quote(self.vscode_spec.dotted_version()),
|
||||
"vc_year": miniutils.quote(str(self.vscode_spec.year)),
|
||||
"vc_product": self.vscode_spec.get_product(),
|
||||
"use_cuda": miniutils.quote(str(int(is_running_on_cuda))),
|
||||
"requires": prerequisite_jobs,
|
||||
}
|
||||
|
||||
if self.master_only:
|
||||
props_dict[
|
||||
"filters"
|
||||
] = gen_filter_dict()
|
||||
elif self.nightly_only:
|
||||
props_dict[
|
||||
"filters"
|
||||
] = gen_filter_dict(branches_list=["nightly"], tags_list=RC_PATTERN)
|
||||
elif self.master_and_nightly:
|
||||
props_dict[
|
||||
"filters"
|
||||
] = gen_filter_dict(branches_list=NON_PR_BRANCH_LIST + ["nightly"], tags_list=RC_PATTERN)
|
||||
|
||||
name_parts = base_name_parts + cpu_forcing_name_parts + [numbered_phase]
|
||||
|
||||
if not self.multi_gpu:
|
||||
if base_phase == "test":
|
||||
test_name = "-".join(["pytorch", "windows", numbered_phase])
|
||||
props_dict["test_name"] = test_name
|
||||
|
||||
if is_running_on_cuda:
|
||||
props_dict["executor"] = "windows-with-nvidia-gpu"
|
||||
|
||||
props_dict["cuda_version"] = (
|
||||
miniutils.quote(str(self.cuda_version))
|
||||
if self.cuda_version
|
||||
else "cpu"
|
||||
)
|
||||
|
||||
props_dict["name"] = "_".join(name_parts)
|
||||
|
||||
return [{key_name: props_dict}]
|
||||
|
||||
|
||||
class VcSpec:
|
||||
def __init__(self, year, version_elements=None, hide_version=False):
|
||||
self.year = year
|
||||
self.version_elements = version_elements or []
|
||||
self.hide_version = hide_version
|
||||
|
||||
def get_elements(self):
|
||||
if self.hide_version:
|
||||
return [self.prefixed_year()]
|
||||
return [self.prefixed_year()] + self.version_elements
|
||||
|
||||
def get_product(self):
|
||||
return "BuildTools"
|
||||
|
||||
def dotted_version(self):
|
||||
return ".".join(self.version_elements)
|
||||
|
||||
def prefixed_year(self):
|
||||
return "vs" + str(self.year)
|
||||
|
||||
def render(self):
|
||||
return "_".join(self.get_elements())
|
||||
|
||||
_VC2019 = VcSpec(2019)
|
||||
|
||||
WORKFLOW_DATA = [
|
||||
# VS2019 CUDA-10.2
|
||||
WindowsJob(None, _VC2019, CudaVersion(10, 2), master_only=True),
|
||||
# VS2019 CUDA-10.2 force on cpu
|
||||
WindowsJob(1, _VC2019, CudaVersion(10, 2), force_on_cpu=True, master_only=True),
|
||||
|
||||
# TODO: This test is disabled due to https://github.com/pytorch/pytorch/issues/59724
|
||||
# WindowsJob('_azure_multi_gpu', _VC2019, CudaVersion(11, 1), multi_gpu=True, master_and_nightly=True),
|
||||
]
|
||||
|
||||
|
||||
def get_windows_workflows():
|
||||
return [item.gen_tree() for item in WORKFLOW_DATA]
|
||||
@ -1,7 +1,5 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
|
||||
|
||||
LIST_MARKER = "- "
|
||||
INDENTATION_WIDTH = 2
|
||||
@ -31,8 +29,7 @@ def render(fh, data, depth, is_list_member=False):
|
||||
tuples.sort()
|
||||
|
||||
for i, (k, v) in enumerate(tuples):
|
||||
if not v:
|
||||
continue
|
||||
|
||||
# If this dict is itself a list member, the first key gets prefixed with a list marker
|
||||
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
|
||||
|
||||
@ -46,7 +43,5 @@ def render(fh, data, depth, is_list_member=False):
|
||||
render(fh, v, depth, True)
|
||||
|
||||
else:
|
||||
# use empty quotes to denote an empty string value instead of blank space
|
||||
modified_data = miniutils.quote(data) if data == "" else data
|
||||
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
|
||||
fh.write(list_member_prefix + str(modified_data) + "\n")
|
||||
fh.write(list_member_prefix + str(data) + "\n")
|
||||
|
||||
84
.circleci/cimodel/lib/visualization.py
Normal file
84
.circleci/cimodel/lib/visualization.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""
|
||||
This module encapsulates dependencies on pygraphviz
|
||||
"""
|
||||
|
||||
import colorsys
|
||||
|
||||
import cimodel.lib.conf_tree as conf_tree
|
||||
|
||||
|
||||
def rgb2hex(rgb_tuple):
|
||||
def to_hex(f):
|
||||
return "%02x" % int(f * 255)
|
||||
|
||||
return "#" + "".join(map(to_hex, list(rgb_tuple)))
|
||||
|
||||
|
||||
def handle_missing_graphviz(f):
|
||||
"""
|
||||
If the user has not installed pygraphviz, this causes
|
||||
calls to the draw() method of the returned object to do nothing.
|
||||
"""
|
||||
try:
|
||||
import pygraphviz # noqa: F401
|
||||
return f
|
||||
|
||||
except ModuleNotFoundError:
|
||||
|
||||
class FakeGraph:
|
||||
def draw(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
return lambda _: FakeGraph()
|
||||
|
||||
|
||||
@handle_missing_graphviz
|
||||
def generate_graph(toplevel_config_node):
|
||||
"""
|
||||
Traverses the graph once first just to find the max depth
|
||||
"""
|
||||
|
||||
config_list = conf_tree.dfs(toplevel_config_node)
|
||||
|
||||
max_depth = 0
|
||||
for config in config_list:
|
||||
max_depth = max(max_depth, config.get_depth())
|
||||
|
||||
# color the nodes using the max depth
|
||||
|
||||
from pygraphviz import AGraph
|
||||
dot = AGraph()
|
||||
|
||||
def node_discovery_callback(node, sibling_index, sibling_count):
|
||||
depth = node.get_depth()
|
||||
|
||||
sat_min, sat_max = 0.1, 0.6
|
||||
sat_range = sat_max - sat_min
|
||||
|
||||
saturation_fraction = sibling_index / float(sibling_count - 1) if sibling_count > 1 else 1
|
||||
saturation = sat_min + sat_range * saturation_fraction
|
||||
|
||||
# TODO Use a hash of the node label to determine the color
|
||||
hue = depth / float(max_depth + 1)
|
||||
|
||||
rgb_tuple = colorsys.hsv_to_rgb(hue, saturation, 1)
|
||||
|
||||
this_node_key = node.get_node_key()
|
||||
|
||||
dot.add_node(
|
||||
this_node_key,
|
||||
label=node.get_label(),
|
||||
style="filled",
|
||||
# fillcolor=hex_color + ":orange",
|
||||
fillcolor=rgb2hex(rgb_tuple),
|
||||
penwidth=3,
|
||||
color=rgb2hex(colorsys.hsv_to_rgb(hue, saturation, 0.9))
|
||||
)
|
||||
|
||||
def child_callback(node, child):
|
||||
this_node_key = node.get_node_key()
|
||||
child_node_key = child.get_node_key()
|
||||
dot.add_edge((this_node_key, child_node_key))
|
||||
|
||||
conf_tree.dfs_recurse(toplevel_config_node, lambda x: None, node_discovery_callback, child_callback)
|
||||
return dot
|
||||
@ -1,17 +0,0 @@
|
||||
#!/bin/bash -xe
|
||||
|
||||
|
||||
YAML_FILENAME=verbatim-sources/workflows-pytorch-ge-config-tests.yml
|
||||
DIFF_TOOL=meld
|
||||
|
||||
|
||||
# Allows this script to be invoked from any directory:
|
||||
cd $(dirname "$0")
|
||||
|
||||
pushd ..
|
||||
|
||||
|
||||
$DIFF_TOOL $YAML_FILENAME <(./codegen_validation/normalize_yaml_fragment.py < $YAML_FILENAME)
|
||||
|
||||
|
||||
popd
|
||||
@ -1,24 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import sys
|
||||
import yaml
|
||||
|
||||
# Need to import modules that lie on an upward-relative path
|
||||
sys.path.append(os.path.join(sys.path[0], '..'))
|
||||
|
||||
import cimodel.lib.miniyaml as miniyaml
|
||||
|
||||
|
||||
def regurgitate(depth, use_pyyaml_formatter=False):
|
||||
data = yaml.safe_load(sys.stdin)
|
||||
|
||||
if use_pyyaml_formatter:
|
||||
output = yaml.dump(data, sort_keys=True)
|
||||
sys.stdout.write(output)
|
||||
else:
|
||||
miniyaml.render(sys.stdout, data, depth)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
regurgitate(3)
|
||||
@ -1,15 +0,0 @@
|
||||
#!/bin/bash -xe
|
||||
|
||||
YAML_FILENAME=$1
|
||||
|
||||
# Allows this script to be invoked from any directory:
|
||||
cd $(dirname "$0")
|
||||
|
||||
pushd ..
|
||||
|
||||
TEMP_FILENAME=$(mktemp)
|
||||
|
||||
cat $YAML_FILENAME | ./codegen_validation/normalize_yaml_fragment.py > $TEMP_FILENAME
|
||||
mv $TEMP_FILENAME $YAML_FILENAME
|
||||
|
||||
popd
|
||||
13741
.circleci/config.yml
13741
.circleci/config.yml
File diff suppressed because it is too large
Load Diff
@ -12,20 +12,8 @@ each image as the `BUILD_ENVIRONMENT` environment variable.
|
||||
|
||||
See `build.sh` for valid build environments (it's the giant switch).
|
||||
|
||||
Docker builds are now defined with `.circleci/cimodel/data/simple/docker_definitions.py`
|
||||
|
||||
## Contents
|
||||
|
||||
* `build.sh` -- dispatch script to launch all builds
|
||||
* `common` -- scripts used to execute individual Docker build stages
|
||||
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# Build a specific image
|
||||
./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
|
||||
|
||||
# Set flags (see build.sh) and build image
|
||||
sudo bash -c 'PROTOBUF=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
|
||||
```
|
||||
|
||||
@ -20,8 +20,10 @@ buildscript {
|
||||
}
|
||||
|
||||
dependencies {
|
||||
classpath 'com.android.tools.build:gradle:4.1.2'
|
||||
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
|
||||
classpath 'com.android.tools.build:gradle:3.3.2'
|
||||
classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.0"
|
||||
classpath "com.github.dcendents:android-maven-gradle-plugin:2.1"
|
||||
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4.9.8"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -10,64 +10,21 @@ if [ -z "${image}" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
function extract_version_from_image_name() {
|
||||
eval export $2=$(echo "${image}" | perl -n -e"/$1(\d+(\.\d+)?(\.\d+)?)/ && print \$1")
|
||||
if [ "x${!2}" = x ]; then
|
||||
echo "variable '$2' not correctly parsed from image='$image'"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
# TODO: Generalize
|
||||
OS="ubuntu"
|
||||
DOCKERFILE="${OS}/Dockerfile"
|
||||
if [[ "$image" == *-cuda* ]]; then
|
||||
DOCKERFILE="${OS}-cuda/Dockerfile"
|
||||
fi
|
||||
|
||||
function extract_all_from_image_name() {
|
||||
# parts $image into array, splitting on '-'
|
||||
keep_IFS="$IFS"
|
||||
IFS="-"
|
||||
declare -a parts=($image)
|
||||
IFS="$keep_IFS"
|
||||
unset keep_IFS
|
||||
|
||||
for part in "${parts[@]}"; do
|
||||
name=$(echo "${part}" | perl -n -e"/([a-zA-Z]+)\d+(\.\d+)?(\.\d+)?/ && print \$1")
|
||||
vername="${name^^}_VERSION"
|
||||
# "py" is the odd one out, needs this special case
|
||||
if [ "x${name}" = xpy ]; then
|
||||
vername=ANACONDA_PYTHON_VERSION
|
||||
fi
|
||||
# skip non-conforming fields such as "pytorch", "linux" or "xenial" without version string
|
||||
if [ -n "${name}" ]; then
|
||||
extract_version_from_image_name "${name}" "${vername}"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
if [[ "$image" == *-xenial* ]]; then
|
||||
if [[ "$image" == *-trusty* ]]; then
|
||||
UBUNTU_VERSION=14.04
|
||||
elif [[ "$image" == *-xenial* ]]; then
|
||||
UBUNTU_VERSION=16.04
|
||||
elif [[ "$image" == *-artful* ]]; then
|
||||
UBUNTU_VERSION=17.10
|
||||
elif [[ "$image" == *-bionic* ]]; then
|
||||
UBUNTU_VERSION=18.04
|
||||
elif [[ "$image" == *-focal* ]]; then
|
||||
UBUNTU_VERSION=20.04
|
||||
elif [[ "$image" == *ubuntu* ]]; then
|
||||
extract_version_from_image_name ubuntu UBUNTU_VERSION
|
||||
elif [[ "$image" == *centos* ]]; then
|
||||
extract_version_from_image_name centos CENTOS_VERSION
|
||||
fi
|
||||
|
||||
if [ -n "${UBUNTU_VERSION}" ]; then
|
||||
OS="ubuntu"
|
||||
elif [ -n "${CENTOS_VERSION}" ]; then
|
||||
OS="centos"
|
||||
else
|
||||
echo "Unable to derive operating system base..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
DOCKERFILE="${OS}/Dockerfile"
|
||||
if [[ "$image" == *cuda* ]]; then
|
||||
DOCKERFILE="${OS}-cuda/Dockerfile"
|
||||
elif [[ "$image" == *rocm* ]]; then
|
||||
DOCKERFILE="${OS}-rocm/Dockerfile"
|
||||
fi
|
||||
|
||||
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/14.04/x86_64"
|
||||
@ -76,15 +33,45 @@ TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/u
|
||||
# configuration, so we hardcode everything here rather than do it
|
||||
# from scratch
|
||||
case "$image" in
|
||||
pytorch-linux-xenial-py3.8)
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
CMAKE_VERSION=3.10.3
|
||||
pytorch-linux-bionic-clang9-thrift-llvmdev)
|
||||
CLANG_VERSION=9
|
||||
THRIFT=yes
|
||||
LLVMDEV=yes
|
||||
PROTOBUF=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py2.7.9)
|
||||
TRAVIS_PYTHON_VERSION=2.7.9
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py2.7)
|
||||
TRAVIS_PYTHON_VERSION=2.7
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3.5)
|
||||
TRAVIS_PYTHON_VERSION=3.5
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py3.8)
|
||||
# TODO: This is a hack, get rid of this as soon as you get rid of the travis downloads
|
||||
TRAVIS_DL_URL_PREFIX="https://s3.amazonaws.com/travis-python-archives/binaries/ubuntu/16.04/x86_64"
|
||||
TRAVIS_PYTHON_VERSION=3.8
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-gcc4.8)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=4.8
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-gcc5.4)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=5
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
@ -93,45 +80,71 @@ case "$image" in
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-gcc7.2)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=7
|
||||
# Do not install PROTOBUF, DB, and VISION as a test
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-gcc7)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-pynightly)
|
||||
TRAVIS_PYTHON_VERSION=nightly
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda9-cudnn7-py2)
|
||||
CUDA_VERSION=9.0
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=2.7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda9-cudnn7-py3)
|
||||
CUDA_VERSION=9.0
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda9.2-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=9.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.0
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10.1-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.1
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda11.1-cudnn8-py3-gcc7)
|
||||
CUDA_VERSION=11.1
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
;;
|
||||
pytorch-linux-xenial-cuda11.3-cudnn8-py3-gcc7)
|
||||
CUDA_VERSION=11.3.0 # Deviating from major.minor to conform to nvidia's Docker image names
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
@ -141,23 +154,6 @@ case "$image" in
|
||||
pytorch-linux-xenial-py3-clang5-asan)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=5.0
|
||||
CMAKE_VERSION=3.10.3
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang7-asan)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=7
|
||||
CMAKE_VERSION=3.10.3
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-xenial-py3-clang7-onnx)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=7
|
||||
CMAKE_VERSION=3.10.3
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
@ -165,125 +161,21 @@ case "$image" in
|
||||
pytorch-linux-xenial-py3-clang5-android-ndk-r19c)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=5.0
|
||||
CMAKE_VERSION=3.10.3
|
||||
LLVMDEV=yes
|
||||
PROTOBUF=yes
|
||||
ANDROID=yes
|
||||
ANDROID_NDK_VERSION=r19c
|
||||
GRADLE_VERSION=6.8.3
|
||||
GRADLE_VERSION=4.10.3
|
||||
CMAKE_VERSION=3.7.0
|
||||
NINJA_VERSION=1.9.0
|
||||
;;
|
||||
pytorch-linux-xenial-py3.6-clang7)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CMAKE_VERSION=3.10.3
|
||||
CLANG_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-py3.6-clang9)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
VULKAN_SDK_VERSION=1.2.162.1
|
||||
SWIFTSHADER=yes
|
||||
;;
|
||||
pytorch-linux-bionic-py3.8-gcc9)
|
||||
ANACONDA_PYTHON_VERSION=3.8
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.6-clang9)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
CLANG_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda10.2-cudnn7-py3.9-gcc7)
|
||||
CUDA_VERSION=10.2
|
||||
CUDNN_VERSION=7
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=7
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-bionic-cuda11.0-cudnn8-py3.6-gcc9)
|
||||
CUDA_VERSION=11.0
|
||||
CUDNN_VERSION=8
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=3.9
|
||||
;;
|
||||
pytorch-linux-bionic-rocm4.1-py3.6)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=4.1
|
||||
;;
|
||||
pytorch-linux-bionic-rocm4.2-py3.6)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=4.2
|
||||
;;
|
||||
pytorch-linux-bionic-rocm4.3.1-py3.6)
|
||||
ANACONDA_PYTHON_VERSION=3.6
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=4.3.1
|
||||
;;
|
||||
*)
|
||||
# Catch-all for builds that are not hardcoded.
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
echo "image '$image' did not match an existing build configuration"
|
||||
if [[ "$image" == *xenial* ]]; then
|
||||
CMAKE_VERSION=3.10.3
|
||||
fi
|
||||
if [[ "$image" == *py* ]]; then
|
||||
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
|
||||
fi
|
||||
if [[ "$image" == *cuda* ]]; then
|
||||
extract_version_from_image_name cuda CUDA_VERSION
|
||||
extract_version_from_image_name cudnn CUDNN_VERSION
|
||||
fi
|
||||
if [[ "$image" == *rocm* ]]; then
|
||||
extract_version_from_image_name rocm ROCM_VERSION
|
||||
fi
|
||||
if [[ "$image" == *gcc* ]]; then
|
||||
extract_version_from_image_name gcc GCC_VERSION
|
||||
fi
|
||||
if [[ "$image" == *clang* ]]; then
|
||||
extract_version_from_image_name clang CLANG_VERSION
|
||||
fi
|
||||
if [[ "$image" == *devtoolset* ]]; then
|
||||
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
|
||||
fi
|
||||
if [[ "$image" == *glibc* ]]; then
|
||||
extract_version_from_image_name glibc GLIBC_VERSION
|
||||
fi
|
||||
if [[ "$image" == *cmake* ]]; then
|
||||
extract_version_from_image_name cmake CMAKE_VERSION
|
||||
fi
|
||||
;;
|
||||
esac
|
||||
|
||||
# Set Jenkins UID and GID if running Jenkins
|
||||
@ -292,14 +184,11 @@ if [ -n "${JENKINS:-}" ]; then
|
||||
JENKINS_GID=$(id -g jenkins)
|
||||
fi
|
||||
|
||||
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
|
||||
tmp_tag="tmp-$(cat /dev/urandom | tr -dc 'a-z' | fold -w 32 | head -n 1)"
|
||||
|
||||
# Build image
|
||||
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
|
||||
# it's no longer needed.
|
||||
docker build \
|
||||
--no-cache \
|
||||
--progress=plain \
|
||||
--build-arg "TRAVIS_DL_URL_PREFIX=${TRAVIS_DL_URL_PREFIX}" \
|
||||
--build-arg "BUILD_ENVIRONMENT=${image}" \
|
||||
--build-arg "PROTOBUF=${PROTOBUF:-}" \
|
||||
@ -312,36 +201,23 @@ docker build \
|
||||
--build-arg "JENKINS_UID=${JENKINS_UID:-}" \
|
||||
--build-arg "JENKINS_GID=${JENKINS_GID:-}" \
|
||||
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
|
||||
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
|
||||
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
|
||||
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
|
||||
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
|
||||
--build-arg "ANACONDA_PYTHON_VERSION=${ANACONDA_PYTHON_VERSION}" \
|
||||
--build-arg "TRAVIS_PYTHON_VERSION=${TRAVIS_PYTHON_VERSION}" \
|
||||
--build-arg "GCC_VERSION=${GCC_VERSION}" \
|
||||
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
|
||||
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
|
||||
--build-arg "ANDROID=${ANDROID}" \
|
||||
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
|
||||
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
|
||||
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
|
||||
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
|
||||
--build-arg "CMAKE_VERSION=${CMAKE_VERSION:-}" \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
-f $(dirname ${DOCKERFILE})/Dockerfile \
|
||||
-t "$tmp_tag" \
|
||||
"$@" \
|
||||
.
|
||||
|
||||
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
|
||||
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
|
||||
# find the correct image. As a result, here we have to replace the
|
||||
# "$UBUNTU_VERSION" == "18.04-rc"
|
||||
# with
|
||||
# "$UBUNTU_VERSION" == "18.04"
|
||||
UBUNTU_VERSION=$(echo ${UBUNTU_VERSION} | sed 's/-rc$//')
|
||||
|
||||
function drun() {
|
||||
docker run --rm "$tmp_tag" $*
|
||||
}
|
||||
@ -359,6 +235,19 @@ if [[ "$OS" == "ubuntu" ]]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]]; then
|
||||
if !(drun python --version 2>&1 | grep -qF "Python $TRAVIS_PYTHON_VERSION"); then
|
||||
echo "TRAVIS_PYTHON_VERSION=$TRAVIS_PYTHON_VERSION, but:"
|
||||
drun python --version
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "Please manually check nightly is OK:"
|
||||
drun python --version
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
if !(drun python --version 2>&1 | grep -qF "Python $ANACONDA_PYTHON_VERSION"); then
|
||||
echo "ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION, but:"
|
||||
|
||||
@ -13,7 +13,7 @@ retry () {
|
||||
|
||||
#until we find a way to reliably reuse previous build, this last_tag is not in use
|
||||
# last_tag="$(( CIRCLE_BUILD_NUM - 1 ))"
|
||||
tag="${DOCKER_TAG}"
|
||||
tag="${CIRCLE_WORKFLOW_ID}"
|
||||
|
||||
|
||||
registry="308535385114.dkr.ecr.us-east-1.amazonaws.com"
|
||||
@ -46,7 +46,4 @@ trap "docker logout ${registry}" EXIT
|
||||
docker push "${image}:${tag}"
|
||||
|
||||
docker save -o "${IMAGE_NAME}:${tag}.tar" "${image}:${tag}"
|
||||
|
||||
if [ -z "${DOCKER_SKIP_S3_UPLOAD:-}" ]; then
|
||||
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
|
||||
fi
|
||||
aws s3 cp "${IMAGE_NAME}:${tag}.tar" "s3://ossci-linux-build/pytorch/base/${IMAGE_NAME}:${tag}.tar" --acl public-read
|
||||
|
||||
@ -1,93 +0,0 @@
|
||||
ARG CENTOS_VERSION
|
||||
|
||||
FROM centos:${CENTOS_VERSION}
|
||||
|
||||
ARG CENTOS_VERSION
|
||||
|
||||
# Install required packages to build Caffe2
|
||||
|
||||
# Install common dependencies (so that this step can be cached separately)
|
||||
ARG EC2
|
||||
ADD ./common/install_base.sh install_base.sh
|
||||
RUN bash ./install_base.sh && rm install_base.sh
|
||||
|
||||
# Install devtoolset
|
||||
ARG DEVTOOLSET_VERSION
|
||||
ADD ./common/install_devtoolset.sh install_devtoolset.sh
|
||||
RUN bash ./install_devtoolset.sh && rm install_devtoolset.sh
|
||||
ENV BASH_ENV "/etc/profile"
|
||||
|
||||
# (optional) Install non-default glibc version
|
||||
ARG GLIBC_VERSION
|
||||
ADD ./common/install_glibc.sh install_glibc.sh
|
||||
RUN if [ -n "${GLIBC_VERSION}" ]; then bash ./install_glibc.sh; fi
|
||||
RUN rm install_glibc.sh
|
||||
|
||||
# Install user
|
||||
ADD ./common/install_user.sh install_user.sh
|
||||
RUN bash ./install_user.sh && rm install_user.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, coverage, pytest)
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
ADD ./common/install_protobuf.sh install_protobuf.sh
|
||||
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
|
||||
RUN rm install_protobuf.sh
|
||||
ENV INSTALLED_PROTOBUF ${PROTOBUF}
|
||||
|
||||
# (optional) Install database packages like LMDB and LevelDB
|
||||
ARG DB
|
||||
ADD ./common/install_db.sh install_db.sh
|
||||
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
|
||||
RUN rm install_db.sh
|
||||
ENV INSTALLED_DB ${DB}
|
||||
|
||||
# (optional) Install vision packages like OpenCV and ffmpeg
|
||||
ARG VISION
|
||||
ADD ./common/install_vision.sh install_vision.sh
|
||||
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# Install rocm
|
||||
ARG ROCM_VERSION
|
||||
ADD ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh
|
||||
RUN rm install_rocm.sh
|
||||
ENV PATH /opt/rocm/bin:$PATH
|
||||
ENV PATH /opt/rocm/hcc/bin:$PATH
|
||||
ENV PATH /opt/rocm/hip/bin:$PATH
|
||||
ENV PATH /opt/rocm/opencl/bin:$PATH
|
||||
ENV PATH /opt/rocm/llvm/bin:$PATH
|
||||
ENV MAGMA_HOME /opt/rocm/magma
|
||||
ENV LANG en_US.utf8
|
||||
ENV LC_ALL en_US.utf8
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
|
||||
RUN rm install_cmake.sh
|
||||
|
||||
# (optional) Install non-default Ninja version
|
||||
ARG NINJA_VERSION
|
||||
ADD ./common/install_ninja.sh install_ninja.sh
|
||||
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
|
||||
RUN rm install_ninja.sh
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
RUN bash ./install_cache.sh && rm install_cache.sh
|
||||
|
||||
# Include BUILD_ENVIRONMENT environment variable in image
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
@ -4,15 +4,13 @@ set -ex
|
||||
|
||||
[ -n "${ANDROID_NDK}" ]
|
||||
|
||||
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
|
||||
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
pushd /tmp
|
||||
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
|
||||
curl -Os --retry 3 https://dl.google.com/android/repository/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
|
||||
popd
|
||||
_ndk_dir=/opt/ndk
|
||||
mkdir -p "$_ndk_dir"
|
||||
@ -47,22 +45,43 @@ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
|
||||
# Installing android sdk
|
||||
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
|
||||
|
||||
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
|
||||
_sdk_version=sdk-tools-linux-3859397.zip
|
||||
_android_home=/opt/android/sdk
|
||||
|
||||
rm -rf $_android_home
|
||||
sudo mkdir -p $_android_home
|
||||
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
|
||||
sudo unzip -q $_tmp_sdk_zip -d $_android_home
|
||||
rm $_tmp_sdk_zip
|
||||
curl --silent --show-error --location --fail --retry 3 --output /tmp/$_sdk_version https://dl.google.com/android/repository/$_sdk_version
|
||||
sudo unzip -q /tmp/$_sdk_version -d $_android_home
|
||||
rm /tmp/$_sdk_version
|
||||
|
||||
sudo chmod -R 777 $_android_home
|
||||
|
||||
export ANDROID_HOME=$_android_home
|
||||
export ADB_INSTALL_TIMEOUT=120
|
||||
|
||||
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
|
||||
export PATH="${ANDROID_HOME}/emulator:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
|
||||
echo "PATH:${PATH}"
|
||||
alias sdkmanager="$ANDROID_HOME/tools/bin/sdkmanager"
|
||||
|
||||
sudo mkdir ~/.android && sudo echo '### User Sources for Android SDK Manager' > ~/.android/repositories.cfg
|
||||
sudo chmod -R 777 ~/.android
|
||||
|
||||
yes | sdkmanager --licenses
|
||||
yes | sdkmanager --update
|
||||
|
||||
sdkmanager \
|
||||
"tools" \
|
||||
"platform-tools" \
|
||||
"emulator"
|
||||
|
||||
sdkmanager \
|
||||
"build-tools;28.0.3" \
|
||||
"build-tools;29.0.2"
|
||||
|
||||
sdkmanager \
|
||||
"platforms;android-28" \
|
||||
"platforms;android-29"
|
||||
sdkmanager --list
|
||||
|
||||
# Installing Gradle
|
||||
echo "GRADLE_VERSION:${GRADLE_VERSION}"
|
||||
@ -70,7 +89,8 @@ _gradle_home=/opt/gradle
|
||||
sudo rm -rf $gradle_home
|
||||
sudo mkdir -p $_gradle_home
|
||||
|
||||
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
|
||||
wget --no-verbose --output-document=/tmp/gradle.zip \
|
||||
"https://services.gradle.org/distributions/gradle-${GRADLE_VERSION}-bin.zip"
|
||||
|
||||
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
|
||||
rm /tmp/gradle.zip
|
||||
@ -99,7 +119,7 @@ echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
chown -R jenkins /var/lib/jenkins/gradledeps
|
||||
chgrp -R jenkins /var/lib/jenkins/gradledeps
|
||||
|
||||
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
|
||||
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
|
||||
|
||||
chown -R jenkins /var/lib/jenkins/.gradle
|
||||
chgrp -R jenkins /var/lib/jenkins/.gradle
|
||||
|
||||
@ -2,122 +2,74 @@
|
||||
|
||||
set -ex
|
||||
|
||||
install_ubuntu() {
|
||||
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
|
||||
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
|
||||
# find the correct image. As a result, here we have to check for
|
||||
# "$UBUNTU_VERSION" == "18.04"*
|
||||
# instead of
|
||||
# "$UBUNTU_VERSION" == "18.04"
|
||||
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
|
||||
cmake3="cmake=3.10*"
|
||||
else
|
||||
cmake3="cmake=3.5*"
|
||||
fi
|
||||
if [[ "$UBUNTU_VERSION" == "14.04" ]]; then
|
||||
# cmake 2 is too old
|
||||
cmake3=cmake3
|
||||
else
|
||||
cmake3=cmake
|
||||
fi
|
||||
|
||||
# Install common dependencies
|
||||
apt-get update
|
||||
# TODO: Some of these may not be necessary
|
||||
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
|
||||
numpy_deps="gfortran"
|
||||
apt-get install -y --no-install-recommends \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
${cmake3} \
|
||||
apt-transport-https \
|
||||
autoconf \
|
||||
automake \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
curl \
|
||||
git \
|
||||
libatlas-base-dev \
|
||||
libc6-dbg \
|
||||
libiomp-dev \
|
||||
libyaml-dev \
|
||||
libz-dev \
|
||||
libjpeg-dev \
|
||||
libasound2-dev \
|
||||
libsndfile-dev \
|
||||
software-properties-common \
|
||||
sudo \
|
||||
wget \
|
||||
vim
|
||||
if [[ "$UBUNTU_VERSION" == "18.04" ]]; then
|
||||
cmake3="cmake=3.10*"
|
||||
else
|
||||
cmake3="${cmake3}=3.5*"
|
||||
fi
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
# Need EPEL for many packages we depend on.
|
||||
# See http://fedoraproject.org/wiki/EPEL
|
||||
yum --enablerepo=extras install -y epel-release
|
||||
|
||||
ccache_deps="asciidoc docbook-dtds docbook-style-xsl libxslt"
|
||||
numpy_deps="gcc-gfortran"
|
||||
# Note: protobuf-c-{compiler,devel} on CentOS are too old to be used
|
||||
# for Caffe2. That said, we still install them to make sure the build
|
||||
# system opts to build/use protoc and libprotobuf from third-party.
|
||||
yum install -y \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
autoconf \
|
||||
automake \
|
||||
bzip2 \
|
||||
cmake \
|
||||
cmake3 \
|
||||
curl \
|
||||
gcc \
|
||||
gcc-c++ \
|
||||
gflags-devel \
|
||||
git \
|
||||
glibc-devel \
|
||||
glibc-headers \
|
||||
glog-devel \
|
||||
hiredis-devel \
|
||||
libstdc++-devel \
|
||||
libsndfile-devel \
|
||||
make \
|
||||
opencv-devel \
|
||||
sudo \
|
||||
wget \
|
||||
vim
|
||||
|
||||
# Cleanup
|
||||
yum clean all
|
||||
rm -rf /var/cache/yum
|
||||
rm -rf /var/lib/yum/yumdb
|
||||
rm -rf /var/lib/yum/history
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
# Install common dependencies
|
||||
apt-get update
|
||||
# TODO: Some of these may not be necessary
|
||||
# TODO: libiomp also gets installed by conda, aka there's a conflict
|
||||
ccache_deps="asciidoc docbook-xml docbook-xsl xsltproc"
|
||||
numpy_deps="gfortran"
|
||||
apt-get install -y --no-install-recommends \
|
||||
$ccache_deps \
|
||||
$numpy_deps \
|
||||
${cmake3} \
|
||||
apt-transport-https \
|
||||
autoconf \
|
||||
automake \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
curl \
|
||||
git \
|
||||
libatlas-base-dev \
|
||||
libc6-dbg \
|
||||
libiomp-dev \
|
||||
libyaml-dev \
|
||||
libz-dev \
|
||||
libjpeg-dev \
|
||||
libasound2-dev \
|
||||
libsndfile-dev \
|
||||
python \
|
||||
python-dev \
|
||||
python-setuptools \
|
||||
python-wheel \
|
||||
software-properties-common \
|
||||
sudo \
|
||||
wget \
|
||||
vim
|
||||
|
||||
# Install Valgrind separately since the apt-get version is too old.
|
||||
mkdir valgrind_build && cd valgrind_build
|
||||
VALGRIND_VERSION=3.16.1
|
||||
if ! wget http://valgrind.org/downloads/valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
if ! wget http://valgrind.org/downloads/valgrind-3.14.0.tar.bz2
|
||||
then
|
||||
wget https://sourceware.org/ftp/valgrind/valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
wget https://sourceware.org/ftp/valgrind/valgrind-3.14.0.tar.bz2
|
||||
fi
|
||||
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
|
||||
cd valgrind-${VALGRIND_VERSION}
|
||||
tar -xjf valgrind-3.14.0.tar.bz2
|
||||
cd valgrind-3.14.0
|
||||
./configure --prefix=/usr/local
|
||||
make -j 4
|
||||
make
|
||||
sudo make install
|
||||
cd ../../
|
||||
rm -rf valgrind_build
|
||||
alias valgrind="/usr/local/bin/valgrind"
|
||||
|
||||
# TODO: THIS IS A HACK!!!
|
||||
# distributed nccl(2) tests are a bit busted, see https://github.com/pytorch/pytorch/issues/5877
|
||||
if dpkg -s libnccl-dev; then
|
||||
apt-get remove -y libnccl-dev libnccl2 --allow-change-held-packages
|
||||
fi
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
@ -2,51 +2,17 @@
|
||||
|
||||
set -ex
|
||||
|
||||
install_ubuntu() {
|
||||
echo "Preparing to build sccache from source"
|
||||
apt-get update
|
||||
apt-get install -y cargo pkg-config libssl-dev
|
||||
echo "Checking out sccache repo"
|
||||
git clone https://github.com/pytorch/sccache
|
||||
cd sccache
|
||||
echo "Building sccache"
|
||||
cargo build --release
|
||||
cp target/release/sccache /opt/cache/bin
|
||||
echo "Cleaning up"
|
||||
cd ..
|
||||
rm -rf sccache
|
||||
apt-get remove -y cargo rustc
|
||||
apt-get autoclean && apt-get clean
|
||||
}
|
||||
|
||||
install_binary() {
|
||||
echo "Downloading sccache binary from S3 repo"
|
||||
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
|
||||
}
|
||||
|
||||
mkdir -p /opt/cache/bin
|
||||
mkdir -p /opt/cache/lib
|
||||
sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
|
||||
export PATH="/opt/cache/bin:$PATH"
|
||||
|
||||
# Setup compiler cache
|
||||
if [ -n "$ROCM_VERSION" ]; then
|
||||
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
|
||||
else
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
*)
|
||||
install_binary
|
||||
;;
|
||||
esac
|
||||
fi
|
||||
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache
|
||||
chmod a+x /opt/cache/bin/sccache
|
||||
|
||||
function write_sccache_stub() {
|
||||
printf "#!/bin/sh\nif [ \$(ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
|
||||
printf "#!/bin/sh\nexec sccache $(which $1) \$*" > "/opt/cache/bin/$1"
|
||||
chmod a+x "/opt/cache/bin/$1"
|
||||
}
|
||||
|
||||
@ -54,12 +20,8 @@ write_sccache_stub cc
|
||||
write_sccache_stub c++
|
||||
write_sccache_stub gcc
|
||||
write_sccache_stub g++
|
||||
|
||||
# NOTE: See specific ROCM_VERSION case below.
|
||||
if [ "x$ROCM_VERSION" = x ]; then
|
||||
write_sccache_stub clang
|
||||
write_sccache_stub clang++
|
||||
fi
|
||||
write_sccache_stub clang
|
||||
write_sccache_stub clang++
|
||||
|
||||
if [ -n "$CUDA_VERSION" ]; then
|
||||
# TODO: This is a workaround for the fact that PyTorch's FindCUDA
|
||||
@ -68,50 +30,6 @@ if [ -n "$CUDA_VERSION" ]; then
|
||||
# where CUDA is installed. Instead, we install an nvcc symlink outside
|
||||
# of the PATH, and set CUDA_NVCC_EXECUTABLE so that we make use of it.
|
||||
|
||||
write_sccache_stub nvcc
|
||||
mv /opt/cache/bin/nvcc /opt/cache/lib/
|
||||
fi
|
||||
|
||||
if [ -n "$ROCM_VERSION" ]; then
|
||||
# ROCm compiler is hcc or clang. However, it is commonly invoked via hipcc wrapper.
|
||||
# hipcc will call either hcc or clang using an absolute path starting with /opt/rocm,
|
||||
# causing the /opt/cache/bin to be skipped. We must create the sccache wrappers
|
||||
# directly under /opt/rocm while also preserving the original compiler names.
|
||||
# Note symlinks will chain as follows: [hcc or clang++] -> clang -> clang-??
|
||||
# Final link in symlink chain must point back to original directory.
|
||||
|
||||
# Original compiler is moved one directory deeper. Wrapper replaces it.
|
||||
function write_sccache_stub_rocm() {
|
||||
OLDCOMP=$1
|
||||
COMPNAME=$(basename $OLDCOMP)
|
||||
TOPDIR=$(dirname $OLDCOMP)
|
||||
WRAPPED="$TOPDIR/original/$COMPNAME"
|
||||
mv "$OLDCOMP" "$WRAPPED"
|
||||
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
|
||||
chmod a+x "$OLDCOMP"
|
||||
}
|
||||
|
||||
if [[ -e "/opt/rocm/hcc/bin/hcc" ]]; then
|
||||
# ROCm 3.3 or earlier.
|
||||
mkdir /opt/rocm/hcc/bin/original
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/hcc
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang
|
||||
write_sccache_stub_rocm /opt/rocm/hcc/bin/clang++
|
||||
# Fix last link in symlink chain, clang points to versioned clang in prior dir
|
||||
pushd /opt/rocm/hcc/bin/original
|
||||
ln -s ../$(readlink clang)
|
||||
popd
|
||||
elif [[ -e "/opt/rocm/llvm/bin/clang" ]]; then
|
||||
# ROCm 3.5 and beyond.
|
||||
mkdir /opt/rocm/llvm/bin/original
|
||||
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang
|
||||
write_sccache_stub_rocm /opt/rocm/llvm/bin/clang++
|
||||
# Fix last link in symlink chain, clang points to versioned clang in prior dir
|
||||
pushd /opt/rocm/llvm/bin/original
|
||||
ln -s ../$(readlink clang)
|
||||
popd
|
||||
else
|
||||
echo "Cannot find ROCm compiler."
|
||||
exit 1
|
||||
fi
|
||||
printf "#!/bin/sh\nexec sccache $(which nvcc) \"\$@\"" > /opt/cache/lib/nvcc
|
||||
chmod a+x /opt/cache/lib/nvcc
|
||||
fi
|
||||
|
||||
@ -4,9 +4,6 @@ set -ex
|
||||
|
||||
[ -n "$CMAKE_VERSION" ]
|
||||
|
||||
# Remove system cmake install so it won't get used instead
|
||||
apt-get remove cmake -y
|
||||
|
||||
# Turn 3.6.3 into v3.6
|
||||
path=$(echo "${CMAKE_VERSION}" | sed -e 's/\([0-9].[0-9]\+\).*/v\1/')
|
||||
file="cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz"
|
||||
|
||||
@ -24,20 +24,13 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
mkdir /opt/conda
|
||||
chown jenkins:jenkins /opt/conda
|
||||
|
||||
# Work around bug where devtoolset replaces sudo and breaks it.
|
||||
if [ -n "$DEVTOOLSET_VERSION" ]; then
|
||||
SUDO=/bin/sudo
|
||||
else
|
||||
SUDO=sudo
|
||||
fi
|
||||
|
||||
as_jenkins() {
|
||||
# NB: unsetting the environment variables works around a conda bug
|
||||
# https://github.com/conda/conda/issues/6576
|
||||
# NB: Pass on PATH and LD_LIBRARY_PATH to sudo invocation
|
||||
# NB: This must be run from a directory that jenkins has access to,
|
||||
# works around https://github.com/conda/conda-package-handling/pull/34
|
||||
$SUDO -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
sudo -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
}
|
||||
|
||||
pushd /tmp
|
||||
@ -56,10 +49,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
pushd /opt/conda
|
||||
|
||||
# Track latest conda update
|
||||
as_jenkins conda update -y -n base conda
|
||||
as_jenkins conda update -n base conda
|
||||
|
||||
# Install correct Python version
|
||||
as_jenkins conda install -y python="$ANACONDA_PYTHON_VERSION"
|
||||
as_jenkins conda install python="$ANACONDA_PYTHON_VERSION"
|
||||
|
||||
conda_install() {
|
||||
# Ensure that the install command don't upgrade/downgrade Python
|
||||
@ -69,68 +62,31 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
}
|
||||
|
||||
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
|
||||
# DO NOT install cmake here as it would install a version newer than 3.10, but
|
||||
# we want to pin to version 3.10.
|
||||
SCIPY_VERSION=1.1.0
|
||||
if [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
|
||||
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
|
||||
conda_install numpy=1.19.2 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0 -c conda-forge
|
||||
SCIPY_VERSION=1.6.0
|
||||
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
|
||||
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six llvmdev=8.0.0
|
||||
elif [ "$ANACONDA_PYTHON_VERSION" = "3.7" ]; then
|
||||
# DO NOT install dataclasses if installing python-3.7, since its part of python-3.7 core packages
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six typing_extensions
|
||||
else
|
||||
conda_install numpy=1.18.5 astunparse pyyaml mkl mkl-include setuptools cffi future six dataclasses typing_extensions
|
||||
fi
|
||||
|
||||
if [[ "$CUDA_VERSION" == 10.2* ]]; then
|
||||
conda_install magma-cuda102 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 11.0* ]]; then
|
||||
conda_install magma-cuda110 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 11.1* ]]; then
|
||||
conda_install magma-cuda111 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 11.3* ]]; then
|
||||
conda_install magma-cuda113 -c pytorch
|
||||
# DO NOT install cmake here as it would install a version newer than 3.5, but
|
||||
# we want to pin to version 3.5.
|
||||
conda_install numpy pyyaml mkl mkl-include setuptools cffi typing future six
|
||||
if [[ "$CUDA_VERSION" == 9.0* ]]; then
|
||||
conda_install magma-cuda90 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 9.1* ]]; then
|
||||
conda_install magma-cuda91 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 9.2* ]]; then
|
||||
conda_install magma-cuda92 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 10.0* ]]; then
|
||||
conda_install magma-cuda100 -c pytorch
|
||||
elif [[ "$CUDA_VERSION" == 10.1* ]]; then
|
||||
conda_install magma-cuda101 -c pytorch
|
||||
fi
|
||||
|
||||
# TODO: This isn't working atm
|
||||
conda_install nnpack -c killeent
|
||||
|
||||
# Install some other packages, including those needed for Python test reporting
|
||||
# Install some other packages
|
||||
# TODO: Why is scipy pinned
|
||||
# Pin MyPy version because new errors are likely to appear with each release
|
||||
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
|
||||
# Pin coverage so we can use COVERAGE_RCFILE
|
||||
as_jenkins pip install --progress-bar off pytest \
|
||||
scipy==$SCIPY_VERSION \
|
||||
scikit-image \
|
||||
psutil \
|
||||
unittest-xml-reporting \
|
||||
boto3==1.16.34 \
|
||||
coverage==5.5 \
|
||||
hypothesis==4.53.2 \
|
||||
expecttest==0.1.3 \
|
||||
mypy==0.812 \
|
||||
tb-nightly
|
||||
|
||||
# Install numba only on python-3.8 or below
|
||||
# For numba issue see https://github.com/pytorch/pytorch/issues/51511
|
||||
if [[ $(python -c "import sys; print(int(sys.version_info < (3, 9)))") == "1" ]]; then
|
||||
as_jenkins pip install --progress-bar off numba librosa>=0.6.2
|
||||
else
|
||||
as_jenkins pip install --progress-bar off numba==0.49.0 librosa>=0.6.2
|
||||
fi
|
||||
|
||||
# Update scikit-learn to a python-3.8 compatible version
|
||||
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
|
||||
as_jenkins pip install --progress-bar off -U scikit-learn
|
||||
else
|
||||
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
|
||||
as_jenkins pip install --progress-bar off scikit-learn==0.20.3
|
||||
fi
|
||||
# numba & llvmlite is pinned because of https://github.com/numba/numba/issues/4368
|
||||
# scikit-learn is pinned because of
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5
|
||||
# only)
|
||||
as_jenkins pip install --progress-bar off pytest scipy==1.1.0 scikit-learn==0.20.3 scikit-image librosa>=0.6.2 psutil numba==0.46.0 llvmlite==0.30.0
|
||||
|
||||
popd
|
||||
fi
|
||||
|
||||
@ -2,6 +2,23 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
|
||||
# else it will fail with
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends \
|
||||
@ -34,16 +51,11 @@ install_centos() {
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -7,15 +7,10 @@ if [ -n "$GCC_VERSION" ]; then
|
||||
# Need the official toolchain repo to get alternate packages
|
||||
add-apt-repository ppa:ubuntu-toolchain-r/test
|
||||
apt-get update
|
||||
if [ "$UBUNTU_VERSION" = "16.04" -a "$GCC_VERSION" = "5" ]; then
|
||||
apt-get install -y g++-5=5.4.0-6ubuntu1~16.04.12
|
||||
else
|
||||
apt-get install -y g++-$GCC_VERSION
|
||||
fi
|
||||
apt-get install -y g++-$GCC_VERSION
|
||||
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-"$GCC_VERSION" 50
|
||||
update-alternatives --install /usr/bin/gcov gcov /usr/bin/gcov-"$GCC_VERSION" 50
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
|
||||
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
git clone --branch v1.15 https://github.com/linux-test-project/lcov.git
|
||||
pushd lcov
|
||||
sudo make install # will be installed in /usr/local/bin/lcov
|
||||
popd
|
||||
@ -1,10 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
sudo apt-get update
|
||||
# also install ssh to avoid error of:
|
||||
# --------------------------------------------------------------------------
|
||||
# The value of the MCA parameter "plm_rsh_agent" was set to a path
|
||||
# that could not be found:
|
||||
# plm_rsh_agent: ssh : rsh
|
||||
sudo apt-get install -y ssh
|
||||
sudo apt-get install -y --allow-downgrades --allow-change-held-packages openmpi-bin libopenmpi-dev
|
||||
@ -1,14 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
OPENSSL=openssl-1.1.1k
|
||||
|
||||
wget -q -O "${OPENSSL}.tar.gz" "https://www.openssl.org/source/${OPENSSL}.tar.gz"
|
||||
tar xf "${OPENSSL}.tar.gz"
|
||||
cd "${OPENSSL}"
|
||||
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
|
||||
# NOTE: opensl errors out when built with the -j option
|
||||
make install_sw
|
||||
cd ..
|
||||
rm -rf "${OPENSSL}"
|
||||
@ -2,8 +2,8 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 3.17
|
||||
install_protobuf_317() {
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
@ -12,45 +12,45 @@ install_protobuf_317() {
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
|
||||
# -j2 to balance memory usage and speed.
|
||||
# naked `-j` seems to use too much memory.
|
||||
pushd "$pb_dir" && ./configure && make -j2 && make -j2 check && sudo make -j2 install && sudo ldconfig
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
|
||||
# Ubuntu 14.04 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
|
||||
# so we install that here if on 14.04
|
||||
# Ubuntu 14.04 also has cmake 2.8.12 as the default option, so we will
|
||||
# install cmake3 here and use cmake3.
|
||||
apt-get update
|
||||
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
|
||||
apt-get install -y --no-install-recommends cmake3
|
||||
install_protobuf_26
|
||||
else
|
||||
apt-get install -y --no-install-recommends \
|
||||
libprotobuf-dev \
|
||||
protobuf-compiler
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
install_protobuf_317
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
install_protobuf_317
|
||||
# Centos7 ships with protobuf 2.5, but ONNX needs protobuf >= 2.6
|
||||
# so we always install install that here
|
||||
install_protobuf_26
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -1,127 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
install_magma() {
|
||||
# "install" hipMAGMA into /opt/rocm/magma by copying after build
|
||||
git clone https://bitbucket.org/icl/magma.git -b magma_ctrl_launch_bounds
|
||||
pushd magma
|
||||
# The branch "magma_ctrl_launch_bounds" is having a fix over the below commit, so keeping the below comment for reference.
|
||||
#git checkout 878b1ce02e9cfe4a829be22c8f911e9c0b6bd88f
|
||||
# Work around non-asii characters in certain magma sources; remove this after upstream magma fixes this.
|
||||
perl -i.bak -pe 's/[^[:ascii:]]//g' sparse/control/magma_zfree.cpp
|
||||
perl -i.bak -pe 's/[^[:ascii:]]//g' sparse/control/magma_zsolverinfo.cpp
|
||||
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
|
||||
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
|
||||
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
|
||||
echo 'DEVCCFLAGS += --amdgpu-target=gfx803 --amdgpu-target=gfx900 --amdgpu-target=gfx906 --amdgpu-target=gfx908 --gpu-max-threads-per-block=256' >> make.inc
|
||||
# hipcc with openmp flag may cause isnan() on __device__ not to be found; depending on context, compiler may attempt to match with host definition
|
||||
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
|
||||
export PATH="${PATH}:/opt/rocm/bin"
|
||||
make -f make.gen.hipMAGMA -j $(nproc)
|
||||
make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
|
||||
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
|
||||
popd
|
||||
mv magma /opt/rocm
|
||||
}
|
||||
|
||||
ver() {
|
||||
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
if [[ $UBUNTU_VERSION == 18.04 ]]; then
|
||||
# gpg-agent is not available by default on 18.04
|
||||
apt-get install -y --no-install-recommends gpg-agent
|
||||
fi
|
||||
apt-get install -y kmod
|
||||
apt-get install -y wget
|
||||
|
||||
# Need the libc++1 and libc++abi1 libraries to allow torch._C to load at runtime
|
||||
apt-get install -y libc++1
|
||||
apt-get install -y libc++abi1
|
||||
|
||||
ROCM_REPO="ubuntu"
|
||||
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
|
||||
ROCM_REPO="xenial"
|
||||
fi
|
||||
|
||||
# Add rocm repository
|
||||
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
|
||||
echo "deb [arch=amd64] http://repo.radeon.com/rocm/apt/${ROCM_VERSION} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
|
||||
apt-get update --allow-insecure-repositories
|
||||
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
|
||||
rocm-dev \
|
||||
rocm-utils \
|
||||
rocm-libs \
|
||||
rccl \
|
||||
rocprofiler-dev \
|
||||
roctracer-dev
|
||||
|
||||
# precompiled miopen kernels added in ROCm 3.5; search for all unversioned packages
|
||||
# if search fails it will abort this script; use true to avoid case where search fails
|
||||
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
|
||||
if [[ "x${MIOPENKERNELS}" = x ]]; then
|
||||
echo "miopenkernels package not available"
|
||||
else
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
|
||||
fi
|
||||
|
||||
install_magma
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
}
|
||||
|
||||
install_centos() {
|
||||
|
||||
yum update -y
|
||||
yum install -y kmod
|
||||
yum install -y wget
|
||||
yum install -y openblas-devel
|
||||
|
||||
yum install -y epel-release
|
||||
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
|
||||
|
||||
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
|
||||
echo "name=ROCm" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "baseurl=http://repo.radeon.com/rocm/yum/${ROCM_VERSION}" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "enabled=1" >> /etc/yum.repos.d/rocm.repo
|
||||
echo "gpgcheck=0" >> /etc/yum.repos.d/rocm.repo
|
||||
|
||||
yum update -y
|
||||
|
||||
yum install -y \
|
||||
rocm-dev \
|
||||
rocm-utils \
|
||||
rocm-libs \
|
||||
rccl \
|
||||
rocprofiler-dev \
|
||||
roctracer-dev
|
||||
|
||||
install_magma
|
||||
|
||||
# Cleanup
|
||||
yum clean all
|
||||
rm -rf /var/cache/yum
|
||||
rm -rf /var/lib/yum/yumdb
|
||||
rm -rf /var/lib/yum/history
|
||||
}
|
||||
|
||||
# Install Python packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
@ -1,24 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
[ -n "${SWIFTSHADER}" ]
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
|
||||
|
||||
# SwiftShader
|
||||
_swiftshader_dir=/var/lib/jenkins/swiftshader
|
||||
_swiftshader_file_targz=swiftshader-abe07b943-prebuilt.tar.gz
|
||||
mkdir -p $_swiftshader_dir
|
||||
_tmp_swiftshader_targz="/tmp/${_swiftshader_file_targz}"
|
||||
|
||||
curl --silent --show-error --location --fail --retry 3 \
|
||||
--output "${_tmp_swiftshader_targz}" "$_https_amazon_aws/${_swiftshader_file_targz}"
|
||||
|
||||
tar -C "${_swiftshader_dir}" -xzf "${_tmp_swiftshader_targz}"
|
||||
|
||||
export VK_ICD_FILENAMES="${_swiftshader_dir}/build/Linux/vk_swiftshader_icd.json"
|
||||
97
.circleci/docker/common/install_travis_python.sh
Executable file
97
.circleci/docker/common/install_travis_python.sh
Executable file
@ -0,0 +1,97 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
as_jenkins() {
|
||||
# NB: Preserve PATH and LD_LIBRARY_PATH changes
|
||||
sudo -H -u jenkins env "PATH=$PATH" "LD_LIBRARY_PATH=$LD_LIBRARY_PATH" $*
|
||||
}
|
||||
|
||||
if [ -n "$TRAVIS_PYTHON_VERSION" ]; then
|
||||
|
||||
mkdir -p /opt/python
|
||||
chown jenkins:jenkins /opt/python
|
||||
|
||||
# Download Python binary from Travis
|
||||
pushd tmp
|
||||
as_jenkins wget --quiet ${TRAVIS_DL_URL_PREFIX}/python-$TRAVIS_PYTHON_VERSION.tar.bz2
|
||||
# NB: The tarball also comes with /home/travis virtualenv that we
|
||||
# don't care about. (Maybe we should, but we've worked around the
|
||||
# "how do I install to python" issue by making this entire directory
|
||||
# user-writable "lol")
|
||||
# NB: Relative ordering of opt/python and flags matters
|
||||
as_jenkins tar xjf python-$TRAVIS_PYTHON_VERSION.tar.bz2 --strip-components=2 --directory /opt/python opt/python
|
||||
popd
|
||||
|
||||
echo "/opt/python/$TRAVIS_PYTHON_VERSION/lib" > /etc/ld.so.conf.d/travis-python.conf
|
||||
ldconfig
|
||||
sed -e 's|PATH="\(.*\)"|PATH="/opt/python/'"$TRAVIS_PYTHON_VERSION"'/bin:\1"|g' -i /etc/environment
|
||||
export PATH="/opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH"
|
||||
|
||||
python --version
|
||||
pip --version
|
||||
|
||||
# Install pip from source.
|
||||
# The python-pip package on Ubuntu Trusty is old
|
||||
# and upon install numpy doesn't use the binary
|
||||
# distribution, and fails to compile it from source.
|
||||
pushd tmp
|
||||
as_jenkins curl -L -O https://pypi.python.org/packages/11/b6/abcb525026a4be042b486df43905d6893fb04f05aac21c32c638e939e447/pip-9.0.1.tar.gz
|
||||
as_jenkins tar zxf pip-9.0.1.tar.gz
|
||||
pushd pip-9.0.1
|
||||
as_jenkins python setup.py install
|
||||
popd
|
||||
rm -rf pip-9.0.1*
|
||||
popd
|
||||
|
||||
# Install pip packages
|
||||
as_jenkins pip install --upgrade pip
|
||||
|
||||
pip --version
|
||||
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" == nightly ]]; then
|
||||
# These two packages have broken Cythonizations uploaded
|
||||
# to PyPi, see:
|
||||
#
|
||||
# - https://github.com/numpy/numpy/issues/10500
|
||||
# - https://github.com/yaml/pyyaml/issues/117
|
||||
#
|
||||
# Furthermore, the released version of Cython does not
|
||||
# have these issues fixed.
|
||||
#
|
||||
# While we are waiting on fixes for these, we build
|
||||
# from Git for now. Feel free to delete this conditional
|
||||
# branch if things start working again (you may need
|
||||
# to do this if these packages regress on Git HEAD.)
|
||||
as_jenkins pip install git+https://github.com/cython/cython.git
|
||||
as_jenkins pip install git+https://github.com/numpy/numpy.git
|
||||
as_jenkins pip install git+https://github.com/yaml/pyyaml.git
|
||||
else
|
||||
as_jenkins pip install numpy pyyaml
|
||||
fi
|
||||
|
||||
as_jenkins pip install \
|
||||
future \
|
||||
hypothesis \
|
||||
protobuf \
|
||||
pytest \
|
||||
pillow \
|
||||
typing
|
||||
|
||||
as_jenkins pip install mkl mkl-devel
|
||||
|
||||
# SciPy does not support Python 3.7 or Python 2.7.9
|
||||
if [[ "$TRAVIS_PYTHON_VERSION" != nightly ]] && [[ "$TRAVIS_PYTHON_VERSION" != "2.7.9" ]]; then
|
||||
as_jenkins pip install scipy==1.1.0 scikit-image librosa>=0.6.2
|
||||
fi
|
||||
|
||||
# Install psutil for dataloader tests
|
||||
as_jenkins pip install psutil
|
||||
|
||||
# Install dill for serialization tests
|
||||
as_jenkins pip install "dill>=0.3.1"
|
||||
|
||||
# Cleanup package manager
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
fi
|
||||
@ -2,6 +2,23 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# This function installs protobuf 2.6
|
||||
install_protobuf_26() {
|
||||
pb_dir="/usr/temp_pb_install_dir"
|
||||
mkdir -p $pb_dir
|
||||
|
||||
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
|
||||
# else it will fail with
|
||||
# g++: error: ./../lib64/crti.o: No such file or directory
|
||||
ln -s /usr/lib64 "$pb_dir/lib64"
|
||||
|
||||
curl -LO "https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz"
|
||||
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-2.6.1.tar.gz
|
||||
pushd "$pb_dir" && ./configure && make && make check && sudo make install && sudo ldconfig
|
||||
popd
|
||||
rm -rf $pb_dir
|
||||
}
|
||||
|
||||
install_ubuntu() {
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends \
|
||||
@ -30,16 +47,11 @@ install_centos() {
|
||||
}
|
||||
|
||||
# Install base packages depending on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
ubuntu)
|
||||
install_ubuntu
|
||||
;;
|
||||
centos)
|
||||
install_centos
|
||||
;;
|
||||
*)
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
if [ -f /etc/lsb-release ]; then
|
||||
install_ubuntu
|
||||
elif [ -f /etc/os-release ]; then
|
||||
install_centos
|
||||
else
|
||||
echo "Unable to determine OS..."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -1,24 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
[ -n "${VULKAN_SDK_VERSION}" ]
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
_vulkansdk_dir=/var/lib/jenkins/vulkansdk
|
||||
_tmp_vulkansdk_targz=/tmp/vulkansdk.tar.gz
|
||||
|
||||
curl \
|
||||
--silent \
|
||||
--show-error \
|
||||
--location \
|
||||
--fail \
|
||||
--retry 3 \
|
||||
--output "${_tmp_vulkansdk_targz}" "https://ossci-android.s3.amazonaws.com/vulkansdk-linux-x86_64-${VULKAN_SDK_VERSION}.tar.gz"
|
||||
|
||||
mkdir -p "${_vulkansdk_dir}"
|
||||
tar -C "${_vulkansdk_dir}" -xzf "${_tmp_vulkansdk_targz}" --strip-components 1
|
||||
rm -rf "${_tmp_vulkansdk_targz}"
|
||||
@ -24,7 +24,7 @@ ARG KATEX
|
||||
ADD ./common/install_katex.sh install_katex.sh
|
||||
RUN bash ./install_katex.sh && rm install_katex.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, coverage, pytest)
|
||||
# Install conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
@ -35,10 +35,11 @@ ARG GCC_VERSION
|
||||
ADD ./common/install_gcc.sh install_gcc.sh
|
||||
RUN bash ./install_gcc.sh && rm install_gcc.sh
|
||||
|
||||
# Install clang
|
||||
ARG CLANG_VERSION
|
||||
ADD ./common/install_clang.sh install_clang.sh
|
||||
RUN bash ./install_clang.sh && rm install_clang.sh
|
||||
# Install non-standard Python versions (via Travis binaries)
|
||||
ARG TRAVIS_PYTHON_VERSION
|
||||
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
|
||||
ADD ./common/install_travis_python.sh install_travis_python.sh
|
||||
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
@ -61,16 +62,6 @@ RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
ENV OPENSSL_ROOT_DIR /opt/openssl
|
||||
RUN bash ./install_openssl.sh
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
|
||||
RUN rm install_cmake.sh
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
@ -82,11 +73,6 @@ ADD ./common/install_jni.sh install_jni.sh
|
||||
ADD ./java/jni.h jni.h
|
||||
RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
|
||||
# Install Open MPI for CUDA
|
||||
ADD ./common/install_openmpi.sh install_openmpi.sh
|
||||
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
|
||||
RUN rm install_openmpi.sh
|
||||
|
||||
# Include BUILD_ENVIRONMENT environment variable in image
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
@ -95,8 +81,5 @@ ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
ENV TORCH_CUDA_ARCH_LIST Maxwell
|
||||
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
|
||||
|
||||
# Install LLVM dev version (Defined in the pytorch/builder github repository)
|
||||
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
|
||||
@ -1,92 +0,0 @@
|
||||
ARG UBUNTU_VERSION
|
||||
|
||||
FROM ubuntu:${UBUNTU_VERSION}
|
||||
|
||||
ARG UBUNTU_VERSION
|
||||
|
||||
ENV DEBIAN_FRONTEND noninteractive
|
||||
|
||||
# Install common dependencies (so that this step can be cached separately)
|
||||
ARG EC2
|
||||
ADD ./common/install_base.sh install_base.sh
|
||||
RUN bash ./install_base.sh && rm install_base.sh
|
||||
|
||||
# Install clang
|
||||
ARG LLVMDEV
|
||||
ARG CLANG_VERSION
|
||||
ADD ./common/install_clang.sh install_clang.sh
|
||||
RUN bash ./install_clang.sh && rm install_clang.sh
|
||||
|
||||
# Install user
|
||||
ADD ./common/install_user.sh install_user.sh
|
||||
RUN bash ./install_user.sh && rm install_user.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, coverage, pytest)
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
|
||||
# Install gcc
|
||||
ARG GCC_VERSION
|
||||
ADD ./common/install_gcc.sh install_gcc.sh
|
||||
RUN bash ./install_gcc.sh && rm install_gcc.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
ADD ./common/install_protobuf.sh install_protobuf.sh
|
||||
RUN if [ -n "${PROTOBUF}" ]; then bash ./install_protobuf.sh; fi
|
||||
RUN rm install_protobuf.sh
|
||||
ENV INSTALLED_PROTOBUF ${PROTOBUF}
|
||||
|
||||
# (optional) Install database packages like LMDB and LevelDB
|
||||
ARG DB
|
||||
ADD ./common/install_db.sh install_db.sh
|
||||
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
|
||||
RUN rm install_db.sh
|
||||
ENV INSTALLED_DB ${DB}
|
||||
|
||||
# (optional) Install vision packages like OpenCV and ffmpeg
|
||||
ARG VISION
|
||||
ADD ./common/install_vision.sh install_vision.sh
|
||||
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# Install rocm
|
||||
ARG ROCM_VERSION
|
||||
ADD ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh
|
||||
RUN rm install_rocm.sh
|
||||
ENV PATH /opt/rocm/bin:$PATH
|
||||
ENV PATH /opt/rocm/hcc/bin:$PATH
|
||||
ENV PATH /opt/rocm/hip/bin:$PATH
|
||||
ENV PATH /opt/rocm/opencl/bin:$PATH
|
||||
ENV PATH /opt/rocm/llvm/bin:$PATH
|
||||
ENV MAGMA_HOME /opt/rocm/magma
|
||||
ENV LANG C.UTF-8
|
||||
ENV LC_ALL C.UTF-8
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
|
||||
RUN rm install_cmake.sh
|
||||
|
||||
# (optional) Install non-default Ninja version
|
||||
ARG NINJA_VERSION
|
||||
ADD ./common/install_ninja.sh install_ninja.sh
|
||||
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
|
||||
RUN rm install_ninja.sh
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
RUN bash ./install_cache.sh && rm install_cache.sh
|
||||
|
||||
# Include BUILD_ENVIRONMENT environment variable in image
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
@ -33,7 +33,7 @@ ARG KATEX
|
||||
ADD ./common/install_katex.sh install_katex.sh
|
||||
RUN bash ./install_katex.sh && rm install_katex.sh
|
||||
|
||||
# Install conda and other packages (e.g., numpy, coverage, pytest)
|
||||
# Install conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ADD ./common/install_conda.sh install_conda.sh
|
||||
@ -44,9 +44,12 @@ ARG GCC_VERSION
|
||||
ADD ./common/install_gcc.sh install_gcc.sh
|
||||
RUN bash ./install_gcc.sh && rm install_gcc.sh
|
||||
|
||||
# Install lcov for C++ code coverage
|
||||
ADD ./common/install_lcov.sh install_lcov.sh
|
||||
RUN bash ./install_lcov.sh && rm install_lcov.sh
|
||||
# Install non-standard Python versions (via Travis binaries)
|
||||
ARG TRAVIS_PYTHON_VERSION
|
||||
ARG TRAVIS_DL_URL_PREFIX
|
||||
ENV PATH /opt/python/$TRAVIS_PYTHON_VERSION/bin:$PATH
|
||||
ADD ./common/install_travis_python.sh install_travis_python.sh
|
||||
RUN bash ./install_travis_python.sh && rm install_travis_python.sh
|
||||
|
||||
# (optional) Install protobuf for ONNX
|
||||
ARG PROTOBUF
|
||||
@ -82,18 +85,6 @@ RUN rm AndroidManifest.xml
|
||||
RUN rm build.gradle
|
||||
ENV INSTALLED_ANDROID ${ANDROID}
|
||||
|
||||
# (optional) Install Vulkan SDK
|
||||
ARG VULKAN_SDK_VERSION
|
||||
ADD ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
|
||||
RUN if [ -n "${VULKAN_SDK_VERSION}" ]; then bash ./install_vulkan_sdk.sh; fi
|
||||
RUN rm install_vulkan_sdk.sh
|
||||
|
||||
# (optional) Install swiftshader
|
||||
ARG SWIFTSHADER
|
||||
ADD ./common/install_swiftshader.sh install_swiftshader.sh
|
||||
RUN if [ -n "${SWIFTSHADER}" ]; then bash ./install_swiftshader.sh; fi
|
||||
RUN rm install_swiftshader.sh
|
||||
|
||||
# (optional) Install non-default CMake version
|
||||
ARG CMAKE_VERSION
|
||||
ADD ./common/install_cmake.sh install_cmake.sh
|
||||
@ -106,10 +97,6 @@ ADD ./common/install_ninja.sh install_ninja.sh
|
||||
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
|
||||
RUN rm install_ninja.sh
|
||||
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh
|
||||
ENV OPENSSL_ROOT_DIR /opt/openssl
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
ADD ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
@ -124,8 +111,5 @@ RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
ARG BUILD_ENVIRONMENT
|
||||
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
|
||||
|
||||
# Install LLVM dev version (Defined in the pytorch/builder github repository)
|
||||
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
|
||||
|
||||
USER jenkins
|
||||
CMD ["bash"]
|
||||
|
||||
@ -1,10 +1,10 @@
|
||||
FROM ubuntu:18.04
|
||||
FROM ubuntu:16.04
|
||||
|
||||
RUN apt-get update && apt-get install -y python3-pip git && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
|
||||
RUN apt-get update && apt-get install -y python-pip && rm -rf /var/lib/apt/lists/* /var/log/dpkg.log
|
||||
|
||||
ADD requirements.txt /requirements.txt
|
||||
|
||||
RUN pip3 install -r /requirements.txt
|
||||
RUN pip install -r /requirements.txt
|
||||
|
||||
ADD gc.py /usr/bin/gc.py
|
||||
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
#!/usr/bin/env python
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
|
||||
@ -1,10 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
#!/usr/bin/env python
|
||||
|
||||
import argparse
|
||||
import boto3
|
||||
import datetime
|
||||
import boto3
|
||||
import pytz
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
@ -88,9 +87,6 @@ parser = argparse.ArgumentParser(description="Delete old Docker tags from regist
|
||||
parser.add_argument(
|
||||
"--dry-run", action="store_true", help="Dry run; print tags that would be deleted"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--debug", action="store_true", help="Debug, print ignored / saved tags"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--keep-stable-days",
|
||||
type=int,
|
||||
@ -148,19 +144,7 @@ def chunks(chunkable, n):
|
||||
""" Yield successive n-sized chunks from l.
|
||||
"""
|
||||
for i in range(0, len(chunkable), n):
|
||||
yield chunkable[i: i + n]
|
||||
|
||||
|
||||
SHA_PATTERN = re.compile(r'^[0-9a-f]{40}$')
|
||||
|
||||
|
||||
def looks_like_git_sha(tag):
|
||||
"""Returns a boolean to check if a tag looks like a git sha
|
||||
|
||||
For reference a sha1 is 40 characters with only 0-9a-f and contains no
|
||||
"-" characters
|
||||
"""
|
||||
return re.match(SHA_PATTERN, tag) is not None
|
||||
yield chunkable[i : i + n]
|
||||
|
||||
|
||||
stable_window_tags = []
|
||||
@ -171,48 +155,48 @@ for repo in repos(client):
|
||||
|
||||
# Keep list of image digests to delete for this repository
|
||||
digest_to_delete = []
|
||||
print(repositoryName)
|
||||
|
||||
for image in images(client, repo):
|
||||
tags = image.get("imageTags")
|
||||
if not isinstance(tags, (list,)) or len(tags) == 0:
|
||||
continue
|
||||
|
||||
tag = tags[0]
|
||||
created = image["imagePushedAt"]
|
||||
age = now - created
|
||||
for tag in tags:
|
||||
if any([
|
||||
looks_like_git_sha(tag),
|
||||
tag.isdigit(),
|
||||
tag.count("-") == 4, # TODO: Remove, this no longer applies as tags are now built using a SHA1
|
||||
tag in ignore_tags]):
|
||||
window = stable_window
|
||||
if tag in ignore_tags:
|
||||
stable_window_tags.append((repositoryName, tag, "", age, created))
|
||||
elif age < window:
|
||||
stable_window_tags.append((repositoryName, tag, window, age, created))
|
||||
else:
|
||||
window = unstable_window
|
||||
|
||||
if tag in ignore_tags or age < window:
|
||||
if args.debug:
|
||||
print("Ignoring {}:{} (age: {})".format(repositoryName, tag, age))
|
||||
break
|
||||
# new images build on circle ci use workflow ID as tag, which has 4 "-"
|
||||
if tag.isdigit() or tag.count("-") == 4 or tag in ignore_tags:
|
||||
window = stable_window
|
||||
if tag in ignore_tags:
|
||||
stable_window_tags.append((repositoryName, tag, "", age, created))
|
||||
elif age < window:
|
||||
stable_window_tags.append((repositoryName, tag, window, age, created))
|
||||
else:
|
||||
for tag in tags:
|
||||
print("{}Deleting {}:{} (age: {})".format("(dry run) " if args.dry_run else "", repositoryName, tag, age))
|
||||
digest_to_delete.append(image["imageDigest"])
|
||||
if args.dry_run:
|
||||
if args.debug:
|
||||
print("Skipping actual deletion, moving on...")
|
||||
else:
|
||||
# Issue batch delete for all images to delete for this repository
|
||||
# Note that as of 2018-07-25, the maximum number of images you can
|
||||
# delete in a single batch is 100, so chunk our list into batches of
|
||||
# 100
|
||||
for c in chunks(digest_to_delete, 100):
|
||||
client.batch_delete_image(
|
||||
registryId="308535385114",
|
||||
repositoryName=repositoryName,
|
||||
imageIds=[{"imageDigest": digest} for digest in c],
|
||||
)
|
||||
window = unstable_window
|
||||
|
||||
save_to_s3(args.filter_prefix, stable_window_tags)
|
||||
if tag in ignore_tags:
|
||||
print("Ignoring tag {} (age: {})".format(tag, age))
|
||||
continue
|
||||
if age < window:
|
||||
print("Not deleting manifest for tag {} (age: {})".format(tag, age))
|
||||
continue
|
||||
|
||||
if args.dry_run:
|
||||
print("(dry run) Deleting manifest for tag {} (age: {})".format(tag, age))
|
||||
else:
|
||||
print("Deleting manifest for tag {} (age: {})".format(tag, age))
|
||||
digest_to_delete.append(image["imageDigest"])
|
||||
|
||||
# Issue batch delete for all images to delete for this repository
|
||||
# Note that as of 2018-07-25, the maximum number of images you can
|
||||
# delete in a single batch is 100, so chunk our list into batches of
|
||||
# 100
|
||||
for c in chunks(digest_to_delete, 100):
|
||||
client.batch_delete_image(
|
||||
registryId="308535385114",
|
||||
repositoryName=repositoryName,
|
||||
imageIds=[{"imageDigest": digest} for digest in c],
|
||||
)
|
||||
|
||||
save_to_s3(args.filter_prefix, stable_window_tags)
|
||||
|
||||
@ -6,22 +6,13 @@ Please see README.md in this directory for details.
|
||||
"""
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from collections import namedtuple
|
||||
import shutil
|
||||
from collections import namedtuple, OrderedDict
|
||||
|
||||
import cimodel.data.binary_build_definitions as binary_build_definitions
|
||||
import cimodel.data.pytorch_build_definitions as pytorch_build_definitions
|
||||
import cimodel.data.simple.android_definitions
|
||||
import cimodel.data.simple.binary_smoketest
|
||||
import cimodel.data.simple.docker_definitions
|
||||
import cimodel.data.simple.ios_definitions
|
||||
import cimodel.data.simple.macos_definitions
|
||||
import cimodel.data.simple.mobile_definitions
|
||||
import cimodel.data.simple.nightly_android
|
||||
import cimodel.data.simple.nightly_ios
|
||||
import cimodel.data.simple.anaconda_prune_defintions
|
||||
import cimodel.data.windows_build_definitions as windows_build_definitions
|
||||
import cimodel.data.binary_build_definitions as binary_build_definitions
|
||||
import cimodel.data.caffe2_build_definitions as caffe2_build_definitions
|
||||
import cimodel.lib.miniutils as miniutils
|
||||
import cimodel.lib.miniyaml as miniyaml
|
||||
|
||||
@ -30,7 +21,6 @@ class File(object):
|
||||
"""
|
||||
Verbatim copy the contents of a file into config.yml
|
||||
"""
|
||||
|
||||
def __init__(self, filename):
|
||||
self.filename = filename
|
||||
|
||||
@ -39,7 +29,7 @@ class File(object):
|
||||
shutil.copyfileobj(fh, output_filehandle)
|
||||
|
||||
|
||||
class FunctionGen(namedtuple("FunctionGen", "function depth")):
|
||||
class FunctionGen(namedtuple('FunctionGen', 'function depth')):
|
||||
__slots__ = ()
|
||||
|
||||
|
||||
@ -49,14 +39,15 @@ class Treegen(FunctionGen):
|
||||
"""
|
||||
|
||||
def write(self, output_filehandle):
|
||||
miniyaml.render(output_filehandle, self.function(), self.depth)
|
||||
build_dict = OrderedDict()
|
||||
self.function(build_dict)
|
||||
miniyaml.render(output_filehandle, build_dict, self.depth)
|
||||
|
||||
|
||||
class Listgen(FunctionGen):
|
||||
"""
|
||||
Insert the content of a YAML list into config.yml
|
||||
"""
|
||||
|
||||
def write(self, output_filehandle):
|
||||
miniyaml.render(output_filehandle, self.function(), self.depth)
|
||||
|
||||
@ -66,6 +57,7 @@ def horizontal_rule():
|
||||
|
||||
|
||||
class Header(object):
|
||||
|
||||
def __init__(self, title, summary=None):
|
||||
self.title = title
|
||||
self.summary_lines = summary or []
|
||||
@ -78,104 +70,6 @@ class Header(object):
|
||||
for line in filter(None, lines):
|
||||
output_filehandle.write(line + "\n")
|
||||
|
||||
def filter_master_only_jobs(items):
|
||||
def _for_all_items(items, functor) -> None:
|
||||
if isinstance(items, list):
|
||||
for item in items:
|
||||
_for_all_items(item, functor)
|
||||
if isinstance(items, dict) and len(items) == 1:
|
||||
item_type, item = next(iter(items.items()))
|
||||
functor(item_type, item)
|
||||
|
||||
def _is_master_item(item):
|
||||
filters = item.get('filters', None)
|
||||
branches = filters.get('branches', None) if filters is not None else None
|
||||
branches_only = branches.get('only', None) if branches is not None else None
|
||||
return 'master' in branches_only if branches_only is not None else False
|
||||
|
||||
master_deps = set()
|
||||
|
||||
def _save_requires_if_master(item_type, item):
|
||||
requires = item.get('requires', None)
|
||||
item_name = item.get("name", None)
|
||||
if not isinstance(requires, list):
|
||||
return
|
||||
if _is_master_item(item) or item_name in master_deps:
|
||||
master_deps.update([n.strip('"') for n in requires])
|
||||
|
||||
def _do_filtering(items):
|
||||
if isinstance(items, list):
|
||||
rc = [_do_filtering(item) for item in items]
|
||||
return [item for item in rc if len(item if item is not None else []) > 0]
|
||||
assert isinstance(items, dict) and len(items) == 1
|
||||
item_type, item = next(iter(items.items()))
|
||||
item_name = item.get("name", None)
|
||||
item_name = item_name.strip('"') if item_name is not None else None
|
||||
if not _is_master_item(item) and item_name not in master_deps:
|
||||
return None
|
||||
if 'filters' in item:
|
||||
item = item.copy()
|
||||
item.pop('filters')
|
||||
return {item_type: item}
|
||||
|
||||
# Scan of dependencies twice to pick up nested required jobs
|
||||
# I.e. jobs depending on jobs that master-only job depend on
|
||||
_for_all_items(items, _save_requires_if_master)
|
||||
_for_all_items(items, _save_requires_if_master)
|
||||
return _do_filtering(items)
|
||||
|
||||
|
||||
def gen_build_workflows_tree():
|
||||
build_workflows_functions = [
|
||||
cimodel.data.simple.docker_definitions.get_workflow_jobs,
|
||||
pytorch_build_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.macos_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.android_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.ios_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.binary_smoketest.get_workflow_jobs,
|
||||
cimodel.data.simple.nightly_ios.get_workflow_jobs,
|
||||
cimodel.data.simple.nightly_android.get_workflow_jobs,
|
||||
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
|
||||
windows_build_definitions.get_windows_workflows,
|
||||
binary_build_definitions.get_post_upload_jobs,
|
||||
binary_build_definitions.get_binary_smoke_test_jobs,
|
||||
]
|
||||
build_jobs = [f() for f in build_workflows_functions]
|
||||
master_build_jobs = filter_master_only_jobs(build_jobs)
|
||||
|
||||
binary_build_functions = [
|
||||
binary_build_definitions.get_binary_build_jobs,
|
||||
binary_build_definitions.get_nightly_tests,
|
||||
binary_build_definitions.get_nightly_uploads,
|
||||
]
|
||||
|
||||
slow_gradcheck_jobs = [
|
||||
pytorch_build_definitions.get_workflow_jobs,
|
||||
cimodel.data.simple.docker_definitions.get_workflow_jobs,
|
||||
]
|
||||
|
||||
return {
|
||||
"workflows": {
|
||||
"binary_builds": {
|
||||
"when": r"<< pipeline.parameters.run_binary_tests >>",
|
||||
"jobs": [f() for f in binary_build_functions],
|
||||
},
|
||||
"build": {
|
||||
"when": r"<< pipeline.parameters.run_build >>",
|
||||
"jobs": build_jobs,
|
||||
},
|
||||
"master_build": {
|
||||
"when": r"<< pipeline.parameters.run_master_build >>",
|
||||
"jobs": master_build_jobs,
|
||||
},
|
||||
"slow_gradcheck_build": {
|
||||
"when": r"<< pipeline.parameters.run_slow_gradcheck_build >>",
|
||||
"jobs": [f(only_slow_gradcheck=True) for f in slow_gradcheck_jobs],
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# Order of this list matters to the generated config.yml.
|
||||
YAML_SOURCES = [
|
||||
@ -183,22 +77,42 @@ YAML_SOURCES = [
|
||||
File("commands.yml"),
|
||||
File("nightly-binary-build-defaults.yml"),
|
||||
Header("Build parameters"),
|
||||
File("build-parameters/pytorch-build-params.yml"),
|
||||
File("build-parameters/binary-build-params.yml"),
|
||||
File("build-parameters/promote-build-params.yml"),
|
||||
File("pytorch-build-params.yml"),
|
||||
File("caffe2-build-params.yml"),
|
||||
File("binary-build-params.yml"),
|
||||
Header("Job specs"),
|
||||
File("job-specs/pytorch-job-specs.yml"),
|
||||
File("job-specs/binary-job-specs.yml"),
|
||||
File("job-specs/job-specs-custom.yml"),
|
||||
File("job-specs/job-specs-promote.yml"),
|
||||
File("job-specs/binary_update_htmls.yml"),
|
||||
File("job-specs/binary-build-tests.yml"),
|
||||
File("job-specs/docker_jobs.yml"),
|
||||
Header("Workflows"),
|
||||
Treegen(gen_build_workflows_tree, 0),
|
||||
File("workflows/workflows-scheduled-ci.yml"),
|
||||
File("workflows/workflows-ecr-gc.yml"),
|
||||
File("workflows/workflows-promote.yml"),
|
||||
File("pytorch-job-specs.yml"),
|
||||
File("caffe2-job-specs.yml"),
|
||||
File("binary-job-specs.yml"),
|
||||
File("job-specs-setup.yml"),
|
||||
File("job-specs-custom.yml"),
|
||||
File("binary_update_htmls.yml"),
|
||||
File("binary-build-tests.yml"),
|
||||
File("docker_jobs.yml"),
|
||||
File("workflows.yml"),
|
||||
|
||||
File("workflows-setup-job.yml"),
|
||||
File("windows-build-test.yml"),
|
||||
Listgen(pytorch_build_definitions.get_workflow_jobs, 3),
|
||||
File("workflows-pytorch-macos-builds.yml"),
|
||||
File("workflows-pytorch-android-gradle-build.yml"),
|
||||
File("workflows-pytorch-ios-builds.yml"),
|
||||
File("workflows-pytorch-mobile-builds.yml"),
|
||||
File("workflows-pytorch-ge-config-tests.yml"),
|
||||
Listgen(caffe2_build_definitions.get_workflow_jobs, 3),
|
||||
File("workflows-binary-builds-smoke-subset.yml"),
|
||||
Listgen(binary_build_definitions.get_binary_smoke_test_jobs, 3),
|
||||
Listgen(binary_build_definitions.get_binary_build_jobs, 3),
|
||||
File("workflows-nightly-ios-binary-builds.yml"),
|
||||
File("workflows-nightly-android-binary-builds.yml"),
|
||||
|
||||
Header("Nightly tests"),
|
||||
Listgen(binary_build_definitions.get_nightly_tests, 3),
|
||||
File("workflows-nightly-uploads-header.yml"),
|
||||
Listgen(binary_build_definitions.get_nightly_uploads, 3),
|
||||
File("workflows-s3-html.yml"),
|
||||
File("workflows-docker-builder.yml"),
|
||||
File("workflows-ecr-gc.yml"),
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -1,5 +0,0 @@
|
||||
cd $PSScriptRoot;
|
||||
$NewFile = New-TemporaryFile;
|
||||
python generate_config_yml.py > $NewFile.name
|
||||
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
|
||||
Remove-Item $NewFile.name
|
||||
@ -1,17 +1,8 @@
|
||||
#!/bin/bash -e
|
||||
#!/bin/bash -xe
|
||||
|
||||
# Allows this script to be invoked from any directory:
|
||||
cd "$(dirname "$0")"
|
||||
|
||||
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
|
||||
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
|
||||
OLD_FILE=$(mktemp)
|
||||
cp config.yml "$OLD_FILE"
|
||||
echo "Uncommitted change detected in .circleci/config.yml"
|
||||
echo "It has been backed up to $OLD_FILE"
|
||||
fi
|
||||
cd $(dirname "$0")
|
||||
|
||||
NEW_FILE=$(mktemp)
|
||||
./generate_config_yml.py > "$NEW_FILE"
|
||||
cp "$NEW_FILE" config.yml
|
||||
echo "New config generated in .circleci/config.yml"
|
||||
./generate_config_yml.py > $NEW_FILE
|
||||
cp $NEW_FILE config.yml
|
||||
|
||||
@ -33,11 +33,6 @@ else
|
||||
export BUILDER_ROOT="$workdir/builder"
|
||||
fi
|
||||
|
||||
# Try to extract PR number from branch if not already set
|
||||
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
|
||||
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
|
||||
fi
|
||||
|
||||
# Clone the Pytorch branch
|
||||
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
|
||||
pushd "$PYTORCH_ROOT"
|
||||
@ -55,13 +50,13 @@ else
|
||||
echo "Can't tell what to checkout"
|
||||
exit 1
|
||||
fi
|
||||
retry git submodule update --init --recursive --jobs 0
|
||||
retry git submodule update --init --recursive
|
||||
echo "Using Pytorch from "
|
||||
git --no-pager log --max-count 1
|
||||
popd
|
||||
|
||||
# Clone the Builder master repo
|
||||
retry git clone -q https://github.com/pytorch/builder.git -b release/1.10 "$BUILDER_ROOT"
|
||||
retry git clone -q https://github.com/pytorch/builder.git "$BUILDER_ROOT"
|
||||
pushd "$BUILDER_ROOT"
|
||||
echo "Using builder from "
|
||||
git --no-pager log --max-count 1
|
||||
|
||||
@ -15,14 +15,13 @@ export PATH="~/anaconda/bin:${PATH}"
|
||||
source ~/anaconda/bin/activate
|
||||
|
||||
# Install dependencies
|
||||
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi requests typing_extensions --yes
|
||||
conda install -c conda-forge valgrind --yes
|
||||
conda install numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing requests --yes
|
||||
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
|
||||
|
||||
# sync submodules
|
||||
cd ${PROJ_ROOT}
|
||||
git submodule sync
|
||||
git submodule update --init --recursive --jobs 0
|
||||
git submodule update --init --recursive
|
||||
|
||||
# run build script
|
||||
chmod a+x ${PROJ_ROOT}/scripts/build_ios.sh
|
||||
@ -31,12 +30,8 @@ cat ${PROJ_ROOT}/scripts/build_ios.sh
|
||||
echo "########################################################"
|
||||
echo "IOS_ARCH: ${IOS_ARCH}"
|
||||
echo "IOS_PLATFORM: ${IOS_PLATFORM}"
|
||||
echo "USE_PYTORCH_METAL: ${USE_PYTORCH_METAL}"
|
||||
echo "USE_COREML_DELEGATE: ${USE_COREML_DELEGATE}"
|
||||
export IOS_ARCH=${IOS_ARCH}
|
||||
export IOS_PLATFORM=${IOS_PLATFORM}
|
||||
export USE_PYTORCH_METAL=${USE_PYTORCH_METAL}
|
||||
export USE_COREML_DELEGATE=${USE_COREML_DELEGATE}
|
||||
unbuffer ${PROJ_ROOT}/scripts/build_ios.sh 2>&1 | ts
|
||||
|
||||
#store the binary
|
||||
|
||||
@ -8,23 +8,22 @@ cd ${PROJ_ROOT}/ios/TestApp
|
||||
# install fastlane
|
||||
sudo gem install bundler && bundle install
|
||||
# install certificates
|
||||
echo "${IOS_CERT_KEY_2022}" >> cert.txt
|
||||
echo "${IOS_CERT_KEY}" >> cert.txt
|
||||
base64 --decode cert.txt -o Certificates.p12
|
||||
rm cert.txt
|
||||
bundle exec fastlane install_root_cert
|
||||
bundle exec fastlane install_dev_cert
|
||||
bundle exec fastlane install_cert
|
||||
# install the provisioning profile
|
||||
PROFILE=PyTorch_CI_2022.mobileprovision
|
||||
PROFILE=TestApp_CI.mobileprovision
|
||||
PROVISIONING_PROFILES=~/Library/MobileDevice/Provisioning\ Profiles
|
||||
mkdir -pv "${PROVISIONING_PROFILES}"
|
||||
cd "${PROVISIONING_PROFILES}"
|
||||
echo "${IOS_SIGN_KEY_2022}" >> cert.txt
|
||||
echo "${IOS_SIGN_KEY}" >> cert.txt
|
||||
base64 --decode cert.txt -o ${PROFILE}
|
||||
rm cert.txt
|
||||
# run the ruby build script
|
||||
if ! [ -x "$(command -v xcodebuild)" ]; then
|
||||
echo 'Error: xcodebuild is not installed.'
|
||||
exit 1
|
||||
fi
|
||||
PROFILE=PyTorch_CI_2022
|
||||
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID} -f Accelerate,MetalPerformanceShaders,CoreML
|
||||
fi
|
||||
PROFILE=TestApp_CI
|
||||
ruby ${PROJ_ROOT}/scripts/xcode_build.rb -i ${PROJ_ROOT}/build_ios/install -x ${PROJ_ROOT}/ios/TestApp/TestApp.xcodeproj -p ${IOS_PLATFORM} -c ${PROFILE} -t ${IOS_DEV_TEAM_ID}
|
||||
|
||||
@ -14,7 +14,7 @@ mkdir -p ${ZIP_DIR}/src
|
||||
cp -R ${ARTIFACTS_DIR}/arm64/include ${ZIP_DIR}/install/
|
||||
# build a FAT bianry
|
||||
cd ${ZIP_DIR}/install/lib
|
||||
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpthreadpool.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
|
||||
target_libs=(libc10.a libclog.a libcpuinfo.a libeigen_blas.a libpytorch_qnnpack.a libtorch_cpu.a libtorch.a libXNNPACK.a)
|
||||
for lib in ${target_libs[*]}
|
||||
do
|
||||
if [ -f "${ARTIFACTS_DIR}/x86_64/lib/${lib}" ] && [ -f "${ARTIFACTS_DIR}/arm64/lib/${lib}" ]; then
|
||||
@ -22,28 +22,21 @@ do
|
||||
lipo -create "${libs[@]}" -o ${ZIP_DIR}/install/lib/${lib}
|
||||
fi
|
||||
done
|
||||
# for nnpack, we only support arm64 build
|
||||
cp ${ARTIFACTS_DIR}/arm64/lib/libnnpack.a ./
|
||||
lipo -i ${ZIP_DIR}/install/lib/*.a
|
||||
# copy the umbrella header and license
|
||||
cp ${PROJ_ROOT}/ios/LibTorch-Lite.h ${ZIP_DIR}/src/
|
||||
cp ${PROJ_ROOT}/ios/LibTorch.h ${ZIP_DIR}/src/
|
||||
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
|
||||
# zip the library
|
||||
export DATE="$(date -u +%Y%m%d)"
|
||||
export IOS_NIGHTLY_BUILD_VERSION="1.10.0.${DATE}"
|
||||
# libtorch_lite_ios_nightly_1.10.0.20210810.zip
|
||||
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"
|
||||
ZIPFILE=libtorch_ios_nightly_build.zip
|
||||
cd ${ZIP_DIR}
|
||||
#for testing
|
||||
touch version.txt
|
||||
echo "${IOS_NIGHTLY_BUILD_VERSION}" > version.txt
|
||||
echo $(date +%s) > version.txt
|
||||
zip -r ${ZIPFILE} install src version.txt LICENSE
|
||||
# upload to aws
|
||||
# Install conda then 'conda install' awscli
|
||||
curl --retry 3 -o ~/conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
|
||||
chmod +x ~/conda.sh
|
||||
/bin/bash ~/conda.sh -b -p ~/anaconda
|
||||
export PATH="~/anaconda/bin:${PATH}"
|
||||
source ~/anaconda/bin/activate
|
||||
conda install -c conda-forge awscli --yes
|
||||
brew install awscli
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${AWS_S3_ACCESS_KEY_FOR_PYTORCH_BINARY_UPLOAD}
|
||||
export AWS_SECRET_ACCESS_KEY=${AWS_S3_ACCESS_SECRET_FOR_PYTORCH_BINARY_UPLOAD}
|
||||
@ -51,14 +44,3 @@ set +x
|
||||
# echo "AWS KEY: ${AWS_ACCESS_KEY_ID}"
|
||||
# echo "AWS SECRET: ${AWS_SECRET_ACCESS_KEY}"
|
||||
aws s3 cp ${ZIPFILE} s3://ossci-ios-build/ --acl public-read
|
||||
|
||||
# create a new LibTorch-Lite-Nightly.podspec from the template
|
||||
echo "cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec"
|
||||
cp ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec.template ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
|
||||
# update pod version
|
||||
sed -i '' -e "s/IOS_NIGHTLY_BUILD_VERSION/${IOS_NIGHTLY_BUILD_VERSION}/g" ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
cat ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
|
||||
# push the new LibTorch-Lite-Nightly.podspec to CocoaPods
|
||||
pod trunk push --verbose --allow-warnings --use-libraries --skip-import-validation ${PROJ_ROOT}/ios/LibTorch-Lite-Nightly.podspec
|
||||
|
||||
@ -4,31 +4,27 @@ echo "RUNNING ON $(uname -a) WITH $(nproc) CPUS AND $(free -m)"
|
||||
set -eux -o pipefail
|
||||
source /env
|
||||
|
||||
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
|
||||
MEMORY_LIMIT_MAX_JOBS=18
|
||||
NUM_CPUS=$(( $(nproc) - 2 ))
|
||||
|
||||
# Defaults here for **binary** linux builds so they can be changed in one place
|
||||
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
|
||||
|
||||
if [[ "${DESIRED_CUDA}" == "cu111" || "${DESIRED_CUDA}" == "cu113" ]]; then
|
||||
export BUILD_SPLIT_CUDA="ON"
|
||||
fi
|
||||
# Defaults here so they can be changed in one place
|
||||
export MAX_JOBS=12
|
||||
|
||||
# Parse the parameters
|
||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
|
||||
build_script='conda/build_pytorch.sh'
|
||||
elif [[ "$DESIRED_CUDA" == cpu ]]; then
|
||||
build_script='manywheel/build_cpu.sh'
|
||||
elif [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
build_script='manywheel/build_rocm.sh'
|
||||
else
|
||||
build_script='manywheel/build.sh'
|
||||
fi
|
||||
|
||||
if [[ "$CIRCLE_BRANCH" == "master" ]] || [[ "$CIRCLE_BRANCH" == release/* ]]; then
|
||||
export BUILD_DEBUG_INFO=1
|
||||
# We want to call unbuffer, which calls tclsh which finds the expect
|
||||
# package. The expect was installed by yum into /usr/bin so we want to
|
||||
# find /usr/bin/tclsh, but this is shadowed by /opt/conda/bin/tclsh in
|
||||
# the conda docker images, so we prepend it to the path here.
|
||||
if [[ "$PACKAGE_TYPE" == 'conda' ]]; then
|
||||
mkdir /just_tclsh_bin
|
||||
ln -s /usr/bin/tclsh /just_tclsh_bin/tclsh
|
||||
export PATH=/just_tclsh_bin:$PATH
|
||||
fi
|
||||
|
||||
# Build the package
|
||||
SKIP_ALL_TESTS=1 "/builder/$build_script"
|
||||
SKIP_ALL_TESTS=1 unbuffer "/builder/$build_script" | ts
|
||||
|
||||
@ -5,13 +5,14 @@ cat >/home/circleci/project/ci_test_script.sh <<EOL
|
||||
# =================== The following code will be executed inside Docker container ===================
|
||||
set -eux -o pipefail
|
||||
|
||||
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
|
||||
# Set up Python
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda create -qyn testenv python="$DESIRED_PYTHON"
|
||||
source activate testenv >/dev/null
|
||||
elif [[ "$DESIRED_PYTHON" == 2.7mu ]]; then
|
||||
export PATH="/opt/python/cp27-cp27mu/bin:\$PATH"
|
||||
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
python_nodot="\$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
python_path="/opt/python/cp\$python_nodot-cp\${python_nodot}"
|
||||
# Prior to Python 3.8 paths were suffixed with an 'm'
|
||||
if [[ -d "\${python_path}/bin" ]]; then
|
||||
@ -21,23 +22,6 @@ elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
EXTRA_CONDA_FLAGS=""
|
||||
NUMPY_PIN=""
|
||||
if [[ "\$python_nodot" = *39* ]]; then
|
||||
EXTRA_CONDA_FLAGS="-c=conda-forge"
|
||||
# There's an issue with conda channel priority where it'll randomly pick 1.19 over 1.20
|
||||
# we set a lower boundary here just to be safe
|
||||
NUMPY_PIN=">=1.20"
|
||||
fi
|
||||
|
||||
if [[ "$DESIRED_CUDA" == "cu112" ]]; then
|
||||
EXTRA_CONDA_FLAGS="-c=conda-forge"
|
||||
fi
|
||||
|
||||
# Move debug wheels out of the the package dir so they don't get installed
|
||||
mkdir -p /tmp/debug_final_pkgs
|
||||
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
|
||||
|
||||
# Install the package
|
||||
# These network calls should not have 'retry's because they are installing
|
||||
# locally and aren't actually network calls
|
||||
@ -46,37 +30,23 @@ mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to m
|
||||
# conda build scripts themselves. These should really be consolidated
|
||||
pkg="/final_pkgs/\$(ls /final_pkgs)"
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
(
|
||||
# For some reason conda likes to re-activate the conda environment when attempting this install
|
||||
# which means that a deactivate is run and some variables might not exist when that happens,
|
||||
# namely CONDA_MKL_INTERFACE_LAYER_BACKUP from libblas so let's just ignore unbound variables when
|
||||
# it comes to the conda installation commands
|
||||
set +u
|
||||
retry conda install \${EXTRA_CONDA_FLAGS} -yq \
|
||||
"numpy\${NUMPY_PIN}" \
|
||||
future \
|
||||
mkl>=2018 \
|
||||
ninja \
|
||||
dataclasses \
|
||||
typing-extensions \
|
||||
defaults::protobuf \
|
||||
six
|
||||
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
|
||||
retry conda install -c pytorch -y cpuonly
|
||||
conda install -y "\$pkg" --offline
|
||||
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
|
||||
retry conda install -y cpuonly -c pytorch
|
||||
fi
|
||||
retry conda install -yq future numpy protobuf six
|
||||
if [[ "$DESIRED_CUDA" != 'cpu' ]]; then
|
||||
# DESIRED_CUDA is in format cu90 or cu102
|
||||
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
|
||||
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
|
||||
else
|
||||
# DESIRED_CUDA is in format cu90 or cu102
|
||||
if [[ "${#DESIRED_CUDA}" == 4 ]]; then
|
||||
cu_ver="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3}"
|
||||
else
|
||||
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
|
||||
fi
|
||||
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch "cudatoolkit=\${cu_ver}"
|
||||
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
|
||||
fi
|
||||
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
|
||||
)
|
||||
retry conda install -yq -c pytorch "cudatoolkit=\${cu_ver}"
|
||||
fi
|
||||
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
|
||||
pip install "\$pkg"
|
||||
retry pip install -q future numpy protobuf typing-extensions six
|
||||
retry pip install -q future numpy protobuf six
|
||||
fi
|
||||
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
pkg="\$(ls /final_pkgs/*-latest.zip)"
|
||||
@ -86,7 +56,6 @@ fi
|
||||
|
||||
# Test the package
|
||||
/builder/check_binary.sh
|
||||
|
||||
# =================== The above code will be executed inside Docker container ===================
|
||||
EOL
|
||||
echo
|
||||
|
||||
37
.circleci/scripts/binary_linux_upload.sh
Executable file
37
.circleci/scripts/binary_linux_upload.sh
Executable file
@ -0,0 +1,37 @@
|
||||
#!/bin/bash
|
||||
# Do NOT set -x
|
||||
source /home/circleci/project/env
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
export PATH="$MINICONDA_ROOT/bin:$PATH"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
|
||||
# Upload the package to the final location
|
||||
pushd /home/circleci/project/final_pkgs
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
retry pip install -q awscli
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
else
|
||||
retry pip install -q awscli
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
fi
|
||||
@ -14,10 +14,6 @@ chmod +x "$build_script"
|
||||
# Build
|
||||
cat >"$build_script" <<EOL
|
||||
export PATH="$workdir/miniconda/bin:$PATH"
|
||||
if [[ "$CIRCLE_BRANCH" == "nightly" ]]; then
|
||||
export USE_PYTORCH_METAL_EXPORT=1
|
||||
export USE_COREML_DELEGATE=1
|
||||
fi
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
"$workdir/builder/conda/build_pytorch.sh"
|
||||
else
|
||||
|
||||
@ -20,9 +20,9 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
unzip "$pkg" -d /tmp
|
||||
cd /tmp/libtorch
|
||||
elif [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
conda install -y "$pkg"
|
||||
conda install -y "$pkg" --offline
|
||||
else
|
||||
pip install "$pkg" -v
|
||||
pip install "$pkg" --no-index --no-dependencies -v
|
||||
fi
|
||||
|
||||
# Test
|
||||
|
||||
37
.circleci/scripts/binary_macos_upload.sh
Executable file
37
.circleci/scripts/binary_macos_upload.sh
Executable file
@ -0,0 +1,37 @@
|
||||
#!/bin/bash
|
||||
# Do NOT set -x
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
|
||||
source "/Users/distiller/project/env"
|
||||
export "PATH=$workdir/miniconda/bin:$PATH"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
|
||||
pushd "$workdir/final_pkgs"
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
retry anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
retry pip install -q awscli
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
else
|
||||
retry pip install -q awscli
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
fi
|
||||
@ -62,30 +62,18 @@ if [[ -z "$DOCKER_IMAGE" ]]; then
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
export DOCKER_IMAGE="pytorch/conda-cuda"
|
||||
elif [[ "$DESIRED_CUDA" == cpu ]]; then
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cpu"
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cuda100"
|
||||
else
|
||||
export DOCKER_IMAGE="pytorch/manylinux-cuda${DESIRED_CUDA:2}"
|
||||
fi
|
||||
fi
|
||||
|
||||
USE_GOLD_LINKER="OFF"
|
||||
# GOLD linker can not be used if CUPTI is statically linked into PyTorch, see https://github.com/pytorch/pytorch/issues/57744
|
||||
if [[ ${DESIRED_CUDA} == "cpu" ]]; then
|
||||
USE_GOLD_LINKER="ON"
|
||||
fi
|
||||
|
||||
USE_WHOLE_CUDNN="OFF"
|
||||
# Link whole cuDNN for CUDA-11.1 to include fp16 fast kernels
|
||||
if [[ "$(uname)" == "Linux" && "${DESIRED_CUDA}" == "cu111" ]]; then
|
||||
USE_WHOLE_CUDNN="ON"
|
||||
fi
|
||||
|
||||
# Default to nightly, since that's where this normally uploads to
|
||||
PIP_UPLOAD_FOLDER='nightly/'
|
||||
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
|
||||
export DATE="$(date -u +%Y%m%d)"
|
||||
#TODO: We should be pulling semver version from the base version.txt
|
||||
BASE_BUILD_VERSION="1.10.0.dev$DATE"
|
||||
BASE_BUILD_VERSION="1.5.0.dev$DATE"
|
||||
# Change BASE_BUILD_VERSION to git tag when on a git tag
|
||||
# Use 'git -C' to make doubly sure we're in the correct directory for checking
|
||||
# the git tag
|
||||
@ -93,11 +81,11 @@ if tagged_version >/dev/null; then
|
||||
# Switch upload folder to 'test/' if we are on a tag
|
||||
PIP_UPLOAD_FOLDER='test/'
|
||||
# Grab git tag, remove prefixed v and remove everything after -
|
||||
# Used to clean up tags that are for release candidates like v1.6.0-rc1
|
||||
# Turns tag v1.6.0-rc1 -> v1.6.0
|
||||
# Used to clean up tags that are for release candidates like v1.5.0-rc1
|
||||
# Turns tag v1.5.0-rc1 -> v1.5.0
|
||||
BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
|
||||
fi
|
||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
|
||||
else
|
||||
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
|
||||
@ -112,14 +100,8 @@ if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
POSSIBLE_JAVA_HOMES+=(/usr/local)
|
||||
POSSIBLE_JAVA_HOMES+=(/usr/lib/jvm/java-8-openjdk-amd64)
|
||||
POSSIBLE_JAVA_HOMES+=(/Library/Java/JavaVirtualMachines/*.jdk/Contents/Home)
|
||||
# Add the Windows-specific JNI path
|
||||
POSSIBLE_JAVA_HOMES+=("$PWD/.circleci/windows-jni/")
|
||||
for JH in "${POSSIBLE_JAVA_HOMES[@]}" ; do
|
||||
if [[ -e "$JH/include/jni.h" ]] ; then
|
||||
# Skip if we're not on Windows but haven't found a JAVA_HOME
|
||||
if [[ "$JH" == "$PWD/.circleci/windows-jni/" && "$OSTYPE" != "msys" ]] ; then
|
||||
break
|
||||
fi
|
||||
echo "Found jni.h under $JH"
|
||||
JAVA_HOME="$JH"
|
||||
BUILD_JNI=ON
|
||||
@ -148,7 +130,7 @@ if [[ "${BUILD_FOR_SYSTEM:-}" == "windows" ]]; then
|
||||
fi
|
||||
|
||||
export DATE="$DATE"
|
||||
export NIGHTLIES_DATE_PREAMBLE=1.10.0.dev
|
||||
export NIGHTLIES_DATE_PREAMBLE=1.5.0.dev
|
||||
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
|
||||
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
|
||||
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
|
||||
@ -179,11 +161,6 @@ export CIRCLE_TAG="${CIRCLE_TAG:-}"
|
||||
export CIRCLE_SHA1="$CIRCLE_SHA1"
|
||||
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
|
||||
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
|
||||
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
|
||||
|
||||
export USE_GOLD_LINKER="${USE_GOLD_LINKER}"
|
||||
export USE_GLOO_WITH_OPENSSL="ON"
|
||||
export USE_WHOLE_CUDNN="${USE_WHOLE_CUDNN}"
|
||||
# =================== The above code will be executed inside Docker container ===================
|
||||
EOL
|
||||
|
||||
|
||||
@ -19,7 +19,7 @@ chmod +x /home/circleci/project/ci_test_script.sh
|
||||
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
|
||||
# Run the docker
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --runtime=nvidia ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
else
|
||||
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
|
||||
fi
|
||||
|
||||
@ -1,98 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
PACKAGE_TYPE=${PACKAGE_TYPE:-conda}
|
||||
|
||||
PKG_DIR=${PKG_DIR:-/tmp/workspace/final_pkgs}
|
||||
|
||||
# Designates whether to submit as a release candidate or a nightly build
|
||||
# Value should be `test` when uploading release candidates
|
||||
# currently set within `designate_upload_channel`
|
||||
UPLOAD_CHANNEL=${UPLOAD_CHANNEL:-nightly}
|
||||
# Designates what subfolder to put packages into
|
||||
UPLOAD_SUBFOLDER=${UPLOAD_SUBFOLDER:-cpu}
|
||||
UPLOAD_BUCKET="s3://pytorch"
|
||||
BACKUP_BUCKET="s3://pytorch-backup"
|
||||
|
||||
DRY_RUN=${DRY_RUN:-enabled}
|
||||
# Don't actually do work unless explicit
|
||||
ANACONDA="true anaconda"
|
||||
AWS_S3_CP="aws s3 cp --dryrun"
|
||||
if [[ "${DRY_RUN}" = "disabled" ]]; then
|
||||
ANACONDA="anaconda"
|
||||
AWS_S3_CP="aws s3 cp"
|
||||
fi
|
||||
|
||||
do_backup() {
|
||||
local backup_dir
|
||||
backup_dir=$1
|
||||
(
|
||||
pushd /tmp/workspace
|
||||
set -x
|
||||
${AWS_S3_CP} --recursive . "${BACKUP_BUCKET}/${CIRCLE_TAG}/${backup_dir}/"
|
||||
)
|
||||
}
|
||||
|
||||
conda_upload() {
|
||||
(
|
||||
set -x
|
||||
${ANACONDA} \
|
||||
upload \
|
||||
${PKG_DIR}/*.tar.bz2 \
|
||||
-u "pytorch-${UPLOAD_CHANNEL}" \
|
||||
--label main \
|
||||
--no-progress \
|
||||
--force
|
||||
)
|
||||
}
|
||||
|
||||
s3_upload() {
|
||||
local extension
|
||||
local pkg_type
|
||||
extension="$1"
|
||||
pkg_type="$2"
|
||||
s3_dir="${UPLOAD_BUCKET}/${pkg_type}/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}/"
|
||||
(
|
||||
for pkg in ${PKG_DIR}/*.${extension}; do
|
||||
(
|
||||
set -x
|
||||
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_dir}"
|
||||
)
|
||||
done
|
||||
)
|
||||
}
|
||||
|
||||
case "${PACKAGE_TYPE}" in
|
||||
conda)
|
||||
conda_upload
|
||||
# Fetch platform (eg. win-64, linux-64, etc.) from index file
|
||||
# Because there's no actual conda command to read this
|
||||
subdir=$(\
|
||||
tar -xOf ${PKG_DIR}/*.bz2 info/index.json \
|
||||
| grep subdir \
|
||||
| cut -d ':' -f2 \
|
||||
| sed -e 's/[[:space:]]//' -e 's/"//g' -e 's/,//' \
|
||||
)
|
||||
BACKUP_DIR="conda/${subdir}"
|
||||
;;
|
||||
libtorch)
|
||||
s3_upload "zip" "libtorch"
|
||||
BACKUP_DIR="libtorch/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
|
||||
;;
|
||||
# wheel can either refer to wheel/manywheel
|
||||
*wheel)
|
||||
s3_upload "whl" "whl"
|
||||
BACKUP_DIR="whl/${UPLOAD_CHANNEL}/${UPLOAD_SUBFOLDER}"
|
||||
;;
|
||||
*)
|
||||
echo "ERROR: unknown package type: ${PACKAGE_TYPE}"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
# CIRCLE_TAG is defined by upstream circleci,
|
||||
# this can be changed to recognize tagged versions
|
||||
if [[ -n "${CIRCLE_TAG:-}" ]]; then
|
||||
do_backup "${BACKUP_DIR}"
|
||||
fi
|
||||
@ -5,65 +5,18 @@ source "/c/w/env"
|
||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
|
||||
|
||||
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
|
||||
export VC_YEAR=2017
|
||||
export USE_SCCACHE=1
|
||||
export SCCACHE_BUCKET=ossci-compiler-cache-windows
|
||||
export NIGHTLIES_PYTORCH_ROOT="$PYTORCH_ROOT"
|
||||
export VC_YEAR=2019
|
||||
|
||||
if [[ "${DESIRED_CUDA}" == "cu111" || "${DESIRED_CUDA}" == "cu113" ]]; then
|
||||
export BUILD_SPLIT_CUDA="ON"
|
||||
fi
|
||||
|
||||
echo "Free Space for CUDA DEBUG BUILD"
|
||||
if [[ "$CIRCLECI" == 'true' ]]; then
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019\\Community"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio 14.0"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft.NET" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft.NET"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files\\dotnet" ]]; then
|
||||
rm -rf "C:\\Program Files\\dotnet"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\dotnet" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\dotnet"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Microsoft SQL Server" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft SQL Server"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Xamarin" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Xamarin"
|
||||
fi
|
||||
|
||||
if [[ -d "C:\\Program Files (x86)\\Google" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Google"
|
||||
fi
|
||||
fi
|
||||
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}
|
||||
set -x
|
||||
|
||||
if [[ "$CIRCLECI" == 'true' && -d "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" ]]; then
|
||||
mv "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages\\_Instances" .
|
||||
rm -rf "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mkdir -p "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
mv _Instances "C:\\ProgramData\\Microsoft\\VisualStudio\\Packages"
|
||||
fi
|
||||
|
||||
if [[ "$CIRCLECI" == 'true' && -d "C:\\Microsoft" ]]; then
|
||||
# don't use quotes here
|
||||
rm -rf /c/Microsoft/AndroidNDK*
|
||||
if [[ "$CIRCLECI" == 'true' && -d "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019" ]]; then
|
||||
rm -rf "C:\\Program Files (x86)\\Microsoft Visual Studio\\2019"
|
||||
fi
|
||||
|
||||
echo "Free space on filesystem before build:"
|
||||
|
||||
@ -1,13 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
source "/c/w/env"
|
||||
|
||||
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
|
||||
export VC_YEAR=2019
|
||||
|
||||
pushd "$BUILDER_ROOT"
|
||||
|
||||
./windows/internal/smoke_test.bat
|
||||
|
||||
popd
|
||||
37
.circleci/scripts/binary_windows_upload.sh
Normal file
37
.circleci/scripts/binary_windows_upload.sh
Normal file
@ -0,0 +1,37 @@
|
||||
#!/bin/bash
|
||||
set -eu -o pipefail
|
||||
set +x
|
||||
declare -x "AWS_ACCESS_KEY_ID=${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}"
|
||||
declare -x "AWS_SECRET_ACCESS_KEY=${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}"
|
||||
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
# DO NOT TURN -x ON BEFORE THIS LINE
|
||||
#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!#!
|
||||
set -eux -o pipefail
|
||||
|
||||
source "/env"
|
||||
|
||||
# This gets set in binary_populate_env.sh, but lets have a sane default just in case
|
||||
PIP_UPLOAD_FOLDER=${PIP_UPLOAD_FOLDER:-nightly/}
|
||||
# TODO: Combine CONDA_UPLOAD_CHANNEL and PIP_UPLOAD_FOLDER into one variable
|
||||
# The only difference is the trailing slash
|
||||
# Strip trailing slashes if there
|
||||
CONDA_UPLOAD_CHANNEL=$(echo "${PIP_UPLOAD_FOLDER}" | sed 's:/*$::')
|
||||
|
||||
pushd /root/workspace/final_pkgs
|
||||
# Upload the package to the final location
|
||||
if [[ "$PACKAGE_TYPE" == conda ]]; then
|
||||
retry conda install -yq anaconda-client
|
||||
anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload "$(ls)" -u "pytorch-${CONDA_UPLOAD_CHANNEL}" --label main --no-progress --force
|
||||
elif [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
retry conda install -c conda-forge -yq awscli
|
||||
s3_dir="s3://pytorch/libtorch/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
for pkg in $(ls); do
|
||||
retry aws s3 cp "$pkg" "$s3_dir" --acl public-read
|
||||
done
|
||||
else
|
||||
retry conda install -c conda-forge -yq awscli
|
||||
s3_dir="s3://pytorch/whl/${PIP_UPLOAD_FOLDER}${DESIRED_CUDA}/"
|
||||
retry aws s3 cp "$(ls)" "$s3_dir" --acl public-read
|
||||
fi
|
||||
|
||||
@ -1,44 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
set -eux -o pipefail
|
||||
|
||||
env
|
||||
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
|
||||
|
||||
export ANDROID_NDK_HOME=/opt/ndk
|
||||
export ANDROID_NDK=/opt/ndk
|
||||
export ANDROID_HOME=/opt/android/sdk
|
||||
|
||||
# Must be in sync with GRADLE_VERSION in docker image for android
|
||||
# https://github.com/pietern/pytorch-dockerfiles/blob/master/build.sh#L155
|
||||
export GRADLE_VERSION=6.8.3
|
||||
export GRADLE_VERSION=4.10.3
|
||||
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
|
||||
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
|
||||
|
||||
# touch gradle cache files to prevent expiration
|
||||
while IFS= read -r -d '' file
|
||||
do
|
||||
touch "$file" || true
|
||||
done < <(find /var/lib/jenkins/.gradle -type f -print0)
|
||||
|
||||
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
|
||||
rm -f $GRADLE_LOCAL_PROPERTIES
|
||||
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
# Run custom build script
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
|
||||
# Install torch & torchvision - used to download & dump used ops from test model.
|
||||
retry pip install torch torchvision --progress-bar off
|
||||
|
||||
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
|
||||
fi
|
||||
|
||||
# Run default build
|
||||
BUILD_ANDROID_INCLUDE_DIR_x86=~/workspace/build_android/install/include
|
||||
BUILD_ANDROID_LIB_DIR_x86=~/workspace/build_android/install/lib
|
||||
|
||||
@ -73,6 +44,9 @@ ln -s ${BUILD_ANDROID_INCLUDE_DIR_arm_v8a} ${JNI_INCLUDE_DIR}/arm64-v8a
|
||||
ln -s ${BUILD_ANDROID_LIB_DIR_arm_v8a} ${JNI_LIBS_DIR}/arm64-v8a
|
||||
fi
|
||||
|
||||
env
|
||||
echo "BUILD_ENVIRONMENT:$BUILD_ENVIRONMENT"
|
||||
|
||||
GRADLE_PARAMS="-p android assembleRelease --debug --stacktrace"
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-gradle-build-only-x86_32* ]]; then
|
||||
GRADLE_PARAMS+=" -PABI_FILTERS=x86"
|
||||
@ -82,6 +56,20 @@ if [ -n "{GRADLE_OFFLINE:-}" ]; then
|
||||
GRADLE_PARAMS+=" --offline"
|
||||
fi
|
||||
|
||||
# touch gradle cache files to prevent expiration
|
||||
while IFS= read -r -d '' file
|
||||
do
|
||||
touch "$file" || true
|
||||
done < <(find /var/lib/jenkins/.gradle -type f -print0)
|
||||
|
||||
env
|
||||
|
||||
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
|
||||
rm -f $GRADLE_LOCAL_PROPERTIES
|
||||
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "cmake.dir=/usr/local" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
$GRADLE_PATH $GRADLE_PARAMS
|
||||
|
||||
find . -type f -name "*.a" -exec ls -lh {} \;
|
||||
|
||||
@ -10,27 +10,18 @@ pt_checkout="/var/lib/jenkins/workspace"
|
||||
# Since we're cat-ing this file, we need to escape all $'s
|
||||
echo "cpp_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
|
||||
# the order of operations goes:
|
||||
# 1. Check if there's an argument $1
|
||||
# 2. If no argument check for environment var DOCS_INSTALL_PATH
|
||||
# 3. If no environment var fall back to default 'docs/'
|
||||
|
||||
# NOTE: It might seem weird to gather the second argument before gathering the first argument
|
||||
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
|
||||
# try and gather it first, just so we don't potentially break people who rely on this script
|
||||
# Argument 2: What version of the Python API docs we are building.
|
||||
version="${2:-${DOCS_VERSION:-master}}"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
|
||||
# Argument 1: Where to copy the built documentation for Python API to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="$1"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: install_path (arg1) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Argument 1: Where to copy the built documentation for Python API to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: install_path (arg1) not specified"
|
||||
# Argument 2: What version of the Python API docs we are building.
|
||||
version="$2"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: cpp_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -39,7 +30,13 @@ if [ "$version" == "master" ]; then
|
||||
is_master_doc=true
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version"
|
||||
# Argument 3: (optional) If present, we will NOT do any pushing. Used for testing.
|
||||
dry_run=false
|
||||
if [ "$3" != "" ]; then
|
||||
dry_run=true
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version dry_run: $dry_run"
|
||||
|
||||
# ======================== Building PyTorch C++ API Docs ========================
|
||||
|
||||
@ -56,22 +53,31 @@ sudo apt-get -y install doxygen
|
||||
# Generate ATen files
|
||||
pushd "${pt_checkout}"
|
||||
pip install -r requirements.txt
|
||||
time python -m tools.codegen.gen \
|
||||
time python aten/src/ATen/gen.py \
|
||||
-s aten/src/ATen \
|
||||
-d build/aten/src/ATen
|
||||
-d build/aten/src/ATen \
|
||||
aten/src/ATen/Declarations.cwrap \
|
||||
aten/src/THCUNN/generic/THCUNN.h \
|
||||
aten/src/ATen/nn.yaml \
|
||||
aten/src/ATen/native/native_functions.yaml
|
||||
|
||||
# Copy some required files
|
||||
cp aten/src/ATen/common_with_cwrap.py tools/shared/cwrap_common.py
|
||||
cp torch/_utils_internal.py tools/shared
|
||||
|
||||
# Generate PyTorch files
|
||||
time python tools/setup_helpers/generate_code.py \
|
||||
--declarations-path build/aten/src/ATen/Declarations.yaml \
|
||||
--native-functions-path aten/src/ATen/native/native_functions.yaml \
|
||||
--nn-path aten/src/
|
||||
|
||||
# Build the docs
|
||||
pushd docs/cpp
|
||||
pip install -r requirements.txt
|
||||
pip install breathe==4.13.0 bs4 lxml six
|
||||
pip install --no-cache-dir -e "git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme"
|
||||
pip install exhale>=0.2.1
|
||||
pip install sphinx==2.4.4
|
||||
# Uncomment once it is fixed
|
||||
# pip install -r requirements.txt
|
||||
time make VERBOSE=1 html -j
|
||||
|
||||
popd
|
||||
@ -97,8 +103,24 @@ git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate C++ docs from pytorch/pytorch@$CIRCLE_SHA1" || true
|
||||
git commit -m "Automatic sync on $(date)" || true
|
||||
git status
|
||||
|
||||
if [ "$dry_run" = false ]; then
|
||||
echo "Pushing to https://github.com/pytorch/cppdocs"
|
||||
set +x
|
||||
/usr/bin/expect <<DONE
|
||||
spawn git push -u origin master
|
||||
expect "Username*"
|
||||
send "pytorchbot\n"
|
||||
expect "Password*"
|
||||
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
|
||||
expect eof
|
||||
DONE
|
||||
set -x
|
||||
else
|
||||
echo "Skipping push due to dry_run"
|
||||
fi
|
||||
|
||||
popd
|
||||
# =================== The above code **should** be executed inside Docker container ===================
|
||||
|
||||
@ -1,8 +0,0 @@
|
||||
set "DRIVER_DOWNLOAD_LINK=https://s3.amazonaws.com/ossci-windows/452.39-data-center-tesla-desktop-win10-64bit-international.exe"
|
||||
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output 452.39-data-center-tesla-desktop-win10-64bit-international.exe
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
start /wait 452.39-data-center-tesla-desktop-win10-64bit-international.exe -s -noreboot
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
del 452.39-data-center-tesla-desktop-win10-64bit-international.exe || ver > NUL
|
||||
@ -5,7 +5,7 @@ set -eu -o pipefail
|
||||
export ANDROID_NDK_HOME=/opt/ndk
|
||||
export ANDROID_HOME=/opt/android/sdk
|
||||
|
||||
export GRADLE_VERSION=6.8.3
|
||||
export GRADLE_VERSION=4.10.3
|
||||
export GRADLE_HOME=/opt/gradle/gradle-$GRADLE_VERSION
|
||||
export GRADLE_PATH=$GRADLE_HOME/bin/gradle
|
||||
|
||||
@ -35,9 +35,7 @@ else
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
echo "SONATYPE_NEXUS_USERNAME=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
|
||||
echo "mavenCentralRepositoryUsername=${SONATYPE_NEXUS_USERNAME}" >> $GRADLE_PROPERTIES
|
||||
echo "SONATYPE_NEXUS_PASSWORD=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
|
||||
echo "mavenCentralRepositoryPassword=${SONATYPE_NEXUS_PASSWORD}" >> $GRADLE_PROPERTIES
|
||||
|
||||
echo "signing.keyId=${ANDROID_SIGN_KEY}" >> $GRADLE_PROPERTIES
|
||||
echo "signing.password=${ANDROID_SIGN_PASS}" >> $GRADLE_PROPERTIES
|
||||
|
||||
@ -7,33 +7,22 @@ sudo apt-get -y install expect-dev
|
||||
# This is where the local pytorch install in the docker image is located
|
||||
pt_checkout="/var/lib/jenkins/workspace"
|
||||
|
||||
source "$pt_checkout/.jenkins/pytorch/common_utils.sh"
|
||||
|
||||
echo "python_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex
|
||||
|
||||
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
|
||||
# the order of operations goes:
|
||||
# 1. Check if there's an argument $1
|
||||
# 2. If no argument check for environment var DOCS_INSTALL_PATH
|
||||
# 3. If no environment var fall back to default 'docs/'
|
||||
|
||||
# NOTE: It might seem weird to gather the second argument before gathering the first argument
|
||||
# but since DOCS_INSTALL_PATH can be derived from DOCS_VERSION it's probably better to
|
||||
# try and gather it first, just so we don't potentially break people who rely on this script
|
||||
# Argument 2: What version of the docs we are building.
|
||||
version="${2:-${DOCS_VERSION:-master}}"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: python_doc_push_script.sh: version (arg2) not specified"
|
||||
# Argument 1: Where to copy the built documentation to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="$1"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Argument 1: Where to copy the built documentation to
|
||||
# (pytorch.github.io/$install_path)
|
||||
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
|
||||
if [ -z "$install_path" ]; then
|
||||
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
|
||||
# Argument 2: What version of the docs we are building.
|
||||
version="$2"
|
||||
if [ -z "$version" ]; then
|
||||
echo "error: python_doc_push_script.sh: version (arg2) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -43,36 +32,21 @@ if [ "$version" == "master" ]; then
|
||||
fi
|
||||
|
||||
# Argument 3: The branch to push to. Usually is "site"
|
||||
branch="${3:-${DOCS_BRANCH:-site}}"
|
||||
branch="$3"
|
||||
if [ -z "$branch" ]; then
|
||||
echo "error: python_doc_push_script.sh: branch (arg3) not specified"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version"
|
||||
# Argument 4: (optional) If present, we will NOT do any pushing. Used for testing.
|
||||
dry_run=false
|
||||
if [ "$4" != "" ]; then
|
||||
dry_run=true
|
||||
fi
|
||||
|
||||
echo "install_path: $install_path version: $version dry_run: $dry_run"
|
||||
|
||||
build_docs () {
|
||||
set +e
|
||||
set -o pipefail
|
||||
make $1 2>&1 | tee /tmp/docs_build.txt
|
||||
code=$?
|
||||
if [ $code -ne 0 ]; then
|
||||
set +x
|
||||
echo =========================
|
||||
grep "WARNING:" /tmp/docs_build.txt
|
||||
echo =========================
|
||||
echo Docs build failed. If the failure is not clear, scan back in the log
|
||||
echo for any WARNINGS or for the line "build finished with problems"
|
||||
echo "(tried to echo the WARNINGS above the ==== line)"
|
||||
echo =========================
|
||||
fi
|
||||
set -ex
|
||||
return $code
|
||||
}
|
||||
|
||||
|
||||
git clone https://github.com/pytorch/pytorch.github.io -b $branch --depth 1
|
||||
git clone https://github.com/pytorch/pytorch.github.io -b $branch
|
||||
pushd pytorch.github.io
|
||||
|
||||
export LC_ALL=C
|
||||
@ -80,38 +54,26 @@ export PATH=/opt/conda/bin:$PATH
|
||||
|
||||
rm -rf pytorch || true
|
||||
|
||||
# Install TensorBoard in python 3 so torch.utils.tensorboard classes render
|
||||
pip install -q https://s3.amazonaws.com/ossci-linux/wheels/tensorboard-1.14.0a0-py3-none-any.whl
|
||||
|
||||
# Get all the documentation sources, put them in one place
|
||||
pushd "$pt_checkout"
|
||||
git clone https://github.com/pytorch/vision
|
||||
pushd vision
|
||||
conda install -q pillow
|
||||
time python setup.py install
|
||||
popd
|
||||
pushd docs
|
||||
rm -rf source/torchvision
|
||||
cp -a ../vision/docs/source source/torchvision
|
||||
|
||||
# Build the docs
|
||||
pip -q install -r requirements.txt
|
||||
pip -q install -r requirements.txt || true
|
||||
if [ "$is_master_doc" = true ]; then
|
||||
build_docs html
|
||||
[ $? -eq 0 ] || exit $?
|
||||
make coverage
|
||||
# Now we have the coverage report, we need to make sure it is empty.
|
||||
# Count the number of lines in the file and turn that number into a variable
|
||||
# $lines. The `cut -f1 ...` is to only parse the number, not the filename
|
||||
# Skip the report header by subtracting 2: the header will be output even if
|
||||
# there are no undocumented items.
|
||||
#
|
||||
# Also: see docs/source/conf.py for "coverage_ignore*" items, which should
|
||||
# be documented then removed from there.
|
||||
lines=$(wc -l build/coverage/python.txt 2>/dev/null |cut -f1 -d' ')
|
||||
undocumented=$(($lines - 2))
|
||||
if [ $undocumented -lt 0 ]; then
|
||||
echo coverage output not found
|
||||
exit 1
|
||||
elif [ $undocumented -gt 0 ]; then
|
||||
echo undocumented objects found:
|
||||
cat build/coverage/python.txt
|
||||
exit 1
|
||||
fi
|
||||
make html
|
||||
else
|
||||
# skip coverage, format for stable or tags
|
||||
build_docs html-stable
|
||||
[ $? -eq 0 ] || exit $?
|
||||
make html-stable
|
||||
fi
|
||||
|
||||
# Move them into the docs repo
|
||||
@ -120,6 +82,14 @@ popd
|
||||
git rm -rf "$install_path" || true
|
||||
mv "$pt_checkout/docs/build/html" "$install_path"
|
||||
|
||||
# Add the version handler by search and replace.
|
||||
# XXX: Consider moving this to the docs Makefile or site build
|
||||
if [ "$is_master_doc" = true ]; then
|
||||
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>\1 \▼</a>@g"
|
||||
else
|
||||
find "$install_path" -name "*.html" -print0 | xargs -0 perl -pi -w -e "s@master\s+\((\d\.\d\.[A-Fa-f0-9]+\+[A-Fa-f0-9]+)\s+\)@<a href='http://pytorch.org/docs/versions.html'>$version \▼</a>@g"
|
||||
fi
|
||||
|
||||
# Prevent Google from indexing $install_path/_modules. This folder contains
|
||||
# generated source files.
|
||||
# NB: the following only works on gnu sed. The sed shipped with mac os is different.
|
||||
@ -131,8 +101,24 @@ git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate Python docs from pytorch/pytorch@$CIRCLE_SHA1" || true
|
||||
git commit -m "auto-generating sphinx docs" || true
|
||||
git status
|
||||
|
||||
if [ "$dry_run" = false ]; then
|
||||
echo "Pushing to pytorch.github.io:$branch"
|
||||
set +x
|
||||
/usr/bin/expect <<DONE
|
||||
spawn git push origin $branch
|
||||
expect "Username*"
|
||||
send "pytorchbot\n"
|
||||
expect "Password*"
|
||||
send "$::env(GITHUB_PYTORCHBOT_TOKEN)\n"
|
||||
expect eof
|
||||
DONE
|
||||
set -x
|
||||
else
|
||||
echo "Skipping push due to dry_run"
|
||||
fi
|
||||
|
||||
popd
|
||||
# =================== The above code **should** be executed inside Docker container ===================
|
||||
|
||||
@ -1,103 +1,81 @@
|
||||
#!/usr/bin/env bash
|
||||
set -ex -o pipefail
|
||||
|
||||
# Set up NVIDIA docker repo
|
||||
curl -s -L --retry 3 https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
echo "deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
echo "deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
echo "deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64 /" | sudo tee -a /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
# Remove unnecessary sources
|
||||
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
|
||||
sudo rm -f /etc/apt/heroku.list
|
||||
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
|
||||
sudo rm -f /etc/apt/partner.list
|
||||
|
||||
# To increase the network reliability, let apt decide which mirror is best to use
|
||||
sudo sed -i -e 's/http:\/\/.*archive/mirror:\/\/mirrors/' -e 's/\/ubuntu\//\/mirrors.txt/' /etc/apt/sources.list
|
||||
|
||||
retry () {
|
||||
$* || $* || $* || $* || $*
|
||||
}
|
||||
|
||||
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
|
||||
# (with use of tee to avoid permissions problems)
|
||||
# This is better than retrying the whole apt-get command
|
||||
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
|
||||
|
||||
retry sudo apt-get update -qq
|
||||
retry sudo apt-get -y install \
|
||||
sudo apt-get -y update
|
||||
sudo apt-get -y remove linux-image-generic linux-headers-generic linux-generic docker-ce
|
||||
# WARNING: Docker version is hardcoded here; you must update the
|
||||
# version number below for docker-ce and nvidia-docker2 to get newer
|
||||
# versions of Docker. We hardcode these numbers because we kept
|
||||
# getting broken CI when Docker would update their docker version,
|
||||
# and nvidia-docker2 would be out of date for a day until they
|
||||
# released a newer version of their package.
|
||||
#
|
||||
# How to figure out what the correct versions of these packages are?
|
||||
# My preferred method is to start a Docker instance of the correct
|
||||
# Ubuntu version (e.g., docker run -it ubuntu:16.04) and then ask
|
||||
# apt what the packages you need are. Note that the CircleCI image
|
||||
# comes with Docker.
|
||||
sudo apt-get -y install \
|
||||
linux-headers-$(uname -r) \
|
||||
linux-image-generic \
|
||||
moreutils \
|
||||
docker-ce=5:18.09.4~3-0~ubuntu-xenial \
|
||||
nvidia-container-runtime=2.0.0+docker18.09.4-1 \
|
||||
nvidia-docker2=2.0.3+docker18.09.4-1 \
|
||||
expect-dev
|
||||
|
||||
echo "== DOCKER VERSION =="
|
||||
docker version
|
||||
sudo pkill -SIGHUP dockerd
|
||||
|
||||
if ! command -v aws >/dev/null; then
|
||||
retry sudo pip3 -q install awscli==1.19.64
|
||||
fi
|
||||
retry () {
|
||||
$* || $* || $* || $* || $*
|
||||
}
|
||||
|
||||
retry sudo pip -q install awscli==1.16.35
|
||||
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
DRIVER_FN="NVIDIA-Linux-x86_64-460.39.run"
|
||||
DRIVER_FN="NVIDIA-Linux-x86_64-440.59.run"
|
||||
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
|
||||
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
|
||||
nvidia-smi
|
||||
|
||||
# Taken directly from https://github.com/NVIDIA/nvidia-docker
|
||||
# Add the package repositories
|
||||
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
curl -s -L "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
retry sudo apt-get update -qq
|
||||
# Necessary to get the `--gpus` flag to function within docker
|
||||
retry sudo apt-get install -y nvidia-container-toolkit
|
||||
sudo systemctl restart docker
|
||||
else
|
||||
# Explicitly remove nvidia docker apt repositories if not building for cuda
|
||||
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
|
||||
fi
|
||||
|
||||
add_to_env_file() {
|
||||
local name=$1
|
||||
local value=$2
|
||||
case "$value" in
|
||||
*\ *)
|
||||
# BASH_ENV should be set by CircleCI
|
||||
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
|
||||
;;
|
||||
*)
|
||||
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
|
||||
;;
|
||||
esac
|
||||
}
|
||||
|
||||
add_to_env_file IN_CI 1
|
||||
add_to_env_file CI_MASTER "${CI_MASTER:-}"
|
||||
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
|
||||
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
|
||||
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
|
||||
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
|
||||
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
|
||||
|
||||
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
|
||||
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
|
||||
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
|
||||
add_to_env_file MAX_JOBS "${MAX_JOBS}"
|
||||
|
||||
echo "declare -x IN_CIRCLECI=1" > /home/circleci/project/env
|
||||
echo "declare -x COMMIT_SOURCE=${CIRCLE_BRANCH:-}" >> /home/circleci/project/env
|
||||
echo "declare -x SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> /home/circleci/project/env
|
||||
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
|
||||
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
|
||||
echo "declare -x TORCH_CUDA_ARCH_LIST=5.2" >> /home/circleci/project/env
|
||||
fi
|
||||
export SCCACHE_MAX_JOBS=`expr $(nproc) - 1`
|
||||
export MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
|
||||
export MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
|
||||
echo "declare -x MAX_JOBS=${MAX_JOBS}" >> /home/circleci/project/env
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
|
||||
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
|
||||
set +x
|
||||
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
|
||||
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
|
||||
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
|
||||
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}" >> /home/circleci/project/env
|
||||
set -x
|
||||
else
|
||||
# This IAM user allows write access to S3 bucket for sccache
|
||||
set +x
|
||||
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
|
||||
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
|
||||
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
|
||||
echo "declare -x XLA_CLANG_CACHE_S3_BUCKET_NAME=${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
|
||||
echo "declare -x AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}" >> /home/circleci/project/env
|
||||
set -x
|
||||
fi
|
||||
fi
|
||||
@ -106,7 +84,5 @@ fi
|
||||
set +x
|
||||
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
|
||||
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
|
||||
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
|
||||
export AWS_REGION=us-east-1
|
||||
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
|
||||
eval $(aws ecr get-login --region us-east-1 --no-include-email)
|
||||
set -x
|
||||
|
||||
@ -33,7 +33,7 @@ systemctl list-units --all | cat
|
||||
sudo pkill apt-get || true
|
||||
|
||||
# For even better luck, purge unattended-upgrades
|
||||
sudo apt-get purge -y unattended-upgrades || true
|
||||
sudo apt-get purge -y unattended-upgrades
|
||||
|
||||
cat /etc/apt/sources.list
|
||||
|
||||
|
||||
@ -1,140 +0,0 @@
|
||||
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
|
||||
|
||||
import re
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import requests
|
||||
import time
|
||||
|
||||
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
|
||||
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
|
||||
PIPELINE_ID = "911"
|
||||
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
|
||||
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "master")
|
||||
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
|
||||
|
||||
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
|
||||
|
||||
s = requests.Session()
|
||||
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
|
||||
|
||||
def submit_build(pipeline_id, project_id, source_branch, source_version):
|
||||
print("Submitting build for branch: " + source_branch)
|
||||
print("Commit SHA1: ", source_version)
|
||||
|
||||
run_build_raw = s.post(build_base_url, json={
|
||||
"definition": {"id": pipeline_id},
|
||||
"project": {"id": project_id},
|
||||
"sourceBranch": source_branch,
|
||||
"sourceVersion": source_version
|
||||
})
|
||||
|
||||
try:
|
||||
run_build_json = run_build_raw.json()
|
||||
except json.decoder.JSONDecodeError as e:
|
||||
print(e)
|
||||
print("Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired.")
|
||||
sys.exit(-1)
|
||||
|
||||
build_id = run_build_json['id']
|
||||
|
||||
print("Submitted bulid: " + str(build_id))
|
||||
print("Bulid URL: " + run_build_json['url'])
|
||||
return build_id
|
||||
|
||||
def get_build(_id):
|
||||
get_build_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
|
||||
get_build_raw = s.get(get_build_url)
|
||||
return get_build_raw.json()
|
||||
|
||||
def get_build_logs(_id):
|
||||
get_build_logs_url = AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
|
||||
get_build_logs_raw = s.get(get_build_logs_url)
|
||||
return get_build_logs_raw.json()
|
||||
|
||||
def get_log_content(url):
|
||||
resp = s.get(url)
|
||||
return resp.text
|
||||
|
||||
def wait_for_build(_id):
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
|
||||
while build_status == 'notStarted':
|
||||
print('Waiting for run to start: ' + str(_id))
|
||||
sys.stdout.flush()
|
||||
try:
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
except Exception as e:
|
||||
print("Error getting build")
|
||||
print(e)
|
||||
|
||||
time.sleep(30)
|
||||
|
||||
print("Bulid started: ", str(_id))
|
||||
|
||||
handled_logs = set()
|
||||
while build_status == 'inProgress':
|
||||
try:
|
||||
print("Waiting for log: " + str(_id))
|
||||
logs = get_build_logs(_id)
|
||||
except Exception as e:
|
||||
print("Error fetching logs")
|
||||
print(e)
|
||||
time.sleep(30)
|
||||
continue
|
||||
|
||||
for log in logs['value']:
|
||||
log_id = log['id']
|
||||
if log_id in handled_logs:
|
||||
continue
|
||||
handled_logs.add(log_id)
|
||||
print('Fetching log: \n' + log['url'])
|
||||
try:
|
||||
log_content = get_log_content(log['url'])
|
||||
print(log_content)
|
||||
except Exception as e:
|
||||
print("Error getting log content")
|
||||
print(e)
|
||||
sys.stdout.flush()
|
||||
build_detail = get_build(_id)
|
||||
build_status = build_detail['status']
|
||||
time.sleep(30)
|
||||
|
||||
build_result = build_detail['result']
|
||||
|
||||
print("Bulid status: " + build_status)
|
||||
print("Bulid result: " + build_result)
|
||||
|
||||
return build_status, build_result
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Convert the branch name for Azure DevOps
|
||||
match = re.search(r'pull/(\d+)', TARGET_BRANCH)
|
||||
if match is not None:
|
||||
pr_num = match.group(1)
|
||||
SOURCE_BRANCH = f'refs/pull/{pr_num}/head'
|
||||
else:
|
||||
SOURCE_BRANCH = f'refs/heads/{TARGET_BRANCH}'
|
||||
|
||||
MAX_RETRY = 2
|
||||
retry = MAX_RETRY
|
||||
|
||||
while retry > 0:
|
||||
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
|
||||
build_status, build_result = wait_for_build(build_id)
|
||||
|
||||
if build_result != 'succeeded':
|
||||
retry = retry - 1
|
||||
if retry > 0:
|
||||
print("Retrying... remaining attempt: " + str(retry))
|
||||
# Wait a bit before retrying
|
||||
time.sleep((MAX_RETRY - retry) * 120)
|
||||
continue
|
||||
else:
|
||||
print("No more chance to retry. Giving up.")
|
||||
sys.exit(-1)
|
||||
else:
|
||||
break
|
||||
87
.circleci/scripts/upload_binary_size_to_scuba.py
Normal file
87
.circleci/scripts/upload_binary_size_to_scuba.py
Normal file
@ -0,0 +1,87 @@
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import os.path
|
||||
import re
|
||||
import sys
|
||||
import time
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def get_size(file_dir):
|
||||
try:
|
||||
# we should only expect one file, if no, something is wrong
|
||||
file_name = glob.glob(os.path.join(file_dir, "*"))[0]
|
||||
return os.stat(file_name).st_size
|
||||
except:
|
||||
logging.exception(f"error getting file from: {file_dir}")
|
||||
return 0
|
||||
|
||||
|
||||
def build_message(size):
|
||||
pkg_type, py_ver, cu_ver, *_ = os.environ.get("BUILD_ENVIRONMENT", "").split() + [
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
]
|
||||
os_name = os.uname()[0].lower()
|
||||
if os_name == "darwin":
|
||||
os_name = "macos"
|
||||
return {
|
||||
"normal": {
|
||||
"os": os_name,
|
||||
"pkg_type": pkg_type,
|
||||
"py_ver": py_ver,
|
||||
"cu_ver": cu_ver,
|
||||
"pr": os.environ.get("CIRCLE_PR_NUMBER"),
|
||||
"build_num": os.environ.get("CIRCLE_BUILD_NUM"),
|
||||
"sha1": os.environ.get("CIRCLE_SHA1"),
|
||||
"branch": os.environ.get("CIRCLE_BRANCH"),
|
||||
},
|
||||
"int": {
|
||||
"time": int(time.time()),
|
||||
"size": size,
|
||||
"commit_time": int(os.environ.get("COMMIT_TIME", "0")),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def send_message(message):
|
||||
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
|
||||
if not access_token:
|
||||
raise ValueError("Can't find access token from environment variable")
|
||||
url = "https://graph.facebook.com/scribe_logs"
|
||||
r = requests.post(
|
||||
url,
|
||||
data={
|
||||
"access_token": access_token,
|
||||
"logs": json.dumps(
|
||||
[
|
||||
{
|
||||
"category": "perfpipe_pytorch_binary_size",
|
||||
"message": json.dumps(message),
|
||||
"line_escape": False,
|
||||
}
|
||||
]
|
||||
),
|
||||
},
|
||||
)
|
||||
print(r.text)
|
||||
r.raise_for_status()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
file_dir = os.environ.get(
|
||||
"PYTORCH_FINAL_PACKAGE_DIR", "/home/circleci/project/final_pkgs"
|
||||
)
|
||||
if len(sys.argv) == 2:
|
||||
file_dir = sys.argv[1]
|
||||
print("checking dir: " + file_dir)
|
||||
size = get_size(file_dir)
|
||||
if size != 0:
|
||||
try:
|
||||
send_message(build_message(size))
|
||||
except:
|
||||
logging.exception("can't send message")
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user