mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-19 01:54:54 +08:00
Compare commits
154 Commits
trunk/ce4f
...
dev/joona/
| Author | SHA1 | Date | |
|---|---|---|---|
| f203b98062 | |||
| b7208877c8 | |||
| f69815d77f | |||
| 1c04a43959 | |||
| 661fb53449 | |||
| 4e1b772103 | |||
| bdd3c3a29c | |||
| 9d8ceaa36f | |||
| 927899dc05 | |||
| a892f76d06 | |||
| 2ddcf53e1a | |||
| 689d731ece | |||
| b288d0020b | |||
| 4414e1bff0 | |||
| 694f9b943c | |||
| 01deee228a | |||
| 1233be0923 | |||
| 02b55c3f4a | |||
| ae3ce54f27 | |||
| 2f3bb7482c | |||
| 567dcdba75 | |||
| 77acc66df9 | |||
| 95d1df7d4e | |||
| 094e529c64 | |||
| a4c7bf7e8d | |||
| 22ccd44d73 | |||
| 39ebab1dd9 | |||
| 4c152a71ad | |||
| 1b43d6cd4e | |||
| 2b69673bbf | |||
| 2f74916e36 | |||
| 2b5eabc74b | |||
| 9ff95f6835 | |||
| 6fdb974f4a | |||
| 661d1653aa | |||
| 53809f9640 | |||
| 93ddd38ecd | |||
| 5804408f1b | |||
| 99117c1238 | |||
| b9bccec3bc | |||
| ca3aaef66e | |||
| f2e6f94081 | |||
| aa504d4d2a | |||
| d8ce6f8df9 | |||
| 4322354770 | |||
| 363385ad3e | |||
| e2e10753d7 | |||
| 5d99a795f5 | |||
| 2245d7d3b9 | |||
| 98b94b90dd | |||
| 5cdbda140c | |||
| 0ec53beaeb | |||
| 79fc0a9141 | |||
| d01a7b0241 | |||
| deabb3e36d | |||
| 79d2397b6b | |||
| 6ef3a62c36 | |||
| 530e782239 | |||
| c66a6c432e | |||
| 3d7a8b7e61 | |||
| de0d69b2c4 | |||
| bc60b86066 | |||
| d7782ddde7 | |||
| fb04e9ad03 | |||
| cfe799b4aa | |||
| b7f52773e6 | |||
| f6b54d8899 | |||
| da91bf5262 | |||
| 1c1638297e | |||
| ee0b5b4b1c | |||
| fcfb213c5a | |||
| 08042bbb9c | |||
| e20ca3bc2e | |||
| 4ed26f7382 | |||
| 4c79305b87 | |||
| f4b8c4f907 | |||
| d629b7a459 | |||
| 0922ba5f42 | |||
| c87295c044 | |||
| 7aa210d215 | |||
| 5a368b8010 | |||
| 602102be50 | |||
| 200156e385 | |||
| a2daf3fc86 | |||
| 52b45c16de | |||
| 2ef85bed5a | |||
| d99c6bcf69 | |||
| 8378abda84 | |||
| 5b42a5d9a6 | |||
| caca3f2eec | |||
| 9e2bf129e1 | |||
| c429b1fc5c | |||
| 1176b2b0b7 | |||
| dd37a1a434 | |||
| a74adcf80e | |||
| 5eac46a011 | |||
| e0fff31ae3 | |||
| 7ede33b8e3 | |||
| 065176cd97 | |||
| 02ee7dd7d3 | |||
| 99fdca8f4d | |||
| 9d1a74cb0c | |||
| 40e6f090d9 | |||
| bfddfde50c | |||
| b6570615f8 | |||
| 226850cc66 | |||
| f8a2ce3b9a | |||
| e2c6834584 | |||
| 0e7235ed73 | |||
| 3522e0ce74 | |||
| 50bf1f0b81 | |||
| c78e64622e | |||
| 5623628894 | |||
| 2aba180114 | |||
| 45b2c3d312 | |||
| 5b1e112cf9 | |||
| 5e6ac5c6e1 | |||
| 79317dc7a7 | |||
| 96a4c4b3d1 | |||
| 05bcfcc5d1 | |||
| 8cf0bdde45 | |||
| 813e5eae9b | |||
| 2ef236e3e3 | |||
| 532389fe9e | |||
| 08de54f1ea | |||
| 0cd0bd7217 | |||
| fe33d7cadf | |||
| a9542426d0 | |||
| f79cdc89db | |||
| 3d063519bf | |||
| 0b3bdb0d89 | |||
| 8f00ec31ca | |||
| 21f32e4af3 | |||
| 940979a229 | |||
| 4fc688625a | |||
| 23f4f323ea | |||
| 9ac3fc0d0a | |||
| 38806f381a | |||
| cfb3a6b3da | |||
| d8384e296e | |||
| d273422582 | |||
| fadb62f592 | |||
| e5eb89e111 | |||
| b5e0e6932a | |||
| 6ea779188c | |||
| 460c7e196c | |||
| 7aac506cdc | |||
| 374ee9e867 | |||
| 698aa0f3e5 | |||
| d3ca4a3a4f | |||
| c940b1fbbc | |||
| 4de24bcc56 | |||
| f2d0a472ef | |||
| 9ae0ecec7d |
@ -1,19 +0,0 @@
|
||||
# Aarch64 (ARM/Graviton) Support Scripts
|
||||
Scripts for building aarch64 PyTorch PIP Wheels. These scripts build the following wheels:
|
||||
* torch
|
||||
* torchvision
|
||||
* torchaudio
|
||||
* torchtext
|
||||
* torchdata
|
||||
## Aarch64_ci_build.sh
|
||||
This script is design to support CD operations within PyPi manylinux aarch64 container, and be executed in the container. It prepares the container and then executes __aarch64_wheel_ci_build.py__ to build the wheels. The script "assumes" the PyTorch repo is located at: ```/pytorch``` and will put the wheels into ```/artifacts```.
|
||||
### Usage
|
||||
```DESIRED_PYTHON=<PythonVersion> aarch64_ci_build.sh```
|
||||
|
||||
__NOTE:__ CI build is currently __EXPERMINTAL__
|
||||
|
||||
## Build_aarch64_wheel.py
|
||||
This app allows a person to build using AWS EC3 resources and requires AWS-CLI and Boto3 with AWS credentials to support building EC2 instances for the wheel builds. Can be used in a codebuild CD or from a local system.
|
||||
|
||||
### Usage
|
||||
```build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch <RCtag>```
|
||||
@ -1,53 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
|
||||
|
||||
# Set CUDA architecture lists to match x86 build_cuda.sh
|
||||
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
|
||||
fi
|
||||
|
||||
# Compress the fatbin with -compress-mode=size for CUDA 13
|
||||
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
|
||||
export BUILD_BUNDLE_PTXAS=1
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
|
||||
source $SCRIPTPATH/aarch64_ci_setup.sh
|
||||
|
||||
###############################################################################
|
||||
# Run aarch64 builder python
|
||||
###############################################################################
|
||||
cd /
|
||||
# adding safe directory for git as the permissions will be
|
||||
# on the mounted pytorch repo
|
||||
git config --global --add safe.directory /pytorch
|
||||
pip install -r /pytorch/requirements.txt
|
||||
pip install auditwheel==6.2.0 wheel
|
||||
if [ "$DESIRED_CUDA" = "cpu" ]; then
|
||||
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
|
||||
else
|
||||
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
|
||||
export USE_SYSTEM_NCCL=1
|
||||
|
||||
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
|
||||
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
|
||||
echo "Bundling CUDA libraries with wheel for aarch64."
|
||||
else
|
||||
echo "Using nvidia libs from pypi for aarch64."
|
||||
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
|
||||
export USE_NVIDIA_PYPI_LIBS=1
|
||||
fi
|
||||
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
|
||||
fi
|
||||
@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
# This script is used to prepare the Docker container for aarch64_ci_wheel_build.py python script
|
||||
# By creating symlinks from desired /opt/python to /usr/local/bin/
|
||||
|
||||
NUMPY_VERSION=2.0.2
|
||||
if [[ "$DESIRED_PYTHON" == "3.13" || "$DESIRED_PYTHON" == "3.13t" ]]; then
|
||||
NUMPY_VERSION=2.1.2
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
source $SCRIPTPATH/../manywheel/set_desired_python.sh
|
||||
|
||||
pip install -q numpy==${NUMPY_VERSION} pyyaml==6.0.2 scons==4.7.0 ninja==1.11.1 patchelf==0.17.2
|
||||
|
||||
for tool in python python3 pip pip3 ninja scons patchelf; do
|
||||
ln -sf ${DESIRED_PYTHON_BIN_DIR}/${tool} /usr/local/bin;
|
||||
done
|
||||
|
||||
python --version
|
||||
@ -1,333 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# encoding: UTF-8
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from subprocess import check_call, check_output
|
||||
|
||||
|
||||
def list_dir(path: str) -> list[str]:
|
||||
"""'
|
||||
Helper for getting paths for Python
|
||||
"""
|
||||
return check_output(["ls", "-1", path]).decode().split("\n")
|
||||
|
||||
|
||||
def replace_tag(filename) -> None:
|
||||
with open(filename) as f:
|
||||
lines = f.readlines()
|
||||
for i, line in enumerate(lines):
|
||||
if line.startswith("Tag:"):
|
||||
lines[i] = line.replace("-linux_", "-manylinux_2_28_")
|
||||
print(f"Updated tag from {line} to {lines[i]}")
|
||||
break
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.writelines(lines)
|
||||
|
||||
|
||||
def patch_library_rpath(
|
||||
folder: str,
|
||||
lib_name: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Apply patchelf to set RPATH for a library in torch/lib"""
|
||||
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
# For PyPI NVIDIA libraries, construct CUDA RPATH
|
||||
cuda_rpaths = [
|
||||
"$ORIGIN/../../nvidia/cudnn/lib",
|
||||
"$ORIGIN/../../nvidia/nvshmem/lib",
|
||||
"$ORIGIN/../../nvidia/nccl/lib",
|
||||
"$ORIGIN/../../nvidia/cusparselt/lib",
|
||||
]
|
||||
|
||||
if "130" in desired_cuda:
|
||||
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
|
||||
else:
|
||||
cuda_rpaths.extend(
|
||||
[
|
||||
"$ORIGIN/../../nvidia/cublas/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_cupti/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_runtime/lib",
|
||||
"$ORIGIN/../../nvidia/cufft/lib",
|
||||
"$ORIGIN/../../nvidia/curand/lib",
|
||||
"$ORIGIN/../../nvidia/cusolver/lib",
|
||||
"$ORIGIN/../../nvidia/cusparse/lib",
|
||||
"$ORIGIN/../../nvidia/nvtx/lib",
|
||||
"$ORIGIN/../../nvidia/cufile/lib",
|
||||
]
|
||||
)
|
||||
|
||||
# Add $ORIGIN for local torch libs
|
||||
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
|
||||
else:
|
||||
# For bundled libraries, just use $ORIGIN
|
||||
rpath = "$ORIGIN"
|
||||
|
||||
if os.path.exists(lib_path):
|
||||
os.system(
|
||||
f"cd {folder}/tmp/torch/lib/; "
|
||||
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
|
||||
)
|
||||
|
||||
|
||||
def copy_and_patch_library(
|
||||
src_path: str,
|
||||
folder: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Copy a library to torch/lib and patch its RPATH"""
|
||||
if os.path.exists(src_path):
|
||||
lib_name = os.path.basename(src_path)
|
||||
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
|
||||
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
|
||||
"""
|
||||
Package the cuda wheel libraries
|
||||
"""
|
||||
folder = os.path.dirname(wheel_path)
|
||||
os.mkdir(f"{folder}/tmp")
|
||||
os.system(f"unzip {wheel_path} -d {folder}/tmp")
|
||||
# Delete original wheel since it will be repackaged
|
||||
os.system(f"rm {wheel_path}")
|
||||
|
||||
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Using nvidia libs from pypi - skipping CUDA library bundling")
|
||||
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
|
||||
# We only need to bundle non-NVIDIA libraries
|
||||
minimal_libs_to_copy = [
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
]
|
||||
|
||||
# Copy minimal libraries to unzipped_folder/torch/lib
|
||||
for lib_path in minimal_libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
# Patch torch libraries used for searching libraries
|
||||
torch_libs_to_patch = [
|
||||
"libtorch.so",
|
||||
"libtorch_cpu.so",
|
||||
"libtorch_cuda.so",
|
||||
"libtorch_cuda_linalg.so",
|
||||
"libtorch_global_deps.so",
|
||||
"libtorch_python.so",
|
||||
"libtorch_nvshmem.so",
|
||||
"libc10.so",
|
||||
"libc10_cuda.so",
|
||||
"libcaffe2_nvrtc.so",
|
||||
"libshm.so",
|
||||
]
|
||||
for lib_name in torch_libs_to_patch:
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
else:
|
||||
print("Bundling CUDA libraries with wheel")
|
||||
# Original logic for bundling system CUDA libraries
|
||||
# Common libraries for all CUDA versions
|
||||
common_libs = [
|
||||
# Non-NVIDIA system libraries
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
# Common CUDA libraries (same for all versions)
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0",
|
||||
"/usr/local/cuda/lib64/libcurand.so.10",
|
||||
"/usr/local/cuda/lib64/libnccl.so.2",
|
||||
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
|
||||
"/usr/local/cuda/lib64/libcufile.so.0",
|
||||
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
|
||||
"/usr/local/cuda/lib64/libcusparse.so.12",
|
||||
]
|
||||
|
||||
# CUDA version-specific libraries
|
||||
if "13" in desired_cuda:
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
|
||||
"/usr/local/cuda/lib64/libcublas.so.13",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.13",
|
||||
"/usr/local/cuda/lib64/libcudart.so.13",
|
||||
"/usr/local/cuda/lib64/libcufft.so.12",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.12",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.13",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.13",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
|
||||
]
|
||||
elif "12" in desired_cuda:
|
||||
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
|
||||
"/usr/local/cuda/lib64/libcublas.so.12",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12",
|
||||
"/usr/local/cuda/lib64/libcudart.so.12",
|
||||
"/usr/local/cuda/lib64/libcufft.so.11",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.11",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
|
||||
|
||||
# Combine all libraries
|
||||
libs_to_copy = common_libs + version_specific_libs
|
||||
|
||||
# Copy libraries to unzipped_folder/torch/lib
|
||||
for lib_path in libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
# Make sure the wheel is tagged with manylinux_2_28
|
||||
for f in os.scandir(f"{folder}/tmp/"):
|
||||
if f.is_dir() and f.name.endswith(".dist-info"):
|
||||
replace_tag(f"{f.path}/WHEEL")
|
||||
break
|
||||
|
||||
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
|
||||
os.system(f"rm -rf {folder}/tmp/")
|
||||
|
||||
|
||||
def complete_wheel(folder: str) -> str:
|
||||
"""
|
||||
Complete wheel build and put in artifact location
|
||||
"""
|
||||
wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
|
||||
# Please note for cuda we don't run auditwheel since we use custom script to package
|
||||
# the cuda dependencies to the wheel file using update_wheel() method.
|
||||
# However we need to make sure filename reflects the correct Manylinux platform.
|
||||
if "pytorch" in folder and not enable_cuda:
|
||||
print("Repairing Wheel with AuditWheel")
|
||||
check_call(["auditwheel", "repair", f"dist/{wheel_name}"], cwd=folder)
|
||||
repaired_wheel_name = list_dir(f"/{folder}/wheelhouse")[0]
|
||||
|
||||
print(f"Moving {repaired_wheel_name} wheel to /{folder}/dist")
|
||||
os.rename(
|
||||
f"/{folder}/wheelhouse/{repaired_wheel_name}",
|
||||
f"/{folder}/dist/{repaired_wheel_name}",
|
||||
)
|
||||
else:
|
||||
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
|
||||
print(f"Copying {repaired_wheel_name} to artifacts")
|
||||
shutil.copy2(
|
||||
f"/{folder}/dist/{repaired_wheel_name}", f"/artifacts/{repaired_wheel_name}"
|
||||
)
|
||||
|
||||
return repaired_wheel_name
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""
|
||||
Parse inline arguments
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("AARCH64 wheels python CD")
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
parser.add_argument("--test-only", type=str)
|
||||
parser.add_argument("--enable-mkldnn", action="store_true")
|
||||
parser.add_argument("--enable-cuda", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Entry Point
|
||||
"""
|
||||
args = parse_arguments()
|
||||
enable_mkldnn = args.enable_mkldnn
|
||||
enable_cuda = args.enable_cuda
|
||||
branch = check_output(
|
||||
["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd="/pytorch"
|
||||
).decode()
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_vars = ""
|
||||
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
|
||||
if enable_cuda:
|
||||
build_vars += "MAX_JOBS=5 "
|
||||
|
||||
# Handle PyPI NVIDIA libraries vs bundled libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Configuring build for PyPI NVIDIA libraries")
|
||||
# Configure for dynamic linking (matching x86 logic)
|
||||
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
|
||||
else:
|
||||
print("Configuring build for bundled NVIDIA libraries")
|
||||
# Keep existing static linking approach - already configured above
|
||||
|
||||
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
|
||||
desired_cuda = os.getenv("DESIRED_CUDA")
|
||||
if override_package_version is not None:
|
||||
version = override_package_version
|
||||
build_vars += (
|
||||
f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version} PYTORCH_BUILD_NUMBER=1 "
|
||||
)
|
||||
elif branch in ["nightly", "main"]:
|
||||
build_date = (
|
||||
check_output(["git", "log", "--pretty=format:%cs", "-1"], cwd="/pytorch")
|
||||
.decode()
|
||||
.replace("-", "")
|
||||
)
|
||||
version = (
|
||||
check_output(["cat", "version.txt"], cwd="/pytorch").decode().strip()[:-2]
|
||||
)
|
||||
if enable_cuda:
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date}+{desired_cuda} PYTORCH_BUILD_NUMBER=1 "
|
||||
else:
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1 "
|
||||
elif branch.startswith(("v1.", "v2.")):
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
|
||||
|
||||
if enable_mkldnn:
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += "USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
|
||||
build_vars += "ACL_ROOT_DIR=/acl "
|
||||
if enable_cuda:
|
||||
build_vars += "BLAS=NVPL "
|
||||
else:
|
||||
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/opt/OpenBLAS "
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
|
||||
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
|
||||
if enable_cuda:
|
||||
print("Updating Cuda Dependency")
|
||||
filename = os.listdir("/pytorch/dist/")
|
||||
wheel_path = f"/pytorch/dist/{filename[0]}"
|
||||
package_cuda_wheel(wheel_path, desired_cuda)
|
||||
pytorch_wheel_name = complete_wheel("/pytorch/")
|
||||
print(f"Build Complete. Created {pytorch_wheel_name}..")
|
||||
@ -1,999 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# This script is for building AARCH64 wheels using AWS EC2 instances.
|
||||
# To generate binaries for the release follow these steps:
|
||||
# 1. Update mappings for each of the Domain Libraries by adding new row to a table like this:
|
||||
# "v1.11.0": ("0.11.0", "rc1"),
|
||||
# 2. Run script with following arguments for each of the supported python versions and required tag, for example:
|
||||
# build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch v1.11.0-rc3
|
||||
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from typing import Optional, Union
|
||||
|
||||
import boto3
|
||||
|
||||
|
||||
# AMI images for us-east-1, change the following based on your ~/.aws/config
|
||||
os_amis = {
|
||||
"ubuntu20_04": "ami-052eac90edaa9d08f", # login_name: ubuntu
|
||||
"ubuntu22_04": "ami-0c6c29c5125214c77", # login_name: ubuntu
|
||||
"redhat8": "ami-0698b90665a2ddcf1", # login_name: ec2-user
|
||||
}
|
||||
|
||||
ubuntu20_04_ami = os_amis["ubuntu20_04"]
|
||||
|
||||
|
||||
def compute_keyfile_path(key_name: Optional[str] = None) -> tuple[str, str]:
|
||||
if key_name is None:
|
||||
key_name = os.getenv("AWS_KEY_NAME")
|
||||
if key_name is None:
|
||||
return os.getenv("SSH_KEY_PATH", ""), ""
|
||||
|
||||
homedir_path = os.path.expanduser("~")
|
||||
default_path = os.path.join(homedir_path, ".ssh", f"{key_name}.pem")
|
||||
return os.getenv("SSH_KEY_PATH", default_path), key_name
|
||||
|
||||
|
||||
ec2 = boto3.resource("ec2")
|
||||
|
||||
|
||||
def ec2_get_instances(filter_name, filter_value):
|
||||
return ec2.instances.filter(
|
||||
Filters=[{"Name": filter_name, "Values": [filter_value]}]
|
||||
)
|
||||
|
||||
|
||||
def ec2_instances_of_type(instance_type="t4g.2xlarge"):
|
||||
return ec2_get_instances("instance-type", instance_type)
|
||||
|
||||
|
||||
def ec2_instances_by_id(instance_id):
|
||||
rc = list(ec2_get_instances("instance-id", instance_id))
|
||||
return rc[0] if len(rc) > 0 else None
|
||||
|
||||
|
||||
def start_instance(
|
||||
key_name, ami=ubuntu20_04_ami, instance_type="t4g.2xlarge", ebs_size: int = 50
|
||||
):
|
||||
inst = ec2.create_instances(
|
||||
ImageId=ami,
|
||||
InstanceType=instance_type,
|
||||
SecurityGroups=["ssh-allworld"],
|
||||
KeyName=key_name,
|
||||
MinCount=1,
|
||||
MaxCount=1,
|
||||
BlockDeviceMappings=[
|
||||
{
|
||||
"DeviceName": "/dev/sda1",
|
||||
"Ebs": {
|
||||
"DeleteOnTermination": True,
|
||||
"VolumeSize": ebs_size,
|
||||
"VolumeType": "standard",
|
||||
},
|
||||
}
|
||||
],
|
||||
)[0]
|
||||
print(f"Create instance {inst.id}")
|
||||
inst.wait_until_running()
|
||||
running_inst = ec2_instances_by_id(inst.id)
|
||||
print(f"Instance started at {running_inst.public_dns_name}")
|
||||
return running_inst
|
||||
|
||||
|
||||
class RemoteHost:
|
||||
addr: str
|
||||
keyfile_path: str
|
||||
login_name: str
|
||||
container_id: Optional[str] = None
|
||||
ami: Optional[str] = None
|
||||
|
||||
def __init__(self, addr: str, keyfile_path: str, login_name: str = "ubuntu"):
|
||||
self.addr = addr
|
||||
self.keyfile_path = keyfile_path
|
||||
self.login_name = login_name
|
||||
|
||||
def _gen_ssh_prefix(self) -> list[str]:
|
||||
return [
|
||||
"ssh",
|
||||
"-o",
|
||||
"StrictHostKeyChecking=no",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
f"{self.login_name}@{self.addr}",
|
||||
"--",
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _split_cmd(args: Union[str, list[str]]) -> list[str]:
|
||||
return args.split() if isinstance(args, str) else args
|
||||
|
||||
def run_ssh_cmd(self, args: Union[str, list[str]]) -> None:
|
||||
subprocess.check_call(self._gen_ssh_prefix() + self._split_cmd(args))
|
||||
|
||||
def check_ssh_output(self, args: Union[str, list[str]]) -> str:
|
||||
return subprocess.check_output(
|
||||
self._gen_ssh_prefix() + self._split_cmd(args)
|
||||
).decode("utf-8")
|
||||
|
||||
def scp_upload_file(self, local_file: str, remote_file: str) -> None:
|
||||
subprocess.check_call(
|
||||
[
|
||||
"scp",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
local_file,
|
||||
f"{self.login_name}@{self.addr}:{remote_file}",
|
||||
]
|
||||
)
|
||||
|
||||
def scp_download_file(
|
||||
self, remote_file: str, local_file: Optional[str] = None
|
||||
) -> None:
|
||||
if local_file is None:
|
||||
local_file = "."
|
||||
subprocess.check_call(
|
||||
[
|
||||
"scp",
|
||||
"-i",
|
||||
self.keyfile_path,
|
||||
f"{self.login_name}@{self.addr}:{remote_file}",
|
||||
local_file,
|
||||
]
|
||||
)
|
||||
|
||||
def start_docker(self, image="quay.io/pypa/manylinux2014_aarch64:latest") -> None:
|
||||
self.run_ssh_cmd("sudo apt-get install -y docker.io")
|
||||
self.run_ssh_cmd(f"sudo usermod -a -G docker {self.login_name}")
|
||||
self.run_ssh_cmd("sudo service docker start")
|
||||
self.run_ssh_cmd(f"docker pull {image}")
|
||||
self.container_id = self.check_ssh_output(
|
||||
f"docker run -t -d -w /root {image}"
|
||||
).strip()
|
||||
|
||||
def using_docker(self) -> bool:
|
||||
return self.container_id is not None
|
||||
|
||||
def run_cmd(self, args: Union[str, list[str]]) -> None:
|
||||
if not self.using_docker():
|
||||
return self.run_ssh_cmd(args)
|
||||
assert self.container_id is not None
|
||||
docker_cmd = self._gen_ssh_prefix() + [
|
||||
"docker",
|
||||
"exec",
|
||||
"-i",
|
||||
self.container_id,
|
||||
"bash",
|
||||
]
|
||||
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE)
|
||||
p.communicate(
|
||||
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
|
||||
"utf-8"
|
||||
)
|
||||
)
|
||||
rc = p.wait()
|
||||
if rc != 0:
|
||||
raise subprocess.CalledProcessError(rc, docker_cmd)
|
||||
|
||||
def check_output(self, args: Union[str, list[str]]) -> str:
|
||||
if not self.using_docker():
|
||||
return self.check_ssh_output(args)
|
||||
assert self.container_id is not None
|
||||
docker_cmd = self._gen_ssh_prefix() + [
|
||||
"docker",
|
||||
"exec",
|
||||
"-i",
|
||||
self.container_id,
|
||||
"bash",
|
||||
]
|
||||
p = subprocess.Popen(docker_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
|
||||
(out, err) = p.communicate(
|
||||
input=" ".join(["source .bashrc && "] + self._split_cmd(args)).encode(
|
||||
"utf-8"
|
||||
)
|
||||
)
|
||||
rc = p.wait()
|
||||
if rc != 0:
|
||||
raise subprocess.CalledProcessError(rc, docker_cmd, output=out, stderr=err)
|
||||
return out.decode("utf-8")
|
||||
|
||||
def upload_file(self, local_file: str, remote_file: str) -> None:
|
||||
if not self.using_docker():
|
||||
return self.scp_upload_file(local_file, remote_file)
|
||||
tmp_file = os.path.join("/tmp", os.path.basename(local_file))
|
||||
self.scp_upload_file(local_file, tmp_file)
|
||||
self.run_ssh_cmd(
|
||||
["docker", "cp", tmp_file, f"{self.container_id}:/root/{remote_file}"]
|
||||
)
|
||||
self.run_ssh_cmd(["rm", tmp_file])
|
||||
|
||||
def download_file(self, remote_file: str, local_file: Optional[str] = None) -> None:
|
||||
if not self.using_docker():
|
||||
return self.scp_download_file(remote_file, local_file)
|
||||
tmp_file = os.path.join("/tmp", os.path.basename(remote_file))
|
||||
self.run_ssh_cmd(
|
||||
["docker", "cp", f"{self.container_id}:/root/{remote_file}", tmp_file]
|
||||
)
|
||||
self.scp_download_file(tmp_file, local_file)
|
||||
self.run_ssh_cmd(["rm", tmp_file])
|
||||
|
||||
def download_wheel(
|
||||
self, remote_file: str, local_file: Optional[str] = None
|
||||
) -> None:
|
||||
if self.using_docker() and local_file is None:
|
||||
basename = os.path.basename(remote_file)
|
||||
local_file = basename.replace(
|
||||
"-linux_aarch64.whl", "-manylinux2014_aarch64.whl"
|
||||
)
|
||||
self.download_file(remote_file, local_file)
|
||||
|
||||
def list_dir(self, path: str) -> list[str]:
|
||||
return self.check_output(["ls", "-1", path]).split("\n")
|
||||
|
||||
|
||||
def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
|
||||
import socket
|
||||
|
||||
for i in range(attempt_cnt):
|
||||
try:
|
||||
with socket.create_connection((addr, port), timeout=timeout):
|
||||
return
|
||||
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
|
||||
if i == attempt_cnt - 1:
|
||||
raise
|
||||
time.sleep(timeout)
|
||||
|
||||
|
||||
def update_apt_repo(host: RemoteHost) -> None:
|
||||
time.sleep(5)
|
||||
host.run_cmd("sudo systemctl stop apt-daily.service || true")
|
||||
host.run_cmd("sudo systemctl stop unattended-upgrades.service || true")
|
||||
host.run_cmd(
|
||||
"while systemctl is-active --quiet apt-daily.service; do sleep 1; done"
|
||||
)
|
||||
host.run_cmd(
|
||||
"while systemctl is-active --quiet unattended-upgrades.service; do sleep 1; done"
|
||||
)
|
||||
host.run_cmd("sudo apt-get update")
|
||||
time.sleep(3)
|
||||
host.run_cmd("sudo apt-get update")
|
||||
|
||||
|
||||
def install_condaforge(
|
||||
host: RemoteHost, suffix: str = "latest/download/Miniforge3-Linux-aarch64.sh"
|
||||
) -> None:
|
||||
print("Install conda-forge")
|
||||
host.run_cmd(f"curl -OL https://github.com/conda-forge/miniforge/releases/{suffix}")
|
||||
host.run_cmd(f"sh -f {os.path.basename(suffix)} -b")
|
||||
host.run_cmd(f"rm -f {os.path.basename(suffix)}")
|
||||
if host.using_docker():
|
||||
host.run_cmd("echo 'PATH=$HOME/miniforge3/bin:$PATH'>>.bashrc")
|
||||
else:
|
||||
host.run_cmd(
|
||||
[
|
||||
"sed",
|
||||
"-i",
|
||||
"'/^# If not running interactively.*/i PATH=$HOME/miniforge3/bin:$PATH'",
|
||||
".bashrc",
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def install_condaforge_python(host: RemoteHost, python_version="3.8") -> None:
|
||||
if python_version == "3.6":
|
||||
# Python-3.6 EOLed and not compatible with conda-4.11
|
||||
install_condaforge(
|
||||
host, suffix="download/4.10.3-10/Miniforge3-4.10.3-10-Linux-aarch64.sh"
|
||||
)
|
||||
host.run_cmd(f"conda install -y python={python_version} numpy pyyaml")
|
||||
else:
|
||||
install_condaforge(
|
||||
host, suffix="download/4.11.0-4/Miniforge3-4.11.0-4-Linux-aarch64.sh"
|
||||
)
|
||||
# Pytorch-1.10 or older are not compatible with setuptools=59.6 or newer
|
||||
host.run_cmd(
|
||||
f"conda install -y python={python_version} numpy pyyaml setuptools>=59.5.0"
|
||||
)
|
||||
|
||||
|
||||
def embed_libgomp(host: RemoteHost, use_conda, wheel_name) -> None:
|
||||
host.run_cmd("pip3 install auditwheel")
|
||||
host.run_cmd(
|
||||
"conda install -y patchelf" if use_conda else "sudo apt-get install -y patchelf"
|
||||
)
|
||||
from tempfile import NamedTemporaryFile
|
||||
|
||||
with NamedTemporaryFile() as tmp:
|
||||
tmp.write(embed_library_script.encode("utf-8"))
|
||||
tmp.flush()
|
||||
host.upload_file(tmp.name, "embed_library.py")
|
||||
|
||||
print("Embedding libgomp into wheel")
|
||||
if host.using_docker():
|
||||
host.run_cmd(f"python3 embed_library.py {wheel_name} --update-tag")
|
||||
else:
|
||||
host.run_cmd(f"python3 embed_library.py {wheel_name}")
|
||||
|
||||
|
||||
def checkout_repo(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
url: str,
|
||||
git_clone_flags: str,
|
||||
mapping: dict[str, tuple[str, str]],
|
||||
) -> Optional[str]:
|
||||
for prefix in mapping:
|
||||
if not branch.startswith(prefix):
|
||||
continue
|
||||
tag = f"v{mapping[prefix][0]}-{mapping[prefix][1]}"
|
||||
host.run_cmd(f"git clone {url} -b {tag} {git_clone_flags}")
|
||||
return mapping[prefix][0]
|
||||
|
||||
host.run_cmd(f"git clone {url} -b {branch} {git_clone_flags}")
|
||||
return None
|
||||
|
||||
|
||||
def build_torchvision(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str,
|
||||
run_smoke_tests: bool = True,
|
||||
) -> str:
|
||||
print("Checking out TorchVision repo")
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/vision",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.7.1": ("0.8.2", "rc2"),
|
||||
"v1.8.0": ("0.9.0", "rc3"),
|
||||
"v1.8.1": ("0.9.1", "rc1"),
|
||||
"v1.9.0": ("0.10.0", "rc1"),
|
||||
"v1.10.0": ("0.11.1", "rc1"),
|
||||
"v1.10.1": ("0.11.2", "rc1"),
|
||||
"v1.10.2": ("0.11.3", "rc1"),
|
||||
"v1.11.0": ("0.12.0", "rc1"),
|
||||
"v1.12.0": ("0.13.0", "rc4"),
|
||||
"v1.12.1": ("0.13.1", "rc6"),
|
||||
"v1.13.0": ("0.14.0", "rc4"),
|
||||
"v1.13.1": ("0.14.1", "rc2"),
|
||||
"v2.0.0": ("0.15.1", "rc2"),
|
||||
"v2.0.1": ("0.15.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchVision wheel")
|
||||
|
||||
# Please note libnpg and jpeg are required to build image.so extension
|
||||
if use_conda:
|
||||
host.run_cmd("conda install -y libpng jpeg")
|
||||
# Remove .so files to force static linking
|
||||
host.run_cmd(
|
||||
"rm miniforge3/lib/libpng.so miniforge3/lib/libpng16.so miniforge3/lib/libjpeg.so"
|
||||
)
|
||||
# And patch setup.py to include libz dependency for libpng
|
||||
host.run_cmd(
|
||||
[
|
||||
'sed -i -e \'s/image_link_flags\\.append("png")/image_link_flags += ["png", "z"]/\' vision/setup.py'
|
||||
]
|
||||
)
|
||||
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f vision/version.txt ]; then cat vision/version.txt; fi"]
|
||||
).strip()
|
||||
if len(version) == 0:
|
||||
# In older revisions, version was embedded in setup.py
|
||||
version = (
|
||||
host.check_output(["grep", '"version = \'"', "vision/setup.py"])
|
||||
.strip()
|
||||
.split("'")[1][:-2]
|
||||
)
|
||||
build_date = (
|
||||
host.check_output("cd vision && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
vision_wheel_name = host.list_dir("vision/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
|
||||
|
||||
print("Copying TorchVision wheel")
|
||||
host.download_wheel(os.path.join("vision", "dist", vision_wheel_name))
|
||||
if run_smoke_tests:
|
||||
host.run_cmd(
|
||||
f"pip3 install {os.path.join('vision', 'dist', vision_wheel_name)}"
|
||||
)
|
||||
host.run_cmd("python3 vision/test/smoke_test.py")
|
||||
print("Delete vision checkout")
|
||||
host.run_cmd("rm -rf vision")
|
||||
|
||||
return vision_wheel_name
|
||||
|
||||
|
||||
def build_torchdata(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchData repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/data",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.13.1": ("0.5.1", ""),
|
||||
"v2.0.0": ("0.6.0", "rc5"),
|
||||
"v2.0.1": ("0.6.1", "rc1"),
|
||||
},
|
||||
)
|
||||
print("Building TorchData wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f data/version.txt ]; then cat data/version.txt; fi"]
|
||||
).strip()
|
||||
build_date = (
|
||||
host.check_output("cd data && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("data/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchData wheel")
|
||||
host.download_wheel(os.path.join("data", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def build_torchtext(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchText repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/text",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.9.0": ("0.10.0", "rc1"),
|
||||
"v1.10.0": ("0.11.0", "rc2"),
|
||||
"v1.10.1": ("0.11.1", "rc1"),
|
||||
"v1.10.2": ("0.11.2", "rc1"),
|
||||
"v1.11.0": ("0.12.0", "rc1"),
|
||||
"v1.12.0": ("0.13.0", "rc2"),
|
||||
"v1.12.1": ("0.13.1", "rc5"),
|
||||
"v1.13.0": ("0.14.0", "rc3"),
|
||||
"v1.13.1": ("0.14.1", "rc1"),
|
||||
"v2.0.0": ("0.15.1", "rc2"),
|
||||
"v2.0.1": ("0.15.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchText wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = host.check_output(
|
||||
["if [ -f text/version.txt ]; then cat text/version.txt; fi"]
|
||||
).strip()
|
||||
build_date = (
|
||||
host.check_output("cd text && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("text/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchText wheel")
|
||||
host.download_wheel(os.path.join("text", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def build_torchaudio(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> str:
|
||||
print("Checking out TorchAudio repo")
|
||||
git_clone_flags += " --recurse-submodules"
|
||||
build_version = checkout_repo(
|
||||
host,
|
||||
branch=branch,
|
||||
url="https://github.com/pytorch/audio",
|
||||
git_clone_flags=git_clone_flags,
|
||||
mapping={
|
||||
"v1.9.0": ("0.9.0", "rc2"),
|
||||
"v1.10.0": ("0.10.0", "rc5"),
|
||||
"v1.10.1": ("0.10.1", "rc1"),
|
||||
"v1.10.2": ("0.10.2", "rc1"),
|
||||
"v1.11.0": ("0.11.0", "rc1"),
|
||||
"v1.12.0": ("0.12.0", "rc3"),
|
||||
"v1.12.1": ("0.12.1", "rc5"),
|
||||
"v1.13.0": ("0.13.0", "rc4"),
|
||||
"v1.13.1": ("0.13.1", "rc2"),
|
||||
"v2.0.0": ("2.0.1", "rc3"),
|
||||
"v2.0.1": ("2.0.2", "rc2"),
|
||||
},
|
||||
)
|
||||
print("Building TorchAudio wheel")
|
||||
build_vars = ""
|
||||
if branch == "nightly":
|
||||
version = (
|
||||
host.check_output(["grep", '"version = \'"', "audio/setup.py"])
|
||||
.strip()
|
||||
.split("'")[1][:-2]
|
||||
)
|
||||
build_date = (
|
||||
host.check_output("cd audio && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
|
||||
elif build_version is not None:
|
||||
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(
|
||||
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
|
||||
&& ./packaging/ffmpeg/build.sh \
|
||||
&& {build_vars} python3 -m build --wheel --no-isolation"
|
||||
)
|
||||
|
||||
wheel_name = host.list_dir("audio/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("audio", "dist", wheel_name))
|
||||
|
||||
print("Copying TorchAudio wheel")
|
||||
host.download_wheel(os.path.join("audio", "dist", wheel_name))
|
||||
|
||||
return wheel_name
|
||||
|
||||
|
||||
def configure_system(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
compiler: str = "gcc-8",
|
||||
use_conda: bool = True,
|
||||
python_version: str = "3.8",
|
||||
) -> None:
|
||||
if use_conda:
|
||||
install_condaforge_python(host, python_version)
|
||||
|
||||
print("Configuring the system")
|
||||
if not host.using_docker():
|
||||
update_apt_repo(host)
|
||||
host.run_cmd("sudo apt-get install -y ninja-build g++ git cmake gfortran unzip")
|
||||
else:
|
||||
host.run_cmd("yum install -y sudo")
|
||||
host.run_cmd("conda install -y ninja scons")
|
||||
|
||||
if not use_conda:
|
||||
host.run_cmd(
|
||||
"sudo apt-get install -y python3-dev python3-yaml python3-setuptools python3-wheel python3-pip"
|
||||
)
|
||||
host.run_cmd("pip3 install dataclasses typing-extensions")
|
||||
if not use_conda:
|
||||
print("Installing Cython + numpy from PyPy")
|
||||
host.run_cmd("sudo pip3 install Cython")
|
||||
host.run_cmd("sudo pip3 install numpy")
|
||||
|
||||
|
||||
def build_domains(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
use_conda: bool = True,
|
||||
git_clone_flags: str = "",
|
||||
) -> tuple[str, str, str, str]:
|
||||
vision_wheel_name = build_torchvision(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
audio_wheel_name = build_torchaudio(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
data_wheel_name = build_torchdata(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
text_wheel_name = build_torchtext(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
return (vision_wheel_name, audio_wheel_name, data_wheel_name, text_wheel_name)
|
||||
|
||||
|
||||
def start_build(
|
||||
host: RemoteHost,
|
||||
*,
|
||||
branch: str = "main",
|
||||
compiler: str = "gcc-8",
|
||||
use_conda: bool = True,
|
||||
python_version: str = "3.8",
|
||||
pytorch_only: bool = False,
|
||||
pytorch_build_number: Optional[str] = None,
|
||||
shallow_clone: bool = True,
|
||||
enable_mkldnn: bool = False,
|
||||
) -> tuple[str, str, str, str, str]:
|
||||
git_clone_flags = " --depth 1 --shallow-submodules" if shallow_clone else ""
|
||||
if host.using_docker() and not use_conda:
|
||||
print("Auto-selecting conda option for docker images")
|
||||
use_conda = True
|
||||
if not host.using_docker():
|
||||
print("Disable mkldnn for host builds")
|
||||
enable_mkldnn = False
|
||||
|
||||
configure_system(
|
||||
host, compiler=compiler, use_conda=use_conda, python_version=python_version
|
||||
)
|
||||
|
||||
if host.using_docker():
|
||||
print("Move libgfortant.a into a standard location")
|
||||
# HACK: pypa gforntran.a is compiled without PIC, which leads to the following error
|
||||
# libgfortran.a(error.o)(.text._gfortrani_st_printf+0x34): unresolvable R_AARCH64_ADR_PREL_PG_HI21 relocation against symbol `__stack_chk_guard@@GLIBC_2.17' # noqa: E501, B950
|
||||
# Workaround by copying gfortran library from the host
|
||||
host.run_ssh_cmd("sudo apt-get install -y gfortran-8")
|
||||
host.run_cmd("mkdir -p /usr/lib/gcc/aarch64-linux-gnu/8")
|
||||
host.run_ssh_cmd(
|
||||
[
|
||||
"docker",
|
||||
"cp",
|
||||
"/usr/lib/gcc/aarch64-linux-gnu/8/libgfortran.a",
|
||||
f"{host.container_id}:/opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/",
|
||||
]
|
||||
)
|
||||
|
||||
print("Checking out PyTorch repo")
|
||||
host.run_cmd(
|
||||
f"git clone --recurse-submodules -b {branch} https://github.com/pytorch/pytorch {git_clone_flags}"
|
||||
)
|
||||
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_openblas.sh")
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_opts = ""
|
||||
if pytorch_build_number is not None:
|
||||
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
|
||||
# Breakpad build fails on aarch64
|
||||
build_vars = "USE_BREAKPAD=0 "
|
||||
if branch == "nightly":
|
||||
build_date = (
|
||||
host.check_output("cd pytorch && git log --pretty=format:%s -1")
|
||||
.strip()
|
||||
.split()[0]
|
||||
.replace("-", "")
|
||||
)
|
||||
version = host.check_output("cat pytorch/version.txt").strip()[:-2]
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1"
|
||||
if branch.startswith(("v1.", "v2.")):
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1"
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
if enable_mkldnn:
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_acl.sh")
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
|
||||
build_vars += " BLAS=OpenBLAS"
|
||||
build_vars += " OpenBLAS_HOME=/opt/OpenBLAS"
|
||||
build_vars += " ACL_ROOT_DIR=/acl"
|
||||
host.run_cmd(
|
||||
f"cd $HOME/pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
print("Repair the wheel")
|
||||
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
|
||||
ld_library_path = "/acl/build:$HOME/pytorch/build/lib"
|
||||
host.run_cmd(
|
||||
f"export LD_LIBRARY_PATH={ld_library_path} && auditwheel repair $HOME/pytorch/dist/{pytorch_wheel_name}"
|
||||
)
|
||||
print("replace the original wheel with the repaired one")
|
||||
pytorch_repaired_wheel_name = host.list_dir("wheelhouse")[0]
|
||||
host.run_cmd(
|
||||
f"cp $HOME/wheelhouse/{pytorch_repaired_wheel_name} $HOME/pytorch/dist/{pytorch_wheel_name}"
|
||||
)
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
host.run_cmd(
|
||||
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
|
||||
print("Deleting build folder")
|
||||
host.run_cmd("cd pytorch && rm -rf build")
|
||||
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("pytorch", "dist", pytorch_wheel_name))
|
||||
print("Copying the wheel")
|
||||
host.download_wheel(os.path.join("pytorch", "dist", pytorch_wheel_name))
|
||||
|
||||
print("Installing PyTorch wheel")
|
||||
host.run_cmd(f"pip3 install pytorch/dist/{pytorch_wheel_name}")
|
||||
|
||||
if pytorch_only:
|
||||
return (pytorch_wheel_name, None, None, None, None)
|
||||
domain_wheels = build_domains(
|
||||
host, branch=branch, use_conda=use_conda, git_clone_flags=git_clone_flags
|
||||
)
|
||||
|
||||
return (pytorch_wheel_name, *domain_wheels)
|
||||
|
||||
|
||||
embed_library_script = """
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from auditwheel.patcher import Patchelf
|
||||
from auditwheel.wheeltools import InWheelCtx
|
||||
from auditwheel.elfutils import elf_file_filter
|
||||
from auditwheel.repair import copylib
|
||||
from auditwheel.lddtree import lddtree
|
||||
from subprocess import check_call
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
|
||||
def replace_tag(filename):
|
||||
with open(filename, 'r') as f:
|
||||
lines = f.read().split("\\n")
|
||||
for i,line in enumerate(lines):
|
||||
if not line.startswith("Tag: "):
|
||||
continue
|
||||
lines[i] = line.replace("-linux_", "-manylinux2014_")
|
||||
print(f'Updated tag from {line} to {lines[i]}')
|
||||
|
||||
with open(filename, 'w') as f:
|
||||
f.write("\\n".join(lines))
|
||||
|
||||
|
||||
class AlignedPatchelf(Patchelf):
|
||||
def set_soname(self, file_name: str, new_soname: str) -> None:
|
||||
check_call(['patchelf', '--page-size', '65536', '--set-soname', new_soname, file_name])
|
||||
|
||||
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
|
||||
check_call(['patchelf', '--page-size', '65536', '--replace-needed', soname, new_soname, file_name])
|
||||
|
||||
|
||||
def embed_library(whl_path, lib_soname, update_tag=False):
|
||||
patcher = AlignedPatchelf()
|
||||
out_dir = TemporaryDirectory()
|
||||
whl_name = os.path.basename(whl_path)
|
||||
tmp_whl_name = os.path.join(out_dir.name, whl_name)
|
||||
with InWheelCtx(whl_path) as ctx:
|
||||
torchlib_path = os.path.join(ctx._tmpdir.name, 'torch', 'lib')
|
||||
ctx.out_wheel=tmp_whl_name
|
||||
new_lib_path, new_lib_soname = None, None
|
||||
for filename, elf in elf_file_filter(ctx.iter_files()):
|
||||
if not filename.startswith('torch/lib'):
|
||||
continue
|
||||
libtree = lddtree(filename)
|
||||
if lib_soname not in libtree['needed']:
|
||||
continue
|
||||
lib_path = libtree['libs'][lib_soname]['path']
|
||||
if lib_path is None:
|
||||
print(f"Can't embed {lib_soname} as it could not be found")
|
||||
break
|
||||
if lib_path.startswith(torchlib_path):
|
||||
continue
|
||||
|
||||
if new_lib_path is None:
|
||||
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
|
||||
patcher.replace_needed(filename, lib_soname, new_lib_soname)
|
||||
print(f'Replacing {lib_soname} with {new_lib_soname} for {filename}')
|
||||
if update_tag:
|
||||
# Add manylinux2014 tag
|
||||
for filename in ctx.iter_files():
|
||||
if os.path.basename(filename) != 'WHEEL':
|
||||
continue
|
||||
replace_tag(filename)
|
||||
shutil.move(tmp_whl_name, whl_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
embed_library(sys.argv[1], 'libgomp.so.1', len(sys.argv) > 2 and sys.argv[2] == '--update-tag')
|
||||
"""
|
||||
|
||||
|
||||
def run_tests(host: RemoteHost, whl: str, branch="main") -> None:
|
||||
print("Configuring the system")
|
||||
update_apt_repo(host)
|
||||
host.run_cmd("sudo apt-get install -y python3-pip git")
|
||||
host.run_cmd("sudo pip3 install Cython")
|
||||
host.run_cmd("sudo pip3 install numpy")
|
||||
host.upload_file(whl, ".")
|
||||
host.run_cmd(f"sudo pip3 install {whl}")
|
||||
host.run_cmd("python3 -c 'import torch;print(torch.rand((3,3))'")
|
||||
host.run_cmd(f"git clone -b {branch} https://github.com/pytorch/pytorch")
|
||||
host.run_cmd("cd pytorch/test; python3 test_torch.py -v")
|
||||
|
||||
|
||||
def get_instance_name(instance) -> Optional[str]:
|
||||
if instance.tags is None:
|
||||
return None
|
||||
for tag in instance.tags:
|
||||
if tag["Key"] == "Name":
|
||||
return tag["Value"]
|
||||
return None
|
||||
|
||||
|
||||
def list_instances(instance_type: str) -> None:
|
||||
print(f"All instances of type {instance_type}")
|
||||
for instance in ec2_instances_of_type(instance_type):
|
||||
ifaces = instance.network_interfaces
|
||||
az = ifaces[0].subnet.availability_zone if len(ifaces) > 0 else None
|
||||
print(
|
||||
f"{instance.id} {get_instance_name(instance)} {instance.public_dns_name} {instance.state['Name']} {az}"
|
||||
)
|
||||
|
||||
|
||||
def terminate_instances(instance_type: str) -> None:
|
||||
print(f"Terminating all instances of type {instance_type}")
|
||||
instances = list(ec2_instances_of_type(instance_type))
|
||||
for instance in instances:
|
||||
print(f"Terminating {instance.id}")
|
||||
instance.terminate()
|
||||
print("Waiting for termination to complete")
|
||||
for instance in instances:
|
||||
instance.wait_until_terminated()
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("Build and test AARCH64 wheels using EC2")
|
||||
parser.add_argument("--key-name", type=str)
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
parser.add_argument("--test-only", type=str)
|
||||
group = parser.add_mutually_exclusive_group()
|
||||
group.add_argument("--os", type=str, choices=list(os_amis.keys()))
|
||||
group.add_argument("--ami", type=str)
|
||||
parser.add_argument(
|
||||
"--python-version",
|
||||
type=str,
|
||||
choices=[f"3.{d}" for d in range(6, 12)],
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--alloc-instance", action="store_true")
|
||||
parser.add_argument("--list-instances", action="store_true")
|
||||
parser.add_argument("--pytorch-only", action="store_true")
|
||||
parser.add_argument("--keep-running", action="store_true")
|
||||
parser.add_argument("--terminate-instances", action="store_true")
|
||||
parser.add_argument("--instance-type", type=str, default="t4g.2xlarge")
|
||||
parser.add_argument("--ebs-size", type=int, default=50)
|
||||
parser.add_argument("--branch", type=str, default="main")
|
||||
parser.add_argument("--use-docker", action="store_true")
|
||||
parser.add_argument(
|
||||
"--compiler",
|
||||
type=str,
|
||||
choices=["gcc-7", "gcc-8", "gcc-9", "clang"],
|
||||
default="gcc-8",
|
||||
)
|
||||
parser.add_argument("--use-torch-from-pypi", action="store_true")
|
||||
parser.add_argument("--pytorch-build-number", type=str, default=None)
|
||||
parser.add_argument("--disable-mkldnn", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments()
|
||||
ami = (
|
||||
args.ami
|
||||
if args.ami is not None
|
||||
else os_amis[args.os]
|
||||
if args.os is not None
|
||||
else ubuntu20_04_ami
|
||||
)
|
||||
keyfile_path, key_name = compute_keyfile_path(args.key_name)
|
||||
|
||||
if args.list_instances:
|
||||
list_instances(args.instance_type)
|
||||
sys.exit(0)
|
||||
|
||||
if args.terminate_instances:
|
||||
terminate_instances(args.instance_type)
|
||||
sys.exit(0)
|
||||
|
||||
if len(key_name) == 0:
|
||||
raise RuntimeError("""
|
||||
Cannot start build without key_name, please specify
|
||||
--key-name argument or AWS_KEY_NAME environment variable.""")
|
||||
if len(keyfile_path) == 0 or not os.path.exists(keyfile_path):
|
||||
raise RuntimeError(f"""
|
||||
Cannot find keyfile with name: [{key_name}] in path: [{keyfile_path}], please
|
||||
check `~/.ssh/` folder or manually set SSH_KEY_PATH environment variable.""")
|
||||
|
||||
# Starting the instance
|
||||
inst = start_instance(
|
||||
key_name, ami=ami, instance_type=args.instance_type, ebs_size=args.ebs_size
|
||||
)
|
||||
instance_name = f"{args.key_name}-{args.os}"
|
||||
if args.python_version is not None:
|
||||
instance_name += f"-py{args.python_version}"
|
||||
inst.create_tags(
|
||||
DryRun=False,
|
||||
Tags=[
|
||||
{
|
||||
"Key": "Name",
|
||||
"Value": instance_name,
|
||||
}
|
||||
],
|
||||
)
|
||||
addr = inst.public_dns_name
|
||||
wait_for_connection(addr, 22)
|
||||
host = RemoteHost(addr, keyfile_path)
|
||||
host.ami = ami
|
||||
if args.use_docker:
|
||||
update_apt_repo(host)
|
||||
host.start_docker()
|
||||
|
||||
if args.test_only:
|
||||
run_tests(host, args.test_only)
|
||||
sys.exit(0)
|
||||
|
||||
if args.alloc_instance:
|
||||
if args.python_version is None:
|
||||
sys.exit(0)
|
||||
install_condaforge_python(host, args.python_version)
|
||||
sys.exit(0)
|
||||
|
||||
python_version = args.python_version if args.python_version is not None else "3.10"
|
||||
|
||||
if args.use_torch_from_pypi:
|
||||
configure_system(host, compiler=args.compiler, python_version=python_version)
|
||||
print("Installing PyTorch wheel")
|
||||
host.run_cmd("pip3 install torch")
|
||||
build_domains(
|
||||
host, branch=args.branch, git_clone_flags=" --depth 1 --shallow-submodules"
|
||||
)
|
||||
else:
|
||||
start_build(
|
||||
host,
|
||||
branch=args.branch,
|
||||
compiler=args.compiler,
|
||||
python_version=python_version,
|
||||
pytorch_only=args.pytorch_only,
|
||||
pytorch_build_number=args.pytorch_build_number,
|
||||
enable_mkldnn=not args.disable_mkldnn,
|
||||
)
|
||||
if not args.keep_running:
|
||||
print(f"Waiting for instance {inst.id} to terminate")
|
||||
inst.terminate()
|
||||
inst.wait_until_terminated()
|
||||
@ -1,87 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from subprocess import check_call
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from auditwheel.elfutils import elf_file_filter
|
||||
from auditwheel.lddtree import lddtree
|
||||
from auditwheel.patcher import Patchelf
|
||||
from auditwheel.repair import copylib
|
||||
from auditwheel.wheeltools import InWheelCtx
|
||||
|
||||
|
||||
def replace_tag(filename):
|
||||
with open(filename) as f:
|
||||
lines = f.read().split("\\n")
|
||||
for i, line in enumerate(lines):
|
||||
if not line.startswith("Tag: "):
|
||||
continue
|
||||
lines[i] = line.replace("-linux_", "-manylinux2014_")
|
||||
print(f"Updated tag from {line} to {lines[i]}")
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.write("\\n".join(lines))
|
||||
|
||||
|
||||
class AlignedPatchelf(Patchelf):
|
||||
def set_soname(self, file_name: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
["patchelf", "--page-size", "65536", "--set-soname", new_soname, file_name]
|
||||
)
|
||||
|
||||
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
[
|
||||
"patchelf",
|
||||
"--page-size",
|
||||
"65536",
|
||||
"--replace-needed",
|
||||
soname,
|
||||
new_soname,
|
||||
file_name,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def embed_library(whl_path, lib_soname, update_tag=False):
|
||||
patcher = AlignedPatchelf()
|
||||
out_dir = TemporaryDirectory()
|
||||
whl_name = os.path.basename(whl_path)
|
||||
tmp_whl_name = os.path.join(out_dir.name, whl_name)
|
||||
with InWheelCtx(whl_path) as ctx:
|
||||
torchlib_path = os.path.join(ctx._tmpdir.name, "torch", "lib")
|
||||
ctx.out_wheel = tmp_whl_name
|
||||
new_lib_path, new_lib_soname = None, None
|
||||
for filename, _ in elf_file_filter(ctx.iter_files()):
|
||||
if not filename.startswith("torch/lib"):
|
||||
continue
|
||||
libtree = lddtree(filename)
|
||||
if lib_soname not in libtree["needed"]:
|
||||
continue
|
||||
lib_path = libtree["libs"][lib_soname]["path"]
|
||||
if lib_path is None:
|
||||
print(f"Can't embed {lib_soname} as it could not be found")
|
||||
break
|
||||
if lib_path.startswith(torchlib_path):
|
||||
continue
|
||||
|
||||
if new_lib_path is None:
|
||||
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
|
||||
patcher.replace_needed(filename, lib_soname, new_lib_soname)
|
||||
print(f"Replacing {lib_soname} with {new_lib_soname} for {filename}")
|
||||
if update_tag:
|
||||
# Add manylinux2014 tag
|
||||
for filename in ctx.iter_files():
|
||||
if os.path.basename(filename) != "WHEEL":
|
||||
continue
|
||||
replace_tag(filename)
|
||||
shutil.move(tmp_whl_name, whl_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
embed_library(
|
||||
sys.argv[1], "libgomp.so.1", len(sys.argv) > 2 and sys.argv[2] == "--update-tag"
|
||||
)
|
||||
@ -4,14 +4,17 @@ set -ex
|
||||
|
||||
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
# Source the common build script for architecture-specific configurations (MKLDNN, ACL, etc.)
|
||||
source "${SCRIPTPATH}/../pytorch/build.sh" || true
|
||||
|
||||
case "${GPU_ARCH_TYPE:-BLANK}" in
|
||||
cuda)
|
||||
cuda | cuda-aarch64)
|
||||
bash "${SCRIPTPATH}/build_cuda.sh"
|
||||
;;
|
||||
rocm)
|
||||
bash "${SCRIPTPATH}/build_rocm.sh"
|
||||
;;
|
||||
cpu | cpu-cxx11-abi | cpu-s390x)
|
||||
cpu | cpu-cxx11-abi | cpu-aarch64 | cpu-s390x)
|
||||
bash "${SCRIPTPATH}/build_cpu.sh"
|
||||
;;
|
||||
xpu)
|
||||
|
||||
@ -18,12 +18,31 @@ retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
# Detect architecture first
|
||||
ARCH=$(uname -m)
|
||||
echo "Detected architecture: $ARCH"
|
||||
|
||||
PLATFORM=""
|
||||
# TODO move this into the Docker images
|
||||
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
|
||||
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
retry yum install -q -y zip openssl
|
||||
PLATFORM="manylinux_2_28_x86_64"
|
||||
# Set platform based on architecture
|
||||
case $ARCH in
|
||||
x86_64)
|
||||
PLATFORM="manylinux_2_28_x86_64"
|
||||
;;
|
||||
aarch64)
|
||||
PLATFORM="manylinux_2_28_aarch64"
|
||||
;;
|
||||
s390x)
|
||||
PLATFORM="manylinux_2_28_s390x"
|
||||
;;
|
||||
*)
|
||||
echo "Unsupported architecture: $ARCH"
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
retry dnf install -q -y zip openssl
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
@ -38,6 +57,8 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "Platform set to: $PLATFORM"
|
||||
|
||||
# We use the package name to test the package by passing this to 'pip install'
|
||||
# This is the env variable that setup.py uses to name the package. Note that
|
||||
# pip 'normalizes' the name first by changing all - to _
|
||||
@ -299,8 +320,8 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
# ROCm workaround for roctracer dlopens
|
||||
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
patchedpath=$(fname_without_so_number $destpath)
|
||||
# Keep the so number for XPU dependencies and libgomp.so.1 to avoid twice load
|
||||
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" ]]; then
|
||||
# Keep the so number for XPU dependencies, libgomp.so.1, ACL libraries, and NVPL libraries to avoid twice load
|
||||
elif [[ "$DESIRED_CUDA" == *"xpu"* || "$filename" == "libgomp.so.1" || "$filename" == libarm_compute* || "$filename" == libnvpl* || "$filename" == "libgfortran.so.5" ]]; then
|
||||
patchedpath=$destpath
|
||||
else
|
||||
patchedpath=$(fname_with_sha256 $destpath)
|
||||
@ -346,9 +367,22 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
done
|
||||
|
||||
# create Manylinux 2_28 tag this needs to happen before regenerate the RECORD
|
||||
if [[ $PLATFORM == "manylinux_2_28_x86_64" && $GPU_ARCH_TYPE != "cpu-s390x" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
# Support all architectures (x86_64, aarch64, s390x)
|
||||
if [[ "$IS_MANYLINUX2_28" == "1" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
wheel_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/WHEEL/g')
|
||||
sed -i -e s#linux_x86_64#"${PLATFORM}"# $wheel_file;
|
||||
echo "Updating wheel tag for $ARCH architecture"
|
||||
# Replace linux_* with manylinux_2_28_* based on architecture
|
||||
case $ARCH in
|
||||
x86_64)
|
||||
sed -i -e 's#linux_x86_64#manylinux_2_28_x86_64#g' $wheel_file
|
||||
;;
|
||||
aarch64)
|
||||
sed -i -e 's#linux_aarch64#manylinux_2_28_aarch64#g' $wheel_file
|
||||
;;
|
||||
s390x)
|
||||
sed -i -e 's#linux_s390x#manylinux_2_28_s390x#g' $wheel_file
|
||||
;;
|
||||
esac
|
||||
fi
|
||||
|
||||
# regenerate the RECORD file with new hashes
|
||||
|
||||
@ -15,6 +15,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
# Detect architecture
|
||||
ARCH=$(uname -m)
|
||||
echo "Building CPU wheel for architecture: $ARCH"
|
||||
|
||||
WHEELHOUSE_DIR="wheelhousecpu"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_housecpu"
|
||||
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
|
||||
@ -34,8 +38,10 @@ elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
if [[ "$(uname -m)" == "s390x" ]]; then
|
||||
if [[ "$ARCH" == "s390x" ]]; then
|
||||
LIBGOMP_PATH="/usr/lib/s390x-linux-gnu/libgomp.so.1"
|
||||
elif [[ "$ARCH" == "aarch64" ]]; then
|
||||
LIBGOMP_PATH="/usr/lib/aarch64-linux-gnu/libgomp.so.1"
|
||||
else
|
||||
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
|
||||
fi
|
||||
@ -49,6 +55,34 @@ DEPS_SONAME=(
|
||||
"libgomp.so.1"
|
||||
)
|
||||
|
||||
# Add ARM-specific library dependencies for CPU builds
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Adding ARM-specific CPU library dependencies"
|
||||
|
||||
# ARM Compute Library (if available)
|
||||
if [[ -d "/acl/build" ]]; then
|
||||
echo "Adding ARM Compute Library for CPU"
|
||||
DEPS_LIST+=(
|
||||
"/acl/build/libarm_compute.so"
|
||||
"/acl/build/libarm_compute_graph.so"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libarm_compute.so"
|
||||
"libarm_compute_graph.so"
|
||||
)
|
||||
fi
|
||||
|
||||
# ARM system libraries
|
||||
DEPS_LIST+=(
|
||||
"/usr/lib64/libgfortran.so.5"
|
||||
"/opt/OpenBLAS/lib/libopenblas.so.0"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libgfortran.so.5"
|
||||
"libopenblas.so.0"
|
||||
)
|
||||
fi
|
||||
|
||||
rm -rf /usr/local/cuda*
|
||||
|
||||
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
|
||||
|
||||
@ -29,6 +29,10 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
# Detect architecture
|
||||
ARCH=$(uname -m)
|
||||
echo "Building for architecture: $ARCH"
|
||||
|
||||
# Determine CUDA version and architectures to build for
|
||||
#
|
||||
# NOTE: We should first check `DESIRED_CUDA` when determining `CUDA_VERSION`,
|
||||
@ -53,34 +57,60 @@ fi
|
||||
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
|
||||
# Function to remove architectures from a list
|
||||
remove_archs() {
|
||||
local result="$1"
|
||||
shift
|
||||
for arch in "$@"; do
|
||||
result="${result//${arch};/}"
|
||||
done
|
||||
echo "$result"
|
||||
}
|
||||
|
||||
# Function to filter CUDA architectures for aarch64
|
||||
# aarch64 ARM GPUs only support certain compute capabilities
|
||||
# Keep: 8.0 (A100), 9.0+ (Hopper, Grace Hopper, newer)
|
||||
# Remove: < 8.0 (no ARM GPUs), 8.6 (x86_64 RTX 3090/A6000 only)
|
||||
filter_aarch64_archs() {
|
||||
local arch_list="$1"
|
||||
# Explicitly remove architectures not needed on aarch64
|
||||
arch_list=$(remove_archs "$arch_list" "5.0" "6.0" "7.0" "7.5" "8.6")
|
||||
echo "$arch_list"
|
||||
}
|
||||
|
||||
# Base: Common architectures across all modern CUDA versions
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0"
|
||||
|
||||
case ${CUDA_VERSION} in
|
||||
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
|
||||
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
|
||||
12.8)
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
|
||||
;;
|
||||
12.9)
|
||||
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
|
||||
# WAR to resolve the ld error in libtorch build with CUDA 12.9
|
||||
12.6) TORCH_CUDA_ARCH_LIST="5.0;6.0;${TORCH_CUDA_ARCH_LIST}" ;; # Only 12.6 includes Legacy Maxwell/Pascal that will be removed in future releases
|
||||
12.8) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0" ;; # +Hopper/Blackwell support
|
||||
12.9) TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};10.0;12.0+PTX" # +Hopper/Blackwell support + PTX for forward compatibility
|
||||
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//7.0;/}" # Remove 7.0 to resolve the ld error
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST//8.6;/}" # Remove 8.6 for libtorch
|
||||
fi
|
||||
;;
|
||||
13.0)
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX"
|
||||
;;
|
||||
12.6)
|
||||
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
|
||||
;;
|
||||
*)
|
||||
echo "unknown cuda version $CUDA_VERSION"
|
||||
exit 1
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;$([[ "$ARCH" == "aarch64" ]] && echo "11.0;" || echo "")12.0+PTX"
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
export BUILD_BUNDLE_PTXAS=1
|
||||
;;
|
||||
*) echo "unknown cuda version $CUDA_VERSION"; exit 1 ;;
|
||||
esac
|
||||
|
||||
# Filter for aarch64: Remove < 8.0 and 8.6
|
||||
[[ "$ARCH" == "aarch64" ]] && TORCH_CUDA_ARCH_LIST=$(filter_aarch64_archs "$TORCH_CUDA_ARCH_LIST")
|
||||
|
||||
echo "TORCH_CUDA_ARCH_LIST set to: $TORCH_CUDA_ARCH_LIST"
|
||||
export TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
|
||||
echo "${TORCH_CUDA_ARCH_LIST}"
|
||||
|
||||
# Disable MAGMA for aarch64 as pre-built libraries are x86-64 only
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Disabling MAGMA for aarch64 architecture"
|
||||
export USE_MAGMA=0
|
||||
fi
|
||||
|
||||
# Package directories
|
||||
WHEELHOUSE_DIR="wheelhouse$cuda_version_nodot"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_house$cuda_version_nodot"
|
||||
@ -244,6 +274,51 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Add ARM-specific library dependencies
|
||||
if [[ "$ARCH" == "aarch64" ]]; then
|
||||
echo "Adding ARM-specific library dependencies"
|
||||
|
||||
# ARM Compute Library (if available)
|
||||
if [[ -d "/acl/build" ]]; then
|
||||
echo "Adding ARM Compute Library"
|
||||
DEPS_LIST+=(
|
||||
"/acl/build/libarm_compute.so"
|
||||
"/acl/build/libarm_compute_graph.so"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libarm_compute.so"
|
||||
"libarm_compute_graph.so"
|
||||
)
|
||||
fi
|
||||
|
||||
# ARM system libraries
|
||||
DEPS_LIST+=(
|
||||
"/lib64/libgomp.so.1"
|
||||
"/usr/lib64/libgfortran.so.5"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libgomp.so.1"
|
||||
"libgfortran.so.5"
|
||||
)
|
||||
|
||||
# NVPL libraries (ARM optimized BLAS/LAPACK)
|
||||
if [[ -d "/usr/local/lib" && -f "/usr/local/lib/libnvpl_blas_lp64_gomp.so.0" ]]; then
|
||||
echo "Adding NVPL libraries for ARM"
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0"
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0"
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0"
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libnvpl_lapack_lp64_gomp.so.0"
|
||||
"libnvpl_blas_lp64_gomp.so.0"
|
||||
"libnvpl_lapack_core.so.0"
|
||||
"libnvpl_blas_core.so.0"
|
||||
)
|
||||
fi
|
||||
fi
|
||||
|
||||
# run_tests.sh requires DESIRED_CUDA to know what tests to exclude
|
||||
export DESIRED_CUDA="$cuda_version_nodot"
|
||||
|
||||
@ -251,9 +326,11 @@ export DESIRED_CUDA="$cuda_version_nodot"
|
||||
rm -rf /usr/local/cuda || true
|
||||
ln -s "/usr/local/cuda-${CUDA_VERSION}" /usr/local/cuda
|
||||
|
||||
# Switch `/usr/local/magma` to the desired CUDA version
|
||||
rm -rf /usr/local/magma || true
|
||||
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
|
||||
# Switch `/usr/local/magma` to the desired CUDA version (skip for aarch64)
|
||||
if [[ "$ARCH" != "aarch64" ]]; then
|
||||
rm -rf /usr/local/magma || true
|
||||
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
|
||||
fi
|
||||
|
||||
export CUDA_VERSION=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev) # 10.0.130
|
||||
export CUDA_VERSION_SHORT=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev | cut -f1,2 -d".") # 10.0
|
||||
|
||||
@ -86,10 +86,20 @@ else
|
||||
fi
|
||||
fi
|
||||
|
||||
# Enable MKLDNN with ARM Compute Library for ARM builds
|
||||
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
|
||||
export USE_MKLDNN=1
|
||||
|
||||
# ACL is required for aarch64 builds
|
||||
if [[ ! -d "/acl" ]]; then
|
||||
echo "ERROR: ARM Compute Library not found at /acl"
|
||||
echo "ACL is required for aarch64 builds. Check Docker image setup."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export USE_MKLDNN_ACL=1
|
||||
export ACL_ROOT_DIR=/acl
|
||||
echo "ARM Compute Library enabled for MKLDNN: ACL_ROOT_DIR=/acl"
|
||||
fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then
|
||||
|
||||
@ -100,337 +100,6 @@ def check_lib_statically_linked_libstdc_cxx_abi_symbols(lib: str) -> None:
|
||||
)
|
||||
|
||||
|
||||
def _compile_and_extract_symbols(
|
||||
cpp_content: str, compile_flags: list[str], exclude_list: list[str] | None = None
|
||||
) -> list[str]:
|
||||
"""
|
||||
Helper to compile a C++ file and extract all symbols.
|
||||
|
||||
Args:
|
||||
cpp_content: C++ source code to compile
|
||||
compile_flags: Compilation flags
|
||||
exclude_list: List of symbol names to exclude. Defaults to ["main"].
|
||||
|
||||
Returns:
|
||||
List of all symbols found in the object file (excluding those in exclude_list).
|
||||
"""
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
if exclude_list is None:
|
||||
exclude_list = ["main"]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
tmppath = Path(tmpdir)
|
||||
cpp_file = tmppath / "test.cpp"
|
||||
obj_file = tmppath / "test.o"
|
||||
|
||||
cpp_file.write_text(cpp_content)
|
||||
|
||||
result = subprocess.run(
|
||||
compile_flags + [str(cpp_file), "-o", str(obj_file)],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
timeout=60,
|
||||
)
|
||||
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Compilation failed: {result.stderr}")
|
||||
|
||||
symbols = get_symbols(str(obj_file))
|
||||
|
||||
# Return all symbol names, excluding those in the exclude list
|
||||
return [name for _addr, _stype, name in symbols if name not in exclude_list]
|
||||
|
||||
|
||||
def check_stable_only_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test TORCH_STABLE_ONLY and TORCH_TARGET_VERSION by compiling test code and comparing symbol counts.
|
||||
|
||||
This approach tests:
|
||||
1. WITHOUT macros -> many torch symbols exposed
|
||||
2. WITH TORCH_STABLE_ONLY -> zero torch symbols (all hidden)
|
||||
3. WITH TORCH_TARGET_VERSION -> zero torch symbols (all hidden)
|
||||
4. WITH both macros -> zero torch symbols (all hidden)
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
test_cpp_content = """
|
||||
// Main torch C++ API headers
|
||||
#include <torch/torch.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
// ATen tensor library
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
// Core c10 headers (commonly used)
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/core/DeviceType.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/core/TensorOptions.h>
|
||||
#include <c10/util/Optional.h>
|
||||
|
||||
int main() { return 0; }
|
||||
"""
|
||||
|
||||
base_compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c", # Compile only, don't link
|
||||
]
|
||||
|
||||
# Compile WITHOUT any macros
|
||||
symbols_without = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=base_compile_flags,
|
||||
)
|
||||
|
||||
# We expect constexpr symbols, inline functions used by other headers etc.
|
||||
# to produce symbols
|
||||
num_symbols_without = len(symbols_without)
|
||||
print(f"Found {num_symbols_without} symbols without any macros defined")
|
||||
assert num_symbols_without != 0, (
|
||||
"Expected a non-zero number of symbols without any macros"
|
||||
)
|
||||
|
||||
# Compile WITH TORCH_STABLE_ONLY (expect 0 symbols)
|
||||
compile_flags_with_stable_only = base_compile_flags + ["-DTORCH_STABLE_ONLY"]
|
||||
|
||||
symbols_with_stable_only = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_stable_only,
|
||||
)
|
||||
|
||||
num_symbols_with_stable_only = len(symbols_with_stable_only)
|
||||
assert num_symbols_with_stable_only == 0, (
|
||||
f"Expected no symbols with TORCH_STABLE_ONLY macro, but found {num_symbols_with_stable_only}"
|
||||
)
|
||||
|
||||
# Compile WITH TORCH_TARGET_VERSION (expect 0 symbols)
|
||||
compile_flags_with_target_version = base_compile_flags + [
|
||||
"-DTORCH_TARGET_VERSION=1"
|
||||
]
|
||||
|
||||
symbols_with_target_version = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_target_version,
|
||||
)
|
||||
|
||||
num_symbols_with_target_version = len(symbols_with_target_version)
|
||||
assert num_symbols_with_target_version == 0, (
|
||||
f"Expected no symbols with TORCH_TARGET_VERSION macro, but found {num_symbols_with_target_version}"
|
||||
)
|
||||
|
||||
# Compile WITH both macros (expect 0 symbols)
|
||||
compile_flags_with_both = base_compile_flags + [
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
"-DTORCH_TARGET_VERSION=1",
|
||||
]
|
||||
|
||||
symbols_with_both = _compile_and_extract_symbols(
|
||||
cpp_content=test_cpp_content,
|
||||
compile_flags=compile_flags_with_both,
|
||||
)
|
||||
|
||||
num_symbols_with_both = len(symbols_with_both)
|
||||
assert num_symbols_with_both == 0, (
|
||||
f"Expected no symbols with both macros, but found {num_symbols_with_both}"
|
||||
)
|
||||
|
||||
|
||||
def check_stable_api_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that stable API headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
The torch/csrc/stable/c/shim.h header is tested in check_stable_c_shim_symbols
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
stable_dir = include_dir / "torch" / "csrc" / "stable"
|
||||
assert stable_dir.exists(), f"Expected {stable_dir} to be present"
|
||||
|
||||
stable_headers = list(stable_dir.rglob("*.h"))
|
||||
if not stable_headers:
|
||||
raise RuntimeError("Could not find any stable headers")
|
||||
|
||||
includes = []
|
||||
for header in stable_headers:
|
||||
rel_path = header.relative_to(include_dir)
|
||||
includes.append(f"#include <{rel_path.as_posix()}>")
|
||||
|
||||
includes_str = "\n".join(includes)
|
||||
test_stable_content = f"""
|
||||
{includes_str}
|
||||
int main() {{ return 0; }}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_stable = _compile_and_extract_symbols(
|
||||
cpp_content=test_stable_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_stable = len(symbols_stable)
|
||||
print(f"Found {num_symbols_stable} symbols in torch/csrc/stable")
|
||||
assert num_symbols_stable > 0, (
|
||||
f"Expected stable headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_stable} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_headeronly_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that header-only utility headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# Find all headers in torch/headeronly
|
||||
headeronly_dir = include_dir / "torch" / "headeronly"
|
||||
assert headeronly_dir.exists(), f"Expected {headeronly_dir} to be present"
|
||||
headeronly_headers = list(headeronly_dir.rglob("*.h"))
|
||||
if not headeronly_headers:
|
||||
raise RuntimeError("Could not find any headeronly headers")
|
||||
|
||||
# Filter out platform-specific headers that may not compile everywhere
|
||||
platform_specific_keywords = [
|
||||
"cpu/vec",
|
||||
]
|
||||
|
||||
filtered_headers = []
|
||||
for header in headeronly_headers:
|
||||
rel_path = header.relative_to(include_dir).as_posix()
|
||||
if not any(
|
||||
keyword in rel_path.lower() for keyword in platform_specific_keywords
|
||||
):
|
||||
filtered_headers.append(header)
|
||||
|
||||
includes = []
|
||||
for header in filtered_headers:
|
||||
rel_path = header.relative_to(include_dir)
|
||||
includes.append(f"#include <{rel_path.as_posix()}>")
|
||||
|
||||
includes_str = "\n".join(includes)
|
||||
test_headeronly_content = f"""
|
||||
{includes_str}
|
||||
int main() {{ return 0; }}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_headeronly = _compile_and_extract_symbols(
|
||||
cpp_content=test_headeronly_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_headeronly = len(symbols_headeronly)
|
||||
print(f"Found {num_symbols_headeronly} symbols in torch/headeronly")
|
||||
assert num_symbols_headeronly > 0, (
|
||||
f"Expected headeronly headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_headeronly} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_aoti_shim_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that AOTI shim headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# There are no constexpr symbols etc., so we need to actually use functions
|
||||
# so that some symbols are found.
|
||||
test_shim_content = """
|
||||
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
||||
int main() {
|
||||
int32_t (*fp1)() = &aoti_torch_device_type_cpu;
|
||||
int32_t (*fp2)() = &aoti_torch_dtype_float32;
|
||||
(void)fp1; (void)fp2;
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_shim = _compile_and_extract_symbols(
|
||||
cpp_content=test_shim_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_shim = len(symbols_shim)
|
||||
assert num_symbols_shim > 0, (
|
||||
f"Expected shim headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_shim} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_stable_c_shim_symbols(install_root: Path) -> None:
|
||||
"""
|
||||
Test that stable C shim headers still expose symbols with TORCH_STABLE_ONLY.
|
||||
"""
|
||||
include_dir = install_root / "include"
|
||||
assert include_dir.exists(), f"Expected {include_dir} to be present"
|
||||
|
||||
# Check if the stable C shim exists
|
||||
stable_shim = include_dir / "torch" / "csrc" / "stable" / "c" / "shim.h"
|
||||
if not stable_shim.exists():
|
||||
raise RuntimeError("Could not find stable c shim")
|
||||
|
||||
# There are no constexpr symbols etc., so we need to actually use functions
|
||||
# so that some symbols are found.
|
||||
test_stable_shim_content = """
|
||||
#include <torch/csrc/stable/c/shim.h>
|
||||
int main() {
|
||||
// Reference stable C API functions to create undefined symbols
|
||||
AOTITorchError (*fp1)(const char*, uint32_t*, int32_t*) = &torch_parse_device_string;
|
||||
AOTITorchError (*fp2)(uint32_t*) = &torch_get_num_threads;
|
||||
(void)fp1; (void)fp2;
|
||||
return 0;
|
||||
}
|
||||
"""
|
||||
|
||||
compile_flags = [
|
||||
"g++",
|
||||
"-std=c++17",
|
||||
f"-I{include_dir}",
|
||||
f"-I{include_dir}/torch/csrc/api/include",
|
||||
"-c",
|
||||
"-DTORCH_STABLE_ONLY",
|
||||
]
|
||||
|
||||
symbols_stable_shim = _compile_and_extract_symbols(
|
||||
cpp_content=test_stable_shim_content,
|
||||
compile_flags=compile_flags,
|
||||
)
|
||||
num_symbols_stable_shim = len(symbols_stable_shim)
|
||||
assert num_symbols_stable_shim > 0, (
|
||||
f"Expected stable C shim headers to expose symbols with TORCH_STABLE_ONLY, "
|
||||
f"but found {num_symbols_stable_shim} symbols"
|
||||
)
|
||||
|
||||
|
||||
def check_lib_symbols_for_abi_correctness(lib: str) -> None:
|
||||
print(f"lib: {lib}")
|
||||
cxx11_symbols = grep_symbols(lib, LIBTORCH_CXX11_PATTERNS)
|
||||
@ -460,13 +129,6 @@ def main() -> None:
|
||||
check_lib_symbols_for_abi_correctness(libtorch_cpu_path)
|
||||
check_lib_statically_linked_libstdc_cxx_abi_symbols(libtorch_cpu_path)
|
||||
|
||||
# Check symbols when TORCH_STABLE_ONLY is defined
|
||||
check_stable_only_symbols(install_root)
|
||||
check_stable_api_symbols(install_root)
|
||||
check_headeronly_symbols(install_root)
|
||||
check_aoti_shim_symbols(install_root)
|
||||
check_stable_c_shim_symbols(install_root)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -389,6 +389,13 @@ test_lazy_tensor_meta_reference_disabled() {
|
||||
export -n TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE
|
||||
}
|
||||
|
||||
test_dynamo_core() {
|
||||
time python test/run_test.py \
|
||||
--include-dynamo-core-tests \
|
||||
--verbose \
|
||||
--upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_dynamo_wrapped_shard() {
|
||||
if [[ -z "$NUM_TEST_SHARDS" ]]; then
|
||||
@ -1814,6 +1821,8 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
|
||||
test_inductor_shard "${SHARD_NUMBER}"
|
||||
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
|
||||
test_einops
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_core* ]]; then
|
||||
test_dynamo_core
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
|
||||
install_torchvision
|
||||
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
|
||||
|
||||
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
07b6cbde121417a70e4dc871adb6d27030e0ce3f
|
||||
ee1a1350eb37804b94334768f328144f058f14e9
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
acccf86477759b2d3500f1ae1be065f7b1e409ec
|
||||
2d82dc5caa336d179d9b46ac4a0fb8c43d84c5cc
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
e4d25697f9dc5eedaf8f0a5bf085c62c5455a53a
|
||||
94631807d22c09723dd006f7be5beb649d5f88d0
|
||||
|
||||
1
.github/pytorch-probot.yml
vendored
1
.github/pytorch-probot.yml
vendored
@ -7,6 +7,7 @@ ciflow_push_tags:
|
||||
- ciflow/binaries
|
||||
- ciflow/binaries_libtorch
|
||||
- ciflow/binaries_wheel
|
||||
- ciflow/dynamo
|
||||
- ciflow/h100
|
||||
- ciflow/h100-cutlass-backend
|
||||
- ciflow/h100-distributed
|
||||
|
||||
2
.github/scripts/generate_pytorch_version.py
vendored
2
.github/scripts/generate_pytorch_version.py
vendored
@ -50,7 +50,7 @@ def get_tag() -> str:
|
||||
|
||||
def get_base_version() -> str:
|
||||
root = get_pytorch_root()
|
||||
dirty_version = open(root / "version.txt").read().strip()
|
||||
dirty_version = Path(root / "version.txt").read_text().strip()
|
||||
# Strips trailing a0 from version.txt, not too sure why it's there in the
|
||||
# first place
|
||||
return re.sub(LEGACY_BASE_VERSION_SUFFIX_PATTERN, "", dirty_version)
|
||||
|
||||
7
.github/workflows/_binary-build-linux.yml
vendored
7
.github/workflows/_binary-build-linux.yml
vendored
@ -260,11 +260,8 @@ jobs:
|
||||
"${DOCKER_IMAGE}"
|
||||
)
|
||||
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"aarch64"* ]]; then
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/aarch64_linux/aarch64_ci_build.sh"
|
||||
else
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
|
||||
fi
|
||||
# Unified build script for all architectures (x86_64, aarch64, s390x)
|
||||
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
|
||||
|
||||
- name: Chown artifacts
|
||||
if: ${{ steps.filter.outputs.is-test-matrix-empty == 'False' && inputs.build_environment != 'linux-s390x-binary-manywheel' }}
|
||||
|
||||
2
.github/workflows/_linux-test.yml
vendored
2
.github/workflows/_linux-test.yml
vendored
@ -326,7 +326,7 @@ jobs:
|
||||
SCCACHE_BUCKET: ${{ !contains(matrix.runner, 'b200') && 'ossci-compiler-cache-circleci-v2' || '' }}
|
||||
SCCACHE_REGION: ${{ !contains(matrix.runner, 'b200') && 'us-east-1' || '' }}
|
||||
SHM_SIZE: ${{ contains(inputs.build-environment, 'cuda') && '2g' || '1g' }}
|
||||
DOCKER_IMAGE: ${{ inputs.docker-image }}
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
|
||||
XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla
|
||||
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}
|
||||
|
||||
70
.github/workflows/dynamo-unittest.yml
vendored
Normal file
70
.github/workflows/dynamo-unittest.yml
vendored
Normal file
@ -0,0 +1,70 @@
|
||||
# Workflow: Dynamo Unit Test
|
||||
# runs unit tests for dynamo.
|
||||
name: dynamo-unittest
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- ciflow/dynamo/*
|
||||
workflow_call:
|
||||
schedule:
|
||||
- cron: 29 8 * * * # about 1:29am PDT
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
opt_out_experiments: lf
|
||||
|
||||
dynamo-build:
|
||||
name: dynamo-build
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.11', '3.12']
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_core", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
dynamo-test:
|
||||
name: dynamo-test
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: [get-label-type, dynamo-build]
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.11', '3.12']
|
||||
with:
|
||||
build-environment: linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
docker-image: ci-image:pytorch-linux-jammy-py${{ matrix.python-version }}-clang12
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_core", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 1, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 2, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
{ config: "dynamo_wrapped", shard: 3, num_shards: 3, runner: "${{ needs.get-label-type.outputs.label-type }}linux.c7i.2xlarge" },
|
||||
]}
|
||||
secrets: inherit
|
||||
330
.spin/cmds.py
Normal file
330
.spin/cmds.py
Normal file
@ -0,0 +1,330 @@
|
||||
import hashlib
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import click
|
||||
import spin
|
||||
|
||||
|
||||
def file_digest(file, algorithm: str):
|
||||
try:
|
||||
return hashlib.file_digest(file, algorithm)
|
||||
except AttributeError:
|
||||
pass # Fallback to manual implementation below
|
||||
hash = hashlib.new(algorithm)
|
||||
while chunk := file.read(8192):
|
||||
hash.update(chunk)
|
||||
return hash
|
||||
|
||||
|
||||
def _hash_file(file):
|
||||
with open(file, "rb") as f:
|
||||
hash = file_digest(f, "sha256")
|
||||
return hash.hexdigest()
|
||||
|
||||
|
||||
def _hash_files(files):
|
||||
hashes = {file: _hash_file(file) for file in files}
|
||||
return hashes
|
||||
|
||||
|
||||
def _read_hashes(hash_file: Path):
|
||||
if not hash_file.exists():
|
||||
return {}
|
||||
with hash_file.open("r") as f:
|
||||
lines = f.readlines()
|
||||
hashes = {}
|
||||
for line in lines:
|
||||
hash = line[:64]
|
||||
file = line[66:].strip()
|
||||
hashes[file] = hash
|
||||
return hashes
|
||||
|
||||
|
||||
def _updated_hashes(hash_file, files_to_hash):
|
||||
old_hashes = _read_hashes(hash_file)
|
||||
new_hashes = _hash_files(files_to_hash)
|
||||
if new_hashes != old_hashes:
|
||||
return new_hashes
|
||||
return None
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_version():
|
||||
"""Regenerate version.py."""
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.generate_torch_version",
|
||||
"--is-debug=false",
|
||||
]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
TYPE_STUBS = [
|
||||
(
|
||||
"Pytorch type stubs",
|
||||
Path(".lintbin/.pytorch-type-stubs.sha256"),
|
||||
[
|
||||
"aten/src/ATen/native/native_functions.yaml",
|
||||
"aten/src/ATen/native/tags.yaml",
|
||||
"tools/autograd/deprecated.yaml",
|
||||
],
|
||||
[
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.pyi.gen_pyi",
|
||||
"--native-functions-path",
|
||||
"aten/src/ATen/native/native_functions.yaml",
|
||||
"--tags-path",
|
||||
"aten/src/ATen/native/tags.yaml",
|
||||
"--deprecated-functions-path",
|
||||
"tools/autograd/deprecated.yaml",
|
||||
],
|
||||
),
|
||||
(
|
||||
"Datapipes type stubs",
|
||||
None,
|
||||
[],
|
||||
[
|
||||
sys.executable,
|
||||
"torch/utils/data/datapipes/gen_pyi.py",
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_type_stubs():
|
||||
"""Regenerate type stubs."""
|
||||
for name, hash_file, files_to_hash, cmd in TYPE_STUBS:
|
||||
if hash_file:
|
||||
if hashes := _updated_hashes(hash_file, files_to_hash):
|
||||
click.echo(
|
||||
f"Changes detected in type stub files for {name}. Regenerating..."
|
||||
)
|
||||
spin.util.run(cmd)
|
||||
hash_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
with hash_file.open("w") as f:
|
||||
for file, hash in hashes.items():
|
||||
f.write(f"{hash} {file}\n")
|
||||
click.echo("Type stubs and hashes updated.")
|
||||
else:
|
||||
click.echo(f"No changes detected in type stub files for {name}.")
|
||||
else:
|
||||
click.echo(f"No hash file for {name}. Regenerating...")
|
||||
spin.util.run(cmd)
|
||||
click.echo("Type stubs regenerated.")
|
||||
|
||||
|
||||
@click.command()
|
||||
def regenerate_clangtidy_files():
|
||||
"""Regenerate clang-tidy files."""
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"tools.linter.clang_tidy.generate_build_files",
|
||||
]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
#: These linters are expected to need less than 3s cpu time total
|
||||
VERY_FAST_LINTERS = {
|
||||
"ATEN_CPU_GPU_AGNOSTIC",
|
||||
"BAZEL_LINTER",
|
||||
"C10_NODISCARD",
|
||||
"C10_UNUSED",
|
||||
"CALL_ONCE",
|
||||
"CMAKE_MINIMUM_REQUIRED",
|
||||
"CONTEXT_DECORATOR",
|
||||
"COPYRIGHT",
|
||||
"CUBINCLUDE",
|
||||
"DEPLOY_DETECTION",
|
||||
"ERROR_PRONE_ISINSTANCE",
|
||||
"EXEC",
|
||||
"HEADER_ONLY_LINTER",
|
||||
"IMPORT_LINTER",
|
||||
"INCLUDE",
|
||||
"LINTRUNNER_VERSION",
|
||||
"MERGE_CONFLICTLESS_CSV",
|
||||
"META_NO_CREATE_UNBACKED",
|
||||
"NEWLINE",
|
||||
"NOQA",
|
||||
"NO_WORKFLOWS_ON_FORK",
|
||||
"ONCE_FLAG",
|
||||
"PYBIND11_INCLUDE",
|
||||
"PYBIND11_SPECIALIZATION",
|
||||
"PYPIDEP",
|
||||
"PYPROJECT",
|
||||
"RAWCUDA",
|
||||
"RAWCUDADEVICE",
|
||||
"ROOT_LOGGING",
|
||||
"TABS",
|
||||
"TESTOWNERS",
|
||||
"TYPEIGNORE",
|
||||
"TYPENOSKIP",
|
||||
"WORKFLOWSYNC",
|
||||
}
|
||||
|
||||
|
||||
#: These linters are expected to take a few seconds, but less than 10s cpu time total
|
||||
FAST_LINTERS = {
|
||||
"CMAKE",
|
||||
"DOCSTRING_LINTER",
|
||||
"GHA",
|
||||
"NATIVEFUNCTIONS",
|
||||
"RUFF",
|
||||
"SET_LINTER",
|
||||
"SHELLCHECK",
|
||||
"SPACES",
|
||||
}
|
||||
|
||||
|
||||
#: These linters are expected to take more than 10s cpu time total;
|
||||
#: some need more than 1 hour.
|
||||
SLOW_LINTERS = {
|
||||
"ACTIONLINT",
|
||||
"CLANGFORMAT",
|
||||
"CLANGTIDY",
|
||||
"CODESPELL",
|
||||
"FLAKE8",
|
||||
"GB_REGISTRY",
|
||||
"PYFMT",
|
||||
"PYREFLY",
|
||||
"TEST_DEVICE_BIAS",
|
||||
"TEST_HAS_MAIN",
|
||||
}
|
||||
|
||||
|
||||
ALL_LINTERS = VERY_FAST_LINTERS | FAST_LINTERS | SLOW_LINTERS
|
||||
|
||||
|
||||
LINTRUNNER_CACHE_INFO = (
|
||||
Path(".lintbin/.lintrunner.sha256"),
|
||||
[
|
||||
"requirements.txt",
|
||||
"pyproject.toml",
|
||||
".lintrunner.toml",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
LINTRUNNER_BASE_CMD = [
|
||||
"uvx",
|
||||
"--python",
|
||||
"3.10",
|
||||
"lintrunner@0.12.7",
|
||||
]
|
||||
|
||||
|
||||
@click.command()
|
||||
def setup_lint():
|
||||
"""Set up lintrunner with current CI version."""
|
||||
cmd = LINTRUNNER_BASE_CMD + ["init"]
|
||||
subprocess.run(cmd, check=True, capture_output=True, text=True)
|
||||
|
||||
|
||||
def _check_linters():
|
||||
cmd = LINTRUNNER_BASE_CMD + ["list"]
|
||||
ret = spin.util.run(cmd, output=False, stderr=subprocess.PIPE)
|
||||
linters = {l.strip() for l in ret.stdout.decode().strip().split("\n")[1:]}
|
||||
unknown_linters = linters - ALL_LINTERS
|
||||
missing_linters = ALL_LINTERS - linters
|
||||
if unknown_linters:
|
||||
click.secho(
|
||||
f"Unknown linters found; please add them to the correct category "
|
||||
f"in .spin/cmds.py: {', '.join(unknown_linters)}",
|
||||
fg="yellow",
|
||||
)
|
||||
if missing_linters:
|
||||
click.secho(
|
||||
f"Missing linters found; please update the corresponding category "
|
||||
f"in .spin/cmds.py: {', '.join(missing_linters)}",
|
||||
fg="yellow",
|
||||
)
|
||||
return unknown_linters, missing_linters
|
||||
|
||||
|
||||
@spin.util.extend_command(
|
||||
setup_lint,
|
||||
doc=f"""
|
||||
If configuration has changed, update lintrunner.
|
||||
|
||||
Compares the stored old hashes of configuration files with new ones and
|
||||
performs setup via setup-lint if the hashes have changed.
|
||||
Hashes are stored in {LINTRUNNER_CACHE_INFO[0]}; the following files are
|
||||
considered: {", ".join(LINTRUNNER_CACHE_INFO[1])}.
|
||||
""",
|
||||
)
|
||||
@click.pass_context
|
||||
def lazy_setup_lint(ctx, parent_callback, **kwargs):
|
||||
if hashes := _updated_hashes(*LINTRUNNER_CACHE_INFO):
|
||||
click.echo(
|
||||
"Changes detected in lint configuration files. Setting up linting tools..."
|
||||
)
|
||||
parent_callback(**kwargs)
|
||||
hash_file = LINTRUNNER_CACHE_INFO[0]
|
||||
hash_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
with hash_file.open("w") as f:
|
||||
for file, hash in hashes.items():
|
||||
f.write(f"{hash} {file}\n")
|
||||
click.echo("Linting tools set up and hashes updated.")
|
||||
else:
|
||||
click.echo("No changes detected in lint configuration files. Skipping setup.")
|
||||
click.echo("Regenerating version...")
|
||||
ctx.invoke(regenerate_version)
|
||||
click.echo("Regenerating type stubs...")
|
||||
ctx.invoke(regenerate_type_stubs)
|
||||
click.echo("Done.")
|
||||
_check_linters()
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("-a", "--apply-patches", is_flag=True)
|
||||
@click.pass_context
|
||||
def lint(ctx, apply_patches, **kwargs):
|
||||
"""Lint all files."""
|
||||
ctx.invoke(lazy_setup_lint)
|
||||
all_files_linters = VERY_FAST_LINTERS | FAST_LINTERS
|
||||
changed_files_linters = SLOW_LINTERS
|
||||
cmd = LINTRUNNER_BASE_CMD
|
||||
if apply_patches:
|
||||
cmd += ["--apply-patches"]
|
||||
all_files_cmd = cmd + [
|
||||
"--take",
|
||||
",".join(all_files_linters),
|
||||
"--all-files",
|
||||
]
|
||||
spin.util.run(all_files_cmd)
|
||||
changed_files_cmd = cmd + [
|
||||
"--take",
|
||||
",".join(changed_files_linters),
|
||||
]
|
||||
spin.util.run(changed_files_cmd)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.pass_context
|
||||
def fixlint(ctx, **kwargs):
|
||||
"""Autofix all files."""
|
||||
ctx.invoke(lint, apply_patches=True)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.option("-a", "--apply-patches", is_flag=True)
|
||||
@click.pass_context
|
||||
def quicklint(ctx, apply_patches, **kwargs):
|
||||
"""Lint changed files."""
|
||||
ctx.invoke(lazy_setup_lint)
|
||||
cmd = LINTRUNNER_BASE_CMD
|
||||
if apply_patches:
|
||||
cmd += ["--apply-patches"]
|
||||
spin.util.run(cmd)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.pass_context
|
||||
def quickfix(ctx, **kwargs):
|
||||
"""Autofix changed files."""
|
||||
ctx.invoke(quicklint, apply_patches=True)
|
||||
@ -94,6 +94,11 @@ TORCH_API inline void resetPeakStats(c10::DeviceIndex device_index) {
|
||||
at::getDeviceAllocator(device_type)->resetPeakStats(device_index);
|
||||
}
|
||||
|
||||
TORCH_API inline std::pair<size_t, size_t> getMemoryInfo(
|
||||
c10::DeviceIndex device_index) {
|
||||
const auto device_type = getAccelerator(true).value();
|
||||
return at::getDeviceAllocator(device_type)->getMemoryInfo(device_index);
|
||||
}
|
||||
} // namespace at::accelerator
|
||||
|
||||
namespace at {
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <torch/headeronly/core/TensorAccessor.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/ArrayRef.h>
|
||||
#include <c10/util/Deprecated.h>
|
||||
@ -11,252 +12,37 @@
|
||||
|
||||
namespace at {
|
||||
|
||||
// The PtrTraits argument to the TensorAccessor/GenericPackedTensorAccessor
|
||||
// is used to enable the __restrict__ keyword/modifier for the data
|
||||
// passed to cuda.
|
||||
template <typename T>
|
||||
struct DefaultPtrTraits {
|
||||
typedef T* PtrType;
|
||||
};
|
||||
|
||||
using torch::headeronly::DefaultPtrTraits;
|
||||
#if defined(__CUDACC__) || defined(__HIPCC__)
|
||||
template <typename T>
|
||||
struct RestrictPtrTraits {
|
||||
typedef T* __restrict__ PtrType;
|
||||
};
|
||||
using torch::headeronly::RestrictPtrTraits;
|
||||
#endif
|
||||
|
||||
// TensorAccessorBase and TensorAccessor are used for both CPU and CUDA tensors.
|
||||
// For CUDA tensors it is used in device code (only). This means that we restrict ourselves
|
||||
// to functions and types available there (e.g. IntArrayRef isn't).
|
||||
|
||||
// The PtrTraits argument is only relevant to cuda to support `__restrict__` pointers.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class TensorAccessorBase {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
using TensorAccessorBase = torch::headeronly::detail::TensorAccessorBase<c10::IntArrayRef, T, N, PtrTraits, index_t>;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessorBase(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: data_(data_), sizes_(sizes_), strides_(strides_) {}
|
||||
C10_HOST IntArrayRef sizes() const {
|
||||
return IntArrayRef(sizes_,N);
|
||||
}
|
||||
C10_HOST IntArrayRef strides() const {
|
||||
return IntArrayRef(strides_,N);
|
||||
}
|
||||
C10_HOST_DEVICE index_t stride(index_t i) const {
|
||||
return strides_[i];
|
||||
}
|
||||
C10_HOST_DEVICE index_t size(index_t i) const {
|
||||
return sizes_[i];
|
||||
}
|
||||
C10_HOST_DEVICE PtrType data() {
|
||||
return data_;
|
||||
}
|
||||
C10_HOST_DEVICE const PtrType data() const {
|
||||
return data_;
|
||||
}
|
||||
protected:
|
||||
PtrType data_;
|
||||
const index_t* sizes_;
|
||||
const index_t* strides_;
|
||||
};
|
||||
|
||||
// The `TensorAccessor` is typically instantiated for CPU `Tensor`s using
|
||||
// `Tensor.accessor<T, N>()`.
|
||||
// For CUDA `Tensor`s, `GenericPackedTensorAccessor` is used on the host and only
|
||||
// indexing on the device uses `TensorAccessor`s.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class TensorAccessor : public TensorAccessorBase<T,N,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
using TensorAccessor = torch::headeronly::detail::TensorAccessor<c10::IntArrayRef, T, N, PtrTraits, index_t>;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: TensorAccessorBase<T, N, PtrTraits, index_t>(data_,sizes_,strides_) {}
|
||||
namespace detail {
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) {
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i,this->sizes_+1,this->strides_+1);
|
||||
}
|
||||
|
||||
C10_HOST_DEVICE const TensorAccessor<T, N-1, PtrTraits, index_t> operator[](index_t i) const {
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i,this->sizes_+1,this->strides_+1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T, template <typename U> class PtrTraits, typename index_t>
|
||||
class TensorAccessor<T,1,PtrTraits,index_t> : public TensorAccessorBase<T,1,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
|
||||
C10_HOST_DEVICE TensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: TensorAccessorBase<T, 1, PtrTraits, index_t>(data_,sizes_,strides_) {}
|
||||
C10_HOST_DEVICE T & operator[](index_t i) {
|
||||
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
C10_HOST_DEVICE const T & operator[](index_t i) const {
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// GenericPackedTensorAccessorBase and GenericPackedTensorAccessor are used on for CUDA `Tensor`s on the host
|
||||
// and as
|
||||
// In contrast to `TensorAccessor`s, they copy the strides and sizes on instantiation (on the host)
|
||||
// in order to transfer them on the device when calling kernels.
|
||||
// On the device, indexing of multidimensional tensors gives to `TensorAccessor`s.
|
||||
// Use RestrictPtrTraits as PtrTraits if you want the tensor's data pointer to be marked as __restrict__.
|
||||
// Instantiation from data, sizes, strides is only needed on the host and std::copy isn't available
|
||||
// on the device, so those functions are host only.
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class GenericPackedTensorAccessorBase {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
C10_HOST GenericPackedTensorAccessorBase(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: data_(data_) {
|
||||
std::copy(sizes_, sizes_ + N, std::begin(this->sizes_));
|
||||
std::copy(strides_, strides_ + N, std::begin(this->strides_));
|
||||
}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessorBase(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: data_(data_) {
|
||||
for (const auto i : c10::irange(N)) {
|
||||
this->sizes_[i] = sizes_[i];
|
||||
this->strides_[i] = strides_[i];
|
||||
}
|
||||
}
|
||||
|
||||
C10_HOST_DEVICE index_t stride(index_t i) const {
|
||||
return strides_[i];
|
||||
}
|
||||
C10_HOST_DEVICE index_t size(index_t i) const {
|
||||
return sizes_[i];
|
||||
}
|
||||
C10_HOST_DEVICE PtrType data() {
|
||||
return data_;
|
||||
}
|
||||
C10_HOST_DEVICE const PtrType data() const {
|
||||
return data_;
|
||||
}
|
||||
protected:
|
||||
PtrType data_;
|
||||
// NOLINTNEXTLINE(*c-arrays*)
|
||||
index_t sizes_[N];
|
||||
// NOLINTNEXTLINE(*c-arrays*)
|
||||
index_t strides_[N];
|
||||
C10_HOST void bounds_check_(index_t i) const {
|
||||
TORCH_CHECK_INDEX(
|
||||
template <size_t N, typename index_t>
|
||||
struct IndexBoundsCheck {
|
||||
IndexBoundsCheck(index_t i) {
|
||||
TORCH_CHECK_INDEX(
|
||||
0 <= i && i < index_t{N},
|
||||
"Index ",
|
||||
i,
|
||||
" is not within bounds of a tensor of dimension ",
|
||||
N);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
class GenericPackedTensorAccessor : public GenericPackedTensorAccessorBase<T,N,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, N, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, N, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
C10_DEVICE TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) {
|
||||
index_t* new_sizes = this->sizes_ + 1;
|
||||
index_t* new_strides = this->strides_ + 1;
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i, new_sizes, new_strides);
|
||||
}
|
||||
|
||||
C10_DEVICE const TensorAccessor<T, N - 1, PtrTraits, index_t> operator[](index_t i) const {
|
||||
const index_t* new_sizes = this->sizes_ + 1;
|
||||
const index_t* new_strides = this->strides_ + 1;
|
||||
return TensorAccessor<T,N-1,PtrTraits,index_t>(this->data_ + this->strides_[0]*i, new_sizes, new_strides);
|
||||
}
|
||||
|
||||
/// Returns a PackedTensorAccessor of the same dimension after transposing the
|
||||
/// two dimensions given. Does not actually move elements; transposition is
|
||||
/// made by permuting the size/stride arrays. If the dimensions are not valid,
|
||||
/// asserts.
|
||||
C10_HOST GenericPackedTensorAccessor<T, N, PtrTraits, index_t> transpose(
|
||||
index_t dim1,
|
||||
index_t dim2) const {
|
||||
this->bounds_check_(dim1);
|
||||
this->bounds_check_(dim2);
|
||||
GenericPackedTensorAccessor<T, N, PtrTraits, index_t> result(
|
||||
this->data_, this->sizes_, this->strides_);
|
||||
std::swap(result.strides_[dim1], result.strides_[dim2]);
|
||||
std::swap(result.sizes_[dim1], result.sizes_[dim2]);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T, template <typename U> class PtrTraits, typename index_t>
|
||||
class GenericPackedTensorAccessor<T,1,PtrTraits,index_t> : public GenericPackedTensorAccessorBase<T,1,PtrTraits,index_t> {
|
||||
public:
|
||||
typedef typename PtrTraits<T>::PtrType PtrType;
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const index_t* sizes_,
|
||||
const index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, 1, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
// if index_t is not int64_t, we want to have an int64_t constructor
|
||||
template <typename source_index_t, class = std::enable_if_t<std::is_same_v<source_index_t, int64_t>>>
|
||||
C10_HOST GenericPackedTensorAccessor(
|
||||
PtrType data_,
|
||||
const source_index_t* sizes_,
|
||||
const source_index_t* strides_)
|
||||
: GenericPackedTensorAccessorBase<T, 1, PtrTraits, index_t>(data_, sizes_, strides_) {}
|
||||
|
||||
C10_DEVICE T & operator[](index_t i) {
|
||||
return this->data_[this->strides_[0] * i];
|
||||
}
|
||||
C10_DEVICE const T& operator[](index_t i) const {
|
||||
return this->data_[this->strides_[0]*i];
|
||||
}
|
||||
|
||||
// Same as in the general N-dimensional case, but note that in the
|
||||
// 1-dimensional case the returned PackedTensorAccessor will always be an
|
||||
// identical copy of the original
|
||||
C10_HOST GenericPackedTensorAccessor<T, 1, PtrTraits, index_t> transpose(
|
||||
index_t dim1,
|
||||
index_t dim2) const {
|
||||
this->bounds_check_(dim1);
|
||||
this->bounds_check_(dim2);
|
||||
return GenericPackedTensorAccessor<T, 1, PtrTraits, index_t>(
|
||||
this->data_, this->sizes_, this->strides_);
|
||||
}
|
||||
};
|
||||
using GenericPackedTensorAccessorBase = torch::headeronly::detail::GenericPackedTensorAccessorBase<detail::IndexBoundsCheck<N, index_t>, T, N, PtrTraits, index_t>;
|
||||
|
||||
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
||||
using GenericPackedTensorAccessor = torch::headeronly::detail::GenericPackedTensorAccessor<TensorAccessor<T, N-1, PtrTraits, index_t>, detail::IndexBoundsCheck<N, index_t>, T, N, PtrTraits, index_t>;
|
||||
|
||||
// Can't put this directly into the macro function args because of commas
|
||||
#define AT_X GenericPackedTensorAccessor<T, N, PtrTraits, index_t>
|
||||
|
||||
@ -245,6 +245,9 @@ class TORCH_API TensorBase {
|
||||
size_t weak_use_count() const noexcept {
|
||||
return impl_.weak_use_count();
|
||||
}
|
||||
bool is_uniquely_owned() const noexcept {
|
||||
return impl_.is_uniquely_owned();
|
||||
}
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
|
||||
@ -223,6 +223,62 @@ CONVERT_FROM_BF16_TEMPLATE(double)
|
||||
CONVERT_FROM_BF16_TEMPLATE(float16_t)
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
|
||||
// clang-[17, 20] crashes when autovectorizing static cast to bf16
|
||||
// Below is a workaround to have some vectorization
|
||||
// Works decently well for smaller int types
|
||||
template <typename from_type>
|
||||
inline void convertToBf16Impl(
|
||||
const from_type* __restrict src,
|
||||
c10::BFloat16* __restrict dst,
|
||||
uint64_t n) {
|
||||
bfloat16_t* dstPtr = reinterpret_cast<bfloat16_t*>(dst);
|
||||
uint64_t loopBound = n - (n % 16);
|
||||
uint64_t i = 0;
|
||||
for (; i < loopBound; i += 16) {
|
||||
float32x4_t a, b, c, d;
|
||||
a[0] = static_cast<float>(src[i]);
|
||||
a[1] = static_cast<float>(src[i + 1]);
|
||||
a[2] = static_cast<float>(src[i + 2]);
|
||||
a[3] = static_cast<float>(src[i + 3]);
|
||||
b[0] = static_cast<float>(src[i + 4]);
|
||||
b[1] = static_cast<float>(src[i + 5]);
|
||||
b[2] = static_cast<float>(src[i + 6]);
|
||||
b[3] = static_cast<float>(src[i + 7]);
|
||||
c[0] = static_cast<float>(src[i + 8]);
|
||||
c[1] = static_cast<float>(src[i + 9]);
|
||||
c[2] = static_cast<float>(src[i + 10]);
|
||||
c[3] = static_cast<float>(src[i + 11]);
|
||||
d[0] = static_cast<float>(src[i + 12]);
|
||||
d[1] = static_cast<float>(src[i + 13]);
|
||||
d[2] = static_cast<float>(src[i + 14]);
|
||||
d[3] = static_cast<float>(src[i + 15]);
|
||||
|
||||
vst1q_bf16(dstPtr + i, vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(a), b));
|
||||
vst1q_bf16(dstPtr + i + 8, vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(c), d));
|
||||
}
|
||||
|
||||
#pragma clang loop vectorize(disable) interleave(disable) unroll(disable)
|
||||
for (; i < n; i++) {
|
||||
float a = static_cast<float>(src[i]);
|
||||
dstPtr[i] = vcvth_bf16_f32(a);
|
||||
}
|
||||
}
|
||||
|
||||
#define CONVERT_TO_BF16_TEMPLATE(from_type) \
|
||||
template <> \
|
||||
inline void convert(const from_type* src, c10::BFloat16* dst, int64_t n) { \
|
||||
return convertToBf16Impl<from_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_TO_BF16_TEMPLATE(uint8_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int8_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int16_t)
|
||||
CONVERT_TO_BF16_TEMPLATE(int32_t)
|
||||
|
||||
#endif
|
||||
|
||||
inline void convertBoolToBfloat16Impl(
|
||||
const bool* __restrict src,
|
||||
c10::BFloat16* __restrict dst,
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
|
||||
#include <cstdint>
|
||||
#include <map>
|
||||
#include <shared_mutex>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cusparse.h>
|
||||
@ -88,8 +89,13 @@ TORCH_CUDA_CPP_API cublasHandle_t getCurrentCUDABlasHandle();
|
||||
TORCH_CUDA_CPP_API cublasLtHandle_t getCurrentCUDABlasLtHandle();
|
||||
|
||||
TORCH_CUDA_CPP_API void clearCublasWorkspaces();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace();
|
||||
struct WorkspaceMapWithMutex {
|
||||
std::map<std::tuple<void*, void*>, at::DataPtr> map;
|
||||
std::shared_mutex mutex;
|
||||
};
|
||||
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublas_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace();
|
||||
TORCH_CUDA_CPP_API size_t getChosenWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API size_t getCUDABlasLtWorkspaceSize();
|
||||
TORCH_CUDA_CPP_API void* getCUDABlasLtWorkspace();
|
||||
|
||||
@ -175,17 +175,24 @@ void CUDAGraph::instantiate() {
|
||||
// Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people,
|
||||
// who prefer not to report error message through these arguments moving forward
|
||||
// (they prefer return value, or errors on api calls internal to the capture)
|
||||
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12000)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, 0));
|
||||
// ROCM appears to fail with HIP error: invalid argument
|
||||
#if (defined(CUDA_VERSION) && CUDA_VERSION >= 12000) && !defined(USE_ROCM)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, cudaGraphInstantiateFlagUseNodePriority));
|
||||
#else
|
||||
AT_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_, graph_, NULL, NULL, 0));
|
||||
#endif
|
||||
//Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory.
|
||||
//It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch.
|
||||
} else {
|
||||
#if !defined(USE_ROCM)
|
||||
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
|
||||
graph_,
|
||||
cudaGraphInstantiateFlagAutoFreeOnLaunch | cudaGraphInstantiateFlagUseNodePriority));
|
||||
#else
|
||||
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
|
||||
graph_,
|
||||
cudaGraphInstantiateFlagAutoFreeOnLaunch));
|
||||
#endif
|
||||
}
|
||||
has_graph_exec_ = true;
|
||||
}
|
||||
|
||||
@ -99,7 +99,7 @@ void destroyCublasHandle(cublasHandle_t handle) {
|
||||
// - Comments of @soumith copied from cuDNN handle pool implementation
|
||||
#ifdef NO_CUDNN_DESTROY_HANDLE
|
||||
#else
|
||||
cublasDestroy(handle);
|
||||
cublasDestroy(handle);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -107,19 +107,27 @@ using CuBlasPoolType = DeviceThreadHandlePool<cublasHandle_t, createCublasHandle
|
||||
|
||||
} // namespace
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublas_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
std::map<std::tuple<void *, void *>, at::DataPtr>& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new std::map<std::tuple<void *, void *>, at::DataPtr>;
|
||||
WorkspaceMapWithMutex& cublaslt_handle_stream_to_workspace() {
|
||||
static auto& instance = *new WorkspaceMapWithMutex;
|
||||
return instance;
|
||||
}
|
||||
|
||||
void clearCublasWorkspaces() {
|
||||
cublas_handle_stream_to_workspace().clear();
|
||||
cublaslt_handle_stream_to_workspace().clear();
|
||||
{
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
{
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
workspace.map.clear();
|
||||
}
|
||||
}
|
||||
|
||||
size_t parseChosenWorkspaceSize() {
|
||||
@ -233,6 +241,38 @@ at::DataPtr getNewCUDABlasLtWorkspace() {
|
||||
return c10::cuda::CUDACachingAllocator::get()->allocate(getCUDABlasLtWorkspaceSize());
|
||||
}
|
||||
|
||||
void setWorkspaceForHandle(cublasHandle_t handle, c10::cuda::CUDAStream stream) {
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
|
||||
auto& workspace = cublas_handle_stream_to_workspace();
|
||||
|
||||
size_t workspace_size = getChosenWorkspaceSize();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(
|
||||
handle, workspace_it->second.get(), workspace_size));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
TORCH_CUDABLAS_CHECK(
|
||||
cublasSetWorkspace(handle, workspace_it->second.get(), workspace_size));
|
||||
}
|
||||
}
|
||||
|
||||
void* getCUDABlasLtWorkspace() {
|
||||
#ifndef USE_ROCM
|
||||
static bool unified = c10::utils::check_env(TORCH_CUBLASLT_UNIFIED_WORKSPACE) == true;
|
||||
@ -241,8 +281,10 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = at::cuda::cublas_handle_stream_to_workspace().find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != at::cuda::cublas_handle_stream_to_workspace().end());
|
||||
auto& workspace = at::cuda::cublas_handle_stream_to_workspace();
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
TORCH_INTERNAL_ASSERT(workspace_it != workspace.map.end());
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
#endif
|
||||
@ -250,11 +292,29 @@ void* getCUDABlasLtWorkspace() {
|
||||
auto stream = c10::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublaslt_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublaslt_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublaslt_handle_stream_to_workspace().insert(workspace_it, {key, getNewCUDABlasLtWorkspace()});
|
||||
|
||||
auto& workspace = cublaslt_handle_stream_to_workspace();
|
||||
|
||||
// Fast path: check if workspace already exists
|
||||
{
|
||||
std::shared_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it = workspace.map.find(key);
|
||||
if (workspace_it != workspace.map.end()) {
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
}
|
||||
|
||||
// Slow path: allocate workspace outside the lock
|
||||
auto new_workspace = getNewCUDABlasLtWorkspace();
|
||||
|
||||
// Insert with lock (double-check in case another thread inserted while we
|
||||
// were allocating)
|
||||
{
|
||||
std::unique_lock<std::shared_mutex> lock(workspace.mutex);
|
||||
auto workspace_it =
|
||||
workspace.map.try_emplace(key, std::move(new_workspace)).first;
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
return workspace_it->second.mutable_get();
|
||||
}
|
||||
|
||||
cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
@ -298,13 +358,8 @@ cublasHandle_t getCurrentCUDABlasHandle() {
|
||||
// will allocate memory dynamically (even if they're cheap) outside
|
||||
// PyTorch's CUDA caching allocator. It's possible that CCA used up
|
||||
// all the memory and cublas's cudaMallocAsync will return OOM
|
||||
cudaStream_t _stream = stream;
|
||||
auto key = std::make_tuple(static_cast<void *>(handle), static_cast<void *>(_stream));
|
||||
auto workspace_it = cublas_handle_stream_to_workspace().find(key);
|
||||
if (workspace_it == cublas_handle_stream_to_workspace().end()) {
|
||||
workspace_it = cublas_handle_stream_to_workspace().insert(workspace_it, {key, getNewWorkspace()});
|
||||
}
|
||||
TORCH_CUDABLAS_CHECK(cublasSetWorkspace(handle, workspace_it->second.get(), getChosenWorkspaceSize()));
|
||||
setWorkspaceForHandle(handle, stream);
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
// On CUDA >= 11, and architecture >= Ampere, cuBLAS can use TF32 to speedup
|
||||
// FP32 data type calculations based on the value of the allow_tf32 flag.
|
||||
|
||||
@ -22,6 +22,7 @@ enum class MacOSVersion : uint32_t {
|
||||
MACOS_VER_15_0_PLUS,
|
||||
MACOS_VER_15_1_PLUS,
|
||||
MACOS_VER_15_2_PLUS,
|
||||
MACOS_VER_26_0_PLUS,
|
||||
};
|
||||
|
||||
//-----------------------------------------------------------------
|
||||
|
||||
@ -65,6 +65,7 @@ bool MPSDevice::isMacOS13Plus(MacOSVersion version) const {
|
||||
static bool _macos_15_0_plus = is_os_version_at_least(15, 0);
|
||||
static bool _macos_15_1_plus = is_os_version_at_least(15, 1);
|
||||
static bool _macos_15_2_plus = is_os_version_at_least(15, 2);
|
||||
static bool _macos_26_0_plus = is_os_version_at_least(26, 0);
|
||||
|
||||
switch (version) {
|
||||
case MacOSVersion::MACOS_VER_14_4_PLUS:
|
||||
@ -75,6 +76,8 @@ bool MPSDevice::isMacOS13Plus(MacOSVersion version) const {
|
||||
return _macos_15_1_plus;
|
||||
case MacOSVersion::MACOS_VER_15_2_PLUS:
|
||||
return _macos_15_2_plus;
|
||||
case MacOSVersion::MACOS_VER_26_0_PLUS:
|
||||
return _macos_26_0_plus;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1936,7 +1936,7 @@ static bool should_fold(const Tensor& tensor1, const Tensor& tensor2, bool has_o
|
||||
|
||||
// We order the tensors. t1 will be the larger tensor
|
||||
// We can always transpose tensor2 as the dimensions are always >= 1 (precondition from matmul)
|
||||
// and tensor1_larger iff tensor2.dim() > tensor1.dim()
|
||||
// and tensor1_larger iff tensor2.dim() > tensor1.dim(9
|
||||
const auto t1 = tensor1_larger ? MaybeOwned<Tensor>::borrowed(tensor1)
|
||||
: MaybeOwned<Tensor>::owned(tensor2.mT());
|
||||
const int64_t dim_t1 = t1->dim();
|
||||
@ -1948,11 +1948,20 @@ static bool should_fold(const Tensor& tensor1, const Tensor& tensor2, bool has_o
|
||||
return false;
|
||||
}
|
||||
|
||||
// If we require a gradient, we should fold to minimize backward memory usage - even if this
|
||||
// leads to a copy in forward because is needed in backward,
|
||||
// only time we avoid this strict pre-allocated memory usage (has_out = True)
|
||||
bool requires_grad = tensor1.requires_grad() || tensor2.requires_grad();
|
||||
if (requires_grad && !has_out) {
|
||||
// In this case we *do* incur in an extra copy to avoid creating an unnecessary large tensor in the backward
|
||||
// Suppose we don't fold here. Let t1.shape = [b, m, n] t2.shape = [n, k] like in a transformer
|
||||
// t2 will be expanded to a tensor of shape [b, n, k] and then we do t1.bmm(t2_expanded)
|
||||
// The issue appears in the backward.
|
||||
// The output gradient g of this operation would have shape [b, m, k]
|
||||
// The backward wrt. t2 of bmm would be given by t1.mH @ g, which has shape [b, n, k]
|
||||
// Then, the backward of expand is simply `sum(0)`. As such, we are instantiating a tensor
|
||||
// of shape [b, n, k] unnecessarily, which may cause a large memory footprint, and in the
|
||||
// worst case, an OOM
|
||||
bool t2_requires_grad = tensor1_larger ? tensor2.requires_grad() : tensor1.requires_grad();
|
||||
if (t2_requires_grad && !has_out) {
|
||||
// We should be checking !at::GradMode::is_enabled(), but apparently
|
||||
// this regresses performance in some cases:
|
||||
// https://github.com/pytorch/pytorch/issues/118548#issuecomment-1916022394
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@ -1087,7 +1087,8 @@ TORCH_IMPL_FUNC(index_copy_out)
|
||||
result.copy_(self);
|
||||
|
||||
// See Note [Enabling Deterministic Operations]
|
||||
if (result.is_cuda() && globalContext().deterministicAlgorithms()) {
|
||||
if ((result.is_cuda() || result.is_xpu()) &&
|
||||
globalContext().deterministicAlgorithms()) {
|
||||
torch::List<std::optional<Tensor>> indices;
|
||||
indices.resize(dim + 1);
|
||||
indices.set(dim, index);
|
||||
|
||||
@ -904,19 +904,11 @@ Tensor mvlgamma(const Tensor& self, int64_t p) {
|
||||
return args.lgamma_().sum(-1).add_(p2_sub_p * std::log(c10::pi<double>) * QUARTER);
|
||||
}
|
||||
|
||||
// since mvlgamma_ has different signature from its
|
||||
// out and functional variant, we explicitly
|
||||
// define it (instead of using structured kernel).
|
||||
Tensor& mvlgamma_(Tensor& self, int64_t p) {
|
||||
mvlgamma_check(self, p);
|
||||
Tensor args = native::arange(
|
||||
-p *HALF + HALF,
|
||||
HALF,
|
||||
HALF,
|
||||
optTypeMetaToScalarType(self.options().dtype_opt()),
|
||||
self.options().layout_opt(),
|
||||
self.options().device_opt(),
|
||||
self.options().pinned_memory_opt());
|
||||
args = args.add(self.unsqueeze(-1));
|
||||
const auto p2_sub_p = static_cast<double>(p * (p - 1));
|
||||
return self.copy_(args.lgamma_().sum(-1).add_(p2_sub_p * std::log(c10::pi<double>) * QUARTER));
|
||||
return at::mvlgamma_out(self, self, p);
|
||||
}
|
||||
|
||||
Tensor& mvlgamma_out(const Tensor& self, int64_t p, Tensor& result) {
|
||||
|
||||
@ -296,7 +296,7 @@ template <typename scalar_t, typename res_scalar_t = scalar_t>
|
||||
bool launchGemmAndBiasCublasLt(
|
||||
// args contains result which is modified
|
||||
cublasCommonArgs& args,
|
||||
const Tensor& self,
|
||||
const std::optional<Tensor>& self,
|
||||
const Scalar& alpha,
|
||||
Activation activation = Activation::None
|
||||
) {
|
||||
@ -304,12 +304,8 @@ bool launchGemmAndBiasCublasLt(
|
||||
// or when it can be squeezed to 1D.
|
||||
// self_ptr == nullptr implies ignore bias epilogue
|
||||
// and use standard gemm-like API.
|
||||
const auto* self_ptr = [&]() -> auto {
|
||||
if (self.dim() == 1 || self.squeeze().dim() == 1) {
|
||||
return self.const_data_ptr<scalar_t>();
|
||||
}
|
||||
return static_cast<const scalar_t*>(nullptr);
|
||||
}();
|
||||
const auto* self_ptr = self.has_value() ? self.value().const_data_ptr<scalar_t>() : static_cast<const scalar_t*>(nullptr);
|
||||
|
||||
|
||||
const auto tuning_ctx = at::cuda::tunable::getTuningContext();
|
||||
if (tuning_ctx->IsTunableOpEnabled()) {
|
||||
@ -392,35 +388,30 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
bool disable_addmm_cuda_lt = persistent_disable_addmm_cuda_lt || disable_addmm_cuda_lt_override;
|
||||
#ifdef USE_ROCM
|
||||
// Conditioned on the device index, which is not persistent
|
||||
disable_addmm_cuda_lt = isGloballyDisabledAddmmCudaLt(self.device()) || disable_addmm_cuda_lt;
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || isGloballyDisabledAddmmCudaLt(self.device());
|
||||
#endif
|
||||
// Condition on the input
|
||||
disable_addmm_cuda_lt = !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha, activation) || disable_addmm_cuda_lt;
|
||||
// }
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || !isInputCompliesAddmmCudaLt(result, self, mat1, mat2, beta, alpha, activation);
|
||||
|
||||
at::ScalarType scalar_type = mat1.scalar_type();
|
||||
bool is_float_output_with_half_input = (scalar_type == at::ScalarType::Half || scalar_type == at::ScalarType::BFloat16) && result.scalar_type() == at::ScalarType::Float;
|
||||
|
||||
#ifdef USE_ROCM
|
||||
disable_addmm_cuda_lt = disable_addmm_cuda_lt || is_float_output_with_half_input;
|
||||
#endif
|
||||
|
||||
bool use_bias_ptr_lt = (self.dim() == 1) && !disable_addmm_cuda_lt;
|
||||
// for float output with half input cublasLT with bias produces wrong results
|
||||
use_bias_ptr_lt &= !is_float_output_with_half_input;
|
||||
|
||||
// Handle result/self shapes
|
||||
if (!result.is_same(self)) {
|
||||
at::native::resize_output(result, {mat1.sizes()[0], mat2.sizes()[1]});
|
||||
|
||||
// We use bias ptr in the Lt path only when bias is 1D
|
||||
const auto use_bias_ptr_lt = (self.dim() == 1) && !disable_addmm_cuda_lt;
|
||||
const auto self_maybe_expanded = [&]() -> c10::MaybeOwned<Tensor> {
|
||||
if (!use_bias_ptr_lt) {
|
||||
// We do expand self even before
|
||||
// check for beta != 0.0 to make sure that
|
||||
// test_sparse_csr.py::TestSparseCSRCUDA::test_addmm_errors_*
|
||||
// runs green.
|
||||
return expand_size(self, result.sizes(), "addmm");
|
||||
}
|
||||
return c10::MaybeOwned<Tensor>::borrowed(self);
|
||||
}();
|
||||
// We do not copy bias only when we need the bias ptr
|
||||
// We do not copy bias only when we need the bias ptr
|
||||
if (beta.toComplexDouble() != 0.0 && !use_bias_ptr_lt) {
|
||||
// NOTE: self should broadcast over result
|
||||
at::native::copy_(result, *self_maybe_expanded);
|
||||
at::native::copy_(result, *expand_size(self, result.sizes(), "addmm"));
|
||||
}
|
||||
}
|
||||
|
||||
@ -468,7 +459,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t, float>(args, self, alpha, activation);
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t, float>(args, use_bias_ptr_lt ? std::make_optional(self) : std::nullopt, alpha, activation);
|
||||
}
|
||||
);
|
||||
#endif
|
||||
@ -480,7 +471,7 @@ Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& ma
|
||||
scalar_type,
|
||||
"addmm_cuda_lt",
|
||||
[&] {
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t>(args, self, alpha, activation);
|
||||
lt_success = launchGemmAndBiasCublasLt<scalar_t>(args, use_bias_ptr_lt ? std::make_optional(self) : std::nullopt, alpha, activation);
|
||||
}
|
||||
);
|
||||
} // end is_float_output_with_half_input
|
||||
@ -936,7 +927,7 @@ Tensor _int_mm_cuda(const Tensor& self, const Tensor& mat2) {
|
||||
return _int_mm_out_cuda(self, mat2, result);
|
||||
}
|
||||
|
||||
static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, bool is_bmm, const std::optional<Tensor>& self_baddbmm = std::nullopt) {
|
||||
static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, const std::optional<Tensor>& self_baddbmm = std::nullopt) {
|
||||
// ref ATen/native/LinearAlgebra.cpp common_checks_baddbmm_bmm
|
||||
TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor");
|
||||
TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor");
|
||||
@ -960,7 +951,7 @@ static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& bat
|
||||
(out_dtype == at::ScalarType::Float && (batch1.scalar_type() == at::ScalarType::Half || batch1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
if (!is_bmm && self_baddbmm.has_value()) {
|
||||
if (self_baddbmm.has_value()) {
|
||||
const auto& self = self_baddbmm.value();
|
||||
TORCH_CHECK(self.dim() == 3, "self must be a 3D tensor");
|
||||
TORCH_CHECK(self.sizes() == output_size, "self must have the same shape as the output");
|
||||
@ -968,15 +959,12 @@ static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& bat
|
||||
}
|
||||
|
||||
Tensor _bmm_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype) {
|
||||
IntArrayRef batch1_sizes = batch1.sizes();
|
||||
IntArrayRef batch2_sizes = batch2.sizes();
|
||||
|
||||
Tensor out = at::empty({batch1_sizes[0], batch1_sizes[1], batch2_sizes[2]}, batch1.options().dtype(out_dtype));
|
||||
Tensor out = at::empty({batch1.size(0), batch1.size(1), batch2.size(2)}, batch1.options().dtype(out_dtype));
|
||||
return _bmm_out_dtype_cuda(batch1, batch2, out_dtype, out);
|
||||
}
|
||||
|
||||
Tensor& _bmm_out_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, Tensor &out) {
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, 0.0, 1.0, out_dtype, true);
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, 0.0, 1.0, out_dtype);
|
||||
Scalar beta(0.0);
|
||||
Scalar alpha(1.0);
|
||||
{
|
||||
@ -988,14 +976,16 @@ Tensor& _bmm_out_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at
|
||||
}
|
||||
|
||||
Tensor _baddbmm_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha) {
|
||||
// We need to copy the tensor
|
||||
Tensor out = self.clone().to(self.options().dtype(out_dtype));
|
||||
|
||||
return _baddbmm_out_dtype_cuda(out, batch1, batch2, out_dtype, beta, alpha, out);
|
||||
TORCH_CHECK(self.scalar_type() == out_dtype || self.scalar_type() == batch1.dtype(),
|
||||
"self dtype must match either out_dtype or batch1 dtype");
|
||||
Tensor out = at::empty({batch1.size(0), batch1.size(1), batch2.size(2)}, batch1.options().dtype(out_dtype));
|
||||
return _baddbmm_out_dtype_cuda(self, batch1, batch2, out_dtype, beta, alpha, out);
|
||||
}
|
||||
|
||||
Tensor& _baddbmm_out_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, beta, alpha, out_dtype, false, self);
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, beta, alpha, out_dtype, out);
|
||||
// We need to copy the tensor
|
||||
out.copy_(self);
|
||||
{
|
||||
NoNamesGuard guard;
|
||||
baddbmm_out_cuda_impl(out, out, batch1, batch2, beta, alpha);
|
||||
@ -1030,24 +1020,27 @@ Tensor& _mm_dtype_out_cuda(const Tensor& self, const Tensor& mat2, const at::Sca
|
||||
}
|
||||
|
||||
Tensor _addmm_dtype_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha) {
|
||||
Tensor result = at::empty(self.sizes(), self.options().dtype(out_dtype));
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix, got ", mat1.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
Tensor result = at::empty({mat1.size(0), mat2.size(1)}, self.options().dtype(out_dtype));
|
||||
return _addmm_dtype_out_cuda(self, mat1, mat2, out_dtype, beta, alpha, result);
|
||||
}
|
||||
|
||||
Tensor& _addmm_dtype_out_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
TORCH_CHECK(self.scalar_type() == mat2.scalar_type(), "self and mat2 must have the same dtype, but got ", self.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(mat1.scalar_type() == mat2.scalar_type(), "mat1 and mat2 must have the same dtype, but got ", mat1.scalar_type(), " and ", mat2.scalar_type());
|
||||
// repeat dimensionality checks for direct calls to `out` overload
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix, got ", mat1.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] == mat2.sizes()[0], "mat1 and mat2 shapes cannot be multiplied (",
|
||||
mat1.sizes()[0], "x", mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
|
||||
TORCH_CHECK(mat1.scalar_type() == mat2.scalar_type(), "mat1 and mat2 must have the same dtype, but got ", mat1.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(out_dtype == mat1.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (mat1.scalar_type() == at::ScalarType::Half || mat1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (self.scalar_type() == at::ScalarType::Half || self.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() || self.scalar_type() == mat1.scalar_type(),
|
||||
"self dtype must match either out_dtype or mat1 dtype");
|
||||
|
||||
addmm_out_cuda_impl(out, self, mat1, mat2, beta, alpha);
|
||||
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/native/CompositeRandomAccessorCommon.h>
|
||||
#include <thrust/swap.h>
|
||||
#include <thrust/tuple.h>
|
||||
|
||||
namespace at { namespace native {
|
||||
|
||||
@ -75,30 +75,52 @@ static inline bool can_use_int32_nhwc(
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline bool can_use_int32_nchw(
|
||||
int64_t nbatch, int64_t channels,
|
||||
int64_t height, int64_t width,
|
||||
int64_t pooled_height, int64_t pooled_width) {
|
||||
int64_t hw = height * width;
|
||||
return can_use_int32_nhwc(
|
||||
nbatch, channels, height, width,
|
||||
pooled_height, pooled_width,
|
||||
channels * hw, // in_stride_n
|
||||
hw, // in_stride_c
|
||||
width, // in_stride_h
|
||||
1 // in_stride_w
|
||||
);
|
||||
}
|
||||
|
||||
// kernels borrowed from Caffe
|
||||
template <typename scalar_t>
|
||||
__global__ void max_pool_forward_nchw(const int nthreads, const scalar_t* bottom_data,
|
||||
const int64_t channels, const int64_t height,
|
||||
const int64_t width, const int pooled_height, const int pooled_width,
|
||||
const int kernel_h, const int kernel_w, const int stride_h,
|
||||
const int stride_w, const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w, scalar_t* top_data,
|
||||
template <typename scalar_t, typename index_t>
|
||||
__global__ void max_pool_forward_nchw(
|
||||
const index_t nthreads,
|
||||
const scalar_t* bottom_data,
|
||||
const int64_t channels,
|
||||
const int64_t height,
|
||||
const int64_t width,
|
||||
const int pooled_height,
|
||||
const int pooled_width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
scalar_t* top_data,
|
||||
int64_t* top_mask) {
|
||||
CUDA_KERNEL_LOOP(index, nthreads) {
|
||||
int pw = index % pooled_width;
|
||||
int ph = (index / pooled_width) % pooled_height;
|
||||
int c = (index / pooled_width / pooled_height) % channels;
|
||||
int n = index / pooled_width / pooled_height / channels;
|
||||
int hstart = ph * stride_h - pad_h;
|
||||
int wstart = pw * stride_w - pad_w;
|
||||
int hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
int wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
CUDA_KERNEL_LOOP_TYPE(index, nthreads, index_t) {
|
||||
index_t pw = index % pooled_width;
|
||||
index_t ph = (index / pooled_width) % pooled_height;
|
||||
index_t c = (index / pooled_width / pooled_height) % channels;
|
||||
index_t n = index / pooled_width / pooled_height / channels;
|
||||
index_t hstart = ph * stride_h - pad_h;
|
||||
index_t wstart = pw * stride_w - pad_w;
|
||||
index_t hend = min(hstart + (kernel_h - 1) * dilation_h + 1, height);
|
||||
index_t wend = min(wstart + (kernel_w - 1) * dilation_w + 1, width);
|
||||
while(hstart < 0)
|
||||
hstart += dilation_h;
|
||||
while(wstart < 0)
|
||||
wstart += dilation_w;
|
||||
scalar_t maxval = at::numeric_limits<scalar_t>::lower_bound(); // -Infinity
|
||||
int maxidx = hstart * width + wstart;
|
||||
index_t maxidx = hstart * width + wstart;
|
||||
const scalar_t* btm_data = bottom_data + (n * channels + c) * height * width;
|
||||
for (int h = hstart; h < hend; h += dilation_h) {
|
||||
for (int w = wstart; w < wend; w += dilation_w) {
|
||||
@ -251,32 +273,39 @@ __global__ void max_pool_forward_nhwc(
|
||||
|
||||
static constexpr int BLOCK_THREADS = 256;
|
||||
|
||||
template <typename scalar_t, typename accscalar_t>
|
||||
template <typename scalar_t, typename accscalar_t, typename index_t>
|
||||
#if defined (USE_ROCM)
|
||||
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 4)
|
||||
#else
|
||||
C10_LAUNCH_BOUNDS_2(BLOCK_THREADS, 8)
|
||||
#endif
|
||||
__global__ void max_pool_backward_nchw(const scalar_t* top_diff,
|
||||
const int64_t* top_mask, const int num, const int64_t channels,
|
||||
const int64_t height, const int64_t width, const int pooled_height,
|
||||
const int pooled_width, const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
|
||||
__global__ void max_pool_backward_nchw(
|
||||
const scalar_t* top_diff,
|
||||
const int64_t* top_mask,
|
||||
const index_t num,
|
||||
const index_t channels,
|
||||
const index_t height,
|
||||
const index_t width,
|
||||
const index_t pooled_height,
|
||||
const index_t pooled_width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
scalar_t* bottom_diff) {
|
||||
CUDA_KERNEL_LOOP(index, height*width) {
|
||||
int h = index / width;
|
||||
int w = index - h * width;
|
||||
int phstart = p_start(h, pad_h, kernel_h, dilation_h, stride_h);
|
||||
int phend = p_end(h, pad_h, pooled_height, stride_h);
|
||||
int pwstart = p_start(w, pad_w, kernel_w, dilation_w, stride_w);
|
||||
int pwend = p_end(w, pad_w, pooled_width, stride_w);
|
||||
for (int n = blockIdx.y; n < num; n += gridDim.y) {
|
||||
for (int c = blockIdx.z; c < channels; c+= gridDim.z) {
|
||||
CUDA_KERNEL_LOOP_TYPE(index, height*width, index_t) {
|
||||
index_t h = index / width;
|
||||
index_t w = index - h * width;
|
||||
index_t phstart = p_start(h, pad_h, kernel_h, dilation_h, stride_h);
|
||||
index_t phend = p_end(h, pad_h, pooled_height, stride_h);
|
||||
index_t pwstart = p_start(w, pad_w, kernel_w, dilation_w, stride_w);
|
||||
index_t pwend = p_end(w, pad_w, pooled_width, stride_w);
|
||||
for (index_t n = blockIdx.y; n < num; n += gridDim.y) {
|
||||
for (index_t c = blockIdx.z; c < channels; c += gridDim.z) {
|
||||
accscalar_t gradient = accscalar_t(0);
|
||||
int offset = (n * channels + c) * pooled_height * pooled_width;
|
||||
for (int ph = phstart; ph < phend; ++ph) {
|
||||
for (int pw = pwstart; pw < pwend; ++pw) {
|
||||
index_t offset = (n * channels + c) * pooled_height * pooled_width;
|
||||
for (index_t ph = phstart; ph < phend; ++ph) {
|
||||
for (index_t pw = pwstart; pw < pwend; ++pw) {
|
||||
if (top_mask[ph * pooled_width + pw + offset] == h * width + w) {
|
||||
gradient += static_cast<accscalar_t>(top_diff[ph * pooled_width + pw + offset]);
|
||||
}
|
||||
@ -469,8 +498,6 @@ const Tensor& indices) {
|
||||
const int64_t in_stride_h = input.stride(-2);
|
||||
const int64_t in_stride_w = input.stride(-1);
|
||||
|
||||
const int count = safe_downcast<int, int64_t>(output.numel());
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
|
||||
"max_pool2d_with_indices_out_cuda_frame",
|
||||
[&] {
|
||||
@ -553,14 +580,42 @@ const Tensor& indices) {
|
||||
break;
|
||||
}
|
||||
case MemoryFormat::Contiguous: {
|
||||
const int num_threads = std::min(at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
max_pool_forward_nchw<scalar_t>
|
||||
<<<ceil_div(count, num_threads), num_threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
count, input_data,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
const int threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
const int64_t nthreads = output.numel();
|
||||
bool use_int32 = can_use_int32_nchw(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth);
|
||||
const int maxGridX = at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
|
||||
const int blocks = static_cast<int>(std::min<int64_t>(
|
||||
ceil_div(nthreads, static_cast<int64_t>(threads)),
|
||||
static_cast<int64_t>(maxGridX)));
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
if (use_int32) {
|
||||
max_pool_forward_nchw<scalar_t, int32_t>
|
||||
<<<blocks, threads, 0, stream>>>(
|
||||
static_cast<int32_t>(nthreads),
|
||||
input_data,
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
} else {
|
||||
max_pool_forward_nchw<scalar_t, int64_t>
|
||||
<<<blocks, threads, 0, stream>>>(
|
||||
nthreads,
|
||||
input_data,
|
||||
nInputPlane,
|
||||
inputHeight,
|
||||
inputWidth,
|
||||
outputHeight,
|
||||
outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
output_data, indices_data);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
@ -633,8 +688,6 @@ const Tensor& gradInput) {
|
||||
|
||||
gradInput.zero_();
|
||||
|
||||
int64_t count = input.numel();
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
|
||||
"max_pool2d_with_indices_out_cuda_frame",
|
||||
[&] {
|
||||
@ -692,25 +745,45 @@ const Tensor& gradInput) {
|
||||
break;
|
||||
}
|
||||
case MemoryFormat::Contiguous: {
|
||||
int imgcount = inputWidth * inputHeight;
|
||||
dim3 grid;
|
||||
const int blocks = (imgcount + BLOCK_THREADS - 1) / BLOCK_THREADS;
|
||||
grid.x = blocks;
|
||||
grid.y = nbatch;
|
||||
uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
|
||||
if (maxGridY < grid.y) grid.y = maxGridY;
|
||||
grid.z = nInputPlane;
|
||||
uint64_t maxGridZ = at::cuda::getCurrentDeviceProperties()->maxGridSize[2];
|
||||
if (maxGridZ < grid.z) grid.z = maxGridZ;
|
||||
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t>
|
||||
<<<grid, BLOCK_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
nbatch,
|
||||
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
const int threads = std::min(
|
||||
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock,
|
||||
BLOCK_THREADS);
|
||||
const int imgcount = inputWidth * inputHeight;
|
||||
const int maxGridX = at::cuda::getCurrentDeviceProperties()->maxGridSize[0];
|
||||
const int maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
|
||||
const int maxGridZ = at::cuda::getCurrentDeviceProperties()->maxGridSize[2];
|
||||
const int blocks_x = std::min(ceil_div(imgcount, threads), maxGridX);
|
||||
dim3 grid(blocks_x, static_cast<unsigned>(std::min<int64_t>(nbatch, maxGridY)), static_cast<unsigned>(std::min<int64_t>(nInputPlane, maxGridZ)));
|
||||
bool use_int32 = can_use_int32_nchw(
|
||||
nbatch, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth);
|
||||
auto stream = at::cuda::getCurrentCUDAStream();
|
||||
if (use_int32) {
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t, int32_t>
|
||||
<<<grid, threads, 0, stream>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
static_cast<int32_t>(nbatch),
|
||||
static_cast<int32_t>(nInputPlane),
|
||||
static_cast<int32_t>(inputHeight),
|
||||
static_cast<int32_t>(inputWidth),
|
||||
static_cast<int32_t>(outputHeight),
|
||||
static_cast<int32_t>(outputWidth),
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
} else {
|
||||
max_pool_backward_nchw<scalar_t, accscalar_t, int64_t>
|
||||
<<<grid, threads, 0, stream>>>(
|
||||
gradOutput_data,
|
||||
indices_data,
|
||||
nbatch,
|
||||
nInputPlane,
|
||||
inputHeight,
|
||||
inputWidth,
|
||||
outputHeight,
|
||||
outputWidth,
|
||||
kH, kW, dH, dW, padH, padW, dilationH, dilationW,
|
||||
gradInput_data);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
break;
|
||||
}
|
||||
|
||||
@ -78,9 +78,18 @@ __global__ void EmbeddingBag_updateOutputKernel_max(
|
||||
scalar_t weightFeatMax = 0;
|
||||
int64_t bag_size_ = 0;
|
||||
int64_t maxWord = -1;
|
||||
|
||||
// Separate validation loop reduces register pressure in the main loop below.
|
||||
// No early exit (break) on invalid input as benchmarking shows it degrades performance.
|
||||
bool has_invalid_index = false;
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
has_invalid_index = has_invalid_index || (input_idx < 0 || input_idx >= numRows);
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(!has_invalid_index && "Invalid input index in EmbeddingBag: index out of range [0, numRows)");
|
||||
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
bool pad = (input[emb] == padding_idx);
|
||||
CUDA_KERNEL_ASSERT(input[emb] < numRows);
|
||||
const int64_t weightRow = input[emb] * weight_stride0;
|
||||
scalar_t weightValue = weightFeat[weightRow];
|
||||
if (bag_size_ == 0 || weightValue > weightFeatMax) {
|
||||
@ -129,10 +138,19 @@ __global__ void EmbeddingBag_updateOutputKernel_sum_mean(
|
||||
CUDA_KERNEL_ASSERT(end >= begin);
|
||||
accscalar_t weightFeatSum = 0;
|
||||
int64_t bag_size_ = 0;
|
||||
|
||||
// Separate validation loop reduces register pressure in the main loop below.
|
||||
// No early exit (break) on invalid input as benchmarking shows it degrades performance.
|
||||
bool has_invalid_index = false;
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
has_invalid_index = has_invalid_index || (input_idx < 0 || input_idx >= numRows);
|
||||
}
|
||||
CUDA_KERNEL_ASSERT(!has_invalid_index && "Invalid input index in EmbeddingBag: index out of range [0, numRows)");
|
||||
|
||||
for (int64_t emb = begin; emb < end; emb++) {
|
||||
index_t input_idx = input[emb];
|
||||
bool pad = (input_idx == padding_idx);
|
||||
CUDA_KERNEL_ASSERT(0 <= input_idx && input_idx < numRows);
|
||||
const int64_t weightRow = input_idx * weight_stride0;
|
||||
scalar_t weightValue = weightFeat[weightRow];
|
||||
weightValue = pad ? static_cast<scalar_t>(0) : weightValue;
|
||||
|
||||
@ -78,9 +78,9 @@ _mx8_mx8_bf16_grouped_mm_fbgemm(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const SwizzleType& swizzle_a,
|
||||
const SwizzleType swizzle_a,
|
||||
const Tensor& scale_b,
|
||||
const SwizzleType& swizzle_b,
|
||||
const SwizzleType swizzle_b,
|
||||
const std::optional<at::Tensor>& offs,
|
||||
Tensor& out) {
|
||||
const bool a_is_2d = mat_a.dim() == 2;
|
||||
|
||||
@ -5,69 +5,11 @@
|
||||
#include <cuda_bf16.h>
|
||||
#endif
|
||||
|
||||
// ROCm 6.3 is planned to have these functions, but until then here they are.
|
||||
#if defined(USE_ROCM)
|
||||
#include <device_functions.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
|
||||
__device__ inline __hip_bfloat162 preview_unsafeAtomicAdd(__hip_bfloat162* address, __hip_bfloat162 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2bf16)
|
||||
typedef unsigned short __attribute__((ext_vector_type(2))) vec_short2;
|
||||
static_assert(sizeof(vec_short2) == sizeof(__hip_bfloat162_raw));
|
||||
union {
|
||||
__hip_bfloat162_raw bf162_raw;
|
||||
vec_short2 vs2;
|
||||
} u{static_cast<__hip_bfloat162_raw>(value)};
|
||||
u.vs2 = __builtin_amdgcn_flat_atomic_fadd_v2bf16((vec_short2*)address, u.vs2);
|
||||
return static_cast<__hip_bfloat162>(u.bf162_raw);
|
||||
#else
|
||||
static_assert(sizeof(unsigned int) == sizeof(__hip_bfloat162_raw));
|
||||
union u_hold {
|
||||
__hip_bfloat162_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ inline __half2 preview_unsafeAtomicAdd(__half2* address, __half2 value) {
|
||||
#if (defined(__gfx942__)) && \
|
||||
__has_builtin(__builtin_amdgcn_flat_atomic_fadd_v2f16)
|
||||
// The api expects an ext_vector_type of half
|
||||
typedef _Float16 __attribute__((ext_vector_type(2))) vec_fp162;
|
||||
static_assert(sizeof(vec_fp162) == sizeof(__half2_raw));
|
||||
union {
|
||||
__half2_raw h2r;
|
||||
vec_fp162 fp16;
|
||||
} u {static_cast<__half2_raw>(value)};
|
||||
u.fp16 = __builtin_amdgcn_flat_atomic_fadd_v2f16((vec_fp162*)address, u.fp16);
|
||||
return static_cast<__half2>(u.h2r);
|
||||
#else
|
||||
static_assert(sizeof(__half2_raw) == sizeof(unsigned int));
|
||||
union u_hold {
|
||||
__half2_raw h2r;
|
||||
unsigned int u32;
|
||||
};
|
||||
u_hold old_val, new_val;
|
||||
old_val.u32 = __hip_atomic_load((unsigned int*)address, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT);
|
||||
do {
|
||||
new_val.h2r = __hadd2(old_val.h2r, value);
|
||||
} while (!__hip_atomic_compare_exchange_strong(
|
||||
(unsigned int*)address, &old_val.u32, new_val.u32,
|
||||
__ATOMIC_RELAXED, __ATOMIC_RELAXED, __HIP_MEMORY_SCOPE_AGENT));
|
||||
return old_val.h2r;
|
||||
#endif
|
||||
}
|
||||
#define ATOMICADD preview_unsafeAtomicAdd
|
||||
#define ATOMICADD unsafeAtomicAdd
|
||||
#define NATIVE_ZERO_BF16 __float2bfloat16(0.0f)
|
||||
#else
|
||||
#define ATOMICADD atomicAdd
|
||||
|
||||
@ -2,18 +2,250 @@
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/native/DispatchStub.h>
|
||||
#include <ATen/native/cuda/Loops.cuh>
|
||||
#include <ATen/native/cuda/JitLoops.cuh>
|
||||
#include <ATen/native/cuda/jit_utils.h>
|
||||
#include <ATen/native/cuda/ScanUtils.cuh>
|
||||
#include <ATen/native/TensorIterator.h>
|
||||
#include <ATen/native/BinaryOps.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <c10/util/MathConstants.h>
|
||||
#include <c10/util/complex.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
// NOTE: CUDA on Windows requires that the enclosing function
|
||||
// of a __device__ lambda not have internal linkage.
|
||||
|
||||
namespace at::native {
|
||||
|
||||
// custom min and max to be used in logaddexp for complex arguments
|
||||
template <typename scalar_t, bool min>
|
||||
__host__ __device__ c10::complex<scalar_t> _logaddexp_minmax(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
||||
scalar_t xr = std::real(x);
|
||||
scalar_t yr = std::real(y);
|
||||
if (::isnan(yr) || (::isnan(std::imag(y)))) {
|
||||
return y;
|
||||
} else if (::isnan(xr) || (::isnan(std::imag(x)))) {
|
||||
return x;
|
||||
} else if (min) { // min
|
||||
return (xr < yr) ? x : y;
|
||||
} else { // max
|
||||
return (xr >= yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ scalar_t _log_add_exp_helper(const scalar_t& x, const scalar_t& y) {
|
||||
// Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
|
||||
// Using the original expression: `at::_isnan(y) ? y : std::min(x, y)` causes an error in ROCM
|
||||
const auto isnan_x = at::_isnan(x);
|
||||
const auto isnan_y = at::_isnan(y);
|
||||
scalar_t min = isnan_y ? y : (isnan_x ? x : std::min(x, y));
|
||||
scalar_t max = isnan_y ? y : (isnan_x ? x : std::max(x, y));
|
||||
if (min != max || ::isfinite(min)) {
|
||||
// nan will be propagated here
|
||||
return ::log1p(std::exp(min - max)) + max;
|
||||
} else {
|
||||
// special case to correctly handle infinite cases
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _fast_build_exp(const c10::complex<scalar_t>& x) {
|
||||
// complex exponential function, but implemented manually to get fast compilation time
|
||||
// this function only handles the case where the x is finite (not inf nor nan)
|
||||
const auto xreal = std::real(x);
|
||||
const auto ximag = std::imag(x);
|
||||
const auto exp_x_abs = std::exp(xreal);
|
||||
auto exp_x_real = exp_x_abs * std::cos(ximag);
|
||||
auto exp_x_imag = exp_x_abs * std::sin(ximag);
|
||||
return {exp_x_real, exp_x_imag};
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _fast_build_exp_inf(const c10::complex<scalar_t>& x) {
|
||||
// complex exponential function, but implemented manually to get fast compilation time
|
||||
// this function only handles the case where the real part of x is infinite
|
||||
const auto ximag = std::imag(x);
|
||||
constexpr auto exp_x_abs = std::numeric_limits<scalar_t>::infinity();
|
||||
if (!::isfinite(ximag)) { // add this to make consitent with std::exp(x+yi)
|
||||
return {exp_x_abs, std::numeric_limits<scalar_t>::quiet_NaN()};
|
||||
}
|
||||
const auto sin = std::sin(ximag);
|
||||
const auto cos = std::cos(ximag);
|
||||
// special case if the angle is exactly the multiple of pi/2
|
||||
auto exp_x_real = (cos == 0) ? (scalar_t)0.0 : exp_x_abs * cos;
|
||||
auto exp_x_imag = (sin == 0) ? (scalar_t)0.0 : exp_x_abs * sin;
|
||||
return {exp_x_real, exp_x_imag};
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__host__ __device__ c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
||||
c10::complex<scalar_t> min = _logaddexp_minmax<scalar_t, /*min=*/true>(x, y);
|
||||
c10::complex<scalar_t> max = _logaddexp_minmax<scalar_t, /*min=*/false>(x, y);
|
||||
scalar_t min_real = std::real(min);
|
||||
scalar_t max_real = std::real(max);
|
||||
|
||||
if (::isnan(min_real) || ::isnan(std::imag(min))) {
|
||||
// handling the "infectious" NaNs
|
||||
return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
|
||||
}
|
||||
else if ((!::isfinite(min_real)) && (min_real == max_real)) {
|
||||
if (min_real < 0) {
|
||||
// handle the -inf case, the imaginary part here does not really matter as the exp(value)
|
||||
// will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
|
||||
// It does not matter if we're taking the exp of this value
|
||||
return min;
|
||||
} else {
|
||||
// handle the +inf case, we don't need the special precision for log1p for small values
|
||||
// and to avoid producing nan in case of real(max) == real(min) == +inf
|
||||
const auto exp_min = _fast_build_exp_inf(min);
|
||||
const auto exp_max = _fast_build_exp_inf(max);
|
||||
return ::log1p(exp_min + exp_max - 1); // log1p(x - 1) builds faster than log
|
||||
}
|
||||
} else {
|
||||
const auto minmax = min - max;
|
||||
c10::complex<scalar_t> exp_minmax;
|
||||
if (!::isfinite(minmax.real())) {
|
||||
exp_minmax = minmax.real() < 0 ? c10::complex<scalar_t>{0.0, 0.0} : _fast_build_exp_inf(minmax);
|
||||
} else {
|
||||
exp_minmax = _fast_build_exp(minmax);
|
||||
}
|
||||
return ::log1p(exp_minmax) + max;
|
||||
}
|
||||
}
|
||||
|
||||
// Complex logaddexp jiterator string
|
||||
const auto logaddexp_complex_string = jiterator_stringify(
|
||||
template<typename T>
|
||||
std::complex<T> log1p(const std::complex<T>& z)
|
||||
{
|
||||
using complex_t = std::complex<T>;
|
||||
T x = z.real();
|
||||
T y = z.imag();
|
||||
T zabs = abs(z);
|
||||
T theta = atan2(y, x + T(1));
|
||||
if (zabs < 0.5) {
|
||||
T r = x * (T(2) + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return complex_t(x, theta);
|
||||
}
|
||||
return complex_t(T(0.5) * std::log1p(r), theta);
|
||||
} else {
|
||||
T z0 = std::hypot(x + 1, y);
|
||||
return complex_t(log(z0), theta);
|
||||
}
|
||||
}
|
||||
|
||||
// separated _logaddexp_minmax into 2 different functions for jiterator_string
|
||||
template <typename T>
|
||||
std::complex<T> logaddexp_min(const std::complex<T>& x, const std::complex<T>& y) {
|
||||
T xr = x.real();
|
||||
T yr = y.real();
|
||||
if (isnan(yr) || isnan(y.imag())) {
|
||||
return y;
|
||||
} else if (isnan(xr) || isnan(x.imag())) {
|
||||
return x;
|
||||
} else {
|
||||
return (xr < yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> logaddexp_max(const std::complex<T>& x, const std::complex<T>& y) {
|
||||
T xr = x.real();
|
||||
T yr = y.real();
|
||||
if (isnan(yr) || isnan(y.imag())) {
|
||||
return y;
|
||||
} else if (isnan(xr) || isnan(x.imag())) {
|
||||
return x;
|
||||
} else {
|
||||
return (xr >= yr) ? x : y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> fast_build_exp(const std::complex<T>& x) {
|
||||
const auto xreal = x.real();
|
||||
const auto ximag = x.imag();
|
||||
const auto exp_x_abs = exp(xreal);
|
||||
auto exp_x_real = exp_x_abs * cos(ximag);
|
||||
auto exp_x_imag = exp_x_abs * sin(ximag);
|
||||
return std::complex<T>(exp_x_real, exp_x_imag);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> fast_build_exp_inf(const std::complex<T>& x) {
|
||||
using complex_t = std::complex<T>;
|
||||
const auto ximag = x.imag();
|
||||
const T exp_x_abs = INFINITY;
|
||||
if (!isfinite(ximag)) {
|
||||
return complex_t(exp_x_abs, NAN);
|
||||
}
|
||||
const auto sin_val = sin(ximag);
|
||||
const auto cos_val = cos(ximag);
|
||||
auto exp_x_real = (cos_val == T(0)) ? T(0) : exp_x_abs * cos_val;
|
||||
auto exp_x_imag = (sin_val == T(0)) ? T(0) : exp_x_abs * sin_val;
|
||||
return complex_t(exp_x_real, exp_x_imag);
|
||||
}
|
||||
|
||||
template <typename complex_t>
|
||||
complex_t logaddexp_complex(complex_t x, complex_t y) {
|
||||
using T = typename complex_t::value_type;
|
||||
complex_t min_val = logaddexp_min(x, y);
|
||||
complex_t max_val = logaddexp_max(x, y);
|
||||
T min_real = min_val.real();
|
||||
T max_real = max_val.real();
|
||||
|
||||
if (isnan(min_real) || isnan(min_val.imag())) {
|
||||
return complex_t(NAN, NAN);
|
||||
}
|
||||
else if ((!isfinite(min_real)) && (min_real == max_real)) {
|
||||
if (min_real < T(0)) {
|
||||
return min_val;
|
||||
} else {
|
||||
const auto exp_min = fast_build_exp_inf<T>(min_val);
|
||||
const auto exp_max = fast_build_exp_inf<T>(max_val);
|
||||
return log1p(exp_min + exp_max - complex_t(1, 0));
|
||||
}
|
||||
} else {
|
||||
const auto minmax = min_val - max_val;
|
||||
complex_t exp_minmax;
|
||||
if (!isfinite(minmax.real())) {
|
||||
exp_minmax = (minmax.real() < T(0)) ? complex_t(0, 0) : fast_build_exp_inf<T>(minmax);
|
||||
} else {
|
||||
exp_minmax = fast_build_exp<T>(minmax);
|
||||
}
|
||||
return log1p(exp_minmax) + max_val;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
constexpr char logaddexp_complex_name[] = "logaddexp_complex";
|
||||
void logaddexp_kernel_cuda(TensorIteratorBase& iter) {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
if (at::isComplexType(iter.dtype())) {
|
||||
#if AT_USE_JITERATOR()
|
||||
AT_DISPATCH_COMPLEX_TYPES_AND(at::ScalarType::ComplexHalf, iter.dtype(), "logaddexp_cuda", [&]() {
|
||||
jitted_gpu_kernel<
|
||||
/*name=*/logaddexp_complex_name,
|
||||
/*return_dtype=*/scalar_t,
|
||||
/*common_dtype=*/scalar_t,
|
||||
/*arity=*/2>(iter, logaddexp_complex_string);
|
||||
});
|
||||
#else
|
||||
AT_DISPATCH_COMPLEX_TYPES_AND(at::ScalarType::ComplexHalf, iter.dtype(), "logaddexp_cuda", [&]() {
|
||||
using opmath_t = at::opmath_type<scalar_t>;
|
||||
gpu_kernel(iter, [] GPU_LAMBDA (scalar_t a_, scalar_t b_) -> scalar_t {
|
||||
const auto a = static_cast<opmath_t>(a_);
|
||||
const auto b = static_cast<opmath_t>(b_);
|
||||
return static_cast<scalar_t>(_log_add_exp_helper(a, b));
|
||||
});
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
ScalarType::BFloat16, ScalarType::Half,
|
||||
iter.dtype(), "logaddexp_cuda",
|
||||
[&]() {
|
||||
@ -29,6 +261,7 @@ void logaddexp_kernel_cuda(TensorIteratorBase& iter) {
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void logaddexp2_kernel_cuda(TensorIteratorBase& iter) {
|
||||
|
||||
@ -740,7 +740,12 @@ _scaled_rowwise_rowwise(
|
||||
TORCH_CHECK_VALUE(scale_a.numel() == mat_a.size(0) && scale_a.scalar_type() == kFloat, "scale_a must have ", mat_a.size(0), " Float elements, got ", scale_a.numel())
|
||||
TORCH_CHECK_VALUE(scale_b.numel() == mat_b.size(1) && scale_b.scalar_type() == kFloat, "scale_b must have ", mat_b.size(1), " Float elements, got ", scale_b.numel())
|
||||
|
||||
TORCH_CHECK_VALUE(scale_a.stride(1) == 1, "expected scale_a.stride(1) to be 1, but got ", scale_a.stride(1));
|
||||
// if we have a scale of shape [256, 1] (say), then stride can be [1, 0] - handle this case
|
||||
TORCH_CHECK_VALUE(
|
||||
scale_a.stride(1) == 1 ||
|
||||
scale_a.size(1) == 1,
|
||||
"expected scale_a.stride(1) to be 1, but got ", scale_a.stride(1)
|
||||
);
|
||||
TORCH_CHECK_VALUE(scale_b.stride(1) == 1, "expected scale_b.stride(1) to be 1, but got ", scale_b.stride(1));
|
||||
|
||||
auto scaling_choice_a = ScalingType::RowWise;
|
||||
@ -1096,6 +1101,19 @@ _scaled_mxfp8_mxfp8(
|
||||
return _scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, false /* use_fast_accum */, out);
|
||||
}
|
||||
|
||||
void
|
||||
_check_mxfp4_support() {
|
||||
#ifndef USE_ROCM
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
// Only on B200 GPUs
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
// B200 = 10.0, B300 = 10.3
|
||||
dprops->major == 10,
|
||||
"MXFP4 scaling only supported in CUDA for B200/B300"
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
Tensor&
|
||||
_scaled_mxfp4_mxfp4(
|
||||
@ -1108,6 +1126,7 @@ _scaled_mxfp4_mxfp4(
|
||||
#if defined(_WIN32) || (!defined(USE_ROCM) && !defined(USE_FBGEMM_GENAI))
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(false, "MXFP4 scaling supported on ROCM and CUDA+FBGEMM_GENAI only");
|
||||
#else
|
||||
_check_mxfp4_support();
|
||||
// Restrictions:
|
||||
// A, B are FP4, scales are e8m0, A: shape K//32, B: K, N//32
|
||||
TORCH_CHECK_VALUE(mat_a.scalar_type() == at::kFloat4_e2m1fn_x2 && mat_b.scalar_type() == at::kFloat4_e2m1fn_x2, "mat_a and mat_b must be fp4 types, got: ",
|
||||
|
||||
@ -267,15 +267,15 @@ void scan_dim_with_indices(const TensorBase& self, const TensorBase& values, con
|
||||
* outer dimensions, which contains several "inner rows").
|
||||
* Each thread processes a single inner row at a time.
|
||||
*/
|
||||
template<typename scalar_t, class BinaryOp>
|
||||
template<typename scalar_t, typename index_t, class BinaryOp>
|
||||
__global__ void tensor_kernel_scan_outer_dim(scalar_t *tgt_, const scalar_t *src_,
|
||||
const uint32_t num_orows, const uint32_t num_irows, const uint32_t row_size,
|
||||
const scalar_t init, BinaryOp binary_op)
|
||||
{
|
||||
for (uint32_t orow = blockIdx.x; orow < num_orows; orow += gridDim.x) {
|
||||
for (uint32_t irow = blockIdx.y * blockDim.x + threadIdx.x; irow < num_irows; irow += gridDim.y * blockDim.x) {
|
||||
const scalar_t *src = src_ + orow * row_size * num_irows + irow;
|
||||
scalar_t *tgt = tgt_ + orow * row_size * num_irows + irow;
|
||||
const scalar_t *src = src_ + static_cast<index_t>(orow) * row_size * num_irows + irow;
|
||||
scalar_t *tgt = tgt_ + (index_t) orow * row_size * num_irows + irow;
|
||||
scalar_t acc = init;
|
||||
|
||||
for (uint32_t col = 0; col < row_size; ++col) {
|
||||
@ -409,10 +409,15 @@ __host__ void scan_outer_dim(const TensorBase& self, const TensorBase& result,
|
||||
check_fits_in_unsigned(num_irows, "num_irows");
|
||||
check_fits_in_unsigned(num_orows, "num_orows");
|
||||
check_fits_in_unsigned(row_size, "row_size");
|
||||
|
||||
tensor_kernel_scan_outer_dim<scalar_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
if (static_cast<size_t>(num_irows) * num_orows * row_size <= UINT_MAX) {
|
||||
tensor_kernel_scan_outer_dim<scalar_t, uint32_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
result.mutable_data_ptr<scalar_t>(), self.const_data_ptr<scalar_t>(),
|
||||
num_orows, num_irows, row_size, init, binary_op);
|
||||
} else {
|
||||
tensor_kernel_scan_outer_dim<scalar_t, size_t><<<grid, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
|
||||
result.mutable_data_ptr<scalar_t>(), self.const_data_ptr<scalar_t>(),
|
||||
num_orows, num_irows, row_size, init, binary_op);
|
||||
}
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
}
|
||||
|
||||
|
||||
@ -337,10 +337,6 @@ Tensor _convolution_out(
|
||||
TORCH_CHECK(
|
||||
3 == ndim || 4 == ndim || 5 == ndim,
|
||||
"convolution only supports 3D, 4D, 5D tensor");
|
||||
// get computation format for Conv/TransposedConv
|
||||
bool is_channels_last_suggested =
|
||||
use_channels_last_for_conv(input_r, weight_r);
|
||||
|
||||
Tensor input = input_r, weight = weight_r;
|
||||
// PyTorch does not support ChannelsLast1D case,
|
||||
// thus we need the transformation here
|
||||
@ -348,13 +344,8 @@ Tensor _convolution_out(
|
||||
input = view4d(input_r);
|
||||
weight = view4d(weight_r);
|
||||
}
|
||||
// ensure the input/weight/bias/output are congituous in desired format
|
||||
at::MemoryFormat mfmt = is_channels_last_suggested
|
||||
? get_cl_tag_by_ndim(input.ndimension())
|
||||
: at::MemoryFormat::Contiguous;
|
||||
auto bias = bias_r.defined() ? bias_r.contiguous() : bias_r;
|
||||
input = input.contiguous(mfmt);
|
||||
weight = weight.contiguous(mfmt);
|
||||
// get computation format for Conv/TransposedConv
|
||||
bool is_channels_last_suggested = use_channels_last_for_conv(input, weight);
|
||||
|
||||
auto k = weight.ndimension();
|
||||
if (k == input.ndimension() + 1) {
|
||||
@ -388,6 +379,14 @@ Tensor _convolution_out(
|
||||
expand_param_if_needed(output_padding_, "output_padding", dim);
|
||||
params.groups = groups_;
|
||||
}
|
||||
|
||||
// ensure the input/weight/bias/output are congituous in desired format
|
||||
at::MemoryFormat mfmt = is_channels_last_suggested
|
||||
? get_cl_tag_by_ndim(input.ndimension())
|
||||
: at::MemoryFormat::Contiguous;
|
||||
auto bias = bias_r.defined() ? bias_r.contiguous() : bias_r;
|
||||
input = input.contiguous(mfmt);
|
||||
weight = weight.contiguous(mfmt);
|
||||
check_shape_forward(input, weight, bias, params, true);
|
||||
|
||||
Tensor output;
|
||||
@ -514,18 +513,9 @@ Tensor convolution_overrideable(
|
||||
at::borrow_from_optional_tensor(bias_r_opt);
|
||||
const Tensor& bias_r = *bias_r_maybe_owned;
|
||||
|
||||
auto k = weight_r.ndimension();
|
||||
at::MemoryFormat backend_memory_format = at::MemoryFormat::Contiguous;
|
||||
if (xpu_conv_use_channels_last(input_r, weight_r)) {
|
||||
backend_memory_format = (k == 5) ? at::MemoryFormat::ChannelsLast3d
|
||||
: at::MemoryFormat::ChannelsLast;
|
||||
}
|
||||
Tensor input_c = input_r.contiguous(backend_memory_format);
|
||||
Tensor weight_c = weight_r.contiguous(backend_memory_format);
|
||||
|
||||
return _convolution(
|
||||
input_c,
|
||||
weight_c,
|
||||
input_r,
|
||||
weight_r,
|
||||
bias_r,
|
||||
stride_,
|
||||
padding_,
|
||||
|
||||
342
aten/src/ATen/native/mkldnn/xpu/ScaledBlas.cpp
Normal file
342
aten/src/ATen/native/mkldnn/xpu/ScaledBlas.cpp
Normal file
@ -0,0 +1,342 @@
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/WrapDimUtilsMulti.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/oneDNN.h>
|
||||
#include <ATen/native/xpu/Blas.h>
|
||||
#include <torch/library.h>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
namespace at::native {
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace {
|
||||
/*
|
||||
* Scaling Type Determination:
|
||||
* ---------------------------
|
||||
* Conditions and corresponding Scaling Types:
|
||||
*
|
||||
* - If scale tensor is `Float8_e8m0fnu` or `Float8_e4m3fn`:
|
||||
* - Returns BlockWise (with additional size checks).
|
||||
*
|
||||
* - Else if scale.numel() == 1:
|
||||
* - Returns TensorWise.
|
||||
*
|
||||
* - Else if scale.dim() == 2 && scale.size(0) == outer_dim && scale.size(1) ==
|
||||
* 1:
|
||||
* - Returns RowWise.
|
||||
*
|
||||
* - Otherwise:
|
||||
* - Returns Error.
|
||||
*/
|
||||
|
||||
bool is_tensorwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return at::isFloat8Type(t.scalar_type()) &&
|
||||
scale.scalar_type() == at::kFloat && scale.numel() == 1;
|
||||
}
|
||||
|
||||
bool is_rowwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return (
|
||||
at::isFloat8Type(t.scalar_type()) && scale.scalar_type() == at::kFloat &&
|
||||
scale.dim() == 2 && scale.size(0) == t.size(0) && scale.size(1) == 1 &&
|
||||
scale.is_contiguous());
|
||||
}
|
||||
|
||||
bool is_desired_scaling(
|
||||
const at::Tensor& t,
|
||||
const at::Tensor& scale,
|
||||
ScalingType desired_scaling) {
|
||||
auto result = desired_scaling == ScalingType::TensorWise
|
||||
? is_tensorwise_scaling(t, scale)
|
||||
: is_rowwise_scaling(t, scale);
|
||||
return result;
|
||||
}
|
||||
|
||||
std::pair<ScalingType, ScalingType> get_joint_scaling(
|
||||
std::initializer_list<std::pair<ScalingType, ScalingType>> options,
|
||||
const at::Tensor& a,
|
||||
const at::Tensor& b,
|
||||
const at::Tensor& scale_a,
|
||||
const at::Tensor& scale_b) {
|
||||
for (auto [lhs, rhs] : options) {
|
||||
if (is_desired_scaling(a, scale_a, lhs) &&
|
||||
is_desired_scaling(b.t(), scale_b.t(), rhs)) {
|
||||
return {lhs, rhs};
|
||||
}
|
||||
}
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Invalid scaling configuration.\n"
|
||||
"- For TensorWise scaling, a and b should be float8, scales should be float and singletons.\n"
|
||||
"- For RowWise scaling, a and b should be float8, scales should be float, scale_a should be (",
|
||||
a.size(0),
|
||||
", 1) and scale_b should be (1, ",
|
||||
b.size(1),
|
||||
"), and both should be contiguous.\n"
|
||||
"Got a.dtype()=",
|
||||
a.scalar_type(),
|
||||
", scale_a.dtype()=",
|
||||
scale_a.scalar_type(),
|
||||
", scale_a.size()=",
|
||||
scale_a.sizes(),
|
||||
", scale_a.stride()=",
|
||||
scale_a.strides(),
|
||||
", ",
|
||||
"b.dtype()=",
|
||||
b.scalar_type(),
|
||||
", scale_b.dtype()=",
|
||||
scale_b.scalar_type(),
|
||||
", scale_b.size()=",
|
||||
scale_b.sizes(),
|
||||
" and scale_b.stride()=",
|
||||
scale_b.strides());
|
||||
}
|
||||
|
||||
Tensor& _scaled_gemm(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const ScalingType scaling_choice_a,
|
||||
const ScalingType scaling_choice_b,
|
||||
const std::optional<Tensor>& bias,
|
||||
const bool use_fast_accum,
|
||||
Tensor& out,
|
||||
const std::optional<Tensor>& alpha = std::nullopt) {
|
||||
// TODO: scale_result and alpha is not defined or used!
|
||||
std::optional<Tensor> scaled_result = std::nullopt;
|
||||
at::native::onednn::scaled_matmul(
|
||||
mat1,
|
||||
mat2,
|
||||
out,
|
||||
scale_a,
|
||||
scale_b,
|
||||
scaling_choice_a,
|
||||
scaling_choice_b,
|
||||
bias,
|
||||
scaled_result,
|
||||
use_fast_accum);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Computes matrix multiply + bias while applying scaling to input and output
|
||||
// matrices Scales are only applicable when matrices are of Float8 type and
|
||||
// assumed to be equal to 1.0 by default. If output matrix type is 16 or 32-bit
|
||||
// type, scale_result is not applied. Known limitations:
|
||||
// - Only works if mat1 is row-major and mat2 is column-major
|
||||
// - Only works if matrices sizes are divisible by 32
|
||||
// - If 1-dimensional tensors are used then scale_a should be size =
|
||||
// mat1.size(0)
|
||||
// and scale_b should have size = to mat2.size(1)
|
||||
// Arguments:
|
||||
// - `mat1`: the first operand of the matrix multiply, can be type
|
||||
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
|
||||
// - `mat2`: the second operand of the matrix multiply, can be type
|
||||
// `torch.float8_e4m3fn` or `torch.float8_e5m2`
|
||||
// - `bias`: the bias, can be type `torch.float16` or `torch.bfloat16`
|
||||
// - `out_dtype`: the output dtype, can either be a float8 or a higher
|
||||
// precision floating point type
|
||||
// - `scale_a`: a tensor with the inverse scale of `mat1`, whose
|
||||
// shape/strides/dtype depend on the scaling scheme
|
||||
// - `scale_b`: a tensor with the inverse scale of `mat2`, whose
|
||||
// shape/strides/dtype depend on the scaling scheme
|
||||
// - `scale_result`: a scalar tensor with the scale of the output, only
|
||||
// utilized if the output is a float8 type
|
||||
// - `use_fast_accum`: Not applicable for XPU. For now, it should always be
|
||||
// false.
|
||||
// - `out`: a reference to the output tensor
|
||||
|
||||
Tensor& _scaled_mm_out_xpu(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum,
|
||||
Tensor& out) {
|
||||
// Note: fast_accum is not supported in XPU for now.
|
||||
TORCH_CHECK(!use_fast_accum, "fast_accum is not supported in XPU for now.");
|
||||
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix");
|
||||
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] == mat2.sizes()[0],
|
||||
"mat1 and mat2 shapes cannot be multiplied (",
|
||||
mat1.sizes()[0],
|
||||
"x",
|
||||
mat1.sizes()[1],
|
||||
" and ",
|
||||
mat2.sizes()[0],
|
||||
"x",
|
||||
mat2.sizes()[1],
|
||||
")");
|
||||
|
||||
// Check what type of scaling we are doing based on inputs. This list is
|
||||
// sorted by decreasing priority.
|
||||
|
||||
// List of supported datatypes for XPU with oneDNN:
|
||||
// https://uxlfoundation.github.io/oneDNN/dev_guide_matmul.html#data-types
|
||||
auto [scaling_choice_a, scaling_choice_b] = get_joint_scaling(
|
||||
{
|
||||
std::make_pair(ScalingType::TensorWise, ScalingType::TensorWise),
|
||||
std::make_pair(ScalingType::RowWise, ScalingType::RowWise),
|
||||
},
|
||||
mat1,
|
||||
mat2,
|
||||
scale_a,
|
||||
scale_b);
|
||||
TORCH_CHECK(
|
||||
!scale_result ||
|
||||
(scale_result->numel() == 1 && scale_result->scalar_type() == kFloat),
|
||||
"scale_result must be a float scalar");
|
||||
TORCH_CHECK(
|
||||
!bias || bias->numel() == mat2.sizes()[1],
|
||||
"Bias must be size ",
|
||||
mat2.sizes()[1],
|
||||
" but got ",
|
||||
bias->numel());
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] % 16 == 0,
|
||||
"Expected trailing dimension of mat1 to be divisible by 16 ",
|
||||
"but got mat1 shape: (",
|
||||
mat1.sizes()[0],
|
||||
"x",
|
||||
mat1.sizes()[1],
|
||||
").");
|
||||
TORCH_CHECK(
|
||||
mat2.sizes()[0] % 16 == 0 && mat2.sizes()[1] % 16 == 0,
|
||||
"mat2 shape (",
|
||||
mat2.sizes()[0],
|
||||
"x",
|
||||
mat2.sizes()[1],
|
||||
") must be divisible by 16");
|
||||
// Check types
|
||||
TORCH_CHECK(
|
||||
!out_dtype || *out_dtype == out.scalar_type(),
|
||||
"out_dtype must match output matrix type");
|
||||
TORCH_CHECK(
|
||||
at::isFloat8Type(mat1.scalar_type()),
|
||||
"Expected mat1 to be Float8 matrix got ",
|
||||
mat1.scalar_type());
|
||||
TORCH_CHECK(
|
||||
at::isFloat8Type(mat2.scalar_type()),
|
||||
"Expected mat2 to be Float8 matrix got ",
|
||||
mat2.scalar_type());
|
||||
// TODO: oneDNN Currently only supports e4m3 with group scales on BMG. Not
|
||||
// support 2D scales, only 1D. Needs to add more checks there.
|
||||
|
||||
if (bias) {
|
||||
TORCH_CHECK(
|
||||
bias->scalar_type() == kFloat ||
|
||||
bias->scalar_type() == c10::ScalarType::BFloat16 ||
|
||||
bias->scalar_type() == c10::ScalarType::Half,
|
||||
"Bias must be Float32 or BFloat16 or Half, but got ",
|
||||
bias->scalar_type());
|
||||
}
|
||||
|
||||
{
|
||||
auto bias_ = bias.value_or(Tensor());
|
||||
auto scale_result_ = scale_result.value_or(Tensor());
|
||||
|
||||
// NOLINTNEXTLINE(*c-array*)
|
||||
TensorArg targs[]{
|
||||
{out, "out", 0},
|
||||
{mat1, "mat1", 1},
|
||||
{mat2, "mat2", 2},
|
||||
{bias_, "bias", 3},
|
||||
{scale_a, "scale_a", 4},
|
||||
{scale_b, "scale_b", 5},
|
||||
{scale_result_, "scale_result", 6}};
|
||||
checkAllSameGPU(__func__, targs);
|
||||
}
|
||||
|
||||
// Validation checks have passed lets resize the output to actual size
|
||||
IntArrayRef mat1_sizes = mat1.sizes();
|
||||
IntArrayRef mat2_sizes = mat2.sizes();
|
||||
at::native::resize_output(out, {mat1_sizes[0], mat2_sizes[1]});
|
||||
|
||||
// If any of M, K, N is 0 - return early (the tensorwise/rowwise float8 gemm
|
||||
// kernels do not support this case).
|
||||
if (mat1_sizes[0] == 0 || mat1_sizes[1] == 0 || mat2_sizes[1] == 0) {
|
||||
// `out` was created with `at::empty`. In the case where we are multiplying
|
||||
// MxK by KxN and K is the zero dim, we need to initialize here to properly
|
||||
// return a tensor of zeros.
|
||||
if (mat1_sizes[1] == 0) {
|
||||
out.zero_();
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// TODO: Scale_result is not supported by now!!
|
||||
return _scaled_gemm(
|
||||
mat1,
|
||||
mat2,
|
||||
scale_a,
|
||||
scale_b,
|
||||
scaling_choice_a,
|
||||
scaling_choice_b,
|
||||
bias,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
Tensor _scaled_mm_xpu(
|
||||
const Tensor& mat_a,
|
||||
const Tensor& mat_b,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
std::optional<c10::ScalarType> out_dtype,
|
||||
bool use_fast_accum) {
|
||||
const auto out_dtype_ = out_dtype.value_or(mat_a.scalar_type());
|
||||
Tensor out = at::empty({0}, mat_a.options().dtype(out_dtype_));
|
||||
return _scaled_mm_out_xpu(
|
||||
mat_a,
|
||||
mat_b,
|
||||
scale_a,
|
||||
scale_b,
|
||||
bias,
|
||||
scale_result,
|
||||
out_dtype,
|
||||
use_fast_accum,
|
||||
out);
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
@ -1,3 +1,4 @@
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/Tensor.h>
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
@ -8,7 +9,6 @@
|
||||
#include <oneapi/dnnl/dnnl.hpp>
|
||||
|
||||
namespace at::native::onednn {
|
||||
|
||||
at::Tensor broadcast_bias2D(
|
||||
at::Tensor& dst,
|
||||
at::Tensor& bias,
|
||||
@ -328,4 +328,236 @@ void quantized_matmul(
|
||||
result.copy_(dst);
|
||||
}
|
||||
|
||||
// Describes how to configure oneDNN scales for a given role/ScalingType
|
||||
struct ScaleSpec {
|
||||
// specifies the way scale values will be applied to an ARG tensor.
|
||||
int mask;
|
||||
// specifies how scales are grouped along dimensions where
|
||||
// multiple scale factors are used.
|
||||
dnnl::memory::dims groups;
|
||||
// specifies data type for scale factors.
|
||||
dnnl::memory::data_type dtype;
|
||||
|
||||
// Helper to compute expected number of elements for scale tensors
|
||||
// arg_type: "src" for SRC (groups pattern {1, X}),
|
||||
// "wei" for WEIGHTS (groups pattern {X, 1})
|
||||
int64_t expected_numel(
|
||||
int64_t outer_dim,
|
||||
int64_t inner_dim,
|
||||
const std::string& arg_type) const {
|
||||
if (groups == dnnl::memory::dims{1, 1})
|
||||
return 1; // tensorwise scaling
|
||||
|
||||
TORCH_CHECK(
|
||||
arg_type == "src" || arg_type == "wei",
|
||||
"Expected arg_type to be 'src' or 'wei', but got '",
|
||||
arg_type,
|
||||
"'");
|
||||
|
||||
// For rowwise: SRC groups={1, K}, WEI groups={K, 1}
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
(groups == dnnl::memory::dims{1, inner_dim} ||
|
||||
groups == dnnl::memory::dims{inner_dim, 1}),
|
||||
"The groups must be either {1, inner_dim} or {inner_dim, 1}. But got ",
|
||||
groups,
|
||||
".");
|
||||
return outer_dim;
|
||||
}
|
||||
|
||||
// Normalize an incoming scale tensor to contiguous storage and appropriate
|
||||
// dtype/view
|
||||
at::Tensor normalize(const at::Tensor& scale) const {
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
dtype == dnnl::memory::data_type::f32,
|
||||
"tensor scale currently must be f32, but got scale dtype: ",
|
||||
scale.scalar_type());
|
||||
return scale.to(at::kFloat).contiguous();
|
||||
}
|
||||
};
|
||||
|
||||
// This function defines how to set scales mask and groups according to:
|
||||
// https://github.com/uxlfoundation/oneDNN/blob/main/tests/benchdnn/doc/knobs_attr.md#--attr-scales
|
||||
// The returned value will be used in
|
||||
// `set_scales(arg, mask, groups, data_type)`.
|
||||
inline ScaleSpec make_scale_spec(
|
||||
at::blas::ScalingType scaling_type,
|
||||
int64_t M,
|
||||
int64_t K,
|
||||
int64_t N,
|
||||
const std::string& arg_type) {
|
||||
TORCH_CHECK(
|
||||
arg_type == "src" || arg_type == "wei",
|
||||
"Expected arg_type to be 'src' or 'wei', but got '",
|
||||
arg_type,
|
||||
"'");
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
(scaling_type == at::blas::ScalingType::TensorWise ||
|
||||
scaling_type == at::blas::ScalingType::RowWise),
|
||||
"Currently only support scaling_type for TensorWise or RowWise");
|
||||
int64_t dim = K; // Currently only K is used for grouping
|
||||
bool is_src = (arg_type == "src");
|
||||
if (scaling_type == at::blas::ScalingType::TensorWise) {
|
||||
// Scale tensorwise. The same as `--attr-scales=common`.
|
||||
// mask=0 : scale whole tensor
|
||||
// groups={1, 1}: indicates that there is only one group for scaling
|
||||
return {0, {1, 1}, dnnl::memory::data_type::f32};
|
||||
} else {
|
||||
// (scaling_type == at::blas::ScalingType::RowWise)
|
||||
// Scale RowWise. The same as `--attr-scales=per_dim_01`.
|
||||
// mask={(1 << 0) | (1 << 1)}: Scale on both dim0 and dim1
|
||||
// SRC: groups={1, K}, WEIGHTS: groups={K, 1}
|
||||
return {
|
||||
(1 << 0) | (1 << 1),
|
||||
is_src ? dnnl::memory::dims{1, dim} : dnnl::memory::dims{dim, 1},
|
||||
dnnl::memory::data_type::f32};
|
||||
}
|
||||
}
|
||||
|
||||
sycl::event scaled_matmul(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
Tensor& result,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
at::blas::ScalingType scaling_choice_a,
|
||||
at::blas::ScalingType scaling_choice_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
bool use_fast_accum) {
|
||||
auto& engine = GpuEngineManager::Instance().get_engine();
|
||||
auto& stream = GpuStreamManager::Instance().get_stream();
|
||||
|
||||
// This function will do steps with following steps
|
||||
// 1. create memory descriptor
|
||||
// 2. call write_to_dnnl_memory() to actually write memory
|
||||
// 3. execute
|
||||
|
||||
const int64_t M = mat1.size(0);
|
||||
const int64_t K = mat1.size(1);
|
||||
const int64_t N = mat2.size(1);
|
||||
|
||||
// 1.1 Create memory descriptor
|
||||
dnnl::memory::desc src_md = get_onednn_md(mat1);
|
||||
dnnl::memory::desc weights_md = get_onednn_md(mat2);
|
||||
dnnl::memory::desc dst_md = get_onednn_md(result);
|
||||
|
||||
// scale_a and scale_b has already be checked in `is_desired_scaling()` call.
|
||||
// So we could directly get their memory desc and set later.
|
||||
dnnl::memory::desc scale_a_md = get_onednn_md(scale_a);
|
||||
dnnl::memory::desc scale_b_md = get_onednn_md(scale_b);
|
||||
|
||||
dnnl::memory::desc bias_md;
|
||||
bool with_bias = bias.has_value();
|
||||
at::Tensor possible_reshaped_bias = bias.value_or(at::Tensor());
|
||||
if (with_bias) {
|
||||
if (possible_reshaped_bias.dim() == 1) {
|
||||
possible_reshaped_bias =
|
||||
possible_reshaped_bias.reshape({1, possible_reshaped_bias.size(0)});
|
||||
bias_md = get_onednn_md(possible_reshaped_bias);
|
||||
} else {
|
||||
bias_md = get_onednn_md(possible_reshaped_bias);
|
||||
}
|
||||
}
|
||||
|
||||
// 1.2 Create primitive descriptor and set scales mask
|
||||
const ScaleSpec src_spec = make_scale_spec(scaling_choice_a, M, K, N, "src");
|
||||
const ScaleSpec wei_spec = make_scale_spec(scaling_choice_b, M, K, N, "wei");
|
||||
|
||||
dnnl::primitive_attr op_attr = dnnl::primitive_attr();
|
||||
|
||||
#if ONEDNN_SUPPORT_DETERMINISTIC
|
||||
if (at::globalContext().deterministicAlgorithms() ||
|
||||
at::globalContext().deterministicMkldnn())
|
||||
op_attr.set_deterministic(true);
|
||||
#endif
|
||||
|
||||
std::vector<int64_t> default_groups;
|
||||
op_attr.set_scales(
|
||||
DNNL_ARG_SRC, src_spec.mask, src_spec.groups, src_spec.dtype);
|
||||
op_attr.set_scales(
|
||||
DNNL_ARG_WEIGHTS, wei_spec.mask, wei_spec.groups, wei_spec.dtype);
|
||||
// scale_result tensor currently only supports scalar(TensorWise Scaling).
|
||||
bool with_dst_scale = scale_result && scale_result->defined();
|
||||
if (with_dst_scale) {
|
||||
op_attr.set_scales(DNNL_ARG_DST, 0, {1}, dnnl::memory::data_type::f32);
|
||||
}
|
||||
|
||||
op_attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);
|
||||
|
||||
// 1.3 Create the matmul primitive descriptor
|
||||
dnnl::matmul::primitive_desc matmul_pd = with_bias
|
||||
? dnnl::matmul::primitive_desc(
|
||||
engine, src_md, weights_md, bias_md, dst_md, op_attr)
|
||||
: dnnl::matmul::primitive_desc(
|
||||
engine, src_md, weights_md, dst_md, op_attr);
|
||||
|
||||
// 1.4 (Possible) Additional Checks
|
||||
// TODO: In case there are memory desc does not align with the actual tensor,
|
||||
// we might need to reorder weights similar to CPU's reorder_if_differ_in()
|
||||
// call. For example, weights not the same as matmul_pd.weights_desc(),
|
||||
|
||||
// 2. Prepare memory
|
||||
|
||||
// Create memory
|
||||
auto src_usr_m = make_onednn_memory(src_md, engine, mat1.data_ptr());
|
||||
auto weights_usr_m = make_onednn_memory(weights_md, engine, mat2.data_ptr());
|
||||
auto dst_usr_m = make_onednn_memory(dst_md, engine, result.data_ptr());
|
||||
dnnl::memory b_usr_m;
|
||||
if (with_bias) {
|
||||
b_usr_m =
|
||||
make_onednn_memory(bias_md, engine, possible_reshaped_bias.data_ptr());
|
||||
}
|
||||
|
||||
// Prepare runtime scale memories (flat 1-D views) using the specs
|
||||
auto make_scale_mem_from_spec = [&](const ScaleSpec& spec,
|
||||
int64_t expected_numel,
|
||||
const at::Tensor& scale_tensor) {
|
||||
at::Tensor prepared = spec.normalize(scale_tensor);
|
||||
TORCH_CHECK(
|
||||
prepared.numel() == expected_numel,
|
||||
"Scale buffer length mismatch. Expected ",
|
||||
expected_numel,
|
||||
", got ",
|
||||
prepared.numel());
|
||||
dnnl::memory::desc scale_md(
|
||||
{prepared.numel()}, spec.dtype, dnnl::memory::format_tag::x);
|
||||
return make_onednn_memory(scale_md, engine, prepared.data_ptr());
|
||||
};
|
||||
|
||||
auto scratchpad =
|
||||
make_onednn_memory(matmul_pd.scratchpad_desc(), engine, nullptr);
|
||||
|
||||
// 3. Setup Args for exec
|
||||
std::unordered_map<int, dnnl::memory> args;
|
||||
args.insert({DNNL_ARG_SRC, src_usr_m});
|
||||
args.insert({DNNL_ARG_WEIGHTS, weights_usr_m});
|
||||
args.insert({DNNL_ARG_DST, dst_usr_m});
|
||||
args.insert({DNNL_ARG_SCRATCHPAD, scratchpad});
|
||||
if (with_bias) {
|
||||
args.insert({DNNL_ARG_BIAS, b_usr_m});
|
||||
}
|
||||
|
||||
// Attach runtime scales using specs
|
||||
auto src_sc_mem = make_scale_mem_from_spec(
|
||||
src_spec, src_spec.expected_numel(M, K, "src"), scale_a);
|
||||
auto wei_sc_mem = make_scale_mem_from_spec(
|
||||
wei_spec, wei_spec.expected_numel(N, K, "wei"), scale_b);
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_SRC, src_sc_mem});
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, wei_sc_mem});
|
||||
if (with_dst_scale) {
|
||||
// Bind single f32 scalar as DST scale
|
||||
at::Tensor dst_scale_f32 = scale_result->to(at::kFloat).contiguous();
|
||||
dnnl::memory::desc dst_sc_md(
|
||||
{1}, dnnl::memory::data_type::f32, dnnl::memory::format_tag::x);
|
||||
auto dst_sc_mem =
|
||||
make_onednn_memory(dst_sc_md, engine, dst_scale_f32.data_ptr());
|
||||
args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, dst_sc_mem});
|
||||
}
|
||||
|
||||
dnnl::matmul matmul_p = dnnl::matmul(matmul_pd);
|
||||
sycl::event matmul_fwd_event =
|
||||
dnnl::sycl_interop::execute(matmul_p, stream, args);
|
||||
return matmul_fwd_event;
|
||||
}
|
||||
|
||||
} // namespace at::native::onednn
|
||||
|
||||
@ -78,6 +78,10 @@ dnnl::memory::data_type get_onednn_dtype(
|
||||
return dnnl::memory::data_type::f32;
|
||||
case at::ScalarType::BFloat16:
|
||||
return dnnl::memory::data_type::bf16;
|
||||
case at::ScalarType::Float8_e4m3fn:
|
||||
return dnnl::memory::data_type::f8_e4m3;
|
||||
case at::ScalarType::Float8_e5m2:
|
||||
return dnnl::memory::data_type::f8_e5m2;
|
||||
default:
|
||||
if (!allow_undef) {
|
||||
TORCH_CHECK(
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/BlasBackend.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/Attr.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/Utils.h>
|
||||
#include <ATen/native/mkldnn/xpu/detail/oneDNNContext.h>
|
||||
@ -202,4 +203,16 @@ void sdpa_backward(
|
||||
Tensor& grad_query,
|
||||
Tensor& grad_key,
|
||||
Tensor& grad_value);
|
||||
|
||||
sycl::event scaled_matmul(
|
||||
const Tensor& mat1,
|
||||
const Tensor& mat2,
|
||||
Tensor& result,
|
||||
const Tensor& scale_a,
|
||||
const Tensor& scale_b,
|
||||
at::blas::ScalingType scaling_choice_a,
|
||||
at::blas::ScalingType scaling_choice_b,
|
||||
const std::optional<at::Tensor>& bias,
|
||||
const std::optional<at::Tensor>& scale_result,
|
||||
bool use_fast_accum);
|
||||
} // namespace at::native::onednn
|
||||
|
||||
@ -82,6 +82,7 @@ NSArray<NSNumber*>* getTensorAxes(const TensorBase& t);
|
||||
NSArray<NSNumber*>* getTensorAxes(const IntArrayRef& sizes, at::OptionalIntArrayRef dim);
|
||||
std::string getMPSShapeString(MPSShape* shape);
|
||||
std::string getTensorsStringKey(const TensorList& tensors, bool short_dtype = true, bool exclude_shape = false);
|
||||
std::string to_hex_key(float);
|
||||
std::string getArrayRefString(const IntArrayRef s);
|
||||
// use has_storage() on the returned tensor to determine if src actually is a view
|
||||
Tensor gatherViewTensor(const Tensor& src, Tensor& dst);
|
||||
|
||||
@ -301,6 +301,10 @@ std::string getArrayRefString(const IntArrayRef s) {
|
||||
return fmt::to_string(fmt::join(s, ","));
|
||||
}
|
||||
|
||||
std::string to_hex_key(float f) {
|
||||
return fmt::format("{:a}", f);
|
||||
}
|
||||
|
||||
std::string getTensorsStringKey(const TensorList& tensors, bool short_dtype, bool exclude_shape) {
|
||||
fmt::basic_memory_buffer<char, 100> buffer;
|
||||
auto buf_iterator = std::back_inserter(buffer);
|
||||
|
||||
@ -40,7 +40,7 @@ inline c10::metal::opmath_t<T> matmul_inner(
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
for (uint k = 0; k < TILE_DIM; k++) {
|
||||
sum += A_tile[tid.y][k] * B_tile[k][tid.x];
|
||||
sum += c10::metal::mul(A_tile[tid.y][k], B_tile[k][tid.x]);
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
@ -96,7 +96,9 @@ kernel void addmm(
|
||||
auto bias =
|
||||
biasData[thread_id.y * strides[3].x + thread_id.x * strides[3].y];
|
||||
outputData[thread_id.y * strides[2].x + thread_id.x * strides[2].y] =
|
||||
static_cast<T>(alpha_beta[0] * sum + alpha_beta[1] * bias);
|
||||
static_cast<T>(
|
||||
c10::metal::mul(alpha_beta[0], sum) +
|
||||
c10::metal::mul(alpha_beta[1], bias));
|
||||
}
|
||||
}
|
||||
|
||||
@ -832,6 +834,10 @@ INSTANTIATE_MM_OPS(float);
|
||||
INSTANTIATE_MM_OPS(half);
|
||||
INSTANTIATE_MM_OPS(bfloat);
|
||||
|
||||
// Complex MM
|
||||
INSTANTIATE_MM_OPS(float2);
|
||||
INSTANTIATE_MM_OPS(half2);
|
||||
|
||||
// Integral MM
|
||||
INSTANTIATE_MM_OPS(long);
|
||||
INSTANTIATE_MM_OPS(int);
|
||||
|
||||
@ -69,75 +69,139 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
|
||||
auto out = at::empty({batchSize, num_head, qSize, headSize}, query.options());
|
||||
auto attn = at::empty({batchSize, num_head, qSize, maxSeqLength}, query.options());
|
||||
auto scale_factor = sdp::calculate_scale(query, scale).expect_float();
|
||||
static const bool is_macOS_26_0_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_26_0_PLUS);
|
||||
@autoreleasepool {
|
||||
auto mkey = __func__ + getTensorsStringKey({query, key, value}) + ":" + std::to_string(is_causal) + ":" +
|
||||
std::to_string(attn_mask.has_value());
|
||||
auto cachedGraph =
|
||||
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
|
||||
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
|
||||
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
|
||||
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
|
||||
auto kT = [mpsGraph transposeTensor:kTensor dimension:2 withDimension:3 name:nil];
|
||||
auto scaleTensor = [mpsGraph constantWithScalar:scale_factor
|
||||
shape:getMPSShape({1})
|
||||
dataType:MPSDataTypeFloat32];
|
||||
|
||||
auto maskedMM = [mpsGraph matrixMultiplicationWithPrimaryTensor:qTensor secondaryTensor:kT name:nil];
|
||||
CachedGraph* cachedGraph;
|
||||
//if(is_macOS_26_0_or_newer) {
|
||||
if(true) {
|
||||
cachedGraph =
|
||||
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
|
||||
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
|
||||
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
|
||||
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
|
||||
|
||||
if (macOS15_0_plus && [maskedMM dataType] == MPSDataTypeFloat32) {
|
||||
// bug in MacOS15, without this trick SDPA leaks memory, adding 0.0f gets ignored(still takes SDPA sequence
|
||||
// path which leaks)
|
||||
auto oneTensor = [mpsGraph constantWithScalar:1e-20f shape:getMPSShape({1}) dataType:MPSDataTypeFloat32];
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM secondaryTensor:oneTensor name:nil];
|
||||
}
|
||||
if (is_causal) {
|
||||
MPSShape* maskShape = @[@(qSize), @(maxSeqLength)];
|
||||
auto x = [mpsGraph coordinateAlongAxis:-1 withShape:@[@(qSize), @1] name:nil];
|
||||
auto y = [mpsGraph coordinateAlongAxis:-2 withShape:@[@1, @(maxSeqLength)] name:nil];
|
||||
auto isLess = [mpsGraph lessThanOrEqualToWithPrimaryTensor:x secondaryTensor:y name:nil];
|
||||
auto causalMask = [mpsGraph selectWithPredicateTensor:isLess
|
||||
truePredicateTensor:[mpsGraph constantWithScalar:0 dataType:qTensor.dataType]
|
||||
falsePredicateTensor:[mpsGraph constantWithScalar:-INFINITY dataType:qTensor.dataType]
|
||||
name:nil];
|
||||
graph->maskTensor = causalMask;
|
||||
} else if (attn_mask) {
|
||||
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
|
||||
}
|
||||
|
||||
// upcasting to float32 if needed to improve precision when multiplying by the scale factor
|
||||
maskedMM = castMPSTensor(mpsGraph, maskedMM, MPSDataTypeFloat32);
|
||||
maskedMM = [mpsGraph multiplicationWithPrimaryTensor:maskedMM secondaryTensor:scaleTensor name:nil];
|
||||
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
|
||||
// Overwrites expected NANs in sm with zeros.
|
||||
// auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
// auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
|
||||
// auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
|
||||
// auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
|
||||
// auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
//
|
||||
// auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
|
||||
// MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
|
||||
// truePredicateTensor:zeroTensor
|
||||
// falsePredicateTensor:sm
|
||||
// name:nil];
|
||||
//
|
||||
// auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
|
||||
|
||||
if (is_causal) {
|
||||
auto causalMask = [mpsGraph constantWithScalar:1.0f
|
||||
shape:getMPSShape({qSize, maxSeqLength})
|
||||
dataType:MPSDataTypeBool];
|
||||
causalMask = [mpsGraph bandPartWithTensor:causalMask numLower:-1 numUpper:0 name:nil];
|
||||
auto minusInf = [mpsGraph constantWithScalar:-1e20 shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
maskedMM = [mpsGraph selectWithPredicateTensor:causalMask
|
||||
truePredicateTensor:maskedMM
|
||||
falsePredicateTensor:minusInf
|
||||
name:nil];
|
||||
} else if (attn_mask) {
|
||||
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM
|
||||
secondaryTensor:castMPSTensor(mpsGraph, graph->maskTensor, maskedMM.dataType)
|
||||
name:nil];
|
||||
}
|
||||
MPSGraphTensor* output;
|
||||
if(graph->maskTensor != nil) {
|
||||
output = [mpsGraph scaledDotProductAttentionWithQueryTensor:qTensor
|
||||
keyTensor:kTensor
|
||||
valueTensor:vTensor
|
||||
maskTensor:graph->maskTensor
|
||||
scale:scale_factor
|
||||
name:@"MPSGraph SDPA"];
|
||||
} else {
|
||||
output = [mpsGraph scaledDotProductAttentionWithQueryTensor:qTensor
|
||||
keyTensor:kTensor
|
||||
valueTensor:vTensor
|
||||
scale:scale_factor
|
||||
name:@"MPSGraph SDPA"];
|
||||
}
|
||||
graph->qTensor = qTensor;
|
||||
graph->kTensor = kTensor;
|
||||
graph->vTensor = vTensor;
|
||||
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
|
||||
// graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
|
||||
});
|
||||
} else {
|
||||
cachedGraph =
|
||||
LookUpOrCreateCachedGraph<CachedGraph>(mkey, [&, q_ = query, k_ = key, v_ = value](auto mpsGraph, auto graph) {
|
||||
auto qTensor = mpsGraphRankedPlaceHolder(mpsGraph, q_);
|
||||
auto kTensor = mpsGraphRankedPlaceHolder(mpsGraph, k_);
|
||||
auto vTensor = mpsGraphRankedPlaceHolder(mpsGraph, v_);
|
||||
auto kT = [mpsGraph transposeTensor:kTensor dimension:2 withDimension:3 name:nil];
|
||||
auto scaleTensor = [mpsGraph constantWithScalar:scale_factor
|
||||
shape:getMPSShape({1})
|
||||
dataType:MPSDataTypeFloat32];
|
||||
|
||||
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
|
||||
// Overwrites expected NANs in sm with zeros.
|
||||
auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
|
||||
auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
|
||||
auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
|
||||
auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
auto maskedMM = [mpsGraph matrixMultiplicationWithPrimaryTensor:qTensor secondaryTensor:kT name:nil];
|
||||
|
||||
auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
|
||||
MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
|
||||
truePredicateTensor:zeroTensor
|
||||
falsePredicateTensor:sm
|
||||
name:nil];
|
||||
if (macOS15_0_plus && [maskedMM dataType] == MPSDataTypeFloat32) {
|
||||
// bug in MacOS15, without this trick SDPA leaks memory, adding 0.0f gets ignored(still takes SDPA sequence
|
||||
// path which leaks)
|
||||
auto oneTensor = [mpsGraph constantWithScalar:1e-20f shape:getMPSShape({1}) dataType:MPSDataTypeFloat32];
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM secondaryTensor:oneTensor name:nil];
|
||||
}
|
||||
|
||||
auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
|
||||
graph->qTensor = qTensor;
|
||||
graph->kTensor = kTensor;
|
||||
graph->vTensor = vTensor;
|
||||
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
|
||||
graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
|
||||
});
|
||||
// upcasting to float32 if needed to improve precision when multiplying by the scale factor
|
||||
maskedMM = castMPSTensor(mpsGraph, maskedMM, MPSDataTypeFloat32);
|
||||
maskedMM = [mpsGraph multiplicationWithPrimaryTensor:maskedMM secondaryTensor:scaleTensor name:nil];
|
||||
|
||||
if (is_causal) {
|
||||
auto causalMask = [mpsGraph constantWithScalar:1.0f
|
||||
shape:getMPSShape({qSize, maxSeqLength})
|
||||
dataType:MPSDataTypeBool];
|
||||
causalMask = [mpsGraph bandPartWithTensor:causalMask numLower:-1 numUpper:0 name:nil];
|
||||
auto minusInf = [mpsGraph constantWithScalar:-1e20 shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
maskedMM = [mpsGraph selectWithPredicateTensor:causalMask
|
||||
truePredicateTensor:maskedMM
|
||||
falsePredicateTensor:minusInf
|
||||
name:nil];
|
||||
} else if (attn_mask) {
|
||||
graph->maskTensor = mpsGraphRankedPlaceHolder(mpsGraph, *attn_mask);
|
||||
maskedMM = [mpsGraph additionWithPrimaryTensor:maskedMM
|
||||
secondaryTensor:castMPSTensor(mpsGraph, graph->maskTensor, maskedMM.dataType)
|
||||
name:nil];
|
||||
}
|
||||
|
||||
// Account for case where all values were masked causing division by 0 in softmax (issue:#156707)
|
||||
// Overwrites expected NANs in sm with zeros.
|
||||
auto negInfTensor = [mpsGraph constantWithScalar:-INFINITY shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
auto elem_neg_inf = [mpsGraph equalWithPrimaryTensor:maskedMM secondaryTensor:negInfTensor name:nil];
|
||||
auto all_neg_infs_along_axis = [mpsGraph reductionAndWithTensor:elem_neg_inf axis:3 name:nil];
|
||||
auto zero_mask = [mpsGraph broadcastTensor:all_neg_infs_along_axis toShape:maskedMM.shape name:nil];
|
||||
auto zeroTensor = [mpsGraph constantWithScalar:0.0 shape:maskedMM.shape dataType:maskedMM.dataType];
|
||||
|
||||
auto sm = [mpsGraph softMaxWithTensor:maskedMM axis:3 name:nil];
|
||||
MPSGraphTensor* correctedSM = [mpsGraph selectWithPredicateTensor:zero_mask
|
||||
truePredicateTensor:zeroTensor
|
||||
falsePredicateTensor:sm
|
||||
name:nil];
|
||||
|
||||
auto output = [mpsGraph matrixMultiplicationWithPrimaryTensor:correctedSM secondaryTensor:vTensor name:nil];
|
||||
graph->qTensor = qTensor;
|
||||
graph->kTensor = kTensor;
|
||||
graph->vTensor = vTensor;
|
||||
graph->outputTensor = castMPSTensor(mpsGraph, output, qTensor.dataType);
|
||||
graph->attnTensor = castMPSTensor(mpsGraph, sm, qTensor.dataType);
|
||||
});
|
||||
}
|
||||
auto qPlaceholder = Placeholder(cachedGraph->qTensor, query);
|
||||
auto kPlaceholder = Placeholder(cachedGraph->kTensor, key);
|
||||
auto vPlaceholder = Placeholder(cachedGraph->vTensor, value);
|
||||
auto outputPlaceholder = Placeholder(cachedGraph->outputTensor, out);
|
||||
auto attnPlaceholder = Placeholder(cachedGraph->attnTensor, attn);
|
||||
// auto attnPlaceholder = Placeholder(cachedGraph->attnTensor, attn);
|
||||
NSDictionary* feeds = nil;
|
||||
if (!attn_mask) {
|
||||
feeds = dictionaryFromPlaceholders(qPlaceholder, kPlaceholder, vPlaceholder);
|
||||
@ -145,7 +209,8 @@ static std::tuple<Tensor, Tensor> sdpa_general_mps(const Tensor& query,
|
||||
auto mPlaceholder = Placeholder(cachedGraph->maskTensor, *attn_mask);
|
||||
feeds = dictionaryFromPlaceholders(qPlaceholder, kPlaceholder, vPlaceholder, mPlaceholder);
|
||||
}
|
||||
NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder, attnPlaceholder);
|
||||
// NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder, attnPlaceholder);
|
||||
NSDictionary* outs = dictionaryFromPlaceholders(outputPlaceholder);
|
||||
runMPSGraph(getCurrentMPSStream(), cachedGraph->graph(), feeds, outs);
|
||||
}
|
||||
|
||||
|
||||
@ -121,7 +121,7 @@ Tensor& do_metal_addmm(const Tensor& self,
|
||||
const Scalar& alpha,
|
||||
const Scalar& beta,
|
||||
const Tensor& bias) {
|
||||
if (beta.toDouble() == 0 && alpha.toDouble() == 1) {
|
||||
if (beta.isFloatingPoint() && alpha.isFloatingPoint() && beta.toDouble() == 0 && alpha.toDouble() == 1) {
|
||||
return do_metal_mm(self, other, output);
|
||||
}
|
||||
auto stream = getCurrentMPSStream();
|
||||
@ -147,13 +147,15 @@ Tensor& do_metal_addmm(const Tensor& self,
|
||||
std::array<int64_t, 2> i64;
|
||||
std::array<int32_t, 2> i32;
|
||||
std::array<float, 2> f32;
|
||||
} alpha_beta;
|
||||
std::array<c10::complex<float>, 2> c64;
|
||||
} alpha_beta{};
|
||||
if (output.scalar_type() == kLong) {
|
||||
alpha_beta.i64 = {alpha.toLong(), beta.toLong()};
|
||||
} else if (c10::isIntegralType(output.scalar_type(), true)) {
|
||||
alpha_beta.i32 = {alpha.toInt(), beta.toInt()};
|
||||
} else if (c10::isComplexType(output.scalar_type())) {
|
||||
alpha_beta.c64 = {alpha.toComplexFloat(), beta.toComplexFloat()};
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT(c10::isFloatingType(output.scalar_type()));
|
||||
alpha_beta.f32 = {alpha.toFloat(), beta.toFloat()};
|
||||
}
|
||||
constexpr uint32_t TILE_DIM = 16; // fastest performance from tests on multiple macs
|
||||
@ -190,10 +192,16 @@ std::tuple<MPSGraphTensor*, MPSGraphTensor*, MPSGraphTensor*> do_mm(MPSGraph* gr
|
||||
bool use_metal_mm(const Tensor& self, const Tensor& other, const Tensor& output) {
|
||||
static bool always_use_metal = c10::utils::has_env("PYTORCH_MPS_PREFER_METAL");
|
||||
constexpr auto max_stride_size = 32768;
|
||||
constexpr auto max_complex_inner_size = 2048;
|
||||
static bool is_macos_14_4_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_14_4_PLUS);
|
||||
if (always_use_metal || c10::isIntegralType(self.scalar_type(), true)) {
|
||||
return true;
|
||||
}
|
||||
// multiplicationWithPrimaryTensor: returns incorrect results if inner size exceeds 2048
|
||||
// See https://github.com/pytorch/pytorch/issues/167727#issuecomment-3529308548
|
||||
if (c10::isComplexType(self.scalar_type()) && self.size(1) > max_complex_inner_size) {
|
||||
return true;
|
||||
}
|
||||
return !is_macos_14_4_or_newer &&
|
||||
(self.stride(0) > max_stride_size || self.stride(1) > max_stride_size || self.size(0) > max_stride_size ||
|
||||
self.size(1) > max_stride_size || other.stride(0) > max_stride_size || other.stride(1) > max_stride_size ||
|
||||
|
||||
@ -91,25 +91,30 @@ static auto& lib = mps::MetalShaderLibrary::getBundledLibrary();
|
||||
#include <ATen/native/mps/Repeat_metallib.h>
|
||||
#endif
|
||||
|
||||
template <typename index_t>
|
||||
void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
const int64_t* cumsum_ptr,
|
||||
index_t* result_ptr,
|
||||
int64_t size,
|
||||
int64_t result_size) {
|
||||
id<MTLBuffer> repeatBuffer = reinterpret_cast<id<MTLBuffer>>(repeat_ptr);
|
||||
id<MTLBuffer> cumsumBuffer = reinterpret_cast<id<MTLBuffer>>(cumsum_ptr);
|
||||
id<MTLBuffer> resultBuffer = reinterpret_cast<id<MTLBuffer>>(result_ptr);
|
||||
TORCH_CHECK(repeatBuffer && cumsumBuffer && resultBuffer);
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
TORCH_CHECK(repeat.dim() == 1, "repeat_interleave only accept 1D vector as repeat");
|
||||
std::string scalar_type;
|
||||
if constexpr (std::is_same_v<index_t, int32_t>) {
|
||||
if (repeat.scalar_type() == kInt) {
|
||||
scalar_type = "int32_t";
|
||||
} else if constexpr (std::is_same_v<index_t, int64_t>) {
|
||||
} else if (repeat.scalar_type() == kLong) {
|
||||
scalar_type = "int64_t";
|
||||
} else {
|
||||
TORCH_CHECK(false, "repeat_interleave: unsupported indexing data type");
|
||||
TORCH_CHECK(false, "repeats has to be Long or Int tensor");
|
||||
}
|
||||
if (repeat.size(0) == 0) {
|
||||
return at::empty_like(repeat, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
}
|
||||
Tensor repeat_ = repeat.contiguous();
|
||||
Tensor cumsum = repeat.cumsum(0);
|
||||
int64_t total = 0;
|
||||
if (output_size.has_value()) {
|
||||
total = output_size.value();
|
||||
} else {
|
||||
total = cumsum[-1].item<int64_t>();
|
||||
TORCH_CHECK((repeat >= 0).all().item<uint8_t>(), "repeats can not be negative");
|
||||
}
|
||||
|
||||
auto result = at::empty({total}, repeat.options());
|
||||
|
||||
MPSStream* mpsStream = getCurrentMPSStream();
|
||||
dispatch_sync(mpsStream->queue(), ^() {
|
||||
@ -121,20 +126,13 @@ void computeRepeatIndices(const index_t* repeat_ptr,
|
||||
getMPSProfiler().beginProfileKernel(pipelineState, "repeat_interleave:" + scalar_type, false);
|
||||
|
||||
[computeEncoder setComputePipelineState:pipelineState];
|
||||
mps::mtl_setArgs(computeEncoder, repeatBuffer, cumsumBuffer, resultBuffer, size);
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, size);
|
||||
mps::mtl_setArgs(computeEncoder, repeat_, cumsum, result, repeat.size(0));
|
||||
mps::mtl_dispatch1DJob(computeEncoder, pipelineState, repeat.size(0));
|
||||
|
||||
getMPSProfiler().endProfileKernel(pipelineState);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Tensor repeat_interleave_mps(const Tensor& repeat, std::optional<int64_t> output_size) {
|
||||
Tensor output;
|
||||
AT_DISPATCH_INDEX_TYPES(repeat.scalar_type(), "repeat_interleave_mps", [&]() {
|
||||
output = repeat_interleave_common<index_t, computeRepeatIndices<index_t>>(repeat, output_size);
|
||||
});
|
||||
return output;
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace at::native
|
||||
|
||||
@ -5,6 +5,7 @@
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <ATen/native/TensorCompare.h>
|
||||
#include <ATen/native/mps/OperationUtils.h>
|
||||
#include <algorithm>
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
@ -89,13 +90,21 @@ static void check_min_max_dims(const OptionalTensorRef clamp_opt, const Tensor&
|
||||
auto clamp_shape = clamp_opt->sizes();
|
||||
auto input_shape = input_t.sizes();
|
||||
|
||||
TORCH_CHECK(num_clamp_dims <= num_input_dims,
|
||||
op_name + ": clamp tensor number of dims must not be greater than that of input tensor")
|
||||
if (num_clamp_dims > num_input_dims) {
|
||||
auto leading_dims = num_clamp_dims - num_input_dims;
|
||||
for (int64_t i = 0; i < leading_dims; ++i) {
|
||||
TORCH_CHECK(clamp_shape[i] == 1,
|
||||
op_name + ": clamp tensor leading shape must be 1 to broadcast with input tensor");
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_clamp_dims; i++)
|
||||
auto clamp_idx = num_clamp_dims - 1;
|
||||
auto input_idx = num_input_dims - 1;
|
||||
auto common_dims = std::min(num_clamp_dims, num_input_dims);
|
||||
for (int64_t i = 0; i < common_dims; ++i)
|
||||
// One of the indices is allowed to be 1; will be handled by broadcast
|
||||
TORCH_CHECK(clamp_shape[num_clamp_dims - 1 - i] == input_shape[num_input_dims - 1 - i] ||
|
||||
clamp_shape[num_clamp_dims - 1 - i] == 1 || input_shape[num_input_dims - 1 - i] == 1,
|
||||
TORCH_CHECK(clamp_shape[clamp_idx - i] == input_shape[input_idx - i] || clamp_shape[clamp_idx - i] == 1 ||
|
||||
input_shape[input_idx - i] == 1,
|
||||
op_name + ": clamp tensor trailing shape must match input tensor")
|
||||
}
|
||||
}
|
||||
@ -136,9 +145,6 @@ static void clamp_tensor_out_mps(const Tensor& input_t,
|
||||
|
||||
auto result_type = output_t.scalar_type();
|
||||
|
||||
IntArrayRef new_min_shape;
|
||||
IntArrayRef new_max_shape;
|
||||
|
||||
auto num_min_dims = min_opt->dim();
|
||||
auto num_max_dims = max_opt->dim();
|
||||
auto num_input_dims = input_t.dim();
|
||||
@ -146,24 +152,32 @@ static void clamp_tensor_out_mps(const Tensor& input_t,
|
||||
std::vector<int64_t> new_min_arr(num_input_dims);
|
||||
std::vector<int64_t> new_max_arr(num_input_dims);
|
||||
|
||||
if (has_min && num_min_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_min_dims, new_min_arr.data(), min_opt->sizes());
|
||||
new_min_shape = IntArrayRef(new_min_arr);
|
||||
}
|
||||
|
||||
if (has_max && num_max_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_max_dims, new_max_arr.data(), max_opt->sizes());
|
||||
new_max_shape = IntArrayRef(new_max_arr);
|
||||
}
|
||||
|
||||
Tensor min_opt_tensor;
|
||||
Tensor max_opt_tensor;
|
||||
|
||||
auto reshape_clamp_tensor = [&](const OptionalTensorRef clamp_tensor_ref,
|
||||
int64_t num_clamp_dims,
|
||||
std::vector<int64_t>& new_shape_storage) -> Tensor {
|
||||
IntArrayRef clamp_shape = clamp_tensor_ref->sizes();
|
||||
bool requires_view = false;
|
||||
|
||||
if (num_clamp_dims > num_input_dims) {
|
||||
clamp_shape = clamp_shape.slice(num_clamp_dims - num_input_dims);
|
||||
requires_view = true;
|
||||
} else if (num_clamp_dims < num_input_dims) {
|
||||
fill_new_shape(num_input_dims, num_clamp_dims, new_shape_storage.data(), clamp_shape);
|
||||
clamp_shape = IntArrayRef(new_shape_storage);
|
||||
requires_view = true;
|
||||
}
|
||||
|
||||
return requires_view ? (*clamp_tensor_ref).view(clamp_shape) : *clamp_tensor_ref;
|
||||
};
|
||||
|
||||
if (has_min) {
|
||||
min_opt_tensor = (num_min_dims < num_input_dims) ? (*min_opt).view(new_min_shape) : *min_opt;
|
||||
min_opt_tensor = reshape_clamp_tensor(min_opt, num_min_dims, new_min_arr);
|
||||
}
|
||||
if (has_max) {
|
||||
max_opt_tensor = (num_max_dims < num_input_dims) ? (*max_opt).view(new_max_shape) : *max_opt;
|
||||
max_opt_tensor = reshape_clamp_tensor(max_opt, num_max_dims, new_max_arr);
|
||||
}
|
||||
|
||||
@autoreleasepool {
|
||||
@ -244,8 +258,8 @@ static void clamp_scalar_out_mps(const Tensor& input_t,
|
||||
|
||||
@autoreleasepool {
|
||||
// the optional min/max refs could affect how we build the cached graph
|
||||
std::string key = op_name + (has_min ? ("_min:" + std::to_string(min_scalar)) : "") +
|
||||
(has_max ? ("_max:" + std::to_string(max_scalar)) : "") + "_scalar:" + getTensorsStringKey({input_t});
|
||||
std::string key = op_name + (has_min ? ("_min:" + to_hex_key(min_scalar)) : "") +
|
||||
(has_max ? ("_max:" + to_hex_key(max_scalar)) : "") + "_scalar:" + getTensorsStringKey({input_t});
|
||||
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
|
||||
if (has_min)
|
||||
newCachedGraph->minTensor = [mpsGraph constantWithScalar:min_scalar
|
||||
|
||||
@ -4225,7 +4225,7 @@
|
||||
MTIA: mm_out_mtia
|
||||
MPS: mm_out_mps
|
||||
XPU: mm_out_xpu
|
||||
SparseCPU, SparseCUDA: _sparse_mm_out
|
||||
SparseCPU, SparseCUDA, SparseMPS: _sparse_mm_out
|
||||
SparseCsrCPU, SparseCsrCUDA, SparseCsrMeta: _sparse_csr_mm_out
|
||||
|
||||
- func: mm.dtype(Tensor self, Tensor mat2, ScalarType out_dtype) -> Tensor
|
||||
@ -7518,7 +7518,7 @@
|
||||
- func: _sparse_mask_projection(Tensor self, Tensor mask, bool accumulate_matches=False) -> Tensor
|
||||
variants: method
|
||||
dispatch:
|
||||
SparseCPU, SparseCUDA: sparse_mask_projection
|
||||
SparseCPU, SparseCUDA, SparseMPS: sparse_mask_projection
|
||||
autogen: _sparse_mask_projection.out
|
||||
|
||||
- func: _to_cpu(Tensor[] tensors) -> Tensor[]
|
||||
|
||||
@ -30,10 +30,12 @@
|
||||
|
||||
#include <thrust/binary_search.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/distance.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
#include <thrust/scan.h>
|
||||
#include <thrust/sequence.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/system/cuda/execution_policy.h>
|
||||
#include <thrust/iterator/constant_iterator.h>
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cusparse.h>
|
||||
|
||||
@ -445,6 +445,33 @@ static SparseTensor& mul_out_dense_sparse_mps(
|
||||
return out;
|
||||
}
|
||||
|
||||
static std::tuple<Tensor, Tensor, int64_t> mps_intersect_binary_search(
|
||||
const Tensor& A_keys,
|
||||
const Tensor& B_keys,
|
||||
int64_t lenA,
|
||||
int64_t lenB,
|
||||
bool boolean_flag) {
|
||||
|
||||
auto stream = getCurrentMPSStream();
|
||||
auto outA_idx = at::empty({lenA}, A_keys.options().dtype(at::kLong));
|
||||
auto outB_idx = at::empty({lenA}, A_keys.options().dtype(at::kLong));
|
||||
auto counter = at::zeros({1}, A_keys.options().dtype(at::kInt));
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), boolean_flag);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const auto match_count = static_cast<int64_t>(counter.item<int32_t>());
|
||||
return std::make_tuple(std::move(outA_idx), std::move(outB_idx), match_count);
|
||||
}
|
||||
|
||||
|
||||
SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTensor& r_) {
|
||||
TORCH_CHECK(r_.is_mps(), "mul: expected 'out' to be MPS, but got ", r_.device());
|
||||
@ -523,22 +550,10 @@ SparseTensor& mul_out_sparse_mps(const Tensor& t_, const Tensor& src_, SparseTen
|
||||
auto A_keys = A_is_lhs ? lhs_keys : rhs_keys;
|
||||
auto B_keys = A_is_lhs ? rhs_keys : lhs_keys;
|
||||
|
||||
auto outA_idx = at::empty({lenA}, at::device(device).dtype(kLong));
|
||||
auto outB_idx = at::empty({lenA}, at::device(device).dtype(kLong));
|
||||
auto counter = at::zeros({1}, at::device(device).dtype(kInt));
|
||||
auto [outA_idx, outB_idx, M_int64] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_lhs);
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), A_is_lhs);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const uint32_t M = counter.item<int32_t>(); // number of structural matches
|
||||
const auto M = static_cast<uint32_t>(M_int64); // number of structural matches
|
||||
|
||||
r_.resize_as_(lhs);
|
||||
|
||||
@ -762,6 +777,14 @@ SparseTensor& add_out_sparse_mps(const SparseTensor& self,
|
||||
|
||||
using OptTensor = std::optional<Tensor>;
|
||||
|
||||
static Tensor create_sparse_output_values(
|
||||
const Tensor& template_values,
|
||||
int64_t output_nnz,
|
||||
ScalarType dtype) {
|
||||
auto out_val_sizes = template_values.sizes().vec();
|
||||
out_val_sizes[0] = output_nnz;
|
||||
return at::zeros(out_val_sizes, template_values.options().dtype(dtype));
|
||||
}
|
||||
|
||||
static void sparse_mask_apply_out_mps_kernel(
|
||||
Tensor& result,
|
||||
@ -783,9 +806,9 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
auto src = src_in.coalesce();
|
||||
auto mask = coalesce_mask ? mask_in.coalesce() : mask_in;
|
||||
|
||||
const int64_t src_nnz = src._nnz();
|
||||
const int64_t mask_nnz = mask._nnz();
|
||||
const int64_t sd = src.sparse_dim();
|
||||
const auto src_nnz = src._nnz();
|
||||
const auto mask_nnz = mask._nnz();
|
||||
const auto sd = src.sparse_dim();
|
||||
result.sparse_resize_(mask.sizes(), mask.sparse_dim(), mask.dense_dim());
|
||||
|
||||
auto commonDtype = at::result_type(src, mask);
|
||||
@ -814,53 +837,27 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_indices = mask._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype).contiguous();
|
||||
auto out_values = create_sparse_output_values(src_values, mask_nnz, commonDtype);
|
||||
|
||||
if (src_nnz == 0) {
|
||||
auto out_indices = mask._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype);
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
alias_into_sparse(result, out_indices, out_values);
|
||||
alias_into_sparse(result, mask_indices, out_values);
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
return;
|
||||
}
|
||||
|
||||
auto mask_indices = mask._indices().contiguous();
|
||||
auto src_indices = src._indices().contiguous();
|
||||
auto src_values = src._values().to(commonDtype).contiguous();
|
||||
auto mask_keys = flatten_indices(mask._indices().contiguous(), mask.sizes().slice(0, sd)).contiguous();
|
||||
auto src_keys = flatten_indices(src._indices().contiguous(), src.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
auto mask_keys = flatten_indices(mask_indices, mask.sizes().slice(0, sd)).contiguous();
|
||||
auto src_keys = flatten_indices(src_indices, src.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
const bool A_is_src = (src_nnz <= mask_nnz);
|
||||
const int64_t lenA = A_is_src ? src_nnz : mask_nnz;
|
||||
const int64_t lenB = A_is_src ? mask_nnz : src_nnz;
|
||||
const auto A_is_src = (src_nnz <= mask_nnz);
|
||||
const auto lenA = A_is_src ? src_nnz : mask_nnz;
|
||||
const auto lenB = A_is_src ? mask_nnz : src_nnz;
|
||||
auto A_keys = A_is_src ? src_keys : mask_keys;
|
||||
auto B_keys = A_is_src ? mask_keys : src_keys;
|
||||
|
||||
const auto device = result.device();
|
||||
auto stream = getCurrentMPSStream();
|
||||
|
||||
auto outA_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto outB_idx = at::empty({lenA}, at::device(device).dtype(at::kLong));
|
||||
auto counter = at::zeros({1}, at::device(device).dtype(at::kInt));
|
||||
|
||||
dispatch_sync_with_rethrow(stream->queue(), ^() {
|
||||
@autoreleasepool {
|
||||
auto pso = lib.getPipelineStateForFunc("intersect_binary_search");
|
||||
auto enc = stream->commandEncoder();
|
||||
[enc setComputePipelineState:pso];
|
||||
mtl_setArgs(enc, A_keys, B_keys, outA_idx, outB_idx, counter,
|
||||
static_cast<uint32_t>(lenB), A_is_src);
|
||||
mtl_dispatch1DJob(enc, pso, static_cast<uint32_t>(lenA));
|
||||
}
|
||||
});
|
||||
|
||||
const int64_t M = static_cast<int64_t>(counter.item<int32_t>());
|
||||
|
||||
auto out_val_sizes = src_values.sizes().vec();
|
||||
out_val_sizes[0] = mask_nnz;
|
||||
auto out_values = at::zeros(out_val_sizes, src_values.options());
|
||||
auto [outA_idx, outB_idx, M] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_src);
|
||||
|
||||
if (M > 0) {
|
||||
auto src_match = outA_idx.narrow(0, 0, M);
|
||||
@ -878,6 +875,70 @@ static void sparse_mask_apply_out_mps_kernel(
|
||||
result._coalesced_(mask.is_coalesced());
|
||||
}
|
||||
|
||||
static void sparse_mask_projection_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& lhs,
|
||||
const Tensor& rhs,
|
||||
const OptTensor& /*x_hash_opt*/,
|
||||
bool accumulate_matches) {
|
||||
|
||||
TORCH_CHECK(lhs.is_sparse() && rhs.is_sparse(), "sparse_mask_projection: expected sparse COO");
|
||||
TORCH_CHECK(lhs.is_mps() && rhs.is_mps(), "sparse_mask_projection: expected MPS tensors");
|
||||
TORCH_CHECK(lhs.sparse_dim() == rhs.sparse_dim(), "sparse_dim mismatch");
|
||||
|
||||
auto lhs_c = lhs.coalesce();
|
||||
auto rhs_c = rhs.coalesce();
|
||||
|
||||
const auto sd = lhs_c.sparse_dim();
|
||||
const auto lhs_nnz = lhs_c._nnz();
|
||||
const auto rhs_nnz = rhs_c._nnz();
|
||||
|
||||
auto commonDtype = at::result_type(lhs_c, rhs_c);
|
||||
TORCH_CHECK(canCast(commonDtype, result.scalar_type()),
|
||||
"Can't convert ", commonDtype, " to output ", result.scalar_type());
|
||||
|
||||
result.sparse_resize_(lhs.sizes(), lhs.sparse_dim(), lhs.dense_dim());
|
||||
|
||||
auto lhs_indices = lhs_c._indices().contiguous();
|
||||
auto rhs_values = rhs_c._values().to(commonDtype).contiguous();
|
||||
auto out_values = create_sparse_output_values(rhs_values, lhs_nnz, commonDtype);
|
||||
|
||||
if (lhs_nnz > 0 && rhs_nnz > 0) {
|
||||
auto lhs_keys = flatten_indices(lhs_indices, lhs_c.sizes().slice(0, sd)).contiguous();
|
||||
auto rhs_keys = flatten_indices(rhs_c._indices().contiguous(), rhs_c.sizes().slice(0, sd)).contiguous();
|
||||
|
||||
const auto A_is_lhs = (lhs_nnz <= rhs_nnz);
|
||||
const auto lenA = A_is_lhs ? lhs_nnz : rhs_nnz;
|
||||
const auto lenB = A_is_lhs ? rhs_nnz : lhs_nnz;
|
||||
auto A_keys = A_is_lhs ? lhs_keys : rhs_keys;
|
||||
auto B_keys = A_is_lhs ? rhs_keys : lhs_keys;
|
||||
|
||||
auto [outA_idx, outB_idx, M] = mps_intersect_binary_search(
|
||||
A_keys, B_keys, lenA, lenB, A_is_lhs);
|
||||
|
||||
if (M > 0) {
|
||||
auto idx_in_A = outA_idx.narrow(0, 0, M);
|
||||
auto idx_in_B = outB_idx.narrow(0, 0, M);
|
||||
auto idx_in_lhs = A_is_lhs ? idx_in_A : idx_in_B;
|
||||
auto idx_in_rhs = A_is_lhs ? idx_in_B : idx_in_A;
|
||||
|
||||
const auto view_cols = rhs_values.numel() / std::max<int64_t>(rhs_nnz, 1);
|
||||
auto rhs_rows = rhs_values.index_select(0, idx_in_rhs).contiguous();
|
||||
auto rhs_rows_2d = rhs_rows.view({M, view_cols});
|
||||
auto out_2d = out_values.view({lhs_nnz, view_cols});
|
||||
|
||||
if (accumulate_matches) {
|
||||
out_2d.index_add_(0, idx_in_lhs, rhs_rows_2d);
|
||||
} else {
|
||||
out_2d.index_copy_(0, idx_in_lhs, rhs_rows_2d);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
alias_into_sparse(result, lhs._indices(), out_values);
|
||||
result._coalesced_(lhs.is_coalesced());
|
||||
}
|
||||
|
||||
static void sparse_mask_intersection_out_mps_kernel(
|
||||
Tensor& result,
|
||||
const Tensor& lhs,
|
||||
@ -1002,4 +1063,5 @@ Tensor sparse_sparse_matmul_mps(const Tensor& mat1_, const Tensor& mat2_) {
|
||||
}
|
||||
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_intersection_out_stub, &sparse_mask_intersection_out_mps_kernel);
|
||||
REGISTER_MPS_DISPATCH(sparse_mask_projection_out_stub, &sparse_mask_projection_out_mps_kernel);
|
||||
} // namespace at::native
|
||||
@ -61,6 +61,7 @@ list(APPEND ATen_CUDA_TEST_SRCS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_math_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_complex_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cub_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_cublas_handle_pool_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_device_test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_distributions_test.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda_dlconvertor_test.cpp
|
||||
|
||||
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
77
aten/src/ATen/test/cuda_cublas_handle_pool_test.cpp
Normal file
@ -0,0 +1,77 @@
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDACachingAllocator.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// Test concurrent access to getCurrentCUDABlasHandle and getCUDABlasLtWorkspace
|
||||
// to verify that the data race fix is working correctly
|
||||
|
||||
TEST(CUDABlasHandlePoolTest, ConcurrentGetAndClearWorkspaces) {
|
||||
if (!at::cuda::is_available()) {
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int num_accessor_threads = 15;
|
||||
constexpr int num_clear_threads = 5;
|
||||
constexpr int iterations_per_thread = 50;
|
||||
|
||||
std::atomic<bool> stop{false};
|
||||
std::atomic<int> error_count{0};
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(num_accessor_threads + num_clear_threads);
|
||||
|
||||
// Launch accessor threads
|
||||
for (int i = 0; i < num_accessor_threads; ++i) {
|
||||
threads.emplace_back([&stop, &error_count]() {
|
||||
try {
|
||||
at::cuda::CUDAGuard device_guard(0);
|
||||
|
||||
while (!stop.load(std::memory_order_relaxed)) {
|
||||
const auto handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
const auto workspace = at::cuda::getCUDABlasLtWorkspace();
|
||||
|
||||
if (handle == nullptr || workspace == nullptr) {
|
||||
error_count++;
|
||||
}
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Launch threads that clear workspaces
|
||||
for (int i = 0; i < num_clear_threads; ++i) {
|
||||
threads.emplace_back([&error_count]() {
|
||||
try {
|
||||
for (int j = 0; j < iterations_per_thread; ++j) {
|
||||
at::cuda::clearCublasWorkspaces();
|
||||
std::this_thread::yield();
|
||||
}
|
||||
} catch (const std::exception& e) {
|
||||
error_count++;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Let them run for a bit
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
stop.store(true, std::memory_order_relaxed);
|
||||
|
||||
for (auto& thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
EXPECT_EQ(error_count.load(), 0);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
c10::cuda::CUDACachingAllocator::init(1);
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
||||
@ -10,6 +10,13 @@
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
ignore_empty_generic_uninitialised_conditional_jump
|
||||
Memcheck:Cond
|
||||
fun:_ZN2at6detail13empty_genericEN3c108ArrayRefIlEEPNS1_9AllocatorENS1_14DispatchKeySetENS1_10ScalarTypeESt8optionalINS1_12MemoryFormatEE
|
||||
...
|
||||
}
|
||||
|
||||
{
|
||||
Cond_cuda
|
||||
Memcheck:Cond
|
||||
|
||||
@ -9,28 +9,61 @@ def check_perf_csv(filename, threshold, threshold_scale):
|
||||
"""
|
||||
Basic performance checking.
|
||||
"""
|
||||
try:
|
||||
df = pd.read_csv(filename)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: File {filename} not found")
|
||||
sys.exit(1)
|
||||
|
||||
df = pd.read_csv(filename)
|
||||
effective_threshold = threshold * threshold_scale
|
||||
print(f"Checking {filename} (speedup threshold >= {effective_threshold:.2f}x)\n")
|
||||
|
||||
failed = []
|
||||
for _, row in df.iterrows():
|
||||
model_name = row["name"]
|
||||
speedup = row["speedup"]
|
||||
if speedup < threshold * threshold_scale:
|
||||
failed.append(model_name)
|
||||
speedup = float(row["speedup"])
|
||||
abs_latency = float(row["abs_latency"])
|
||||
compilation_latency = float(row["compilation_latency"])
|
||||
compression_ratio = float(row["compression_ratio"])
|
||||
eager_peak_mem = float(row["eager_peak_mem"])
|
||||
dynamo_peak_mem = float(row["dynamo_peak_mem"])
|
||||
|
||||
print(f"{model_name:34} {speedup}")
|
||||
perf_summary = f"{model_name:34} speedup={speedup:.3f}x"
|
||||
if pd.notna(abs_latency):
|
||||
perf_summary += f", latency={abs_latency:.1f} ms/iter"
|
||||
if pd.notna(compilation_latency):
|
||||
perf_summary += f", compile={compilation_latency:.3f}s"
|
||||
if pd.notna(compression_ratio):
|
||||
perf_summary += f", mem_ratio={1 / compression_ratio:.2f}x"
|
||||
if pd.notna(eager_peak_mem) and pd.notna(dynamo_peak_mem):
|
||||
perf_summary += (
|
||||
f" (eager={eager_peak_mem:.1f} GB, dynamo={dynamo_peak_mem:.1f} GB)"
|
||||
)
|
||||
|
||||
if speedup < effective_threshold:
|
||||
failed.append((model_name, speedup))
|
||||
|
||||
print(perf_summary)
|
||||
|
||||
if failed:
|
||||
print(
|
||||
textwrap.dedent(
|
||||
f"""
|
||||
Error {len(failed)} models performance regressed
|
||||
{" ".join(failed)}
|
||||
Error {len(failed)} model(s) performance regressed
|
||||
{" ".join([name for name, _ in failed])}
|
||||
"""
|
||||
)
|
||||
)
|
||||
for name, sp in sorted(failed, key=lambda x: x[1]):
|
||||
pct_from_target = (sp / effective_threshold - 1.0) * 100.0
|
||||
print(
|
||||
f" - {name}: {sp:.3f}x (< {effective_threshold:.2f}x; {pct_from_target:.1f}% from target)"
|
||||
)
|
||||
sys.exit(1)
|
||||
else:
|
||||
print(
|
||||
f"\nAll {len(df)} model(s) passed threshold check (>= {effective_threshold:.2f}x)"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -44,7 +77,7 @@ if __name__ == "__main__":
|
||||
"-s",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="multiple threshold by this value to relax the check",
|
||||
help="multiply threshold by this value to relax the check",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
check_perf_csv(args.file, args.threshold, args.threshold_scale)
|
||||
|
||||
@ -2379,7 +2379,9 @@ class BenchmarkRunner:
|
||||
print(
|
||||
f"Load model outputs from {self.args.compare_model_outputs_with} to compare"
|
||||
)
|
||||
saved_result = torch.load(self.args.compare_model_outputs_with)
|
||||
saved_result = torch.load(
|
||||
self.args.compare_model_outputs_with, weights_only=False
|
||||
)
|
||||
is_bitwise_same = bitwise_same(saved_result, new_result)
|
||||
if not is_bitwise_same:
|
||||
print(
|
||||
|
||||
@ -189,6 +189,10 @@ skip:
|
||||
- hf_Whisper
|
||||
- hf_distil_whisper
|
||||
- timm_vision_transformer_large
|
||||
# https://github.com/pytorch/pytorch/issues/167895
|
||||
- stable_diffusion
|
||||
- stable_diffusion_text_encoder
|
||||
- stable_diffusion_unet
|
||||
|
||||
device:
|
||||
cpu:
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
# These load paths point to different files in internal and OSS environment
|
||||
|
||||
load("@bazel_skylib//lib:paths.bzl", "paths")
|
||||
load("//tools/build_defs:cell_defs.bzl", "get_fbsource_cell")
|
||||
load("//tools/build_defs:fb_native_wrapper.bzl", "fb_native")
|
||||
load("//tools/build_defs:fb_xplat_cxx_library.bzl", "fb_xplat_cxx_library")
|
||||
load("//tools/build_defs:fb_xplat_genrule.bzl", "fb_xplat_genrule")
|
||||
@ -590,6 +591,9 @@ def pt_operator_query_codegen(
|
||||
pt_allow_forced_schema_registration = True,
|
||||
compatible_with = [],
|
||||
apple_sdks = None):
|
||||
if get_fbsource_cell() == "fbcode":
|
||||
return
|
||||
|
||||
oplist_dir_name = name + "_pt_oplist"
|
||||
|
||||
# @lint-ignore BUCKLINT
|
||||
@ -865,6 +869,9 @@ def define_buck_targets(
|
||||
pt_xplat_cxx_library = fb_xplat_cxx_library,
|
||||
c2_fbandroid_xplat_compiler_flags = [],
|
||||
labels = []):
|
||||
if get_fbsource_cell() == "fbcode":
|
||||
return
|
||||
|
||||
# @lint-ignore BUCKLINT
|
||||
fb_native.filegroup(
|
||||
name = "metal_build_srcs",
|
||||
|
||||
@ -96,6 +96,13 @@ struct C10_API DeviceAllocator : public c10::Allocator {
|
||||
|
||||
// Resets peak memory usage statistics for the specified device
|
||||
virtual void resetPeakStats(c10::DeviceIndex device) = 0;
|
||||
|
||||
// Return the free memory size and total memory size in bytes for the
|
||||
// specified device.
|
||||
virtual std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) {
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false, "getMemoryInfo is not implemented for this allocator yet.");
|
||||
}
|
||||
};
|
||||
|
||||
// This function is used to get the DeviceAllocator for a specific device type
|
||||
|
||||
@ -44,7 +44,7 @@ struct C10_API SafePyObject {
|
||||
(*other.pyinterpreter_)->incref(other.data_);
|
||||
}
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
data_ = other.data_;
|
||||
pyinterpreter_ = other.pyinterpreter_;
|
||||
@ -53,7 +53,7 @@ struct C10_API SafePyObject {
|
||||
|
||||
~SafePyObject() {
|
||||
if (data_ != nullptr) {
|
||||
(*pyinterpreter_)->decref(data_, /*has_pyobj_slot*/ false);
|
||||
(*pyinterpreter_)->decref(data_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -34,20 +34,6 @@ namespace c10 {
|
||||
// See [dtype Macros note] in torch/headeronly/core/ScalarType.h
|
||||
// regarding macros.
|
||||
|
||||
template <typename T>
|
||||
struct CppTypeToScalarType;
|
||||
|
||||
#define SPECIALIZE_CppTypeToScalarType(cpp_type, scalar_type) \
|
||||
template <> \
|
||||
struct CppTypeToScalarType<cpp_type> \
|
||||
: std:: \
|
||||
integral_constant<c10::ScalarType, c10::ScalarType::scalar_type> { \
|
||||
};
|
||||
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SPECIALIZE_CppTypeToScalarType)
|
||||
|
||||
#undef SPECIALIZE_CppTypeToScalarType
|
||||
|
||||
#define DEFINE_CONSTANT(_, name) \
|
||||
constexpr ScalarType k##name = ScalarType::name;
|
||||
|
||||
@ -106,13 +92,6 @@ inline bool isComplexType(ScalarType t) {
|
||||
t == ScalarType::ComplexDouble);
|
||||
}
|
||||
|
||||
inline bool isQIntType(ScalarType t) {
|
||||
// Don't forget to extend this when adding new QInt types
|
||||
return t == ScalarType::QInt8 || t == ScalarType::QUInt8 ||
|
||||
t == ScalarType::QInt32 || t == ScalarType::QUInt4x2 ||
|
||||
t == ScalarType::QUInt2x4;
|
||||
}
|
||||
|
||||
inline bool isBitsType(ScalarType t) {
|
||||
return t == ScalarType::Bits1x8 || t == ScalarType::Bits2x4 ||
|
||||
t == ScalarType::Bits4x2 || t == ScalarType::Bits8 ||
|
||||
|
||||
@ -48,6 +48,30 @@ void warnDeprecatedDataPtr() {
|
||||
TORCH_CHECK(false, "Cannot access data pointer of Storage that is invalid.");
|
||||
}
|
||||
|
||||
void StorageImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void StorageImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool StorageImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
void SetStorageImplCreate(DeviceType t, StorageImplCreateHelper fptr) {
|
||||
// Allowlist verification.
|
||||
// Only if the devicetype is in the allowlist,
|
||||
|
||||
@ -105,6 +105,12 @@ struct C10_API StorageImpl : public c10::intrusive_ptr_target {
|
||||
data_ptr_.clear();
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
size_t nbytes() const {
|
||||
// OK to do this instead of maybe_as_int as nbytes is guaranteed positive
|
||||
TORCH_CHECK(!size_bytes_is_heap_allocated_);
|
||||
@ -370,4 +376,18 @@ C10_API c10::intrusive_ptr<c10::StorageImpl> make_storage_impl(
|
||||
bool resizable,
|
||||
std::optional<at::Device> device_opt);
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<
|
||||
std::is_base_of_v<c10::StorageImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
} // namespace c10
|
||||
|
||||
@ -277,7 +277,6 @@ void TensorImpl::release_resources() {
|
||||
if (storage_) {
|
||||
storage_ = {};
|
||||
}
|
||||
pyobj_slot_.maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
|
||||
@ -989,6 +988,30 @@ void TensorImpl::empty_tensor_restride_symint(MemoryFormat memory_format) {
|
||||
}
|
||||
}
|
||||
|
||||
void TensorImpl::incref_pyobject() const {
|
||||
// Because intrusive_ptr incref uses relaxed memory order, we need to
|
||||
// do an acquire fence to ensure that the kHasPyObject bit was
|
||||
// observed before the load of the PyObject* below.
|
||||
// NB: This is a no-op on x86/x86-64
|
||||
std::atomic_thread_fence(std::memory_order_acquire);
|
||||
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->incref(obj);
|
||||
}
|
||||
|
||||
void TensorImpl::decref_pyobject() const {
|
||||
PyObject* obj = pyobj_slot_.load_pyobj();
|
||||
(*pyobj_slot_.pyobj_interpreter())->decref(obj);
|
||||
}
|
||||
|
||||
bool TensorImpl::try_incref_pyobject() const {
|
||||
c10::impl::PyInterpreter* interp = pyobj_slot_.pyobj_interpreter();
|
||||
if (C10_UNLIKELY(!interp)) {
|
||||
return false;
|
||||
}
|
||||
return (*interp)->try_incref(pyobj_slot_);
|
||||
}
|
||||
|
||||
namespace impl {
|
||||
|
||||
namespace {
|
||||
|
||||
@ -2178,6 +2178,12 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
return &pyobj_slot_;
|
||||
}
|
||||
|
||||
void incref_pyobject() const override final;
|
||||
|
||||
void decref_pyobject() const override final;
|
||||
|
||||
bool try_incref_pyobject() const override final;
|
||||
|
||||
private:
|
||||
// See NOTE [std::optional operator usage in CUDA]
|
||||
// We probably don't want to expose this publicly until
|
||||
@ -3079,6 +3085,19 @@ struct C10_API TensorImpl : public c10::intrusive_ptr_target {
|
||||
friend class C10_TensorImpl_Size_Check_Dummy_Class;
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <class T>
|
||||
struct TargetTraits<
|
||||
T,
|
||||
std::enable_if_t<std::is_base_of_v<c10::TensorImpl, std::remove_cv_t<T>>>> {
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
// Note [TensorImpl size constraints]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// Changed the size of TensorImpl? If the size went down, good for
|
||||
|
||||
@ -11,8 +11,11 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
|
||||
void incref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
void decref(PyObject* pyobj, bool has_pyobj_slot) const override {
|
||||
} // do nothing
|
||||
void decref(PyObject* pyobj) const override {} // do nothing
|
||||
|
||||
bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
#define PANIC(m) \
|
||||
TORCH_INTERNAL_ASSERT( \
|
||||
@ -20,6 +23,10 @@ struct NoopPyInterpreterVTable final : public PyInterpreterVTable {
|
||||
"attempted to call " #m \
|
||||
" on a Tensor with nontrivial PyObject after corresponding interpreter died")
|
||||
|
||||
size_t refcnt(PyObject* pyobj) const override {
|
||||
PANIC(refcnt);
|
||||
}
|
||||
|
||||
c10::intrusive_ptr<TensorImpl> detach(const TensorImpl* self) const override {
|
||||
PANIC(detach);
|
||||
}
|
||||
|
||||
@ -18,6 +18,9 @@ namespace c10 {
|
||||
struct IValue;
|
||||
class OperatorHandle;
|
||||
struct TensorImpl;
|
||||
namespace impl {
|
||||
struct PyObjectSlot;
|
||||
} // namespace impl
|
||||
} // namespace c10
|
||||
|
||||
namespace torch::jit {
|
||||
@ -126,9 +129,12 @@ struct C10_API PyInterpreterVTable {
|
||||
|
||||
// Run Py_INCREF on a PyObject.
|
||||
virtual void incref(PyObject* pyobj) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call
|
||||
// See NOTE [PyInterpreter::decref takes a `has_pyobj_slot` arg]
|
||||
virtual void decref(PyObject* pyobj, bool has_pyobj_slot) const = 0;
|
||||
// Run Py_DECREF on a PyObject. We DO NOT assume the GIL is held on call.
|
||||
virtual void decref(PyObject* pyobj) const = 0;
|
||||
// Run PyUnstable_TryIncRef on a PyObject if it's not NULL.
|
||||
virtual bool try_incref(const c10::impl::PyObjectSlot& pyobj_slot) const = 0;
|
||||
// Run Py_REFCNT on a PyObject.
|
||||
virtual size_t refcnt(PyObject* pyobj) const = 0;
|
||||
|
||||
// Perform a detach by deferring to the __torch_dispatch__ implementation of
|
||||
// detach, which will also arrange for the PyObject to get copied in this
|
||||
|
||||
@ -1,56 +0,0 @@
|
||||
#include <c10/core/impl/PyObjectSlot.h>
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
PyObjectSlot::PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
PyObjectSlot::~PyObjectSlot() {
|
||||
maybe_destroy_pyobj();
|
||||
}
|
||||
|
||||
void PyObjectSlot::maybe_destroy_pyobj() {
|
||||
if (owns_pyobj()) {
|
||||
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
|
||||
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
|
||||
(*pyobj_interpreter_.load(std::memory_order_acquire))
|
||||
->decref(_unchecked_untagged_pyobj(), /*has_pyobj_slot*/ true);
|
||||
// NB: this destructor can only be entered when there are no
|
||||
// references to this C++ object (obviously), NOR any references
|
||||
// to the PyObject (if there are references to the PyObject,
|
||||
// then the PyObject holds an owning reference to the tensor).
|
||||
// So it is OK to clear pyobj_ here as it is impossible for it to
|
||||
// be used again (modulo weak reference races)
|
||||
pyobj_ = nullptr; // for safety
|
||||
}
|
||||
}
|
||||
|
||||
PyInterpreter* PyObjectSlot::pyobj_interpreter() {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyObject* PyObjectSlot::_unchecked_untagged_pyobj() const {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(pyobj_) & ~0x1ULL);
|
||||
}
|
||||
|
||||
PyInterpreter& PyObjectSlot::load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter) {
|
||||
return *interpreter;
|
||||
}
|
||||
TORCH_CHECK(false, "cannot access PyObject for Tensor - no interpreter set");
|
||||
}
|
||||
|
||||
bool PyObjectSlot::owns_pyobj() {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
return reinterpret_cast<uintptr_t>(pyobj_) & 1;
|
||||
}
|
||||
|
||||
void PyObjectSlot::set_owns_pyobj(bool b) {
|
||||
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
||||
pyobj_ = reinterpret_cast<PyObject*>(
|
||||
reinterpret_cast<uintptr_t>(_unchecked_untagged_pyobj()) | b);
|
||||
}
|
||||
|
||||
} // namespace c10::impl
|
||||
@ -8,117 +8,58 @@
|
||||
|
||||
#include <atomic>
|
||||
|
||||
namespace torch::utils {
|
||||
class PyObjectPreservation;
|
||||
}
|
||||
|
||||
namespace c10::impl {
|
||||
|
||||
struct C10_API PyObjectSlot {
|
||||
public:
|
||||
PyObjectSlot();
|
||||
|
||||
~PyObjectSlot();
|
||||
|
||||
void maybe_destroy_pyobj();
|
||||
|
||||
// Associate the TensorImpl with the specified PyObject, and, if necessary,
|
||||
// also tag the interpreter.
|
||||
//
|
||||
// NB: This lives in a header so that we can inline away the switch on status
|
||||
//
|
||||
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
|
||||
// PyObject if necessary!
|
||||
void init_pyobj(PyObject* pyobj) {
|
||||
pyobj_interpreter_.store(
|
||||
getGlobalPyInterpreter(), std::memory_order_relaxed);
|
||||
pyobj_ = pyobj;
|
||||
}
|
||||
PyObjectSlot() : pyobj_interpreter_(nullptr), pyobj_(nullptr) {}
|
||||
|
||||
// Query the PyObject interpreter. This may return null if there is no
|
||||
// interpreter. This is racy!
|
||||
PyInterpreter* pyobj_interpreter();
|
||||
|
||||
PyObject* _unchecked_untagged_pyobj() const;
|
||||
|
||||
// Test the interpreter tag. If tagged for the current interpreter, return
|
||||
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
|
||||
// returns a nullopt. If it is definitely invalid, raises an error.
|
||||
//
|
||||
// If `ignore_hermetic_tls` is false and this function is called from a
|
||||
// hermetic context (ie, `HermeticPyObjectTLS::get_state()` is true), then
|
||||
// nullopt is returned. If `ignore_hermetic_tls` is true, then the hermetic
|
||||
// context is ignored, allowing you to check the interpreter tag of a
|
||||
// nonhermetic PyObject from within a hermetic context. This is necessary
|
||||
// because there are some cases where the deallocator function of a
|
||||
// nonhermetic PyObject is called from within a hermetic context, so it must
|
||||
// be properly treated as a nonhermetic PyObject.
|
||||
//
|
||||
// NB: this lives in header so that we can avoid actually creating the
|
||||
// std::optional
|
||||
|
||||
// @todo alban: I'm not too sure what's going on here, we can probably delete
|
||||
// it but it's worthwhile making sure
|
||||
std::optional<PyObject*> check_pyobj(bool ignore_hermetic_tls = false) const {
|
||||
impl::PyInterpreter* interpreter =
|
||||
pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
if (interpreter == nullptr) {
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
if (!ignore_hermetic_tls && c10::impl::HermeticPyObjectTLS::get_state()) {
|
||||
return std::nullopt;
|
||||
} else {
|
||||
return _unchecked_untagged_pyobj();
|
||||
}
|
||||
// interpreter.
|
||||
PyInterpreter* pyobj_interpreter() const {
|
||||
return pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
PyInterpreter& load_pyobj_interpreter() const;
|
||||
PyInterpreter& load_pyobj_interpreter() const {
|
||||
auto interpreter = pyobj_interpreter_.load(std::memory_order_acquire);
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
interpreter, "cannot access PyObject for Tensor - no interpreter set");
|
||||
return *interpreter;
|
||||
}
|
||||
|
||||
bool owns_pyobj();
|
||||
PyObject* load_pyobj() const {
|
||||
return pyobj_.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
void set_owns_pyobj(bool b);
|
||||
void store_pyobj(PyObject* obj) {
|
||||
pyobj_.store(obj, std::memory_order_release);
|
||||
}
|
||||
|
||||
bool has_unique_reference() const {
|
||||
PyObject* pyobj = load_pyobj();
|
||||
return pyobj != nullptr && load_pyobj_interpreter()->refcnt(pyobj) == 1;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
pyobj_.store(nullptr, std::memory_order_relaxed);
|
||||
pyobj_interpreter_.store(nullptr, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
private:
|
||||
// This field contains the interpreter tag for this object. See
|
||||
// Note [Python interpreter tag] for general context
|
||||
//
|
||||
// Note [Memory ordering on Python interpreter tag]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// What memory_order do we need when accessing this atomic? We don't
|
||||
// need a single total modification order (as provided by
|
||||
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
|
||||
// transition from -1 to some positive integer and never changes afterwards.
|
||||
// Because there is only one modification, it trivially already has a total
|
||||
// modification order (e.g., we don't need fences or locked instructions on
|
||||
// x86)
|
||||
//
|
||||
// In fact, one could make a reasonable argument that relaxed reads are OK,
|
||||
// due to the presence of external locking (GIL) to ensure that interactions
|
||||
// with other data structures are still correctly synchronized, so that
|
||||
// we fall in the "Single-Location Data Structures" case as described in
|
||||
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
|
||||
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
|
||||
// as I get the same assembly in both cases. So I just use the more
|
||||
// conservative acquire (which will impede compiler optimizations but I don't
|
||||
// care)
|
||||
// This is now always the global interpreter if the PyObject is set.
|
||||
// Maybe we can remove this field some day...
|
||||
std::atomic<PyInterpreter*> pyobj_interpreter_;
|
||||
|
||||
// This field contains a reference to a PyObject representing this Tensor.
|
||||
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
|
||||
// PyObject for it and set this field. This field does not have to be
|
||||
// protected by an atomic as it is only allowed to be accessed when you hold
|
||||
// the GIL, or during destruction of the tensor.
|
||||
//
|
||||
// When a PyObject dies, you are obligated to clear this field
|
||||
// (otherwise, you will try to use-after-free the pyobj); this currently
|
||||
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
|
||||
//
|
||||
// NB: Ordinarily, this should not be a strong reference, as if the
|
||||
// PyObject owns the Tensor, this would create a reference cycle.
|
||||
// However, sometimes this ownership flips. To track who owns
|
||||
// who, this has a single pointer tag indicating whether or not the
|
||||
// C++ object owns the PyObject (the common case, zero, means PyObject
|
||||
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
|
||||
// or check_pyobj for checked access. See references to PyObject
|
||||
// resurrection in torch/csrc/autograd/python_variable.cpp
|
||||
PyObject* pyobj_;
|
||||
// The PyObject representing this Tensor or nullptr. Ownership is managed
|
||||
// by intrusive_ptr. By the time the PyObjectSlot is destroyed, this
|
||||
// reference is already dead.
|
||||
std::atomic<PyObject*> pyobj_;
|
||||
|
||||
friend class torch::utils::PyObjectPreservation;
|
||||
};
|
||||
|
||||
} // namespace c10::impl
|
||||
|
||||
@ -345,6 +345,13 @@ class CUDAAllocator : public DeviceAllocator {
|
||||
c10::DeviceIndex device,
|
||||
std::shared_ptr<AllocatorState> pps) = 0;
|
||||
virtual std::string name() = 0;
|
||||
std::pair<size_t, size_t> getMemoryInfo(c10::DeviceIndex device) override {
|
||||
c10::DeviceGuard device_guard({at::kCUDA, device});
|
||||
size_t free = 0;
|
||||
size_t total = 0;
|
||||
C10_CUDA_CHECK(cudaMemGetInfo(&free, &total));
|
||||
return {free, total};
|
||||
}
|
||||
};
|
||||
|
||||
// Allocator object, statically initialized
|
||||
|
||||
@ -50,7 +50,13 @@ namespace c10 {
|
||||
/// However, you should prefer to use ArrayRef when possible, because its use
|
||||
/// of TORCH_CHECK will lead to better user-facing error messages.
|
||||
template <typename T>
|
||||
class ArrayRef final : public HeaderOnlyArrayRef<T> {
|
||||
// ArrayRef cannot be derived from. Normally, we would use `final`
|
||||
// specifier to force this constraint at compile time. However, Intel
|
||||
// compiler does not recognize ArrayRef as a class template (which is
|
||||
// required in the definition of at::TensorAccessor, for instance)
|
||||
// when `final` specifier is used. So, we cannot define ArrayRef as
|
||||
// final because of the Intel compiler issue.
|
||||
class ArrayRef : public HeaderOnlyArrayRef<T> {
|
||||
public:
|
||||
/// @name Constructors, all inherited from HeaderOnlyArrayRef except for
|
||||
/// SmallVector. As inherited constructors won't work with class template
|
||||
|
||||
@ -379,7 +379,11 @@ C10_API std::string GetExceptionString(const std::exception& e);
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
#ifdef STRIP_ERROR_MESSAGES
|
||||
#define TORCH_RETHROW(e, ...) throw
|
||||
#define TORCH_RETHROW(e, ...) \
|
||||
do { \
|
||||
(void)e; /* Suppress unused variable warning */ \
|
||||
throw; \
|
||||
} while (false)
|
||||
#else
|
||||
#define TORCH_RETHROW(e, ...) \
|
||||
do { \
|
||||
|
||||
@ -12,6 +12,10 @@ template <typename, typename...>
|
||||
class class_;
|
||||
}
|
||||
|
||||
namespace torch::utils {
|
||||
class PyObjectPreservation;
|
||||
}
|
||||
|
||||
namespace c10 {
|
||||
class intrusive_ptr_target;
|
||||
namespace raw {
|
||||
@ -33,6 +37,8 @@ constexpr uint64_t kImpracticallyHugeWeakReferenceCount =
|
||||
constexpr uint64_t kReferenceCountOne = 1;
|
||||
constexpr uint64_t kWeakReferenceCountOne = (kReferenceCountOne << 32);
|
||||
constexpr uint64_t kUniqueRef = (kReferenceCountOne | kWeakReferenceCountOne);
|
||||
// Indicates whether the object has a PyObject wrapper.
|
||||
constexpr uint64_t kHasPyObject = (uint64_t(1) << 63);
|
||||
|
||||
template <class TTarget>
|
||||
struct intrusive_target_default_null_type final {
|
||||
@ -55,7 +61,11 @@ inline uint32_t refcount(uint64_t combined_refcount) {
|
||||
}
|
||||
|
||||
inline uint32_t weakcount(uint64_t combined_refcount) {
|
||||
return static_cast<uint32_t>(combined_refcount >> 32);
|
||||
return static_cast<uint32_t>((combined_refcount & ~kHasPyObject) >> 32);
|
||||
}
|
||||
|
||||
inline bool has_pyobject(uint64_t combined_refcount) {
|
||||
return (combined_refcount & kHasPyObject) != 0;
|
||||
}
|
||||
|
||||
// The only requirement for refcount increment is that it happens-before
|
||||
@ -66,12 +76,6 @@ inline uint64_t atomic_combined_refcount_increment(
|
||||
return combined_refcount.fetch_add(inc, std::memory_order_relaxed) + inc;
|
||||
}
|
||||
|
||||
inline uint32_t atomic_refcount_increment(
|
||||
std::atomic<uint64_t>& combined_refcount) {
|
||||
return detail::refcount(atomic_combined_refcount_increment(
|
||||
combined_refcount, kReferenceCountOne));
|
||||
}
|
||||
|
||||
inline uint32_t atomic_weakcount_increment(
|
||||
std::atomic<uint64_t>& combined_refcount) {
|
||||
return detail::weakcount(atomic_combined_refcount_increment(
|
||||
@ -99,6 +103,11 @@ inline uint32_t atomic_weakcount_decrement(
|
||||
combined_refcount, kWeakReferenceCountOne));
|
||||
}
|
||||
|
||||
template <class T, class = void>
|
||||
struct TargetTraits {
|
||||
static constexpr bool can_have_pyobject = false;
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
/**
|
||||
@ -155,6 +164,23 @@ class C10_API intrusive_ptr_target {
|
||||
// we can atomically operate on both at the same time for performance
|
||||
// and defined behaviors.
|
||||
//
|
||||
// Note [PyObject preservation for Tensor and Storages]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// intrusive_ptr has special support for preserving PyObject wrappers
|
||||
// for TensorImpl and StorageImpl. The most significant bit (kHasPyObject) of
|
||||
// the combined_refcount_ is used to indicate whether the object has a
|
||||
// PyObject wrapper.
|
||||
//
|
||||
// - The PyObject, if it exists, holds a strong reference to the
|
||||
// intrusive_ptr_target.
|
||||
//
|
||||
// - When the refcount goes from 1 to 2, we incref the PyObject.
|
||||
//
|
||||
// - When the refcount goes from 2 to 1, we decref the PyObject.
|
||||
//
|
||||
// In other words, the intrusive_ptr keeps the PyObject alive as long as there
|
||||
// are other C++ references to the intrusive_ptr_target.
|
||||
|
||||
mutable std::atomic<uint64_t> combined_refcount_;
|
||||
static_assert(sizeof(std::atomic<uint64_t>) == 8);
|
||||
static_assert(alignof(std::atomic<uint64_t>) == 8);
|
||||
@ -172,6 +198,8 @@ class C10_API intrusive_ptr_target {
|
||||
template <typename T>
|
||||
friend struct ExclusivelyOwnedTensorTraits;
|
||||
|
||||
friend class torch::utils::PyObjectPreservation;
|
||||
|
||||
protected:
|
||||
// protected destructor. We never want to destruct intrusive_ptr_target*
|
||||
// directly.
|
||||
@ -255,6 +283,16 @@ class C10_API intrusive_ptr_target {
|
||||
*/
|
||||
virtual void release_resources() {}
|
||||
|
||||
/**
|
||||
* These two methods are called when the refcount transitions between one
|
||||
* and two and the object has a PyObject wrapper.
|
||||
*/
|
||||
virtual void incref_pyobject() const {}
|
||||
virtual void decref_pyobject() const {}
|
||||
virtual bool try_incref_pyobject() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
uint32_t refcount(std::memory_order order = std::memory_order_relaxed) const {
|
||||
return detail::refcount(combined_refcount_.load(order));
|
||||
}
|
||||
@ -265,6 +303,19 @@ class C10_API intrusive_ptr_target {
|
||||
}
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
template <>
|
||||
struct TargetTraits<c10::intrusive_ptr_target> {
|
||||
// A generic intrusive_ptr<intrusive_ptr_target> may actually be a TensorImpl
|
||||
// or StorageImpl, so we have to allow for PyObject support.
|
||||
static constexpr bool can_have_pyobject = true;
|
||||
};
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template <class TTarget, class NullType>
|
||||
class weak_intrusive_ptr;
|
||||
|
||||
@ -314,18 +365,34 @@ class intrusive_ptr final {
|
||||
|
||||
void retain_() {
|
||||
if (target_ != NullType::singleton()) {
|
||||
uint32_t new_refcount =
|
||||
detail::atomic_refcount_increment(target_->combined_refcount_);
|
||||
uint64_t combined = detail::atomic_combined_refcount_increment(
|
||||
target_->combined_refcount_, detail::kReferenceCountOne);
|
||||
uint32_t new_refcount = detail::refcount(combined);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
new_refcount != 1,
|
||||
"intrusive_ptr: Cannot increase refcount after it reached zero.");
|
||||
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
// If the refcount transitioned from 1 to 2, we need to incref the
|
||||
// PyObject. In other words, we need to ensure that the PyObject stays
|
||||
// alive now that we have a C++ reference to this object in addition to
|
||||
// the PyObject itself.
|
||||
if (C10_UNLIKELY(
|
||||
detail::has_pyobject(combined) &&
|
||||
detail::refcount(combined) == 2)) {
|
||||
target_->incref_pyobject();
|
||||
}
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
!detail::has_pyobject(combined),
|
||||
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_() noexcept {
|
||||
if (target_ != NullType::singleton()) {
|
||||
if (target_->combined_refcount_.load(std::memory_order_acquire) ==
|
||||
detail::kUniqueRef) {
|
||||
if (is_uniquely_owned()) {
|
||||
// Both counts are 1, so there are no weak references and
|
||||
// we are releasing the last strong reference. No other
|
||||
// threads can observe the effects of this target_ deletion
|
||||
@ -337,9 +404,10 @@ class intrusive_ptr final {
|
||||
|
||||
auto combined_refcount = detail::atomic_combined_refcount_decrement(
|
||||
target_->combined_refcount_, detail::kReferenceCountOne);
|
||||
if (detail::refcount(combined_refcount) == 0) {
|
||||
bool should_delete =
|
||||
(combined_refcount == detail::kWeakReferenceCountOne);
|
||||
uint32_t new_refcount = detail::refcount(combined_refcount);
|
||||
bool has_pyobject = detail::has_pyobject(combined_refcount);
|
||||
if (new_refcount == 0) {
|
||||
bool should_delete = detail::weakcount(combined_refcount) == 1;
|
||||
// See comment above about weakcount. As long as refcount>0,
|
||||
// weakcount is one larger than the actual number of weak references.
|
||||
// So we need to decrement it here.
|
||||
@ -356,6 +424,18 @@ class intrusive_ptr final {
|
||||
if (should_delete) {
|
||||
delete target_;
|
||||
}
|
||||
} else if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
// If the refcount transitioned from 2 to 1, we need to decref the
|
||||
// PyObject. In other words, we don't want to keep the PyObject alive if
|
||||
// there are no C++ references to this object other than the PyObject
|
||||
// itself.
|
||||
if (C10_UNLIKELY(has_pyobject && new_refcount == 1)) {
|
||||
target_->decref_pyobject();
|
||||
}
|
||||
} else {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
||||
!has_pyobject,
|
||||
"TargetTraits indicates that type cannot have PyObject, but refcount has PyObject bit set.");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -522,6 +602,16 @@ class intrusive_ptr final {
|
||||
return use_count() == 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Stronger than unique() in that it must not have any weakrefs as well.
|
||||
*/
|
||||
bool is_uniquely_owned() const noexcept {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(target_ != NullType::singleton());
|
||||
uint64_t combined =
|
||||
target_->combined_refcount_.load(std::memory_order_acquire);
|
||||
return (combined & ~detail::kHasPyObject) == detail::kUniqueRef;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an owning (!) pointer to the underlying object and makes the
|
||||
* intrusive_ptr instance invalid. That means the refcount is not decreased.
|
||||
@ -932,6 +1022,7 @@ class weak_intrusive_ptr final {
|
||||
if (target_ == NullType::singleton()) {
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
} else {
|
||||
bool increfed = false;
|
||||
auto combined_refcount =
|
||||
target_->combined_refcount_.load(std::memory_order_relaxed);
|
||||
do {
|
||||
@ -940,12 +1031,31 @@ class weak_intrusive_ptr final {
|
||||
// Return nullptr.
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
}
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
if (detail::has_pyobject(combined_refcount) &&
|
||||
detail::refcount(combined_refcount) == 1 && !increfed) {
|
||||
// Object has a python wrapper with no other C++ references.
|
||||
// We need to to incref the Python object before we acquire a
|
||||
// strong reference to the C++ object to avoid a situation
|
||||
// where the Python object is deallocated concurrently.
|
||||
if (!target_->try_incref_pyobject()) {
|
||||
return intrusive_ptr<TTarget, NullType>();
|
||||
}
|
||||
increfed = true;
|
||||
}
|
||||
}
|
||||
} while (!target_->combined_refcount_.compare_exchange_weak(
|
||||
combined_refcount,
|
||||
combined_refcount + detail::kReferenceCountOne,
|
||||
std::memory_order_acquire,
|
||||
std::memory_order_relaxed));
|
||||
|
||||
if constexpr (detail::TargetTraits<TTarget>::can_have_pyobject) {
|
||||
if (increfed && detail::refcount(combined_refcount) != 1) {
|
||||
target_->decref_pyobject();
|
||||
}
|
||||
}
|
||||
|
||||
return intrusive_ptr<TTarget, NullType>(
|
||||
target_, raw::DontIncreaseRefcount{});
|
||||
}
|
||||
@ -1060,7 +1170,18 @@ namespace intrusive_ptr {
|
||||
// NullType::singleton to this function
|
||||
inline void incref(intrusive_ptr_target* self) {
|
||||
if (self) {
|
||||
detail::atomic_refcount_increment(self->combined_refcount_);
|
||||
uint64_t combined = detail::atomic_combined_refcount_increment(
|
||||
self->combined_refcount_, detail::kReferenceCountOne);
|
||||
|
||||
#ifndef C10_MOBILE
|
||||
if (C10_UNLIKELY(
|
||||
detail::has_pyobject(combined) &&
|
||||
detail::refcount(combined) == 2)) {
|
||||
self->incref_pyobject();
|
||||
}
|
||||
#else
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!detail::has_pyobject(combined));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -15,6 +15,8 @@ using namespace c10::CachingDeviceAllocator;
|
||||
// newly allocated memory with 512-byte alignment.
|
||||
constexpr size_t kDeviceAlignment = 512;
|
||||
|
||||
class XPUAllocator;
|
||||
|
||||
namespace {
|
||||
using stream_set = ska::flat_hash_set<xpu::XPUStream>;
|
||||
|
||||
@ -23,14 +25,19 @@ typedef bool (*Comparison)(const Block*, const Block*);
|
||||
bool BlockComparatorSize(const Block* a, const Block* b);
|
||||
bool BlockComparatorAddress(const Block* a, const Block* b);
|
||||
|
||||
struct PrivatePool;
|
||||
|
||||
struct BlockPool {
|
||||
BlockPool(bool small)
|
||||
BlockPool(bool small, PrivatePool* private_pool = nullptr)
|
||||
: blocks(BlockComparatorSize),
|
||||
unmapped(BlockComparatorAddress),
|
||||
is_small(small) {}
|
||||
is_small(small),
|
||||
owner_PrivatePool(private_pool) {}
|
||||
|
||||
std::set<Block*, Comparison> blocks;
|
||||
std::set<Block*, Comparison> unmapped;
|
||||
const bool is_small;
|
||||
PrivatePool* owner_PrivatePool;
|
||||
};
|
||||
|
||||
struct ExpandableSegment;
|
||||
@ -349,6 +356,43 @@ struct AllocParams {
|
||||
StatTypes stat_types = {};
|
||||
};
|
||||
|
||||
// Internal implementation that manages actual memory blocks.
|
||||
// high level MemPool interface wraps PrivatePool via MempoolId.
|
||||
struct PrivatePool {
|
||||
PrivatePool(MempoolId_t id, XPUAllocator* allocator = nullptr)
|
||||
: id(std::move(id)),
|
||||
allocator_(allocator),
|
||||
large_blocks(/*small=*/false, this),
|
||||
small_blocks(/*small=*/true, this) {}
|
||||
PrivatePool(const PrivatePool&) = delete;
|
||||
PrivatePool(PrivatePool&&) = delete;
|
||||
PrivatePool& operator=(const PrivatePool&) = delete;
|
||||
PrivatePool& operator=(PrivatePool&&) = delete;
|
||||
~PrivatePool() = default;
|
||||
|
||||
// default Mempool when no Mempool is specified
|
||||
MempoolId_t id{0, 0};
|
||||
// Number of live graphs using this pool
|
||||
int use_count{1};
|
||||
// Number of unfreed allocations made for this pool. When use_count and
|
||||
// allocation_count drop to zero, we can delete this PrivatePool from
|
||||
// graph_pools.
|
||||
int allocation_count{0};
|
||||
XPUAllocator* allocator_;
|
||||
BlockPool large_blocks;
|
||||
BlockPool small_blocks;
|
||||
|
||||
public:
|
||||
XPUAllocator* allocator() {
|
||||
return allocator_;
|
||||
}
|
||||
};
|
||||
struct MempoolIdHash {
|
||||
std::size_t operator()(const MempoolId_t& mempool_id) const noexcept {
|
||||
return mempool_id.first != 0 ? mempool_id.first : mempool_id.second;
|
||||
}
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
class DeviceCachingAllocator {
|
||||
@ -365,6 +409,13 @@ class DeviceCachingAllocator {
|
||||
bool set_fraction = false;
|
||||
std::vector<ExpandableSegment*> expandable_segments;
|
||||
std::vector<c10::DeviceIndex> devices_with_peer_access; // reserved
|
||||
std::vector<std::pair<MempoolId_t, std::function<bool(sycl::queue*)>>>
|
||||
captures_underway;
|
||||
ska::flat_hash_map<MempoolId_t, std::unique_ptr<PrivatePool>, MempoolIdHash>
|
||||
graph_pools;
|
||||
// Pools no longer referenced by any graph.
|
||||
ska::flat_hash_map<MempoolId_t, PrivatePool*, MempoolIdHash>
|
||||
graph_pools_freeable;
|
||||
|
||||
size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool) {
|
||||
if (!src || src->allocated || src->event_count > 0 ||
|
||||
@ -463,7 +514,22 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
BlockPool& get_pool(size_t size) {
|
||||
BlockPool& get_pool(size_t size, sycl::queue* queue) {
|
||||
if (C10_UNLIKELY(!captures_underway.empty())) {
|
||||
for (auto& entry : captures_underway) {
|
||||
// lookup for mempool id matching current capture graph
|
||||
if (entry.second(queue)) {
|
||||
auto it1 = graph_pools.find(entry.first);
|
||||
// lookup mempool
|
||||
TORCH_INTERNAL_ASSERT(it1 != graph_pools.end());
|
||||
if (size <= kSmallSize) {
|
||||
return it1->second->small_blocks;
|
||||
} else {
|
||||
return it1->second->large_blocks;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (size < kSmallSize) {
|
||||
return small_blocks;
|
||||
} else {
|
||||
@ -669,6 +735,10 @@ class DeviceCachingAllocator {
|
||||
if (!ptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (p.pool->owner_PrivatePool) {
|
||||
p.pool->owner_PrivatePool->allocation_count++;
|
||||
}
|
||||
p.block = new Block(device, p.queue(), size, p.pool, ptr);
|
||||
for_each_selected_stat_type(p.stat_types, [&](size_t stat_type) {
|
||||
stats.reserved_bytes[stat_type].increase(size);
|
||||
@ -677,11 +747,14 @@ class DeviceCachingAllocator {
|
||||
return true;
|
||||
}
|
||||
|
||||
void synchronize_and_free_events() {
|
||||
void synchronize_and_free_events(PrivatePool* pool = nullptr) {
|
||||
for (auto& xe : xpu_events) {
|
||||
for (auto& e : xe.second) {
|
||||
auto event = e.first;
|
||||
auto* block = e.second;
|
||||
if (pool && block->pool->owner_PrivatePool != pool) {
|
||||
continue;
|
||||
}
|
||||
event.wait();
|
||||
block->event_count--;
|
||||
if (block->event_count == 0) {
|
||||
@ -785,6 +858,13 @@ class DeviceCachingAllocator {
|
||||
for_each_selected_stat_type(stat_types, [&](size_t stat_type) {
|
||||
stats.reserved_bytes[stat_type].decrease(unmapped.size);
|
||||
});
|
||||
|
||||
if (block->pool->owner_PrivatePool) {
|
||||
// The Freed block belonged to a XPU graph's PrivatePool.
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
block->pool->owner_PrivatePool->allocation_count > 0);
|
||||
block->pool->owner_PrivatePool->allocation_count--;
|
||||
}
|
||||
}
|
||||
|
||||
void release_blocks(BlockPool& pool) {
|
||||
@ -812,13 +892,41 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
bool release_cached_blocks() {
|
||||
synchronize_and_free_events();
|
||||
// See Note [Safe to Free Blocks on BlockPool]
|
||||
c10::xpu::syncStreamsOnDevice(device_index);
|
||||
bool release_cached_blocks(MempoolId_t mempool_id) {
|
||||
if (mempool_id.first == 0 && mempool_id.second == 0 &&
|
||||
captures_underway.empty()) {
|
||||
synchronize_and_free_events();
|
||||
// See Note [Safe to Free Blocks on BlockPool]
|
||||
c10::xpu::syncStreamsOnDevice(device_index);
|
||||
|
||||
release_blocks(large_blocks);
|
||||
release_blocks(small_blocks);
|
||||
release_blocks(large_blocks);
|
||||
release_blocks(small_blocks);
|
||||
}
|
||||
|
||||
for (auto it = graph_pools_freeable.begin();
|
||||
it != graph_pools_freeable.end();) {
|
||||
if (mempool_id.first != 0 || mempool_id.second != 0) {
|
||||
if (it->first == mempool_id) {
|
||||
// If there is an active mempool, we sync only the events
|
||||
// associated with the pool
|
||||
synchronize_and_free_events(it->second);
|
||||
} else {
|
||||
// otherwise we move on
|
||||
++it;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
TORCH_INTERNAL_ASSERT(it->second->use_count == 0);
|
||||
release_blocks(it->second->small_blocks);
|
||||
release_blocks(it->second->large_blocks);
|
||||
if (it->second->allocation_count == 0) {
|
||||
auto erase_count = graph_pools.erase(it->first);
|
||||
TORCH_INTERNAL_ASSERT(erase_count == 1);
|
||||
it = graph_pools_freeable.erase(it);
|
||||
} else {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -903,6 +1011,30 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
void create_or_incref_pool(
|
||||
MempoolId_t mempool_id,
|
||||
XPUAllocator* allocator = nullptr) {
|
||||
auto it = graph_pools.find(mempool_id);
|
||||
if (it == graph_pools.end()) {
|
||||
// mempool_id does not reference an existing pool.
|
||||
// Make a new pool for XPU graph capture or memory pool usage.
|
||||
graph_pools.emplace(
|
||||
mempool_id, std::make_unique<PrivatePool>(mempool_id, allocator));
|
||||
} else {
|
||||
// mempool_id references an existing pool, which the current XPU graph
|
||||
// capture will share.
|
||||
TORCH_INTERNAL_ASSERT(it->second->use_count > 0);
|
||||
TORCH_INTERNAL_ASSERT(allocator == nullptr);
|
||||
it->second->use_count++;
|
||||
}
|
||||
}
|
||||
|
||||
PrivatePool* get_private_pool(MempoolId_t mempool_id) {
|
||||
auto it = graph_pools.find(mempool_id);
|
||||
TORCH_INTERNAL_ASSERT(it != graph_pools.end());
|
||||
return it->second.get();
|
||||
}
|
||||
|
||||
public:
|
||||
DeviceCachingAllocator(DeviceIndex device_index)
|
||||
: large_blocks(/* small */ false),
|
||||
@ -911,9 +1043,11 @@ class DeviceCachingAllocator {
|
||||
|
||||
Block* malloc(DeviceIndex device, size_t orig_size, sycl::queue& queue) {
|
||||
std::scoped_lock<std::recursive_mutex> lock(mutex);
|
||||
process_events();
|
||||
if (C10_LIKELY(captures_underway.empty())) {
|
||||
process_events();
|
||||
}
|
||||
size_t size = round_size(orig_size);
|
||||
auto& pool = get_pool(size);
|
||||
auto& pool = get_pool(size, &queue);
|
||||
const size_t alloc_size = get_allocation_size(size);
|
||||
AllocParams params(device, size, &queue, &pool, alloc_size);
|
||||
params.stat_types = get_stat_types_for_pool(pool);
|
||||
@ -923,18 +1057,17 @@ class DeviceCachingAllocator {
|
||||
// Can't reuse an existing block, try to get a new one.
|
||||
if (!block_found) {
|
||||
block_found = alloc_block(params, false) ||
|
||||
(release_cached_blocks() && alloc_block(params, true));
|
||||
(release_cached_blocks({0, 0}) && alloc_block(params, true));
|
||||
}
|
||||
if (!block_found) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
const auto device_total =
|
||||
raw_device.get_info<sycl::info::device::global_mem_size>();
|
||||
// Estimate the available device memory when the SYCL runtime does not
|
||||
// support the corresponding aspect (ext_intel_free_memory).
|
||||
size_t device_free = device_prop.global_mem_size -
|
||||
size_t device_free = device_total -
|
||||
stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)]
|
||||
.current;
|
||||
auto& raw_device = c10::xpu::get_raw_device(device);
|
||||
// TODO: Remove the aspect check once the SYCL runtime bug is fixed on
|
||||
// affected devices.
|
||||
if (raw_device.has(sycl::aspect::ext_intel_free_memory)) {
|
||||
@ -1017,9 +1150,9 @@ class DeviceCachingAllocator {
|
||||
block->stream_uses.insert(stream);
|
||||
}
|
||||
|
||||
void emptyCache() {
|
||||
void emptyCache(MempoolId_t mempool_id) {
|
||||
std::scoped_lock<std::recursive_mutex> lock(mutex);
|
||||
release_cached_blocks();
|
||||
release_cached_blocks(mempool_id);
|
||||
}
|
||||
|
||||
DeviceStats getStats() {
|
||||
@ -1052,21 +1185,37 @@ class DeviceCachingAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo() {
|
||||
const auto& device = c10::xpu::get_raw_device(device_index);
|
||||
const size_t total = device.get_info<sycl::info::device::global_mem_size>();
|
||||
TORCH_CHECK(
|
||||
device.has(sycl::aspect::ext_intel_free_memory),
|
||||
"The device (",
|
||||
device.get_info<sycl::info::device::name>(),
|
||||
") doesn't support querying the available free memory. ",
|
||||
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
|
||||
"to help us prioritize its implementation.");
|
||||
const size_t free =
|
||||
device.get_info<sycl::ext::intel::info::device::free_memory>();
|
||||
return {free, total};
|
||||
}
|
||||
|
||||
double getMemoryFraction() {
|
||||
if (!set_fraction) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
return static_cast<double>(allowed_memory_maximum) /
|
||||
static_cast<double>(device_prop.global_mem_size);
|
||||
static_cast<double>(device_total);
|
||||
}
|
||||
|
||||
void setMemoryFraction(double fraction) {
|
||||
c10::xpu::DeviceProp device_prop;
|
||||
c10::xpu::get_device_properties(&device_prop, device_index);
|
||||
auto device_total = device_prop.global_mem_size;
|
||||
const auto device_total =
|
||||
xpu::get_raw_device(device_index)
|
||||
.get_info<sycl::info::device::global_mem_size>();
|
||||
allowed_memory_maximum = static_cast<size_t>(fraction * device_total);
|
||||
set_fraction = true;
|
||||
}
|
||||
@ -1157,9 +1306,9 @@ class XPUAllocator : public DeviceAllocator {
|
||||
}
|
||||
}
|
||||
|
||||
void emptyCache(MempoolId_t mempool_id [[maybe_unused]] = {0, 0}) override {
|
||||
void emptyCache(MempoolId_t mempool_id) override {
|
||||
for (auto& da : device_allocators) {
|
||||
da->emptyCache();
|
||||
da->emptyCache(mempool_id);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1240,6 +1389,11 @@ class XPUAllocator : public DeviceAllocator {
|
||||
c10::xpu::get_raw_device(dev_to_access));
|
||||
}
|
||||
|
||||
std::pair<size_t, size_t> getMemoryInfo(DeviceIndex device) override {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryInfo();
|
||||
}
|
||||
|
||||
double getMemoryFraction(DeviceIndex device) {
|
||||
assertValidDevice(device);
|
||||
return device_allocators[device]->getMemoryFraction();
|
||||
@ -1270,8 +1424,8 @@ void init(DeviceIndex device_count) {
|
||||
return allocator.init(device_count);
|
||||
}
|
||||
|
||||
void emptyCache() {
|
||||
return allocator.emptyCache();
|
||||
void emptyCache(MempoolId_t mempool_id) {
|
||||
return allocator.emptyCache(mempool_id);
|
||||
}
|
||||
|
||||
void resetPeakStats(DeviceIndex device) {
|
||||
|
||||
@ -10,7 +10,7 @@ C10_XPU_API Allocator* get();
|
||||
|
||||
C10_XPU_API void init(DeviceIndex device_count);
|
||||
|
||||
C10_XPU_API void emptyCache();
|
||||
C10_XPU_API void emptyCache(MempoolId_t mempool_id = {0, 0});
|
||||
|
||||
C10_XPU_API void resetPeakStats(DeviceIndex device);
|
||||
|
||||
|
||||
@ -734,7 +734,7 @@ void PyTorchStreamWriter::setup(const string& file_name) {
|
||||
file_name,
|
||||
std::ofstream::out | std::ofstream::trunc | std::ofstream::binary
|
||||
);
|
||||
} catch (const std::ios_base::failure& e) {
|
||||
} catch (const std::ios_base::failure&) {
|
||||
#ifdef _WIN32
|
||||
// Windows have verbose error code, we prefer to use it than std errno.
|
||||
uint32_t error_code = GetLastError();
|
||||
@ -773,8 +773,20 @@ void PyTorchStreamWriter::writeRecord(
|
||||
bool compress) {
|
||||
AT_ASSERT(!finalized_);
|
||||
AT_ASSERT(!archive_name_plus_slash_.empty());
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
files_written_.count(name) == 0, "Tried to serialize file twice: ", name);
|
||||
if (files_written_.count(name) > 0) {
|
||||
// Allow multiple writes for triton binaries
|
||||
bool is_triton_extension =
|
||||
c10::ends_with(name, ".so") ||
|
||||
c10::ends_with(name, ".cubin") ||
|
||||
c10::ends_with(name, ".hsaco");
|
||||
|
||||
if (is_triton_extension) {
|
||||
LOG(WARNING) << "File '" << name << "' is being serialized multiple times";
|
||||
return;
|
||||
}
|
||||
|
||||
TORCH_INTERNAL_ASSERT(false, "Tried to serialize file twice: ", name);
|
||||
}
|
||||
if (name == kSerializationIdRecordName && serialization_id_.empty()) {
|
||||
// In case of copying records from another file, skip writing a different
|
||||
// serialization_id than the one computed in this writer.
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# This will define the following variables:
|
||||
# SYCL_FOUND : True if the system has the SYCL library.
|
||||
# SYCL_INCLUDE_DIR : Include directories needed to use SYCL.
|
||||
# SYCL_LIBRARY_DIR :The path to the SYCL library.
|
||||
# SYCL_LIBRARY_DIR : The path to the SYCL library.
|
||||
# SYCL_LIBRARY : SYCL library fullname.
|
||||
# SYCL_COMPILER_VERSION : SYCL compiler version.
|
||||
|
||||
|
||||
@ -10,7 +10,7 @@ API. This API can roughly be divided into five parts:
|
||||
- **TorchScript**: An interface to the TorchScript JIT compiler and interpreter.
|
||||
- **C++ Extensions**: A means of extending the Python API with custom C++ and CUDA routines.
|
||||
|
||||
Combining, these building blocks form a research and
|
||||
Combined, these building blocks form a research and
|
||||
production ready C++ library for tensor computation and dynamic neural
|
||||
networks with strong emphasis on GPU acceleration as well as fast CPU
|
||||
performance. It is currently in use at Facebook in research and
|
||||
@ -76,7 +76,7 @@ C++ Frontend
|
||||
------------
|
||||
|
||||
The PyTorch C++ frontend provides a high level, pure C++ modeling interface for
|
||||
neural network and general ML(Machine Learning) research and production use cases,
|
||||
neural networks and general ML (Machine Learning) research and production use cases,
|
||||
largely following the Python API in design and provided functionality. The C++
|
||||
frontend includes the following:
|
||||
|
||||
|
||||
@ -40,6 +40,7 @@
|
||||
:nosignatures:
|
||||
|
||||
empty_cache
|
||||
get_memory_info
|
||||
max_memory_allocated
|
||||
max_memory_reserved
|
||||
memory_allocated
|
||||
|
||||
113
docs/source/accelerator/device.md
Normal file
113
docs/source/accelerator/device.md
Normal file
@ -0,0 +1,113 @@
|
||||
# Device Management
|
||||
|
||||
## Background
|
||||
|
||||
Device management handles basic operations like querying how many devices are available and switching between them. Accelerator backends need to wrap their device runtime's APIs and expose them to PyTorch.
|
||||
|
||||
The OpenReg implementation ([`OpenRegFunctions.h/cpp`][OpenReg Device Management]) shows how to wrap a third-party runtime. These functions are used throughout the backend - by streams, events, generators, and Python bindings.
|
||||
|
||||
## Design
|
||||
|
||||
Accelerator vendors need to implement these core functions:
|
||||
|
||||
| Function Name | Description | Application Scenarios |
|
||||
| ------------------------- | ---------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- |
|
||||
| `device_count()` | Query the total number of available devices in the system | - Application initialization<br>- Multi-device workload distribution<br>- Validating device indices before use |
|
||||
| `current_device()` | Get the currently active device for the calling thread | - Debugging and logging<br>- Determining tensor placement<br>- Guard implementations |
|
||||
| `set_device()` | Change the active device for subsequent operations | - Switching context between devices<br>- Initializing specific device resources<br>- Multi-GPU training loops |
|
||||
| `exchange_device()` | Atomically swap device and return the previous device | - Implementing device guards<br>- Temporarily switching device context<br>- RAII-based device management |
|
||||
| `maybe_exchange_device()` | Conditionally exchange device only if the index is valid (-1 OK) | - Safe device switching with optional indices<br>- Guard implementations with nullable device values |
|
||||
|
||||
These functions are building blocks for more complex features like streams, events, and memory management. Make sure to validate inputs and handle errors properly.
|
||||
|
||||
## Implementation
|
||||
|
||||
This section shows how to implement device management using `set_device` as an example. The implementation requires:
|
||||
1. C++ wrappers around the device runtime
|
||||
2. Python bindings to expose the C++ functions
|
||||
3. User-friendly Python APIs
|
||||
|
||||
### C++ Side
|
||||
|
||||
Wrap the device runtime's API and add error handling. The `SetDevice` function shows this pattern:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG SetDevice FUNCTION
|
||||
:end-before: LITERALINCLUDE END: OPENREG SetDevice FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG set_device FUNCTION
|
||||
:end-before: LITERALINCLUDE END: OPENREG set_device FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
|
||||
### Binding
|
||||
|
||||
Expose the C++ functions to Python using pybind11:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: MODULE SET DEVICE HELPER
|
||||
:end-before: LITERALINCLUDE END: MODULE SET DEVICE HELPER
|
||||
:linenos:
|
||||
```
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/csrc/Module.cpp
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG MODULE METHODS
|
||||
:end-before: LITERALINCLUDE END: OPENREG MODULE METHODS
|
||||
:linenos:
|
||||
:emphasize-lines: 5
|
||||
```
|
||||
|
||||
### Python Side
|
||||
|
||||
Wrap the C++ bindings with user-friendly Python functions:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg/openreg/__init__.py
|
||||
:language: python
|
||||
:start-after: LITERALINCLUDE START: PYTHON SET DEVICE FUNCTION
|
||||
:end-before: LITERALINCLUDE END: PYTHON SET DEVICE FUNCTION
|
||||
:linenos:
|
||||
```
|
||||
|
||||
Here's the complete mapping from C++ to Python:
|
||||
|
||||
| C++ Binding Function | C++ Binding API (pybind11) | Python User API | Description |
|
||||
| -------------------- | ---------------------------------------- | -------------------------------- | -------------------------------------------- |
|
||||
| `_getDeviceCount` | `torch_openreg._C._get_device_count()` | `torch.openreg.device_count()` | Returns the total number of devices |
|
||||
| `_getDevice` | `torch_openreg._C._get_device()` | `torch.openreg.current_device()` | Returns the current active device index |
|
||||
| `_setDevice` | `torch_openreg._C._set_device(idx)` | `torch.openreg.set_device(idx)` | Sets the active device |
|
||||
| `_exchangeDevice` | `torch_openreg._C._exchange_device(idx)` | N/A (internal use only) | Atomically swaps device and returns previous |
|
||||
|
||||
## Guard
|
||||
|
||||
Device guards provide automatic device switching with exception safety. They're similar to lock guards in C++ - they switch device on construction and restore it on destruction.
|
||||
|
||||
Implement `DeviceGuardImplInterface` to integrate with PyTorch's guard system:
|
||||
|
||||
```{eval-rst}
|
||||
.. literalinclude:: ../../../test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegGuard.h
|
||||
:language: c++
|
||||
:start-after: LITERALINCLUDE START: OPENREG DEVICE MGMT GUARD IMPL EXAMPLE
|
||||
:end-before: LITERALINCLUDE END: OPENREG DEVICE MGMT GUARD IMPL EXAMPLE
|
||||
:linenos:
|
||||
```
|
||||
|
||||
**What needs to be implemented:**
|
||||
|
||||
1. **exchangeDevice()**: Switch to a new device and return the old one (used by guard constructors)
|
||||
2. **getDevice()**: Get the current device
|
||||
3. **setDevice()**: Set the active device
|
||||
4. **Type checking**: Validate that device type matches the backend
|
||||
|
||||
This makes the guard available to PyTorch for the `PrivateUse1` device type. Users can then use standard PyTorch device guards with the custom backend.
|
||||
|
||||
[OpenReg Device Management]: https://github.com/pytorch/pytorch/blob/main/test/cpp_extensions/open_registration_extension/torch_openreg/csrc/runtime/OpenRegFunctions.cpp "OpenReg Device Management"
|
||||
@ -42,6 +42,7 @@ Next, we will delve into each chapter of this guide. Each chapter focuses on a k
|
||||
:glob:
|
||||
:maxdepth: 1
|
||||
|
||||
device
|
||||
hooks
|
||||
autoload
|
||||
operators
|
||||
|
||||
@ -254,7 +254,7 @@ To toggle the reduced precision reduction flags in C++, one can do
|
||||
|
||||
.. _fp16accumulation:
|
||||
|
||||
Full FP16 Accmumulation in FP16 GEMMs
|
||||
Full FP16 Accumulation in FP16 GEMMs
|
||||
-------------------------------------
|
||||
|
||||
Certain GPUs have increased performance when doing _all_ FP16 GEMM accumulation
|
||||
|
||||
@ -30,5 +30,6 @@ For a quick overview of `torch.compiler`, see {ref}`torch.compiler_overview`.
|
||||
skip_guard_on_all_nn_modules_unsafe
|
||||
keep_tensor_guards_unsafe
|
||||
skip_guard_on_globals_unsafe
|
||||
skip_all_guards_unsafe
|
||||
nested_compile_region
|
||||
```
|
||||
|
||||
@ -24,15 +24,11 @@ def gen_data(special_op_lists, analysis_name):
|
||||
all_ops = get_ops_for_key(None)
|
||||
composite_ops = get_ops_for_key("CompositeImplicitAutograd")
|
||||
noncomposite_ops = all_ops - composite_ops
|
||||
with open("../../aten/src/ATen/native/native_functions.yaml") as f:
|
||||
ops = yaml.load(f.read(), Loader=yaml.CLoader)
|
||||
|
||||
ops = yaml.load(
|
||||
open("../../aten/src/ATen/native/native_functions.yaml").read(),
|
||||
Loader=yaml.CLoader,
|
||||
)
|
||||
|
||||
annotated_ops = {
|
||||
a.strip(): b.strip() for a, b in list(csv.reader(open("annotated_ops")))
|
||||
}
|
||||
with open("annotated_ops") as f:
|
||||
annotated_ops = {a.strip(): b.strip() for a, b in csv.reader(f)}
|
||||
|
||||
uniq_ops = []
|
||||
uniq_names = set()
|
||||
|
||||
@ -376,3 +376,19 @@ keep-runtime-typing = true
|
||||
|
||||
[tool.codespell]
|
||||
ignore-words = "tools/linter/dictionary.txt"
|
||||
|
||||
[tool.spin]
|
||||
package = 'torch'
|
||||
|
||||
[tool.spin.commands]
|
||||
"Build" = [
|
||||
".spin/cmds.py:lint",
|
||||
".spin/cmds.py:fixlint",
|
||||
".spin/cmds.py:quicklint",
|
||||
".spin/cmds.py:quickfix",
|
||||
]
|
||||
"Regenerate" = [
|
||||
".spin/cmds.py:regenerate_version",
|
||||
".spin/cmds.py:regenerate_type_stubs",
|
||||
".spin/cmds.py:regenerate_clangtidy_files",
|
||||
]
|
||||
|
||||
@ -32,7 +32,7 @@ project-excludes = [
|
||||
"torch/utils/tensorboard/summary.py",
|
||||
# formatting issues, will turn on after adjusting where suppressions can be
|
||||
# in import statements
|
||||
"tools/flight_recorder/components/types.py",
|
||||
"torch/distributed/flight_recorder/components/types.py",
|
||||
"torch/linalg/__init__.py",
|
||||
"torch/package/importer.py",
|
||||
"torch/package/_package_pickler.py",
|
||||
|
||||
@ -14,6 +14,7 @@ lintrunner ; platform_machine != "s390x" and platform_machine != "riscv64"
|
||||
networkx>=2.5.1
|
||||
optree>=0.13.0
|
||||
psutil
|
||||
spin
|
||||
sympy>=1.13.3
|
||||
typing-extensions>=4.13.2
|
||||
wheel
|
||||
|
||||
49
setup.py
49
setup.py
@ -1358,45 +1358,6 @@ class concat_license_files:
|
||||
|
||||
# Need to create the proper LICENSE.txt for the wheel
|
||||
class bdist_wheel(setuptools.command.bdist_wheel.bdist_wheel):
|
||||
def _wrap_headers_with_macro(self, bdist_dir: Path) -> None:
|
||||
"""Wrap all header files with #if !defined(TORCH_STABLE_ONLY) && !defined(TORCH_TARGET_VERSION).
|
||||
|
||||
Excludes:
|
||||
- torch/include/torch/headeronly/*
|
||||
- torch/include/torch/csrc/stable/*
|
||||
- torch/include/torch/csrc/inductor/aoti_torch/c/ (only shim headers)
|
||||
- torch/include/torch/csrc/inductor/aoti_torch/generated/
|
||||
"""
|
||||
header_extensions = (".h", ".hpp", ".cuh")
|
||||
header_files = [
|
||||
f for ext in header_extensions for f in bdist_dir.rglob(f"*{ext}")
|
||||
]
|
||||
|
||||
# Paths to exclude from wrapping
|
||||
exclude_dir_patterns = [
|
||||
"torch/include/torch/headeronly/",
|
||||
"torch/include/torch/csrc/stable/",
|
||||
"torch/include/torch/csrc/inductor/aoti_torch/c/",
|
||||
"torch/include/torch/csrc/inductor/aoti_torch/generated/",
|
||||
]
|
||||
|
||||
for header_file in header_files:
|
||||
rel_path = header_file.relative_to(bdist_dir).as_posix()
|
||||
|
||||
if any(rel_path.startswith(pattern) for pattern in exclude_dir_patterns):
|
||||
report(f"Skipping header: {rel_path}")
|
||||
continue
|
||||
|
||||
original_content = header_file.read_text(encoding="utf-8")
|
||||
wrapped_content = (
|
||||
"#if !defined(TORCH_STABLE_ONLY) && !defined(TORCH_TARGET_VERSION)\n"
|
||||
f"{original_content}"
|
||||
"\n#endif // !defined(TORCH_STABLE_ONLY) && !defined(TORCH_TARGET_VERSION)\n"
|
||||
)
|
||||
|
||||
header_file.write_text(wrapped_content, encoding="utf-8")
|
||||
report(f"Wrapped header: {rel_path}")
|
||||
|
||||
def run(self) -> None:
|
||||
with concat_license_files(include_files=True):
|
||||
super().run()
|
||||
@ -1419,14 +1380,6 @@ class bdist_wheel(setuptools.command.bdist_wheel.bdist_wheel):
|
||||
# need an __init__.py file otherwise we wouldn't have a package
|
||||
(bdist_dir / "torch" / "__init__.py").touch()
|
||||
|
||||
# Wrap all header files with TORCH_STABLE_ONLY macro
|
||||
assert self.bdist_dir is not None, "bdist_dir should be set during wheel build"
|
||||
bdist_dir = Path(self.bdist_dir)
|
||||
report(
|
||||
"-- Wrapping header files with if !defined(TORCH_STABLE_ONLY) && !defined(TORCH_TARGET_VERSION)"
|
||||
)
|
||||
self._wrap_headers_with_macro(bdist_dir)
|
||||
|
||||
|
||||
class clean(Command):
|
||||
user_options: ClassVar[list[tuple[str, str | None, str]]] = []
|
||||
@ -1632,7 +1585,7 @@ def configure_extension_build() -> tuple[
|
||||
if cmake_cache_vars["USE_DISTRIBUTED"]:
|
||||
# Only enable fr_trace command if distributed is enabled
|
||||
entry_points["console_scripts"].append(
|
||||
"torchfrtrace = tools.flight_recorder.fr_trace:main",
|
||||
"torchfrtrace = torch.distributed.flight_recorder.fr_trace:main",
|
||||
)
|
||||
return ext_modules, cmdclass, packages, entry_points, extra_install_requires
|
||||
|
||||
|
||||
@ -8,6 +8,7 @@ set(AOTI_ABI_CHECK_TEST_ROOT ${TORCH_ROOT}/test/cpp/aoti_abi_check)
|
||||
# Build the cpp gtest binary containing the cpp-only tests.
|
||||
set(AOTI_ABI_CHECK_TEST_SRCS
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/main.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_accessor.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_cast.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_devicetype.cpp
|
||||
${AOTI_ABI_CHECK_TEST_ROOT}/test_dispatch.cpp
|
||||
|
||||
50
test/cpp/aoti_abi_check/test_accessor.cpp
Normal file
50
test/cpp/aoti_abi_check/test_accessor.cpp
Normal file
@ -0,0 +1,50 @@
|
||||
#include <gtest/gtest.h>
|
||||
#include <torch/headeronly/core/TensorAccessor.h>
|
||||
#include <string>
|
||||
|
||||
TEST(TestAccessor, HeaderOnlyTensorAccessor) {
|
||||
std::vector<int32_t> v = {11, 12, 13, 21, 22, 23};
|
||||
std::vector<int64_t> sizes = {2, 3};
|
||||
std::vector<int64_t> strides = {3, 1};
|
||||
|
||||
auto acc = torch::headeronly::HeaderOnlyTensorAccessor<int32_t, 2>(
|
||||
v.data(), sizes.data(), strides.data());
|
||||
EXPECT_EQ(acc[0][0], 11);
|
||||
EXPECT_EQ(acc[0][1], 12);
|
||||
EXPECT_EQ(acc[0][2], 13);
|
||||
EXPECT_EQ(acc[1][0], 21);
|
||||
EXPECT_EQ(acc[1][1], 22);
|
||||
EXPECT_EQ(acc[1][2], 23);
|
||||
}
|
||||
|
||||
TEST(TestAccessor, HeaderOnlyGenericPackedTensorAccessor) {
|
||||
std::vector<int32_t> v = {11, 12, 13, 21, 22, 23};
|
||||
std::vector<int64_t> sizes = {2, 3};
|
||||
std::vector<int64_t> strides = {3, 1};
|
||||
|
||||
auto acc =
|
||||
torch::headeronly::HeaderOnlyGenericPackedTensorAccessor<int32_t, 2>(
|
||||
v.data(), sizes.data(), strides.data());
|
||||
EXPECT_EQ(acc[0][0], 11);
|
||||
EXPECT_EQ(acc[0][1], 12);
|
||||
EXPECT_EQ(acc[0][2], 13);
|
||||
EXPECT_EQ(acc[1][0], 21);
|
||||
EXPECT_EQ(acc[1][1], 22);
|
||||
EXPECT_EQ(acc[1][2], 23);
|
||||
|
||||
auto tacc = acc.transpose(0, 1);
|
||||
EXPECT_EQ(tacc[0][0], 11);
|
||||
EXPECT_EQ(tacc[0][1], 21);
|
||||
EXPECT_EQ(tacc[1][0], 12);
|
||||
EXPECT_EQ(tacc[1][1], 22);
|
||||
EXPECT_EQ(tacc[2][0], 13);
|
||||
EXPECT_EQ(tacc[2][1], 23);
|
||||
|
||||
try {
|
||||
acc.transpose(0, 2);
|
||||
} catch (const std::exception& e) {
|
||||
EXPECT_TRUE(
|
||||
std::string(e.what()).find("HeaderOnlyIndexBoundsCheck") !=
|
||||
std::string::npos);
|
||||
}
|
||||
}
|
||||
@ -13,6 +13,17 @@ TEST(TestScalarType, ScalarTypeToCPPTypeT) {
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
||||
TEST(TestScalarType, CppTypeToScalarType) {
|
||||
using torch::headeronly::CppTypeToScalarType;
|
||||
using torch::headeronly::ScalarType;
|
||||
|
||||
#define DEFINE_CHECK(TYPE, SCALARTYPE) \
|
||||
EXPECT_EQ(CppTypeToScalarType<TYPE>::value, ScalarType::SCALARTYPE);
|
||||
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
||||
#define DEFINE_CHECK(TYPE, SCALARTYPE) \
|
||||
{ \
|
||||
EXPECT_EQ( \
|
||||
@ -90,3 +101,14 @@ TEST(TestScalarType, toUnderlying) {
|
||||
AT_FORALL_FLOAT8_TYPES(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
||||
TEST(TestScalarType, isQIntType) {
|
||||
using torch::headeronly::isQIntType;
|
||||
using torch::headeronly::ScalarType;
|
||||
#define DEFINE_CHECK(_, name) EXPECT_TRUE(isQIntType(ScalarType::name));
|
||||
AT_FORALL_QINT_TYPES(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
#define DEFINE_CHECK(_, name) EXPECT_FALSE(isQIntType(ScalarType::name));
|
||||
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_CHECK);
|
||||
#undef DEFINE_CHECK
|
||||
}
|
||||
|
||||
@ -15,7 +15,7 @@ namespace jit {
|
||||
TEST(CustomOperatorTest, InferredSchema) {
|
||||
torch::RegisterOperators reg(
|
||||
"foo::bar", [](double a, at::Tensor b) { return a + b; });
|
||||
auto& ops = getAllOperatorsFor(Symbol::fromQualString("foo::bar"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foo::bar"));
|
||||
ASSERT_EQ(ops.size(), 1);
|
||||
|
||||
auto& op = ops.front();
|
||||
@ -43,8 +43,7 @@ TEST(CustomOperatorTest, ExplicitSchema) {
|
||||
"foo::bar_with_schema(float a, Tensor b) -> Tensor",
|
||||
[](double a, at::Tensor b) { return a + b; });
|
||||
|
||||
auto& ops =
|
||||
getAllOperatorsFor(Symbol::fromQualString("foo::bar_with_schema"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foo::bar_with_schema"));
|
||||
ASSERT_EQ(ops.size(), 1);
|
||||
|
||||
auto& op = ops.front();
|
||||
@ -77,7 +76,7 @@ TEST(CustomOperatorTest, ListParameters) {
|
||||
torch::List<c10::complex<double>> complexdoubles,
|
||||
torch::List<at::Tensor> tensors) { return floats; });
|
||||
|
||||
auto& ops = getAllOperatorsFor(Symbol::fromQualString("foo::lists"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foo::lists"));
|
||||
ASSERT_EQ(ops.size(), 1);
|
||||
|
||||
auto& op = ops.front();
|
||||
@ -123,7 +122,7 @@ TEST(CustomOperatorTest, ListParameters2) {
|
||||
"foo::lists2(Tensor[] tensors) -> Tensor[]",
|
||||
[](torch::List<at::Tensor> tensors) { return tensors; });
|
||||
|
||||
auto& ops = getAllOperatorsFor(Symbol::fromQualString("foo::lists2"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foo::lists2"));
|
||||
ASSERT_EQ(ops.size(), 1);
|
||||
|
||||
auto& op = ops.front();
|
||||
@ -213,7 +212,7 @@ TEST(TestCustomOperator, OperatorGeneratorUndeclared) {
|
||||
},
|
||||
aliasAnalysisFromSchema())});
|
||||
|
||||
auto& ops = getAllOperatorsFor(Symbol::fromQualString("foofoo::not_exist"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foofoo::not_exist"));
|
||||
ASSERT_EQ(ops.size(), 0);
|
||||
}
|
||||
|
||||
@ -232,7 +231,7 @@ TEST(TestCustomOperator, OperatorGeneratorBasic) {
|
||||
},
|
||||
aliasAnalysisFromSchema())});
|
||||
|
||||
auto& ops = getAllOperatorsFor(Symbol::fromQualString("foofoo::bar"));
|
||||
auto ops = getAllOperatorsFor(Symbol::fromQualString("foofoo::bar"));
|
||||
ASSERT_EQ(ops.size(), 1);
|
||||
|
||||
auto& op = ops.front();
|
||||
|
||||
@ -0,0 +1,30 @@
|
||||
#include "kernel.h"
|
||||
|
||||
#include <torch/csrc/stable/library.h>
|
||||
#include <torch/csrc/stable/tensor.h>
|
||||
#include <torch/csrc/stable/ops.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
using torch::stable::Tensor;
|
||||
|
||||
Tensor mv_tensor_accessor_cuda(Tensor m, Tensor v) {
|
||||
STD_TORCH_CHECK(m.dim() == 2, "m must be 2D");
|
||||
STD_TORCH_CHECK(v.dim() == 1, "v must be 1D");
|
||||
STD_TORCH_CHECK(m.size(1) == v.size(0), "m.shape[1] == v.shape[0] must hold");
|
||||
STD_TORCH_CHECK(m.scalar_type() == v.scalar_type(), "m and v must have the same dtype");
|
||||
STD_TORCH_CHECK(m.device() == v.device(), "m and v must be on the same device");
|
||||
Tensor res = new_empty(m, {m.size(0)});
|
||||
THO_DISPATCH_V2(m.scalar_type(), "mv_tensor_accessor_cuda",
|
||||
AT_WRAP(([&]() {
|
||||
auto resa = Accessor_cuda<scalar_t, 1>(reinterpret_cast<scalar_t*>(res.data_ptr()), res.sizes().data(), res.strides().data());
|
||||
auto ma = Accessor_cuda<scalar_t, 2>(reinterpret_cast<scalar_t*>(m.data_ptr()), m.sizes().data(), m.strides().data());
|
||||
auto va = Accessor_cuda<scalar_t, 1>(reinterpret_cast<scalar_t*>(v.data_ptr()), v.sizes().data(), v.strides().data());
|
||||
mv_tensor_accessor_kernel<Accessor_cuda, scalar_t><<<1, 1, 0, 0>>>(resa, ma, va);
|
||||
})),
|
||||
AT_FLOATING_TYPES);
|
||||
return res;
|
||||
}
|
||||
|
||||
STABLE_TORCH_LIBRARY_IMPL(libtorch_agnostic, CUDA, m) {
|
||||
m.impl("mv_tensor_accessor", TORCH_BOX(&mv_tensor_accessor_cuda));
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user