mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-24 23:54:56 +08:00
Compare commits
1 Commits
sanchitint
...
PR-AOTIndu
| Author | SHA1 | Date | |
|---|---|---|---|
| 297250166b |
@ -1 +1 @@
|
||||
6.5.0
|
||||
6.1.1
|
||||
|
||||
23
.buckconfig.oss
Normal file
23
.buckconfig.oss
Normal file
@ -0,0 +1,23 @@
|
||||
[pt]
|
||||
is_oss=1
|
||||
|
||||
[buildfile]
|
||||
name = BUCK.oss
|
||||
includes = //tools/build_defs/select.bzl
|
||||
|
||||
[repositories]
|
||||
bazel_skylib = third_party/bazel-skylib/
|
||||
ovr_config = .
|
||||
|
||||
[download]
|
||||
in_build = true
|
||||
|
||||
[cxx]
|
||||
cxxflags = -std=c++17
|
||||
ldflags = -Wl,--no-undefined
|
||||
should_remap_host_platform = true
|
||||
cpp = /usr/bin/clang
|
||||
cc = /usr/bin/clang
|
||||
cxx = /usr/bin/clang++
|
||||
cxxpp = /usr/bin/clang++
|
||||
ld = /usr/bin/clang++
|
||||
@ -1,19 +0,0 @@
|
||||
# Aarch64 (ARM/Graviton) Support Scripts
|
||||
Scripts for building aarch64 PyTorch PIP Wheels. These scripts build the following wheels:
|
||||
* torch
|
||||
* torchvision
|
||||
* torchaudio
|
||||
* torchtext
|
||||
* torchdata
|
||||
## Aarch64_ci_build.sh
|
||||
This script is design to support CD operations within PyPi manylinux aarch64 container, and be executed in the container. It prepares the container and then executes __aarch64_wheel_ci_build.py__ to build the wheels. The script "assumes" the PyTorch repo is located at: ```/pytorch``` and will put the wheels into ```/artifacts```.
|
||||
### Usage
|
||||
```DESIRED_PYTHON=<PythonVersion> aarch64_ci_build.sh```
|
||||
|
||||
__NOTE:__ CI build is currently __EXPERMINTAL__
|
||||
|
||||
## Build_aarch64_wheel.py
|
||||
This app allows a person to build using AWS EC3 resources and requires AWS-CLI and Boto3 with AWS credentials to support building EC2 instances for the wheel builds. Can be used in a codebuild CD or from a local system.
|
||||
|
||||
### Usage
|
||||
```build_aarch64_wheel.py --key-name <YourPemKey> --use-docker --python 3.8 --branch <RCtag>```
|
||||
@ -1,29 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
|
||||
|
||||
# cuda arm build for Grace Hopper solely
|
||||
export TORCH_CUDA_ARCH_LIST="9.0"
|
||||
|
||||
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
|
||||
source $SCRIPTPATH/aarch64_ci_setup.sh
|
||||
|
||||
###############################################################################
|
||||
# Run aarch64 builder python
|
||||
###############################################################################
|
||||
cd /
|
||||
# adding safe directory for git as the permissions will be
|
||||
# on the mounted pytorch repo
|
||||
git config --global --add safe.directory /pytorch
|
||||
pip install -r /pytorch/requirements.txt
|
||||
pip install auditwheel
|
||||
if [ "$DESIRED_CUDA" = "cpu" ]; then
|
||||
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
|
||||
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
|
||||
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
|
||||
else
|
||||
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
|
||||
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
|
||||
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
|
||||
fi
|
||||
@ -1,23 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -eux -o pipefail
|
||||
|
||||
# This script is used to prepare the Docker container for aarch64_ci_wheel_build.py python script
|
||||
# By creating symlinks from desired /opt/python to /usr/local/bin/
|
||||
|
||||
NUMPY_VERSION=2.0.2
|
||||
PYGIT2_VERSION=1.15.1
|
||||
if [[ "$DESIRED_PYTHON" == "3.13" ]]; then
|
||||
NUMPY_VERSION=2.1.2
|
||||
PYGIT2_VERSION=1.16.0
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
source $SCRIPTPATH/../manywheel/set_desired_python.sh
|
||||
|
||||
pip install -q numpy==${NUMPY_VERSION} pyyaml==6.0.2 scons==4.7.0 ninja==1.11.1 patchelf==0.17.2 pygit2==${PYGIT2_VERSION}
|
||||
|
||||
for tool in python python3 pip pip3 ninja scons patchelf; do
|
||||
ln -sf ${DESIRED_PYTHON_BIN_DIR}/${tool} /usr/local/bin;
|
||||
done
|
||||
|
||||
python --version
|
||||
@ -1,230 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# encoding: UTF-8
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from subprocess import check_call, check_output
|
||||
from typing import List
|
||||
|
||||
from pygit2 import Repository
|
||||
|
||||
|
||||
def list_dir(path: str) -> List[str]:
|
||||
"""'
|
||||
Helper for getting paths for Python
|
||||
"""
|
||||
return check_output(["ls", "-1", path]).decode().split("\n")
|
||||
|
||||
|
||||
def build_ArmComputeLibrary() -> None:
|
||||
"""
|
||||
Using ArmComputeLibrary for aarch64 PyTorch
|
||||
"""
|
||||
print("Building Arm Compute Library")
|
||||
acl_build_flags = [
|
||||
"debug=0",
|
||||
"neon=1",
|
||||
"opencl=0",
|
||||
"os=linux",
|
||||
"openmp=1",
|
||||
"cppthreads=0",
|
||||
"arch=armv8a",
|
||||
"multi_isa=1",
|
||||
"fixed_format_kernels=1",
|
||||
"build=native",
|
||||
]
|
||||
acl_install_dir = "/acl"
|
||||
acl_checkout_dir = "ComputeLibrary"
|
||||
os.makedirs(acl_install_dir)
|
||||
check_call(
|
||||
[
|
||||
"git",
|
||||
"clone",
|
||||
"https://github.com/ARM-software/ComputeLibrary.git",
|
||||
"-b",
|
||||
"v24.09",
|
||||
"--depth",
|
||||
"1",
|
||||
"--shallow-submodules",
|
||||
]
|
||||
)
|
||||
|
||||
check_call(
|
||||
["scons", "Werror=1", "-j8", f"build_dir=/{acl_install_dir}/build"]
|
||||
+ acl_build_flags,
|
||||
cwd=acl_checkout_dir,
|
||||
)
|
||||
for d in ["arm_compute", "include", "utils", "support", "src"]:
|
||||
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
|
||||
|
||||
|
||||
def update_wheel(wheel_path) -> None:
|
||||
"""
|
||||
Update the cuda wheel libraries
|
||||
"""
|
||||
folder = os.path.dirname(wheel_path)
|
||||
wheelname = os.path.basename(wheel_path)
|
||||
os.mkdir(f"{folder}/tmp")
|
||||
os.system(f"unzip {wheel_path} -d {folder}/tmp")
|
||||
libs_to_copy = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcublas.so.12",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12",
|
||||
"/usr/local/cuda/lib64/libcudart.so.12",
|
||||
"/usr/local/cuda/lib64/libcufft.so.11",
|
||||
"/usr/local/cuda/lib64/libcusparse.so.12",
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.11",
|
||||
"/usr/local/cuda/lib64/libcurand.so.10",
|
||||
"/usr/local/cuda/lib64/libnvToolsExt.so.1",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.6",
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
]
|
||||
if enable_cuda:
|
||||
libs_to_copy += [
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
]
|
||||
else:
|
||||
libs_to_copy += [
|
||||
"/opt/OpenBLAS/lib/libopenblas.so.0",
|
||||
]
|
||||
# Copy libraries to unzipped_folder/a/lib
|
||||
for lib_path in libs_to_copy:
|
||||
lib_name = os.path.basename(lib_path)
|
||||
shutil.copy2(lib_path, f"{folder}/tmp/torch/lib/{lib_name}")
|
||||
os.system(
|
||||
f"cd {folder}/tmp/torch/lib/; "
|
||||
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
|
||||
)
|
||||
os.mkdir(f"{folder}/cuda_wheel")
|
||||
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
|
||||
shutil.move(
|
||||
f"{folder}/cuda_wheel/{wheelname}",
|
||||
f"{folder}/{wheelname}",
|
||||
copy_function=shutil.copy2,
|
||||
)
|
||||
os.system(f"rm -rf {folder}/tmp/ {folder}/cuda_wheel/")
|
||||
|
||||
|
||||
def complete_wheel(folder: str) -> str:
|
||||
"""
|
||||
Complete wheel build and put in artifact location
|
||||
"""
|
||||
wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
|
||||
if "pytorch" in folder and not enable_cuda:
|
||||
print("Repairing Wheel with AuditWheel")
|
||||
check_call(["auditwheel", "repair", f"dist/{wheel_name}"], cwd=folder)
|
||||
repaired_wheel_name = list_dir(f"/{folder}/wheelhouse")[0]
|
||||
|
||||
print(f"Moving {repaired_wheel_name} wheel to /{folder}/dist")
|
||||
os.rename(
|
||||
f"/{folder}/wheelhouse/{repaired_wheel_name}",
|
||||
f"/{folder}/dist/{repaired_wheel_name}",
|
||||
)
|
||||
else:
|
||||
repaired_wheel_name = wheel_name
|
||||
|
||||
print(f"Copying {repaired_wheel_name} to artifacts")
|
||||
shutil.copy2(
|
||||
f"/{folder}/dist/{repaired_wheel_name}", f"/artifacts/{repaired_wheel_name}"
|
||||
)
|
||||
|
||||
return repaired_wheel_name
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""
|
||||
Parse inline arguments
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("AARCH64 wheels python CD")
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
parser.add_argument("--test-only", type=str)
|
||||
parser.add_argument("--enable-mkldnn", action="store_true")
|
||||
parser.add_argument("--enable-cuda", action="store_true")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Entry Point
|
||||
"""
|
||||
args = parse_arguments()
|
||||
enable_mkldnn = args.enable_mkldnn
|
||||
enable_cuda = args.enable_cuda
|
||||
repo = Repository("/pytorch")
|
||||
branch = repo.head.name
|
||||
if branch == "HEAD":
|
||||
branch = "master"
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_vars = "MAX_JOBS=5 CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
|
||||
os.system("cd /pytorch; python setup.py clean")
|
||||
|
||||
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
|
||||
if override_package_version is not None:
|
||||
version = override_package_version
|
||||
build_vars += (
|
||||
f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version} PYTORCH_BUILD_NUMBER=1 "
|
||||
)
|
||||
elif branch in ["nightly", "master"]:
|
||||
build_date = (
|
||||
check_output(["git", "log", "--pretty=format:%cs", "-1"], cwd="/pytorch")
|
||||
.decode()
|
||||
.replace("-", "")
|
||||
)
|
||||
version = (
|
||||
check_output(["cat", "version.txt"], cwd="/pytorch").decode().strip()[:-2]
|
||||
)
|
||||
if enable_cuda:
|
||||
desired_cuda = os.getenv("DESIRED_CUDA")
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date}+{desired_cuda} PYTORCH_BUILD_NUMBER=1 "
|
||||
else:
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={version}.dev{build_date} PYTORCH_BUILD_NUMBER=1 "
|
||||
elif branch.startswith(("v1.", "v2.")):
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1:branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
|
||||
|
||||
if enable_mkldnn:
|
||||
build_ArmComputeLibrary()
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += (
|
||||
"USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
|
||||
"ACL_ROOT_DIR=/acl "
|
||||
"LD_LIBRARY_PATH=/pytorch/build/lib:/acl/build:$LD_LIBRARY_PATH "
|
||||
"ACL_INCLUDE_DIR=/acl/build "
|
||||
"ACL_LIBRARY=/acl/build "
|
||||
)
|
||||
if enable_cuda:
|
||||
build_vars += "BLAS=NVPL "
|
||||
else:
|
||||
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/OpenBLAS "
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
|
||||
os.system(f"cd /pytorch; {build_vars} python3 setup.py bdist_wheel")
|
||||
if enable_cuda:
|
||||
print("Updating Cuda Dependency")
|
||||
filename = os.listdir("/pytorch/dist/")
|
||||
wheel_path = f"/pytorch/dist/{filename[0]}"
|
||||
update_wheel(wheel_path)
|
||||
pytorch_wheel_name = complete_wheel("/pytorch/")
|
||||
print(f"Build Complete. Created {pytorch_wheel_name}..")
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,87 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from subprocess import check_call
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from auditwheel.elfutils import elf_file_filter
|
||||
from auditwheel.lddtree import lddtree
|
||||
from auditwheel.patcher import Patchelf
|
||||
from auditwheel.repair import copylib
|
||||
from auditwheel.wheeltools import InWheelCtx
|
||||
|
||||
|
||||
def replace_tag(filename):
|
||||
with open(filename) as f:
|
||||
lines = f.read().split("\\n")
|
||||
for i, line in enumerate(lines):
|
||||
if not line.startswith("Tag: "):
|
||||
continue
|
||||
lines[i] = line.replace("-linux_", "-manylinux2014_")
|
||||
print(f"Updated tag from {line} to {lines[i]}")
|
||||
|
||||
with open(filename, "w") as f:
|
||||
f.write("\\n".join(lines))
|
||||
|
||||
|
||||
class AlignedPatchelf(Patchelf):
|
||||
def set_soname(self, file_name: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
["patchelf", "--page-size", "65536", "--set-soname", new_soname, file_name]
|
||||
)
|
||||
|
||||
def replace_needed(self, file_name: str, soname: str, new_soname: str) -> None:
|
||||
check_call(
|
||||
[
|
||||
"patchelf",
|
||||
"--page-size",
|
||||
"65536",
|
||||
"--replace-needed",
|
||||
soname,
|
||||
new_soname,
|
||||
file_name,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def embed_library(whl_path, lib_soname, update_tag=False):
|
||||
patcher = AlignedPatchelf()
|
||||
out_dir = TemporaryDirectory()
|
||||
whl_name = os.path.basename(whl_path)
|
||||
tmp_whl_name = os.path.join(out_dir.name, whl_name)
|
||||
with InWheelCtx(whl_path) as ctx:
|
||||
torchlib_path = os.path.join(ctx._tmpdir.name, "torch", "lib")
|
||||
ctx.out_wheel = tmp_whl_name
|
||||
new_lib_path, new_lib_soname = None, None
|
||||
for filename, _ in elf_file_filter(ctx.iter_files()):
|
||||
if not filename.startswith("torch/lib"):
|
||||
continue
|
||||
libtree = lddtree(filename)
|
||||
if lib_soname not in libtree["needed"]:
|
||||
continue
|
||||
lib_path = libtree["libs"][lib_soname]["path"]
|
||||
if lib_path is None:
|
||||
print(f"Can't embed {lib_soname} as it could not be found")
|
||||
break
|
||||
if lib_path.startswith(torchlib_path):
|
||||
continue
|
||||
|
||||
if new_lib_path is None:
|
||||
new_lib_soname, new_lib_path = copylib(lib_path, torchlib_path, patcher)
|
||||
patcher.replace_needed(filename, lib_soname, new_lib_soname)
|
||||
print(f"Replacing {lib_soname} with {new_lib_soname} for {filename}")
|
||||
if update_tag:
|
||||
# Add manylinux2014 tag
|
||||
for filename in ctx.iter_files():
|
||||
if os.path.basename(filename) != "WHEEL":
|
||||
continue
|
||||
replace_tag(filename)
|
||||
shutil.move(tmp_whl_name, whl_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
embed_library(
|
||||
sys.argv[1], "libgomp.so.1", len(sys.argv) > 2 and sys.argv[2] == "--update-tag"
|
||||
)
|
||||
1
.ci/docker/android/AndroidManifest.xml
Normal file
1
.ci/docker/android/AndroidManifest.xml
Normal file
@ -0,0 +1 @@
|
||||
<manifest package="org.pytorch.deps" />
|
||||
66
.ci/docker/android/build.gradle
Normal file
66
.ci/docker/android/build.gradle
Normal file
@ -0,0 +1,66 @@
|
||||
buildscript {
|
||||
ext {
|
||||
minSdkVersion = 21
|
||||
targetSdkVersion = 28
|
||||
compileSdkVersion = 28
|
||||
buildToolsVersion = '28.0.3'
|
||||
|
||||
coreVersion = "1.2.0"
|
||||
extJUnitVersion = "1.1.1"
|
||||
runnerVersion = "1.2.0"
|
||||
rulesVersion = "1.2.0"
|
||||
junitVersion = "4.12"
|
||||
}
|
||||
|
||||
repositories {
|
||||
google()
|
||||
mavenLocal()
|
||||
mavenCentral()
|
||||
jcenter()
|
||||
}
|
||||
|
||||
dependencies {
|
||||
classpath 'com.android.tools.build:gradle:4.1.2'
|
||||
classpath 'com.vanniktech:gradle-maven-publish-plugin:0.14.2'
|
||||
}
|
||||
}
|
||||
|
||||
repositories {
|
||||
google()
|
||||
jcenter()
|
||||
}
|
||||
|
||||
apply plugin: 'com.android.library'
|
||||
|
||||
android {
|
||||
compileSdkVersion rootProject.compileSdkVersion
|
||||
buildToolsVersion rootProject.buildToolsVersion
|
||||
|
||||
defaultConfig {
|
||||
minSdkVersion minSdkVersion
|
||||
targetSdkVersion targetSdkVersion
|
||||
}
|
||||
|
||||
sourceSets {
|
||||
main {
|
||||
manifest.srcFile 'AndroidManifest.xml'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
implementation 'com.android.support:appcompat-v7:28.0.0'
|
||||
implementation 'androidx.appcompat:appcompat:1.0.0'
|
||||
implementation 'com.facebook.fbjni:fbjni-java-only:0.2.2'
|
||||
implementation 'com.google.code.findbugs:jsr305:3.0.1'
|
||||
implementation 'com.facebook.soloader:nativeloader:0.10.5'
|
||||
|
||||
implementation 'junit:junit:' + rootProject.junitVersion
|
||||
implementation 'androidx.test:core:' + rootProject.coreVersion
|
||||
|
||||
implementation 'junit:junit:' + rootProject.junitVersion
|
||||
implementation 'androidx.test:core:' + rootProject.coreVersion
|
||||
implementation 'androidx.test.ext:junit:' + rootProject.extJUnitVersion
|
||||
implementation 'androidx.test:rules:' + rootProject.rulesVersion
|
||||
implementation 'androidx.test:runner:' + rootProject.runnerVersion
|
||||
}
|
||||
5
.ci/docker/aotriton_version.txt
Normal file
5
.ci/docker/aotriton_version.txt
Normal file
@ -0,0 +1,5 @@
|
||||
0.7b
|
||||
manylinux_2_17
|
||||
rocm6.2
|
||||
9be04068c3c0857a4cfd17d7e39e71d0423ebac2
|
||||
3e9e1959d23b93d78a08fcc5f868125dc3854dece32fd9458be9ef4467982291
|
||||
@ -179,10 +179,10 @@ case "$image" in
|
||||
TRITON=yes
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
;;
|
||||
pytorch-linux-focal-cuda12.4-cudnn9-py3.13-gcc9-inductor-benchmarks)
|
||||
CUDA_VERSION=12.4.1
|
||||
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
|
||||
CUDA_VERSION=11.8.0
|
||||
CUDNN_VERSION=9
|
||||
ANACONDA_PYTHON_VERSION=3.13
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
@ -192,10 +192,9 @@ case "$image" in
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
;;
|
||||
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
|
||||
CUDA_VERSION=11.8.0
|
||||
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
|
||||
CUDA_VERSION=12.4.1
|
||||
CUDNN_VERSION=9
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=9
|
||||
@ -222,6 +221,20 @@ case "$image" in
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
|
||||
CUDA_VERSION=12.4.1
|
||||
CUDNN_VERSION=9
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=9
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-focal-py3-clang10-onnx)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
CLANG_VERSION=10
|
||||
@ -231,6 +244,16 @@ case "$image" in
|
||||
CONDA_CMAKE=yes
|
||||
ONNX=yes
|
||||
;;
|
||||
pytorch-linux-focal-py3-clang9-android-ndk-r21e)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
CLANG_VERSION=9
|
||||
LLVMDEV=yes
|
||||
PROTOBUF=yes
|
||||
ANDROID=yes
|
||||
ANDROID_NDK_VERSION=r21e
|
||||
GRADLE_VERSION=6.8.3
|
||||
NINJA_VERSION=1.9.0
|
||||
;;
|
||||
pytorch-linux-focal-py3.9-clang10)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
CLANG_VERSION=10
|
||||
@ -268,7 +291,7 @@ case "$image" in
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=6.2.4
|
||||
ROCM_VERSION=6.1
|
||||
NINJA_VERSION=1.9.0
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
@ -279,7 +302,7 @@ case "$image" in
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
ROCM_VERSION=6.3
|
||||
ROCM_VERSION=6.2
|
||||
NINJA_VERSION=1.9.0
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
@ -295,17 +318,6 @@ case "$image" in
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-2025.0-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
PROTOBUF=yes
|
||||
DB=yes
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.0
|
||||
NINJA_VERSION=1.9.0
|
||||
CONDA_CMAKE=yes
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
@ -402,6 +414,9 @@ case "$image" in
|
||||
DB=yes
|
||||
VISION=yes
|
||||
CONDA_CMAKE=yes
|
||||
# snadampal: skipping sccache due to the following issue
|
||||
# https://github.com/pytorch/pytorch/issues/121559
|
||||
SKIP_SCCACHE_INSTALL=yes
|
||||
# snadampal: skipping llvm src build install because the current version
|
||||
# from pytorch/llvm:9.0.1 is x86 specific
|
||||
SKIP_LLVM_SRC_BUILD_INSTALL=yes
|
||||
@ -414,6 +429,9 @@ case "$image" in
|
||||
DB=yes
|
||||
VISION=yes
|
||||
CONDA_CMAKE=yes
|
||||
# snadampal: skipping sccache due to the following issue
|
||||
# https://github.com/pytorch/pytorch/issues/121559
|
||||
SKIP_SCCACHE_INSTALL=yes
|
||||
# snadampal: skipping llvm src build install because the current version
|
||||
# from pytorch/llvm:9.0.1 is x86 specific
|
||||
SKIP_LLVM_SRC_BUILD_INSTALL=yes
|
||||
@ -490,6 +508,8 @@ docker build \
|
||||
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
|
||||
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
|
||||
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
|
||||
--build-arg "ANDROID=${ANDROID}" \
|
||||
--build-arg "ANDROID_NDK=${ANDROID_NDK_VERSION}" \
|
||||
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
|
||||
--build-arg "VULKAN_SDK_VERSION=${VULKAN_SDK_VERSION}" \
|
||||
--build-arg "SWIFTSHADER=${SWIFTSHADER}" \
|
||||
@ -497,7 +517,7 @@ docker build \
|
||||
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
|
||||
--build-arg "KATEX=${KATEX:-}" \
|
||||
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx90a;gfx942}" \
|
||||
--build-arg "PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH:-gfx906;gfx90a}" \
|
||||
--build-arg "IMAGE_NAME=${IMAGE_NAME}" \
|
||||
--build-arg "UCX_COMMIT=${UCX_COMMIT}" \
|
||||
--build-arg "UCC_COMMIT=${UCC_COMMIT}" \
|
||||
|
||||
@ -113,6 +113,13 @@ COPY triton_version.txt triton_version.txt
|
||||
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
|
||||
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
|
||||
|
||||
# Install AOTriton (Early fail)
|
||||
COPY ./aotriton_version.txt aotriton_version.txt
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./common/install_aotriton.sh install_aotriton.sh
|
||||
RUN ["/bin/bash", "-c", "./install_aotriton.sh /opt/rocm && rm -rf install_aotriton.sh aotriton_version.txt common_utils.sh"]
|
||||
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
COPY ./common/install_cache.sh install_cache.sh
|
||||
ENV PATH /opt/cache/bin:$PATH
|
||||
|
||||
@ -1 +1 @@
|
||||
a29b208a06ab378bb29ab1aa68932e412f8e09f1
|
||||
16b633b4daa7f3d3442be62a3589bd60b2f7fdc7
|
||||
|
||||
@ -1 +1 @@
|
||||
e98b6fcb8df5b44eb0d0addb6767c573d37ba024
|
||||
91b14bf5593cf58a8541f3e6b9125600a867d4ef
|
||||
|
||||
@ -1 +1 @@
|
||||
0d4682f073ded4d1a8260dd4208a43d735ae3a2b
|
||||
cf34004b8a67d290a962da166f5aa2fc66751326
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
set -euo pipefail
|
||||
|
||||
readonly version=v24.04
|
||||
readonly src_host=https://github.com/ARM-software
|
||||
readonly src_host=https://review.mlplatform.org/ml
|
||||
readonly src_repo=ComputeLibrary
|
||||
|
||||
# Clone ACL
|
||||
|
||||
112
.ci/docker/common/install_android.sh
Executable file
112
.ci/docker/common/install_android.sh
Executable file
@ -0,0 +1,112 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
[ -n "${ANDROID_NDK}" ]
|
||||
|
||||
_https_amazon_aws=https://ossci-android.s3.amazonaws.com
|
||||
|
||||
apt-get update
|
||||
apt-get install -y --no-install-recommends autotools-dev autoconf unzip
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
pushd /tmp
|
||||
curl -Os --retry 3 $_https_amazon_aws/android-ndk-${ANDROID_NDK}-linux-x86_64.zip
|
||||
popd
|
||||
_ndk_dir=/opt/ndk
|
||||
mkdir -p "$_ndk_dir"
|
||||
unzip -qo /tmp/android*.zip -d "$_ndk_dir"
|
||||
_versioned_dir=$(find "$_ndk_dir/" -mindepth 1 -maxdepth 1 -type d)
|
||||
mv "$_versioned_dir"/* "$_ndk_dir"/
|
||||
rmdir "$_versioned_dir"
|
||||
rm -rf /tmp/*
|
||||
|
||||
# Install OpenJDK
|
||||
# https://hub.docker.com/r/picoded/ubuntu-openjdk-8-jdk/dockerfile/
|
||||
|
||||
sudo apt-get update && \
|
||||
apt-get install -y openjdk-8-jdk && \
|
||||
apt-get install -y ant && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/* && \
|
||||
rm -rf /var/cache/oracle-jdk8-installer;
|
||||
|
||||
# Fix certificate issues, found as of
|
||||
# https://bugs.launchpad.net/ubuntu/+source/ca-certificates-java/+bug/983302
|
||||
|
||||
sudo apt-get update && \
|
||||
apt-get install -y ca-certificates-java && \
|
||||
apt-get clean && \
|
||||
update-ca-certificates -f && \
|
||||
rm -rf /var/lib/apt/lists/* && \
|
||||
rm -rf /var/cache/oracle-jdk8-installer;
|
||||
|
||||
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
|
||||
|
||||
# Installing android sdk
|
||||
# https://github.com/circleci/circleci-images/blob/staging/android/Dockerfile.m4
|
||||
|
||||
_tmp_sdk_zip=/tmp/android-sdk-linux.zip
|
||||
_android_home=/opt/android/sdk
|
||||
|
||||
rm -rf $_android_home
|
||||
sudo mkdir -p $_android_home
|
||||
curl --silent --show-error --location --fail --retry 3 --output /tmp/android-sdk-linux.zip $_https_amazon_aws/android-sdk-linux-tools3859397-build-tools2803-2902-platforms28-29.zip
|
||||
sudo unzip -q $_tmp_sdk_zip -d $_android_home
|
||||
rm $_tmp_sdk_zip
|
||||
|
||||
sudo chmod -R 777 $_android_home
|
||||
|
||||
export ANDROID_HOME=$_android_home
|
||||
export ADB_INSTALL_TIMEOUT=120
|
||||
|
||||
export PATH="${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools:${PATH}"
|
||||
echo "PATH:${PATH}"
|
||||
|
||||
# Installing Gradle
|
||||
echo "GRADLE_VERSION:${GRADLE_VERSION}"
|
||||
_gradle_home=/opt/gradle
|
||||
sudo rm -rf $gradle_home
|
||||
sudo mkdir -p $_gradle_home
|
||||
|
||||
curl --silent --output /tmp/gradle.zip --retry 3 $_https_amazon_aws/gradle-${GRADLE_VERSION}-bin.zip
|
||||
|
||||
sudo unzip -q /tmp/gradle.zip -d $_gradle_home
|
||||
rm /tmp/gradle.zip
|
||||
|
||||
sudo chmod -R 777 $_gradle_home
|
||||
|
||||
export GRADLE_HOME=$_gradle_home/gradle-$GRADLE_VERSION
|
||||
alias gradle="${GRADLE_HOME}/bin/gradle"
|
||||
|
||||
export PATH="${GRADLE_HOME}/bin/:${PATH}"
|
||||
echo "PATH:${PATH}"
|
||||
|
||||
gradle --version
|
||||
|
||||
mkdir /var/lib/jenkins/gradledeps
|
||||
cp build.gradle /var/lib/jenkins/gradledeps
|
||||
cp AndroidManifest.xml /var/lib/jenkins/gradledeps
|
||||
|
||||
pushd /var/lib/jenkins
|
||||
|
||||
export GRADLE_LOCAL_PROPERTIES=gradledeps/local.properties
|
||||
rm -f $GRADLE_LOCAL_PROPERTIES
|
||||
echo "sdk.dir=/opt/android/sdk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
echo "ndk.dir=/opt/ndk" >> $GRADLE_LOCAL_PROPERTIES
|
||||
|
||||
chown -R jenkins /var/lib/jenkins/gradledeps
|
||||
chgrp -R jenkins /var/lib/jenkins/gradledeps
|
||||
|
||||
sudo -H -u jenkins $GRADLE_HOME/bin/gradle -Pandroid.useAndroidX=true -p /var/lib/jenkins/gradledeps -g /var/lib/jenkins/.gradle --refresh-dependencies --debug --stacktrace assemble
|
||||
|
||||
chown -R jenkins /var/lib/jenkins/.gradle
|
||||
chgrp -R jenkins /var/lib/jenkins/.gradle
|
||||
|
||||
popd
|
||||
|
||||
rm -rf /var/lib/jenkins/.gradle/daemon
|
||||
|
||||
# Cache vision models used by the test
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/cache_vision_models.sh"
|
||||
23
.ci/docker/common/install_aotriton.sh
Executable file
23
.ci/docker/common/install_aotriton.sh
Executable file
@ -0,0 +1,23 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex
|
||||
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
|
||||
TARBALL='aotriton.tar.gz'
|
||||
# This read command alwasy returns with exit code 1
|
||||
read -d "\n" VER MANYLINUX ROCMBASE PINNED_COMMIT SHA256 < aotriton_version.txt || true
|
||||
ARCH=$(uname -m)
|
||||
AOTRITON_INSTALL_PREFIX="$1"
|
||||
AOTRITON_URL="https://github.com/ROCm/aotriton/releases/download/${VER}/aotriton-${VER}-${MANYLINUX}_${ARCH}-${ROCMBASE}-shared.tar.gz"
|
||||
|
||||
cd "${AOTRITON_INSTALL_PREFIX}"
|
||||
# Must use -L to follow redirects
|
||||
curl -L --retry 3 -o "${TARBALL}" "${AOTRITON_URL}"
|
||||
ACTUAL_SHA256=$(sha256sum "${TARBALL}" | cut -d " " -f 1)
|
||||
if [ "${SHA256}" != "${ACTUAL_SHA256}" ]; then
|
||||
echo -n "Error: The SHA256 of downloaded tarball is ${ACTUAL_SHA256},"
|
||||
echo " which does not match the expected value ${SHA256}."
|
||||
exit
|
||||
fi
|
||||
tar xf "${TARBALL}" && rm -rf "${TARBALL}"
|
||||
@ -76,8 +76,7 @@ install_ubuntu() {
|
||||
vim \
|
||||
unzip \
|
||||
gpg-agent \
|
||||
gdb \
|
||||
bc
|
||||
gdb
|
||||
|
||||
# Should resolve issues related to various apt package repository cert issues
|
||||
# see: https://github.com/pytorch/pytorch/issues/65931
|
||||
|
||||
@ -9,7 +9,7 @@ install_ubuntu() {
|
||||
# Instead use lib and headers from OpenSSL1.1 installed in `install_openssl.sh``
|
||||
apt-get install -y cargo
|
||||
echo "Checking out sccache repo"
|
||||
git clone https://github.com/mozilla/sccache -b v0.9.0
|
||||
git clone https://github.com/pytorch/sccache
|
||||
cd sccache
|
||||
echo "Building sccache"
|
||||
cargo build --release
|
||||
@ -19,10 +19,6 @@ install_ubuntu() {
|
||||
rm -rf sccache
|
||||
apt-get remove -y cargo rustc
|
||||
apt-get autoclean && apt-get clean
|
||||
|
||||
echo "Downloading old sccache binary from S3 repo for PCH builds"
|
||||
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /opt/cache/bin/sccache-0.2.14a
|
||||
chmod 755 /opt/cache/bin/sccache-0.2.14a
|
||||
}
|
||||
|
||||
install_binary() {
|
||||
@ -36,42 +32,22 @@ sed -e 's|PATH="\(.*\)"|PATH="/opt/cache/bin:\1"|g' -i /etc/environment
|
||||
export PATH="/opt/cache/bin:$PATH"
|
||||
|
||||
# Setup compiler cache
|
||||
install_ubuntu
|
||||
if [ -n "$ROCM_VERSION" ]; then
|
||||
curl --retry 3 http://repo.radeon.com/misc/.sccache_amd/sccache -o /opt/cache/bin/sccache
|
||||
else
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
# TODO: Install the pre-built binary from S3 as building from source
|
||||
# https://github.com/pytorch/sccache has started failing mysteriously
|
||||
# in which sccache server couldn't start with the following error:
|
||||
# sccache: error: Invalid argument (os error 22)
|
||||
install_binary
|
||||
fi
|
||||
chmod a+x /opt/cache/bin/sccache
|
||||
|
||||
function write_sccache_stub() {
|
||||
# Unset LD_PRELOAD for ps because of asan + ps issues
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90589
|
||||
if [ $1 == "gcc" ]; then
|
||||
# Do not call sccache recursively when dumping preprocessor argument
|
||||
# For some reason it's very important for the first cached nvcc invocation
|
||||
cat >"/opt/cache/bin/$1" <<EOF
|
||||
#!/bin/sh
|
||||
|
||||
# sccache does not support -E flag, so we need to call the original compiler directly in order to avoid calling this wrapper recursively
|
||||
for arg in "\$@"; do
|
||||
if [ "\$arg" = "-E" ]; then
|
||||
exec $(which $1) "\$@"
|
||||
fi
|
||||
done
|
||||
|
||||
if [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then
|
||||
exec sccache $(which $1) "\$@"
|
||||
else
|
||||
exec $(which $1) "\$@"
|
||||
fi
|
||||
EOF
|
||||
else
|
||||
cat >"/opt/cache/bin/$1" <<EOF
|
||||
#!/bin/sh
|
||||
|
||||
if [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then
|
||||
exec sccache $(which $1) "\$@"
|
||||
else
|
||||
exec $(which $1) "\$@"
|
||||
fi
|
||||
EOF
|
||||
fi
|
||||
printf "#!/bin/sh\nif [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/opt/cache/bin/$1"
|
||||
chmod a+x "/opt/cache/bin/$1"
|
||||
}
|
||||
|
||||
@ -112,7 +88,7 @@ if [ -n "$ROCM_VERSION" ]; then
|
||||
TOPDIR=$(dirname $OLDCOMP)
|
||||
WRAPPED="$TOPDIR/original/$COMPNAME"
|
||||
mv "$OLDCOMP" "$WRAPPED"
|
||||
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" >"$OLDCOMP"
|
||||
printf "#!/bin/sh\nexec sccache $WRAPPED \"\$@\"" > "$OLDCOMP"
|
||||
chmod a+x "$OLDCOMP"
|
||||
}
|
||||
|
||||
|
||||
@ -25,8 +25,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
mkdir -p /opt/conda
|
||||
chown jenkins:jenkins /opt/conda
|
||||
|
||||
SCRIPT_FOLDER="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
source "${SCRIPT_FOLDER}/common_utils.sh"
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
|
||||
pushd /tmp
|
||||
wget -q "${BASE_URL}/${CONDA_FILE}"
|
||||
@ -66,7 +65,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
|
||||
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
|
||||
if [[ $(uname -m) == "aarch64" ]]; then
|
||||
conda_install "openblas==0.3.28=*openmp*"
|
||||
conda_install "openblas==0.3.25=*openmp*"
|
||||
else
|
||||
conda_install "mkl=2021.4.0 mkl-include=2021.4.0"
|
||||
fi
|
||||
@ -85,9 +84,8 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
|
||||
|
||||
# Magma package names are concatenation of CUDA major and minor ignoring revision
|
||||
# I.e. magma-cuda102 package corresponds to CUDA_VERSION=10.2 and CUDA_VERSION=10.2.89
|
||||
# Magma is installed from a tarball in the ossci-linux bucket into the conda env
|
||||
if [ -n "$CUDA_VERSION" ]; then
|
||||
${SCRIPT_FOLDER}/install_magma_conda.sh $(cut -f1-2 -d'.' <<< ${CUDA_VERSION}) ${ANACONDA_PYTHON_VERSION}
|
||||
conda_install magma-cuda$(TMP=${CUDA_VERSION/./};echo ${TMP%.*[0-9]}) -c pytorch
|
||||
fi
|
||||
|
||||
# Install some other packages, including those needed for Python test reporting
|
||||
|
||||
@ -70,7 +70,7 @@ function do_cpython_build {
|
||||
# install setuptools since python 3.12 is required to use distutils
|
||||
${prefix}/bin/pip install wheel==0.34.2 setuptools==68.2.2
|
||||
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
|
||||
ln -sf ${prefix} /opt/python/${abi_tag}
|
||||
ln -s ${prefix} /opt/python/${abi_tag}
|
||||
}
|
||||
|
||||
function build_cpython {
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
set -ex
|
||||
|
||||
NCCL_VERSION=v2.21.5-1
|
||||
CUDNN_VERSION=9.5.1.17
|
||||
CUDNN_VERSION=9.1.0.70
|
||||
|
||||
function install_cusparselt_040 {
|
||||
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
|
||||
@ -38,19 +38,7 @@ function install_cusparselt_062 {
|
||||
rm -rf tmp_cusparselt
|
||||
}
|
||||
|
||||
function install_cusparselt_063 {
|
||||
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
|
||||
mkdir tmp_cusparselt && pushd tmp_cusparselt
|
||||
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/libcusparse_lt-linux-x86_64-0.6.3.2-archive.tar.xz
|
||||
tar xf libcusparse_lt-linux-x86_64-0.6.3.2-archive.tar.xz
|
||||
cp -a libcusparse_lt-linux-x86_64-0.6.3.2-archive/include/* /usr/local/cuda/include/
|
||||
cp -a libcusparse_lt-linux-x86_64-0.6.3.2-archive/lib/* /usr/local/cuda/lib64/
|
||||
popd
|
||||
rm -rf tmp_cusparselt
|
||||
}
|
||||
|
||||
function install_118 {
|
||||
CUDNN_VERSION=9.1.0.70
|
||||
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.4.0"
|
||||
rm -rf /usr/local/cuda-11.8 /usr/local/cuda
|
||||
# install CUDA 11.8.0 in the same container
|
||||
@ -117,7 +105,6 @@ function install_121 {
|
||||
}
|
||||
|
||||
function install_124 {
|
||||
CUDNN_VERSION=9.1.0.70
|
||||
echo "Installing CUDA 12.4.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
|
||||
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
|
||||
# install CUDA 12.4.1 in the same container
|
||||
@ -151,13 +138,13 @@ function install_124 {
|
||||
}
|
||||
|
||||
function install_126 {
|
||||
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.3"
|
||||
echo "Installing CUDA 12.6.2 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
|
||||
rm -rf /usr/local/cuda-12.6 /usr/local/cuda
|
||||
# install CUDA 12.6.3 in the same container
|
||||
wget -q https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_560.35.05_linux.run
|
||||
chmod +x cuda_12.6.3_560.35.05_linux.run
|
||||
./cuda_12.6.3_560.35.05_linux.run --toolkit --silent
|
||||
rm -f cuda_12.6.3_560.35.05_linux.run
|
||||
# install CUDA 12.6.2 in the same container
|
||||
wget -q https://developer.download.nvidia.com/compute/cuda/12.6.2/local_installers/cuda_12.6.2_560.35.03_linux.run
|
||||
chmod +x cuda_12.6.2_560.35.03_linux.run
|
||||
./cuda_12.6.2_560.35.03_linux.run --toolkit --silent
|
||||
rm -f cuda_12.6.2_560.35.03_linux.run
|
||||
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.6 /usr/local/cuda
|
||||
|
||||
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
|
||||
@ -178,7 +165,7 @@ function install_126 {
|
||||
cd ..
|
||||
rm -rf nccl
|
||||
|
||||
install_cusparselt_063
|
||||
install_cusparselt_062
|
||||
|
||||
ldconfig
|
||||
}
|
||||
|
||||
@ -4,7 +4,6 @@
|
||||
set -ex
|
||||
|
||||
NCCL_VERSION=v2.21.5-1
|
||||
CUDNN_VERSION=9.5.1.17
|
||||
|
||||
function install_cusparselt_062 {
|
||||
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
|
||||
@ -17,20 +16,8 @@ function install_cusparselt_062 {
|
||||
rm -rf tmp_cusparselt
|
||||
}
|
||||
|
||||
function install_cusparselt_063 {
|
||||
# cuSparseLt license: https://docs.nvidia.com/cuda/cusparselt/license.html
|
||||
mkdir tmp_cusparselt && pushd tmp_cusparselt
|
||||
wget -q https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.6.3.2-archive.tar.xz
|
||||
tar xf libcusparse_lt-linux-sbsa-0.6.3.2-archive.tar.xz
|
||||
cp -a libcusparse_lt-linux-sbsa-0.6.3.2-archive/include/* /usr/local/cuda/include/
|
||||
cp -a libcusparse_lt-linux-sbsa-0.6.3.2-archive/lib/* /usr/local/cuda/lib64/
|
||||
popd
|
||||
rm -rf tmp_cusparselt
|
||||
}
|
||||
|
||||
function install_124 {
|
||||
CUDNN_VERSION=9.1.0.70
|
||||
echo "Installing CUDA 12.4.1 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
|
||||
echo "Installing CUDA 12.4.1 and cuDNN 9.1 and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.2"
|
||||
rm -rf /usr/local/cuda-12.4 /usr/local/cuda
|
||||
# install CUDA 12.4.1 in the same container
|
||||
wget -q https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda_12.4.1_550.54.15_linux_sbsa.run
|
||||
@ -41,10 +28,10 @@ function install_124 {
|
||||
|
||||
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
|
||||
mkdir tmp_cudnn && cd tmp_cudnn
|
||||
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
|
||||
tar xf cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
|
||||
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
|
||||
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
|
||||
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz -O cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz
|
||||
tar xf cudnn-linux-sbsa-9.1.0.70_cuda12-archive.tar.xz
|
||||
cp -a cudnn-linux-sbsa-9.1.0.70_cuda12-archive/include/* /usr/local/cuda/include/
|
||||
cp -a cudnn-linux-sbsa-9.1.0.70_cuda12-archive/lib/* /usr/local/cuda/lib64/
|
||||
cd ..
|
||||
rm -rf tmp_cudnn
|
||||
|
||||
@ -87,87 +74,18 @@ function prune_124 {
|
||||
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
|
||||
|
||||
#####################################################################################
|
||||
# CUDA 12.4 prune visual tools
|
||||
# CUDA 12.1 prune visual tools
|
||||
#####################################################################################
|
||||
export CUDA_BASE="/usr/local/cuda-12.4/"
|
||||
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
|
||||
}
|
||||
|
||||
function install_126 {
|
||||
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL ${NCCL_VERSION} and cuSparseLt-0.6.3"
|
||||
rm -rf /usr/local/cuda-12.6 /usr/local/cuda
|
||||
# install CUDA 12.6.3 in the same container
|
||||
wget -q https://developer.download.nvidia.com/compute/cuda/12.6.3/local_installers/cuda_12.6.3_560.35.05_linux_sbsa.run
|
||||
chmod +x cuda_12.6.3_560.35.05_linux_sbsa.run
|
||||
./cuda_12.6.3_560.35.05_linux_sbsa.run --toolkit --silent
|
||||
rm -f cuda_12.6.3_560.35.05_linux_sbsa.run
|
||||
rm -f /usr/local/cuda && ln -s /usr/local/cuda-12.6 /usr/local/cuda
|
||||
|
||||
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
|
||||
mkdir tmp_cudnn && cd tmp_cudnn
|
||||
wget -q https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-sbsa/cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz -O cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
|
||||
tar xf cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive.tar.xz
|
||||
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/include/* /usr/local/cuda/include/
|
||||
cp -a cudnn-linux-sbsa-${CUDNN_VERSION}_cuda12-archive/lib/* /usr/local/cuda/lib64/
|
||||
cd ..
|
||||
rm -rf tmp_cudnn
|
||||
|
||||
# NCCL license: https://docs.nvidia.com/deeplearning/nccl/#licenses
|
||||
# Follow build: https://github.com/NVIDIA/nccl/tree/master?tab=readme-ov-file#build
|
||||
git clone -b ${NCCL_VERSION} --depth 1 https://github.com/NVIDIA/nccl.git
|
||||
cd nccl && make -j src.build
|
||||
cp -a build/include/* /usr/local/cuda/include/
|
||||
cp -a build/lib/* /usr/local/cuda/lib64/
|
||||
cd ..
|
||||
rm -rf nccl
|
||||
|
||||
install_cusparselt_063
|
||||
|
||||
ldconfig
|
||||
}
|
||||
|
||||
function prune_126 {
|
||||
echo "Pruning CUDA 12.6"
|
||||
#####################################################################################
|
||||
# CUDA 12.6 prune static libs
|
||||
#####################################################################################
|
||||
export NVPRUNE="/usr/local/cuda-12.6/bin/nvprune"
|
||||
export CUDA_LIB_DIR="/usr/local/cuda-12.6/lib64"
|
||||
|
||||
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
|
||||
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
|
||||
|
||||
if [[ -n "$OVERRIDE_GENCODE" ]]; then
|
||||
export GENCODE=$OVERRIDE_GENCODE
|
||||
fi
|
||||
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
|
||||
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
|
||||
fi
|
||||
|
||||
# all CUDA libs except CuDNN and CuBLAS
|
||||
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
|
||||
| xargs -I {} bash -c \
|
||||
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
|
||||
|
||||
# prune CuDNN and CuBLAS
|
||||
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
|
||||
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
|
||||
|
||||
#####################################################################################
|
||||
# CUDA 12.6 prune visual tools
|
||||
#####################################################################################
|
||||
export CUDA_BASE="/usr/local/cuda-12.6/"
|
||||
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.3.2 $CUDA_BASE/nsight-systems-2024.5.1/
|
||||
}
|
||||
|
||||
# idiomatic parameter and option handling in sh
|
||||
while test $# -gt 0
|
||||
do
|
||||
case "$1" in
|
||||
12.4) install_124; prune_124
|
||||
;;
|
||||
12.6) install_126; prune_126
|
||||
;;
|
||||
*) echo "bad argument $1"; exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
@ -4,9 +4,7 @@ if [[ -n "${CUDNN_VERSION}" ]]; then
|
||||
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
|
||||
mkdir tmp_cudnn
|
||||
pushd tmp_cudnn
|
||||
if [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
|
||||
CUDNN_NAME="cudnn-linux-x86_64-9.5.1.17_cuda12-archive"
|
||||
elif [[ ${CUDA_VERSION:0:2} == "12" ]]; then
|
||||
if [[ ${CUDA_VERSION:0:2} == "12" ]]; then
|
||||
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda12-archive"
|
||||
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
|
||||
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
|
||||
|
||||
@ -36,19 +36,25 @@ install_conda_dependencies() {
|
||||
}
|
||||
|
||||
install_pip_dependencies() {
|
||||
pushd executorch
|
||||
as_jenkins bash install_requirements.sh --pybind xnnpack
|
||||
pushd executorch/.ci/docker
|
||||
# Install PyTorch CPU build beforehand to avoid installing the much bigger CUDA
|
||||
# binaries later, ExecuTorch only needs CPU
|
||||
pip_install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
||||
# Install all Python dependencies
|
||||
pip_install -r requirements-ci.txt
|
||||
popd
|
||||
}
|
||||
|
||||
setup_executorch() {
|
||||
pushd executorch
|
||||
# Setup swiftshader and Vulkan SDK which are required to build the Vulkan delegate
|
||||
as_jenkins bash .ci/scripts/setup-vulkan-linux-deps.sh
|
||||
|
||||
export PYTHON_EXECUTABLE=python
|
||||
export EXECUTORCH_BUILD_PYBIND=ON
|
||||
export CMAKE_ARGS="-DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
|
||||
|
||||
as_jenkins .ci/scripts/setup-linux.sh cmake || true
|
||||
as_jenkins .ci/scripts/setup-linux.sh cmake
|
||||
popd
|
||||
}
|
||||
|
||||
|
||||
@ -7,20 +7,14 @@ source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
function install_huggingface() {
|
||||
local version
|
||||
commit=$(get_pinned_commit huggingface)
|
||||
pip_install pandas==2.0.3
|
||||
pip_install "git+https://github.com/huggingface/transformers@${commit}"
|
||||
}
|
||||
|
||||
function install_timm() {
|
||||
local commit
|
||||
commit=$(get_pinned_commit timm)
|
||||
|
||||
# TODO (huydhn): There is no torchvision release on 3.13 when I write this, so
|
||||
# I'm using nightly here instead. We just need to package to be able to install
|
||||
# TIMM. Removing this once vision has a release on 3.13
|
||||
if [[ "${ANACONDA_PYTHON_VERSION}" == "3.13" ]]; then
|
||||
pip_install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu124
|
||||
fi
|
||||
|
||||
pip_install pandas==2.0.3
|
||||
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
|
||||
# Clean up
|
||||
conda_run pip uninstall -y cmake torch torchvision triton
|
||||
|
||||
@ -3,6 +3,8 @@
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
MAGMA_VERSION="2.5.2"
|
||||
|
||||
function do_install() {
|
||||
cuda_version=$1
|
||||
cuda_version_nodot=${1/./}
|
||||
@ -15,7 +17,7 @@ function do_install() {
|
||||
set -x
|
||||
tmp_dir=$(mktemp -d)
|
||||
pushd ${tmp_dir}
|
||||
curl -OLs https://ossci-linux.s3.us-east-1.amazonaws.com/${magma_archive}
|
||||
curl -OLs https://anaconda.org/pytorch/magma-cuda${cuda_version_nodot}/${MAGMA_VERSION}/download/linux-64/${magma_archive}
|
||||
tar -xvf "${magma_archive}"
|
||||
mkdir -p "${cuda_dir}/magma"
|
||||
mv include "${cuda_dir}/magma/include"
|
||||
|
||||
@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
# Script that replaces the magma install from a conda package
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
function do_install() {
|
||||
cuda_version_nodot=${1/./}
|
||||
anaconda_python_version=$2
|
||||
|
||||
MAGMA_VERSION="2.6.1"
|
||||
magma_archive="magma-cuda${cuda_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
|
||||
|
||||
anaconda_dir="/opt/conda/envs/py_${anaconda_python_version}"
|
||||
(
|
||||
set -x
|
||||
tmp_dir=$(mktemp -d)
|
||||
pushd ${tmp_dir}
|
||||
curl -OLs https://ossci-linux.s3.us-east-1.amazonaws.com/${magma_archive}
|
||||
tar -xvf "${magma_archive}"
|
||||
mv include/* "${anaconda_dir}/include/"
|
||||
mv lib/* "${anaconda_dir}/lib"
|
||||
popd
|
||||
)
|
||||
}
|
||||
|
||||
do_install $1 $2
|
||||
@ -16,7 +16,7 @@ case "$ID" in
|
||||
ubuntu)
|
||||
IS_UBUNTU=1
|
||||
;;
|
||||
centos|almalinux)
|
||||
centos)
|
||||
IS_UBUNTU=0
|
||||
;;
|
||||
*)
|
||||
@ -43,6 +43,12 @@ else
|
||||
fi
|
||||
ROCM_INT=$(($ROCM_VERSION_MAJOR * 10000 + $ROCM_VERSION_MINOR * 100 + $ROCM_VERSION_PATCH))
|
||||
|
||||
# Install custom MIOpen + COMgr for ROCm >= 4.0.1
|
||||
if [[ $ROCM_INT -lt 40001 ]]; then
|
||||
echo "ROCm version < 4.0.1; will not install custom MIOpen"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Function to retry functions that sometimes timeout or have flaky failures
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
@ -60,27 +66,55 @@ else
|
||||
ROCM_INSTALL_PATH="/opt/rocm-${ROCM_VERSION}"
|
||||
fi
|
||||
|
||||
# MIOPEN_USE_HIP_KERNELS is a Workaround for COMgr issues
|
||||
MIOPEN_CMAKE_COMMON_FLAGS="
|
||||
-DMIOPEN_USE_COMGR=ON
|
||||
-DMIOPEN_BUILD_DRIVER=OFF
|
||||
"
|
||||
if [[ $ROCM_INT -ge 60200 ]] && [[ $ROCM_INT -lt 60204 ]]; then
|
||||
MIOPEN_BRANCH="release/rocm-rel-6.2-staging"
|
||||
else
|
||||
echo "ROCm ${ROCM_VERSION} does not need any patches, do not build from source"
|
||||
# Pull MIOpen repo and set DMIOPEN_EMBED_DB based on ROCm version
|
||||
if [[ $ROCM_INT -ge 60300 ]]; then
|
||||
echo "ROCm 6.3+ MIOpen does not need any patches, do not build from source"
|
||||
exit 0
|
||||
elif [[ $ROCM_INT -ge 60200 ]] && [[ $ROCM_INT -lt 60300 ]]; then
|
||||
MIOPEN_BRANCH="release/rocm-rel-6.2-staging"
|
||||
elif [[ $ROCM_INT -ge 60100 ]] && [[ $ROCM_INT -lt 60200 ]]; then
|
||||
echo "ROCm 6.1 MIOpen does not need any patches, do not build from source"
|
||||
exit 0
|
||||
elif [[ $ROCM_INT -ge 60000 ]] && [[ $ROCM_INT -lt 60100 ]]; then
|
||||
echo "ROCm 6.0 MIOpen does not need any patches, do not build from source"
|
||||
exit 0
|
||||
elif [[ $ROCM_INT -ge 50700 ]] && [[ $ROCM_INT -lt 60000 ]]; then
|
||||
echo "ROCm 5.7 MIOpen does not need any patches, do not build from source"
|
||||
exit 0
|
||||
elif [[ $ROCM_INT -ge 50600 ]] && [[ $ROCM_INT -lt 50700 ]]; then
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.6-staging"
|
||||
elif [[ $ROCM_INT -ge 50500 ]] && [[ $ROCM_INT -lt 50600 ]]; then
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.5-gfx11"
|
||||
elif [[ $ROCM_INT -ge 50400 ]] && [[ $ROCM_INT -lt 50500 ]]; then
|
||||
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.4-staging"
|
||||
elif [[ $ROCM_INT -ge 50300 ]] && [[ $ROCM_INT -lt 50400 ]]; then
|
||||
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.3-staging"
|
||||
elif [[ $ROCM_INT -ge 50200 ]] && [[ $ROCM_INT -lt 50300 ]]; then
|
||||
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36 -DMIOPEN_USE_MLIR=Off"
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.2-staging"
|
||||
elif [[ $ROCM_INT -ge 50100 ]] && [[ $ROCM_INT -lt 50200 ]]; then
|
||||
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36"
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.1-staging"
|
||||
elif [[ $ROCM_INT -ge 50000 ]] && [[ $ROCM_INT -lt 50100 ]]; then
|
||||
MIOPEN_CMAKE_DB_FLAGS="-DMIOPEN_EMBED_DB=gfx900_56;gfx906_60;gfx90878;gfx90a6e;gfx1030_36"
|
||||
MIOPEN_BRANCH="release/rocm-rel-5.0-staging"
|
||||
else
|
||||
echo "Unhandled ROCM_VERSION ${ROCM_VERSION}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [[ ${IS_UBUNTU} == 1 ]]; then
|
||||
apt-get remove -y miopen-hip
|
||||
else
|
||||
# Workaround since almalinux manylinux image already has this and cget doesn't like that
|
||||
rm -rf /usr/local/lib/pkgconfig/sqlite3.pc
|
||||
|
||||
# Versioned package name needs regex match
|
||||
# Use --noautoremove to prevent other rocm packages from being uninstalled
|
||||
yum remove -y miopen-hip* --noautoremove
|
||||
yum remove -y miopen-hip
|
||||
fi
|
||||
|
||||
git clone https://github.com/ROCm/MIOpen -b ${MIOPEN_BRANCH}
|
||||
@ -88,7 +122,16 @@ pushd MIOpen
|
||||
# remove .git to save disk space since CI runner was running out
|
||||
rm -rf .git
|
||||
# Don't build CK to save docker build time
|
||||
sed -i '/composable_kernel/d' requirements.txt
|
||||
if [[ $ROCM_INT -ge 60200 ]]; then
|
||||
sed -i '/composable_kernel/d' requirements.txt
|
||||
fi
|
||||
# Don't build MLIR to save docker build time
|
||||
# since we are disabling MLIR backend for MIOpen anyway
|
||||
if [[ $ROCM_INT -ge 50400 ]] && [[ $ROCM_INT -lt 50500 ]]; then
|
||||
sed -i '/rocMLIR/d' requirements.txt
|
||||
elif [[ $ROCM_INT -ge 50200 ]] && [[ $ROCM_INT -lt 50400 ]]; then
|
||||
sed -i '/llvm-project-mlir/d' requirements.txt
|
||||
fi
|
||||
## MIOpen minimum requirements
|
||||
cmake -P install_deps.cmake --minimum
|
||||
|
||||
@ -110,7 +153,7 @@ cd build
|
||||
PKG_CONFIG_PATH=/usr/local/lib/pkgconfig CXX=${ROCM_INSTALL_PATH}/llvm/bin/clang++ cmake .. \
|
||||
${MIOPEN_CMAKE_COMMON_FLAGS} \
|
||||
${MIOPEN_CMAKE_DB_FLAGS} \
|
||||
-DCMAKE_PREFIX_PATH="${ROCM_INSTALL_PATH}"
|
||||
-DCMAKE_PREFIX_PATH="${ROCM_INSTALL_PATH}/hip;${ROCM_INSTALL_PATH}"
|
||||
make MIOpen -j $(nproc)
|
||||
|
||||
# Build MIOpen package
|
||||
|
||||
@ -32,7 +32,7 @@ pip_install coloredlogs packaging
|
||||
|
||||
pip_install onnxruntime==1.18.1
|
||||
pip_install onnx==1.16.2
|
||||
pip_install onnxscript==0.1.0.dev20241124 --no-deps
|
||||
pip_install onnxscript==0.1.0.dev20241009 --no-deps
|
||||
# required by onnxscript
|
||||
pip_install ml_dtypes
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
set -ex
|
||||
|
||||
cd /
|
||||
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.28 --depth 1 --shallow-submodules
|
||||
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.25 --depth 1 --shallow-submodules
|
||||
|
||||
|
||||
OPENBLAS_BUILD_FLAGS="
|
||||
|
||||
@ -62,22 +62,6 @@ install_ubuntu() {
|
||||
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
|
||||
done
|
||||
|
||||
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
|
||||
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
|
||||
# clr build needs CppHeaderParser but can only find it using conda's python
|
||||
/opt/conda/bin/python -m pip install CppHeaderParser
|
||||
git clone https://github.com/ROCm/HIP -b rocm-6.3.x
|
||||
HIP_COMMON_DIR=$(readlink -f HIP)
|
||||
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-6.3-statco-hotfix
|
||||
mkdir -p clr/build
|
||||
pushd clr/build
|
||||
cmake .. -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
|
||||
make -j
|
||||
cp hipamd/lib/libamdhip64.so.6.3.* /opt/rocm/lib/libamdhip64.so.6.3.*
|
||||
popd
|
||||
rm -rf HIP clr
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
|
||||
@ -12,7 +12,7 @@ case "$ID" in
|
||||
apt-get install -y libpciaccess-dev pkg-config
|
||||
apt-get clean
|
||||
;;
|
||||
centos|almalinux)
|
||||
centos)
|
||||
yum install -y libpciaccess-devel pkgconfig
|
||||
;;
|
||||
*)
|
||||
|
||||
@ -3,18 +3,6 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# Magma build scripts need `python`
|
||||
ln -sf /usr/bin/python3 /usr/bin/python
|
||||
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
almalinux)
|
||||
yum install -y gcc-gfortran
|
||||
;;
|
||||
*)
|
||||
echo "No preinstalls to build magma..."
|
||||
;;
|
||||
esac
|
||||
|
||||
MKLROOT=${MKLROOT:-/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION}
|
||||
|
||||
|
||||
@ -2,13 +2,6 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# Since version 24 the system ships with user 'ubuntu' that has id 1000
|
||||
# We need a work-around to enable id 1000 usage for this script
|
||||
if [[ $UBUNTU_VERSION == 24.04 ]]; then
|
||||
# touch is used to disable harmless error message
|
||||
touch /var/mail/ubuntu && chown ubuntu /var/mail/ubuntu && userdel -r ubuntu
|
||||
fi
|
||||
|
||||
# Mirror jenkins user in container
|
||||
# jenkins user as ec2-user should have the same user-id
|
||||
echo "jenkins:x:1000:1000::/var/lib/jenkins:" >> /etc/passwd
|
||||
|
||||
@ -24,10 +24,10 @@ function install_ubuntu() {
|
||||
| tee /etc/apt/sources.list.d/intel-gpu-${VERSION_CODENAME}.list
|
||||
# To add the online network network package repository for the Intel Support Packages
|
||||
wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
|
||||
| gpg --dearmor > /usr/share/keyrings/oneapi-archive-keyring.gpg.gpg
|
||||
echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg.gpg] \
|
||||
https://apt.repos.intel.com/${XPU_REPO_NAME} all main" \
|
||||
| tee /etc/apt/sources.list.d/oneAPI.list
|
||||
| gpg --dearmor > /usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg
|
||||
echo "deb [signed-by=/usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg] \
|
||||
https://apt.repos.intel.com/intel-for-pytorch-gpu-dev all main" \
|
||||
| tee /etc/apt/sources.list.d/intel-for-pytorch-gpu-dev.list
|
||||
|
||||
# Update the packages list and repository index
|
||||
apt-get update
|
||||
@ -47,7 +47,11 @@ function install_ubuntu() {
|
||||
# Development Packages
|
||||
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
|
||||
# Install Intel Support Packages
|
||||
apt-get install -y ${XPU_PACKAGES}
|
||||
if [ -n "$XPU_VERSION" ]; then
|
||||
apt-get install -y intel-for-pytorch-gpu-dev-${XPU_VERSION} intel-pti-dev-0.9
|
||||
else
|
||||
apt-get install -y intel-for-pytorch-gpu-dev-0.5 intel-pti-dev-0.9
|
||||
fi
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
@ -57,13 +61,13 @@ function install_ubuntu() {
|
||||
function install_rhel() {
|
||||
. /etc/os-release
|
||||
if [[ "${ID}" == "rhel" ]]; then
|
||||
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
if [[ ! " 8.6 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
echo "RHEL version ${VERSION_ID} not supported"
|
||||
exit
|
||||
fi
|
||||
elif [[ "${ID}" == "almalinux" ]]; then
|
||||
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
|
||||
VERSION_ID="8.8"
|
||||
VERSION_ID="8.6"
|
||||
fi
|
||||
|
||||
dnf install -y 'dnf-command(config-manager)'
|
||||
@ -71,18 +75,16 @@ function install_rhel() {
|
||||
dnf config-manager --add-repo \
|
||||
https://repositories.intel.com/gpu/rhel/${VERSION_ID}${XPU_DRIVER_VERSION}/unified/intel-gpu-${VERSION_ID}.repo
|
||||
# To add the online network network package repository for the Intel Support Packages
|
||||
tee > /etc/yum.repos.d/oneAPI.repo << EOF
|
||||
[oneAPI]
|
||||
tee > /etc/yum.repos.d/intel-for-pytorch-gpu-dev.repo << EOF
|
||||
[intel-for-pytorch-gpu-dev]
|
||||
name=Intel for Pytorch GPU dev repository
|
||||
baseurl=https://yum.repos.intel.com/${XPU_REPO_NAME}
|
||||
baseurl=https://yum.repos.intel.com/intel-for-pytorch-gpu-dev
|
||||
enabled=1
|
||||
gpgcheck=1
|
||||
repo_gpgcheck=1
|
||||
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||
EOF
|
||||
|
||||
# Install Intel Support Packages
|
||||
yum install -y ${XPU_PACKAGES}
|
||||
# The xpu-smi packages
|
||||
dnf install -y xpu-smi
|
||||
# Compute and Media Runtimes
|
||||
@ -97,6 +99,8 @@ EOF
|
||||
dnf install -y --refresh \
|
||||
intel-igc-opencl-devel level-zero-devel intel-gsc-devel libmetee-devel \
|
||||
level-zero-devel
|
||||
# Install Intel Support Packages
|
||||
yum install -y intel-for-pytorch-gpu-dev-0.5 intel-pti-dev-0.9
|
||||
|
||||
# Cleanup
|
||||
dnf clean all
|
||||
@ -118,7 +122,7 @@ function install_sles() {
|
||||
https://repositories.intel.com/gpu/sles/${VERSION_SP}${XPU_DRIVER_VERSION}/unified/intel-gpu-${VERSION_SP}.repo
|
||||
rpm --import https://repositories.intel.com/gpu/intel-graphics.key
|
||||
# To add the online network network package repository for the Intel Support Packages
|
||||
zypper addrepo https://yum.repos.intel.com/${XPU_REPO_NAME} oneAPI
|
||||
zypper addrepo https://yum.repos.intel.com/intel-for-pytorch-gpu-dev intel-for-pytorch-gpu-dev
|
||||
rpm --import https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||
|
||||
# The xpu-smi packages
|
||||
@ -130,7 +134,7 @@ function install_sles() {
|
||||
zypper install -y libigdfcl-devel intel-igc-cm libigfxcmrt-devel level-zero-devel
|
||||
|
||||
# Install Intel Support Packages
|
||||
zypper install -y ${XPU_PACKAGES}
|
||||
zypper install -y intel-for-pytorch-gpu-dev-0.5 intel-pti-dev-0.9
|
||||
|
||||
}
|
||||
|
||||
@ -141,13 +145,6 @@ if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
|
||||
XPU_DRIVER_VERSION=""
|
||||
fi
|
||||
|
||||
XPU_REPO_NAME="intel-for-pytorch-gpu-dev"
|
||||
XPU_PACKAGES="intel-for-pytorch-gpu-dev-0.5 intel-pti-dev-0.9"
|
||||
if [[ "$XPU_VERSION" == "2025.0" ]]; then
|
||||
XPU_REPO_NAME="oneapi"
|
||||
XPU_PACKAGES="intel-deep-learning-essentials-2025.0"
|
||||
fi
|
||||
|
||||
# The installation depends on the base OS
|
||||
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
|
||||
case "$ID" in
|
||||
|
||||
@ -1,39 +1,47 @@
|
||||
ARG CUDA_VERSION=12.4
|
||||
ARG CUDA_VERSION=10.2
|
||||
ARG BASE_TARGET=cuda${CUDA_VERSION}
|
||||
FROM amd64/almalinux:8 as base
|
||||
FROM centos:7 as base
|
||||
|
||||
ENV LC_ALL en_US.UTF-8
|
||||
ENV LANG en_US.UTF-8
|
||||
ENV LANGUAGE en_US.UTF-8
|
||||
|
||||
ARG DEVTOOLSET_VERSION=11
|
||||
|
||||
ENV LC_ALL en_US.UTF-8
|
||||
ENV LANG en_US.UTF-8
|
||||
ENV LANGUAGE en_US.UTF-8
|
||||
|
||||
RUN yum -y update
|
||||
RUN yum -y install epel-release
|
||||
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel openssl-devel yum-utils autoconf automake make gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
|
||||
ARG DEVTOOLSET_VERSION=9
|
||||
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
|
||||
RUN yum update -y
|
||||
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which unzip
|
||||
# Just add everything as a safe.directory for git since these will be used in multiple places with git
|
||||
RUN git config --global --add safe.directory '*'
|
||||
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
RUN yum install -y yum-utils centos-release-scl
|
||||
RUN yum-config-manager --enable rhel-server-rhscl-7-rpms
|
||||
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
|
||||
RUN yum install -y devtoolset-${DEVTOOLSET_VERSION}-gcc devtoolset-${DEVTOOLSET_VERSION}-gcc-c++ devtoolset-${DEVTOOLSET_VERSION}-gcc-gfortran devtoolset-${DEVTOOLSET_VERSION}-binutils
|
||||
# EPEL for cmake
|
||||
RUN yum --enablerepo=extras install -y epel-release
|
||||
|
||||
# cmake-3.18.4 from pip
|
||||
RUN yum install -y python3-pip && \
|
||||
python3 -mpip install cmake==3.18.4 && \
|
||||
ln -s /usr/local/bin/cmake /usr/bin/cmake3
|
||||
# cmake
|
||||
RUN yum install -y cmake3 && \
|
||||
ln -s /usr/bin/cmake3 /usr/bin/cmake
|
||||
ENV PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/devtoolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
|
||||
|
||||
RUN yum install -y autoconf aclocal automake make sudo
|
||||
RUN rm -rf /usr/local/cuda-*
|
||||
|
||||
FROM base as openssl
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh && rm install_openssl.sh
|
||||
|
||||
FROM base as patchelf
|
||||
# Install patchelf
|
||||
ADD ./common/install_patchelf.sh install_patchelf.sh
|
||||
RUN bash ./install_patchelf.sh && rm install_patchelf.sh && cp $(which patchelf) /patchelf
|
||||
|
||||
FROM base as openssl
|
||||
# Install openssl
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh && rm install_openssl.sh
|
||||
|
||||
FROM base as conda
|
||||
# Install Anaconda
|
||||
ADD ./common/install_conda_docker.sh install_conda.sh
|
||||
@ -41,7 +49,7 @@ RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
|
||||
# Install CUDA
|
||||
FROM base as cuda
|
||||
ARG CUDA_VERSION=12.4
|
||||
ARG CUDA_VERSION=10.2
|
||||
RUN rm -rf /usr/local/cuda-*
|
||||
ADD ./common/install_cuda.sh install_cuda.sh
|
||||
ENV CUDA_HOME=/usr/local/cuda-${CUDA_VERSION}
|
||||
@ -88,8 +96,7 @@ COPY ./common/install_jni.sh install_jni.sh
|
||||
COPY ./java/jni.h jni.h
|
||||
RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
COPY --from=mnist /usr/local/mnist /usr/local/mnist
|
||||
RUN rm -rf /usr/local/cuda
|
||||
RUN chmod o+rw /usr/local
|
||||
@ -48,10 +48,10 @@ esac
|
||||
--progress plain \
|
||||
--build-arg "BASE_TARGET=${BASE_TARGET}" \
|
||||
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
|
||||
--build-arg "DEVTOOLSET_VERSION=11" \
|
||||
--build-arg "DEVTOOLSET_VERSION=9" \
|
||||
-t ${DOCKER_IMAGE_NAME} \
|
||||
$@ \
|
||||
-f "${TOPDIR}/.ci/docker/almalinux/Dockerfile" \
|
||||
-f "${TOPDIR}/.ci/docker/conda/Dockerfile" \
|
||||
${TOPDIR}/.ci/docker/
|
||||
)
|
||||
|
||||
@ -92,6 +92,13 @@ RUN apt-get update -y && \
|
||||
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
|
||||
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
|
||||
|
||||
# Install AOTriton
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./aotriton_version.txt aotriton_version.txt
|
||||
COPY ./common/install_aotriton.sh install_aotriton.sh
|
||||
RUN bash ./install_aotriton.sh /opt/rocm && rm install_aotriton.sh aotriton_version.txt
|
||||
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
|
||||
|
||||
FROM ${BASE_TARGET} as final
|
||||
COPY --from=openssl /opt/openssl /opt/openssl
|
||||
# Install patchelf
|
||||
|
||||
@ -39,7 +39,17 @@ case ${GPU_ARCH_TYPE} in
|
||||
BASE_TARGET=rocm
|
||||
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
|
||||
GPU_IMAGE=rocm/dev-ubuntu-20.04:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100;gfx1101;gfx942"
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100"
|
||||
ROCM_REGEX="([0-9]+)\.([0-9]+)[\.]?([0-9]*)"
|
||||
if [[ $GPU_ARCH_VERSION =~ $ROCM_REGEX ]]; then
|
||||
ROCM_VERSION_INT=$((${BASH_REMATCH[1]}*10000 + ${BASH_REMATCH[2]}*100 + ${BASH_REMATCH[3]:-0}))
|
||||
else
|
||||
echo "ERROR: rocm regex failed"
|
||||
exit 1
|
||||
fi
|
||||
if [[ $ROCM_VERSION_INT -ge 60000 ]]; then
|
||||
PYTORCH_ROCM_ARCH+=";gfx942"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
|
||||
;;
|
||||
*)
|
||||
|
||||
@ -25,8 +25,7 @@ ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
|
||||
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
COPY ./common/install_conda.sh install_conda.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./common/install_magma_conda.sh install_magma_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
|
||||
|
||||
# Install cuda and cudnn
|
||||
ARG CUDA_VERSION
|
||||
|
||||
@ -144,10 +144,6 @@ COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/
|
||||
FROM common as cpu_final
|
||||
ARG BASE_CUDA_VERSION=10.1
|
||||
ARG DEVTOOLSET_VERSION=9
|
||||
# Install Anaconda
|
||||
ADD ./common/install_conda_docker.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
RUN sed -i s/mirror.centos.org/vault.centos.org/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^#.*baseurl=http/baseurl=http/g /etc/yum.repos.d/*.repo
|
||||
RUN sed -i s/^mirrorlist=http/#mirrorlist=http/g /etc/yum.repos.d/*.repo
|
||||
@ -198,3 +194,10 @@ ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
|
||||
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
|
||||
ADD ./common/install_miopen.sh install_miopen.sh
|
||||
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
|
||||
|
||||
# Install AOTriton
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./aotriton_version.txt aotriton_version.txt
|
||||
COPY ./common/install_aotriton.sh install_aotriton.sh
|
||||
RUN bash ./install_aotriton.sh /opt/rocm && rm install_aotriton.sh aotriton_version.txt
|
||||
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
# syntax = docker/dockerfile:experimental
|
||||
ARG ROCM_VERSION=3.7
|
||||
ARG BASE_CUDA_VERSION=11.8
|
||||
ARG GPU_IMAGE=amd64/almalinux:8
|
||||
FROM quay.io/pypa/manylinux_2_28_x86_64 as base
|
||||
@ -116,49 +117,30 @@ COPY --from=jni /usr/local/include/jni.h /usr/local/
|
||||
FROM common as cpu_final
|
||||
ARG BASE_CUDA_VERSION=11.8
|
||||
ARG DEVTOOLSET_VERSION=11
|
||||
# Install Anaconda
|
||||
ADD ./common/install_conda_docker.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
# Ensure the expected devtoolset is used
|
||||
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
|
||||
# Install setuptools and wheel for python 3.12/3.13
|
||||
RUN for cpython_version in "cp312-cp312" "cp313-cp313" "cp313-cp313t"; do \
|
||||
/opt/python/${cpython_version}/bin/python -m pip install setuptools wheel; \
|
||||
done;
|
||||
|
||||
|
||||
# cmake-3.18.4 from pip; force in case cmake3 already exists
|
||||
# cmake-3.18.4 from pip
|
||||
RUN yum install -y python3-pip && \
|
||||
python3 -mpip install cmake==3.18.4 && \
|
||||
ln -sf /usr/local/bin/cmake /usr/bin/cmake3
|
||||
ln -s /usr/local/bin/cmake /usr/bin/cmake3
|
||||
|
||||
FROM cpu_final as cuda_final
|
||||
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
|
||||
COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
|
||||
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
|
||||
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
|
||||
ENV PATH=/usr/local/cuda/bin:$PATH
|
||||
|
||||
FROM cpu_final as rocm_final
|
||||
ARG ROCM_VERSION=6.0
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
|
||||
ARG DEVTOOLSET_VERSION=11
|
||||
ENV LDFLAGS="-Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64 -Wl,-rpath=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib"
|
||||
# Somewhere in ROCm stack, we still use non-existing /opt/rocm/hip path,
|
||||
# below workaround helps avoid error
|
||||
ENV ROCM_PATH /opt/rocm
|
||||
# cmake-3.28.4 from pip to get enable_language(HIP)
|
||||
# and avoid 3.21.0 cmake+ninja issues with ninja inserting "-Wl,--no-as-needed" in LINK_FLAGS for static linker
|
||||
RUN python3 -m pip install --upgrade pip && \
|
||||
python3 -mpip install cmake==3.28.4
|
||||
ADD ./common/install_rocm_drm.sh install_rocm_drm.sh
|
||||
RUN bash ./install_rocm_drm.sh && rm install_rocm_drm.sh
|
||||
ENV MKLROOT /opt/intel
|
||||
ADD ./common/install_rocm_magma.sh install_rocm_magma.sh
|
||||
RUN bash ./install_rocm_magma.sh && rm install_rocm_magma.sh
|
||||
FROM common as rocm_final
|
||||
ARG ROCM_VERSION=3.7
|
||||
# Install ROCm
|
||||
ADD ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh ${ROCM_VERSION} && rm install_rocm.sh
|
||||
# cmake is already installed inside the rocm base image, but both 2 and 3 exist
|
||||
# cmake3 is needed for the later MIOpen custom build, so that step is last.
|
||||
RUN yum install -y cmake3 && \
|
||||
rm -f /usr/bin/cmake && \
|
||||
ln -s /usr/bin/cmake3 /usr/bin/cmake
|
||||
ADD ./common/install_miopen.sh install_miopen.sh
|
||||
RUN bash ./install_miopen.sh ${ROCM_VERSION} && rm install_miopen.sh
|
||||
|
||||
@ -168,7 +150,8 @@ ENV XPU_DRIVER_TYPE ROLLING
|
||||
# cmake-3.28.4 from pip
|
||||
RUN python3 -m pip install --upgrade pip && \
|
||||
python3 -mpip install cmake==3.28.4
|
||||
# Install setuptools and wheel for python 3.13
|
||||
RUN /opt/python/cp313-cp313/bin/python -m pip install setuptools wheel
|
||||
ADD ./common/install_xpu.sh install_xpu.sh
|
||||
ENV XPU_VERSION 2025.0
|
||||
RUN bash ./install_xpu.sh && rm install_xpu.sh
|
||||
RUN pushd /opt/_internal && tar -xJf static-libs-for-embedding-only.tar.xz && popd
|
||||
|
||||
@ -48,11 +48,6 @@ ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${GCCTOOLSET_VERSION}/root/usr/lib64:/op
|
||||
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
|
||||
RUN git config --global --add safe.directory "*"
|
||||
|
||||
FROM base as openblas
|
||||
# Install openblas
|
||||
ADD ./common/install_openblas.sh install_openblas.sh
|
||||
RUN bash ./install_openblas.sh && rm install_openblas.sh
|
||||
|
||||
FROM base as final
|
||||
|
||||
# remove unncessary python versions
|
||||
@ -60,5 +55,3 @@ RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
|
||||
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
|
||||
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
|
||||
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
|
||||
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
|
||||
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH
|
||||
|
||||
@ -61,7 +61,7 @@ RUN git config --global --add safe.directory "*"
|
||||
# NOTE: Need a better way to get this library as Ubuntu's package can be removed by the vender, or changed
|
||||
###############################################################################
|
||||
RUN cd ~/ \
|
||||
&& curl -L -o ~/libgfortran-10-dev.deb http://ports.ubuntu.com/ubuntu-ports/pool/universe/g/gcc-10/libgfortran-10-dev_10.5.0-4ubuntu2_arm64.deb \
|
||||
&& curl -L -o ~/libgfortran-10-dev.deb http://ports.ubuntu.com/ubuntu-ports/pool/universe/g/gcc-10/libgfortran-10-dev_10.5.0-1ubuntu1_arm64.deb \
|
||||
&& ar x ~/libgfortran-10-dev.deb \
|
||||
&& tar --use-compress-program=unzstd -xvf data.tar.zst -C ~/ \
|
||||
&& cp -f ~/usr/lib/gcc/aarch64-linux-gnu/10/libgfortran.a /opt/rh/devtoolset-10/root/usr/lib/gcc/aarch64-redhat-linux/10/
|
||||
|
||||
@ -1,20 +1,17 @@
|
||||
FROM quay.io/pypa/manylinux_2_28_s390x as base
|
||||
FROM --platform=linux/s390x docker.io/ubuntu:24.04 as base
|
||||
|
||||
# Language variables
|
||||
ENV LC_ALL=C.UTF-8
|
||||
ENV LANG=C.UTF-8
|
||||
ENV LANGUAGE=C.UTF-8
|
||||
|
||||
ARG DEVTOOLSET_VERSION=13
|
||||
# Installed needed OS packages. This is to support all
|
||||
# the binary builds (torch, vision, audio, text, data)
|
||||
RUN yum -y install epel-release
|
||||
RUN yum -y update
|
||||
RUN yum install -y \
|
||||
sudo \
|
||||
RUN apt update ; apt upgrade -y
|
||||
RUN apt install -y \
|
||||
build-essential \
|
||||
autoconf \
|
||||
automake \
|
||||
bison \
|
||||
bzip2 \
|
||||
curl \
|
||||
diffutils \
|
||||
@ -27,40 +24,19 @@ RUN yum install -y \
|
||||
util-linux \
|
||||
wget \
|
||||
which \
|
||||
xz \
|
||||
yasm \
|
||||
xz-utils \
|
||||
less \
|
||||
zstd \
|
||||
libgomp \
|
||||
gcc-toolset-${DEVTOOLSET_VERSION}-gcc \
|
||||
gcc-toolset-${DEVTOOLSET_VERSION}-gcc-c++ \
|
||||
gcc-toolset-${DEVTOOLSET_VERSION}-binutils \
|
||||
gcc-toolset-${DEVTOOLSET_VERSION}-gcc-gfortran \
|
||||
cmake \
|
||||
rust \
|
||||
cargo \
|
||||
llvm-devel \
|
||||
libzstd-devel \
|
||||
python3.12-devel \
|
||||
python3.12-setuptools \
|
||||
python3.12-pip \
|
||||
python3-virtualenv \
|
||||
python3.12-pyyaml \
|
||||
python3.12-numpy \
|
||||
python3.12-wheel \
|
||||
python3.12-cryptography \
|
||||
blas-devel \
|
||||
openblas-devel \
|
||||
lapack-devel \
|
||||
atlas-devel \
|
||||
libjpeg-devel \
|
||||
libxslt-devel \
|
||||
libxml2-devel \
|
||||
openssl-devel \
|
||||
valgrind
|
||||
|
||||
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-setuptools \
|
||||
python3-yaml \
|
||||
python3-typing-extensions \
|
||||
libblas-dev \
|
||||
libopenblas-dev \
|
||||
liblapack-dev \
|
||||
libatlas-base-dev
|
||||
|
||||
# git236+ would refuse to run git commands in repos owned by other users
|
||||
# Which causes version check to fail, as pytorch repo is bind-mounted into the image
|
||||
@ -68,8 +44,14 @@ ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/op
|
||||
# For more details see https://github.com/pytorch/pytorch/issues/78659#issuecomment-1144107327
|
||||
RUN git config --global --add safe.directory "*"
|
||||
|
||||
# installed python doesn't have development parts. Rebuild it from scratch
|
||||
RUN /bin/rm -rf /opt/_internal /opt/python /usr/local/*/*
|
||||
FROM base as openssl
|
||||
# Install openssl (this must precede `build python` step)
|
||||
# (In order to have a proper SSL module, Python is compiled
|
||||
# against a recent openssl [see env vars above], which is linked
|
||||
# statically. We delete openssl afterwards.)
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh && rm install_openssl.sh
|
||||
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
|
||||
|
||||
# EPEL for cmake
|
||||
FROM base as patchelf
|
||||
@ -82,43 +64,10 @@ FROM patchelf as python
|
||||
# build python
|
||||
COPY manywheel/build_scripts /build_scripts
|
||||
ADD ./common/install_cpython.sh /build_scripts/install_cpython.sh
|
||||
ENV SSL_CERT_FILE=
|
||||
RUN bash build_scripts/build.sh && rm -r build_scripts
|
||||
|
||||
FROM base as final
|
||||
FROM openssl as final
|
||||
COPY --from=python /opt/python /opt/python
|
||||
COPY --from=python /opt/_internal /opt/_internal
|
||||
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
|
||||
COPY --from=python /opt/python/cp39-cp39/bin/auditwheel /usr/local/bin/auditwheel
|
||||
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
|
||||
|
||||
RUN alternatives --set python /usr/bin/python3.12
|
||||
RUN alternatives --set python3 /usr/bin/python3.12
|
||||
|
||||
RUN pip-3.12 install typing_extensions
|
||||
|
||||
ENTRYPOINT []
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
# install test dependencies:
|
||||
# - grpcio requires system openssl, bundled crypto fails to build
|
||||
# - ml_dtypes 0.4.0 requires some fixes provided in later commits to build
|
||||
RUN dnf install -y \
|
||||
protobuf-devel \
|
||||
protobuf-c-devel \
|
||||
protobuf-lite-devel \
|
||||
wget \
|
||||
patch
|
||||
|
||||
RUN env GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=True pip3 install grpcio==1.65.4
|
||||
RUN cd ~ && \
|
||||
git clone https://github.com/jax-ml/ml_dtypes && \
|
||||
cd ml_dtypes && \
|
||||
git checkout v0.4.0 && \
|
||||
git submodule update --init --recursive && \
|
||||
wget https://github.com/jax-ml/ml_dtypes/commit/b969f76914d6b30676721bc92bf0f6021a0d1321.patch && \
|
||||
wget https://github.com/jax-ml/ml_dtypes/commit/d4e6d035ecda073eab8bcf60f4eef572ee7087e6.patch && \
|
||||
patch -p1 < b969f76914d6b30676721bc92bf0f6021a0d1321.patch && \
|
||||
patch -p1 < d4e6d035ecda073eab8bcf60f4eef572ee7087e6.patch && \
|
||||
python3 setup.py bdist_wheel && \
|
||||
pip3 install dist/*.whl && \
|
||||
rm -rf ml_dtypes
|
||||
|
||||
@ -61,7 +61,7 @@ case ${GPU_ARCH_TYPE} in
|
||||
cpu-s390x)
|
||||
TARGET=final
|
||||
DOCKER_TAG=cpu-s390x
|
||||
GPU_IMAGE=s390x/almalinux:8
|
||||
GPU_IMAGE=redhat/ubi9
|
||||
DOCKER_GPU_BUILD_ARG=""
|
||||
MANY_LINUX_VERSION="s390x"
|
||||
;;
|
||||
@ -87,18 +87,22 @@ case ${GPU_ARCH_TYPE} in
|
||||
MANY_LINUX_VERSION="aarch64"
|
||||
DOCKERFILE_SUFFIX="_cuda_aarch64"
|
||||
;;
|
||||
rocm|rocm-manylinux_2_28)
|
||||
rocm)
|
||||
TARGET=rocm_final
|
||||
DOCKER_TAG=rocm${GPU_ARCH_VERSION}
|
||||
GPU_IMAGE=rocm/dev-centos-7:${GPU_ARCH_VERSION}-complete
|
||||
DEVTOOLSET_VERSION="9"
|
||||
if [ ${GPU_ARCH_TYPE} == "rocm-manylinux_2_28" ]; then
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
DEVTOOLSET_VERSION="11"
|
||||
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100"
|
||||
ROCM_REGEX="([0-9]+)\.([0-9]+)[\.]?([0-9]*)"
|
||||
if [[ $GPU_ARCH_VERSION =~ $ROCM_REGEX ]]; then
|
||||
ROCM_VERSION_INT=$((${BASH_REMATCH[1]}*10000 + ${BASH_REMATCH[2]}*100 + ${BASH_REMATCH[3]:-0}))
|
||||
else
|
||||
echo "ERROR: rocm regex failed"
|
||||
exit 1
|
||||
fi
|
||||
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101"
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
|
||||
if [[ $ROCM_VERSION_INT -ge 60000 ]]; then
|
||||
PYTORCH_ROCM_ARCH+=";gfx942"
|
||||
fi
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=9"
|
||||
;;
|
||||
xpu)
|
||||
TARGET=xpu_final
|
||||
@ -121,13 +125,11 @@ fi
|
||||
(
|
||||
set -x
|
||||
|
||||
if [ "$(uname -m)" != "s390x" ]; then
|
||||
# TODO: Remove LimitNOFILE=1048576 patch once https://github.com/pytorch/test-infra/issues/5712
|
||||
# is resolved. This patch is required in order to fix timing out of Docker build on Amazon Linux 2023.
|
||||
sudo sed -i s/LimitNOFILE=infinity/LimitNOFILE=1048576/ /usr/lib/systemd/system/docker.service
|
||||
sudo systemctl daemon-reload
|
||||
sudo systemctl restart docker
|
||||
fi
|
||||
# TODO: Remove LimitNOFILE=1048576 patch once https://github.com/pytorch/test-infra/issues/5712
|
||||
# is resolved. This patch is required in order to fix timing out of Docker build on Amazon Linux 2023.
|
||||
sudo sed -i s/LimitNOFILE=infinity/LimitNOFILE=1048576/ /usr/lib/systemd/system/docker.service
|
||||
sudo systemctl daemon-reload
|
||||
sudo systemctl restart docker
|
||||
|
||||
DOCKER_BUILDKIT=1 docker build \
|
||||
${DOCKER_GPU_BUILD_ARG} \
|
||||
|
||||
@ -16,27 +16,37 @@ CURL_HASH=cf34fe0b07b800f1c01a499a6e8b2af548f6d0e044dca4a29d88a4bee146d131
|
||||
AUTOCONF_ROOT=autoconf-2.69
|
||||
AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
|
||||
|
||||
# Dependencies for compiling Python that we want to remove from
|
||||
# the final image after compiling Python
|
||||
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel"
|
||||
|
||||
if [ "$(uname -m)" != "s390x" ] ; then
|
||||
PYTHON_COMPILE_DEPS="${PYTHON_COMPILE_DEPS} db4-devel"
|
||||
else
|
||||
PYTHON_COMPILE_DEPS="${PYTHON_COMPILE_DEPS} libdb-devel"
|
||||
fi
|
||||
|
||||
# Libraries that are allowed as part of the manylinux1 profile
|
||||
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
|
||||
|
||||
# Get build utilities
|
||||
MY_DIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
source $MY_DIR/build_utils.sh
|
||||
|
||||
# Development tools and libraries
|
||||
yum -y install bzip2 make git patch unzip bison yasm diffutils \
|
||||
automake which file \
|
||||
${PYTHON_COMPILE_DEPS}
|
||||
if [ "$(uname -m)" != "s390x" ] ; then
|
||||
# Dependencies for compiling Python that we want to remove from
|
||||
# the final image after compiling Python
|
||||
PYTHON_COMPILE_DEPS="zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel libffi-devel"
|
||||
|
||||
# Libraries that are allowed as part of the manylinux1 profile
|
||||
MANYLINUX1_DEPS="glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
|
||||
|
||||
# Development tools and libraries
|
||||
yum -y install bzip2 make git patch unzip bison yasm diffutils \
|
||||
automake which file cmake28 \
|
||||
kernel-devel-`uname -r` \
|
||||
${PYTHON_COMPILE_DEPS}
|
||||
else
|
||||
# Dependencies for compiling Python that we want to remove from
|
||||
# the final image after compiling Python
|
||||
PYTHON_COMPILE_DEPS="zlib1g-dev libbz2-dev libncurses-dev libsqlite3-dev libdb-dev libpcap-dev liblzma-dev libffi-dev"
|
||||
|
||||
# Libraries that are allowed as part of the manylinux1 profile
|
||||
MANYLINUX1_DEPS="libglib2.0-dev libX11-dev libncurses-dev"
|
||||
|
||||
# Development tools and libraries
|
||||
apt install -y bzip2 make git patch unzip diffutils \
|
||||
automake which file cmake \
|
||||
linux-headers-virtual \
|
||||
${PYTHON_COMPILE_DEPS}
|
||||
fi
|
||||
|
||||
# Install newest autoconf
|
||||
build_autoconf $AUTOCONF_ROOT $AUTOCONF_HASH
|
||||
@ -82,13 +92,16 @@ ln -s $PY39_BIN/auditwheel /usr/local/bin/auditwheel
|
||||
|
||||
# Clean up development headers and other unnecessary stuff for
|
||||
# final image
|
||||
yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \
|
||||
avahi freetype bitstream-vera-fonts \
|
||||
${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
|
||||
yum -y install ${MANYLINUX1_DEPS}
|
||||
yum -y clean all > /dev/null 2>&1
|
||||
yum list installed
|
||||
|
||||
if [ "$(uname -m)" != "s390x" ] ; then
|
||||
yum -y erase wireless-tools gtk2 libX11 hicolor-icon-theme \
|
||||
avahi freetype bitstream-vera-fonts \
|
||||
${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
|
||||
yum -y install ${MANYLINUX1_DEPS}
|
||||
yum -y clean all > /dev/null 2>&1
|
||||
yum list installed
|
||||
else
|
||||
apt purge -y ${PYTHON_COMPILE_DEPS} || true > /dev/null 2>&1
|
||||
fi
|
||||
# we don't need libpython*.a, and they're many megabytes
|
||||
find /opt/_internal -name '*.a' -print0 | xargs -0 rm -f
|
||||
# Strip what we can -- and ignore errors, because this just attempts to strip
|
||||
|
||||
@ -30,13 +30,13 @@ dill==0.3.7
|
||||
#Pinned versions: 0.3.7
|
||||
#test that import: dynamo/test_replay_record.py test_dataloader.py test_datapipe.py test_serialization.py
|
||||
|
||||
expecttest==0.3.0
|
||||
expecttest==0.2.1
|
||||
#Description: method for writing tests where test framework auto populates
|
||||
# the expected output based on previous runs
|
||||
#Pinned versions: 0.3.0
|
||||
#Pinned versions: 0.2.1
|
||||
#test that import:
|
||||
|
||||
fbscribelogger==0.1.7
|
||||
fbscribelogger==0.1.6
|
||||
#Description: write to scribe from authenticated jobs on CI
|
||||
#Pinned versions: 0.1.6
|
||||
#test that import:
|
||||
@ -90,7 +90,7 @@ librosa>=0.6.2 ; python_version < "3.11"
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
mypy==1.13.0
|
||||
mypy==1.11.2
|
||||
# Pin MyPy version because new errors are likely to appear with each release
|
||||
#Description: linter
|
||||
#Pinned versions: 1.10.0
|
||||
@ -128,13 +128,11 @@ numba==0.55.2 ; python_version == "3.10"
|
||||
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
|
||||
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
|
||||
#test_binary_ufuncs.py
|
||||
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
|
||||
numpy==1.21.2; python_version == "3.9"
|
||||
numpy==1.22.4; python_version == "3.10"
|
||||
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
|
||||
numpy==2.1.2; python_version >= "3.13"
|
||||
|
||||
pandas==2.0.3; python_version < "3.13"
|
||||
pandas==2.2.3; python_version >= "3.13"
|
||||
|
||||
#onnxruntime
|
||||
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
|
||||
#Pinned versions: 1.9.0
|
||||
@ -158,7 +156,7 @@ optree==0.13.0
|
||||
#test_pointwise_ops.py, test_dtensor_ops.py, test_torchinductor.py, test_fx.py,
|
||||
#test_fake_tensor.py, test_mps.py
|
||||
|
||||
pillow==11.0.0
|
||||
pillow==10.3.0
|
||||
#Description: Python Imaging Library fork
|
||||
#Pinned versions: 10.3.0
|
||||
#test that import:
|
||||
@ -193,11 +191,6 @@ pytest-rerunfailures>=10.3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
pytest-subtests==0.13.1
|
||||
#Description: plugin for subtest support
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
#pytest-benchmark
|
||||
#Description: fixture for benchmarking code
|
||||
#Pinned versions: 3.2.3
|
||||
@ -245,7 +238,7 @@ scikit-image==0.22.0 ; python_version >= "3.10"
|
||||
#test that import:
|
||||
|
||||
scipy==1.10.1 ; python_version <= "3.11"
|
||||
scipy==1.14.1 ; python_version >= "3.12"
|
||||
scipy==1.12.0 ; python_version == "3.12"
|
||||
# Pin SciPy because of failing distribution tests (see #60347)
|
||||
#Description: scientific python
|
||||
#Pinned versions: 1.10.1
|
||||
@ -280,21 +273,26 @@ unittest-xml-reporting<=3.2.0,>=2.0.0
|
||||
#test that import:
|
||||
|
||||
#lintrunner is supported on aarch64-linux only from 0.12.4 version
|
||||
lintrunner==0.12.7
|
||||
lintrunner==0.12.5
|
||||
#Description: all about linters!
|
||||
#Pinned versions: 0.12.7
|
||||
#Pinned versions: 0.12.5
|
||||
#test that import:
|
||||
|
||||
redis>=4.0.0
|
||||
#Description: redis database
|
||||
#test that import: anything that tests OSS caching/mocking (inductor/test_codecache.py, inductor/test_max_autotune.py)
|
||||
|
||||
rockset==1.0.3
|
||||
#Description: queries Rockset
|
||||
#Pinned versions: 1.0.3
|
||||
#test that import:
|
||||
|
||||
ghstack==0.8.0
|
||||
#Description: ghstack tool
|
||||
#Pinned versions: 0.8.0
|
||||
#test that import:
|
||||
|
||||
jinja2==3.1.5
|
||||
jinja2==3.1.4
|
||||
#Description: jinja2 template engine
|
||||
#Pinned versions: 3.1.4
|
||||
#test that import:
|
||||
@ -304,25 +302,24 @@ pytest-cpp==2.3.0
|
||||
#Pinned versions: 2.3.0
|
||||
#test that import:
|
||||
|
||||
z3-solver==4.12.6.0
|
||||
z3-solver==4.12.2.0
|
||||
#Description: The Z3 Theorem Prover Project
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
tensorboard==2.13.0 ; python_version < "3.13"
|
||||
tensorboard==2.18.0 ; python_version >= "3.13"
|
||||
tensorboard==2.13.0
|
||||
#Description: Also included in .ci/docker/requirements-docs.txt
|
||||
#Pinned versions:
|
||||
#test that import: test_tensorboard
|
||||
|
||||
pywavelets==1.4.1 ; python_version < "3.12"
|
||||
pywavelets==1.7.0 ; python_version >= "3.12"
|
||||
pywavelets==1.5.0 ; python_version >= "3.12"
|
||||
#Description: This is a requirement of scikit-image, we need to pin
|
||||
# it here because 1.5.0 conflicts with numpy 1.21.2 used in CI
|
||||
#Pinned versions: 1.4.1
|
||||
#test that import:
|
||||
|
||||
lxml==5.3.0
|
||||
lxml==5.0.0
|
||||
#Description: This is a requirement of unittest-xml-reporting
|
||||
|
||||
# Python-3.9 binaries
|
||||
|
||||
@ -14,8 +14,7 @@ matplotlib==3.5.3
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 3.5.3
|
||||
|
||||
tensorboard==2.13.0 ; python_version < "3.13"
|
||||
tensorboard==2.18.0 ; python_version >= "3.13"
|
||||
tensorboard==2.13.0
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 2.13.0
|
||||
|
||||
|
||||
@ -1 +1 @@
|
||||
3.2.0
|
||||
3.1.0
|
||||
|
||||
@ -30,8 +30,7 @@ ARG CONDA_CMAKE
|
||||
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
|
||||
COPY ./common/install_conda.sh install_conda.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./common/install_magma_conda.sh install_magma_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
|
||||
|
||||
# Install gcc
|
||||
ARG GCC_VERSION
|
||||
@ -81,8 +80,6 @@ RUN bash ./install_openssl.sh
|
||||
ENV OPENSSL_DIR /opt/openssl
|
||||
|
||||
ARG INDUCTOR_BENCHMARKS
|
||||
ARG ANACONDA_PYTHON_VERSION
|
||||
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
|
||||
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ci_commit_pins/huggingface.txt huggingface.txt
|
||||
|
||||
@ -107,11 +107,12 @@ COPY triton_version.txt triton_version.txt
|
||||
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
|
||||
RUN rm install_triton.sh common_utils.sh triton.txt triton_version.txt
|
||||
|
||||
# This is needed by sccache
|
||||
COPY ./common/install_openssl.sh install_openssl.sh
|
||||
ENV OPENSSL_ROOT_DIR /opt/openssl
|
||||
RUN bash ./install_openssl.sh
|
||||
ENV OPENSSL_DIR /opt/openssl
|
||||
# Install AOTriton
|
||||
COPY ./aotriton_version.txt aotriton_version.txt
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./common/install_aotriton.sh install_aotriton.sh
|
||||
RUN ["/bin/bash", "-c", "./install_aotriton.sh /opt/rocm && rm -rf install_aotriton.sh aotriton_version.txt common_utils.sh"]
|
||||
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
|
||||
|
||||
# Install ccache/sccache (do this last, so we get priority in PATH)
|
||||
COPY ./common/install_cache.sh install_cache.sh
|
||||
|
||||
@ -36,8 +36,7 @@ ENV DOCS=$DOCS
|
||||
COPY requirements-ci.txt requirements-docs.txt /opt/conda/
|
||||
COPY ./common/install_conda.sh install_conda.sh
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./common/install_magma_conda.sh install_magma_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
|
||||
RUN if [ -n "${UNINSTALL_DILL}" ]; then pip uninstall -y dill; fi
|
||||
|
||||
# Install gcc
|
||||
@ -88,6 +87,19 @@ RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
|
||||
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
|
||||
ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# (optional) Install Android NDK
|
||||
ARG ANDROID
|
||||
ARG ANDROID_NDK
|
||||
ARG GRADLE_VERSION
|
||||
COPY ./common/install_android.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
|
||||
COPY ./android/AndroidManifest.xml AndroidManifest.xml
|
||||
COPY ./android/build.gradle build.gradle
|
||||
RUN if [ -n "${ANDROID}" ]; then bash ./install_android.sh; fi
|
||||
RUN rm install_android.sh cache_vision_models.sh common_utils.sh
|
||||
RUN rm AndroidManifest.xml
|
||||
RUN rm build.gradle
|
||||
ENV INSTALLED_ANDROID ${ANDROID}
|
||||
|
||||
# (optional) Install Vulkan SDK
|
||||
ARG VULKAN_SDK_VERSION
|
||||
COPY ./common/install_vulkan_sdk.sh install_vulkan_sdk.sh
|
||||
|
||||
2
.ci/magma/.gitignore
vendored
2
.ci/magma/.gitignore
vendored
@ -1,2 +0,0 @@
|
||||
output/
|
||||
magma-cuda*/
|
||||
@ -1,48 +0,0 @@
|
||||
SHELL=/usr/bin/env bash
|
||||
|
||||
DOCKER_CMD ?= docker
|
||||
DESIRED_CUDA ?= 11.8
|
||||
DESIRED_CUDA_SHORT = $(subst .,,$(DESIRED_CUDA))
|
||||
PACKAGE_NAME = magma-cuda
|
||||
CUDA_ARCH_LIST ?= -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90
|
||||
|
||||
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
|
||||
-w /builder \
|
||||
-e PACKAGE_NAME=${PACKAGE_NAME}${DESIRED_CUDA_SHORT} \
|
||||
-e DESIRED_CUDA=${DESIRED_CUDA} \
|
||||
-e CUDA_ARCH_LIST="${CUDA_ARCH_LIST}" \
|
||||
"pytorch/manylinux-builder:cuda${DESIRED_CUDA}-main" \
|
||||
magma/build_magma.sh
|
||||
|
||||
.PHONY: all
|
||||
all: magma-cuda126
|
||||
all: magma-cuda124
|
||||
all: magma-cuda121
|
||||
all: magma-cuda118
|
||||
|
||||
.PHONY:
|
||||
clean:
|
||||
$(RM) -r magma-*
|
||||
$(RM) -r output
|
||||
|
||||
.PHONY: magma-cuda126
|
||||
magma-cuda126: DESIRED_CUDA := 12.6
|
||||
magma-cuda126:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-cuda124
|
||||
magma-cuda124: DESIRED_CUDA := 12.4
|
||||
magma-cuda124:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-cuda121
|
||||
magma-cuda121: DESIRED_CUDA := 12.1
|
||||
magma-cuda121:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-cuda118
|
||||
magma-cuda118: DESIRED_CUDA := 11.8
|
||||
magma-cuda118: CUDA_ARCH_LIST += -gencode arch=compute_37,code=sm_37
|
||||
magma-cuda118:
|
||||
$(DOCKER_RUN)
|
||||
@ -1,50 +0,0 @@
|
||||
# Magma
|
||||
|
||||
This folder contains the scripts and configurations to build magma, statically linked for various versions of CUDA.
|
||||
|
||||
## Building
|
||||
|
||||
Look in the `Makefile` for available targets to build. To build any target, for example `magma-cuda118`, run
|
||||
|
||||
```
|
||||
# Using `docker`
|
||||
make magma-cuda118
|
||||
|
||||
# Using `podman`
|
||||
DOCKER_CMD=podman make magma-cuda118
|
||||
```
|
||||
|
||||
This spawns a `pytorch/manylinux-cuda<version>` docker image, which has the required `devtoolset` and CUDA versions installed.
|
||||
Within the docker image, it runs `build_magma.sh` with the correct environment variables set, which package the necessary files
|
||||
into a tarball, with the following structure:
|
||||
|
||||
```
|
||||
.
|
||||
├── include # header files
|
||||
├── lib # libmagma.a
|
||||
├── info
|
||||
│ ├── licenses # license file
|
||||
│ └── recipe # build script and patches
|
||||
```
|
||||
|
||||
More specifically, `build_magma.sh` copies over the relevant files from the `package_files` directory depending on the CUDA version.
|
||||
Outputted binaries should be in the `output` folder.
|
||||
|
||||
|
||||
## Pushing
|
||||
|
||||
Packages can be uploaded to an S3 bucket using:
|
||||
|
||||
```
|
||||
aws s3 cp output/*/magma-cuda*.bz2 <bucket-with-path>
|
||||
```
|
||||
|
||||
If you do not have upload permissions, please ping @seemethere or @soumith to gain access
|
||||
|
||||
## New versions
|
||||
|
||||
New CUDA versions can be added by creating a new make target with the next desired version. For CUDA version NN.n, the target should be named `magma-cudaNNn`.
|
||||
|
||||
Make sure to edit the appropriate environment variables (e.g., DESIRED_CUDA, CUDA_ARCH_LIST) in the `Makefile` accordingly. Remember also to check `build_magma.sh` to ensure the logic for copying over the files remains correct.
|
||||
|
||||
New patches can be added by editing `Makefile` and`build_magma.sh` the same way `getrf_nbparam.patch` is implemented.
|
||||
@ -1,50 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
# Environment variables
|
||||
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
|
||||
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
|
||||
MAGMA_VERSION=2.6.1
|
||||
|
||||
# Folders for the build
|
||||
PACKAGE_FILES=${ROOT_DIR}/magma/package_files # source patches and metadata
|
||||
PACKAGE_DIR=${ROOT_DIR}/magma/${PACKAGE_NAME} # build workspace
|
||||
PACKAGE_OUTPUT=${ROOT_DIR}/magma/output # where tarballs are stored
|
||||
PACKAGE_BUILD=${PACKAGE_DIR}/build # where the content of the tarball is prepared
|
||||
PACKAGE_RECIPE=${PACKAGE_BUILD}/info/recipe
|
||||
PACKAGE_LICENSE=${PACKAGE_BUILD}/info/licenses
|
||||
mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RECIPE} ${PACKAGE_LICENSE}
|
||||
|
||||
# Fetch magma sources and verify checksum
|
||||
pushd ${PACKAGE_DIR}
|
||||
curl -LO http://icl.utk.edu/projectsfiles/magma/downloads/magma-${MAGMA_VERSION}.tar.gz
|
||||
tar zxf magma-${MAGMA_VERSION}.tar.gz
|
||||
sha256sum --check < ${PACKAGE_FILES}/magma-${MAGMA_VERSION}.sha256
|
||||
popd
|
||||
|
||||
# Apply patches and build
|
||||
pushd ${PACKAGE_DIR}/magma-${MAGMA_VERSION}
|
||||
patch < ${PACKAGE_FILES}/CMake.patch
|
||||
patch < ${PACKAGE_FILES}/cmakelists.patch
|
||||
patch -p0 < ${PACKAGE_FILES}/thread_queue.patch
|
||||
patch -p1 < ${PACKAGE_FILES}/getrf_shfl.patch
|
||||
patch -p1 < ${PACKAGE_FILES}/getrf_nbparam.patch
|
||||
# The build.sh script expects to be executed from the sources root folder
|
||||
INSTALL_DIR=${PACKAGE_BUILD} ${PACKAGE_FILES}/build.sh
|
||||
popd
|
||||
|
||||
# Package recipe, license and tarball
|
||||
# Folder and package name are backward compatible for the build workflow
|
||||
cp ${PACKAGE_FILES}/build.sh ${PACKAGE_RECIPE}/build.sh
|
||||
cp ${PACKAGE_FILES}/thread_queue.patch ${PACKAGE_RECIPE}/thread_queue.patch
|
||||
cp ${PACKAGE_FILES}/cmakelists.patch ${PACKAGE_RECIPE}/cmakelists.patch
|
||||
cp ${PACKAGE_FILES}/getrf_shfl.patch ${PACKAGE_RECIPE}/getrf_shfl.patch
|
||||
cp ${PACKAGE_FILES}/getrf_nbparam.patch ${PACKAGE_RECIPE}/getrf_nbparam.patch
|
||||
cp ${PACKAGE_FILES}/CMake.patch ${PACKAGE_RECIPE}/CMake.patch
|
||||
cp ${PACKAGE_FILES}/magma-${MAGMA_VERSION}.sha256 ${PACKAGE_RECIPE}/magma-${MAGMA_VERSION}.sha256
|
||||
cp ${PACKAGE_DIR}/magma-${MAGMA_VERSION}/COPYRIGHT ${PACKAGE_LICENSE}/COPYRIGHT
|
||||
pushd ${PACKAGE_BUILD}
|
||||
tar cjf ${PACKAGE_OUTPUT}/linux-64/${PACKAGE_NAME}-${MAGMA_VERSION}-1.tar.bz2 include lib info
|
||||
echo Built in ${PACKAGE_OUTPUT}/linux-64/${PACKAGE_NAME}-${MAGMA_VERSION}-1.tar.bz2
|
||||
popd
|
||||
@ -1,40 +0,0 @@
|
||||
--- CMake.src.cuda 2023-03-29 10:05:32.136954140 +0000
|
||||
+++ CMake.src.cuda 2023-03-29 10:05:50.281318043 +0000
|
||||
@@ -283,10 +283,10 @@
|
||||
magmablas/zgeadd.cu
|
||||
magmablas/zgeadd2.cu
|
||||
magmablas/zgeam.cu
|
||||
-magmablas/zgemm_fermi.cu
|
||||
+#magmablas/zgemm_fermi.cu
|
||||
magmablas/zgemm_reduce.cu
|
||||
magmablas/zgemv_conj.cu
|
||||
-magmablas/zgemv_fermi.cu
|
||||
+#magmablas/zgemv_fermi.cu
|
||||
magmablas/zgerbt.cu
|
||||
magmablas/zgerbt_kernels.cu
|
||||
magmablas/zgetmatrix_transpose.cpp
|
||||
@@ -1009,18 +1009,18 @@
|
||||
magmablas/sgeam.cu
|
||||
magmablas/dgeam.cu
|
||||
magmablas/cgeam.cu
|
||||
-magmablas/sgemm_fermi.cu
|
||||
-magmablas/dgemm_fermi.cu
|
||||
-magmablas/cgemm_fermi.cu
|
||||
+#magmablas/sgemm_fermi.cu
|
||||
+#magmablas/dgemm_fermi.cu
|
||||
+#magmablas/cgemm_fermi.cu
|
||||
magmablas/sgemm_reduce.cu
|
||||
magmablas/dgemm_reduce.cu
|
||||
magmablas/cgemm_reduce.cu
|
||||
magmablas/sgemv_conj.cu
|
||||
magmablas/dgemv_conj.cu
|
||||
magmablas/cgemv_conj.cu
|
||||
-magmablas/sgemv_fermi.cu
|
||||
-magmablas/dgemv_fermi.cu
|
||||
-magmablas/cgemv_fermi.cu
|
||||
+#magmablas/sgemv_fermi.cu
|
||||
+#magmablas/dgemv_fermi.cu
|
||||
+#magmablas/cgemv_fermi.cu
|
||||
magmablas/sgerbt.cu
|
||||
magmablas/dgerbt.cu
|
||||
magmablas/cgerbt.cu
|
||||
@ -1,12 +0,0 @@
|
||||
CUDA__VERSION=$(nvcc --version|sed -n 4p|cut -f5 -d" "|cut -f1 -d",")
|
||||
if [ "$CUDA__VERSION" != "$DESIRED_CUDA" ]; then
|
||||
echo "CUDA Version is not $DESIRED_CUDA. CUDA Version found: $CUDA__VERSION"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DUSE_FORTRAN=OFF -DGPU_TARGET="All" -DCMAKE_INSTALL_PREFIX="$INSTALL_DIR" -DCUDA_ARCH_LIST="$CUDA_ARCH_LIST"
|
||||
make -j$(getconf _NPROCESSORS_CONF)
|
||||
make install
|
||||
cd ..
|
||||
@ -1,388 +0,0 @@
|
||||
diff --git a/CMakeLists.txt b/CMakeLists.txt
|
||||
index d5d8d87d..8a507334 100644
|
||||
--- a/CMakeLists.txt
|
||||
+++ b/CMakeLists.txt
|
||||
@@ -3,7 +3,7 @@ cmake_minimum_required( VERSION 2.8.1 )
|
||||
# ----------------------------------------
|
||||
# to disable Fortran, set this to "off"
|
||||
# see also -DADD_ below
|
||||
-option( USE_FORTRAN "Fortran is required for some tester checks, but can be disabled with reduced functionality" ON )
|
||||
+option( USE_FORTRAN "Fortran is required for some tester checks, but can be disabled with reduced functionality" OFF )
|
||||
|
||||
if (USE_FORTRAN)
|
||||
project( MAGMA C CXX Fortran )
|
||||
@@ -75,6 +75,8 @@ else()
|
||||
message( WARNING "The compiler ${CMAKE_CXX_COMPILER} doesn't support the -std=c++11 flag. Some code may not compile.")
|
||||
endif()
|
||||
|
||||
+set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -static-libstdc++ -fno-exceptions")
|
||||
+
|
||||
CHECK_C_COMPILER_FLAG("-std=c99" COMPILER_SUPPORTS_C99)
|
||||
if (COMPILER_SUPPORTS_C99)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c99")
|
||||
@@ -101,15 +103,15 @@ endif()
|
||||
|
||||
|
||||
# ----------------------------------------
|
||||
-# locate OpenMP
|
||||
-find_package( OpenMP )
|
||||
-if (OPENMP_FOUND)
|
||||
- message( STATUS "Found OpenMP" )
|
||||
- message( STATUS " OpenMP_C_FLAGS ${OpenMP_C_FLAGS}" )
|
||||
- message( STATUS " OpenMP_CXX_FLAGS ${OpenMP_CXX_FLAGS}" )
|
||||
- set( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}" )
|
||||
- set( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}" )
|
||||
-endif()
|
||||
+# # locate OpenMP
|
||||
+# find_package( OpenMP )
|
||||
+# if (OPENMP_FOUND)
|
||||
+# message( STATUS "Found OpenMP" )
|
||||
+# message( STATUS " OpenMP_C_FLAGS ${OpenMP_C_FLAGS}" )
|
||||
+# message( STATUS " OpenMP_CXX_FLAGS ${OpenMP_CXX_FLAGS}" )
|
||||
+# set( CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}" )
|
||||
+# set( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}" )
|
||||
+# endif()
|
||||
|
||||
if (MAGMA_ENABLE_CUDA)
|
||||
# ----------------------------------------
|
||||
@@ -132,7 +134,7 @@ if (MAGMA_ENABLE_CUDA)
|
||||
set( NV_SM "" )
|
||||
set( NV_COMP "" )
|
||||
|
||||
- set(CUDA_SEPARABLE_COMPILATION ON)
|
||||
+ set(CUDA_SEPARABLE_COMPILATION OFF)
|
||||
|
||||
# nvcc >= 6.5 supports -std=c++11, so propagate CXXFLAGS to NVCCFLAGS.
|
||||
# Older nvcc didn't support -std=c++11, so previously we disabled propagation.
|
||||
@@ -294,11 +296,18 @@ if (MAGMA_ENABLE_CUDA)
|
||||
message( STATUS " compile for CUDA arch 8.0 (Ampere)" )
|
||||
endif()
|
||||
|
||||
+ if ( ${GPU_TARGET} MATCHES "All")
|
||||
+ set( MIN_ARCH 370)
|
||||
+ SET( NV_SM ${CUDA_ARCH_LIST})
|
||||
+ SET( NV_COMP "")
|
||||
+ endif()
|
||||
+
|
||||
if (NOT MIN_ARCH)
|
||||
message( FATAL_ERROR "GPU_TARGET must contain one or more of Fermi, Kepler, Maxwell, Pascal, Volta, Turing, Ampere, or valid sm_[0-9][0-9]" )
|
||||
endif()
|
||||
|
||||
- set( CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} -Xcompiler -fPIC ${NV_SM} ${NV_COMP} ${FORTRAN_CONVENTION} )
|
||||
+ set( CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} -DHAVE_CUBLAS -Xfatbin -compress-all -Xcompiler -fPIC -std=c++11 ${NV_SM} ${NV_COMP} ${FORTRAN_CONVENTION} )
|
||||
+ MESSAGE(STATUS "CUDA_NVCC_FLAGS: ${CUDA_NVCC_FLAGS}")
|
||||
#add_definitions( "-DMAGMA_HAVE_CUDA -DMAGMA_CUDA_ARCH_MIN=${MIN_ARCH}" )
|
||||
set(MAGMA_HAVE_CUDA "1")
|
||||
set(MAGMA_CUDA_ARCH_MIN "${MIN_ARCH}")
|
||||
@@ -413,7 +422,7 @@ set_property(CACHE BLA_VENDOR PROPERTY STRINGS
|
||||
set( LAPACK_LIBRARIES "" CACHE STRING "Libraries for LAPACK and BLAS, to manually override search" )
|
||||
if (LAPACK_LIBRARIES STREQUAL "")
|
||||
message( STATUS "Searching for BLAS and LAPACK. To override, set LAPACK_LIBRARIES using ccmake." )
|
||||
- find_package( LAPACK )
|
||||
+ # find_package( LAPACK )
|
||||
# force showing updated LAPACK_LIBRARIES in ccmake / cmake-gui.
|
||||
set( LAPACK_LIBRARIES ${LAPACK_LIBRARIES} CACHE STRING "Libraries for LAPACK and BLAS, to manually override search" FORCE )
|
||||
else()
|
||||
@@ -552,12 +561,12 @@ if (WIN32)
|
||||
#message( "libmagma_all_f ${libmagma_all_f}" )
|
||||
|
||||
# on Windows, Fortran files aren't compiled if listed here...
|
||||
- cuda_add_library( magma ${libmagma_all_cpp} )
|
||||
+ cuda_add_library( magma STATIC ${libmagma_all_cpp} OPTIONS --compiler-options "-fPIC")
|
||||
target_link_libraries( magma
|
||||
${LAPACK_LIBRARIES}
|
||||
${CUDA_CUDART_LIBRARY}
|
||||
${CUDA_CUBLAS_LIBRARIES}
|
||||
- ${CUDA_cusparse_LIBRARY}
|
||||
+ # ${CUDA_cusparse_LIBRARY}
|
||||
)
|
||||
|
||||
# no Fortran files at the moment (how to test libmagma_all_f is not empty?),
|
||||
@@ -575,13 +584,13 @@ if (WIN32)
|
||||
else()
|
||||
# Unix doesn't seem to have a problem with mixing C, CUDA, and Fortran files
|
||||
if (MAGMA_ENABLE_CUDA)
|
||||
- cuda_add_library( magma ${libmagma_all} )
|
||||
+ cuda_add_library( magma STATIC ${libmagma_all} OPTIONS --compiler-options "-fPIC")
|
||||
target_link_libraries( magma
|
||||
${blas_fix}
|
||||
${LAPACK_LIBRARIES}
|
||||
${CUDA_CUDART_LIBRARY}
|
||||
${CUDA_CUBLAS_LIBRARIES}
|
||||
- ${CUDA_cusparse_LIBRARY}
|
||||
+ # ${CUDA_cusparse_LIBRARY}
|
||||
)
|
||||
else()
|
||||
find_package( hipBLAS )
|
||||
@@ -614,138 +623,139 @@ else()
|
||||
endif()
|
||||
endif()
|
||||
add_custom_target( lib DEPENDS magma )
|
||||
-
|
||||
-
|
||||
-# ----------------------------------------
|
||||
-# compile lapacktest library
|
||||
-# If use fortran, compile only Fortran files, not magma_[sdcz]_no_fortran.cpp
|
||||
-# else, compile only C++ files, not Fortran files
|
||||
-if (USE_FORTRAN)
|
||||
- foreach( filename ${liblapacktest_all} )
|
||||
- if (filename MATCHES "\\.(f|f90|F90)$")
|
||||
- list( APPEND liblapacktest_all_f ${filename} )
|
||||
- endif()
|
||||
- endforeach()
|
||||
- add_library( lapacktest ${liblapacktest_all_f} )
|
||||
-else()
|
||||
- # alternatively, use only C/C++/CUDA files, including magma_[sdcz]_no_fortran.cpp
|
||||
- foreach( filename ${liblapacktest_all} )
|
||||
- if (filename MATCHES "\\.(c|cu|cpp)$")
|
||||
- list( APPEND liblapacktest_all_cpp ${filename} )
|
||||
- endif()
|
||||
- endforeach()
|
||||
- add_library( lapacktest ${liblapacktest_all_cpp} )
|
||||
-endif()
|
||||
-target_link_libraries( lapacktest
|
||||
- ${blas_fix}
|
||||
- ${LAPACK_LIBRARIES}
|
||||
-)
|
||||
-
|
||||
-
|
||||
-# ----------------------------------------
|
||||
-# compile tester library
|
||||
-add_library( tester ${libtest_all} )
|
||||
-target_link_libraries( tester
|
||||
- magma
|
||||
- lapacktest
|
||||
- ${blas_fix}
|
||||
- ${LAPACK_LIBRARIES}
|
||||
-)
|
||||
+set_target_properties(magma PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
+
|
||||
+
|
||||
+# # ----------------------------------------
|
||||
+# # compile lapacktest library
|
||||
+# # If use fortran, compile only Fortran files, not magma_[sdcz]_no_fortran.cpp
|
||||
+# # else, compile only C++ files, not Fortran files
|
||||
+# if (USE_FORTRAN)
|
||||
+# foreach( filename ${liblapacktest_all} )
|
||||
+# if (filename MATCHES "\\.(f|f90|F90)$")
|
||||
+# list( APPEND liblapacktest_all_f ${filename} )
|
||||
+# endif()
|
||||
+# endforeach()
|
||||
+# add_library( lapacktest ${liblapacktest_all_f} )
|
||||
+# else()
|
||||
+# # alternatively, use only C/C++/CUDA files, including magma_[sdcz]_no_fortran.cpp
|
||||
+# foreach( filename ${liblapacktest_all} )
|
||||
+# if (filename MATCHES "\\.(c|cu|cpp)$")
|
||||
+# list( APPEND liblapacktest_all_cpp ${filename} )
|
||||
+# endif()
|
||||
+# endforeach()
|
||||
+# add_library( lapacktest ${liblapacktest_all_cpp} )
|
||||
+# endif()
|
||||
+# target_link_libraries( lapacktest
|
||||
+# ${blas_fix}
|
||||
+# ${LAPACK_LIBRARIES}
|
||||
+# )
|
||||
+
|
||||
+
|
||||
+# # ----------------------------------------
|
||||
+# # compile tester library
|
||||
+# add_library( tester ${libtest_all} )
|
||||
+# target_link_libraries( tester
|
||||
+# magma
|
||||
+# lapacktest
|
||||
+# ${blas_fix}
|
||||
+# ${LAPACK_LIBRARIES}
|
||||
+# )
|
||||
|
||||
|
||||
# ----------------------------------------
|
||||
# compile MAGMA sparse library
|
||||
|
||||
# sparse doesn't have Fortran at the moment, so no need for above shenanigans
|
||||
-if (MAGMA_ENABLE_CUDA)
|
||||
- include_directories( sparse/include )
|
||||
- include_directories( sparse/control )
|
||||
-else()
|
||||
- include_directories( sparse_hip/include )
|
||||
- include_directories( sparse_hip/control )
|
||||
-endif()
|
||||
-include_directories( testing )
|
||||
-
|
||||
-if (MAGMA_ENABLE_CUDA)
|
||||
- cuda_add_library( magma_sparse ${libsparse_all} )
|
||||
- target_link_libraries( magma_sparse
|
||||
- magma
|
||||
- ${blas_fix}
|
||||
- ${LAPACK_LIBRARIES}
|
||||
- ${CUDA_CUDART_LIBRARY}
|
||||
- ${CUDA_CUBLAS_LIBRARIES}
|
||||
- ${CUDA_cusparse_LIBRARY}
|
||||
- )
|
||||
-else()
|
||||
- add_library( magma_sparse ${libsparse_all} )
|
||||
- target_link_libraries( magma_sparse
|
||||
- magma
|
||||
- ${blas_fix}
|
||||
- ${LAPACK_LIBRARIES}
|
||||
- hip::device
|
||||
- roc::hipblas
|
||||
- roc::hipsparse
|
||||
- )
|
||||
-endif()
|
||||
-add_custom_target( sparse-lib DEPENDS magma_sparse )
|
||||
-
|
||||
-
|
||||
-# ----------------------------------------
|
||||
-# compile each tester
|
||||
-
|
||||
-# save testers to testing/
|
||||
-# save tester lib files to testing_lib/ to avoid cluttering lib/
|
||||
-set( CMAKE_RUNTIME_OUTPUT_DIRECTORY testing )
|
||||
-set( CMAKE_ARCHIVE_OUTPUT_DIRECTORY testing_lib )
|
||||
-set( CMAKE_LIBRARY_OUTPUT_DIRECTORY testing_lib )
|
||||
-
|
||||
-# skip Fortran testers, which require an extra file from CUDA
|
||||
-foreach( filename ${testing_all} )
|
||||
- if (filename MATCHES "\\.(c|cu|cpp)$")
|
||||
- list( APPEND testing_all_cpp ${filename} )
|
||||
- endif()
|
||||
-endforeach()
|
||||
-foreach( TEST ${testing_all_cpp} )
|
||||
- string( REGEX REPLACE "\\.(cpp|f90|F90)" "" EXE ${TEST} )
|
||||
- string( REGEX REPLACE "testing/" "" EXE ${EXE} )
|
||||
- #message( "${TEST} --> ${EXE}" )
|
||||
- add_executable( ${EXE} ${TEST} )
|
||||
- target_link_libraries( ${EXE} tester lapacktest magma )
|
||||
- list( APPEND testing ${EXE} )
|
||||
-endforeach()
|
||||
-add_custom_target( testing DEPENDS ${testing} )
|
||||
-
|
||||
-
|
||||
-# ----------------------------------------
|
||||
-# compile each sparse tester
|
||||
-
|
||||
-if (MAGMA_ENABLE_CUDA)
|
||||
- set(SPARSE_TEST_DIR "sparse/testing")
|
||||
-else()
|
||||
- set(SPARSE_TEST_DIR "sparse_hip/testing")
|
||||
-endif()
|
||||
-
|
||||
-
|
||||
-set( CMAKE_RUNTIME_OUTPUT_DIRECTORY "${SPARSE_TEST_DIR}" )
|
||||
-cmake_policy( SET CMP0037 OLD)
|
||||
-foreach( TEST ${sparse_testing_all} )
|
||||
- string( REGEX REPLACE "\\.(cpp|f90|F90)" "" EXE ${TEST} )
|
||||
- string( REGEX REPLACE "${SPARSE_TEST_DIR}/" "" EXE ${EXE} )
|
||||
- #message( "${TEST} --> ${EXE}" )
|
||||
- add_executable( ${EXE} ${TEST} )
|
||||
- target_link_libraries( ${EXE} magma_sparse magma )
|
||||
- list( APPEND sparse-testing ${EXE} )
|
||||
-endforeach()
|
||||
-add_custom_target( sparse-testing DEPENDS ${sparse-testing} )
|
||||
+# if (MAGMA_ENABLE_CUDA)
|
||||
+# include_directories( sparse/include )
|
||||
+# include_directories( sparse/control )
|
||||
+# else()
|
||||
+# include_directories( sparse_hip/include )
|
||||
+# include_directories( sparse_hip/control )
|
||||
+# endif()
|
||||
+# include_directories( testing )
|
||||
+
|
||||
+# if (MAGMA_ENABLE_CUDA)
|
||||
+# cuda_add_library( magma_sparse ${libsparse_all} )
|
||||
+# target_link_libraries( magma_sparse
|
||||
+# magma
|
||||
+# ${blas_fix}
|
||||
+# ${LAPACK_LIBRARIES}
|
||||
+# ${CUDA_CUDART_LIBRARY}
|
||||
+# ${CUDA_CUBLAS_LIBRARIES}
|
||||
+# ${CUDA_cusparse_LIBRARY}
|
||||
+# )
|
||||
+# else()
|
||||
+# add_library( magma_sparse ${libsparse_all} )
|
||||
+# target_link_libraries( magma_sparse
|
||||
+# magma
|
||||
+# ${blas_fix}
|
||||
+# ${LAPACK_LIBRARIES}
|
||||
+# hip::device
|
||||
+# roc::hipblas
|
||||
+# roc::hipsparse
|
||||
+# )
|
||||
+# endif()
|
||||
+# add_custom_target( sparse-lib DEPENDS magma_sparse )
|
||||
+
|
||||
+
|
||||
+# # ----------------------------------------
|
||||
+# # compile each tester
|
||||
+
|
||||
+# # save testers to testing/
|
||||
+# # save tester lib files to testing_lib/ to avoid cluttering lib/
|
||||
+# set( CMAKE_RUNTIME_OUTPUT_DIRECTORY testing )
|
||||
+# set( CMAKE_ARCHIVE_OUTPUT_DIRECTORY testing_lib )
|
||||
+# set( CMAKE_LIBRARY_OUTPUT_DIRECTORY testing_lib )
|
||||
+
|
||||
+# # skip Fortran testers, which require an extra file from CUDA
|
||||
+# foreach( filename ${testing_all} )
|
||||
+# if (filename MATCHES "\\.(c|cu|cpp)$")
|
||||
+# list( APPEND testing_all_cpp ${filename} )
|
||||
+# endif()
|
||||
+# endforeach()
|
||||
+# foreach( TEST ${testing_all_cpp} )
|
||||
+# string( REGEX REPLACE "\\.(cpp|f90|F90)" "" EXE ${TEST} )
|
||||
+# string( REGEX REPLACE "testing/" "" EXE ${EXE} )
|
||||
+# #message( "${TEST} --> ${EXE}" )
|
||||
+# add_executable( ${EXE} ${TEST} )
|
||||
+# target_link_libraries( ${EXE} tester lapacktest magma )
|
||||
+# list( APPEND testing ${EXE} )
|
||||
+# endforeach()
|
||||
+# add_custom_target( testing DEPENDS ${testing} )
|
||||
+
|
||||
+
|
||||
+# # ----------------------------------------
|
||||
+# # compile each sparse tester
|
||||
+
|
||||
+# if (MAGMA_ENABLE_CUDA)
|
||||
+# set(SPARSE_TEST_DIR "sparse/testing")
|
||||
+# else()
|
||||
+# set(SPARSE_TEST_DIR "sparse_hip/testing")
|
||||
+# endif()
|
||||
+
|
||||
+
|
||||
+# set( CMAKE_RUNTIME_OUTPUT_DIRECTORY "${SPARSE_TEST_DIR}" )
|
||||
+# cmake_policy( SET CMP0037 OLD)
|
||||
+# foreach( TEST ${sparse_testing_all} )
|
||||
+# string( REGEX REPLACE "\\.(cpp|f90|F90)" "" EXE ${TEST} )
|
||||
+# string( REGEX REPLACE "${SPARSE_TEST_DIR}/" "" EXE ${EXE} )
|
||||
+# #message( "${TEST} --> ${EXE}" )
|
||||
+# add_executable( ${EXE} ${TEST} )
|
||||
+# target_link_libraries( ${EXE} magma_sparse magma )
|
||||
+# list( APPEND sparse-testing ${EXE} )
|
||||
+# endforeach()
|
||||
+# add_custom_target( sparse-testing DEPENDS ${sparse-testing} )
|
||||
|
||||
|
||||
# ----------------------------------------
|
||||
# what to install
|
||||
-install( TARGETS magma magma_sparse ${blas_fix}
|
||||
+install( TARGETS magma ${blas_fix}
|
||||
RUNTIME DESTINATION bin
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib )
|
||||
-file( GLOB headers include/*.h sparse/include/*.h "${CMAKE_BINARY_DIR}/include/*.h" )
|
||||
+file( GLOB headers include/*.h "${CMAKE_BINARY_DIR}/include/*.h" )
|
||||
if (USE_FORTRAN)
|
||||
install( FILES ${headers} ${modules}
|
||||
DESTINATION include )
|
||||
@@ -769,9 +779,9 @@ else()
|
||||
"${blas_fix_lib} ${LAPACK_LIBS} hip::device roc::hipblas roc::hipsparse" )
|
||||
endif()
|
||||
set( MAGMA_REQUIRED "" )
|
||||
-configure_file( "${pkgconfig}.in" "${pkgconfig}" @ONLY )
|
||||
-install( FILES "${CMAKE_BINARY_DIR}/${pkgconfig}"
|
||||
- DESTINATION lib/pkgconfig )
|
||||
+# configure_file( "${pkgconfig}.in" "${pkgconfig}" @ONLY )
|
||||
+# install( FILES "${CMAKE_BINARY_DIR}/${pkgconfig}"
|
||||
+# DESTINATION lib/pkgconfig )
|
||||
|
||||
# ----------------------------------------
|
||||
get_directory_property( compile_definitions COMPILE_DEFINITIONS )
|
||||
@ -1,40 +0,0 @@
|
||||
diff --git a/control/get_batched_crossover.cpp b/control/get_batched_crossover.cpp
|
||||
index 4ec57306..912f8608 100644
|
||||
--- a/control/get_batched_crossover.cpp
|
||||
+++ b/control/get_batched_crossover.cpp
|
||||
@@ -119,7 +119,7 @@ void magma_get_spotrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_
|
||||
void magma_get_zgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_t *recnb)
|
||||
{
|
||||
*nb = 64;
|
||||
- *recnb = 32;
|
||||
+ *recnb = 16;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -127,7 +127,7 @@ void magma_get_zgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_
|
||||
void magma_get_cgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_t *recnb)
|
||||
{
|
||||
*nb = 128;
|
||||
- *recnb = 32;
|
||||
+ *recnb = 16;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -135,7 +135,7 @@ void magma_get_cgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_
|
||||
void magma_get_dgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_t *recnb)
|
||||
{
|
||||
*nb = 128;
|
||||
- *recnb = 32;
|
||||
+ *recnb = 16;
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -143,7 +143,7 @@ void magma_get_dgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_
|
||||
void magma_get_sgetrf_batched_nbparam(magma_int_t n, magma_int_t *nb, magma_int_t *recnb)
|
||||
{
|
||||
*nb = 128;
|
||||
- *recnb = 32;
|
||||
+ *recnb = 16;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1,15 +0,0 @@
|
||||
diff --git a/src/zgetrf_batched.cpp b/src/zgetrf_batched.cpp
|
||||
index 24a65a90..884d9352 100644
|
||||
--- a/src/zgetrf_batched.cpp
|
||||
+++ b/src/zgetrf_batched.cpp
|
||||
@@ -116,7 +116,9 @@ magma_zgetrf_batched(
|
||||
return magma_zgetrf_batched_smallsq_noshfl( m, dA_array, ldda, ipiv_array, info_array, batchCount, queue );
|
||||
}
|
||||
else{
|
||||
- return magma_zgetrf_batched_smallsq_shfl( m, dA_array, ldda, ipiv_array, info_array, batchCount, queue );
|
||||
+ // magma_cgetrf_batched_smallsq_shfl is broken, therefore let's call noshfl version for arch < 700
|
||||
+ // return magma_zgetrf_batched_smallsq_shfl( m, dA_array, ldda, ipiv_array, info_array, batchCount, queue );
|
||||
+ return magma_zgetrf_batched_smallsq_noshfl( m, dA_array, ldda, ipiv_array, info_array, batchCount, queue );
|
||||
}
|
||||
#else
|
||||
return magma_zgetrf_batched_smallsq_noshfl( m, dA_array, ldda, ipiv_array, info_array, batchCount, queue );
|
||||
@ -1 +0,0 @@
|
||||
6cd83808c6e8bc7a44028e05112b3ab4e579bcc73202ed14733f66661127e213 magma-2.6.1.tar.gz
|
||||
@ -1,20 +0,0 @@
|
||||
--- control/thread_queue.cpp 2016-08-30 06:37:49.000000000 -0700
|
||||
+++ control/thread_queue.cpp 2016-10-10 19:47:28.911580965 -0700
|
||||
@@ -15,7 +15,7 @@
|
||||
{
|
||||
if ( err != 0 ) {
|
||||
fprintf( stderr, "Error: %s (%d)\n", strerror(err), err );
|
||||
- throw std::exception();
|
||||
+ // throw std::exception();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -172,7 +172,7 @@
|
||||
check( pthread_mutex_lock( &mutex ));
|
||||
if ( quit_flag ) {
|
||||
fprintf( stderr, "Error: push_task() called after quit()\n" );
|
||||
- throw std::exception();
|
||||
+ // throw std::exception();
|
||||
}
|
||||
q.push( task );
|
||||
ntask += 1;
|
||||
@ -15,12 +15,9 @@ case "${GPU_ARCH_TYPE:-BLANK}" in
|
||||
rocm)
|
||||
bash "${SCRIPTPATH}/build_rocm.sh"
|
||||
;;
|
||||
cpu | cpu-cxx11-abi | cpu-s390x)
|
||||
cpu | cpu-cxx11-abi | cpu-s390x | xpu)
|
||||
bash "${SCRIPTPATH}/build_cpu.sh"
|
||||
;;
|
||||
xpu)
|
||||
bash "${SCRIPTPATH}/build_xpu.sh"
|
||||
;;
|
||||
*)
|
||||
echo "Un-recognized GPU_ARCH_TYPE '${GPU_ARCH_TYPE}', exiting..."
|
||||
exit 1
|
||||
|
||||
@ -4,9 +4,12 @@
|
||||
set -ex
|
||||
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
|
||||
|
||||
source ${SOURCE_DIR}/set_desired_python.sh
|
||||
|
||||
|
||||
# Require only one python installation
|
||||
if [[ -z "$DESIRED_PYTHON" ]]; then
|
||||
echo "Need to set DESIRED_PYTHON env variable"
|
||||
exit 1
|
||||
fi
|
||||
if [[ -n "$BUILD_PYTHONLESS" && -z "$LIBTORCH_VARIANT" ]]; then
|
||||
echo "BUILD_PYTHONLESS is set, so need LIBTORCH_VARIANT to also be set"
|
||||
echo "LIBTORCH_VARIANT should be one of shared-with-deps shared-without-deps static-with-deps static-without-deps"
|
||||
@ -18,14 +21,12 @@ retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
PLATFORM="manylinux2014_x86_64"
|
||||
# TODO move this into the Docker images
|
||||
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
|
||||
retry yum install -q -y zip openssl
|
||||
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
retry yum install -q -y zip openssl
|
||||
PLATFORM="manylinux_2_28_x86_64"
|
||||
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
retry dnf install -q -y zip openssl
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
@ -79,7 +80,27 @@ if [[ -e /opt/openssl ]]; then
|
||||
export CMAKE_INCLUDE_PATH="/opt/openssl/include":$CMAKE_INCLUDE_PATH
|
||||
fi
|
||||
|
||||
# If given a python version like 3.6m or 2.7mu, convert this to the format we
|
||||
# expect. The binary CI jobs pass in python versions like this; they also only
|
||||
# ever pass one python version, so we assume that DESIRED_PYTHON is not a list
|
||||
# in this case
|
||||
if [[ -n "$DESIRED_PYTHON" && $DESIRED_PYTHON =~ ([0-9].[0-9]+)t ]]; then
|
||||
python_digits="$(echo $DESIRED_PYTHON | tr -cd [:digit:])"
|
||||
py_majmin="${DESIRED_PYTHON}"
|
||||
DESIRED_PYTHON="cp${python_digits}-cp${python_digits}t"
|
||||
elif [[ -n "$DESIRED_PYTHON" && "$DESIRED_PYTHON" != cp* ]]; then
|
||||
python_nodot="$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
DESIRED_PYTHON="cp${python_nodot}-cp${python_nodot}"
|
||||
if [[ ${python_nodot} -ge 310 ]]; then
|
||||
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:2}"
|
||||
else
|
||||
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:1}"
|
||||
fi
|
||||
fi
|
||||
|
||||
pydir="/opt/python/$DESIRED_PYTHON"
|
||||
export PATH="$pydir/bin:$PATH"
|
||||
echo "Will build for Python version: ${DESIRED_PYTHON} with ${python_installation}"
|
||||
|
||||
mkdir -p /tmp/$WHEELHOUSE_DIR
|
||||
|
||||
@ -255,11 +276,11 @@ make_wheel_record() {
|
||||
FPATH=$1
|
||||
if echo $FPATH | grep RECORD >/dev/null 2>&1; then
|
||||
# if the RECORD file, then
|
||||
echo "\"$FPATH\",,"
|
||||
echo "$FPATH,,"
|
||||
else
|
||||
HASH=$(openssl dgst -sha256 -binary $FPATH | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
|
||||
FSIZE=$(ls -nl $FPATH | awk '{print $5}')
|
||||
echo "\"$FPATH\",sha256=$HASH,$FSIZE"
|
||||
echo "$FPATH,sha256=$HASH,$FSIZE"
|
||||
fi
|
||||
}
|
||||
|
||||
@ -379,12 +400,6 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
$PATCHELF_BIN --print-rpath $sofile
|
||||
done
|
||||
|
||||
# create Manylinux 2_28 tag this needs to happen before regenerate the RECORD
|
||||
if [[ $PLATFORM == "manylinux_2_28_x86_64" && $GPU_ARCH_TYPE != "cpu-s390x" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
wheel_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/WHEEL/g')
|
||||
sed -i -e s#linux_x86_64#"${PLATFORM}"# $wheel_file;
|
||||
fi
|
||||
|
||||
# regenerate the RECORD file with new hashes
|
||||
record_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/RECORD/g')
|
||||
if [[ -e $record_file ]]; then
|
||||
@ -424,20 +439,12 @@ for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.w
|
||||
popd
|
||||
fi
|
||||
|
||||
# Rename wheel for Manylinux 2_28
|
||||
if [[ $PLATFORM == "manylinux_2_28_x86_64" && $GPU_ARCH_TYPE != "cpu-s390x" && $GPU_ARCH_TYPE != "xpu" ]]; then
|
||||
pkg_name=$(echo $(basename $pkg) | sed -e s#linux_x86_64#"${PLATFORM}"#)
|
||||
zip -rq $pkg_name $PREIX*
|
||||
rm -f $pkg
|
||||
mv $pkg_name $(dirname $pkg)/$pkg_name
|
||||
else
|
||||
# zip up the wheel back
|
||||
zip -rq $(basename $pkg) $PREIX*
|
||||
# remove original wheel
|
||||
rm -f $pkg
|
||||
mv $(basename $pkg) $pkg
|
||||
fi
|
||||
# zip up the wheel back
|
||||
zip -rq $(basename $pkg) $PREIX*
|
||||
|
||||
# replace original wheel
|
||||
rm -f $pkg
|
||||
mv $(basename $pkg) $pkg
|
||||
cd ..
|
||||
rm -rf tmp
|
||||
done
|
||||
@ -490,9 +497,9 @@ if [[ -z "$BUILD_PYTHONLESS" ]]; then
|
||||
echo "$(date) :: Running tests"
|
||||
pushd "$PYTORCH_ROOT"
|
||||
|
||||
|
||||
#TODO: run_tests.sh and check_binary.sh should be moved to pytorch/pytorch project
|
||||
LD_LIBRARY_PATH=/usr/local/nvidia/lib64 \
|
||||
"${PYTORCH_ROOT}/.ci/pytorch/run_tests.sh" manywheel "${py_majmin}" "$DESIRED_CUDA"
|
||||
"/builder/run_tests.sh" manywheel "${py_majmin}" "$DESIRED_CUDA"
|
||||
popd
|
||||
echo "$(date) :: Finished tests"
|
||||
fi
|
||||
|
||||
@ -2,6 +2,8 @@
|
||||
|
||||
set -ex
|
||||
|
||||
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
|
||||
|
||||
export TH_BINARY_BUILD=1
|
||||
export USE_CUDA=0
|
||||
|
||||
@ -15,13 +17,22 @@ if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
WHEELHOUSE_DIR="wheelhousecpu"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_housecpu"
|
||||
DIR_SUFFIX=cpu
|
||||
if [[ "$GPU_ARCH_TYPE" == "xpu" ]]; then
|
||||
DIR_SUFFIX=xpu
|
||||
# Refer https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu/2-5.html
|
||||
source /opt/intel/oneapi/pytorch-gpu-dev-0.5/oneapi-vars.sh
|
||||
source /opt/intel/oneapi/pti/latest/env/vars.sh
|
||||
export USE_STATIC_MKL=1
|
||||
fi
|
||||
|
||||
WHEELHOUSE_DIR="wheelhouse$DIR_SUFFIX"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_house$DIR_SUFFIX"
|
||||
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
|
||||
if [[ -z "$BUILD_PYTHONLESS" ]]; then
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhousecpu"
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhouse$DIR_SUFFIX"
|
||||
else
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_housecpu"
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_house$DIR_SUFFIX"
|
||||
fi
|
||||
fi
|
||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
|
||||
@ -49,6 +60,34 @@ DEPS_SONAME=(
|
||||
"libgomp.so.1"
|
||||
)
|
||||
|
||||
if [[ "$GPU_ARCH_TYPE" == "xpu" ]]; then
|
||||
echo "Bundling with xpu support package libs."
|
||||
DEPS_LIST+=(
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libsycl-preview.so.7"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libOpenCL.so.1"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libxptifw.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libsvml.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libirng.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libimf.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libintlc.so.5"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libpi_level_zero.so"
|
||||
"/opt/intel/oneapi/pti/latest/lib/libpti_view.so.0.9"
|
||||
"/opt/intel/oneapi/pti/latest/lib/libpti.so.0.9"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libsycl-preview.so.7"
|
||||
"libOpenCL.so.1"
|
||||
"libxptifw.so"
|
||||
"libsvml.so"
|
||||
"libirng.so"
|
||||
"libimf.so"
|
||||
"libintlc.so.5"
|
||||
"libpi_level_zero.so"
|
||||
"libpti_view.so.0.9"
|
||||
"libpti.so.0.9"
|
||||
)
|
||||
fi
|
||||
|
||||
rm -rf /usr/local/cuda*
|
||||
|
||||
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
|
||||
|
||||
@ -43,6 +43,13 @@ if [[ -n "$DESIRED_CUDA" ]]; then
|
||||
fi
|
||||
fi
|
||||
echo "Using CUDA $CUDA_VERSION as determined by DESIRED_CUDA"
|
||||
|
||||
# There really has to be a better way to do this - eli
|
||||
# Possibly limiting builds to specific cuda versions be delimiting images would be a choice
|
||||
if [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
echo "Switching to CUDA version ${DESIRED_CUDA}"
|
||||
/builder/conda/switch_cuda_version.sh "${DESIRED_CUDA}"
|
||||
fi
|
||||
else
|
||||
CUDA_VERSION=$(nvcc --version|grep release|cut -f5 -d" "|cut -f1 -d",")
|
||||
echo "CUDA $CUDA_VERSION Detected"
|
||||
@ -52,11 +59,15 @@ cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
|
||||
|
||||
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6"
|
||||
case ${CUDA_VERSION} in
|
||||
12.6)
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0+PTX"
|
||||
12.4)
|
||||
if [[ "$GPU_ARCH_TYPE" = "cuda-aarch64" ]]; then
|
||||
TORCH_CUDA_ARCH_LIST="9.0"
|
||||
else
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0+PTX"
|
||||
fi
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
;;
|
||||
12.4)
|
||||
12.1)
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
;;
|
||||
@ -64,6 +75,10 @@ case ${CUDA_VERSION} in
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7;9.0"
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
;;
|
||||
11.[67])
|
||||
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7"
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
|
||||
;;
|
||||
*)
|
||||
echo "unknown cuda version $CUDA_VERSION"
|
||||
exit 1
|
||||
@ -103,9 +118,7 @@ DEPS_SONAME=(
|
||||
"libgomp.so.1"
|
||||
)
|
||||
|
||||
# CUDA 11.8 have to ship the libcusparseLt.so.0 with the binary
|
||||
# since nvidia-cusparselt-cu11 is not available in PYPI
|
||||
if [[ $USE_CUSPARSELT == "1" && $CUDA_VERSION == "11.8" ]]; then
|
||||
if [[ $USE_CUSPARSELT == "1" ]]; then
|
||||
DEPS_SONAME+=(
|
||||
"libcusparseLt.so.0"
|
||||
)
|
||||
@ -114,7 +127,7 @@ if [[ $USE_CUSPARSELT == "1" && $CUDA_VERSION == "11.8" ]]; then
|
||||
)
|
||||
fi
|
||||
|
||||
if [[ $CUDA_VERSION == "12.4" || $CUDA_VERSION == "12.6" ]]; then
|
||||
if [[ $CUDA_VERSION == "12.1" || $CUDA_VERSION == "12.4" ]]; then
|
||||
export USE_STATIC_CUDNN=0
|
||||
# Try parallelizing nvcc as well
|
||||
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
|
||||
@ -132,7 +145,6 @@ if [[ $CUDA_VERSION == "12.4" || $CUDA_VERSION == "12.6" ]]; then
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9"
|
||||
"/usr/local/cuda/lib64/libcublas.so.12"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12"
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0"
|
||||
"/usr/local/cuda/lib64/libcudart.so.12"
|
||||
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12"
|
||||
@ -149,7 +161,6 @@ if [[ $CUDA_VERSION == "12.4" || $CUDA_VERSION == "12.6" ]]; then
|
||||
"libcudnn.so.9"
|
||||
"libcublas.so.12"
|
||||
"libcublasLt.so.12"
|
||||
"libcusparseLt.so.0"
|
||||
"libcudart.so.12"
|
||||
"libnvToolsExt.so.1"
|
||||
"libnvrtc.so.12"
|
||||
@ -167,7 +178,6 @@ if [[ $CUDA_VERSION == "12.4" || $CUDA_VERSION == "12.6" ]]; then
|
||||
'$ORIGIN/../../nvidia/curand/lib'
|
||||
'$ORIGIN/../../nvidia/cusolver/lib'
|
||||
'$ORIGIN/../../nvidia/cusparse/lib'
|
||||
'$ORIGIN/../../cusparselt/lib'
|
||||
'$ORIGIN/../../nvidia/nccl/lib'
|
||||
'$ORIGIN/../../nvidia/nvtx/lib'
|
||||
)
|
||||
@ -256,7 +266,7 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# run_tests.sh requires DESIRED_CUDA to know what tests to exclude
|
||||
# builder/test.sh requires DESIRED_CUDA to know what tests to exclude
|
||||
export DESIRED_CUDA="$cuda_version_nodot"
|
||||
|
||||
# Switch `/usr/local/cuda` to the desired CUDA version
|
||||
|
||||
@ -225,11 +225,11 @@ make_wheel_record() {
|
||||
FPATH=$1
|
||||
if echo $FPATH | grep RECORD >/dev/null 2>&1; then
|
||||
# if the RECORD file, then
|
||||
echo "\"$FPATH\",,"
|
||||
echo "$FPATH,,"
|
||||
else
|
||||
HASH=$(openssl dgst -sha256 -binary $FPATH | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
|
||||
FSIZE=$(ls -nl $FPATH | awk '{print $5}')
|
||||
echo "\"$FPATH\",sha256=$HASH,$FSIZE"
|
||||
echo "$FPATH,sha256=$HASH,$FSIZE"
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
@ -107,29 +107,17 @@ if [[ $ROCM_INT -ge 60200 ]]; then
|
||||
fi
|
||||
|
||||
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* || "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
LIBNUMA_PATH="/usr/lib64/libnuma.so.1"
|
||||
LIBELF_PATH="/usr/lib64/libelf.so.1"
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
|
||||
LIBTINFO_PATH="/usr/lib64/libtinfo.so.5"
|
||||
else
|
||||
LIBTINFO_PATH="/usr/lib64/libtinfo.so.6"
|
||||
fi
|
||||
LIBTINFO_PATH="/usr/lib64/libtinfo.so.5"
|
||||
LIBDRM_PATH="/opt/amdgpu/lib64/libdrm.so.2"
|
||||
LIBDRM_AMDGPU_PATH="/opt/amdgpu/lib64/libdrm_amdgpu.so.1"
|
||||
if [[ $ROCM_INT -ge 60100 && $ROCM_INT -lt 60300 ]]; then
|
||||
if [[ $ROCM_INT -ge 60100 ]]; then
|
||||
# Below libs are direct dependencies of libhipsolver
|
||||
LIBSUITESPARSE_CONFIG_PATH="/lib64/libsuitesparseconfig.so.4"
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
|
||||
LIBCHOLMOD_PATH="/lib64/libcholmod.so.2"
|
||||
# Below libs are direct dependencies of libsatlas
|
||||
LIBGFORTRAN_PATH="/lib64/libgfortran.so.3"
|
||||
else
|
||||
LIBCHOLMOD_PATH="/lib64/libcholmod.so.3"
|
||||
# Below libs are direct dependencies of libsatlas
|
||||
LIBGFORTRAN_PATH="/lib64/libgfortran.so.5"
|
||||
fi
|
||||
LIBCHOLMOD_PATH="/lib64/libcholmod.so.2"
|
||||
# Below libs are direct dependencies of libcholmod
|
||||
LIBAMD_PATH="/lib64/libamd.so.2"
|
||||
LIBCAMD_PATH="/lib64/libcamd.so.2"
|
||||
@ -137,6 +125,7 @@ if [[ "$OS_NAME" == *"CentOS Linux"* || "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
LIBCOLAMD_PATH="/lib64/libcolamd.so.2"
|
||||
LIBSATLAS_PATH="/lib64/atlas/libsatlas.so.3"
|
||||
# Below libs are direct dependencies of libsatlas
|
||||
LIBGFORTRAN_PATH="/lib64/libgfortran.so.3"
|
||||
LIBQUADMATH_PATH="/lib64/libquadmath.so.0"
|
||||
fi
|
||||
MAYBE_LIB64=lib64
|
||||
@ -151,7 +140,7 @@ elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
fi
|
||||
LIBDRM_PATH="/usr/lib/x86_64-linux-gnu/libdrm.so.2"
|
||||
LIBDRM_AMDGPU_PATH="/usr/lib/x86_64-linux-gnu/libdrm_amdgpu.so.1"
|
||||
if [[ $ROCM_INT -ge 60100 && $ROCM_INT -lt 60300 ]]; then
|
||||
if [[ $ROCM_INT -ge 60100 ]]; then
|
||||
# Below libs are direct dependencies of libhipsolver
|
||||
LIBCHOLMOD_PATH="/lib/x86_64-linux-gnu/libcholmod.so.3"
|
||||
# Below libs are direct dependencies of libcholmod
|
||||
@ -186,6 +175,12 @@ do
|
||||
OS_SO_FILES[${#OS_SO_FILES[@]}]=$file_name # Append lib to array
|
||||
done
|
||||
|
||||
# PyTorch-version specific
|
||||
# AOTriton dependency only for PyTorch >= 2.4
|
||||
if (( $(echo "${PYTORCH_VERSION} 2.4" | awk '{print ($1 >= $2)}') )); then
|
||||
ROCM_SO_FILES+=("libaotriton_v2.so")
|
||||
fi
|
||||
|
||||
# rocBLAS library files
|
||||
ROCBLAS_LIB_SRC=$ROCM_HOME/lib/rocblas/library
|
||||
ROCBLAS_LIB_DST=lib/rocblas/library
|
||||
|
||||
@ -1,108 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
export TH_BINARY_BUILD=1
|
||||
export USE_CUDA=0
|
||||
|
||||
# Keep an array of cmake variables to add to
|
||||
if [[ -z "$CMAKE_ARGS" ]]; then
|
||||
# These are passed to tools/build_pytorch_libs.sh::build()
|
||||
CMAKE_ARGS=()
|
||||
fi
|
||||
if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
|
||||
# These are passed to tools/build_pytorch_libs.sh::build_caffe2()
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=()
|
||||
fi
|
||||
|
||||
|
||||
# Refer https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
|
||||
source /opt/intel/oneapi/compiler/latest/env/vars.sh
|
||||
source /opt/intel/oneapi/pti/latest/env/vars.sh
|
||||
source /opt/intel/oneapi/umf/latest/env/vars.sh
|
||||
export USE_STATIC_MKL=1
|
||||
|
||||
WHEELHOUSE_DIR="wheelhousexpu"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_housexpu"
|
||||
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
|
||||
if [[ -z "$BUILD_PYTHONLESS" ]]; then
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhousexpu"
|
||||
else
|
||||
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_housexpu"
|
||||
fi
|
||||
fi
|
||||
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
|
||||
|
||||
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
|
||||
if [[ "$(uname -m)" == "s390x" ]]; then
|
||||
LIBGOMP_PATH="/usr/lib/s390x-linux-gnu/libgomp.so.1"
|
||||
else
|
||||
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
|
||||
fi
|
||||
fi
|
||||
|
||||
DEPS_LIST=(
|
||||
"$LIBGOMP_PATH"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libOpenCL.so.1"
|
||||
)
|
||||
|
||||
DEPS_SONAME=(
|
||||
"libgomp.so.1"
|
||||
"libOpenCL.so.1"
|
||||
)
|
||||
|
||||
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
|
||||
echo "Bundling with xpu support package libs."
|
||||
DEPS_LIST+=(
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libsycl.so.8"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libur_loader.so.0"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libur_adapter_level_zero.so.0"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libur_adapter_opencl.so.0"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libsvml.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libirng.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libimf.so"
|
||||
"/opt/intel/oneapi/compiler/latest/lib/libintlc.so.5"
|
||||
"/opt/intel/oneapi/pti/latest/lib/libpti_view.so.0.10"
|
||||
"/opt/intel/oneapi/umf/latest/lib/libumf.so.0"
|
||||
"/opt/intel/oneapi/tcm/latest/lib/libhwloc.so.15"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
"libsycl.so.8"
|
||||
"libur_loader.so.0"
|
||||
"libur_adapter_level_zero.so.0"
|
||||
"libur_adapter_opencl.so.0"
|
||||
"libsvml.so"
|
||||
"libirng.so"
|
||||
"libimf.so"
|
||||
"libintlc.so.5"
|
||||
"libpti_view.so.0.10"
|
||||
"libumf.so.0"
|
||||
"libhwloc.so.15"
|
||||
)
|
||||
else
|
||||
echo "Using xpu runtime libs from pypi."
|
||||
XPU_RPATHS=(
|
||||
'$ORIGIN/../../../..'
|
||||
)
|
||||
XPU_RPATHS=$(IFS=: ; echo "${XPU_RPATHS[*]}")
|
||||
export C_SO_RPATH=$XPU_RPATHS':$ORIGIN:$ORIGIN/lib'
|
||||
export LIB_SO_RPATH=$XPU_RPATHS':$ORIGIN'
|
||||
export FORCE_RPATH="--force-rpath"
|
||||
fi
|
||||
|
||||
rm -rf /usr/local/cuda*
|
||||
|
||||
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
|
||||
if [[ -z "$BUILD_PYTHONLESS" ]]; then
|
||||
BUILD_SCRIPT=build_common.sh
|
||||
else
|
||||
BUILD_SCRIPT=build_libtorch.sh
|
||||
fi
|
||||
source ${SOURCE_DIR}/${BUILD_SCRIPT}
|
||||
@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Require only one python installation
|
||||
if [[ -z "$DESIRED_PYTHON" ]]; then
|
||||
echo "Need to set DESIRED_PYTHON env variable"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# If given a python version like 3.6m or 2.7mu, convert this to the format we
|
||||
# expect. The binary CI jobs pass in python versions like this; they also only
|
||||
# ever pass one python version, so we assume that DESIRED_PYTHON is not a list
|
||||
# in this case
|
||||
if [[ -n "$DESIRED_PYTHON" && $DESIRED_PYTHON =~ ([0-9].[0-9]+)t ]]; then
|
||||
python_digits="$(echo $DESIRED_PYTHON | tr -cd [:digit:])"
|
||||
py_majmin="${DESIRED_PYTHON}"
|
||||
DESIRED_PYTHON="cp${python_digits}-cp${python_digits}t"
|
||||
elif [[ -n "$DESIRED_PYTHON" && "$DESIRED_PYTHON" != cp* ]]; then
|
||||
python_nodot="$(echo $DESIRED_PYTHON | tr -d m.u)"
|
||||
DESIRED_PYTHON="cp${python_nodot}-cp${python_nodot}"
|
||||
if [[ ${python_nodot} -ge 310 ]]; then
|
||||
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:2}"
|
||||
else
|
||||
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:1}"
|
||||
fi
|
||||
fi
|
||||
|
||||
pydir="/opt/python/$DESIRED_PYTHON"
|
||||
export DESIRED_PYTHON_BIN_DIR="${pydir}/bin"
|
||||
export PATH="$DESIRED_PYTHON_BIN_DIR:$PATH"
|
||||
echo "Will build for Python version: ${DESIRED_PYTHON}"
|
||||
@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
# Required environment variable: $BUILD_ENVIRONMENT
|
||||
# (This is set by default in the Docker images we build, so you don't
|
||||
@ -87,7 +87,7 @@ else
|
||||
|
||||
# Workaround required for MKL library linkage
|
||||
# https://github.com/pytorch/pytorch/issues/119557
|
||||
if [[ "$ANACONDA_PYTHON_VERSION" = "3.12" || "$ANACONDA_PYTHON_VERSION" = "3.13" ]]; then
|
||||
if [ "$ANACONDA_PYTHON_VERSION" = "3.12" ]; then
|
||||
export CMAKE_LIBRARY_PATH="/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/lib/"
|
||||
export CMAKE_INCLUDE_PATH="/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/include/"
|
||||
fi
|
||||
@ -191,7 +191,7 @@ fi
|
||||
|
||||
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
|
||||
# memory to build and will OOM
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ "$TORCH_CUDA_ARCH_LIST" == *"8.6"* || "$TORCH_CUDA_ARCH_LIST" == *"8.0"* ]]; then
|
||||
echo "WARNING: FlashAttention files require large amounts of memory to build and will OOM"
|
||||
echo "Setting MAX_JOBS=(nproc-2)/3 to reduce memory usage"
|
||||
export MAX_JOBS="$(( $(nproc --ignore=2) / 3 ))"
|
||||
@ -228,9 +228,9 @@ if [[ "$BUILD_ENVIRONMENT" == *-debug* ]]; then
|
||||
export CMAKE_BUILD_TYPE=RelWithAssert
|
||||
fi
|
||||
|
||||
# Do not change workspace permissions for ROCm and s390x CI jobs
|
||||
# Do not change workspace permissions for ROCm CI jobs
|
||||
# as it can leave workspace with bad permissions for cancelled jobs
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /var/lib/jenkins/workspace ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* ]]; then
|
||||
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
|
||||
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
|
||||
cleanup_workspace() {
|
||||
@ -247,9 +247,10 @@ if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /v
|
||||
fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
|
||||
set -e -o pipefail
|
||||
set -e
|
||||
|
||||
get_bazel
|
||||
install_sccache_nvcc_for_bazel
|
||||
|
||||
# Leave 1 CPU free and use only up to 80% of memory to reduce the change of crashing
|
||||
# the runner
|
||||
@ -278,13 +279,14 @@ else
|
||||
"$BUILD_ENVIRONMENT" != *xla* ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" != *py3.8* ]]; then
|
||||
# Install numpy-2.0.2 for builds which are backward compatible with 1.X
|
||||
python -mpip install numpy==2.0.2
|
||||
python -mpip install --pre numpy==2.0.2
|
||||
fi
|
||||
|
||||
WERROR=1 python setup.py clean
|
||||
|
||||
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
|
||||
python3 tools/packaging/split_wheel.py bdist_wheel
|
||||
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 python setup.py bdist_wheel
|
||||
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 python setup.py bdist_wheel --cmake
|
||||
else
|
||||
WERROR=1 python setup.py bdist_wheel
|
||||
fi
|
||||
@ -395,7 +397,9 @@ if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]];
|
||||
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
|
||||
python tools/stats/export_test_times.py
|
||||
fi
|
||||
# don't do this for bazel or s390x as they don't use sccache
|
||||
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
|
||||
|
||||
# snadampal: skipping it till sccache support added for aarch64
|
||||
# https://github.com/pytorch/pytorch/issues/121559
|
||||
if [[ "$BUILD_ENVIRONMENT" != *aarch64* && "$BUILD_ENVIRONMENT" != *s390x* ]]; then
|
||||
print_sccache_stats
|
||||
fi
|
||||
|
||||
@ -1,394 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# shellcheck disable=SC2086,SC2006,SC2207,SC2076,SC2155,SC2046,SC1091,SC2143
|
||||
# TODO: Re-enable shellchecks above
|
||||
|
||||
set -eux -o pipefail
|
||||
|
||||
# This script checks the following things on binaries
|
||||
# 1. The gcc abi matches DESIRED_DEVTOOLSET
|
||||
# 2. MacOS binaries do not link against OpenBLAS
|
||||
# 3. There are no protobuf symbols of any sort anywhere (turned off, because
|
||||
# this is currently not true)
|
||||
# 4. Standard Python imports work
|
||||
# 5. MKL is available everywhere except for MacOS wheels
|
||||
# 6. XNNPACK is available everywhere except for MacOS wheels
|
||||
# 7. CUDA is setup correctly and does not hang
|
||||
# 8. Magma is available for CUDA builds
|
||||
# 9. CuDNN is available for CUDA builds
|
||||
#
|
||||
# This script needs the env variables DESIRED_PYTHON, DESIRED_CUDA,
|
||||
# DESIRED_DEVTOOLSET and PACKAGE_TYPE
|
||||
#
|
||||
# This script expects PyTorch to be installed into the active Python (the
|
||||
# Python returned by `which python`). Or, if this is testing a libtorch
|
||||
# Pythonless binary, then it expects to be in the root folder of the unzipped
|
||||
# libtorch package.
|
||||
|
||||
|
||||
if [[ -z ${DESIRED_PYTHON:-} ]]; then
|
||||
export DESIRED_PYTHON=${MATRIX_PYTHON_VERSION:-}
|
||||
fi
|
||||
if [[ -z ${DESIRED_CUDA:-} ]]; then
|
||||
export DESIRED_CUDA=${MATRIX_DESIRED_CUDA:-}
|
||||
fi
|
||||
if [[ -z ${DESIRED_DEVTOOLSET:-} ]]; then
|
||||
export DESIRED_DEVTOOLSET=${MATRIX_DESIRED_DEVTOOLSET:-}
|
||||
fi
|
||||
if [[ -z ${PACKAGE_TYPE:-} ]]; then
|
||||
export PACKAGE_TYPE=${MATRIX_PACKAGE_TYPE:-}
|
||||
fi
|
||||
|
||||
# The install root depends on both the package type and the os
|
||||
# All MacOS packages use conda, even for the wheel packages.
|
||||
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
|
||||
# NOTE: Only $PWD works on both CentOS and Ubuntu
|
||||
export install_root="$PWD"
|
||||
else
|
||||
|
||||
if [[ $DESIRED_PYTHON =~ ([0-9].[0-9]+)t ]]; then
|
||||
# For python that is maj.mint keep original version
|
||||
py_dot="$DESIRED_PYTHON"
|
||||
elif [[ $DESIRED_PYTHON =~ ([0-9].[0-9]+) ]]; then
|
||||
# Strip everything but major.minor from DESIRED_PYTHON version
|
||||
py_dot="${BASH_REMATCH[0]}"
|
||||
else
|
||||
echo "Unexpected ${DESIRED_PYTHON} format"
|
||||
exit 1
|
||||
fi
|
||||
export install_root="$(dirname $(which python))/../lib/python${py_dot}/site-packages/torch/"
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Setup XPU ENV
|
||||
###############################################################################
|
||||
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
|
||||
set +u
|
||||
# Refer https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
|
||||
source /opt/intel/oneapi/compiler/latest/env/vars.sh
|
||||
source /opt/intel/oneapi/pti/latest/env/vars.sh
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check GCC ABI
|
||||
###############################################################################
|
||||
|
||||
# NOTE [ Building libtorch with old vs. new gcc ABI ]
|
||||
#
|
||||
# Packages built with one version of ABI could not be linked against by client
|
||||
# C++ libraries that were compiled using the other version of ABI. Since both
|
||||
# gcc ABIs are still common in the wild, we need to support both ABIs. Currently:
|
||||
#
|
||||
# - All the nightlies built on CentOS 7 + devtoolset7 use the old gcc ABI.
|
||||
# - All the nightlies built on Ubuntu 16.04 + gcc 5.4 use the new gcc ABI.
|
||||
|
||||
echo "Checking that the gcc ABI is what we expect"
|
||||
if [[ "$(uname)" != 'Darwin' ]]; then
|
||||
function is_expected() {
|
||||
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* || "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
if [[ "$1" -gt 0 || "$1" == "ON " ]]; then
|
||||
echo 1
|
||||
fi
|
||||
else
|
||||
if [[ -z "$1" || "$1" == 0 || "$1" == "OFF" ]]; then
|
||||
echo 1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# First we check that the env var in TorchConfig.cmake is correct
|
||||
|
||||
# We search for D_GLIBCXX_USE_CXX11_ABI=1 in torch/TorchConfig.cmake
|
||||
torch_config="${install_root}/share/cmake/Torch/TorchConfig.cmake"
|
||||
if [[ ! -f "$torch_config" ]]; then
|
||||
echo "No TorchConfig.cmake found!"
|
||||
ls -lah "$install_root/share/cmake/Torch"
|
||||
exit 1
|
||||
fi
|
||||
echo "Checking the TorchConfig.cmake"
|
||||
cat "$torch_config"
|
||||
|
||||
# The sed call below is
|
||||
# don't print lines by default (only print the line we want)
|
||||
# -n
|
||||
# execute the following expression
|
||||
# e
|
||||
# replace lines that match with the first capture group and print
|
||||
# s/.*D_GLIBCXX_USE_CXX11_ABI=\(.\)".*/\1/p
|
||||
# any characters, D_GLIBCXX_USE_CXX11_ABI=, exactly one any character, a
|
||||
# quote, any characters
|
||||
# Note the exactly one single character after the '='. In the case that the
|
||||
# variable is not set the '=' will be followed by a '"' immediately and the
|
||||
# line will fail the match and nothing will be printed; this is what we
|
||||
# want. Otherwise it will capture the 0 or 1 after the '='.
|
||||
# /.*D_GLIBCXX_USE_CXX11_ABI=\(.\)".*/
|
||||
# replace the matched line with the capture group and print
|
||||
# /\1/p
|
||||
actual_gcc_abi="$(sed -ne 's/.*D_GLIBCXX_USE_CXX11_ABI=\(.\)".*/\1/p' < "$torch_config")"
|
||||
if [[ "$(is_expected "$actual_gcc_abi")" != 1 ]]; then
|
||||
echo "gcc ABI $actual_gcc_abi not as expected."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# We also check that there are [not] cxx11 symbols in libtorch
|
||||
#
|
||||
echo "Checking that symbols in libtorch.so have the right gcc abi"
|
||||
python3 "$(dirname ${BASH_SOURCE[0]})/smoke_test/check_binary_symbols.py"
|
||||
|
||||
echo "cxx11 symbols seem to be in order"
|
||||
fi # if on Darwin
|
||||
|
||||
###############################################################################
|
||||
# Check for no OpenBLAS
|
||||
# TODO Check for no Protobuf symbols (not finished)
|
||||
# Print *all* runtime dependencies
|
||||
###############################################################################
|
||||
# We have to loop through all shared libraries for this
|
||||
if [[ "$(uname)" == 'Darwin' ]]; then
|
||||
all_dylibs=($(find "$install_root" -name '*.dylib'))
|
||||
for dylib in "${all_dylibs[@]}"; do
|
||||
echo "All dependencies of $dylib are $(otool -L $dylib) with rpath $(otool -l $dylib | grep LC_RPATH -A2)"
|
||||
|
||||
# Check that OpenBlas is not linked to on Macs
|
||||
echo "Checking the OpenBLAS is not linked to"
|
||||
if [[ -n "$(otool -L $dylib | grep -i openblas)" ]]; then
|
||||
echo "ERROR: Found openblas as a dependency of $dylib"
|
||||
echo "Full dependencies is: $(otool -L $dylib)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check for protobuf symbols
|
||||
#proto_symbols="$(nm $dylib | grep protobuf)" || true
|
||||
#if [[ -n "$proto_symbols" ]]; then
|
||||
# echo "ERROR: Detected protobuf symbols in $dylib"
|
||||
# echo "Symbols are $proto_symbols"
|
||||
# exit 1
|
||||
#fi
|
||||
done
|
||||
else
|
||||
all_libs=($(find "$install_root" -name '*.so'))
|
||||
for lib in "${all_libs[@]}"; do
|
||||
echo "All dependencies of $lib are $(ldd $lib) with runpath $(objdump -p $lib | grep RUNPATH)"
|
||||
|
||||
# Check for protobuf symbols
|
||||
#proto_symbols=$(nm $lib | grep protobuf) || true
|
||||
#if [[ -n "$proto_symbols" ]]; then
|
||||
# echo "ERROR: Detected protobuf symbols in $lib"
|
||||
# echo "Symbols are $proto_symbols"
|
||||
# exit 1
|
||||
#fi
|
||||
done
|
||||
fi
|
||||
|
||||
setup_link_flags () {
|
||||
REF_LIB="-Wl,-R${install_root}/lib"
|
||||
if [[ "$(uname)" == 'Darwin' ]]; then
|
||||
REF_LIB="-Wl,-rpath ${install_root}/lib"
|
||||
fi
|
||||
ADDITIONAL_LINKER_FLAGS=""
|
||||
if [[ "$(uname)" == 'Linux' ]]; then
|
||||
ADDITIONAL_LINKER_FLAGS="-Wl,--no-as-needed"
|
||||
fi
|
||||
C10_LINK_FLAGS=""
|
||||
if [ -f "${install_root}/lib/libc10.so" ] || [ -f "${install_root}/lib/libc10.dylib" ]; then
|
||||
C10_LINK_FLAGS="-lc10"
|
||||
fi
|
||||
TORCH_CPU_LINK_FLAGS=""
|
||||
if [ -f "${install_root}/lib/libtorch_cpu.so" ] || [ -f "${install_root}/lib/libtorch_cpu.dylib" ]; then
|
||||
TORCH_CPU_LINK_FLAGS="-ltorch_cpu"
|
||||
fi
|
||||
TORCH_CUDA_LINK_FLAGS=""
|
||||
if [ -f "${install_root}/lib/libtorch_cuda.so" ] || [ -f "${install_root}/lib/libtorch_cuda.dylib" ]; then
|
||||
TORCH_CUDA_LINK_FLAGS="-ltorch_cuda"
|
||||
elif [ -f "${install_root}/lib/libtorch_cuda_cpp.so" ] && [ -f "${install_root}/lib/libtorch_cuda_cpp.so" ] || \
|
||||
[ -f "${install_root}/lib/libtorch_cuda_cu.dylib" ] && [ -f "${install_root}/lib/libtorch_cuda_cu.dylib" ]; then
|
||||
TORCH_CUDA_LINK_FLAGS="-ltorch_cuda_cpp -ltorch_cuda_cu"
|
||||
fi
|
||||
}
|
||||
|
||||
TEST_CODE_DIR="$(dirname $(realpath ${BASH_SOURCE[0]}))/test_example_code"
|
||||
build_and_run_example_cpp () {
|
||||
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
|
||||
GLIBCXX_USE_CXX11_ABI=1
|
||||
else
|
||||
GLIBCXX_USE_CXX11_ABI=0
|
||||
fi
|
||||
setup_link_flags
|
||||
g++ ${TEST_CODE_DIR}/$1.cpp -I${install_root}/include -I${install_root}/include/torch/csrc/api/include -D_GLIBCXX_USE_CXX11_ABI=$GLIBCXX_USE_CXX11_ABI -std=gnu++17 -L${install_root}/lib ${REF_LIB} ${ADDITIONAL_LINKER_FLAGS} -ltorch $TORCH_CPU_LINK_FLAGS $TORCH_CUDA_LINK_FLAGS $C10_LINK_FLAGS -o $1
|
||||
./$1
|
||||
}
|
||||
|
||||
build_example_cpp_with_incorrect_abi () {
|
||||
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
|
||||
GLIBCXX_USE_CXX11_ABI=0
|
||||
else
|
||||
GLIBCXX_USE_CXX11_ABI=1
|
||||
fi
|
||||
set +e
|
||||
setup_link_flags
|
||||
g++ ${TEST_CODE_DIR}/$1.cpp -I${install_root}/include -I${install_root}/include/torch/csrc/api/include -D_GLIBCXX_USE_CXX11_ABI=$GLIBCXX_USE_CXX11_ABI -std=gnu++17 -L${install_root}/lib ${REF_LIB} ${ADDITIONAL_LINKER_FLAGS} -ltorch $TORCH_CPU_LINK_FLAGS $TORCH_CUDA_LINK_FLAGS $C10_LINK_FLAGS -o $1
|
||||
ERRCODE=$?
|
||||
set -e
|
||||
if [ "$ERRCODE" -eq "0" ]; then
|
||||
echo "Building example with incorrect ABI didn't throw error. Aborting."
|
||||
exit 1
|
||||
else
|
||||
echo "Building example with incorrect ABI throws expected error. Proceeding."
|
||||
fi
|
||||
}
|
||||
|
||||
###############################################################################
|
||||
# Check simple Python/C++ calls
|
||||
###############################################################################
|
||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
# NS: Set LD_LIBRARY_PATH for CUDA builds, but perhaps it should be removed
|
||||
if [[ "$DESIRED_CUDA" == "cu"* ]]; then
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
|
||||
fi
|
||||
build_and_run_example_cpp simple-torch-test
|
||||
# `_GLIBCXX_USE_CXX11_ABI` is always ignored by gcc in devtoolset7, so we test
|
||||
# the expected failure case for Ubuntu 16.04 + gcc 5.4 only.
|
||||
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
|
||||
build_example_cpp_with_incorrect_abi simple-torch-test
|
||||
fi
|
||||
else
|
||||
pushd /tmp
|
||||
python -c 'import torch'
|
||||
popd
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check torch.git_version
|
||||
###############################################################################
|
||||
if [[ "$PACKAGE_TYPE" != 'libtorch' ]]; then
|
||||
pushd /tmp
|
||||
python -c 'import torch; assert torch.version.git_version != "Unknown"'
|
||||
python -c 'import torch; assert torch.version.git_version != None'
|
||||
popd
|
||||
fi
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Check for MKL
|
||||
###############################################################################
|
||||
|
||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
echo "Checking that MKL is available"
|
||||
build_and_run_example_cpp check-torch-mkl
|
||||
elif [[ "$(uname -m)" != "arm64" && "$(uname -m)" != "s390x" ]]; then
|
||||
if [[ "$(uname)" != 'Darwin' || "$PACKAGE_TYPE" != *wheel ]]; then
|
||||
if [[ "$(uname -m)" == "aarch64" ]]; then
|
||||
echo "Checking that MKLDNN is available on aarch64"
|
||||
pushd /tmp
|
||||
python -c 'import torch; exit(0 if torch.backends.mkldnn.is_available() else 1)'
|
||||
popd
|
||||
else
|
||||
echo "Checking that MKL is available"
|
||||
pushd /tmp
|
||||
python -c 'import torch; exit(0 if torch.backends.mkl.is_available() else 1)'
|
||||
popd
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check for XNNPACK
|
||||
###############################################################################
|
||||
|
||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
echo "Checking that XNNPACK is available"
|
||||
build_and_run_example_cpp check-torch-xnnpack
|
||||
else
|
||||
if [[ "$(uname)" != 'Darwin' || "$PACKAGE_TYPE" != *wheel ]] && [[ "$(uname -m)" != "s390x" ]]; then
|
||||
echo "Checking that XNNPACK is available"
|
||||
pushd /tmp
|
||||
python -c 'import torch.backends.xnnpack; exit(0 if torch.backends.xnnpack.enabled else 1)'
|
||||
popd
|
||||
fi
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check CUDA configured correctly
|
||||
###############################################################################
|
||||
# Skip these for Windows machines without GPUs
|
||||
if [[ "$OSTYPE" == "msys" ]]; then
|
||||
GPUS=$(wmic path win32_VideoController get name)
|
||||
if [[ ! "$GPUS" == *NVIDIA* ]]; then
|
||||
echo "Skip CUDA tests for machines without a Nvidia GPU card"
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
# Test that CUDA builds are setup correctly
|
||||
if [[ "$DESIRED_CUDA" != 'cpu' && "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'cpu-cxx11-abi' && "$DESIRED_CUDA" != *"rocm"* && "$(uname -m)" != "s390x" ]]; then
|
||||
if [[ "$PACKAGE_TYPE" == 'libtorch' ]]; then
|
||||
build_and_run_example_cpp check-torch-cuda
|
||||
else
|
||||
pushd /tmp
|
||||
echo "Checking that CUDA archs are setup correctly"
|
||||
timeout 20 python -c 'import torch; torch.randn([3,5]).cuda()'
|
||||
|
||||
# These have to run after CUDA is initialized
|
||||
|
||||
echo "Checking that magma is available"
|
||||
python -c 'import torch; torch.rand(1).cuda(); exit(0 if torch.cuda.has_magma else 1)'
|
||||
|
||||
echo "Checking that CuDNN is available"
|
||||
python -c 'import torch; exit(0 if torch.backends.cudnn.is_available() else 1)'
|
||||
|
||||
# Validates builds is free of linker regressions reported in https://github.com/pytorch/pytorch/issues/57744
|
||||
echo "Checking that exception handling works"
|
||||
python -c "import torch; from unittest import TestCase;TestCase().assertRaises(RuntimeError, lambda:torch.eye(7, 7, device='cuda:7'))"
|
||||
|
||||
echo "Checking that basic RNN works"
|
||||
python ${TEST_CODE_DIR}/rnn_smoke.py
|
||||
|
||||
echo "Checking that basic CNN works"
|
||||
python "${TEST_CODE_DIR}/cnn_smoke.py"
|
||||
|
||||
echo "Test that linalg works"
|
||||
python -c "import torch;x=torch.rand(3,3,device='cuda');print(torch.linalg.svd(torch.mm(x.t(), x)))"
|
||||
|
||||
popd
|
||||
fi # if libtorch
|
||||
fi # if cuda
|
||||
|
||||
##########################
|
||||
# Run parts of smoke tests
|
||||
##########################
|
||||
if [[ "$PACKAGE_TYPE" != 'libtorch' ]]; then
|
||||
pushd "$(dirname ${BASH_SOURCE[0]})/smoke_test"
|
||||
python -c "from smoke_test import test_linalg; test_linalg()"
|
||||
if [[ "$DESIRED_CUDA" == *cuda* ]]; then
|
||||
python -c "from smoke_test import test_linalg; test_linalg('cuda')"
|
||||
fi
|
||||
popd
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check PyTorch supports TCP_TLS gloo transport
|
||||
###############################################################################
|
||||
|
||||
if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" != 'libtorch' ]]; then
|
||||
GLOO_CHECK="import torch.distributed as dist
|
||||
try:
|
||||
dist.init_process_group('gloo', rank=0, world_size=1)
|
||||
except RuntimeError as e:
|
||||
print(e)
|
||||
"
|
||||
RESULT=`GLOO_DEVICE_TRANSPORT=TCP_TLS MASTER_ADDR=localhost MASTER_PORT=63945 python -c "$GLOO_CHECK"`
|
||||
GLOO_TRANSPORT_IS_NOT_SUPPORTED='gloo transport is not supported'
|
||||
if [[ "$RESULT" =~ "$GLOO_TRANSPORT_IS_NOT_SUPPORTED" ]]; then
|
||||
echo "PyTorch doesn't support TLS_TCP transport, please build with USE_GLOO_WITH_OPENSSL=1"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check for C++ ABI compatibility between gcc7 and gcc9 compiled binaries
|
||||
###############################################################################
|
||||
if [[ "$(uname)" == 'Linux' && ("$PACKAGE_TYPE" == 'conda' || "$PACKAGE_TYPE" == 'manywheel')]]; then
|
||||
pushd /tmp
|
||||
python -c "import torch; exit(0 if torch.compiled_with_cxx11_abi() else (0 if torch._C._PYBIND11_BUILD_ABI == '_cxxabi1011' else 1))"
|
||||
popd
|
||||
fi
|
||||
@ -6,12 +6,6 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
|
||||
# Save the absolute path in case later we chdir (as occurs in the gpu perf test)
|
||||
script_dir="$( cd "$(dirname "${BASH_SOURCE[0]}")" || exit ; pwd -P )"
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *-pch* ]]; then
|
||||
# This is really weird, but newer sccache somehow produces broken binary
|
||||
# see https://github.com/pytorch/pytorch/issues/139188
|
||||
sudo mv /opt/cache/bin/sccache-0.2.14a /opt/cache/bin/sccache
|
||||
fi
|
||||
|
||||
if which sccache > /dev/null; then
|
||||
# Save sccache logs to file
|
||||
sccache --stop-server > /dev/null 2>&1 || true
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
# Common setup for all Jenkins scripts
|
||||
# shellcheck source=./common_utils.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
# Required environment variables:
|
||||
# $BUILD_ENVIRONMENT (should be set by your Docker image)
|
||||
|
||||
@ -81,15 +81,14 @@ function pip_install_whl() {
|
||||
|
||||
function pip_install() {
|
||||
# retry 3 times
|
||||
pip_install_pkg="python3 -m pip install --progress-bar off"
|
||||
${pip_install_pkg} "$@" || \
|
||||
${pip_install_pkg} "$@" || \
|
||||
${pip_install_pkg} "$@"
|
||||
# old versions of pip don't have the "--progress-bar" flag
|
||||
pip install --progress-bar off "$@" || pip install --progress-bar off "$@" || pip install --progress-bar off "$@" ||\
|
||||
pip install "$@" || pip install "$@" || pip install "$@"
|
||||
}
|
||||
|
||||
function pip_uninstall() {
|
||||
# uninstall 2 times
|
||||
pip3 uninstall -y "$@" || pip3 uninstall -y "$@"
|
||||
pip uninstall -y "$@" || pip uninstall -y "$@"
|
||||
}
|
||||
|
||||
function get_exit_code() {
|
||||
@ -105,12 +104,32 @@ function get_bazel() {
|
||||
# version of Bazelisk to fetch the platform specific version of
|
||||
# Bazel to use from .bazelversion.
|
||||
retry curl --location --output tools/bazel \
|
||||
https://raw.githubusercontent.com/bazelbuild/bazelisk/v1.23.0/bazelisk.py
|
||||
https://raw.githubusercontent.com/bazelbuild/bazelisk/v1.16.0/bazelisk.py
|
||||
shasum --algorithm=1 --check \
|
||||
<(echo '01df9cf7f08dd80d83979ed0d0666a99349ae93c tools/bazel')
|
||||
<(echo 'd4369c3d293814d3188019c9f7527a948972d9f8 tools/bazel')
|
||||
chmod u+x tools/bazel
|
||||
}
|
||||
|
||||
# This function is bazel specific because of the bug
|
||||
# in the bazel that requires some special paths massaging
|
||||
# as a workaround. See
|
||||
# https://github.com/bazelbuild/bazel/issues/10167
|
||||
function install_sccache_nvcc_for_bazel() {
|
||||
sudo mv /usr/local/cuda/bin/nvcc /usr/local/cuda/bin/nvcc-real
|
||||
|
||||
# Write the `/usr/local/cuda/bin/nvcc`
|
||||
cat << EOF | sudo tee /usr/local/cuda/bin/nvcc
|
||||
#!/bin/sh
|
||||
if [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then
|
||||
exec sccache /usr/local/cuda/bin/nvcc "\$@"
|
||||
else
|
||||
exec external/local_cuda/cuda/bin/nvcc-real "\$@"
|
||||
fi
|
||||
EOF
|
||||
|
||||
sudo chmod +x /usr/local/cuda/bin/nvcc
|
||||
}
|
||||
|
||||
function install_monkeytype {
|
||||
# Install MonkeyType
|
||||
pip_install MonkeyType
|
||||
@ -160,7 +179,7 @@ function install_torchvision() {
|
||||
}
|
||||
|
||||
function install_tlparse() {
|
||||
pip_install --user "tlparse==0.3.30"
|
||||
pip_install --user "tlparse==0.3.25"
|
||||
PATH="$(python -m site --user-base)/bin:$PATH"
|
||||
}
|
||||
|
||||
@ -221,12 +240,6 @@ function checkout_install_torchbench() {
|
||||
popd
|
||||
}
|
||||
|
||||
function install_torchao() {
|
||||
local commit
|
||||
commit=$(get_pinned_commit torchao)
|
||||
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/ao.git@${commit}"
|
||||
}
|
||||
|
||||
function print_sccache_stats() {
|
||||
echo 'PyTorch Build Statistics'
|
||||
sccache --show-stats
|
||||
|
||||
@ -40,7 +40,7 @@ echo "Building PyTorch C++ API docs..."
|
||||
rm -rf cppdocs
|
||||
git clone https://github.com/pytorch/cppdocs
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
# Generate ATen files
|
||||
pushd "${pt_checkout}"
|
||||
|
||||
@ -5,7 +5,7 @@ pt_checkout="/var/lib/jenkins/workspace"
|
||||
source "$pt_checkout/.ci/pytorch/common_utils.sh"
|
||||
echo "functorch_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
version=${DOCS_VERSION:-nightly}
|
||||
echo "version: $version"
|
||||
|
||||
@ -6,7 +6,7 @@
|
||||
# return the same thing, ex checks for for rocm, CUDA, and changing the path
|
||||
# where sccache is installed, and not changing /etc/environment.
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
install_binary() {
|
||||
echo "Downloading sccache binary from S3 repo"
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
#!/bin/bash
|
||||
set -x
|
||||
|
||||
# shellcheck disable=SC2034
|
||||
# shellcheck source=./macos-common.sh
|
||||
@ -149,146 +148,9 @@ test_jit_hooks() {
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
torchbench_setup_macos() {
|
||||
git clone --recursive https://github.com/pytorch/vision torchvision
|
||||
git clone --recursive https://github.com/pytorch/audio torchaudio
|
||||
|
||||
pushd torchvision
|
||||
git fetch
|
||||
git checkout "$(cat ../.github/ci_commit_pins/vision.txt)"
|
||||
git submodule update --init --recursive
|
||||
python setup.py clean
|
||||
python setup.py develop
|
||||
popd
|
||||
|
||||
pushd torchaudio
|
||||
git fetch
|
||||
git checkout "$(cat ../.github/ci_commit_pins/audio.txt)"
|
||||
git submodule update --init --recursive
|
||||
python setup.py clean
|
||||
python setup.py develop
|
||||
popd
|
||||
|
||||
# Shellcheck doesn't like it when you pass no arguments to a function that can take args. See https://www.shellcheck.net/wiki/SC2120
|
||||
# shellcheck disable=SC2119,SC2120
|
||||
checkout_install_torchbench
|
||||
}
|
||||
|
||||
conda_benchmark_deps() {
|
||||
conda install -y astunparse numpy scipy ninja pyyaml setuptools cmake typing-extensions requests protobuf numba cython scikit-learn
|
||||
conda install -y -c conda-forge librosa
|
||||
}
|
||||
|
||||
|
||||
test_torchbench_perf() {
|
||||
print_cmake_info
|
||||
|
||||
echo "Launching torchbench setup"
|
||||
conda_benchmark_deps
|
||||
torchbench_setup_macos
|
||||
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
local backend=eager
|
||||
local dtype=notset
|
||||
local device=mps
|
||||
|
||||
echo "Setup complete, launching torchbench training performance run"
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--performance --backend "$backend" --training --devices "$device" \
|
||||
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv"
|
||||
|
||||
echo "Launching torchbench inference performance run"
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--performance --backend "$backend" --inference --devices "$device" \
|
||||
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
|
||||
|
||||
echo "Pytorch benchmark on mps device completed"
|
||||
}
|
||||
|
||||
test_torchbench_smoketest() {
|
||||
print_cmake_info
|
||||
|
||||
echo "Launching torchbench setup"
|
||||
conda_benchmark_deps
|
||||
# shellcheck disable=SC2119,SC2120
|
||||
torchbench_setup_macos
|
||||
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
local backend=eager
|
||||
local dtype=notset
|
||||
local device=mps
|
||||
|
||||
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv"
|
||||
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
|
||||
|
||||
echo "Setup complete, launching torchbench training performance run"
|
||||
for model in hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152; do
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--performance --only "$model" --backend "$backend" --training --devices "$device" \
|
||||
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv"
|
||||
done
|
||||
|
||||
echo "Launching torchbench inference performance run"
|
||||
for model in hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152; do
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--performance --only "$model" --backend "$backend" --inference --devices "$device" \
|
||||
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
|
||||
done
|
||||
|
||||
echo "Pytorch benchmark on mps device completed"
|
||||
}
|
||||
|
||||
test_hf_perf() {
|
||||
print_cmake_info
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
conda_benchmark_deps
|
||||
torchbench_setup_macos
|
||||
|
||||
echo "Launching HuggingFace training perf run"
|
||||
python "$(pwd)"/benchmarks/dynamo/huggingface.py --backend eager --device mps --performance --training --output="${TEST_REPORTS_DIR}"/hf_training.csv
|
||||
|
||||
echo "Launching HuggingFace inference perf run"
|
||||
python "$(pwd)"/benchmarks/dynamo/huggingface.py --backend eager --device mps --performance --training --output="${TEST_REPORTS_DIR}"/hf_inference.csv
|
||||
|
||||
echo "HuggingFace benchmark on mps device completed"
|
||||
}
|
||||
|
||||
test_timm_perf() {
|
||||
print_cmake_info
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
conda_benchmark_deps
|
||||
torchbench_setup_macos
|
||||
|
||||
echo "Launching timm training perf run"
|
||||
python "$(pwd)"/benchmarks/dynamo/timm_models.py --backend eager --device mps --performance --training --output="${TEST_REPORTS_DIR}"/timm_training.csv
|
||||
|
||||
echo "Launching timm inference perf run"
|
||||
python "$(pwd)"/benchmarks/dynamo/timm_models.py --backend eager --device mps --performance --training --output="${TEST_REPORTS_DIR}"/timm_inference.csv
|
||||
|
||||
echo "timm benchmark on mps device completed"
|
||||
}
|
||||
|
||||
install_tlparse
|
||||
|
||||
if [[ $TEST_CONFIG == *"perf_all"* ]]; then
|
||||
test_torchbench_perf
|
||||
test_hf_perf
|
||||
test_timm_perf
|
||||
elif [[ $TEST_CONFIG == *"perf_torchbench"* ]]; then
|
||||
test_torchbench_perf
|
||||
elif [[ $TEST_CONFIG == *"perf_hf"* ]]; then
|
||||
test_hf_perf
|
||||
elif [[ $TEST_CONFIG == *"perf_timm"* ]]; then
|
||||
test_timm_perf
|
||||
elif [[ $TEST_CONFIG == *"perf_smoketest"* ]]; then
|
||||
test_torchbench_smoketest
|
||||
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then
|
||||
if [[ $NUM_TEST_SHARDS -gt 1 ]]; then
|
||||
test_python_shard "${SHARD_NUMBER}"
|
||||
if [[ "${SHARD_NUMBER}" == 1 ]]; then
|
||||
test_libtorch
|
||||
|
||||
@ -8,62 +8,55 @@
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
|
||||
|
||||
echo "Testing pytorch"
|
||||
# When adding more tests, please use HUD to see which shard is shorter
|
||||
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
|
||||
# FSDP tests
|
||||
for f in test/distributed/fsdp/*.py ; do time python test/run_test.py --verbose -i "${f#*/}" ; done
|
||||
fi
|
||||
time python test/run_test.py --include test_cuda_multigpu test_cuda_primary_ctx --verbose
|
||||
|
||||
if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
|
||||
time python test/run_test.py --include test_cuda_multigpu test_cuda_primary_ctx --verbose
|
||||
# Disabling tests to see if they solve timeout issues; see https://github.com/pytorch/pytorch/issues/70015
|
||||
# python tools/download_mnist.py --quiet -d test/cpp/api/mnist
|
||||
# OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="test/cpp/api/mnist" build/bin/test_api
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_common
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_gloo
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
|
||||
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
|
||||
time python test/run_test.py --verbose -i distributed/test_store
|
||||
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
|
||||
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
|
||||
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
|
||||
# FSDP tests
|
||||
for f in test/distributed/fsdp/*.py ; do time python test/run_test.py --verbose -i "${f#*/}" ; done
|
||||
# ShardedTensor tests
|
||||
time python test/run_test.py --verbose -i distributed/checkpoint/test_checkpoint
|
||||
time python test/run_test.py --verbose -i distributed/checkpoint/test_file_system_checkpoint
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharding_spec/test_sharding_spec
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharding_plan/test_sharding_plan
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor_reshard
|
||||
|
||||
# Disabling tests to see if they solve timeout issues; see https://github.com/pytorch/pytorch/issues/70015
|
||||
# python tools/download_mnist.py --quiet -d test/cpp/api/mnist
|
||||
# OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="test/cpp/api/mnist" build/bin/test_api
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_common
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_gloo
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
|
||||
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
|
||||
time python test/run_test.py --verbose -i distributed/test_store
|
||||
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
|
||||
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
|
||||
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
|
||||
# functional collective tests
|
||||
time python test/run_test.py --verbose -i distributed/test_functional_api
|
||||
|
||||
# ShardedTensor tests
|
||||
time python test/run_test.py --verbose -i distributed/checkpoint/test_checkpoint
|
||||
time python test/run_test.py --verbose -i distributed/checkpoint/test_file_system_checkpoint
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharding_spec/test_sharding_spec
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharding_plan/test_sharding_plan
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor
|
||||
time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test_sharded_tensor_reshard
|
||||
# DTensor tests
|
||||
time python test/run_test.py --verbose -i distributed/_tensor/test_random_ops
|
||||
time python test/run_test.py --verbose -i distributed/_tensor/test_dtensor_compile
|
||||
|
||||
# functional collective tests
|
||||
time python test/run_test.py --verbose -i distributed/test_functional_api
|
||||
# DeviceMesh test
|
||||
time python test/run_test.py --verbose -i distributed/test_device_mesh
|
||||
|
||||
# DTensor tests
|
||||
time python test/run_test.py --verbose -i distributed/tensor/test_random_ops
|
||||
time python test/run_test.py --verbose -i distributed/tensor/test_dtensor_compile
|
||||
# DTensor/TP tests
|
||||
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_examples
|
||||
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_random_state
|
||||
|
||||
# DeviceMesh test
|
||||
time python test/run_test.py --verbose -i distributed/test_device_mesh
|
||||
# FSDP2 tests
|
||||
time python test/run_test.py --verbose -i distributed/_composable/fsdp/test_fully_shard_training -- -k test_2d_mlp_with_nd_mesh
|
||||
|
||||
# DTensor/TP tests
|
||||
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_examples
|
||||
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_random_state
|
||||
# ND composability tests
|
||||
time python test/run_test.py --verbose -i distributed/_composable/test_composability/test_2d_composability
|
||||
time python test/run_test.py --verbose -i distributed/_composable/test_composability/test_pp_composability
|
||||
|
||||
# FSDP2 tests
|
||||
time python test/run_test.py --verbose -i distributed/_composable/fsdp/test_fully_shard_training -- -k test_2d_mlp_with_nd_mesh
|
||||
|
||||
# ND composability tests
|
||||
time python test/run_test.py --verbose -i distributed/_composable/test_composability/test_2d_composability
|
||||
time python test/run_test.py --verbose -i distributed/_composable/test_composability/test_pp_composability
|
||||
|
||||
# Other tests
|
||||
time python test/run_test.py --verbose -i test_cuda_primary_ctx
|
||||
time python test/run_test.py --verbose -i test_optim -- -k test_forloop_goes_right_direction_multigpu
|
||||
time python test/run_test.py --verbose -i test_optim -- -k test_mixed_device_dtype
|
||||
time python test/run_test.py --verbose -i test_foreach -- -k test_tensors_grouping
|
||||
fi
|
||||
# Other tests
|
||||
time python test/run_test.py --verbose -i test_cuda_primary_ctx
|
||||
time python test/run_test.py --verbose -i test_optim -- -k test_forloop_goes_right_direction_multigpu
|
||||
time python test/run_test.py --verbose -i test_optim -- -k test_mixed_device_dtype
|
||||
time python test/run_test.py --verbose -i test_foreach -- -k test_tensors_grouping
|
||||
assert_git_not_dirty
|
||||
|
||||
@ -7,7 +7,7 @@ source "$pt_checkout/.ci/pytorch/common_utils.sh"
|
||||
|
||||
echo "python_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
# for statements like ${1:-${DOCS_INSTALL_PATH:-docs/}}
|
||||
# the order of operations goes:
|
||||
@ -63,7 +63,7 @@ build_docs () {
|
||||
echo "(tried to echo the WARNINGS above the ==== line)"
|
||||
echo =========================
|
||||
fi
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
return $code
|
||||
}
|
||||
|
||||
|
||||
@ -1,436 +0,0 @@
|
||||
#!/bin/bash
|
||||
# shellcheck disable=SC2086,SC2048,SC2068,SC2145,SC2034,SC2207,SC2143
|
||||
# TODO: Re-enable shellchecks above
|
||||
|
||||
set -eux -o pipefail
|
||||
|
||||
# Essentially runs pytorch/test/run_test.py, but keeps track of which tests to
|
||||
# skip in a centralized place.
|
||||
#
|
||||
# TODO Except for a few tests, this entire file is a giant TODO. Why are these
|
||||
# tests # failing?
|
||||
# TODO deal with Windows
|
||||
|
||||
# This script expects to be in the pytorch root folder
|
||||
if [[ ! -d 'test' || ! -f 'test/run_test.py' ]]; then
|
||||
echo "run_tests.sh expects to be run from the Pytorch root directory " \
|
||||
"but I'm actually in $(pwd)"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
# Allow master skip of all tests
|
||||
if [[ -n "${SKIP_ALL_TESTS:-}" ]]; then
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# If given specific test params then just run those
|
||||
if [[ -n "${RUN_TEST_PARAMS:-}" ]]; then
|
||||
echo "$(date) :: Calling user-command $(pwd)/test/run_test.py ${RUN_TEST_PARAMS[@]}"
|
||||
python test/run_test.py ${RUN_TEST_PARAMS[@]}
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Function to retry functions that sometimes timeout or have flaky failures
|
||||
retry () {
|
||||
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
|
||||
}
|
||||
|
||||
# Parameters
|
||||
##############################################################################
|
||||
if [[ "$#" != 3 ]]; then
|
||||
if [[ -z "${DESIRED_PYTHON:-}" || -z "${DESIRED_CUDA:-}" || -z "${PACKAGE_TYPE:-}" ]]; then
|
||||
echo "USAGE: run_tests.sh PACKAGE_TYPE DESIRED_PYTHON DESIRED_CUDA"
|
||||
echo "The env variable PACKAGE_TYPE must be set to 'conda' or 'manywheel' or 'libtorch'"
|
||||
echo "The env variable DESIRED_PYTHON must be set like '2.7mu' or '3.6m' etc"
|
||||
echo "The env variable DESIRED_CUDA must be set like 'cpu' or 'cu80' etc"
|
||||
exit 1
|
||||
fi
|
||||
package_type="$PACKAGE_TYPE"
|
||||
py_ver="$DESIRED_PYTHON"
|
||||
cuda_ver="$DESIRED_CUDA"
|
||||
else
|
||||
package_type="$1"
|
||||
py_ver="$2"
|
||||
cuda_ver="$3"
|
||||
fi
|
||||
|
||||
if [[ "$cuda_ver" == 'cpu-cxx11-abi' ]]; then
|
||||
cuda_ver="cpu"
|
||||
fi
|
||||
|
||||
# cu80, cu90, cu100, cpu
|
||||
if [[ ${#cuda_ver} -eq 4 ]]; then
|
||||
cuda_ver_majmin="${cuda_ver:2:1}.${cuda_ver:3:1}"
|
||||
elif [[ ${#cuda_ver} -eq 5 ]]; then
|
||||
cuda_ver_majmin="${cuda_ver:2:2}.${cuda_ver:4:1}"
|
||||
fi
|
||||
|
||||
NUMPY_PACKAGE=""
|
||||
if [[ ${py_ver} == "3.10" ]]; then
|
||||
PROTOBUF_PACKAGE="protobuf>=3.17.2"
|
||||
NUMPY_PACKAGE="numpy>=1.21.2"
|
||||
else
|
||||
PROTOBUF_PACKAGE="protobuf=3.14.0"
|
||||
fi
|
||||
|
||||
# Environment initialization
|
||||
if [[ "$(uname)" == Darwin ]]; then
|
||||
# Install the testing dependencies
|
||||
retry conda install -yq future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest setuptools six typing_extensions pyyaml
|
||||
else
|
||||
retry pip install -qr requirements.txt || true
|
||||
retry pip install -q hypothesis protobuf pytest setuptools || true
|
||||
numpy_ver=1.15
|
||||
case "$(python --version 2>&1)" in
|
||||
*2* | *3.5* | *3.6*)
|
||||
numpy_ver=1.11
|
||||
;;
|
||||
esac
|
||||
retry pip install -q "numpy==${numpy_ver}" || true
|
||||
fi
|
||||
|
||||
echo "Testing with:"
|
||||
pip freeze
|
||||
conda list || true
|
||||
|
||||
##############################################################################
|
||||
# Smoke tests
|
||||
##############################################################################
|
||||
# TODO use check_binary.sh, which requires making sure it runs on Windows
|
||||
pushd /
|
||||
echo "Smoke testing imports"
|
||||
python -c 'import torch'
|
||||
|
||||
# Test that MKL is there
|
||||
if [[ "$(uname)" == 'Darwin' && "$package_type" == *wheel ]]; then
|
||||
echo 'Not checking for MKL on Darwin wheel packages'
|
||||
else
|
||||
echo "Checking that MKL is available"
|
||||
python -c 'import torch; exit(0 if torch.backends.mkl.is_available() else 1)'
|
||||
fi
|
||||
|
||||
if [[ "$OSTYPE" == "msys" ]]; then
|
||||
GPUS=$(wmic path win32_VideoController get name)
|
||||
if [[ ! "$GPUS" == *NVIDIA* ]]; then
|
||||
echo "Skip CUDA tests for machines without a Nvidia GPU card"
|
||||
exit 0
|
||||
fi
|
||||
fi
|
||||
|
||||
# Test that the version number is consistent during building and testing
|
||||
if [[ "$PYTORCH_BUILD_NUMBER" -gt 1 ]]; then
|
||||
expected_version="${PYTORCH_BUILD_VERSION}.post${PYTORCH_BUILD_NUMBER}"
|
||||
else
|
||||
expected_version="${PYTORCH_BUILD_VERSION}"
|
||||
fi
|
||||
echo "Checking that we are testing the package that is just built"
|
||||
python -c "import torch; exit(0 if torch.__version__ == '$expected_version' else 1)"
|
||||
|
||||
# Test that CUDA builds are setup correctly
|
||||
if [[ "$cuda_ver" != 'cpu' ]]; then
|
||||
cuda_installed=1
|
||||
nvidia-smi || cuda_installed=0
|
||||
if [[ "$cuda_installed" == 0 ]]; then
|
||||
echo "Skip CUDA tests for machines without a Nvidia GPU card"
|
||||
else
|
||||
# Test CUDA archs
|
||||
echo "Checking that CUDA archs are setup correctly"
|
||||
timeout 20 python -c 'import torch; torch.randn([3,5]).cuda()'
|
||||
|
||||
# These have to run after CUDA is initialized
|
||||
echo "Checking that magma is available"
|
||||
python -c 'import torch; torch.rand(1).cuda(); exit(0 if torch.cuda.has_magma else 1)'
|
||||
echo "Checking that CuDNN is available"
|
||||
python -c 'import torch; exit(0 if torch.backends.cudnn.is_available() else 1)'
|
||||
fi
|
||||
fi
|
||||
|
||||
# Check that OpenBlas is not linked to on MacOS
|
||||
if [[ "$(uname)" == 'Darwin' ]]; then
|
||||
echo "Checking the OpenBLAS is not linked to"
|
||||
all_dylibs=($(find "$(python -c "import site; print(site.getsitepackages()[0])")"/torch -name '*.dylib'))
|
||||
for dylib in "${all_dylibs[@]}"; do
|
||||
if [[ -n "$(otool -L $dylib | grep -i openblas)" ]]; then
|
||||
echo "Found openblas as a dependency of $dylib"
|
||||
echo "Full dependencies is: $(otool -L $dylib)"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
|
||||
echo "Checking that OpenMP is available"
|
||||
python -c "import torch; exit(0 if torch.backends.openmp.is_available() else 1)"
|
||||
fi
|
||||
|
||||
popd
|
||||
|
||||
# TODO re-enable the other tests after the nightlies are moved to CI. This is
|
||||
# because the binaries keep breaking, often from additional tests, that aren't
|
||||
# real problems. Once these are on circleci and a smoke-binary-build is added
|
||||
# to PRs then this should stop happening and these can be re-enabled.
|
||||
echo "Not running unit tests. Hopefully these problems are caught by CI"
|
||||
exit 0
|
||||
|
||||
|
||||
##############################################################################
|
||||
# Running unit tests (except not right now)
|
||||
##############################################################################
|
||||
echo "$(date) :: Starting tests for $package_type package for python$py_ver and $cuda_ver"
|
||||
|
||||
# We keep track of exact tests to skip, as otherwise we would be hardly running
|
||||
# any tests. But b/c of issues working with pytest/normal-python-test/ and b/c
|
||||
# of special snowflake tests in test/run_test.py we also take special care of
|
||||
# those
|
||||
tests_to_skip=()
|
||||
|
||||
#
|
||||
# Entire file exclusions
|
||||
##############################################################################
|
||||
entire_file_exclusions=("-x")
|
||||
|
||||
# cpp_extensions doesn't work with pytest, so we exclude it from the pytest run
|
||||
# here and then manually run it later. Note that this is only because this
|
||||
# entire_fil_exclusions flag is only passed to the pytest run
|
||||
entire_file_exclusions+=("cpp_extensions")
|
||||
|
||||
# TODO temporary line to fix next days nightlies, but should be removed when
|
||||
# issue is fixed
|
||||
entire_file_exclusions+=('type_info')
|
||||
|
||||
if [[ "$cuda_ver" == 'cpu' ]]; then
|
||||
# test/test_cuda.py exits early if the installed torch is not built with
|
||||
# CUDA, but the exit doesn't work when running with pytest, so pytest will
|
||||
# still try to run all the CUDA tests and then fail
|
||||
entire_file_exclusions+=("cuda")
|
||||
entire_file_exclusions+=("nccl")
|
||||
fi
|
||||
|
||||
if [[ "$(uname)" == 'Darwin' || "$OSTYPE" == "msys" ]]; then
|
||||
# pytest on Mac doesn't like the exits in these files
|
||||
entire_file_exclusions+=('c10d')
|
||||
entire_file_exclusions+=('distributed')
|
||||
|
||||
# pytest doesn't mind the exit but fails the tests. On Mac we run this
|
||||
# later without pytest
|
||||
entire_file_exclusions+=('thd_distributed')
|
||||
fi
|
||||
|
||||
|
||||
#
|
||||
# Universal flaky tests
|
||||
##############################################################################
|
||||
|
||||
# RendezvousEnvTest sometimes hangs forever
|
||||
# Otherwise it will fail on CUDA with
|
||||
# Traceback (most recent call last):
|
||||
# File "test_c10d.py", line 179, in test_common_errors
|
||||
# next(gen)
|
||||
# AssertionError: ValueError not raised
|
||||
tests_to_skip+=('RendezvousEnvTest and test_common_errors')
|
||||
|
||||
# This hung forever once on conda_3.5_cu92
|
||||
tests_to_skip+=('TestTorch and test_sum_dim')
|
||||
|
||||
# test_trace_warn isn't actually flaky, but it doesn't work with pytest so we
|
||||
# just skip it
|
||||
tests_to_skip+=('TestJit and test_trace_warn')
|
||||
#
|
||||
# Python specific flaky tests
|
||||
##############################################################################
|
||||
|
||||
# test_dataloader.py:721: AssertionError
|
||||
# looks like a timeout, but interestingly only appears on python 3
|
||||
if [[ "$py_ver" == 3* ]]; then
|
||||
tests_to_skip+=('TestDataLoader and test_proper_exit')
|
||||
fi
|
||||
|
||||
#
|
||||
# CUDA flaky tests, all package types
|
||||
##############################################################################
|
||||
if [[ "$cuda_ver" != 'cpu' ]]; then
|
||||
|
||||
#
|
||||
# DistributedDataParallelTest
|
||||
# All of these seem to fail
|
||||
tests_to_skip+=('DistributedDataParallelTest')
|
||||
|
||||
#
|
||||
# RendezvousEnvTest
|
||||
# Traceback (most recent call last):
|
||||
# File "test_c10d.py", line 201, in test_nominal
|
||||
# store0, rank0, size0 = next(gen0)
|
||||
# File "/opt/python/cp36-cp36m/lib/python3.6/site-packages/torch/distributed/rendezvous.py", line 131, in _env_rendezvous_handler
|
||||
# store = TCPStore(master_addr, master_port, start_daemon)
|
||||
# RuntimeError: Address already in use
|
||||
tests_to_skip+=('RendezvousEnvTest and test_nominal')
|
||||
|
||||
#
|
||||
# TestCppExtension
|
||||
#
|
||||
# Traceback (most recent call last):
|
||||
# File "test_cpp_extensions.py", line 134, in test_jit_cudnn_extension
|
||||
# with_cuda=True)
|
||||
# File "/opt/python/cp35-cp35m/lib/python3.5/site-packages/torch/utils/cpp_extension.py", line 552, in load
|
||||
# with_cuda)
|
||||
# File "/opt/python/cp35-cp35m/lib/python3.5/site-packages/torch/utils/cpp_extension.py", line 729, in _jit_compile
|
||||
# return _import_module_from_library(name, build_directory)
|
||||
# File "/opt/python/cp35-cp35m/lib/python3.5/site-packages/torch/utils/cpp_extension.py", line 867, in _import_module_from_library
|
||||
# return imp.load_module(module_name, file, path, description)
|
||||
# File "/opt/python/cp35-cp35m/lib/python3.5/imp.py", line 243, in load_module
|
||||
# return load_dynamic(name, filename, file)
|
||||
# File "/opt/python/cp35-cp35m/lib/python3.5/imp.py", line 343, in load_dynamic
|
||||
# return _load(spec)
|
||||
# File "<frozen importlib._bootstrap>", line 693, in _load
|
||||
# File "<frozen importlib._bootstrap>", line 666, in _load_unlocked
|
||||
# File "<frozen importlib._bootstrap>", line 577, in module_from_spec
|
||||
# File "<frozen importlib._bootstrap_external>", line 938, in create_module
|
||||
# File "<frozen importlib._bootstrap>", line 222, in _call_with_frames_removed
|
||||
# ImportError: libcudnn.so.7: cannot open shared object file: No such file or directory
|
||||
tests_to_skip+=('TestCppExtension and test_jit_cudnn_extension')
|
||||
|
||||
#
|
||||
# TestCuda
|
||||
#
|
||||
|
||||
# 3.7_cu80
|
||||
# RuntimeError: CUDA error: out of memory
|
||||
tests_to_skip+=('TestCuda and test_arithmetic_large_tensor')
|
||||
|
||||
# 3.7_cu80
|
||||
# RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch-nightly_1538097262541/work/aten/src/THC/THCTensorCopy.cu:205
|
||||
tests_to_skip+=('TestCuda and test_autogpu')
|
||||
|
||||
#
|
||||
# TestDistBackend
|
||||
#
|
||||
|
||||
# Traceback (most recent call last):
|
||||
# File "test_thd_distributed.py", line 1046, in wrapper
|
||||
# self._join_and_reduce(fn)
|
||||
# File "test_thd_distributed.py", line 1108, in _join_and_reduce
|
||||
# self.assertEqual(p.exitcode, first_process.exitcode)
|
||||
# File "/pytorch/test/common.py", line 399, in assertEqual
|
||||
# super(TestCase, self).assertEqual(x, y, message)
|
||||
# AssertionError: None != 77 :
|
||||
tests_to_skip+=('TestDistBackend and test_all_gather_group')
|
||||
tests_to_skip+=('TestDistBackend and test_all_reduce_group_max')
|
||||
tests_to_skip+=('TestDistBackend and test_all_reduce_group_min')
|
||||
tests_to_skip+=('TestDistBackend and test_all_reduce_group_sum')
|
||||
tests_to_skip+=('TestDistBackend and test_all_reduce_group_product')
|
||||
tests_to_skip+=('TestDistBackend and test_barrier_group')
|
||||
tests_to_skip+=('TestDistBackend and test_broadcast_group')
|
||||
|
||||
# Traceback (most recent call last):
|
||||
# File "test_thd_distributed.py", line 1046, in wrapper
|
||||
# self._join_and_reduce(fn)
|
||||
# File "test_thd_distributed.py", line 1108, in _join_and_reduce
|
||||
# self.assertEqual(p.exitcode, first_process.exitcode)
|
||||
# File "/pytorch/test/common.py", line 397, in assertEqual
|
||||
# super(TestCase, self).assertLessEqual(abs(x - y), prec, message)
|
||||
# AssertionError: 12 not less than or equal to 1e-05
|
||||
tests_to_skip+=('TestDistBackend and test_barrier')
|
||||
|
||||
# Traceback (most recent call last):
|
||||
# File "test_distributed.py", line 1267, in wrapper
|
||||
# self._join_and_reduce(fn)
|
||||
# File "test_distributed.py", line 1350, in _join_and_reduce
|
||||
# self.assertEqual(p.exitcode, first_process.exitcode)
|
||||
# File "/pytorch/test/common.py", line 399, in assertEqual
|
||||
# super(TestCase, self).assertEqual(x, y, message)
|
||||
# AssertionError: None != 1
|
||||
tests_to_skip+=('TestDistBackend and test_broadcast')
|
||||
|
||||
# Memory leak very similar to all the conda ones below, but appears on manywheel
|
||||
# 3.6m_cu80
|
||||
# AssertionError: 1605632 not less than or equal to 1e-05 : __main__.TestEndToEndHybridFrontendModels.test_vae_cuda leaked 1605632 bytes CUDA memory on device 0
|
||||
tests_to_skip+=('TestEndToEndHybridFrontendModels and test_vae_cuda')
|
||||
|
||||
# ________________________ TestNN.test_embedding_bag_cuda ________________________
|
||||
#
|
||||
# self = <test_nn.TestNN testMethod=test_embedding_bag_cuda>
|
||||
# dtype = torch.float32
|
||||
#
|
||||
# @unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
||||
# @repeat_test_for_types(ALL_TENSORTYPES)
|
||||
# @skipIfRocm
|
||||
# def test_embedding_bag_cuda(self, dtype=torch.float):
|
||||
# self._test_EmbeddingBag(True, 'sum', False, dtype)
|
||||
# self._test_EmbeddingBag(True, 'mean', False, dtype)
|
||||
# self._test_EmbeddingBag(True, 'max', False, dtype)
|
||||
# if dtype != torch.half:
|
||||
# # torch.cuda.sparse.HalfTensor is not enabled.
|
||||
# self._test_EmbeddingBag(True, 'sum', True, dtype)
|
||||
# > self._test_EmbeddingBag(True, 'mean', True, dtype)
|
||||
#
|
||||
# test_nn.py:2144:
|
||||
# _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
||||
# test_nn.py:2062: in _test_EmbeddingBag
|
||||
# _test_vs_Embedding(N, D, B, L)
|
||||
# test_nn.py:2059: in _test_vs_Embedding
|
||||
# self.assertEqual(es_weight_grad, e.weight.grad, needed_prec)
|
||||
# common.py:373: in assertEqual
|
||||
# assertTensorsEqual(x, y)
|
||||
# common.py:365: in assertTensorsEqual
|
||||
# self.assertLessEqual(max_err, prec, message)
|
||||
# E AssertionError: tensor(0.0000, device='cuda:0', dtype=torch.float32) not less than or equal to 2e-05 :
|
||||
# 1 failed, 1202 passed, 19 skipped, 2 xfailed, 796 warnings in 1166.73 seconds =
|
||||
# Traceback (most recent call last):
|
||||
# File "test/run_test.py", line 391, in <module>
|
||||
# main()
|
||||
# File "test/run_test.py", line 383, in main
|
||||
# raise RuntimeError(message)
|
||||
tests_to_skip+=('TestNN and test_embedding_bag_cuda')
|
||||
fi
|
||||
|
||||
##############################################################################
|
||||
# MacOS specific flaky tests
|
||||
##############################################################################
|
||||
|
||||
if [[ "$(uname)" == 'Darwin' ]]; then
|
||||
# TestCppExtensions by default uses a temp folder in /tmp. This doesn't
|
||||
# work for this Mac machine cause there is only one machine and /tmp is
|
||||
# shared. (All the linux builds are on docker so have their own /tmp).
|
||||
tests_to_skip+=('TestCppExtension')
|
||||
fi
|
||||
|
||||
# Turn the set of tests to skip into an invocation that pytest understands
|
||||
excluded_tests_logic=''
|
||||
for exclusion in "${tests_to_skip[@]}"; do
|
||||
if [[ -z "$excluded_tests_logic" ]]; then
|
||||
# Only true for i==0
|
||||
excluded_tests_logic="not ($exclusion)"
|
||||
else
|
||||
excluded_tests_logic="$excluded_tests_logic and not ($exclusion)"
|
||||
fi
|
||||
done
|
||||
|
||||
|
||||
##############################################################################
|
||||
# Run the tests
|
||||
##############################################################################
|
||||
echo
|
||||
echo "$(date) :: Calling 'python test/run_test.py -v -p pytest ${entire_file_exclusions[@]} -- --disable-pytest-warnings -k '$excluded_tests_logic'"
|
||||
|
||||
python test/run_test.py -v -p pytest ${entire_file_exclusions[@]} -- --disable-pytest-warnings -k "'" "$excluded_tests_logic" "'"
|
||||
|
||||
echo
|
||||
echo "$(date) :: Finished 'python test/run_test.py -v -p pytest ${entire_file_exclusions[@]} -- --disable-pytest-warnings -k '$excluded_tests_logic'"
|
||||
|
||||
# cpp_extensions don't work with pytest, so we run them without pytest here,
|
||||
# except there's a failure on CUDA builds (documented above), and
|
||||
# cpp_extensions doesn't work on a shared mac machine (also documented above)
|
||||
if [[ "$cuda_ver" == 'cpu' && "$(uname)" != 'Darwin' ]]; then
|
||||
echo
|
||||
echo "$(date) :: Calling 'python test/run_test.py -v -i cpp_extensions'"
|
||||
python test/run_test.py -v -i cpp_extensions
|
||||
echo
|
||||
echo "$(date) :: Finished 'python test/run_test.py -v -i cpp_extensions'"
|
||||
fi
|
||||
|
||||
# thd_distributed can run on Mac but not in pytest
|
||||
if [[ "$(uname)" == 'Darwin' ]]; then
|
||||
echo
|
||||
echo "$(date) :: Calling 'python test/run_test.py -v -i thd_distributed'"
|
||||
python test/run_test.py -v -i thd_distributed
|
||||
echo
|
||||
echo "$(date) :: Finished 'python test/run_test.py -v -i thd_distributed'"
|
||||
fi
|
||||
@ -1,130 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import concurrent.futures
|
||||
import distutils.sysconfig
|
||||
import functools
|
||||
import itertools
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Tuple
|
||||
|
||||
|
||||
# We also check that there are [not] cxx11 symbols in libtorch
|
||||
#
|
||||
# To check whether it is using cxx11 ABI, check non-existence of symbol:
|
||||
PRE_CXX11_SYMBOLS = (
|
||||
"std::basic_string<",
|
||||
"std::list",
|
||||
)
|
||||
# To check whether it is using pre-cxx11 ABI, check non-existence of symbol:
|
||||
CXX11_SYMBOLS = (
|
||||
"std::__cxx11::basic_string",
|
||||
"std::__cxx11::list",
|
||||
)
|
||||
# NOTE: Checking the above symbols in all namespaces doesn't work, because
|
||||
# devtoolset7 always produces some cxx11 symbols even if we build with old ABI,
|
||||
# and CuDNN always has pre-cxx11 symbols even if we build with new ABI using gcc 5.4.
|
||||
# Instead, we *only* check the above symbols in the following namespaces:
|
||||
LIBTORCH_NAMESPACE_LIST = (
|
||||
"c10::",
|
||||
"at::",
|
||||
"caffe2::",
|
||||
"torch::",
|
||||
)
|
||||
|
||||
|
||||
def _apply_libtorch_symbols(symbols):
|
||||
return [
|
||||
re.compile(f"{x}.*{y}")
|
||||
for (x, y) in itertools.product(LIBTORCH_NAMESPACE_LIST, symbols)
|
||||
]
|
||||
|
||||
|
||||
LIBTORCH_CXX11_PATTERNS = _apply_libtorch_symbols(CXX11_SYMBOLS)
|
||||
|
||||
LIBTORCH_PRE_CXX11_PATTERNS = _apply_libtorch_symbols(PRE_CXX11_SYMBOLS)
|
||||
|
||||
|
||||
@functools.lru_cache(100)
|
||||
def get_symbols(lib: str) -> List[Tuple[str, str, str]]:
|
||||
from subprocess import check_output
|
||||
|
||||
lines = check_output(f'nm "{lib}"|c++filt', shell=True)
|
||||
return [x.split(" ", 2) for x in lines.decode("latin1").split("\n")[:-1]]
|
||||
|
||||
|
||||
def grep_symbols(lib: str, patterns: List[Any]) -> List[str]:
|
||||
def _grep_symbols(
|
||||
symbols: List[Tuple[str, str, str]], patterns: List[Any]
|
||||
) -> List[str]:
|
||||
rc = []
|
||||
for _s_addr, _s_type, s_name in symbols:
|
||||
for pattern in patterns:
|
||||
if pattern.match(s_name):
|
||||
rc.append(s_name)
|
||||
continue
|
||||
return rc
|
||||
|
||||
all_symbols = get_symbols(lib)
|
||||
num_workers = 32
|
||||
chunk_size = (len(all_symbols) + num_workers - 1) // num_workers
|
||||
|
||||
def _get_symbols_chunk(i):
|
||||
return all_symbols[i * chunk_size : (i + 1) * chunk_size]
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
|
||||
tasks = [
|
||||
executor.submit(_grep_symbols, _get_symbols_chunk(i), patterns)
|
||||
for i in range(num_workers)
|
||||
]
|
||||
return functools.reduce(list.__add__, (x.result() for x in tasks), [])
|
||||
|
||||
|
||||
def check_lib_symbols_for_abi_correctness(lib: str, pre_cxx11_abi: bool = True) -> None:
|
||||
print(f"lib: {lib}")
|
||||
cxx11_symbols = grep_symbols(lib, LIBTORCH_CXX11_PATTERNS)
|
||||
pre_cxx11_symbols = grep_symbols(lib, LIBTORCH_PRE_CXX11_PATTERNS)
|
||||
num_cxx11_symbols = len(cxx11_symbols)
|
||||
num_pre_cxx11_symbols = len(pre_cxx11_symbols)
|
||||
print(f"num_cxx11_symbols: {num_cxx11_symbols}")
|
||||
print(f"num_pre_cxx11_symbols: {num_pre_cxx11_symbols}")
|
||||
if pre_cxx11_abi:
|
||||
if num_cxx11_symbols > 0:
|
||||
raise RuntimeError(
|
||||
f"Found cxx11 symbols, but there shouldn't be any, see: {cxx11_symbols[:100]}"
|
||||
)
|
||||
if num_pre_cxx11_symbols < 1000:
|
||||
raise RuntimeError("Didn't find enough pre-cxx11 symbols.")
|
||||
# Check for no recursive iterators, regression test for https://github.com/pytorch/pytorch/issues/133437
|
||||
rec_iter_symbols = grep_symbols(
|
||||
lib, [re.compile("std::filesystem::recursive_directory_iterator.*")]
|
||||
)
|
||||
if len(rec_iter_symbols) > 0:
|
||||
raise RuntimeError(
|
||||
f"recursive_directory_iterator in used pre-CXX11 binaries, see; {rec_iter_symbols}"
|
||||
)
|
||||
else:
|
||||
if num_pre_cxx11_symbols > 0:
|
||||
raise RuntimeError(
|
||||
f"Found pre-cxx11 symbols, but there shouldn't be any, see: {pre_cxx11_symbols[:100]}"
|
||||
)
|
||||
if num_cxx11_symbols < 100:
|
||||
raise RuntimeError("Didn't find enought cxx11 symbols")
|
||||
|
||||
|
||||
def main() -> None:
|
||||
if "install_root" in os.environ:
|
||||
install_root = Path(os.getenv("install_root")) # noqa: SIM112
|
||||
else:
|
||||
if os.getenv("PACKAGE_TYPE") == "libtorch":
|
||||
install_root = Path(os.getcwd())
|
||||
else:
|
||||
install_root = Path(distutils.sysconfig.get_python_lib()) / "torch"
|
||||
|
||||
libtorch_cpu_path = install_root / "lib" / "libtorch_cpu.so"
|
||||
pre_cxx11_abi = "cxx11-abi" not in os.getenv("DESIRED_DEVTOOLSET", "")
|
||||
check_lib_symbols_for_abi_correctness(libtorch_cpu_path, pre_cxx11_abi)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -1,205 +0,0 @@
|
||||
import argparse
|
||||
|
||||
from torchvision import datasets, transforms
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__() # noqa: UP008
|
||||
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
||||
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
||||
self.dropout1 = nn.Dropout(0.25)
|
||||
self.dropout2 = nn.Dropout(0.5)
|
||||
self.fc1 = nn.Linear(9216, 128)
|
||||
self.fc2 = nn.Linear(128, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = F.relu(x)
|
||||
x = self.conv2(x)
|
||||
x = F.relu(x)
|
||||
x = F.max_pool2d(x, 2)
|
||||
x = self.dropout1(x)
|
||||
x = torch.flatten(x, 1)
|
||||
x = self.fc1(x)
|
||||
x = F.relu(x)
|
||||
x = self.dropout2(x)
|
||||
x = self.fc2(x)
|
||||
output = F.log_softmax(x, dim=1)
|
||||
return output
|
||||
|
||||
|
||||
def train(args, model, device, train_loader, optimizer, epoch):
|
||||
model.train()
|
||||
for batch_idx, (data, target) in enumerate(train_loader):
|
||||
data, target = data.to(device), target.to(device)
|
||||
optimizer.zero_grad()
|
||||
output = model(data)
|
||||
loss = F.nll_loss(output, target)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if batch_idx % args.log_interval == 0:
|
||||
print(
|
||||
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}" # noqa: B950
|
||||
)
|
||||
if args.dry_run:
|
||||
break
|
||||
|
||||
|
||||
def test(model, device, test_loader):
|
||||
model.eval()
|
||||
test_loss = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for data, target in test_loader:
|
||||
data, target = data.to(device), target.to(device)
|
||||
output = model(data)
|
||||
test_loss += F.nll_loss(
|
||||
output, target, reduction="sum"
|
||||
).item() # sum up batch loss
|
||||
pred = output.argmax(
|
||||
dim=1, keepdim=True
|
||||
) # get the index of the max log-probability
|
||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||
|
||||
test_loss /= len(test_loader.dataset)
|
||||
|
||||
print(
|
||||
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.0f}%)\n" # noqa: B950
|
||||
)
|
||||
|
||||
|
||||
def timed(fn):
|
||||
start = torch.cuda.Event(enable_timing=True)
|
||||
end = torch.cuda.Event(enable_timing=True)
|
||||
start.record()
|
||||
result = fn()
|
||||
end.record()
|
||||
torch.cuda.synchronize()
|
||||
return result, start.elapsed_time(end) / 1000
|
||||
|
||||
|
||||
def main():
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=64,
|
||||
metavar="N",
|
||||
help="input batch size for training (default: 64)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test-batch-size",
|
||||
type=int,
|
||||
default=1000,
|
||||
metavar="N",
|
||||
help="input batch size for testing (default: 1000)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=4,
|
||||
metavar="N",
|
||||
help="number of epochs to train (default: 14)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=1.0,
|
||||
metavar="LR",
|
||||
help="learning rate (default: 1.0)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gamma",
|
||||
type=float,
|
||||
default=0.7,
|
||||
metavar="M",
|
||||
help="Learning rate step gamma (default: 0.7)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-mps",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="disables macOS GPU training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="quickly check a single pass",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=100,
|
||||
metavar="N",
|
||||
help="how many batches to wait before logging training status",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-model",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="For Saving the current Model",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
use_cuda = not args.no_cuda and torch.cuda.is_available()
|
||||
use_mps = not args.no_mps and torch.backends.mps.is_available()
|
||||
|
||||
torch.manual_seed(args.seed)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
if use_cuda:
|
||||
device = torch.device("cuda")
|
||||
elif use_mps:
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
train_kwargs = {"batch_size": args.batch_size}
|
||||
test_kwargs = {"batch_size": args.test_batch_size}
|
||||
if use_cuda:
|
||||
cuda_kwargs = {"num_workers": 1, "pin_memory": True, "shuffle": True}
|
||||
train_kwargs.update(cuda_kwargs)
|
||||
test_kwargs.update(cuda_kwargs)
|
||||
|
||||
transform = transforms.Compose(
|
||||
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
|
||||
)
|
||||
dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
|
||||
dataset2 = datasets.MNIST("../data", train=False, transform=transform)
|
||||
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
|
||||
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
|
||||
|
||||
model = Net().to(device)
|
||||
opt_model = torch.compile(model, mode="max-autotune")
|
||||
optimizer = optim.Adadelta(opt_model.parameters(), lr=args.lr)
|
||||
|
||||
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
print(
|
||||
f"Training Time: {timed(lambda: train(args, opt_model, device, train_loader, optimizer, epoch))[1]}"
|
||||
)
|
||||
print(
|
||||
f"Evaluation Time: {timed(lambda: test(opt_model, device, test_loader))[1]}"
|
||||
)
|
||||
scheduler.step()
|
||||
|
||||
if args.save_model:
|
||||
torch.save(opt_model.state_dict(), "mnist_cnn.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -1,394 +0,0 @@
|
||||
import argparse
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch._dynamo
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
if "MATRIX_GPU_ARCH_VERSION" in os.environ:
|
||||
gpu_arch_ver = os.getenv("MATRIX_GPU_ARCH_VERSION")
|
||||
else:
|
||||
gpu_arch_ver = os.getenv("GPU_ARCH_VERSION") # Use fallback if available
|
||||
gpu_arch_type = os.getenv("MATRIX_GPU_ARCH_TYPE")
|
||||
channel = os.getenv("MATRIX_CHANNEL")
|
||||
package_type = os.getenv("MATRIX_PACKAGE_TYPE")
|
||||
target_os = os.getenv("TARGET_OS", sys.platform)
|
||||
BASE_DIR = Path(__file__).parent.parent.parent
|
||||
|
||||
is_cuda_system = gpu_arch_type == "cuda"
|
||||
NIGHTLY_ALLOWED_DELTA = 3
|
||||
|
||||
MODULES = [
|
||||
{
|
||||
"name": "torchvision",
|
||||
"repo": "https://github.com/pytorch/vision.git",
|
||||
"smoke_test": "./vision/test/smoke_test.py",
|
||||
"extension": "extension",
|
||||
"repo_name": "vision",
|
||||
},
|
||||
{
|
||||
"name": "torchaudio",
|
||||
"repo": "https://github.com/pytorch/audio.git",
|
||||
"smoke_test": "./audio/test/smoke_test/smoke_test.py --no-ffmpeg",
|
||||
"extension": "_extension",
|
||||
"repo_name": "audio",
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
||||
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
||||
self.fc1 = nn.Linear(9216, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = F.max_pool2d(x, 2)
|
||||
x = torch.flatten(x, 1)
|
||||
output = self.fc1(x)
|
||||
return output
|
||||
|
||||
|
||||
def load_json_from_basedir(filename: str):
|
||||
try:
|
||||
with open(BASE_DIR / filename) as fptr:
|
||||
return json.load(fptr)
|
||||
except FileNotFoundError as exc:
|
||||
raise ImportError(f"File {filename} not found error: {exc.strerror}") from exc
|
||||
except json.JSONDecodeError as exc:
|
||||
raise ImportError(f"Invalid JSON {filename}") from exc
|
||||
|
||||
|
||||
def read_release_matrix():
|
||||
return load_json_from_basedir("release_matrix.json")
|
||||
|
||||
|
||||
def test_numpy():
|
||||
import numpy as np
|
||||
|
||||
x = np.arange(5)
|
||||
torch.tensor(x)
|
||||
|
||||
|
||||
def check_version(package: str) -> None:
|
||||
release_version = os.getenv("RELEASE_VERSION")
|
||||
# if release_version is specified, use it to validate the packages
|
||||
if release_version:
|
||||
release_matrix = read_release_matrix()
|
||||
stable_version = release_matrix["torch"]
|
||||
else:
|
||||
stable_version = os.getenv("MATRIX_STABLE_VERSION")
|
||||
|
||||
# only makes sense to check nightly package where dates are known
|
||||
if channel == "nightly":
|
||||
check_nightly_binaries_date(package)
|
||||
elif stable_version is not None:
|
||||
if not torch.__version__.startswith(stable_version):
|
||||
raise RuntimeError(
|
||||
f"Torch version mismatch, expected {stable_version} for channel {channel}. But its {torch.__version__}"
|
||||
)
|
||||
|
||||
if release_version and package == "all":
|
||||
for module in MODULES:
|
||||
imported_module = importlib.import_module(module["name"])
|
||||
module_version = imported_module.__version__
|
||||
if not module_version.startswith(release_matrix[module["name"]]):
|
||||
raise RuntimeError(
|
||||
f"{module['name']} version mismatch, expected: \
|
||||
{release_matrix[module['name']]} for channel {channel}. But its {module_version}"
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"{module['name']} version actual: {module_version} expected: \
|
||||
{release_matrix[module['name']]} for channel {channel}."
|
||||
)
|
||||
|
||||
else:
|
||||
print(f"Skip version check for channel {channel} as stable version is None")
|
||||
|
||||
|
||||
def check_nightly_binaries_date(package: str) -> None:
|
||||
from datetime import datetime
|
||||
|
||||
format_dt = "%Y%m%d"
|
||||
|
||||
date_t_str = re.findall("dev\\d+", torch.__version__)
|
||||
date_t_delta = datetime.now() - datetime.strptime(date_t_str[0][3:], format_dt)
|
||||
if date_t_delta.days >= NIGHTLY_ALLOWED_DELTA:
|
||||
raise RuntimeError(
|
||||
f"the binaries are from {date_t_str} and are more than {NIGHTLY_ALLOWED_DELTA} days old!"
|
||||
)
|
||||
|
||||
if package == "all":
|
||||
for module in MODULES:
|
||||
imported_module = importlib.import_module(module["name"])
|
||||
module_version = imported_module.__version__
|
||||
date_m_str = re.findall("dev\\d+", module_version)
|
||||
date_m_delta = datetime.now() - datetime.strptime(
|
||||
date_m_str[0][3:], format_dt
|
||||
)
|
||||
print(f"Nightly date check for {module['name']} version {module_version}")
|
||||
if date_m_delta.days > NIGHTLY_ALLOWED_DELTA:
|
||||
raise RuntimeError(
|
||||
f"Expected {module['name']} to be less then {NIGHTLY_ALLOWED_DELTA} days. But its {date_m_delta}"
|
||||
)
|
||||
|
||||
|
||||
def test_cuda_runtime_errors_captured() -> None:
|
||||
cuda_exception_missed = True
|
||||
try:
|
||||
print("Testing test_cuda_runtime_errors_captured")
|
||||
torch._assert_async(torch.tensor(0, device="cuda"))
|
||||
torch._assert_async(torch.tensor(0 + 0j, device="cuda"))
|
||||
except RuntimeError as e:
|
||||
if re.search("CUDA", f"{e}"):
|
||||
print(f"Caught CUDA exception with success: {e}")
|
||||
cuda_exception_missed = False
|
||||
else:
|
||||
raise e
|
||||
if cuda_exception_missed:
|
||||
raise RuntimeError("Expected CUDA RuntimeError but have not received!")
|
||||
|
||||
|
||||
def smoke_test_cuda(
|
||||
package: str, runtime_error_check: str, torch_compile_check: str
|
||||
) -> None:
|
||||
if not torch.cuda.is_available() and is_cuda_system:
|
||||
raise RuntimeError(f"Expected CUDA {gpu_arch_ver}. However CUDA is not loaded.")
|
||||
|
||||
if package == "all" and is_cuda_system:
|
||||
for module in MODULES:
|
||||
imported_module = importlib.import_module(module["name"])
|
||||
# TBD for vision move extension module to private so it will
|
||||
# be _extention.
|
||||
version = "N/A"
|
||||
if module["extension"] == "extension":
|
||||
version = imported_module.extension._check_cuda_version()
|
||||
else:
|
||||
version = imported_module._extension._check_cuda_version()
|
||||
print(f"{module['name']} CUDA: {version}")
|
||||
|
||||
# torch.compile is available on macos-arm64 and Linux for python 3.8-3.13
|
||||
if (
|
||||
torch_compile_check == "enabled"
|
||||
and sys.version_info < (3, 14, 0)
|
||||
and target_os in ["linux", "linux-aarch64", "macos-arm64", "darwin"]
|
||||
):
|
||||
smoke_test_compile("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
if torch.version.cuda != gpu_arch_ver:
|
||||
raise RuntimeError(
|
||||
f"Wrong CUDA version. Loaded: {torch.version.cuda} Expected: {gpu_arch_ver}"
|
||||
)
|
||||
print(f"torch cuda: {torch.version.cuda}")
|
||||
# todo add cudnn version validation
|
||||
print(f"torch cudnn: {torch.backends.cudnn.version()}")
|
||||
print(f"cuDNN enabled? {torch.backends.cudnn.enabled}")
|
||||
|
||||
torch.cuda.init()
|
||||
print("CUDA initialized successfully")
|
||||
print(f"Number of CUDA devices: {torch.cuda.device_count()}")
|
||||
for i in range(torch.cuda.device_count()):
|
||||
print(f"Device {i}: {torch.cuda.get_device_name(i)}")
|
||||
|
||||
# nccl is availbale only on Linux
|
||||
if sys.platform in ["linux", "linux2"]:
|
||||
print(f"torch nccl version: {torch.cuda.nccl.version()}")
|
||||
|
||||
if runtime_error_check == "enabled":
|
||||
test_cuda_runtime_errors_captured()
|
||||
|
||||
|
||||
def smoke_test_conv2d() -> None:
|
||||
import torch.nn as nn
|
||||
|
||||
print("Testing smoke_test_conv2d")
|
||||
# With square kernels and equal stride
|
||||
m = nn.Conv2d(16, 33, 3, stride=2)
|
||||
# non-square kernels and unequal stride and with padding
|
||||
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
||||
assert m is not None
|
||||
# non-square kernels and unequal stride and with padding and dilation
|
||||
basic_conv = nn.Conv2d(
|
||||
16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)
|
||||
)
|
||||
input = torch.randn(20, 16, 50, 100)
|
||||
output = basic_conv(input)
|
||||
|
||||
if is_cuda_system:
|
||||
print("Testing smoke_test_conv2d with cuda")
|
||||
conv = nn.Conv2d(3, 3, 3).cuda()
|
||||
x = torch.randn(1, 3, 24, 24, device="cuda")
|
||||
with torch.cuda.amp.autocast():
|
||||
out = conv(x)
|
||||
assert out is not None
|
||||
|
||||
supported_dtypes = [torch.float16, torch.float32, torch.float64]
|
||||
for dtype in supported_dtypes:
|
||||
print(f"Testing smoke_test_conv2d with cuda for {dtype}")
|
||||
conv = basic_conv.to(dtype).cuda()
|
||||
input = torch.randn(20, 16, 50, 100, device="cuda").type(dtype)
|
||||
output = conv(input)
|
||||
assert output is not None
|
||||
|
||||
|
||||
def test_linalg(device="cpu") -> None:
|
||||
print(f"Testing smoke_test_linalg on {device}")
|
||||
A = torch.randn(5, 3, device=device)
|
||||
U, S, Vh = torch.linalg.svd(A, full_matrices=False)
|
||||
assert (
|
||||
U.shape == A.shape
|
||||
and S.shape == torch.Size([3])
|
||||
and Vh.shape == torch.Size([3, 3])
|
||||
)
|
||||
torch.dist(A, U @ torch.diag(S) @ Vh)
|
||||
|
||||
U, S, Vh = torch.linalg.svd(A)
|
||||
assert (
|
||||
U.shape == torch.Size([5, 5])
|
||||
and S.shape == torch.Size([3])
|
||||
and Vh.shape == torch.Size([3, 3])
|
||||
)
|
||||
torch.dist(A, U[:, :3] @ torch.diag(S) @ Vh)
|
||||
|
||||
A = torch.randn(7, 5, 3, device=device)
|
||||
U, S, Vh = torch.linalg.svd(A, full_matrices=False)
|
||||
torch.dist(A, U @ torch.diag_embed(S) @ Vh)
|
||||
|
||||
if device == "cuda":
|
||||
supported_dtypes = [torch.float32, torch.float64]
|
||||
for dtype in supported_dtypes:
|
||||
print(f"Testing smoke_test_linalg with cuda for {dtype}")
|
||||
A = torch.randn(20, 16, 50, 100, device=device, dtype=dtype)
|
||||
torch.linalg.svd(A)
|
||||
|
||||
|
||||
def smoke_test_compile(device: str = "cpu") -> None:
|
||||
supported_dtypes = [torch.float16, torch.float32, torch.float64]
|
||||
|
||||
def foo(x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sin(x) + torch.cos(x)
|
||||
|
||||
for dtype in supported_dtypes:
|
||||
print(f"Testing smoke_test_compile for {device} and {dtype}")
|
||||
x = torch.rand(3, 3, device=device).type(dtype)
|
||||
x_eager = foo(x)
|
||||
x_pt2 = torch.compile(foo)(x)
|
||||
torch.testing.assert_close(x_eager, x_pt2)
|
||||
|
||||
# Check that SIMD were detected for the architecture
|
||||
if device == "cpu":
|
||||
from torch._inductor.codecache import pick_vec_isa
|
||||
|
||||
isa = pick_vec_isa()
|
||||
if not isa:
|
||||
raise RuntimeError("Can't detect vectorized ISA for CPU")
|
||||
print(f"Picked CPU ISA {type(isa).__name__} bit width {isa.bit_width()}")
|
||||
|
||||
# Reset torch dynamo since we are changing mode
|
||||
torch._dynamo.reset()
|
||||
dtype = torch.float32
|
||||
torch.set_float32_matmul_precision("high")
|
||||
print(f"Testing smoke_test_compile with mode 'max-autotune' for {dtype}")
|
||||
x = torch.rand(64, 1, 28, 28, device=device).type(torch.float32)
|
||||
model = Net().to(device=device)
|
||||
x_pt2 = torch.compile(model, mode="max-autotune")(x)
|
||||
|
||||
|
||||
def smoke_test_modules():
|
||||
cwd = os.getcwd()
|
||||
for module in MODULES:
|
||||
if module["repo"]:
|
||||
if not os.path.exists(f"{cwd}/{module['repo_name']}"):
|
||||
print(f"Path does not exist: {cwd}/{module['repo_name']}")
|
||||
try:
|
||||
subprocess.check_output(
|
||||
f"git clone --depth 1 {module['repo']}",
|
||||
stderr=subprocess.STDOUT,
|
||||
shell=True,
|
||||
)
|
||||
except subprocess.CalledProcessError as exc:
|
||||
raise RuntimeError(
|
||||
f"Cloning {module['repo']} FAIL: {exc.returncode} Output: {exc.output}"
|
||||
) from exc
|
||||
try:
|
||||
smoke_test_command = f"python3 {module['smoke_test']}"
|
||||
if target_os == "windows":
|
||||
smoke_test_command = f"python {module['smoke_test']}"
|
||||
output = subprocess.check_output(
|
||||
smoke_test_command,
|
||||
stderr=subprocess.STDOUT,
|
||||
shell=True,
|
||||
universal_newlines=True,
|
||||
)
|
||||
except subprocess.CalledProcessError as exc:
|
||||
raise RuntimeError(
|
||||
f"Module {module['name']} FAIL: {exc.returncode} Output: {exc.output}"
|
||||
) from exc
|
||||
else:
|
||||
print(f"Output: \n{output}\n")
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--package",
|
||||
help="Package to include in smoke testing",
|
||||
type=str,
|
||||
choices=["all", "torchonly"],
|
||||
default="all",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--runtime-error-check",
|
||||
help="No Runtime Error check",
|
||||
type=str,
|
||||
choices=["enabled", "disabled"],
|
||||
default="enabled",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--torch-compile-check",
|
||||
help="Check torch compile",
|
||||
type=str,
|
||||
choices=["enabled", "disabled"],
|
||||
default="enabled",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main() -> None:
|
||||
options = parse_args()
|
||||
print(f"torch: {torch.__version__}")
|
||||
print(torch.__config__.parallel_info())
|
||||
# All PyTorch binary builds should be built with OpenMP
|
||||
if not torch.backends.openmp.is_available():
|
||||
raise RuntimeError("PyTorch must be built with OpenMP support")
|
||||
|
||||
check_version(options.package)
|
||||
smoke_test_conv2d()
|
||||
test_linalg()
|
||||
test_numpy()
|
||||
if is_cuda_system:
|
||||
test_linalg("cuda")
|
||||
|
||||
if options.package == "all":
|
||||
smoke_test_modules()
|
||||
|
||||
smoke_test_cuda(
|
||||
options.package, options.runtime_error_check, options.torch_compile_check
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -4,7 +4,7 @@
|
||||
# (This is set by default in the Docker images we build, so you don't
|
||||
# need to set it yourself.
|
||||
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
# Suppress ANSI color escape sequences
|
||||
export TERM=vt100
|
||||
@ -12,9 +12,9 @@ export TERM=vt100
|
||||
# shellcheck source=./common.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
|
||||
|
||||
# Do not change workspace permissions for ROCm and s390x CI jobs
|
||||
# Do not change workspace permissions for ROCm CI jobs
|
||||
# as it can leave workspace with bad permissions for cancelled jobs
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /var/lib/jenkins/workspace ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
|
||||
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
|
||||
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
|
||||
cleanup_workspace() {
|
||||
@ -48,7 +48,7 @@ NUM_TEST_SHARDS="${NUM_TEST_SHARDS:=1}"
|
||||
|
||||
export VALGRIND=ON
|
||||
# export TORCH_INDUCTOR_INSTALL_GXX=ON
|
||||
if [[ "$BUILD_ENVIRONMENT" == *clang9* || "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
if [[ "$BUILD_ENVIRONMENT" == *clang9* ]]; then
|
||||
# clang9 appears to miscompile code involving std::optional<c10::SymInt>,
|
||||
# such that valgrind complains along these lines:
|
||||
#
|
||||
@ -86,13 +86,6 @@ if [[ "$BUILD_ENVIRONMENT" == *clang9* || "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
export VALGRIND=OFF
|
||||
fi
|
||||
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *s390x* ]]; then
|
||||
# There are additional warnings on s390x, maybe due to newer gcc.
|
||||
# Skip this check for now
|
||||
export VALGRIND=OFF
|
||||
fi
|
||||
|
||||
if [[ "${PYTORCH_TEST_RERUN_DISABLED_TESTS}" == "1" ]] || [[ "${CONTINUE_THROUGH_ERROR}" == "1" ]]; then
|
||||
# When rerunning disable tests, do not generate core dumps as it could consume
|
||||
# the runner disk space when crashed tests are run multiple times. Running out
|
||||
@ -136,7 +129,7 @@ if [[ "$TEST_CONFIG" == 'default' ]]; then
|
||||
fi
|
||||
|
||||
if [[ "$TEST_CONFIG" == 'distributed' ]] && [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
|
||||
export HIP_VISIBLE_DEVICES=0,1,2,3
|
||||
export HIP_VISIBLE_DEVICES=0,1
|
||||
fi
|
||||
|
||||
if [[ "$TEST_CONFIG" == 'slow' ]]; then
|
||||
@ -160,8 +153,6 @@ elif [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
export PYTORCH_TESTING_DEVICE_ONLY_FOR="xpu"
|
||||
# setting PYTHON_TEST_EXTRA_OPTION
|
||||
export PYTHON_TEST_EXTRA_OPTION="--xpu"
|
||||
# Disable sccache for xpu test due to flaky issue https://github.com/pytorch/pytorch/issues/143585
|
||||
sudo rm -rf /opt/cache
|
||||
fi
|
||||
|
||||
if [[ "$TEST_CONFIG" == *crossref* ]]; then
|
||||
@ -178,13 +169,9 @@ fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
# Source Intel oneAPI envrioment script to enable xpu runtime related libraries
|
||||
# refer to https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
|
||||
# refer to https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu/2-5.html
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/compiler/latest/env/vars.sh
|
||||
if [ -f /opt/intel/oneapi/umf/latest/env/vars.sh ]; then
|
||||
# shellcheck disable=SC1091
|
||||
source /opt/intel/oneapi/umf/latest/env/vars.sh
|
||||
fi
|
||||
# Check XPU status before testing
|
||||
xpu-smi discovery
|
||||
fi
|
||||
@ -309,7 +296,7 @@ test_python() {
|
||||
}
|
||||
|
||||
|
||||
test_dynamo_wrapped_shard() {
|
||||
test_dynamo_shard() {
|
||||
if [[ -z "$NUM_TEST_SHARDS" ]]; then
|
||||
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
|
||||
exit 1
|
||||
@ -322,7 +309,6 @@ test_dynamo_wrapped_shard() {
|
||||
--exclude-jit-executor \
|
||||
--exclude-distributed-tests \
|
||||
--exclude-torch-export-tests \
|
||||
--exclude-aot-dispatch-tests \
|
||||
--shard "$1" "$NUM_TEST_SHARDS" \
|
||||
--verbose \
|
||||
--upload-artifacts-while-running
|
||||
@ -336,7 +322,7 @@ test_inductor_distributed() {
|
||||
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_cuda_device --verbose
|
||||
python test/run_test.py -i inductor/test_aot_inductor.py -k test_replicate_on_devices --verbose
|
||||
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
|
||||
python test/run_test.py -i distributed/tensor/test_dtensor_compile.py --verbose
|
||||
python test/run_test.py -i distributed/_tensor/test_dtensor_compile.py --verbose
|
||||
python test/run_test.py -i distributed/tensor/parallel/test_micro_pipeline_tp.py --verbose
|
||||
python test/run_test.py -i distributed/_composable/test_replicate_with_compiler.py --verbose
|
||||
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_comm.py --verbose
|
||||
@ -389,53 +375,27 @@ test_inductor_aoti() {
|
||||
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
|
||||
}
|
||||
|
||||
test_inductor_cpp_wrapper_shard() {
|
||||
if [[ -z "$NUM_TEST_SHARDS" ]]; then
|
||||
echo "NUM_TEST_SHARDS must be defined to run a Python test shard"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
test_inductor_cpp_wrapper() {
|
||||
export TORCHINDUCTOR_CPP_WRAPPER=1
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
if [[ "$1" -eq "2" ]]; then
|
||||
# For now, manually put the opinfo tests in shard 2, and all other tests in
|
||||
# shard 1. Test specific things triggering past bugs, for now.
|
||||
python test/run_test.py \
|
||||
--include inductor/test_torchinductor_opinfo \
|
||||
-k 'linalg or to_sparse' \
|
||||
--verbose
|
||||
exit
|
||||
fi
|
||||
|
||||
# Run certain inductor unit tests with cpp wrapper. In the end state, we
|
||||
# should be able to run all the inductor unit tests with cpp_wrapper.
|
||||
python test/run_test.py --include inductor/test_torchinductor --verbose
|
||||
|
||||
# Run inductor benchmark tests with cpp wrapper.
|
||||
# Skip benchmark tests if it's in rerun-disabled-mode.
|
||||
if [[ "${PYTORCH_TEST_RERUN_DISABLED_TESTS}" == "1" ]]; then
|
||||
echo "skip dynamo benchmark tests for rerun-disabled-test"
|
||||
else
|
||||
echo "run dynamo benchmark tests with cpp wrapper"
|
||||
python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
|
||||
python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
|
||||
--training --inductor --disable-cudagraphs --only vit_base_patch16_224 \
|
||||
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
|
||||
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_timm_training.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
|
||||
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_timm_training.csv"
|
||||
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
|
||||
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_torchbench_inference.csv"
|
||||
fi
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
|
||||
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
|
||||
python benchmarks/dynamo/check_accuracy.py \
|
||||
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
|
||||
--expected "benchmarks/dynamo/ci_expected_accuracy/inductor_torchbench_inference.csv"
|
||||
}
|
||||
|
||||
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
|
||||
@ -541,7 +501,7 @@ test_perf_for_dashboard() {
|
||||
--dynamic-batch-only "$@" \
|
||||
--output "$TEST_REPORTS_DIR/${backend}_dynamic_${suite}_${dtype}_${mode}_${device}_${target}.csv"
|
||||
fi
|
||||
if [[ "$DASHBOARD_TAG" == *cppwrapper-true* ]]; then
|
||||
if [[ "$DASHBOARD_TAG" == *cppwrapper-true* ]] && [[ "$mode" == "inference" ]]; then
|
||||
TORCHINDUCTOR_CPP_WRAPPER=1 $TASKSET python "benchmarks/dynamo/$suite.py" \
|
||||
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
|
||||
--output "$TEST_REPORTS_DIR/${backend}_cpp_wrapper_${suite}_${dtype}_${mode}_${device}_${target}.csv"
|
||||
@ -639,11 +599,6 @@ test_single_dynamo_benchmark() {
|
||||
}
|
||||
|
||||
test_inductor_micro_benchmark() {
|
||||
# torchao requires cuda 8.0 or above for bfloat16 support
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;8.6"
|
||||
fi
|
||||
install_torchao
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
|
||||
test_inductor_set_cpu_affinity
|
||||
@ -847,7 +802,7 @@ test_without_numpy() {
|
||||
# Regression test for https://github.com/pytorch/pytorch/issues/66353
|
||||
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;print(torch.tensor([torch.tensor(0.), torch.tensor(1.)]))"
|
||||
# Regression test for https://github.com/pytorch/pytorch/issues/109387
|
||||
if [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
|
||||
if [[ "${TEST_CONFIG}" == *dynamo* ]]; then
|
||||
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;torch.compile(lambda x:print(x))('Hello World')"
|
||||
fi
|
||||
popd
|
||||
@ -917,20 +872,10 @@ test_libtorch_api() {
|
||||
else
|
||||
# Exclude IMethodTest that relies on torch::deploy, which will instead be ran in test_deploy
|
||||
OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="${MNIST_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_api -k "not IMethodTest"
|
||||
|
||||
# On s390x, pytorch is built without llvm.
|
||||
# Even if it would be built with llvm, llvm currently doesn't support used features on s390x and
|
||||
# test fails with errors like:
|
||||
# JIT session error: Unsupported target machine architecture in ELF object pytorch-jitted-objectbuffer
|
||||
# unknown file: Failure
|
||||
# C++ exception with description "valOrErr INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/torch/csrc/jit/tensorexpr/llvm_jit.h":34, please report a bug to PyTorch. Unexpected failure in LLVM JIT: Failed to materialize symbols: { (main, { func }) }
|
||||
if [[ "${BUILD_ENVIRONMENT}" != *s390x* ]]; then
|
||||
python test/run_test.py --cpp --verbose -i cpp/test_tensorexpr
|
||||
fi
|
||||
python test/run_test.py --cpp --verbose -i cpp/test_tensorexpr
|
||||
fi
|
||||
|
||||
# quantization is not fully supported on s390x yet
|
||||
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* && "${BUILD_ENVIRONMENT}" != *asan* && "${BUILD_ENVIRONMENT}" != *s390x* ]]; then
|
||||
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* && "${BUILD_ENVIRONMENT}" != *asan* ]]; then
|
||||
# NB: This test is not under TORCH_BIN_DIR but under BUILD_BIN_DIR
|
||||
export CPP_TESTS_DIR="${BUILD_BIN_DIR}"
|
||||
python test/run_test.py --cpp --verbose -i cpp/static_runtime_test
|
||||
@ -991,9 +936,6 @@ test_distributed() {
|
||||
python test/run_test.py --cpp --verbose -i cpp/HashStoreTest
|
||||
python test/run_test.py --cpp --verbose -i cpp/TCPStoreTest
|
||||
|
||||
echo "Testing multi-GPU linalg tests"
|
||||
python test/run_test.py -i test_linalg.py -k test_matmul_offline_mgpu_tunable --verbose
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
MPIEXEC=$(command -v mpiexec)
|
||||
if [[ -n "$MPIEXEC" ]]; then
|
||||
@ -1243,7 +1185,7 @@ EOF
|
||||
git reset --hard "${SHA_TO_COMPARE}"
|
||||
git submodule sync && git submodule update --init --recursive
|
||||
echo "::group::Installing Torch From Base Commit"
|
||||
pip3 install -r requirements.txt
|
||||
pip install -r requirements.txt
|
||||
# shellcheck source=./common-build.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
|
||||
python setup.py bdist_wheel --bdist-dir="base_bdist_tmp" --dist-dir="base_dist"
|
||||
@ -1277,7 +1219,7 @@ EOF
|
||||
}
|
||||
|
||||
test_bazel() {
|
||||
set -e -o pipefail
|
||||
set -e
|
||||
|
||||
# bazel test needs sccache setup.
|
||||
# shellcheck source=./common-build.sh
|
||||
@ -1400,11 +1342,10 @@ test_executorch() {
|
||||
export EXECUTORCH_BUILD_PYBIND=ON
|
||||
export CMAKE_ARGS="-DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
|
||||
|
||||
# For llama3
|
||||
bash examples/models/llama3_2_vision/install_requirements.sh
|
||||
# NB: We need to rebuild ExecuTorch runner here because it depends on PyTorch
|
||||
# from the PR
|
||||
bash .ci/scripts/setup-linux.sh cmake
|
||||
# shellcheck disable=SC1091
|
||||
source .ci/scripts/setup-linux.sh cmake
|
||||
|
||||
echo "Run ExecuTorch unit tests"
|
||||
pytest -v -n auto
|
||||
@ -1427,8 +1368,7 @@ test_executorch() {
|
||||
|
||||
test_linux_aarch64() {
|
||||
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
|
||||
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
|
||||
test_foreach test_reductions test_unary_ufuncs \
|
||||
test_transformers test_multiprocessing test_numpy_interop \
|
||||
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
|
||||
|
||||
# Dynamo tests
|
||||
@ -1446,7 +1386,6 @@ test_linux_aarch64() {
|
||||
inductor/test_pattern_matcher inductor/test_perf inductor/test_profiler inductor/test_select_algorithm inductor/test_smoke \
|
||||
inductor/test_split_cat_fx_passes inductor/test_standalone_compile inductor/test_torchinductor \
|
||||
inductor/test_torchinductor_codegen_dynamic_shapes inductor/test_torchinductor_dynamic_shapes inductor/test_memory \
|
||||
inductor/test_triton_cpu_backend inductor/test_triton_extension_backend inductor/test_mkldnn_pattern_matcher inductor/test_cpu_cpp_wrapper \
|
||||
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
|
||||
}
|
||||
|
||||
@ -1454,11 +1393,7 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
|
||||
(cd test && python -c "import torch; print(torch.__config__.show())")
|
||||
(cd test && python -c "import torch; print(torch.__config__.parallel_info())")
|
||||
fi
|
||||
if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
|
||||
# Install numpy-2.0.2 and compatible scipy & numba versions
|
||||
python -mpip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
|
||||
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
|
||||
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
|
||||
test_linux_aarch64
|
||||
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
|
||||
test_forward_backward_compatibility
|
||||
@ -1531,7 +1466,7 @@ elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
|
||||
install_torchaudio cuda
|
||||
install_torchvision
|
||||
checkout_install_torchbench hf_T5 llama moco
|
||||
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
|
||||
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper
|
||||
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
|
||||
install_torchvision
|
||||
test_inductor_shard "${SHARD_NUMBER}"
|
||||
@ -1540,9 +1475,9 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
|
||||
test_inductor_distributed
|
||||
fi
|
||||
fi
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo* ]]; then
|
||||
install_torchvision
|
||||
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
|
||||
test_dynamo_shard "${SHARD_NUMBER}"
|
||||
if [[ "${SHARD_NUMBER}" == 1 ]]; then
|
||||
test_aten
|
||||
fi
|
||||
|
||||
@ -1,26 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
|
||||
project(simple-torch-test)
|
||||
|
||||
find_package(Torch REQUIRED)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}")
|
||||
|
||||
|
||||
add_executable(simple-torch-test simple-torch-test.cpp)
|
||||
target_include_directories(simple-torch-test PRIVATE ${TORCH_INCLUDE_DIRS})
|
||||
target_link_libraries(simple-torch-test "${TORCH_LIBRARIES}")
|
||||
set_property(TARGET simple-torch-test PROPERTY CXX_STANDARD 17)
|
||||
|
||||
find_package(CUDAToolkit 11.8)
|
||||
|
||||
target_link_libraries(simple-torch-test CUDA::cudart CUDA::cufft CUDA::cusparse CUDA::cublas CUDA::cusolver)
|
||||
find_library(CUDNN_LIBRARY NAMES cudnn)
|
||||
target_link_libraries(simple-torch-test ${CUDNN_LIBRARY} )
|
||||
if(MSVC)
|
||||
file(GLOB TORCH_DLLS "$ENV{CUDA_PATH}/bin/cudnn64_8.dll" "$ENV{NVTOOLSEXT_PATH}/bin/x64/*.dll")
|
||||
message("dlls to copy " ${TORCH_DLLS})
|
||||
add_custom_command(TARGET simple-torch-test
|
||||
POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different
|
||||
${TORCH_DLLS}
|
||||
$<TARGET_FILE_DIR:simple-torch-test>)
|
||||
endif(MSVC)
|
||||
@ -1,15 +0,0 @@
|
||||
#include <torch/torch.h>
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
std::cout << "Checking that CUDA archs are setup correctly" << std::endl;
|
||||
TORCH_CHECK(torch::rand({ 3, 5 }, torch::Device(torch::kCUDA)).defined(), "CUDA archs are not setup correctly");
|
||||
|
||||
// These have to run after CUDA is initialized
|
||||
|
||||
std::cout << "Checking that magma is available" << std::endl;
|
||||
TORCH_CHECK(torch::hasMAGMA(), "MAGMA is not available");
|
||||
|
||||
std::cout << "Checking that CuDNN is available" << std::endl;
|
||||
TORCH_CHECK(torch::cuda::cudnn_is_available(), "CuDNN is not available");
|
||||
return 0;
|
||||
}
|
||||
@ -1,6 +0,0 @@
|
||||
#include <torch/torch.h>
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
TORCH_CHECK(torch::hasMKL(), "MKL is not available");
|
||||
return 0;
|
||||
}
|
||||
@ -1,7 +0,0 @@
|
||||
#include <ATen/ATen.h>
|
||||
#include <torch/torch.h>
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
TORCH_CHECK(at::globalContext().isXNNPACKAvailable(), "XNNPACK is not available");
|
||||
return 0;
|
||||
}
|
||||
@ -1,38 +0,0 @@
|
||||
r"""
|
||||
It's used to check basic rnn features with cuda.
|
||||
For example, it would throw exception if some components are missing
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
|
||||
class SimpleCNN(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(1, 1, 3)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
|
||||
def forward(self, inputs):
|
||||
output = self.pool(F.relu(self.conv(inputs)))
|
||||
output = output.view(1)
|
||||
return output
|
||||
|
||||
|
||||
# Mock one infer
|
||||
device = torch.device("cuda:0")
|
||||
net = SimpleCNN().to(device)
|
||||
net_inputs = torch.rand((1, 1, 5, 5), device=device)
|
||||
outputs = net(net_inputs)
|
||||
print(outputs)
|
||||
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.1)
|
||||
|
||||
# Mock one step training
|
||||
label = torch.full((1,), 1.0, dtype=torch.float, device=device)
|
||||
loss = criterion(outputs, label)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
@ -1,14 +0,0 @@
|
||||
r"""
|
||||
It's used to check basic rnn features with cuda.
|
||||
For example, it would throw exception if missing some components are missing
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
rnn = nn.RNN(10, 20, 2).to(device)
|
||||
inputs = torch.randn(5, 3, 10).to(device)
|
||||
h0 = torch.randn(2, 3, 20).to(device)
|
||||
output, hn = rnn(inputs, h0)
|
||||
@ -1,6 +0,0 @@
|
||||
#include <torch/torch.h>
|
||||
|
||||
int main(int argc, const char* argv[]) {
|
||||
TORCH_WARN("Simple test passed!");
|
||||
return 0;
|
||||
}
|
||||
@ -38,7 +38,7 @@ if [[ $PYLONG_API_CHECK == 0 ]]; then
|
||||
echo "PyLong_AsUnsignedLong -> THPUtils_unpackUInt32 / THPUtils_unpackUInt64"
|
||||
exit 1
|
||||
fi
|
||||
set -ex -o pipefail
|
||||
set -ex
|
||||
|
||||
"$SCRIPT_HELPERS_DIR"/build_pytorch.bat
|
||||
|
||||
|
||||
@ -26,8 +26,7 @@ if not errorlevel 0 goto fail
|
||||
|
||||
if "%USE_XPU%"=="1" (
|
||||
:: Install xpu support packages
|
||||
set CUDA_VERSION=xpu
|
||||
call %SCRIPT_HELPERS_DIR%\..\windows\internal\xpu_install.bat
|
||||
call %INSTALLER_DIR%\install_xpu.bat
|
||||
if errorlevel 1 exit /b 1
|
||||
)
|
||||
|
||||
@ -53,8 +52,7 @@ if not errorlevel 0 goto fail
|
||||
|
||||
if "%USE_XPU%"=="1" (
|
||||
:: Activate xpu environment - VS env is required for xpu
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat"
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\ocloc\latest\env\vars.bat"
|
||||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
|
||||
if errorlevel 1 exit /b 1
|
||||
:: Reduce build time. Only have MTL self-hosted runner now
|
||||
SET TORCH_XPU_ARCH_LIST=xe-lpg
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user