Fixes misleading warning messages when running on sm12x devices using binaries built with sm120.
PyTorch binary built with sm120 is compatible with e.g. sm121, so no need for the warning of incompatibility.
Also allow the 'matched_cuda_warn' message to show when e.g. the user is running a binary built with only sm90 on sm12x, so that the user would be prompted to get a build which supports e.g. sm120.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161299
Approved by: https://github.com/eqy, https://github.com/atalman
Fixes#160520
Summary:
When running Inductor with cpp_wrapper under a DeviceContext, non-tensor arguments were being wrapped with torch.tensor(arg) without specifying the device.
creating the tensor on the current active device (like CUDA), and later fetching it back to CPU via .item(), causing unnecessary host-device-host memory transfers.
PR fixes issue by explicitly creating scalar tensors on the CPU:
```
input_tensors = [
arg if isinstance(arg, torch.Tensor) else torch.tensor(arg, device='cpu')
for arg in args
]
```
impact: inductor, codegen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160584
Approved by: https://github.com/benjaminglass1, https://github.com/desertfire, https://github.com/mlazos, https://github.com/jeffdaily
Avoid `at::alias` in the `repeat` op implementation
## Summary
This PR removed the usage of `at::alias` in the implementation and just `permute`+`reshape` the tensor to fit the specs of the result.
This is a less hacky and a more readable way of implementing the op.
All the new ops we are using are view-only ops, which does not introduce overhead of changing the storage.
## Who want this
We are using `PrivateUse1` and accelerator, but this request to avoid `at::alias` in any op should be general enough for any backend who is using XLA, or who do not have explicit control over the memory allocation on the devices.
## Why we/they need this
As we support TPU, we are overriding some ATen ops by binding them to PrivateUse1.
However, it is not recommended to override the `repeat` op directly as we saw the following in `RegistrationDeclaration.h`.
```
at::Tensor repeat(const at::Tensor & self, c10::SymIntArrayRef repeats); // {"schema": "aten::repeat(Tensor self, SymInt[] repeats) -> Tensor", "dispatch": "True", "default": "True"}
```
We had to reuse the existing implementation of `repeat` to decomposite to other ops.
However, we are unable to support the current implementation, which uses `at::alias`.
It have two tensors share the same storage and modify one of them and return the other assuming it is changed, too.
As, we do not have explicit control over the memory allocation of the tensors using XLA/PJRT.
## Alternatives
We are open to alternative solutions that work for us if this PR is not in favor of the PyTorch community.
For example, we may just bind our version of `repeat` op implementation to both `PrivateUse` and `AutogradPrivateUse1`.
However, to my understanding, this would not work well with torch dynamo and `torch.compile`.
Would you mind guiding us on how to solve this?
Thanks!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163455
Approved by: https://github.com/Skylion007
Many extensions (including pybind helpers) call `Tensor.__dlpack__()` without a stream argument. Before #150217, `stream=None` behaved like “no cross-stream sync” and was safe inside CUDA Graph capture. After #150217, `stream=None` maps to the legacy default stream, adding a cross-stream wait that invalidates capture when running on a non-default stream.
See this example
```
import torch
s = torch.cuda.Stream()
x = torch.randn(8, device="cuda")
g = torch.cuda.CUDAGraph()
with torch.cuda.stream(s):
with torch.cuda.graph(g):
_ = x + 1
cap = x.__dlpack__()
_ = torch.utils.dlpack.from_dlpack(cap)
```
This PR partially reverts #150217 that stream=None defaults to no sync.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163242
Approved by: https://github.com/ngimel
Potential issues
* gpt-oss-20b is probably too big (I can't run on my devserver)
* Mistral requires HF authentication
* Mistral also takes a while to run the performance checks (need to wait for CI)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163565
Approved by: https://github.com/huydhn
# Problems
This PR fixes a few edge cases that the FX converter missed related to dynamic shapes.
1. Inductor graphs can sometimes take `sympy.Symbol` inputs. We have logic to convert these to FX placeholder nodes. However, this logic did not update the `self.expr_to_proxy` table mapping symbols to proxy nodes. (There was existing logic to do this for `ir.TensorBox` inputs, but not `sympy.Symbol`.) This caused sympy tracing to fail when these symbol inputs were used in other expressions.
2. We lacked codegen for `ShapeAsConstantBuffer`. This IR node is seen when the graph input or output is a scalar computed from dynamic shapes.
# Fixes
a. Update `self.expr_to_proxy` when generating placeholders for `sympy.Symbol` inputs. Change `SymbolBuffer.get_example` to convert the symbol to a `torch.SymInt`, so we can populate `meta["val"]` correctly and use the value in other computations.
b. Support `ShapeAsConstantBuffer` by tracing the sympy expression.
c. Move output generation inside the metadata hook, allowing us to populate `meta["val"]` for the nodes computing `ShapeAsConstantBuffer`.
# Test plan
Added several new CI tests:
1. `torch.cond` with dynamic shapes. This exposes both issues, as the predicate is a `ShapeAsConstantBuffer` and one of the subgraphs uses a symbol input, due to the closure. Also tests when the parent and subgraphs have different input shapes.
2. Output dynamic shape scalar. This tests `ShapeAsConstantBuffer` as an output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163596
Approved by: https://github.com/angelayi, https://github.com/jansel
Summary: Enables support for epilogue subtiling in the blackwell ws template. This requires the ability to call `store_output` twice in the same kernel and reuse the same tensor descriptor across allocations.
Test Plan:
Tested with test_max_autotune.py on a Blackwell server.
Rollback Plan:
Differential Revision: D82610077
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163145
Approved by: https://github.com/eellison
There is only one substantive change: the branch on
`global_offset[shard_dim] <= local_offset[shard_dim]`
is removed because it is unnecessary: you can always treat the
first shard uniformly with the rest of the shards, because your
global offset is guaranteed to be zero in this case anyway.
I also switch the shard_size case to sym_ite, to make it possible
for LocalTensor to deal with the MPMD-ness here, but it's equivalent
to the old if-then-else.
I tried to rewrite the comments to be more clear what is going on
algorithmically here.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163344
Approved by: https://github.com/albanD, https://github.com/zpcore, https://github.com/tianyu-l
Fixes #https://github.com/pytorch/pytorch/issues/162228
# Summary
Majority of our tests are only compiling flex-attention in isolation. This means that for fake tensor propagation the input primals and all captured buffers dont do any intermediate computation below autograd. As a result result the by happen chance match the `require_grad`ness of the eager implementation and this check will pass. However if score_mod is a the result of some other intermediate fake tensor prop then it is not guaranteed to have accurate req_gradness, which was happening here.
TLDR is that this was a boot and suspenders that was actually harmful and we should just let the joint graph handle creating the correct joint graph
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163677
Approved by: https://github.com/ydwu4
Summary: When generating Triton kernels in the compile-time autotune blocks, it will be useful to generate source information as code comments. Previously we ignore these comments for autotune code blocks because the generated main output code will contain the same information, but it won't work if the generated autotune code crashes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163600
Approved by: https://github.com/yushangdi
Summary: Restricts subprocess benchmarking to only `TritonTemplateCaller`, which is expected by the underlying `target` method. THhis triggered a bug with large K shapes because the decompose k is `SubgraphChoiceCaller`.
Test Plan:
mm autotuning with a large k and `TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC=1`
Rollback Plan:
Differential Revision: D82181924
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162688
Approved by: https://github.com/PaulZhang12, https://github.com/eellison, https://github.com/mlazos
Summary:
We add the parsing for list of string. This is needed for AOTInductor
profiling for input information of Triton kernels.
Test Plan:
Included in commit.
test_profiler_op_event_kwargs_list_of_strings
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163593
Approved by: https://github.com/sraikund16
As per comment in source code:
```
# If we are are coalescing on xblock (not ReductionHint.INNER) and this is not a tiny kernel
# (not ReductionHint.OUTER_TINY), do not use persistent reduction if it induces tile
# quantization. Peristent reduction forces rblock == rnumel, if the bounds between lower
# and upper are large, for the lower values we will be masking off large % of read/writes,
# when we could expand the coalescing xblock instead.
```
For the test case in question, this pr improves perf from 0.8573521325143717 -> 0.043151492193814305 because we were egregiously masking out rblock values (58/64 values).
Differential Revision: [D82853279](https://our.internmc.facebook.com/intern/diff/D82853279)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163365
Approved by: https://github.com/shunting314, https://github.com/PaulZhang12, https://github.com/jansel, https://github.com/v0i0
Landing this instead of https://github.com/pytorch/pytorch/pull/162994.
Here is how i think the whole dynamo + frame construction logic work:
1) There is no way to create a frame object in python land as this is created in runtime from cpython. So that's why aot_compile creates FrameInfo this way. (kind of like simulating the runtime) i guess you could write your own very simple eval_frame.c where you can interject the frame construction but we probably don't want that.
2) When there is no wrapper (the old export or aot_compile), we first assign sources by iterating over f_locals which contain both local args and closure variables (this is implementation details of cpython frame construction). So thats why closure variables end up getting LocalSource names as can be shown in this test case (f6ea41ead2/test/export/test_export.py (L1369)). Note that L["self"] here means we are referring to local object self. Important thing to keep in mind here is this self is not actually model self, but the outer self.
3) When we switch to wrapper case, we end up trying to inline the original inner module. When doing so, we need to track all local and closures for this inner module as can be seen here (f6ea41ead2/torch/_dynamo/variables/functions.py (L463)) Here we are not looking into inner frame's f_locals but just directly look at closures. I guess this is because we are one more frame up so there is no access to frame f_locals at this point. And it is probably not good idea to change dynamo's logic here. As a result, i get following error message that is different from old export:
"While exporting, we found certain side effects happened in the model.forward. Here are the list of potential sources you can double check: ["L['self']._export_root.forward.__func__.__closure__[1].cell_contents.bank", "L['self']._export_root.forward.__func__.__closure__[1].cell_contents.bank_dict", "L['self']._export_root.forward.__func__.__closure__[0].cell_contents"]"
My initial attempt of solving this was taking inner closures and put them to f_locals for the frame i am constructing which turned out too compilcated because we needed to muck around bytecode instructions as well. So i am thinking we should just update the test to reflect new names and follow up with better post-processing step to have better names.
Differential Revision: [D82582029](https://our.internmc.facebook.com/intern/diff/D82582029)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163107
Approved by: https://github.com/avikchaudhuri
Introduces a variant of size-hint multi-kernel, where for novel runtime shapes, instead of performing full benchmarking to determine the optimal kernel, selects one of many kernels pre-generated from multi-kernel hints, based off similarity b/w hint / runtime input & output shapes (L1 distance in log2 space).
Some caveats/changes:
- Size-hint multi-kernel now only kicks in if the kernel has dynamic shapes
- Pre-generation still only does 1-d search over specified hints, e.g. `matmul([s0, s1], [s1, s2])` with size-hints `[64, 256]` only generates 2 kernels - based on tuning shapes ([64, 64], [64, 64]) and ([256, 256], [256, 256]). Extending this to reasonable n-d search (via user API?) is an extension
Benchmarking results, compared to multi-kernel w/ full benchmarking (hints 64, 4096), and compiling with the ground truth hint:
<img width="1902" height="1222" alt="550541081_1088709150049684_6528797079439730237_n" src="https://github.com/user-attachments/assets/056cca48-c16a-4451-9b4a-fa13a7a058a9" />
Full benchmarking doing worse is extremely weird, but we did see similar spikes in #156628
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163090
Approved by: https://github.com/bobrenjc93
Fixes#160547
### Summary:
bug
```
def test_namedtuple(self):
from collections import namedtuple
Point = namedtuple('Point', 'x y')
class M(torch.nn.Module):
def forward(self, x, y):
return x + y
inp = Point(torch.ones(3), torch.ones(3))
print(M()(*inp))
# errors
ep = torch.export.export(M(), inp, strict=False)
print(ep)
# succeeds
ep = torch.export.export(M(), inp, strict=True)
print(ep)
# workaround could be to convert namedtuple to a kwarg
inp_kwargs = {field: getattr(inp, field) for field in inp._fields}
ep = torch.export.export(M(), (), inp_kwargs)
print(ep)
```
FIx :
namedtuple is subclass of tuple
but namedtuple is not expected
So, this change handles named tuple case
I have added 🧪 test case for this as well
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162959
Approved by: https://github.com/angelayi
Co-authored-by: Angela Yi <angelayi@meta.com>
Summary: `.contiguous()` will discard the original storage size of the tensor, and could lead to issues during loading.
Test Plan:
buck2 run mode/dev-nosan caffe2/test:test_export -- -r test_1D_tensor_slicing
buck2 run mode/dev-nosan caffe2/test:test_export -- -r test_2D_tensor_slicing
Differential Revision: D83016250
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163587
Approved by: https://github.com/angelayi
Fixes part of #163314
In particular bug: **Bug 1: H=None Broadcasting Produces Incorrect Results**
This fixes a shape bug when slicing BlockMask on the Q-tile axis with an int (**mask[:, :, i]**). That form of indexing collapses the Q dimension, so kv_num_blocks/kv_indices lose their expected [B, H, Q_tiles, …] shape. Due to them losing shape, even though the mask_mod remains "interpretable", the kernel’s stride math then reads wrong offsets. Due to this we get silent numerical mismatches compared to regular SDPA, especially when single position decoding/H broadcasting.
The B=None, H=None works case is accidental: with singleton batch/head the kernel maps to index 0 via `sparse_idx_z = off_zq % 1` and `sparse_idx_hq = off_hq % 1` and with a single Q tile `q_start // SPARSE_Q_MULTIPLE = 0`. The missing Q-tiles stride is multiplied by 0, so the bad offset from the collapsed Q axis doesn’t move the pointer and it happens to read the first tile correctly. Once H > 1 or there are multiple Q tiles, those terms become nonzero and the kernel indexes with wrong strides which causes silent error
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163426
Approved by: https://github.com/drisspg
Differential Revision: D82933509
over the weekend I realized that some of the cache implementation was a bit silly, and too constrained to be actually generic. for example, InMemoryCache[str, bytes] was odd since we'd probably want to be able to store more than just str keys with bytes values. so tldr; everything is now generic, with the one constraint being that Key and Value must both be pickle-able types. this makes things a lot simpler for us, since all caches can now be str -> bytes caches under the hood if we'd like, and Key/Value just get pickled on the way in and out.
with this change, there were also some improvements made to the testing; mainly better coverage, but now we also test each cache across every combination of Key/Value types to ensure that they will work with the types we might specify later
I also hardened some things here and there, for example we now use literal_eval (forgot who mentioned this on the first PR, but thank you for the suggestion!), and all errors coming from the caching will be wrapped in CacheError from now on (although we still raise from the original error context where possible)
putting this PR up now for feedback, in the process of generalizing the code I did remove the documentation since it was becoming outdated but I will add that back in after the PR is green
I have the next PR ready as well (implements a fresh cache context manager), will export once this lands
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163488
Approved by: https://github.com/aorenste, https://github.com/masnesral
## Why this PR?
I've tried to follow the guidance of the `OpenReg` [usage example](https://github.com/pytorch/pytorch/tree/main/test/cpp_extensions/open_registration_extension/torch_openreg/third_party/openreg) and found that the command for compiling `example.cpp` (`g++ -o out example/example.cpp -L ./build -lopenreg`) is not compatible with my `gcc` (v11.4).
Since I installed my `gcc` through `apt install build-essential`, and I think that's a common way to install `gcc` for a few developers? I believe it's necessary to slightly modify the command to add `-I ./` to explicitly indicate the header file search path.
## What I've changed?
- I added `-I ./` to correctly search for `./include/openreg.h`.
- I also added a `pwd` comment for better readability and removed unused imports in `example/example.cpp`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163235
Approved by: https://github.com/FFFrog, https://github.com/albanD
Co-authored-by: Jiawei Li <ljw1101.vip@gmail.com>
This PR removes import tricks of `SHARDING_PRIORITIES` and `ShardingFilterIterDataPipe` from `torch.utils.data.datapipes.iter.grouping`. They are declared to be removed in PyTorch 2.1 but not.
Before change:
```
import torch.utils.data.datapipes.iter.grouping.SHARDING_PRIORITIES
import torch.utils.data.datapipes.iter.grouping.ShardingFilterIterDataPipe
```
works
After change:
there is an import error exception.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163438
Approved by: https://github.com/janeyx99
In various benchmarks scattered across the repo, the limits for flops/second and memory bandwidth are usually hardcoded for a single device. This utility could help in providing a more structured way to query the device capabilities. If this is approved, we can use it when reporting flops efficiency and bandwidth relative to peak in the benchmarks and tests. The intent is to add more devices, more parameters (e.g. L2 cache bandwidth, NVLink, etc.) for both CPUs and accelerators.
Testing:
```
import torch
if torch.cuda.is_available():
device = torch.cuda.current_device()
mod = torch.get_device_module('cuda')
hw = mod._device_limits.GPULimits(device)
print(hw.get_tflops_per_second(torch.float16))
print(hw.get_tflops_per_second(torch.float32))
print(hw.get_tflops_per_second(torch.float64))
print(hw.get_tflops_per_second(torch.bfloat16))
print(hw.get_tflops_per_second(torch.int8))
print(hw.get_memory_bandwidth_Bps() / 1e9)
print(hw.get_shared_memory_bandwidth_Bps() / 1e9)
# Output on an H100 GPU
1070.53056
535.26528
66.90816
1070.53056
2141.06112
4893.696
33454.08
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162942
Approved by: https://github.com/ngimel, https://github.com/albanD
## Context
An example from Qwen2-7B
- This come from running torch.compile with a sequence length that is
divisible by 8 (no padding needed). Call this `Run1`.
- If we then run the compiled model with a difference length that isn't
divisible by 8 (requires padding). Call this `Run2`.
- Then we'll see this error.
```
File "/var/tmp/torchinductor_nobody/2w/c2wby7ilxbna45xrtrrfjqpeutwouruviu2742ockunnd2bleeiz.py", line 1963, in call
buf24 = torch.ops.aten._scaled_dot_product_efficient_attention_backward.default(reinterpret_tensor(buf18, (s85, 3584 // s19, s48, 512 // (512 // s19)), (s48*(512 // (512 // s19))*(3584 // s19), 512 // (512 // s19), (512 // (512 // s19))*(3584 // s19), 1), 0), buf20, buf21, buf22, buf23, getitem, getitem_1, getitem_2, getitem_3, 0.0, [True, True, True, False], scale=0.08838834764831845)
File "torch/_ops.py", line 841, in __call__
return self._op(*args, **kwargs)
RuntimeError: attn_bias is not correctly aligned (strideM). attn_bias.stride(2) = 6102, and should be a multiple of 4.
```
- We only see the error because we did not recompile on `Run2`. Instead we ran the inputs on the same graph as `Run1`.
### A bit more on why.
Here we check whether to realize the unpadded buffer (unwrapped slice) which we want for `Run1` but not for `Run2`.
0897affcd5/torch/_inductor/lowering.py (L2687-L2694)
## Fix
Size hint doesn't guard, so the fix is to use `guard_or*` to guard.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163083
Approved by: https://github.com/eellison
Summary:
Under circumstances it seems reasonable to return a callable directly without guard check when user use aot_compile on a function with single compilation result.
When having multiple entries (aot_compile_module), we should start enabling guard check to differetiate different compiled functions apart.
Test Plan: CI
Differential Revision: D82904540
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163432
Approved by: https://github.com/dolpm
We are seeing crashes of the form
```
Traceback (most recent call last):
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/symbolic_convert.py", line 1487, in run
while self.step():
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/symbolic_convert.py", line 1348, in step
self.dispatch_table[inst.opcode](self, inst)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/symbolic_convert.py", line 2437, in LOAD_ATTR
self._load_attr(inst)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/symbolic_convert.py", line 2425, in _load_attr
result = BuiltinVariable(getattr).call_function(
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/builtin.py", line 1347, in call_function
return handler(tx, args, kwargs)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/builtin.py", line 967, in <lambda>
tx, [v.realize() for v in args], kwargs
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/builtin.py", line 967, in <listcomp>
tx, [v.realize() for v in args], kwargs
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/lazy.py", line 72, in realize
self._cache.realize()
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/lazy.py", line 33, in realize
self.vt = builder.VariableBuilder(tx, self.source)(self.value)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/builder.py", line 445, in __call__
vt = self._wrap(value)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/variables/builder.py", line 1043, in _wrap
torch._dynamo.utils.store_user_object_weakref(value)
File "/packages/aps_ads_vm/launcher_multiapp-inplace#link-tree/torch/_dynamo/utils.py", line 4694, in store_user_object_weakref
user_obj_id_to_weakref[obj_id] = weakref.ref(obj)
torch._dynamo.exc.InternalTorchDynamoError: TypeError: cannot create weak reference to 'torch.Event' object
```
This pull request makes us gracefully graph break, vs explicitly crashing.
I've added a test which reproduces the issue. There is a side discussion re:
how did torch.Event support ever work here, since it appears you cannot take a
weakref to a torch.Event
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163168
Approved by: https://github.com/Lucaskabela, https://github.com/jansel
Summary:
otherwise, may hit
```
Exception: Expected all tensors to be on the same device, but got other is on cuda:0, different from other tensors on cpu (when checking argument in method wrapper_CUDA__equal)
```
Test Plan: UTs
Reviewed By: yushangdi
Differential Revision: D82974062
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163529
Approved by: https://github.com/yushangdi, https://github.com/Skylion007
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Before
Moving module.to("cuda:0") under fake tensor mode would have parameter on `meta` device.
After
parameters would be on "cuda:0" .
Test Plan: buck2 run fbcode//caffe2/test:fake_tensor -- --r test_move_module
Reviewed By: mikaylagawarecki
Differential Revision: D80102876
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163433
Approved by: https://github.com/albanD
This change restricts the DLPack stride normalization to apply only to 1D tensors of shape (1,).
### Rationale
The previous implementation normalized the strides for any multi-dimensional tensor containing a dimension of size 1. While well-intentioned, this "over-normalization" discards critical memory layout information, causing issues for downstream consumers who rely on strides to infer alignment and contiguity.
For example:
* A row-major tensor with `shape=(1, 128)` and `stride=(128, 1)` would be incorrectly normalized to `stride=(1, 1)`.
* A column-major tensor with `shape=(1024, 1)` and `stride=(1, 1024)` would also be normalized to `stride=(1, 1)`.
This loss of stride information makes it impossible for consumers to detect the original memory layout (e.g., row-major vs. column-major) and breaks assumptions about memory alignment needed for optimized indexing or specialized hardware APIs like GPU TMA.
The original intent of the normalization was to handle the simple case of a 1D tensor with shape=(1,) and a non-standard stride. This fix reverts to that specific, non-problematic behavior, ensuring that multi-dimensional tensors retain their precise stride information during DLPack export.
### Related Issues
#163274
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163282
Approved by: https://github.com/eqy
A big pain point ppl have with custom ops is that they do not accept arbitrary input/outputs. In this PR we create the concept of an "OpaqueObject" which allows users to pass arbitrary python objects into custom operators.
Some still slightly annoying parts with this implementation:
- The schema of the operator is `__torch__.torch.classes.aten.OpaqueObject` instead of whatever python type
- `@torch.library.custom_op` doesn't work.. yet?
UX:
```python
from torch._library.opaque_object import make_opaque, get_payload
# your custom python class
class OpaqueQueue:
def __init__(self, queue: list[torch.Tensor], init_tensor_: torch.Tensor) -> None:
super().__init__()
self.queue = queue
self.init_tensor_ = init_tensor_
def push(self, tensor: torch.Tensor) -> None:
self.queue.append(tensor)
def pop(self) -> torch.Tensor:
if len(self.queue) > 0:
return self.queue.pop(0)
return self.init_tensor_
def size(self) -> int:
return len(self.queue)
queue = OpaqueQueue([], torch.zeros(3))
obj: torch._C.ScriptObject = make_opaque(queue)
# obj.payload stores a direct reference to this python queue object
self.assertEqual(get_payload(obj), queue)
# This is able to be passed through the dispatcher
torch.ops._TestOpaqueObject.queue_push(obj, torch.ones(3))
self.assertTrue(queue.size(), 1)
```
Authoring a custom op:
```python
lib = torch.library.Library("_TestOpaqueObject", "FRAGMENT")
torch.library.define(
f"_TestOpaqueObject::queue_push",
"(__torch__.torch.classes.aten.OpaqueObject a, Tensor b) -> ()",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl(f"{libname}::queue_push", "CompositeExplicitAutograd", lib=lib)
def push_impl(q: torch._C.ScriptObject, b: torch.Tensor) -> None:
# We can get the payload directly by get_payload(q)
queue = get_payload(q)
assert isinstance(queue, OpaqueQueue)
queue.push(b)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162660
Approved by: https://github.com/zou3519
Summary:
Currently, we assume that refcount_ and weakcount_ are always stored in an 8-byte aligned address right next to each other. Based on this assumption, we load 8 bytes in intrusive_ptr::reset_ to check the values of both counts. However, that assumption is not part of C++ language standard so it's essentially undefined behavior.
This change eliminates that assumption by combining refcount_ and weakcount_ in a single 64-bit count and we use the lower 32 bits for refcount_ and upper 32 bits for the weakcount_.
In addition to eliminating the undefined behavior, the change also eliminates the read of weakcount_ after decrementing refcount_ in intrusive_ptr::reset_. This claws back lost performance introduced in https://github.com/pytorch/pytorch/pull/162784 for non-final refcount_ decrementing.
Reviewed By: yfeldblum
Differential Revision: D82869192
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163394
Approved by: https://github.com/Skylion007
all details are in readme.md
Note: one thing i want to do soonest is to switch to graph representation instead of stack representation
for the fuzzed ops should make things easier as things get more complicated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163417
Approved by: https://github.com/bobrenjc93
fixes#159855, was not triggered in other tests since it took
more than one round of fusion to get to the problematic code
which prunes WeakDeps. The WeakDeps are important to inhibit
fusion of kernels that read/write data into mutated buffers
with different indexing.
We modify the code to a) always prune before fusion, rather
than after, which improves its coverage and makes our basic
vertical fusion tests surface this issue as well and b)
check whether the weak dep is fusable before eliminating it
(which basically means checking that the producing code and
the consuming code are sufficiently compatible).
The tests that trigger this with change (a) is:
test_fusing_write_into_disjoint_read introduced in #118210.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162316
Approved by: https://github.com/eellison, https://github.com/mlazos, https://github.com/shunting314
### Issue
The previous `enable_triton` UI requires the user-defined Triton kernel have a "nvshmem" in its name.
If users did not do so, the kernel would miss the NVSHMEM init, and silently hit CUDA IMA.
The `@require_nvshmem` decorator eliminates the above name requirement (and the `enable_triton` call).
### Usage:
```
@requires_nvshmem
@triton.jit
def foo(...):
...
foo[(1, 1)](...)
```
It also remove the need of passing `extern_lib` to `foo` (handled by the decorator now).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163423
Approved by: https://github.com/ngimel
ghstack dependencies: #163025, #163152, #163194
No need for unnecessary copy of std::vectors. This Tensor list is copied throughout the foreach paths and this code is on a hot path for torch optimizers. Auto move elision will not happen on the return statement since it's a subelement of a vector that needs to be copied out before the std::vector is dtor'd. This should reduce quite a few list copies along this path.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163416
Approved by: https://github.com/ezyang
The big semantic change (and the reason for this port) is that we no longer monkeypatch Tensor with torchdim's special methods. The new algorithm for handling dispatch is that we first land in `__torch_function__` and we see if a special FCD implementation needs to be dispatch to first, and if there is nothing we fallback to the standard level strategy.
Because there is no longer C binding equivalent of classes, we've condensed _C.Dim and Dim together, and similar for Tensor. This resulted in some bugs as the Python API is sometimes different from the C API. I've attempted to disambiguate these but there may still be mistakes (many early bugs were due to this problem). Dim and DimEntry are especially painful as Dim must abide by Tensor equality semantics, but is pointer equality in C (DimEntry doesn't have this problem). Another difference between C/Python that is subtle is we no longer get implicit conversions from Dim to DimEntry, this also caused some bugs.
Much of the mechanical porting work was done by claude code. I have a separate PR that deletes functorch._C, but it was useful having dim.cpp to point claude at it so I haven't done it in this PR. From a reviewing perspective, I need to re-review that I didn't forget to port anything, some noticeably missing "small" things are patched_dim_method. I am still in progress of carefully doing a side-by-side review of ports; "simplifications" from claude code were also a major source of bugs.
There are two major feature gaps in the implementation:
- DelayedTensor and dot handling are not implemented yet. This should be reasonably easy, just need to do it. However, for the purposes of sharded propagation it is actually better not to reconstruct matmuls.
- Splitting dimensions with an index like `[x, y]` doesn't work. The problem is that `__getitem__` interprets this as advanced indexing and sends the list to torch.tensor to turn into a tensor, instead of being eligible for `__torch_function__`. I think I might need to hard code a special case for this or something?
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160236
Approved by: https://github.com/zdevito, https://github.com/albanD
Summary:
Today `fullgraph_capture` takes a frame, but clients usually take a callable (`nn.Module`, function, or method) and example inputs (args and kwargs) and then explicitly set up the frame to pass. This is boilerplate—and potentially tricky to get right—that can be hidden inside the API.
The original `fullgraph_capture` now becomes `_fullgraph_capture_frame`.
Test Plan:
existing tests
Rollback Plan:
Differential Revision: D82339400
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162849
Approved by: https://github.com/zhxchen17
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") call.
This diff supports this.
Notice that .to("cuda") doesn't work yet, as it enquery current device idx by calling cuda API.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Test Plan:
buck2 run fbcode//caffe2/test:fake_tensor -- --r test_fake_gpu_no_init
Rollback Plan:
Differential Revision: D80101283
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160431
Approved by: https://github.com/henryoier, https://github.com/ezyang
Currently OutputGraphGuardsState is separated out as a serializable interface for OutputGraph, but some of the typing around it is incorrect in dynamo's guards.py and output_graph.py: more fields are used by code than claimed by OutputGraphGuardsState, and it works because either the full OutputGraph is passed in or the parts that use those fields are dead when OutputGraphGuardsState is passed in.
In this PR we try to further separate the necessary fields of OutputGraph that should be retained by a full graph capture mechanism, not just limited to dynamo (as it is currently) but also something like make_fx (in the future). Since these fields do not need to be serialized, the result is an intermediate "common" data structure that is between OutputGraphGuardsState and OutputGraph in the inheritance hierarchy.
Differential Revision: D81718791
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162211
Approved by: https://github.com/zhxchen17
Summary: We observe a case then the fwd graph has duplicated return nodes, which will lead to errors due to fx renaming the node, thus we add poi info into the node name.
Test Plan:
### unit test
```
CUDA_VISIBLE_DEVICES=3 buck2 test mode/opt -m ovr_config//triton:beta -c fbcode.nvcc_arch=b200a -c fbcode.platform010_cuda_version=12.8 //caffe2/test/functorch:test_aotdispatch -- test_quantize_activation_duplicate_nodes
```
Buck UI: https://www.internalfb.com/buck2/de5eccc6-4064-4214-843d-70b8e3829afe
Test UI: https://www.internalfb.com/intern/testinfra/testrun/4503599937670844
Network: Up: 217KiB Down: 72KiB (reSessionID-73e5c269-4f4d-4a54-896a-79c077eea326)
Executing actions. Remaining 0/2 0.1s exec time total
Command: test. Finished 1 local
Time elapsed: 45.9s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
### E2E
before
f798417700
after
Differential Revision: D82844100
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163364
Approved by: https://github.com/Yuzhen11
# why
- extra kwargs are input/op dependent and not config dependent. We don't
plan to serialize/deserialize them, and so they need to be fed in
later beore making the KTC, rather than when getting the config values
directly
# what
- move extra_kwargs into the KTC and get_ktc interface directly
# testing
```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v -k "_addmm"
```
Differential Revision: [D82871310](https://our.internmc.facebook.com/intern/diff/D82871310)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163209
Approved by: https://github.com/nmacchioni
ghstack dependencies: #163305
# why
- this is not directly controlled by the config arg but rather by the
input and by the inductor wide setting
- it's always the same for every choice
- we want the config kwargs to be *programable* and this is not
programable in that sense but rather needs to use inductor config
# what
- move generating the ALLOW_TF32 kwarg in Triton templates into
get_extra_kwargs
# testing
with some annotations, this is now the kwargs and extra_kwargs on addmm
```
{'EVEN_K': True, 'USE_FAST_ACCUM': False, 'ACC_TYPE': 'tl.float32', 'num_stages': 1, 'num_warps': 2, 'BLOCK_M': 32, 'BLOCK_N': 32, 'BLOCK_K': 16, 'hint_override': None, 'GROUP_M': 8} # choice/config kwargs
{'ALLOW_TF32': True, 'epilogue_fn': <function addmm_epilogue.<locals>.epilogue at 0x7f64d54ff600>, 'epilogue_fn_hash': "['addmm_epilogue', torch.float32, 1, 1]", 'prefix_args': 1} # extra kwargs
```
they're both passed onto the template
Differential Revision: [D82871312](https://our.internmc.facebook.com/intern/diff/D82871312)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163305
Approved by: https://github.com/nmacchioni
Fixes#158631
The docstring said data_source was a Dataset, but RandomSampler only needs something that implements __len__. This updates the docstring to use Sized instead, which matches the actual type used in the constructor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158857
Approved by: https://github.com/divyanshk
# Feature
Support `torch.cond` in the FX converter. The generated FX IR is conceptually indentical to what would come from `torch.export`:
- Submodules as stored as attributes, and accessed via `getattr`.
- The conditional is represented as `torch.ops.higher_order.cond`, which takes in the subgraphs, a predicate and submodule inputs.
# Implementation overview
The FX backend generates code for subgraphs using the following steps:
1. When `codegen_conditional` is called in `WrapperFxCodegen`, we emit a `ConditionalLine`.
a. We also codegen the true/false subgraphs at this time, storing their subgms for later.
2. At the beginning of FX conversion, generate `get_attr` nodes accessing each subgraph. It's important to do this at the start, before registering the node metadata hook. This also matches the convention followed by torch.export.
3. When we see the `ConditionalLine` in the FX converter, we generate a corresponding `torch.ops.higher_order.cond`.
# Implementation details
This ended up being a substantial change, as wrapper codegen has some special logic for subgraphs.
Certain methods of `PythonWrapperCodegen` are overridden by `SubgraphPythonWrapperCodegen`. To apply these overrides, we use multiple inheritance with the registered subclass of `WrapperFxCodegen`.
Unlike most other wrapper codegen methods, which map 1:1 to Wrapper IR lines, subgraph codegen generates a number of wrapper lines including `EnterSubgraphLine` and `ExitSubgraphLine`, along with Python or C++ code calling the subgraph as a function. These lines are used for some backends' memory planning.
In contrast, FX IR typically represents a subgraph call as a single HOP node, or a `call_module` op. To account for this difference, this PR introduces a new wrapper IR line called `ConditionalLine`, which is only used by the FX backend. We override the `codegen_conditional` method to emit this line. This sidesteps having to port the existing subgraph codegen and associated memory planning to Wrapper IR. (In principle, it seems possible to adapt the existing backends to `ConditionalLine`, but it could be a larger refactor, since we'd also have to update the memory planning.)
Some of the lower-level subgraph codegen methods are still shared between the FX and Python backends, such as `generate_subgraph_common`. Those were easier to port to Wrapper IR.
This also required generalizing the way the FX converter handles graph inputs and outputs. Previously, it assumed the IO signature was the same as `V.graph.module`, but this is only true for the parent graph, and not subgraphs. Instead, we need to call `get_graph_inputs` and `get_graph_outputs` to populate the inputs and outputs for subgraphs.
# Test plan
This PR adds a couple of tests using torch.cond. Here's an example graph generated by one of them:
```
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%arg1_1 : [num_users=1] = placeholder[target=arg1_1]
%true_graph_0 : [num_users=1] = get_attr[target=true_graph_0]
%false_graph_0 : [num_users=1] = get_attr[target=false_graph_0]
%cond : [num_users=1] = call_function[target=torch.ops.higher_order.cond](args = (%arg0_1, %true_graph_0, %false_graph_0, (%arg1_1,)), kwargs = {})
%buf1 : [num_users=2] = call_function[target=operator.getitem](args = (%cond, 0), kwargs = {})
%triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 6, constant_args_idx: 6, grid: [(1, 1, 1)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf1, xnumel: 6, XBLOCK: 8}})
return buf1
```
It also removes an existing negative test which checked that a certain error was raised when subgraphs were encountered.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163234
Approved by: https://github.com/angelayi, https://github.com/jansel
Summary:
This diff does a big refactor of PrecompileContext to make it considerably simpler: instead of being a CacheArtifactManager and managing a bunch of bytes, it simply stores two things: dynamo cache entries and backend cache entries. When asked, it stitches them together into PrecompileCacheEntries, which are stored by DynamoCache.
This structure then allows us to register DynamoCache to the regular Megacache API, instead of having two separate APIs that are confusing. It also lets us remove the autotune cache integration, since MegaCache API will automatically store autotune cache entries.
The intent here is that users who want to use caching precompile will simply be able to use torch.compiler.save_cache_artifacts as before, just with `torch.dynamo.config.caching_precompile` set to True. They can also directly interact with PrecompileContext if they wish to specifically only load Precompile entries, using PrecompileContext.create_cache_entries().
Saving single entries and such with DynamoCache still works normally.
Test Plan:
All existing unit tests pass.
Rollback Plan:
Differential Revision: D82380307
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162886
Approved by: https://github.com/zhxchen17
What supposed to be a very simple change end up being quite involved, as current Windows CI framework is quite inflexible, i.e. it takes a lots of argument, but later on ignores them, namely:
- `PYTHON_VERSION` used to be a no-op that is simply ignored by the scripts
- With this change, `setup-win` action will create an environment called `py_tmp` with specific python version + intel-openmp (that is hard runtime requirement, but for some reason not packaged into the wheel nor marked as such)
- Copied test type dependencies from be01a40157/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1 (L16) into `win-test.sh`, but made some adjustments to be compatible with 3.10 runtime (scipy version update) and just make rerun-tests compatible with the rest of the deps
I think in the long run, one needs to update 4432e2cacd/aws/ami/windows/scripts/Installers/Install-Miniconda3.ps1 that currently pins Miniconda python to 3.9, but also figure out how CI can still create a new environment without having to download all the dependencies all the time
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162862
Approved by: https://github.com/wdvr, https://github.com/huydhn
ghstack dependencies: #163339, #163341
Fixes#161014
This bug fix introduces a fix that is consistent with the exception handling. Outlined in issue #161014, there is an edge case where the negative padding does not make the tensor size negative but still triggers the exception that the size is negative. The fix is simply adding `new_dim >=0` to include the zero dim and letting the operator return an empty tensor.
In the PR I have added the edge case where the test will now check the negative padding where the dimension gets reduced to zero. But the sample is only for the `constant` type of padding. I would like some feedback if it is necessary to put the same sample on the `reduce` type as well.
This is my first PR to contribute to PyTorch and any help/feedback will be welcome! Thank you!
@malfet @manuelcandales @janeyx99 @ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161639
Approved by: https://github.com/manuelcandales
Previous LOAF after fusion algorithm is not guaranteed to create more fusion opportunities even if loop reordering happens. I can not find an example that LOAF reduce the amount of fusion, but here is an example that reordering loops does not add more fusions:
a1f7639922/test/inductor/test_loop_ordering.py (L612-L641)
Move LOAF to a separate final round of fusion so that we are guaranteed to not reducing the amount of fusions. Hopefully this also helps compilation time since LOAF kicks in when there are less nodes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162355
Approved by: https://github.com/eellison, https://github.com/jansel
ghstack dependencies: #162101, #162126
Previously in merge_loops, we have to construct LoopBody twice to make sure we can use the same symbol prefix as before. This PR change it to create LoopBody only once by allowing using the same symbol prefix for the new LoopBody.
In looks like it's ok to have duplicate symbols in sympy replacement:
```
>>> x, y = sympy.symbols("x y")
>>> (x + y).xreplace({x: 0, y: x + 1})
x + 1
>>> (x + y).xreplace({x: y * y, y: x + 1})
x + y**2 + 1
>>> (x + y + x * x).xreplace({x: 0, y: x})
x
```
UPDATE: add the same optimization for LoopBody.reorder_iter_loops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162101
Approved by: https://github.com/jansel, https://github.com/eellison
The issue cannot be reproduced using the original repro code provided in the issue description.
However, the underlying issue mentioned by the maintainer (missing functions in `builder.py` and `trace_rules.py`) was never addressed and can still be reproduced with this test case:
```python
import torch
from torch.nn.attention import _cur_sdpa_kernel_backends
@torch.compile(fullgraph=True)
def test_function_that_triggers_error():
return _cur_sdpa_kernel_backends()
print("Calling torch.compile function...")
try:
result = test_function_that_triggers_error()
print(f"Success: {result}")
except Exception as e:
print(f"ERROR: {e}")
print(f"Error type: {type(e)}")
```
The original repro likely no longer triggers the issue due to code path changes in the SDPA implementation, while the direct call to `_cur_sdpa_kernel_backends()` exposes the underlying problem where certain torch._C functions returning non-Tensor values aren't properly handled by dynamo tracing.
I have implemented the changes by adding the missing functions to both `builder.py` and `trace_rules.py` to properly handle these cases during compilation.
@guilhermeleobas
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161169
Approved by: https://github.com/guilhermeleobas, https://github.com/StrongerXi
Problem:
Without MemPool it looks like nvshmem backend never deallocates memory.
Cause:
Handles in `symm_mems_` (a map) keeps reference to memory allocations.
Solution:
- Remove reference to allocation from handles -- the reference is never used anyway.
- Use `unique_ptr` instead of `shared_ptr` to wrap allocation to ensure single ownership.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162680
Approved by: https://github.com/ezyang
ghstack dependencies: #163298
As titled. Avoiding a potential hang when running dispatch and combine in subgroups.
The rest is just re-arrange of the tests to create a sub-group test class. (no substantial change)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163298
Approved by: https://github.com/fegin
Fixes#161010 by making `clone_meta` match the semantics of strides for eager mode.
This is:
* Case 1: Tensor is_non_overlapping_and_dense; in this case, stride should match input tensor stride
* Case 2: Otherwise, stride should be contiguous computed from input tensor using `compute_elementwise_output_strides`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163017
Approved by: https://github.com/williamwen42, https://github.com/xmfan
Co-authored-by: morrison-turnansky <mturnans@redhat.com>
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3` in Command Prompt before running Git Bash.
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%\envs\py_tmp` in Command Prompt before running Git Bash.
# Copied from https://github.com/pytorch/test-infra/blob/be01a40157c36cd5a48391fdf44a7bc3ebd4c7e3/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1#L16 with some adjustments
# pytest-rerunfailures==10.3 as 10.2 fails with INTERNALERROR> pluggy._manager.PluginValidationError: unknown hook 'pytest_configure_node'
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.