Compare commits

...

234 Commits

Author SHA1 Message Date
f52054199e update triton commit hash 2025-11-03 00:28:23 +00:00
3eddf04922 Revert "Add min/max support for barebones uint types (#166813)"
This reverts commit 9c22bbb2dce31b854e3387db77eaff501434f352.

Reverted https://github.com/pytorch/pytorch/pull/166813 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/166813#issuecomment-3478450413))
2025-11-02 22:50:36 +00:00
7c203b8420 [BE] Using std::move to reduce copy constructor calls by one. (#163599)
inspired by https://github.com/pytorch/pytorch/pull/163416

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163599
Approved by: https://github.com/Skylion007
2025-11-02 21:54:58 +00:00
3ca216ae17 Add claude skills for uint support and AT_DISPATCH_V2 (#166814)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166814
Approved by: https://github.com/Skylion007, https://github.com/malfet
ghstack dependencies: #166813
2025-11-02 21:36:19 +00:00
9c22bbb2dc Add min/max support for barebones uint types (#166813)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166813
Approved by: https://github.com/Skylion007
2025-11-02 21:36:19 +00:00
6268883f9c [MPS] Refactor torch.cat and add fast path for contiguous inputs (#166556)
In many cases when the fast path is used, the performance is pretty similar to what it used to be. However, with tensors on the order of about 1000 elements there is a modest speedup, which increases as the number of input tensors increases and the number of dimensions increases.

This script was used for performance comparison: <1f04647bbf/cat/perf0.py>

Before change:

```
idx: cpu time, mps time, speedup, op, args, kwargs
-----------------------------------------
0: 0.000843 ms, 0.010431 ms, 0.08, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': -1}
1: 0.000838 ms, 0.013467 ms, 0.06, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': 1}
2: 0.000792 ms, 0.009457 ms, 0.08, cat, [[tensor(shape[10, 5]), tensor(shape[5, 5])]], {'dim': 0}
3: 0.000834 ms, 0.010694 ms, 0.08, cat, [[tensor(shape[1, 2, 3]), tensor(shape[1, 2, 3])]], {'dim': -2}
4: 0.000627 ms, 0.000641 ms, 0.98, cat, [[tensor(shape[0]), tensor(shape[0])]], {'dim': 0}
5: 0.001172 ms, 0.006493 ms, 0.18, cat, [[tensor(shape[0]), tensor(shape[5, 5])]], {'dim': 1}
6: 0.000812 ms, 0.006148 ms, 0.13, cat, [[tensor(shape[0, 5]), tensor(shape[5, 5])]], {'dim': 0}
7: 0.000686 ms, 0.009382 ms, 0.07, cat, [[tensor(shape[1]), tensor(shape[1])]], {}
8: 0.000738 ms, 0.006532 ms, 0.11, cat, [[tensor(shape[2, 2, 2, 2])], 1], {}
9: 0.003835 ms, 0.193963 ms, 0.02, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
10: 0.552435 ms, 0.690500 ms, 0.80, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
11: 0.488799 ms, 0.708988 ms, 0.69, cat, "[[tensor(shape[1, 3, 2]), tensor(shape[2, 3, 2]), tensor(shape[3, 3, 2]), tensor(shape[1, 3, 2]), te...", {'dim': 0}
12: 0.000799 ms, 0.005997 ms, 0.13, cat, [[tensor(shape[1000]), tensor(shape[1000])]], {'dim': 0}
13: 0.000916 ms, 0.011791 ms, 0.08, cat, [[tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2])]], {'dim': 0}
14: 0.001028 ms, 0.012269 ms, 0.08, cat, "[[tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1...", {'dim': 0}
15: 0.001127 ms, 0.025197 ms, 0.04, cat, "[[tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(s...", {'dim': 0}
16: 0.321997 ms, 0.142815 ms, 2.25, cat, [[tensor(shape[1000000]), tensor(shape[1000000])]], {'dim': 0}
17: 1.989967 ms, 1.013615 ms, 1.96, cat, [[tensor(shape[1000000, 3, 2]), tensor(shape[1000000, 3, 2])]], {'dim': 0}
18: 3.161745 ms, 0.965378 ms, 3.28, cat, [[tensor(shape[3, 1000000, 2]), tensor(shape[3, 1000000, 2])]], {'dim': 1}
19: 3.416246 ms, 0.972278 ms, 3.51, cat, [[tensor(shape[3, 2, 1000000]), tensor(shape[3, 2, 1000000])]], {'dim': 2}
```

After change:

```
idx: cpu time, mps time, speedup, op, args, kwargs
-----------------------------------------
0: 0.000902 ms, 0.011074 ms, 0.08, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': -1}
1: 0.000899 ms, 0.010453 ms, 0.09, cat, [[tensor(shape[5, 5]), tensor(shape[5, 5])]], {'dim': 1}
2: 0.000771 ms, 0.005843 ms, 0.13, cat, [[tensor(shape[10, 5]), tensor(shape[5, 5])]], {'dim': 0}
3: 0.000776 ms, 0.010449 ms, 0.07, cat, [[tensor(shape[1, 2, 3]), tensor(shape[1, 2, 3])]], {'dim': -2}
4: 0.000616 ms, 0.000600 ms, 1.03, cat, [[tensor(shape[0]), tensor(shape[0])]], {'dim': 0}
5: 0.001150 ms, 0.007624 ms, 0.15, cat, [[tensor(shape[0]), tensor(shape[5, 5])]], {'dim': 1}
6: 0.000728 ms, 0.007949 ms, 0.09, cat, [[tensor(shape[0, 5]), tensor(shape[5, 5])]], {'dim': 0}
7: 0.000671 ms, 0.005458 ms, 0.12, cat, [[tensor(shape[1]), tensor(shape[1])]], {}
8: 0.000770 ms, 0.006590 ms, 0.12, cat, [[tensor(shape[2, 2, 2, 2])], 1], {}
9: 0.003835 ms, 0.190193 ms, 0.02, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
10: 0.529047 ms, 0.734389 ms, 0.72, cat, "[[tensor(shape[3, 1, 2]), tensor(shape[3, 2, 2]), tensor(shape[3, 3, 2]), tensor(shape[3, 1, 2]), te...", {'dim': 1}
11: 0.512615 ms, 0.531172 ms, 0.97, cat, "[[tensor(shape[1, 3, 2]), tensor(shape[2, 3, 2]), tensor(shape[3, 3, 2]), tensor(shape[1, 3, 2]), te...", {'dim': 0}
12: 0.000740 ms, 0.004288 ms, 0.17, cat, [[tensor(shape[1000]), tensor(shape[1000])]], {'dim': 0}
13: 0.000955 ms, 0.004119 ms, 0.23, cat, [[tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2])]], {'dim': 0}
14: 0.001037 ms, 0.004578 ms, 0.23, cat, "[[tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1000]), tensor(shape[1...", {'dim': 0}
15: 0.001115 ms, 0.004918 ms, 0.23, cat, "[[tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(shape[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), tensor(s...", {'dim': 0}
16: 0.334119 ms, 0.145008 ms, 2.30, cat, [[tensor(shape[1000000]), tensor(shape[1000000])]], {'dim': 0}
17: 2.419846 ms, 0.984192 ms, 2.46, cat, [[tensor(shape[1000000, 3, 2]), tensor(shape[1000000, 3, 2])]], {'dim': 0}
18: 3.117338 ms, 1.000345 ms, 3.12, cat, [[tensor(shape[3, 1000000, 2]), tensor(shape[3, 1000000, 2])]], {'dim': 1}
19: 3.047707 ms, 0.971730 ms, 3.14, cat, [[tensor(shape[3, 2, 1000000]), tensor(shape[3, 2, 1000000])]], {'dim': 2}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166556
Approved by: https://github.com/malfet
2025-11-02 21:27:05 +00:00
16212f0d6b [Sparse] support for exp op (#166801)
support for exp op in Sparse tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166801
Approved by: https://github.com/eqy
2025-11-02 21:14:43 +00:00
c8adc08b3b [Fix] Optimize max unpooling index validation using aminmax (#165394)
Replace separate min() and max() calls with single aminmax() call in max_unpool_out_mps_template to improve performance by reducing tensor traversals from O(2n) to O(n).

Changes:
- Use indices.aminmax() instead of separate indices.min()/max() calls
- Add required ATen/ops/aminmax.h header for AT_PER_OPERATOR_HEADERS
- Maintain identical bounds checking logic and error handling

This optimization is particularly beneficial for large indices tensors, improving cache locality and reducing computational overhead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165394
Approved by: https://github.com/cyyever, https://github.com/Skylion007
2025-11-02 19:42:02 +00:00
23b57a445c Remove setup-env instructions; it's confusing (#166749)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166749
Approved by: https://github.com/mlazos
2025-11-02 19:22:53 +00:00
cyy
6c7cad6972 Use Python 3.10 typing (#148418)
Use Python 3.10 typing in some files

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148418
Approved by: https://github.com/mlazos
2025-11-02 16:16:52 +00:00
bb54296258 Fix source_fn_stack being None (#166728)
Summary: Apparently source_fn_stack can be empty

Test Plan: CI

Differential Revision: D85956753

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166728
Approved by: https://github.com/SS-JIA, https://github.com/Skylion007, https://github.com/mlazos, https://github.com/atalman
2025-11-02 13:50:16 +00:00
5e05a0ae99 Revert "Fix: list index out of range with softmax when using 0 dim (#166547)"
This reverts commit 0674e0a0f14775f920296e9dfb8b61e4960bf99d.

Reverted https://github.com/pytorch/pytorch/pull/166547 on behalf of https://github.com/atalman due to Fail: test/test_torchfuzz_repros.py::TestFuzzerCompileIssues::test_fuzzer_issue_163971 [GH job link](https://github.com/pytorch/pytorch/actions/runs/19008635308/job/54286552036) [HUD commit link](0674e0a0f1) ([comment](https://github.com/pytorch/pytorch/pull/166547#issuecomment-3477962809))
2025-11-02 13:29:03 +00:00
298666631b [user-streams] Switch to fx annotations at trace time (#166472)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166472
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819, #165211, #165212, #165356, #164523, #162905, #166471
2025-11-02 11:55:51 +00:00
e471800dce [user-streams] cleanup StreamVariable signature (#166471)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166471
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #164819, #165211, #165212, #165356, #164523, #162905
2025-11-02 11:55:51 +00:00
18f4259626 [dynamo] Remove retrieving objects by ID (#162905)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162905
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819, #165211, #165212, #165356, #164523
2025-11-02 11:55:43 +00:00
d962bed157 [user-streams] Add basic stream tests (#164523)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164523
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819, #165211, #165212, #165356
2025-11-02 11:55:37 +00:00
76780b1a3d [user-streams] Handle returning the current stream with/without device index (#165356)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165356
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819, #165211, #165212
2025-11-02 11:55:30 +00:00
cee03634da [user-streams] Track symbolic current stream (#165212)
merge into stream tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165212
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819, #165211
2025-11-02 11:55:22 +00:00
bc03d7c974 [user-streams] Add current stream source (#165211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165211
Approved by: https://github.com/anijain2305
ghstack dependencies: #164819
2025-11-02 11:55:15 +00:00
f013e804c8 [user-streams] Fix stream graph output semantics (#164819)
Preivously, we would stash a single stream value we constructed at trace time in a global and return the same value from repeated calls to the graph.

With this PR, we construct the stream value in advance, reference the constructed value in the graph via the lookup table, and if that value is returned as an output, read the value from the lookup table and return it (in bytecode, not as a graph output, since we don't support arbitrary stream outputs).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164819
Approved by: https://github.com/anijain2305
2025-11-02 11:55:08 +00:00
0674e0a0f1 Fix: list index out of range with softmax when using 0 dim (#166547)
Fixes #163971

Problem:
PyTorch's inductor compiler crashed with IndexError: list index out of range when compiling code that uses  0-dimensional tensors with operations like torch.softmax(scalar_tensor, dim=0).

A 0-dim tensor has shape = torch.Size([]) (empty shape)

```
ndim = 0 (zero dimensions)

len(shape) = 0 (no indices to access)

# Line 972: Pad other_shape to match inp dimensions
other_shape = [1] * (inp_ndim - len(other_shape)) + list(other_shape)

# For scalar tensors:
# inp_ndim = 0  # as input is scalar
# other_shape = []
# Result: [1] * (0 - 0) + [] = [] (still empty!)

dim = match.kwargs["dim"]  # dim = 0
if isinstance(dim, int):
    dim = (dim,)

# crash is happening here!
return all(statically_known_true(other_shape[d] == 1) for d in dim)
#                                 ^^^^^^^^^^^^^^^^
#                                 Tries other_shape[0] but other_shape = [] (empty!)
#                                 → IndexError: list index out of range
```

The function _other_is_broadcasted_in_dim() is an optimization check for a softmax fusion pattern. It verifies whether it's safe to rewrite:

```
# From
scaled = inp * other
result = scaled - scaled.amax(dim, keepdim=True)

# To this more stable form:
result = (inp - inp.amax(dim, keepdim=True)) * other
```

The optimization is only valid if other is constant across the reduction dimension (i.e., broadcasted to size 1 in that dimension). Otherwise, scaling changes which element is the maximum.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166547
Approved by: https://github.com/jansel, https://github.com/eellison, https://github.com/leslie-fang-intel
2025-11-02 06:43:34 +00:00
b7d348a907 [vision hash update] update the pinned vision hash (#166771)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned vision hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166771
Approved by: https://github.com/pytorchbot
2025-11-02 04:24:38 +00:00
9f9dbe0a9a add a curve for customized compilation in the kernel benchmarking scripts (#166697)
It's nice to add a curve with a customized compilation options so that we can compare side-by-side the perf improvement of new features.

E.g. for mix-order-reduction, by running the following command
```
python benchmarks/dynamo/genai_layers/benchmark.py --tolerance=1e-2 --exit-on-accuracy-failure --visualize rmsnorm_backward --custom-compile-name="compiled-no-fusion" --custom-compile-options='{"triton.mix_order_reduction":false}'
```

I get following output:
```
Geomean speedup for benchmark RMSNormBackward
  eager 11 data points
  compiled 11 data points, 15.82x speedup
  quack 11 data points, 15.45x speedup
  liger 11 data points, 14.06x speedup
  compiled-no-fusion 11 data points, 10.26x speedup
```

The output shows that the feature on average improve perf by `15.82 / 10.26 = 1.54x` for all the shapes tested. (I remove a shape (32768, 32768) whose rnumel is too large and not representative).

The new curve also shows up in the figure:
<img width="3564" height="2368" alt="RMSNormBackward_bench" src="https://github.com/user-attachments/assets/1ffac2bc-e726-4f1e-806d-e9e5de711492" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166697
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #166053, #166382, #166461, #166585, #166675
2025-11-01 22:09:56 +00:00
a19e92d433 report geomean for norm bwd benchmarking (#166675)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166675
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #166053, #166382, #166461, #166585
2025-11-01 22:09:56 +00:00
c3dc0c7089 [Inductor] mix order reduction heuristics and tuning (#166585)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166585
Approved by: https://github.com/jansel, https://github.com/PaulZhang12
ghstack dependencies: #166053, #166382, #166461
2025-11-01 22:09:48 +00:00
04d6a6f339 [inductor] Make mix-order-reduction split size not depends on split-reduction heuristics (#166461)
split size is critical for mix order reduction perf while the one picked by split reduction heuristics can be very bad for mix order reduction.

<img width="1197" height="596" alt="Screenshot 2025-10-27 at 11 17 16 PM" src="https://github.com/user-attachments/assets/7faa11ad-3a7a-4b29-90ed-e85fc01077ea" />

For the first shape in the chart, split reduction picks a split-size around 2000 and results in poor perf. It important to allow mix-order reduction decides split size itself. (ss_8 in the chart means split-size == 8)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166461
Approved by: https://github.com/jansel, https://github.com/v0i0
ghstack dependencies: #166053, #166382
2025-11-01 22:09:40 +00:00
0573747b6a [inductor] more aggressive mix order reduction (#166382)
More aggressive mix order reductions so that when rnumel is larger than 1024 we can still generate the fused kernel. Also use more warps in that case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166382
Approved by: https://github.com/jansel, https://github.com/v0i0
ghstack dependencies: #166053
2025-11-01 22:09:32 +00:00
a663eb9c80 [FlexFlash] CuteDSL flat indexer needs to be colexigraphic in coordinate space (#166657)
Benchmarks on Hopper:
Note the triton impl is not using max-autotune because I didnt feel like waiting for 90x plots
<img width="12517" height="5995" alt="combined_comparison" src="https://github.com/user-attachments/assets/d94debd9-920d-4413-b51f-b8e906e4fb01" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166657
Approved by: https://github.com/v0i0, https://github.com/mlazos, https://github.com/eellison
ghstack dependencies: #166359
2025-11-01 21:18:51 +00:00
764c54ecae [DebugMode] dispatch call hooks (#166348)
Adds customizable hooks on `__torch_dispatch__` calls for logging/recording arbitrary values.

Recording hooks store the hook outputs for each call at `debug_mode.operators[*].record`
```python
with DebugMode() as debug_mode, DebugMode.dispatch_hooks(record_hook = some_func):
    # some compute
    ...
```

Logging hooks annotate the string dump:
```python
with DebugMode() as debug_mode, DebugMode.dispatch_hooks(log_hook = some_func):
    ...
```

Adds default hooks `DebugMode.record_outputs()` and `DebugMode.log_tensor_hashes()`, for checking numerical equivalence. The hashing hook borrows from the Observer. Example dump:
```
aten::sum(dt: f32[8, 32]| S(0))
  aten::sum(t: f32[1, 32])  # {'hash': 3.2215590476989746}
  _c10d_functional::all_gather_into_tensor(t: f32[1, 32], 8, 0)  # {'hash': 204.8783062621951}
  _c10d_functional::wait_tensor(t: f32[8, 32])  # {'hash': 204.8783062621951}
  aten::mm(t: f32[1, 8], t: f32[8, 32])  # {'hash': 12.014171155635267}
  aten::sum(t: f32[1, 32])  # {'hash': 3.2215590476989746}
  aten::t(t: f32[1, 8])  # {'hash': 3.7167285680770874}
  aten::detach(t: f32[8, 1])  # {'hash': 3.7167285680770874}
...
```

On the FSDP2 / simple FSDP NE in https://github.com/pytorch/pytorch/pull/164939, with hashing, this produces 2 log dumps (FSDP2: P2010198620, simple FSDP: P2010198963). I asked Claude to check the hashes, it wrote an analysis script, and was able to guess RMS norm as the root cause: P2010195076

Another throw-away example for logging per-op memory usage: https://gist.github.com/pianpwk/372082bf29467aa4aa25cb26dee24aea

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166348
Approved by: https://github.com/yushangdi
2025-11-01 21:10:43 +00:00
0d81bb7f9c [3/N] Use 'is' in callable comparisons (#166780)
It is generally advised to use `is/is not` for comparisons against torch functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166780
Approved by: https://github.com/Skylion007
2025-11-01 20:23:56 +00:00
82fafb3304 Revert "Make PT2 compile backprop through custom op without autograd key a hard error (#166367)"
This reverts commit 84776e13744db6d59b41a063bb8714e2bffe7a06.

Reverted https://github.com/pytorch/pytorch/pull/166367 on behalf of https://github.com/atalman due to backends/xnnpack/test/recipes/test_xnnpack_recipes.py::TestXnnpackRecipes::test_all_models_with_recipes [GH job link](https://github.com/pytorch/pytorch/actions/runs/18999845549/job/54266149620) [HUD commit link](84776e1374) ([comment](https://github.com/pytorch/pytorch/pull/166367#issuecomment-3476757660))
2025-11-01 20:14:22 +00:00
401c2f9657 [FP8][H100][TF32] Disable tf32 for emulated reference computation in test_scaled_mm_vs_emulated_block_wise (#162997)
Fails with 2 mismatches otherwise

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162997
Approved by: https://github.com/Skylion007
2025-11-01 20:13:11 +00:00
13549e0e10 Revert "Avoid DDE in narrow with unbacked start (#166361)"
This reverts commit 1aef88c72d3aef629b20e97a188c9dc4bab46a1a.

Reverted https://github.com/pytorch/pytorch/pull/166361 on behalf of https://github.com/atalman due to examples/models/llama/tests/test_export_llama_lib.py::ExportLlamaLibTest::test_has_expected_ops_and_op_counts [GH job link](https://github.com/pytorch/pytorch/actions/runs/18993202115/job/54257916041) [HUD commit link](1aef88c72d) ([comment](https://github.com/pytorch/pytorch/pull/166361#issuecomment-3476752974))
2025-11-01 20:07:01 +00:00
82d86bacf3 [inductor] track reduction before splitting (#166053)
Keep tracking of the reduction before splitting.

In the mix-order reduction context, if one of the reduction is split, it makes it much harder to fuse with the other reduction. Tracking the metadata of the reduction before splitting to make the fusion possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166053
Approved by: https://github.com/jansel
2025-11-01 19:41:21 +00:00
3b5d38a3bc Fix comparing inductor actual strides vs bw graph for activations should not throw DDE. (#166277)
Fix https://github.com/pytorch/pytorch/issues/163894

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166277
Approved by: https://github.com/Lucaskabela
2025-11-01 19:26:20 +00:00
84776e1374 Make PT2 compile backprop through custom op without autograd key a hard error (#166367)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166367
Approved by: https://github.com/bdhirsh
2025-11-01 17:01:31 +00:00
b3861ac8e7 [reland] Warn if AccumulateGrad stream does not match producer node stream (#166136)
ghstack-source-id: 59641aa32dc6fd027abf3276017432b693aa71f8
Pull-Request-resolved: https://github.com/pytorch/pytorch/pull/165065

Fixes #ISSUE_NUMBER

Opening a new PR for codev

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166136
Approved by: https://github.com/ngimel
2025-11-01 12:33:48 +00:00
4cc64d6234 [inductor] pre grad graph bisecting (#166344)
A few things to note:
1. Customers like vllm use a custom backend (e.g. VllmBackend), split the graph, and call standalone_compile for each split. If we let the bisector override the backend, we won't bisect thru the custom backend. `test_configs.bisect_keep_custom_backend_for_inductor` is used to keep the custom backend if we are bisecting for inductor.
2. pre_grad_graph bisecting and lowering bisecting so far does not compose well with each other since an issue may be just captured by the first one we try. `test_configs.bisect_pre_grad_graph` is used to enable the 'pre_grad_graph' bisecting.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166344
Approved by: https://github.com/eellison
2025-11-01 09:22:21 +00:00
1aef88c72d Avoid DDE in narrow with unbacked start (#166361)
Slice knows how to handle unbacked start, we do not need to offset start before calling slice, we can leave it for slice.
The only edge case is when start<0 and start+length ==0 in that case slice and narrow would deviate,
for that case we shall pass dim_size instead of start+length

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166361
Approved by: https://github.com/aorenste
2025-11-01 07:10:23 +00:00
f0745ddb11 Replace c10::call_once with static initialization (#166381)
This PR replaces c10::call_once calls with static initialization when possible. C++11 semantics guarantees that static initialization is atomic. Static initialization also has lower cost than using c10::call_once.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166381
Approved by: https://github.com/malfet
2025-11-01 07:09:40 +00:00
4316df857c [3.14] Fix torch.package.importer (#166767)
That relies on internal implementation of `picker._getattribute` which
changed from (i.e. takes object and string and returns tuple)
9ab89c026a/Lib/pickle.py (L316)
To (takes object and iterable of strings and returns object
631ba3407e/Lib/pickle.py (L315)

Test plan:
```
python -c "import torch; print(torch.package.sys_importer.get_name(torch.cuda.Stream))"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166767
Approved by: https://github.com/williamwen42
2025-11-01 05:05:47 +00:00
9d6597b1e9 Correctly use test parameters (#166726)
This PR uses unused arguments in some tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166726
Approved by: https://github.com/rec, https://github.com/albanD, https://github.com/Skylion007
2025-11-01 04:43:31 +00:00
e8fadba28c [pytree] add treespec_{leaf,tuple,dict} functions for args_spec modification (#160843)
The goal of this PR is to provide a standard way to create simple treespec instances and hide the implementation details of the `PyTreeSpec` class.

Changes:

1. Add function `treespec_leaf()` to replace `LeafSpec()`.
2. Add function `treespec_tuple(...)` and `treespec_dict(...)` to create treespec for `tuple` / `dict` which is used for `*args` / `**kwargs`. This avoids direct modification to `treespec` instances that rely on the implementation details of the `PyTreeSpec` class.
3. Change `len(spec.children_specs)` to `spec.num_children`.
4. Change `isinstance(spec, LeafSpec)` to `spec.is_leaf()`.

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160843
Approved by: https://github.com/mlazos
2025-11-01 04:12:11 +00:00
60333de85d Revert "Remove setup-env instructions; it's confusing (#166749)"
This reverts commit 3dc92d69ed40fd952244e54bbda0240928756654.

Reverted https://github.com/pytorch/pytorch/pull/166749 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/166749#issuecomment-3475481831))
2025-11-01 02:55:56 +00:00
3dc92d69ed Remove setup-env instructions; it's confusing (#166749)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166749
Approved by: https://github.com/mlazos
2025-11-01 01:48:15 +00:00
f91899ca6c [2/N] Add strict parameter to Python zip calls (#166257)
This PR adds `strict=True/False` to zip calls in test utils. strict=True is passed when possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166257
Approved by: https://github.com/janeyx99
2025-11-01 00:35:41 +00:00
e2dc32f4ba Replace decltype(auto) with auto (#166537)
This PR replaces `decltype(auto)` with `auto` for C++ return type deduction and simplifies some templates.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166537
Approved by: https://github.com/Skylion007
2025-11-01 00:30:23 +00:00
83cc38d9c1 [precompile] Preserve default arguments for dynamo capture (#166654)
Summary:
Handle the case where there's default arguments on function signature.

Test Plan:
pytest test/export/test_experimental.py -k test_dynamo_graph_capture_default_args

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166654
Approved by: https://github.com/tugsbayasgalan
2025-11-01 00:12:10 +00:00
8d599045cf add shape check for avg_pool2d (#161952)
Fix https://github.com/pytorch/pytorch/issues/153312.

**Example:**
```python
import torch

print(torch.__version__)

tensor = torch.tensor([[ -7.8130e-88, -2.2092e-138,  -1.8673e+03, -7.6272e-253,  3.9203e+110,
           1.8380e-51,  2.8762e+268,  2.9094e+286,  5.1816e-228, -4.4916e+191,
          -7.4057e+80,  -9.1955e-18,  5.6536e+225,  8.8364e-175,  1.5053e-226],
        [-3.0521e+239, -2.8307e+306,   1.3297e-03, -9.9969e-132,  2.8920e-286,
           2.3964e+58, -6.8138e-281,  2.0321e-305,  -3.5127e+74,  -4.7560e-92,
          -8.9403e-99, -1.9739e-187, -2.5124e-173,  2.0458e+295,   4.4992e+52],
        [  6.8752e+21,  1.9332e+189, -8.6940e-189,  -6.6743e-15,   1.4691e+41,
           1.0338e+63,  -2.0779e-28, -7.6642e+104,  1.3390e+284, -8.0859e+194,
          8.4600e+107,   4.9115e-44,  1.1665e+285,  5.1275e+203,  9.7580e+303]],
       dtype=torch.float64)

try:
    res = torch.nn.functional.lp_pool1d(
        tensor,
        norm_type=-1.38119e+150,
        kernel_size=7879455037536781369,
        ceil_mode=True,
    )
    print("CPU result:", res)
except RuntimeError as e:
    print(f"CPU error: {e}")

tensor_gpu = tensor.to("cuda:0")
try:
    res = torch.nn.functional.lp_pool1d(
        tensor_gpu,
        norm_type=-1.38119e+150,
        kernel_size=7879455037536781369,
        ceil_mode=True,
    )
    print("GPU result:", res)
except RuntimeError as e:
    print(f"GPU error: {e}")
```

**Output:**

- before
```
2.9.0a0+git8703deb
CPU result: tensor([[0.],
        [0.],
        [0.]], dtype=torch.float64)
GPU error: integer out of range
```

- after
```
2.9.0a0+git2e893df
CPU error: integer out of range
GPU error: integer out of range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161952
Approved by: https://github.com/mingfeima, https://github.com/malfet
2025-10-31 22:52:41 +00:00
fd5da81fdd [AI Codemod][DevmateFBSourceTestFailureBot] Fix for T243177299 ("Your diff, D85182174, broke some tests") (#166753)
Summary:
As per title, a bot created this diff because this test broke due to [a different PR.](https://github.com/pytorch/pytorch/pull/166026)

<Erased bot summary in case anything we don't want to make external.>

Test Plan:
Bot ran the tests and they passed.

<Erased bot test plan in case anything we don't want to make external.>

Differential Revision: D85745809

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166753
Approved by: https://github.com/d4l3k
2025-10-31 22:49:59 +00:00
9261a1fb12 [MPS] Error out when BatchNorm is called for Complex (#166215)
Or BatchNorm or LayerNorm for Long types

Discovered while trying to enable `test_ops.py` for MPS
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166215
Approved by: https://github.com/dcci, https://github.com/kulinseth, https://github.com/Skylion007
ghstack dependencies: #166214, #166687
2025-10-31 22:44:29 +00:00
clr
d80ae738c9 compile_worker: Make a timer class (#166465)
This subclass allows us to trigger an action after we haven't seen any activity
for a certain amount of seconds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166465
Approved by: https://github.com/masnesral
2025-10-31 22:39:31 +00:00
51667435f5 [FlexFlash] Wire up mask_mod + blockmask to flash impl (#166359)
I have some local changes that I need to push to flash first
https://github.com/Dao-AILab/flash-attention/pull/1970

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166359
Approved by: https://github.com/v0i0
2025-10-31 22:07:40 +00:00
2699f5410b Revert "[xpu][feature] Integrate OneDNN SDPA training forward/backward into XPU OVERRIDEABLE Backend (#162454)"
This reverts commit fd68d409ada709450ced3030bde89ec662a3f7b7.

Reverted https://github.com/pytorch/pytorch/pull/162454 on behalf of https://github.com/atalman due to internal build failure ([comment](https://github.com/pytorch/pytorch/pull/162454#issuecomment-3475009089))
2025-10-31 21:58:52 +00:00
9970fb97ff Fix Tril Triu SymInt (#166627)
Fixes #165613

### Summary:

- This MR fixes an issue where `torch.tril `and `torch.triu` with dynamic diagonal values cause torch.export to incorrectly infer unnecessary constraints between dynamic dimensions.
-  Ensured proper SymInt type annotations for diagonal parameter
-  Updated C++ implementation to correctly handle SymInt diagonal values.

### Impacts:
module: dynamic shapes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166627
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-10-31 21:53:20 +00:00
dfebdcab86 [GraphPartition] cache get_free_symbol_uses (#166338)
Graph partition relies on `get_free_symbol_uses()` to collect symbol inputs.
ee7434be82/torch/_inductor/scheduler.py (L4869-L4885)

I empirically observed that `get_free_symbol_uses()` becomes slower for larger graphs. Specifically, I tried to aten fallback for torchtitan which results in 10k+ aten nodes. When processing the 600-th node, it takes seconds to `get_free_symbol_uses()` for 1 node.

Why? Because `get_free_symbol_uses()` may recursively call another `get_free_symbol_uses()`, which could recursively run many times.
ee7434be82/torch/_inductor/ir.py (L4541-L4543)

This PR fixes the issue by caching the results of `get_free_symbol_uses()`. I validated on torchtitan that the issue is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166338
Approved by: https://github.com/eellison
2025-10-31 21:24:05 +00:00
b09fb481e0 [CD] Upgrade GCC version to 13 for XPU build (#162474)
Follow #152426
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162474
Approved by: https://github.com/zxiiro, https://github.com/atalman
2025-10-31 21:15:37 +00:00
4e7232c5da [MPS] Fix smooth_l1_loss backward for fp16 (#166687)
And enable fp16 implementation for CPU, which simplifies OpInfo definitions for the op

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166687
Approved by: https://github.com/Skylion007
ghstack dependencies: #166214
2025-10-31 21:13:46 +00:00
93a70c717a Revert "Add CUDA MXFP4 scaled mm support via. FBGEMM (#166526)"
This reverts commit e3ae0594d16134632ff587c9ab400d4148c83e9f.

Reverted https://github.com/pytorch/pytorch/pull/166526 on behalf of https://github.com/atalman due to Failing internal test ([comment](https://github.com/pytorch/pytorch/pull/166526#issuecomment-3474907536))
2025-10-31 21:10:28 +00:00
d97144d31e [5/N] Remove unused loop variables in tests (#166716)
This PR removes unused loop variables in tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166716
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
2025-10-31 20:47:57 +00:00
e4043884c7 [dynamo, 3.14] fix segfault due to improper create_call_function_ex (#166678)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166678
Approved by: https://github.com/malfet
2025-10-31 20:44:53 +00:00
4a7bc1d522 [BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)
Provides type coverage to ~3000 LOC and 200 methods in  `torch/_dynamo/variables/`

This is the first part of the final step to having 100% strict type coverage in dynamo - see previous comments in https://github.com/pytorch/pytorch/pull/166535 (combined into this one PR because ghstack was giving issues...)

### Coverage report:
```
mypy torch_dynamo/variables --linecount-report /tmp/coverage_log
```
Compare before to after - we go from 3826 to 7221 lines covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166569
Approved by: https://github.com/williamwen42, https://github.com/Skylion007
2025-10-31 20:42:27 +00:00
8209a0506b [Pytorch] Enable aarch64 convert autovec only on clang (#166739)
Summary: We've noted issues with modern GCC versions. Until further investigation is carried, we'll leave the code only enabled on clang

Test Plan: CI

Differential Revision: D85968395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166739
Approved by: https://github.com/mcfi, https://github.com/Skylion007, https://github.com/robert-hardwick
2025-10-31 20:22:33 +00:00
70aeb49198 [dynamo] clarify graph break handling/logging in symbolic_convert (#166587)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166587
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166476, #166477, #166586
2025-10-31 20:13:16 +00:00
cf9a834f39 [BE] Move GreenContext implementation details to cpp (#166462)
- Remove all complex defines logic from the header
- Make GreenContext constructor private, as  it should only be created via the static method as singleton
- Delete unused `getContext` and `getGreenContext` methods
- Rename `CUDA_HAS_GREEN_CONTEXT` to `HAS_CUDA_GREEN_CONTEXT()`, which results in compilation error if one accidentally makes a typo
- Suppress `-Wunused-private-field` is GreenContext is not available
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166462
Approved by: https://github.com/ngimel, https://github.com/eqy
2025-10-31 20:11:02 +00:00
856a7a5298 Add missing device to namedtensor tests (#166717)
This PR passes unused `device` argument to tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166717
Approved by: https://github.com/Skylion007
2025-10-31 20:04:41 +00:00
ef8d97efcf fix broken nn_convolution test (#166666)
Summary: Broken by oss diff during oncall by third party contributor

Test Plan: buck test 'fbcode//mode/dev-nosan' fbcode//caffe2/test:nn_convolution -- --run-disabled

Differential Revision: D85899891

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166666
Approved by: https://github.com/atalman, https://github.com/seemethere, https://github.com/Skylion007
2025-10-31 19:59:50 +00:00
d2be06f673 [cpu][fix] Update ACL version to fix crashes with tensor sizes > 2^31-1 (#165904)
----

- Updates Arm Compute Library (ACL) to v52.6.0
- v52.6.0 contains https://github.com/ARM-software/ComputeLibrary/pull/1201 which fixes crashes with tensors of sizes > 2^31-1

fixes: #165654

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165904
Approved by: https://github.com/malfet
2025-10-31 19:37:26 +00:00
08f4535378 Refactor AOTAutogradCacheEntry into AOTAutogradResult (#166656)
This PR refactors the name AOTAutogradCacheEntry into AOTAutogradResult, and BundledAOTAutogradCacheEntry into BundledAOTAutogradResult. It also moves all coresponding files to a new file, `aot_autograd_result`, which is analogous to `output_code.py` from Inductor.

Having all these be called cache entries made sense when all we used them for was caching. But with AOT compile using BundledAOTAutogradCacheEntry, we want a more generalized naming structure.

This is a no-op change,  and all existing tests should pass.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166656
Approved by: https://github.com/zhxchen17
ghstack dependencies: #166650
2025-10-31 18:54:09 +00:00
30157d30f0 Add regional aot eager support to AOTAutogradCacheEntry (#166650)
This PR does two things:

- It genericizes `BundledAOTAutogradCacheEntry` to support *any* outputcode, not just CompiledFxGraphs
- It adds a brand new OutputCode for the `aot_eager_regional_inductor` backend, i.e. a graph module that has regional inductor components in it.

This allows BundledAOTAutogradCache to just integrate nicely with inductor out of the box, but more importantly, it allows the result of aot_autograd to be fully serializable when using `aot_eager_regional_inductor`. This will allow us to AOT precompile cases where we have an eager graph that has scooped up inductor bits.

It's a bit unfortunate that the naming makes BundledAOTAutogradCacheEntry sound like its primary use is for caching, but really the more common use is going to be as an AOTAutogradOutput. It may be worth revisiting how to refactor/rename these in a later PR:

- AOTAutogradCacheEntry -> AOTAutogradResult
- BundledAOTAutogradCacheEntry -> BundledAOTAutogradResult

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166650
Approved by: https://github.com/zhxchen17
2025-10-31 18:54:09 +00:00
b470e59c38 partitioner option to ignore partitioner_tag for abstract usage (#166725)
Partitioner functionality is appealing to use in different scenarios (E.g. Autoparallel)

We have special logic about "partitioner_tag" from meta that is only needed for forward/backward split.

Adding optional argument to avoid it and do only generic split based on inputs/outputs.

Potentially we want to make `_extract_graph_with_inputs_outputs` without underscore :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166725
Approved by: https://github.com/bdhirsh
2025-10-31 18:50:02 +00:00
85b85f6c2c Revert "[pytree] add treespec_{leaf,tuple,dict} functions for args_spec modification (#160843)"
This reverts commit 108bb224f77842593009214ebf6258030b934642.

Reverted https://github.com/pytorch/pytorch/pull/160843 on behalf of https://github.com/atalman due to failing internal builds ([comment](https://github.com/pytorch/pytorch/pull/160843#issuecomment-3474354428))
2025-10-31 18:31:32 +00:00
b71966f67b [PyTorch] Improve aarch64 performance of bfloat16 ops - retry (#166028) (#166641)
Summary:

PR allows compiler to better optimize some bfloat16-based operations, when ran on NEON

Retrying to land the code, after noting that these expressions became available in recent compiler versions.

Current CI benchmark ‎binary_test.py will measure affected codepaths.

Benchmarks show measurable improvements on clang-19, when targeting armv9-a+sve2:

Before:
bfloat16 add: 250.503us
bfloat16 sub: 245.674us
bfloat16 neg: 113.945us
bfloat16 abs: 115.953us
bfloat16 reciprocal: 262.602us

After:
bfloat16 add: 203.862us ---> 23% higher throughput
bfloat16 sub: 201.526us ---> 22% higher throughput
bfloat16 neg: 68.416us ---> 67% higher throughput
bfloat16 abs: 71.003us  ---> 63% higher throughput
bfloat16 reciprocal: 177.834us ---> 48% higher throughput

Test Plan:
Correctness:

buck2 test mode/opt //caffe2/test:test_ops
buck2 test mode/opt //caffe2/test:torch

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Reviewed By: mcfi

Differential Revision: D85809843

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166641
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-10-31 18:21:04 +00:00
0947765eb9 Cache even more work for return_and_correct_aliasing (#166365)
Yet another pass found even more work we can move to be done only once. This seems to knock a few microseconds off the DTensor dispatch fast path.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166365
Approved by: https://github.com/bdhirsh
2025-10-31 18:03:05 +00:00
239e7b541a [ROCm][CI] upgrade nightly wheels to ROCm 7.1 (#166730)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166730
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-31 17:30:47 +00:00
ffaa6578b7 Revise deprecation warning for ONNX exporter (#166692)
Updated deprecation warning for ONNX export to reflect the current state.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166692
Approved by: https://github.com/titaiwangms
2025-10-31 17:23:55 +00:00
365ed62f61 Document LibTorch ABI more, add README to headeronly (#166661)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166661
Approved by: https://github.com/mikaylagawarecki, https://github.com/albanD
2025-10-31 17:18:13 +00:00
fcc1063566 Revert "[BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)"
This reverts commit aa9c96af041b26c9c55adac490f3449b98f27d06.

Reverted https://github.com/pytorch/pytorch/pull/166569 on behalf of https://github.com/Lucaskabela due to Lintrunner not fixed due to race condition at landing ([comment](https://github.com/pytorch/pytorch/pull/166569#issuecomment-3474012637))
2025-10-31 16:59:33 +00:00
121235956b update Node.is_impure check if subgraph contains impure ops (#166609)
Summary:
## Context
when `const_fold.split_const_subgraphs` sees a `call_module` node that is a GraphModule, by the existing implementation it can mark this node as const-foldable when it shouldn't.

For example, a parent graph contains a `call_module` to a subgraph that has no inputs but contain impure ops inside.
```
parent graph():
    %sub : [num_users=1] = call_module[target=sub](args = (), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%sub, slice(None, None, None)), kwargs = {})
    return (getitem,)

submodule graph():
    %randn : [num_users=1] = call_function[target=torch.ops.aten.randn.default](args = ([5, 10],), kwargs = {device: cpu, pin_memory: False})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%randn, 1), kwargs = {})
    return (add,)
```
when `submodule` graph is fed to const_fold.split_const_subgraph, it would come out unmodified since randn is impure.

But if the `submodule` is called by a `parent` graph, when `parent` is fed to const_fold.split_const_subgraph, it would come out folded.
```
parent after fold graph():
    %_fx_const_folded_attrs : [num_users=1] = get_attr[target=_FX_CONST_FOLDED_ATTRS]
    return (_fx_const_folded_attrs,)
```

This is because `node.is_impure()` check inside `const_fold.split_const_subgraph` fail through, leading the call_module node to be marked as pure.

## Fix

We can update `fx.node.Node.is_impure` function to check for ops inside a call_module node with an additional `subgraph_has_impure_ops` check:
- if a call_module node calls a GraphModule,
- check any call_function nodes are impure ops
- recursively check any call_module nodes that call GraphModule

If the call_module subgraph has impure ops, return True to `is_impure`

Test Plan: added tests to test_fx_const_fold.py

Differential Revision: D85798483

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166609
Approved by: https://github.com/blaine-rister
2025-10-31 16:58:18 +00:00
aa9c96af04 [BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)
Provides type coverage to ~3000 LOC and 200 methods in  `torch/_dynamo/variables/`

This is the first part of the final step to having 100% strict type coverage in dynamo - see previous comments in https://github.com/pytorch/pytorch/pull/166535 (combined into this one PR because ghstack was giving issues...)

### Coverage report:
```
mypy torch_dynamo/variables --linecount-report /tmp/coverage_log
```
Compare before to after - we go from 3826 to 7221 lines covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166569
Approved by: https://github.com/williamwen42
2025-10-31 16:56:50 +00:00
c3b71d5499 [ROCm][CI] remove relaxed tolerance for tf32 tests (#166478)
Instead of relaxing tolerances for certain unit tests that exercise TF32 on MI300, skip the tests until hipblaslt accuracy is improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166478
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Co-authored-by: Jagadish Krishnamoorthy <jagadish.krishnamoorthy@amd.com>
2025-10-31 16:15:42 +00:00
1e3600b528 [MPS] Move logaddexp/logaddexp2 to Metal and support complex (#166670)
NOTE: Complex inputs are only supported in `logaddexp`. Since `logaddexp2` does not support complex inputs for CPU, it is not enabled for MPS in this PR either.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166670
Approved by: https://github.com/malfet
2025-10-31 16:15:02 +00:00
fee7624bd6 [PT2] set choice handler in config (#166607)
Summary:
We were setting the custom inductor choice using `torch._inductor.virtualized.V.set_choices_handler(CustomInductorChoices())`. However, this leads to inconsistent behaviors, even for jobs that are submitted back to back.

In this diff, we pass in the choice handler via an inductor config and overwrite the default behavior when the config is provided. This sovles the inconsistent behavior.

Test Plan: see D85785892 (internal only)

Differential Revision: D85785879

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166607
Approved by: https://github.com/eellison
2025-10-31 15:40:05 +00:00
24e94e021a [ROCm][CI] create ROCm 7.1 magma tarball (#166693)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166693
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-31 15:20:00 +00:00
69be99ee51 Remove manually synced arch versions in tools/nightly.py (#166616)
Discussed with @atalman offline. To reduce duplicate changes and reduce the number of files to change when updating arch versions.

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166616
Approved by: https://github.com/ezyang
2025-10-31 15:11:28 +00:00
034e951b0c [CUDA][cuBLASLt] addmm -- extend bias fusions to cases with (1 by n) shapes (#166307)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166307
Approved by: https://github.com/eqy
2025-10-31 14:30:41 +00:00
160ab53dd5 Update weight tensor initialization in RMSNormalization (#166550)
Ensure a >1d tensor as weight for ORT compatibility.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166550
Approved by: https://github.com/titaiwangms
2025-10-31 14:29:27 +00:00
5bcfdae71d Revert "Make PT2 compile backprop through custom op without autograd key a hard error (#166367)"
This reverts commit 4acc66f1192ab7743abcc50383aefc5447447f9d.

Reverted https://github.com/pytorch/pytorch/pull/166367 on behalf of https://github.com/atalman due to internal build failures ([comment](https://github.com/pytorch/pytorch/pull/166367#issuecomment-3473150269))
2025-10-31 13:44:05 +00:00
4e8ba37ce3 Revert "[BE] Move GreenContext implementation details to cpp (#166462)"
This reverts commit 5d288bc3f73873887f681e15af83c5525e6a60bd.

Reverted https://github.com/pytorch/pytorch/pull/166462 on behalf of https://github.com/atalman due to Sorry, Reverting. Failure: test/test_matmul_cuda.py::TestMatmulCudaCUDA::test_greencontext_carveout_cuda [GH job link](https://github.com/pytorch/pytorch/actions/runs/18962393091/job/54154156892) [HUD commit link](85b035ca9c) ([comment](https://github.com/pytorch/pytorch/pull/166462#issuecomment-3473060299))
2025-10-31 13:20:48 +00:00
26534e9809 Revert "[GraphPartition] cache get_free_symbol_uses (#166338)"
This reverts commit a6b1ef17173f56ba93ac97ff4384fa4060b5e41e.

Reverted https://github.com/pytorch/pytorch/pull/166338 on behalf of https://github.com/atalman due to Failure: test/nn/test_convolution.py::TestConvolutionNN::test_conv3d_overflow_values [GH job link](https://github.com/pytorch/pytorch/actions/runs/18961173726/job/54149112920) [HUD commit link](a6b1ef1717) ([comment](https://github.com/pytorch/pytorch/pull/166338#issuecomment-3472980329))
2025-10-31 12:57:56 +00:00
657f8c3e21 Revert "Fix torch.full with dynamic tensor fill_value in torch.compile (#166554)"
This reverts commit 32066772b3dee643b1657b8957f32b5ac8b1390a.

Reverted https://github.com/pytorch/pytorch/pull/166554 on behalf of https://github.com/atalman due to Failure: test/nn/test_pooling.py::TestPoolingNNDeviceTypeCPU::test_max_pool_nan_inf_cpu_float32 [GH job link](https://github.com/pytorch/pytorch/actions/runs/18959368975/job/54144148546) [HUD commit link](32066772b3) ([comment](https://github.com/pytorch/pytorch/pull/166554#issuecomment-3472976911))
2025-10-31 12:55:31 +00:00
b0831930ed [inductor] Mark / restrict tests that only work if ATen is used for matmul (#166518)
These tests only work if max_autotune=False (default), which for matmul means falling back to ATen. This PR just documents / makes that transparent.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166518
Approved by: https://github.com/eellison
2025-10-31 12:29:06 +00:00
c01636e1bc Fixes the sparse tensor issue (#163535)
Fixes #148324

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163535
Approved by: https://github.com/janeyx99
2025-10-31 11:48:31 +00:00
fd68d409ad [xpu][feature] Integrate OneDNN SDPA training forward/backward into XPU OVERRIDEABLE Backend (#162454)
This is the second PR split from https://github.com/pytorch/pytorch/pull/156272

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162454
Approved by: https://github.com/guangyey, https://github.com/EikanWang, https://github.com/drisspg
2025-10-31 11:20:38 +00:00
0d3a4f7155 [CD] Enable Inductor performance test for xpu (#166289)
Add Dynamo benchmark performance tests for XPU backend

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166289
Approved by: https://github.com/EikanWang, https://github.com/atalman
2025-10-31 10:52:07 +00:00
108bb224f7 [pytree] add treespec_{leaf,tuple,dict} functions for args_spec modification (#160843)
The goal of this PR is to provide a standard way to create simple treespec instances and hide the implementation details of the `PyTreeSpec` class.

Changes:

1. Add function `treespec_leaf()` to replace `LeafSpec()`.
2. Add function `treespec_tuple(...)` and `treespec_dict(...)` to create treespec for `tuple` / `dict` which is used for `*args` / `**kwargs`. This avoids direct modification to `treespec` instances that rely on the implementation details of the `PyTreeSpec` class.
3. Change `len(spec.children_specs)` to `spec.num_children`.
4. Change `isinstance(spec, LeafSpec)` to `spec.is_leaf()`.

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160843
Approved by: https://github.com/mlazos
2025-10-31 10:33:16 +00:00
fc8ac1216c [4/N] Remove unused loop variables in tests (#166690)
This PR removes unused loop variables in tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166690
Approved by: https://github.com/justinchuby, https://github.com/mlazos
2025-10-31 10:20:48 +00:00
030de07aff [2/N] Use 'is' in callable comparisons (#166685)
It is generally advised to use `is/is not` for comparisons against torch functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166685
Approved by: https://github.com/xmfan, https://github.com/mlazos
2025-10-31 08:08:07 +00:00
7d67a41db4 make FXConverter.generate use V.fake_mode instead of _detect_fake_mode_from_gm (#166591)
Summary:
FXConverter configurs _node_metadata_hook passing in `fake_mode` explicitly, which is relevant for cases down the line like `_generate_triton_call` that inserts a `triton_kernel_wrapper_mutation` node.

This `fake_mode` is obtained from `_detect_fake_mode_from_gm`, which can be different from inductor set `V.fake_mode`.

For example, while `V.fake_mode` is not None, `_detect_fake_mode_from_gm` can be **None** for a parent graph containing only a submodule which has no input args and only constants
```
parent graph():
    %sub : [num_users=1] = call_module[target=sub](args = (), kwargs = {})
    %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%sub, slice(None, None, None)), kwargs = {})
    return (getitem,)

submodule graph():
    %randn : [num_users=1] = call_function[target=torch.ops.aten.randn.default](args = ([5, 10],), kwargs = {device: cuda, pin_memory: False})
    %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%randn, 1), kwargs = {})
    return (add,)

```

Getting this discrepnancy is flawed, it makes `_node_metadata_hook` try running inputs in a different "fake_mode" or no fake_mode when the rest of lowering uses `V.fake_mode`. In some cases where input is placed on custom non-gpu device, it can even complain with "requires device to be started" or tensor device mismatch.

So this diff updates FXConverter.generate to use `V.fake_mode` which is populated by inductor properly.

Test Plan:
added a test `test_const_folded_subgraph` in `test_fxir_backend.py`, this test:
- creates a graph module that calls a subgraph with no inputs and containing only const-foldable ops
- const fold the subgraph
- run FXConverter.generate, expect `fake_mode` used to code-generate is not None

On the prior implementation when `_detect_fake_mode_from_gm` was used, this test would fail as fake_mode would be `None`.

With this change, the test passes, `fake_mode` is properly collected from `V.fake_mode` which is not None.

Differential Revision: D85767475

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166591
Approved by: https://github.com/blaine-rister, https://github.com/mlazos, https://github.com/eellison
2025-10-31 05:52:07 +00:00
85b035ca9c [nativert] Downcast triton double arguments to floats (#166620)
This diff tries to fix a limitation in Sigmoid + Triton interaction, where float arguments are not correctly passed. NativeRT passes float arguments as double, while triton kernels were reading as a float, resulting in wrong values.

---

## Limitations in (de)seriazliation

In triton, float arguments to a kernel are encoded as "fp32" ([code](https://github.com/triton-lang/triton-cpu/blob/main-merged/python/triton/runtime/jit.py#L310-L326)):
```
        elif isinstance(arg, float):
            return ("fp32", None)
```
But it seems like that torch export serde uses double ([code](d2eff5d454/torch/_export/serde/export_schema.thrift (L149))) because Thrift only has the double type:
```
union Argument {
  10: bool as_none;
  20: TensorArgument as_tensor;
  30: list<TensorArgument> as_tensors;
  50: i64 as_int;
  70: list<i64> as_ints;
  80: double as_float;   ===> actually double
...
```
`TritonKernel` constructor loads attributes from a node, where `Constant` represents the variant type. And it only has `double` ([code](d2eff5d454/torch/nativert/graph/Graph.h (L86))):
```
using Constant = std::variant<
    None,
    int64_t,
    std::vector<int64_t>,
    double,    ===> triton float is loaded as double
```

So, NativeRT passes float arguments (originally in Triton) as double to triton kernels. But, all of the triton backends (nvidia, amd and cpu) are reading them as float because the signature still says `fp32`.

D84423898 was the current workaround: wrapping float arguments with tensors.

## The Fix

Fixing the thrift definition isn't viable because Thrift only supports double type. It's also possible to fix on the triton side: it can downcast from double to float. But I needed to fix all backends.

Instead, I think this diff would be the most effective way: when building `TritonKernel`, have downcasted float values, right after loading double arguments.

Test Plan:
```
buck test fbcode//mode/opt-amd-gpu fbcode//caffe2/test:test_export --
```

Differential Revision: D85747160

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166620
Approved by: https://github.com/XueningXu
2025-10-31 03:52:20 +00:00
267d0197bf [dynamo] fix error_on_graph_break bug where non-empty checkpoint results in unwanted graph break resumption (#166586)
Fixes https://github.com/pytorch/pytorch/issues/166589

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166586
Approved by: https://github.com/Lucaskabela
ghstack dependencies: #166476, #166477
2025-10-31 03:36:27 +00:00
1dec8a67a8 [dynamo, nested graph breaks] add disable_nested_graph_breaks decorator/context manager (#166477)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166477
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
ghstack dependencies: #166476
2025-10-31 03:36:27 +00:00
797cd80b26 [dynamo, nested graph breaks] codegen dead nested cells correctly (#166476)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166476
Approved by: https://github.com/Lucaskabela
2025-10-31 03:36:27 +00:00
7d39401fa0 Revert "[BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)"
This reverts commit f1e4c42b6ef3d3cea08ab3babb693e3ce42cf08b.

Reverted https://github.com/pytorch/pytorch/pull/166569 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/166569#issuecomment-3471180280))
2025-10-31 03:31:01 +00:00
e3ae0594d1 Add CUDA MXFP4 scaled mm support via. FBGEMM (#166526)
Summary:

* Pull in `f4f4bf16` from FBGemm to provide MXFP4 support for CUDA
* Add testing

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166526
Approved by: https://github.com/drisspg, https://github.com/ngimel
2025-10-31 03:17:27 +00:00
f1e4c42b6e [BE][Typing][Dynamo] Type misc files in torch/_dynamo/variables/ (#166569)
Provides type coverage to ~3000 LOC and 200 methods in  `torch/_dynamo/variables/`

This is the first part of the final step to having 100% strict type coverage in dynamo - see previous comments in https://github.com/pytorch/pytorch/pull/166535 (combined into this one PR because ghstack was giving issues...)

### Coverage report:
```
mypy torch_dynamo/variables --linecount-report /tmp/coverage_log
```
Compare before to after - we go from 3826 to 7221 lines covered

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166569
Approved by: https://github.com/williamwen42
2025-10-31 02:57:59 +00:00
d3e511f07c [Inductor] support masked vectorization for the tail_loop for fp8 datatype (#163324)
**Summary:**
Support masked vectorization for the tail_loop for fp8 datatype.

**Example:**
```
import torch

def fn(
    x,
    scale,
    zero_point,
    quant_min,
    quant_max,
    dtype,
):
    x = torch.ops.quantized_decomposed.dequantize_per_tensor(
        x,
        scale,
        zero_point,
        quant_min,
        quant_max,
        dtype,
    )
    x = torch.relu(x)
    x = torch.ops.quantized_decomposed.quantize_per_tensor(
        x, scale, zero_point, quant_min, quant_max, dtype
    )
    return x

quant_min = -128
quant_max = 127
dtype = torch.float8_e4m3fn
x = torch.clamp(torch.randn((1, 7, 7, 9), dtype=torch.float32) * 100, quant_min, quant_max).to(dtype)
zero_point = 100
scale = 0.01

with torch.no_grad():
    compiled_fn = torch.compile(fn)
    compiled_fn(x, scale, zero_point, quant_min, quant_max, dtype)
```

**Generated code:**

- Before
```
cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0 = async_compile.cpp_pybinding(['const at::Float8_e4m3fn*', 'at::Float8_e4m3fn*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const at::Float8_e4m3fn* in_ptr0,
                       at::Float8_e4m3fn* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(441L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(432L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(432L) && x0 < static_cast<int64_t>(441L)))
                {
                    for (int64_t x0_tail = static_cast<int64_t>(432L);x0_tail < static_cast<int64_t>(441L); x0_tail++)
                    {
                        auto tmp0 = in_ptr0[static_cast<int64_t>(x0_tail)];
                        auto tmp1 = c10::convert<float>(tmp0);
                        auto tmp2 = static_cast<float>(100.0);
                        auto tmp3 = float(tmp1 - tmp2);
                        auto tmp4 = static_cast<float>(0.01);
                        auto tmp5 = float(tmp3 * tmp4);
                        auto tmp6 = c10::convert<float>(tmp5);
                        auto tmp7 = std::max(tmp6, decltype(tmp6)(0));
                        auto tmp8 = float(tmp7 * tmp2);
                        auto tmp9 = std::nearbyint(tmp8);
                        auto tmp10 = float(tmp9 + tmp2);
                        auto tmp11 = static_cast<float>(-128.0);
                        auto tmp12 = max_propagate_nan(tmp10, tmp11);
                        auto tmp13 = static_cast<float>(127.0);
                        auto tmp14 = min_propagate_nan(tmp12, tmp13);
                        auto tmp15 = c10::convert<at::Float8_e4m3fn>(tmp14);
                        out_ptr0[static_cast<int64_t>(x0_tail)] = tmp15;
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (1, 7, 7, 9), (441, 63, 9, 1))
        buf0 = empty_strided_cpu((1, 7, 7, 9), (441, 63, 9, 1), torch.float8_e4m3fn)
        # [Provenance debug handles] cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0:1
        cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```
- After
```
cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0 = async_compile.cpp_pybinding(['const at::Float8_e4m3fn*', 'at::Float8_e4m3fn*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const at::Float8_e4m3fn* in_ptr0,
                       at::Float8_e4m3fn* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(441L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(432L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(432L) && x0 < static_cast<int64_t>(441L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(9L));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(9L));
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (1, 7, 7, 9), (441, 63, 9, 1))
        buf0 = empty_strided_cpu((1, 7, 7, 9), (441, 63, 9, 1), torch.float8_e4m3fn)
        # [Provenance debug handles] cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0:1
        cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163324
Approved by: https://github.com/Xia-Weiwen, https://github.com/mingfeima, https://github.com/jansel
2025-10-31 02:53:56 +00:00
d3be06cbdc [MTIAGraph][Pytorch][2/n] Add binding for Python to C++, and hook for Pytorch to Fbcode (#165963)
Summary:
This diff is the binding and hook layer for MTIA Graph, including
1. binding between Python and C++
2. hook between Pytorch and mtia fbcode
<img width="1780" height="754" alt="image" src="https://github.com/user-attachments/assets/31e24e5b-8324-42d8-8d3b-59536bc18340" />

[Doc](https://docs.google.com/document/d/1Q3xdZAIqhBvuy2HxGDfJyXVmxYXUEeYSZSwsp7bcJF8/edit?tab=t.osb46a42t6wb#heading=h.ayp9tkk08x00)

Test Plan: Will be tested in the python implementation which will use the binding and hook

Differential Revision: D84457757

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165963
Approved by: https://github.com/malfet, https://github.com/albanD
2025-10-31 02:52:51 +00:00
1129605415 [ROCm][CI] create ROCm 7.1 images for binary builds (#166665)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166665
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-31 02:52:37 +00:00
a6b1ef1717 [GraphPartition] cache get_free_symbol_uses (#166338)
Graph partition relies on `get_free_symbol_uses()` to collect symbol inputs.
ee7434be82/torch/_inductor/scheduler.py (L4869-L4885)

I empirically observed that `get_free_symbol_uses()` becomes slower for larger graphs. Specifically, I tried to aten fallback for torchtitan which results in 10k+ aten nodes. When processing the 600-th node, it takes seconds to `get_free_symbol_uses()` for 1 node.

Why? Because `get_free_symbol_uses()` may recursively call another `get_free_symbol_uses()`, which could recursively run many times.
ee7434be82/torch/_inductor/ir.py (L4541-L4543)

This PR fixes the issue by caching the results of `get_free_symbol_uses()`. I validated on torchtitan that the issue is fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166338
Approved by: https://github.com/eellison
2025-10-31 02:50:10 +00:00
12577064dd [MPS] Fix crash when max/min ops called for complex types (#166214)
Raise an exception, as it's meaningless and results in segfault otherwise:
```
% python -c "import torch;torch.rand(10, dtype=torch.cfloat, device='mps').amax()"
(mpsFileLoc): /AppleInternal/Library/BuildRoots/4~B6shugDBannYeMBGCfhw7wjvNJOfy4BrawZ7TdI/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:176:0: error: 'mps.reduction_max' op operand #0 must be tensor of mps native type values, but got 'tensor<10xcomplex<f32>>'
(mpsFileLoc): /AppleInternal/Library/BuildRoots/4~B6shugDBannYeMBGCfhw7wjvNJOfy4BrawZ7TdI/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:176:0: note: see current operation: %2 = "mps.reduction_max"(%arg0, %1) <{keep_dims, propagate_nans}> : (tensor<10xcomplex<f32>>, tensor<1xsi32>) -> tensor<1xcomplex<f32>>
(mpsFileLoc): /AppleInternal/Library/BuildRoots/4~B6shugDBannYeMBGCfhw7wjvNJOfy4BrawZ7TdI/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:176:0: error: 'mps.reduction_max' op operand #0 must be tensor of mps native type values, but got 'tensor<10xcomplex<f32>>'
(mpsFileLoc): /AppleInternal/Library/BuildRoots/4~B6shugDBannYeMBGCfhw7wjvNJOfy4BrawZ7TdI/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm:176:0: note: see current operation: %2 = "mps.reduction_max"(%arg0, %1) <{keep_dims, propagate_nans}> : (tensor<10xcomplex<f32>>, tensor<1xsi32>) -> tensor<1xcomplex<f32>>
/AppleInternal/Library/BuildRoots/4~B6shugDBannYeMBGCfhw7wjvNJOfy4BrawZ7TdI/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphExecutable.mm:1347: failed assertion `original module failed verification'
zsh: abort      python -c
```

To be tested by `test_ops.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166214
Approved by: https://github.com/dcci, https://github.com/kulinseth, https://github.com/Skylion007
ghstack dependencies: #166272
2025-10-31 02:37:20 +00:00
24b6eb7727 [Inductor] Enable Custom op Autotune Decompositions and Parameter Tuning (#164212)
This PR introduces CustomOp autotuning. It allows user to provide a CustomOpConfig:
(1) to register (optional) multiple decomposition implementations for custom operations and
(2) to register parameter tuning knobs and values they want to tune for the decompositions
so that inductor automatically select the best-performing variant through Inductor's autotune benchmarking.

Example:
```python
 register_custom_op_autotuning(
            custom_op=my_attention_op,
            configs=[
                CustomOpConfig(attention_impl, head_dim=32, method='chunked'),
                CustomOpConfig(attention_impl, head_dim=64, method='tiled'),
                CustomOpConfig(head_dim=128), # no decompositions
            ],
            input_gen_fns={
                "query": lambda fake: torch.randn_like(fake, device='cuda'),
                "key": lambda fake: torch.randn_like(fake, device='cuda'),
                "value": lambda fake: torch.randn_like(fake, device='cuda'),
            }
    )
```

**CustomOpConfig**: Each CustomOpConfig defines exactly one autotuning variant with specific parameter values and optional decomposition implementation with PyTorch aten ops. Users can register their own tuning knobs and optional decomposition functions for the same custom operation. The system automatically benchmarks all variants to select the best performing. If no decomposition is provided in the config, the CustomOp's default implementation will be used.

**Custom Input Generation**: Users can provide custom input generators via an optional `input_gen_fns` to control how synthetic inputs are created during benchmarking. This enables more realistic performance testing by generating inputs that match expected data distributions and characteristics for each tensor argument.

**More Examples with autotune logs:**:
1. Allow user to register customOp decompositions with tuning parameters for autotuning. Example usage:
```python
from torch._inductor.kernel.custom_op import CustomOpConfig, register_custom_op_autotuning

def decompose_k_implementation(a: torch.Tensor, b: torch.Tensor, k_splits: int = 4) -> torch.Tensor:
    """Matrix multiply with k-way decomposition."""
         # Implementation...with k_splits

@torch.library.custom_op("my_lib::decompose_k", mutates_args=())
def test_decompose_k_op(
        a: torch.Tensor, b: torch.Tensor, k_splits: int
    ) -> torch.Tensor:
        return decompose_k_implementation(a, b, k_splits)

# Register autotuning with different k_splits values
register_custom_op_autotuning(
    custom_op=test_decompose_k_op,
    configs=[
        CustomOpConfig(decompose_k_implementation, k_splits=2),
        CustomOpConfig(decompose_k_implementation, k_splits=32),
        CustomOpConfig(decompose_k_implementation, k_splits=64),
        CustomOpConfig(k_splits=128), # can make decomposition optional, then use default impl test_decompose_k_op
        CustomOpConfig(k_splits=256)
    ],
    input_gen_fns={
        "a": lambda fake: torch.randn_like(fake, device='cuda') * 0.1,
        "b": lambda fake: torch.randn_like(fake, device='cuda') * 0.1,
    }
)
```

Example result:
```
{"num_choices": 6, "num_triton_choices": 0, "best_kernel": "test_decompose_k_autotuned_fallback_default", "best_time": 0.09980800002813339}
AUTOTUNE test_decompose_k_autotuned(256x65536, 65536x1024)
strides: [65536, 1], [1024, 1]
dtypes: torch.float16, torch.float16
  test_decompose_k_autotuned_fallback_default 0.0998 ms 100.0%
  test_decompose_k_autotuned_decompose_k_implementation_k_splits_2_0 0.1096 ms 91.0% CustomOp decompose_k_implementation_k_splits_2
  test_decompose_k_autotuned_decompose_k_implementation_k_splits_32_1 0.1277 ms 78.2% CustomOp decompose_k_implementation_k_splits_32
  test_decompose_k_autotuned_decompose_k_implementation_k_splits_64_2 0.1454 ms 68.6% CustomOp decompose_k_implementation_k_splits_64
  test_decompose_k_autotuned_decompose_k_implementation_k_splits_128_3 0.1536 ms 65.0% CustomOp decompose_k_implementation_k_splits_128
  test_decompose_k_autotuned_decompose_k_implementation_k_splits_256_4 0.2084 ms 47.9% CustomOp decompose_k_implementation_k_splits_256
```

2. Allow user to tune parameter knob by passing the parameter and values in the CustomOpConfig.
**Example**
```python
def mlp_variants(input_tensor, gate_weight, up_weight, down_weight, method):
    """MLP implementation with different computational approaches."""
    if method == 0:
        # Standard separate matmuls
        # ... implementation
    elif method == 1:
        # Batched approach with torch.mm
        # ... implementation
    elif method == 2:
        # Fused weights approach
        # ... implementation

@torch.library.custom_op("my_lib::mlp_op", mutates_args=())
        def mlp_op(
            input_tensor: torch.Tensor,
            gate_weight: torch.Tensor,
            up_weight: torch.Tensor,
            down_weight: torch.Tensor,
            method: int,
        ) -> torch.Tensor:
            return mlp_variants(
                input_tensor, gate_weight, up_weight, down_weight, method=method
            )

register_custom_op_autotuning(
    custom_op=mlp_op,
    configs=[
        CustomOpConfig(method=0),
        CustomOpConfig(method=1),
        CustomOpConfig(method=2),
        # method=0 is the default fallback in the original op
    ],
    input_gen_fns={
        "input_tensor": lambda fake: torch.randn_like(fake, device='cuda') * 0.1,
        "gate_weight": lambda fake: torch.randn_like(fake, device='cuda') * 0.05,
        # ... other input generators
    }
)

```

Example result:
```
AUTOTUNE test_mlp_autotuned(4x32x512, 512x1024, 512x1024, 1024x256)
  test_mlp_autotuned_mlp_variants_method_2 0.0181 ms 100.0% CustomOp mlp_variants_method_2
  test_mlp_autotuned_mlp_variants_method_1 0.0185 ms 97.8% CustomOp mlp_variants_method_1
  test_mlp_autotuned_mlp_default_fallback_method_0 0.0198 ms 91.4% CustomOp fallback
```

### Test Suite (`test/inductor/test_custom_op_autotune.py`)

*   **RMSNorm autotuning**: Tests different RMSNorm implementations with dynamic input shapes
*   **MLP autotuning**: Tests different MLP decomposition and tuning "method" parameter
*   **DecomposeK**: Tests different k_splits values for matrix multiplication decomposition with k dim split
*   **Multi-parameter tuning**: Tests configs with multiple tuning parameters (scale_mode, chunk_size)

### Next Step:
- Enable Max-autotune with user passed in max-autotune config. https://github.com/pytorch/pytorch/pull/165526/files
- Support inline epilogue fusion for selected best customop decomposition with surrounding elementwise ops. https://github.com/pytorch/pytorch/pull/165952/files
- Support customop autotune considering fusion with multiTemplateBuffer. WIP

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164212
Approved by: https://github.com/zou3519
2025-10-31 02:28:00 +00:00
32066772b3 Fix torch.full with dynamic tensor fill_value in torch.compile (#166554)
Fixes #166253

## Summary
When `torch.full` is called with a 0-D tensor as `fill_value` inside a `torch.compile`'d function, the value was being incorrectly cached, causing subsequent calls with different values to return the first value.

## Root Cause
The Dynamo handler for `torch.full` was calling `aten._local_scalar_dense` to convert tensor fill_values to Python scalars at compile time, which baked the value into the compiled graph as a constant.

## Solution
Modified the Dynamo handler to decompose `torch.full(size, tensor_fill_value)` into `empty(size).fill_(tensor_fill_value)` when `fill_value` is a `TensorVariable`, keeping the fill value dynamic in the compiled graph.

## Testing
Added test case that verifies torch.full works correctly with dynamic tensor fill_values across multiple calls and dtypes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166554
Approved by: https://github.com/Lucaskabela
2025-10-31 00:56:02 +00:00
47f0024310 [CI][BE] Factor out repeated test code (#166481)
Into `_run_single_arg_fwd`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166481
Approved by: https://github.com/Skylion007
2025-10-31 00:52:50 +00:00
98d640bb11 Remove AT_USE_HIPSPARSE_GENERIC_API (#166393)
This macro is not used in OSS anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166393
Approved by: https://github.com/ezyang
2025-10-31 00:49:09 +00:00
5d288bc3f7 [BE] Move GreenContext implementation details to cpp (#166462)
- Remove all complex defines logic from the header
- Make GreenContext constructor private, as  it should only be created via the static method as singleton
- Delete unused `getContext` and `getGreenContext` methods
- Rename `CUDA_HAS_GREEN_CONTEXT` to `HAS_CUDA_GREEN_CONTEXT()`, which results in compilation error if one accidentally makes a typo
- Suppress `-Wunused-private-field` is GreenContext is not available
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166462
Approved by: https://github.com/ngimel, https://github.com/eqy
2025-10-31 00:48:01 +00:00
bfb47ec50e [dynamo] support tracing new typing union syntax X | Y (#166599)
To do in a followup - I think there's an approach to reconstruct typing variables.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166599
Approved by: https://github.com/SherlockNoMad, https://github.com/anijain2305, https://github.com/Skylion007
2025-10-30 23:59:27 +00:00
7a0cd8ed09 [ROCm] Disable __builtin_amdgcn_rcpf for gfx90a (#166454)
Improves accuracy for some failing tests.

test/distributed/_composable/fsdp/test_fully_shard_clip_grad_norm_.py::TestClipGradNormWorldSize4::test_clip_grad_norm_2d [GH job link](https://github.com/pytorch/pytorch/actions/runs/18930221123/job/54046876467) [HUD commit link](f20bf77874)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166454
Approved by: https://github.com/jerrymannil, https://github.com/jeffdaily
2025-10-30 23:39:00 +00:00
984e64b2cd [inductor] Fix constant folder (#166655)
Fixes https://fb.workplace.com/groups/1028545332188949/permalink/1351999569843522/ where the resulting graph of constant folder uses a sym node which has been created later. Graph diff: https://www.internalfb.com/intern/diffing/?paste_number=2014609054

Before:
```
    %full_65 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([%sym_size_int_47, 768], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
    %select_18 : [num_users=1] = call_function[target=torch.ops.aten.select.int](args = (%full_65, 1, 0), kwargs = {})
    %mul_2792 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_18, 0), kwargs = {})
    %embedding_4 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%_uv__surface_embeddings_weight, %mul_2792), kwargs = {})
```

After:
```
    %full_65 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([%sym_size_int_47, 768], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
    %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([%sym_size_int_150], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
    %embedding_4 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%_uv__surface_embeddings_weight, %full_default_1), kwargs = {})
    ...
    %sym_size_int_150 : [num_users=7] = call_function[target=torch.ops.aten.sym_size.int](args = (%view_193, 0), kwargs = {})
```

I couldn't figure out a small repro for this :/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166655
Approved by: https://github.com/eellison
2025-10-30 22:51:28 +00:00
b9bcb37f40 [DebugMode] store stringify args by default (#166347)
DebugMode currently stores dispatch call args & kwargs, which is all intermediate tensors and more. This quickly OOMed on GPU when trying to debug some torchtitan / llama 8b models.

This defaults to storing the stringified version, adding a flag `DebugMode(store_original_args=True)` if users want to store the original args as-is (and for BC).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166347
Approved by: https://github.com/yushangdi
2025-10-30 22:12:23 +00:00
7e3b9d105e [CP][BE][2/2] Refactor the code structure (#166501)
Our CP codebase now contains several files and we are adding more. This
PR refactors the code to consolidate the files into a context_parallel
folder but keep the import so that the existing users of CP won't be
affected.

Unfortunately, we have to split this PR into two PRs as the PyTorch
infra cannot accept a PR with 3000+ LoC change and git cannot recognize
that _context_parallel/_attention.py is moved from _attention.py because
we want to keep BC.

This is the second PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166501
Approved by: https://github.com/Skylion007
ghstack dependencies: #166456
2025-10-30 22:07:07 +00:00
45c3f02d69 [ROCm] moved gfx1100 back to experimental status for AOTriton (#166397)
According to next commit to AOTriton:
8625c4faee

These changes missed in 0.11b release:
https://github.com/pytorch/pytorch/pull/161754

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166397
Approved by: https://github.com/jeffdaily
2025-10-30 21:43:01 +00:00
f5543e3741 [wip] fix searchsorted non dense (#165064)
Fix for https://github.com/pytorch/pytorch/issues/163528

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165064
Approved by: https://github.com/benjaminglass1, https://github.com/mlazos
2025-10-30 21:21:24 +00:00
5fc2c7a2a1 [ROCm][inductor] More configs for pointwise kernels. (#166470)
This config improves performance by 250% on some kernels that contain `t1.atomic_add(...)`. Again, we conditionalize for ROCm/HIP, so there is no impact to NV.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166470
Approved by: https://github.com/PaulZhang12, https://github.com/mlazos, https://github.com/eellison, https://github.com/jansel
2025-10-30 21:20:12 +00:00
7692fa09cd [Code Clean] Clean asserts in torch/ao/quantization/fx/* (#165420)
Replace assert statements with explicit if/raise patterns in:

- torch/ao/quantization/fx/* (177 errors)

fix partialy #164878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165420
Approved by: https://github.com/RohitRathore1, https://github.com/fffrog, https://github.com/albanD
2025-10-30 20:53:36 +00:00
df71b70727 [cuDNN][conv] Re-enable cuDNN for 3D convolutions (fixed in 9.15+) (#166480)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166480
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-10-30 20:47:20 +00:00
80ba6e458f Add warning when users have incomplete setup for type checking (#166603)
Looking for feedback on this approach.
Received user reports of spurious pyrefly errors for users using hg instead of git. I think this was due to the fact that when using a venv and git, `make setup-env` installs requirements and pulls from a nightly torch wheel, which is needed for pyrefly to type check properly.

Initial documentation for `make setup-env` I found here: https://github.com/pytorch/pytorch/blob/main/CONTRIBUTING.md#developing-pytorch

Testing:
```
hg clone --git ssh://git@github.com/pytorch/pytorch.git
conda create -n pytorch_env python=3.10 # (or manually create venv instead of using script)
cd pytorch
pip install -r requirements.txt
pip install -r requirements-build.txt
lintrunner init
# check how many pyrefly errors - 15,709 errors (11,693 ignored)
lintrunner # confirm error message / warning appears
>>> General linter failure:
  Warning (PYREFLY) nightly-wheel-not-run
    pytorch-nightly.pth not found. You may need to run make setup-env or make
    setup-env-conda to install nightly binaries and type stubs.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166603
Approved by: https://github.com/aorenste
2025-10-30 20:37:44 +00:00
0d50e5d8d4 [3/N] Fix unused loop variables (#166509)
This PR removes unused loop variables in tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166509
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
2025-10-30 20:13:51 +00:00
99b05d1b78 Better 1x128, 128x128 error handling on non-Hopper (#166639)
Summary:

Blockwise 1x128 and 128x128 scaling is only available on CUDA >= 12.9
and only on Hopper GPUs. Attempting to run on B200 would give a
hard-to-debug `CUBLAS_STATUS_NOT_SUPPORTED`.

Add a more helpful `NotImplementedError` to catch this case.

Also more explicitly disable ROCm builds for relevant methods, based on
lack of support per [hipBLASlt
docs](https://rocm.docs.amd.com/projects/hipBLASLt/en/latest/reference/datatypes.html#_CPPv4N28hipblasLtMatmulMatrixScale_t40HIPBLASLT_MATMUL_MATRIX_SCALE_VEC128_32FE).

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166639
Approved by: https://github.com/drisspg
2025-10-30 20:13:06 +00:00
f911d64750 [CUDA] xFail max-autotune grouped gemm tests on devices with insufficient SM count (#165921)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165921
Approved by: https://github.com/ngimel
2025-10-30 20:05:07 +00:00
52db60170d Enable verify_dynamo on Python 3.13 (#166497)
Dynamo now supports Python 3.13.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166497
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42
2025-10-30 19:52:32 +00:00
56838bad5f [CP][BE][1/2] Refactor the code structure (#166456)
Our CP codebase now contains several files and we are adding more. This PR refactors the code to consolidate the files into a context_parallel folder but keep the import so that the existing users of CP won't be affected.

Unfortunately, we have to split this PR into two PRs as the PyTorch infra cannot accept a PR with 3000+ LoC change and git cannot recognize that _context_parallel/_attention.py is moved from _attention.py because we want to keep BC.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166456
Approved by: https://github.com/Skylion007
2025-10-30 19:46:49 +00:00
ad3a56ab98 Add a compile-time flag to trigger verbose logging for device-side asserts (#166171)
Summary:
Using `CUDA_KERNEL_ASSERT_PRINTF` inside kernels allows us to log invalid values to the console (that can be in turn used to surface _hopefully_ more clearer error messages).

This does have an impact in the number of registers needed for the values being logged (I confirmed via diffing PTX that there is no other impact relative to using `__assert_fail`)

To avoid causing perf bottlenecks, this change adds a compile-time switch to enable more verbose errors in some of the common kernels that cause DSAs. There is also a Buck config that can be used to configure this switch more conveniently.

## Alternatives considered
I considered making the behavior of `CUDA_KERNEL_ASSERT_PRINTF` controllable via a compile-time macro instead of writing another wrapper for it but there are kernels where the extra register pressure is not as severe and in those cases, having more useful error messages by default is pretty useful.

Test Plan:
## Simple Python Driver:
```
# scatter_errors.py
import torch
def main() -> None:
    a = torch.rand(128, device="cuda:0")
    idx = torch.randint(0, 128, (100,), device="cuda:0")
    idx[0] = 9999
    b = torch.scatter(a, 0, idx, 555.0)
    print(b)
```

When running normally via:
```
$ buck2 run @//mode/opt  :scatter_errors
```
we see the followng DSA message:
```
fbcode/caffe2/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:410: operator(): block: [0,0,0], thread: [0,0,0] Assertion `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"` failed.
```

Running via:
```
$  buck2 run @//mode/opt -c fbcode.c10_enable_verbose_assert=1 :scatter_errors
```
however produces:
```
[CUDA_KERNEL_ASSERT] fbcode/caffe2/aten/src/ATen/native/cuda/ScatterGatherKernel.cu:410: operator(): block: [0,0,0], thread: [0,0,0]: Assertion failed: `idx_dim >= 0 && idx_dim < index_size && "index out of bounds"`: Expected 0 <= idx_dim < index_size (128), but got idx_dim = 9999
```

Differential Revision: D85185987

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166171
Approved by: https://github.com/ngimel
2025-10-30 19:43:46 +00:00
a7fd0b4001 [ROCm][CI] fix disk space message (#166645)
Fixes diskspace cutoff to say that the machine does not have difference=100 - diskspace_cutoff_int space available.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166645
Approved by: https://github.com/jeffdaily
2025-10-30 19:38:34 +00:00
181ee3bd42 fix: Add missing signals_to_handle to launcher logging (#166631)
Fixes #166630

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166631
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-10-30 19:31:25 +00:00
0ec0549823 Introduce a new API torch.xpu.get_per_process_memory_fraction (#165511)
# Motivation
Aligned with other backends, this PR introduces a new API torch.xpu.get_per_process_memory_fraction to allow user to retrieve the allowed memory fraction per a single process.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165511
Approved by: https://github.com/EikanWang, https://github.com/ezyang
ghstack dependencies: #165508, #165509, #165510
2025-10-30 19:30:09 +00:00
8221ee6db9 [xpu] Fix type annotation for ProcessGroupXCCL (#166418)
After #163049, this PR fixes the type annotations to match the actual implementation for ProcessGroupXCCL::Options.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166418
Approved by: https://github.com/guangyey, https://github.com/ezyang
2025-10-30 19:29:06 +00:00
b939de26d1 Avoid writing temporary modules to disk (#157713)
In some cases the warning from #147744 still gets emitted because [atexit hooks aren't called](https://github.com/python/cpython/pull/114279).

Even in those cases, if the atexit hooks _were_ called you could end up with issues due to the directory being deleted in one process, but still being used elsewhere.

It's better all round to load these modules entirely in-memory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157713
Approved by: https://github.com/xush6528
2025-10-30 19:11:16 +00:00
694db5f549 Use 'is' in callable comparisons (#166624)
Just like we use `is/is not` for class comparisons, it is generally advised to use `is/is not` for comparisons against torch functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166624
Approved by: https://github.com/Lucaskabela, https://github.com/Skylion007
2025-10-30 19:00:09 +00:00
639a0b1239 Remove torch.distributed.tensor.OpSchema.has_symints (#163667)
It appears to be unused based on `cd torch; rg has_symints`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163667
Approved by: https://github.com/xmfan, https://github.com/azahed98, https://github.com/albanD
ghstack dependencies: #162990
2025-10-30 18:57:17 +00:00
398775a43e [CodeClean] Replace std::runtime_error with TORCH_CHECK (#165119)
As the title stated.

**Changes**:
- torch/csrc/inductor(Part 2)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165119
Approved by: https://github.com/janeyx99
ghstack dependencies: #165139
2025-10-30 18:43:58 +00:00
fcd5f8c352 [CodeClean] Remove the Unused MACRO for AOT Inductor Runtime (#165139)
As the title stated.

- AOTI_TORCH_CHECK depend on TORCH_CHECK_MSG which located in c10/util/Exception.h, which maybe break BC
- AOTI_TORCH_CHECK is not used everywhere
- STD_TORCH_CHECK have ABI check tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165139
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
2025-10-30 18:43:58 +00:00
4acc66f119 Make PT2 compile backprop through custom op without autograd key a hard error (#166367)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166367
Approved by: https://github.com/bdhirsh
2025-10-30 18:43:07 +00:00
8f40a0c634 Revert "address DDE in matmul decomp (#166541)"
This reverts commit 90519402c2006237f891289a0afdec804515aa73.

Reverted https://github.com/pytorch/pytorch/pull/166541 on behalf of https://github.com/atalman due to breaks internal test ([comment](https://github.com/pytorch/pytorch/pull/166541#issuecomment-3469382334))
2025-10-30 18:11:33 +00:00
a5c3c08d10 [Pytorch] Use exp_u20 for aarch64's erf (#166594)
Summary:
After a precision study, we concluded it is ok to use ACL's exp function on f32's erf()
We can keep erf inline this way.

Benchmarks show about 91% higher throughput when processing a tensor of 1M elements, compiling with clang-19:

Before:
f32 erf: 2539.179us
After:
f32 erf: 1329.063us

Test Plan:
Correctness:

buck2 test mode/opt //caffe2/test:test_ops
buck2 test mode/opt //caffe2/test:torch

Performance:

buck2 run mode/opt //caffe2/benchmarks/operator_benchmark/fb:operator_benchmark_test

Differential Revision: D85730452

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166594
Approved by: https://github.com/mcfi, https://github.com/fadara01
2025-10-30 18:09:05 +00:00
a553ea9ea4 Fix missing symbol when printing guards (#165723)
Fixes #165177

When converting guards to sources if we were unable to get the expected symbol from symbol_to_source then try to get it from var_to_sources.

I was unable to make a simpler repro than what was described in the issue (which relies on llama3 - so inappropriate for a unit test).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165723
Approved by: https://github.com/bobrenjc93
2025-10-30 18:03:51 +00:00
ba71e9ca9a [DeviceMesh] Isolate pg creation logic in Device Mesh into a separate func _init_one_process_group (#166614)
To makes pg cache change easier and code modularization, we isolate the logic of process group creation into a separate function named `_init_one_process_group`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166614
Approved by: https://github.com/lw
2025-10-30 17:57:41 +00:00
694d205143 Revert "shrink_group implementation to expose ncclCommShrink API (#164518)"
This reverts commit 311ea0dec0c50f395e6dac7b3875e81ee243fceb.

Reverted https://github.com/pytorch/pytorch/pull/164518 on behalf of https://github.com/atalman due to breaks internal builds Error: from logging_utils import ( ModuleNotFoundError: No module named 'logging_utils' ([comment](https://github.com/pytorch/pytorch/pull/164518#issuecomment-3469308568))
2025-10-30 17:52:29 +00:00
629293f568 bucket all reduce (#166528)
Bucket all reduce in bucketer, thanks to @IvanKobzarev's earlier pr.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166528
Approved by: https://github.com/IvanKobzarev
ghstack dependencies: #166527
2025-10-30 17:12:34 +00:00
c37802a8c4 use multi-dtype bucketing (#166527)
Make the bucketer use multi-dtype bucketing for all gathers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166527
Approved by: https://github.com/IvanKobzarev, https://github.com/ezyang
2025-10-30 16:54:49 +00:00
0a3ac47c0a Revert "[user-streams] Fix stream graph output semantics (#164819)"
This reverts commit f5cb9a4c68d9271c58ef4d3257210984b8e85099.

Reverted https://github.com/pytorch/pytorch/pull/164819 on behalf of https://github.com/atalman due to breaks CI ([comment](https://github.com/pytorch/pytorch/pull/164819#issuecomment-3469018283))
2025-10-30 16:53:32 +00:00
e83be7042e Fix pyrefly errors on main (#166548)
Fixes existing errors to keep noise from lintrunner to a minimum

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166548
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
2025-10-30 16:47:27 +00:00
fb545fb068 Add MXFP4 grouped gemm support via. FBGEMM kernels (#166530)
Summary:

* Extend `_scaled_grouped_mm_v2` to include MXFP4 support
* Add testing to existing grouped routines

Test Plan:

```
pytest -svv -k "mxfp4 and group" test/test_scaled_matmul_cuda.py
```

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166530
Approved by: https://github.com/drisspg
2025-10-30 16:46:11 +00:00
2df2c316e2 [devx] Fix invalid symbol definition emitted in fx_graph_runnable.py (#166529)
Summary: When emitting symbolic variable definition in fx_graph_runnable.py, we need to check if a SymNode is actually an expression, so that we won't generate something like "s27*s53**2 = 36".

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166529
Approved by: https://github.com/mlazos
ghstack dependencies: #166432
2025-10-30 16:40:12 +00:00
08b0a8f11a [Inductor] Fix an inductor_provenance bug (#166432)
Summary: Fix an inductor_provenance related error seen when running TORCH_COMPILE_DEBUG generated fx_graph_runnable.py.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166432
Approved by: https://github.com/mlazos
2025-10-30 16:40:12 +00:00
3f1824742c Revert "Fix comparing inductor actual strides vs bw graph for activations should not throw DDE. (#166277)"
This reverts commit b2a0f90501dd3a16a6ccaf4c49e1c10f6df4ce1d.

Reverted https://github.com/pytorch/pytorch/pull/166277 on behalf of https://github.com/atalman due to Breaks internal executorch tests ([comment](https://github.com/pytorch/pytorch/pull/166277#issuecomment-3468696623))
2025-10-30 15:49:23 +00:00
bbb7d2270b [inductor] print 0.0 as 0 for triton (#164291)
Fixes https://github.com/pytorch/pytorch/issues/164157
Fixes https://github.com/pytorch/pytorch/issues/164086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164291
Approved by: https://github.com/bobrenjc93, https://github.com/mlazos
2025-10-30 15:15:25 +00:00
6a5a436624 DTensor: C++ compute_global_tensor_info (#162990)
compute_global_tensor_info is on the hot path for DTensor.{from,to}_local. More incremental progress toward C++.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162990
Approved by: https://github.com/ezyang
2025-10-30 15:10:54 +00:00
ad559072db [triton][sigmoid] Fix kernel cache and serialization issue for triton sigmoid + CUDA kernel bug (#166568)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166568
Approved by: https://github.com/minjang
2025-10-30 14:54:54 +00:00
ad02bd13df Revert "[user-streams] Add current stream source (#165211)"
This reverts commit 79aee77381b21d41c77148e5ff84c4b351aaf144.

Reverted https://github.com/pytorch/pytorch/pull/165211 on behalf of https://github.com/atalman due to failure: test/test_python_dispatch.py::TestPythonDispatch::test_return_stream [GH job link](https://github.com/pytorch/pytorch/actions/runs/18942517662/job/54086481693) [HUD commit link](7563f61cc8) ([comment](https://github.com/pytorch/pytorch/pull/165211#issuecomment-3468332362))
2025-10-30 14:34:43 +00:00
7563f61cc8 Make bucketing aware of collective LIFO semantics (#166324)
In the initial pr for overlapping preserving bucketing, for a graph like:

```
def foo(...):
     ag = all_gather(...)
     hiding_compute = mm(...)
     wait(ag)
```

We would add dependencies from mm -> ag, and wait from wait -> hiding_compute, to prevent bucketing reordering these collectives so that overlap no long occurred. however, there is an additional way for bucketing to prevent overlap.

If we were to reorder another collective so the graph looked like:

```
def foo(...):
     ag = all_gather(...)
     ar = all_reduce(...)
     wait(ar)
     hiding_compute = mm(...)
     wait(ag)
```

Overlap would not occur, because the wait for the all reduce would also force realization of every collective enqueued on the same stream prior to the all reduce. NCCL uses a single stream per process group.

To model, we set a set a strict ordering of all collective starts, waits, and hiding compute initially when bucketing. Then, when trying to add a collective to a bucket, we will see if we interfere with overlap for all of the following possible bucketings:

[move collective start to bucket start, move bucket start to collective start] x [move collective wait to bucket wait x move bucket wait to collective wait].

For any of these positions, we check if overlap would have been interfered with because of stream queue semantics. Then, if not, we remove the moving start and wait from the constrained ordering of collectives, and see if it's topologically valid to merge the nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166324
Approved by: https://github.com/IvanKobzarev
ghstack dependencies: #166309
2025-10-30 13:37:00 +00:00
fa8e073a4e Revert "[triton][sigmoid] Fix kernel cache and serialization issue for triton sigmoid + CUDA kernel bug (#166568)"
This reverts commit d46d8d6f54b15ded4f2483c7bde31be124281ab8.

Reverted https://github.com/pytorch/pytorch/pull/166568 on behalf of https://github.com/atalman due to Failed test/test_extension_utils.py::TestExtensionUtils::test_external_module_register_with_renamed_backend [GH job link](https://github.com/pytorch/pytorch/actions/runs/18931754443/job/54050880312) [HUD commit link](d46d8d6f54) ([comment](https://github.com/pytorch/pytorch/pull/166568#issuecomment-3468008894))
2025-10-30 13:31:47 +00:00
95b5534773 Revert "[user-streams] Track symbolic current stream (#165212)"
This reverts commit a5335263d32b5be2b2647661334d81225c3cc3fc.

Reverted https://github.com/pytorch/pytorch/pull/165212 on behalf of https://github.com/atalman due to test/test_rename_privateuse1_to_existing_device.py::TestRenamePrivateuseoneToExistingBackend::test_external_module_register_with_existing_backend [GH job link](https://github.com/pytorch/pytorch/actions/runs/18930365446/job/54046768884) [HUD commit link](a5335263d3) ([comment](https://github.com/pytorch/pytorch/pull/165212#issuecomment-3467968796))
2025-10-30 13:24:56 +00:00
9ee1afbf66 Revert "[user-streams] Handle returning the current stream with/without device index (#165356)"
This reverts commit f1af679270392c83e03808c8af5e2cbe3cdf16ce.

Reverted https://github.com/pytorch/pytorch/pull/165356 on behalf of https://github.com/atalman due to test/test_rename_privateuse1_to_existing_device.py::TestRenamePrivateuseoneToExistingBackend::test_external_module_register_with_existing_backend [GH job link](https://github.com/pytorch/pytorch/actions/runs/18930365446/job/54046768884) [HUD commit link](a5335263d3) ([comment](https://github.com/pytorch/pytorch/pull/165356#issuecomment-3467967061))
2025-10-30 13:22:24 +00:00
f60751024e Revert "[2/N] Add strict parameter to Python zip calls (#166257)"
This reverts commit 39e5cdddf7e57881c52473d1288a66f0222527e1.

Reverted https://github.com/pytorch/pytorch/pull/166257 on behalf of https://github.com/atalman due to Failing: test/distributed/fsdp/test_fsdp_mixed_precision.py::TestFSDPTrainEval::test_train_ema_eval_flow [GH job link](https://github.com/pytorch/pytorch/actions/runs/18934047991/job/54057218160) [HUD commit link](39e5cdddf7) ([comment](https://github.com/pytorch/pytorch/pull/166257#issuecomment-3467955332))
2025-10-30 13:20:00 +00:00
2de4cf2102 [1/N] Remove unused loop variables (#166258)
This PR removes unused loop variables.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166258
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos
2025-10-30 12:22:25 +00:00
369f2d6951 [3/N] fix typo in other folders (#166606)
fix typo in other folders

#166374
#166126

_typos.toml
```bash
[files]
extend-exclude = ["tools/linter/dictionary.txt"]
[default.extend-words]
nd = "nd"
arange = "arange"
Nd = "Nd"
GLOBALs = "GLOBALs"
hte = "hte"
iy = "iy"
PN = "PN"
Dout = "Dout"
optin = "optin"
gam = "gam"
PTD = "PTD"
Sur = "Sur"
nin = "nin"
tme = "tme"
inpt = "inpt"
mis = "mis"
Raison = "Raison"
ouput = "ouput"
nto = "nto"
Onwer = "Onwer"
callibrate = "callibrate"
ser = "ser"
Metdata = "Metdata"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166606
Approved by: https://github.com/ezyang
2025-10-30 10:30:40 +00:00
32920926f0 [xpu][fix] [Inductor] Avoid using tl.sqrt_rn on XPU before triton is ready (#165740)
Fixes #165738

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165740
Approved by: https://github.com/etaf, https://github.com/EikanWang, https://github.com/chuanqi129, https://github.com/desertfire
2025-10-30 09:24:24 +00:00
39e5cdddf7 [2/N] Add strict parameter to Python zip calls (#166257)
This PR adds `strict=True/False` to zip calls in test utils. strict=True is passed when possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166257
Approved by: https://github.com/janeyx99
2025-10-30 08:10:10 +00:00
2829d48bd1 [xpu][test][1/N] Port 3 fsdp distributed test cases to Intel GPU (#161476)
For https://github.com/pytorch/pytorch/issues/114850, we will port 3 distributed tests to Intel GPU.
We could enable Intel GPU with the following methods and try the best to keep the original code styles:

- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- use "requires_accelerator_dist_backend" to enable "xccl"
- enabled XPU for some test path
- skip some test cases that Intel GPU does not support

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161476
Approved by: https://github.com/weifengpy, https://github.com/guangyey
2025-10-30 07:30:04 +00:00
f1af679270 [user-streams] Handle returning the current stream with/without device index (#165356)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165356
Approved by: https://github.com/anijain2305
ghstack dependencies: #164304, #164522, #164819, #165211, #165212
2025-10-30 07:20:25 +00:00
d46d8d6f54 [triton][sigmoid] Fix kernel cache and serialization issue for triton sigmoid + CUDA kernel bug (#166568)
Differential Revision: D85792537

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166568
Approved by: https://github.com/minjang
2025-10-30 06:17:39 +00:00
a5335263d3 [user-streams] Track symbolic current stream (#165212)
merge into stream tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165212
Approved by: https://github.com/anijain2305
ghstack dependencies: #164304, #164522, #164819, #165211
2025-10-30 04:58:53 +00:00
79aee77381 [user-streams] Add current stream source (#165211)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165211
Approved by: https://github.com/anijain2305
ghstack dependencies: #164304, #164522, #164819
2025-10-30 04:58:53 +00:00
f5cb9a4c68 [user-streams] Fix stream graph output semantics (#164819)
Preivously, we would stash a single stream value we constructed at trace time in a global and return the same value from repeated calls to the graph.

With this PR, we construct the stream value in advance, reference the constructed value in the graph via the lookup table, and if that value is returned as an output, read the value from the lookup table and return it (in bytecode, not as a graph output, since we don't support arbitrary stream outputs).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164819
Approved by: https://github.com/anijain2305
ghstack dependencies: #164304, #164522
2025-10-30 04:58:46 +00:00
f20bf77874 [audio hash update] update the pinned audio hash (#166597)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166597
Approved by: https://github.com/pytorchbot
2025-10-30 04:28:30 +00:00
75f798e05b [inductor][mi350] add tech specs for MI350 (#166576)
Summary:
was digging through matmul padding for other work, and I noticed that the compute bound checking won't work on MI350 since we haven't supplied the tech specs yet.

I added MI350 specs following the predefined format

Test Plan: CI

Differential Revision: D85804980

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166576
Approved by: https://github.com/leitian
2025-10-30 03:46:52 +00:00
476b149a00 bwd pass (#164504)
**Summary**
This implements the backward pass for the Varlen API and registers `_varlen_attn()` as a custom op.

**Benchmarking**

To benchmark, we compare runtime and TFLOPs against the current SDPA approach with padding.

Settings:

- 1 H100 machine
- `batch_size=8`, `max_seq_len=2048`, `embed_dim=1024`, `num_heads=16`
- dtype `torch.bfloat16`
- `is_causal=False`
- for variable length, we set sequences to be random multiples of 64 up to `max_seq_len`
- 100 runs

|        | Variable Length API | SDPA     |
|--------|--------------------|----------|
| Runtime | 0.8189142608642578 ms       | 3.263883056640625 ms  |
| TFLOPs | 268.652       | 158.731  |

We can see that runtime for Varlen is >3x faster

**Testing**

Run `python test/test_varlen_attention.py` for unit tests where we verify basic functionality and confirm numerical match between varlen gradients vs SDPA.

For custom op testing, `test_custom_op_registration` uses logging mode to verify that `_varlen_attn()` was called and tests with `torch.compile`. `test_custom_op_compliances` uses `torch.library.opcheck()` to verify.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164504
Approved by: https://github.com/drisspg
2025-10-30 03:46:37 +00:00
845da9c817 [ONNX] Ignore pyrefly errors in torchlib (#166588)
Fixes #166475

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166588
Approved by: https://github.com/titaiwangms
2025-10-30 03:43:52 +00:00
0918bf321c [xpu][test] Reuse native_mm and mix_order_reduction for Intel GPU. (#166384)
This PR reused native_mm and mix_order_reduction for Intel GPU and enabled the corresonding test.
Fixes #165370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166384
Approved by: https://github.com/jansel
2025-10-30 03:38:35 +00:00
90519402c2 address DDE in matmul decomp (#166541)
Address https://github.com/pytorch/pytorch/issues/165081
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166541
Approved by: https://github.com/mlazos
2025-10-30 03:19:29 +00:00
791ca80d3a Enable local tensor mode for DTensor attention and convolution tests (#166406)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166406
Approved by: https://github.com/ezyang
2025-10-30 02:48:02 +00:00
5cbdade914 Fix a syntactic error in test_indexing.py (#166390)
This PR fixes a syntactic error in test_indexing.py by a misplaced `if else` expression.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166390
Approved by: https://github.com/jerryzh168
2025-10-30 02:28:01 +00:00
0187db88d4 [ROCm][CI] Create periodic-rocm-mi200.yml (#166544)
* We are separating out the rocm jobs of the periodic workflow
* We are introducing a new label `ciflow/periodic-rocm-mi200` to allow us to run distributed tests only on ROCm runners, without triggering many other jobs on the `periodic.yml` workflow (via `ciflow/periodic`)
* This new workflow will also be triggered via the `ciflow/periodic`, thus maintaining the old status quo.
* We are reverting to the `linux.rocm.gpu.4` label since it targets a lot more CI nodes at this point than the K8s/ARC-based `linux.rocm.gpu.mi250.4` label, as that is still having some network/scaling issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166544
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-30 02:08:07 +00:00
311ea0dec0 shrink_group implementation to expose ncclCommShrink API (#164518)
Closes #164529

To expose the new [ncclCommShrink](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/comms.html#ncclcommshrink) API to PyTorch.

This is useful when you need to exclude certain GPUs or nodes from a collective operation, for example in fault tolerance scenarios or when dynamically adjusting resource utilization.

For more info:  [Shrinking a communicator](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#shrinking-a-communicator)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164518
Approved by: https://github.com/kwen2501
2025-10-30 01:50:54 +00:00
cf7756da38 Bump uv from 0.9.5 to 0.9.6 in /.ci/lumen_cli (#166578)
Bumps [uv](https://github.com/astral-sh/uv) from 0.9.5 to 0.9.6.
- [Release notes](https://github.com/astral-sh/uv/releases)
- [Changelog](https://github.com/astral-sh/uv/blob/main/CHANGELOG.md)
- [Commits](https://github.com/astral-sh/uv/compare/0.9.5...0.9.6)

---
updated-dependencies:
- dependency-name: uv
  dependency-version: 0.9.6
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-10-29 18:28:14 -07:00
e380028a51 [inductor][choices] lookup table choices 1/3 (#164978)
\# why

- enable users to control which choices get used on which inputs
- reduce lowering time, and pin kernel selection, by selecting
  them for the inputs

\# what

- a new InductorChoices subclass that implements a lookup table
- a README explaining the usage
- corresponding testing

- currently only supports templates that go through
  `V.choices.get_template_configs`

\# testing

```
python3 -bb -m pytest test/inductor/test_lookup_table.py -v
```

Differential Revision: [D85685743](https://our.internmc.facebook.com/intern/diff/D85685743)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164978
Approved by: https://github.com/PaulZhang12, https://github.com/eellison, https://github.com/mlazos
2025-10-30 01:28:01 +00:00
b4403bfc62 Add waitcounters for torch.compile subprocess pool (#164527)
Summary:
This ads waitcounter for whether or not the pool is running, as well as if we
are running jobs.

This also ads waitcounters for the first job within a pool. First job and running are working correctly. The job waitcounter seems to either be detecting a leak of a job, or is broken subtly.

Test Plan:
We've tested this internally and see valid ods metrics.

Note that we may be leaking jobs, or the job logic may not be handling an exception correctly.

Differential Revision: D83705931

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164527
Approved by: https://github.com/masnesral
2025-10-30 01:15:26 +00:00
12c12466b0 [ROCm][CI] remove amdgpu from install_rocm.sh (#166575)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166575
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-30 01:08:33 +00:00
f4d05feb7a Repro dynamo issue for union typed annotation (#166443)
when nested function has type annotation using "|",  it fails.

it works fine with `Union[torch.Tensor, DTensor]` tho.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166443
Approved by: https://github.com/anijain2305
2025-10-30 01:05:15 +00:00
7481622237 [symbolic shapes] remove maybe_guard_rel warning (#166553)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166553
Approved by: https://github.com/laithsakka
2025-10-30 00:57:28 +00:00
b2a0f90501 Fix comparing inductor actual strides vs bw graph for activations should not throw DDE. (#166277)
Fix https://github.com/pytorch/pytorch/issues/163894

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166277
Approved by: https://github.com/Lucaskabela
2025-10-30 00:34:05 +00:00
14d4a77495 disable current modes instead of no dispatch in estimation (#166571)
otherwise, the custom estimation's TorchDispatchModes will be disabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166571
Approved by: https://github.com/SherlockNoMad, https://github.com/bdhirsh
2025-10-29 23:24:41 +00:00
3d4ca228be Remove METADATA.bzl files (#166574)
(meta-internal, should not be synced)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166574
Approved by: https://github.com/bigfootjon
2025-10-29 23:17:41 +00:00
c3d205d598 helper function for replacing nodes in aug graph (#166309)
When we do bucketing, we replace starts and waits with new nodes. This pr adds a helper to transfer the augmented graph additional deps.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166309
Approved by: https://github.com/IvanKobzarev
2025-10-29 23:08:33 +00:00
c54e2c5b41 [User-streams] Make torch.Event weakref compatible (#164522)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164522
Approved by: https://github.com/williamwen42
ghstack dependencies: #164304
2025-10-29 23:06:31 +00:00
c3047938a0 [user-streams] Make device-agnostic streams weakref compatible (#164304)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164304
Approved by: https://github.com/williamwen42, https://github.com/colesbury
2025-10-29 23:06:31 +00:00
d2eff5d454 Add python stack trace to AOTI generated code (#160539)
Summary:
We add a thread_local KernelContext object so Strobelight (and other potential profilers) can read the stack trace information of the running kernel.

This will bring extra overhead, so we guard this behind the `cpp.enable_kernel_profile` flag.

Example output code:

```cpp
#include <torch/csrc/inductor/aoti_runtime/kernel_context_tls.h>
namespace torch::aot_inductor {
thread_local KernelContext* tls_kernel_context = nullptr;
}
// Other code .....
void AOTInductorModel::run_impl(
    AtenTensorHandle*
        input_handles, // array of input AtenTensorHandle; handles
                        // are stolen; the array itself is borrowed
    AtenTensorHandle*
        output_handles, // array for writing output AtenTensorHandle; handles
                        // will be stolen by the caller; the array itself is
                        // borrowed
    DeviceStreamType stream,
    AOTIProxyExecutorHandle proxy_executor
) {
    __check_inputs_outputs(input_handles, output_handles);
    auto inputs = steal_from_raw_handles_to_raii_handles(input_handles, 4);
    auto arg2_1 = std::move(inputs[0]);
    auto arg3_1 = std::move(inputs[1]);
    auto arg4_1 = std::move(inputs[2]);
    auto arg5_1 = std::move(inputs[3]);
    [[maybe_unused]] auto& fc1_weight = constants_->at(0);
    [[maybe_unused]] auto& fc1_bias = constants_->at(1);
    inputs.clear();
    [[maybe_unused]] auto& kernels = static_cast<AOTInductorModelKernels&>(*this->kernels_.get());
    static constexpr int64_t int_array_0[] = {8L, 16L};
    static constexpr int64_t int_array_1[] = {16L, 1L};
    AtenTensorHandle buf0_handle;
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(2, int_array_0, int_array_1, cached_torch_dtype_float32, cached_torch_device_type_cpu, this->device_idx_, &buf0_handle));
    RAIIAtenTensorHandle buf0(buf0_handle);
    // Topologically Sorted Source Nodes: [linear], Original ATen: [aten.t, aten.addmm]
    // [Provenance debug handles] aoti_torch_cpu_addmm_out:1
    static constexpr int64_t int_array_2[] = {10L, 16L};
    static constexpr int64_t int_array_3[] = {1L, 10L};
    {
    KernelContextGuard _ctx("aoti_torch_cpu_addmm_out", R"(
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 829, in forward
    x = self.fc1(x)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/torch/nn/modules/linear.py", line 134, in forward
    return F.linear(input, self.weight, self.bias)
)");
    RAIIAtenRecordFunctionHandle record_aoti_torch_cpu_addmm_out_("aoti_torch_cpu_addmm_out", nullptr);
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_cpu_addmm_out(buf0, fc1_bias, arg2_1, wrap_with_raii_handle_if_needed(reinterpret_tensor_wrapper(fc1_weight, 2, int_array_2, int_array_3, 0L)), 1L, 1L));
    }
    arg2_1.reset();
    auto buf1 = std::move(buf0);  // reuse
    static constexpr int64_t int_array_4[] = {10L, 20L};
    static constexpr int64_t int_array_5[] = {20L, 1L};
    AtenTensorHandle buf2_handle;
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(2, int_array_4, int_array_5, cached_torch_dtype_float32, cached_torch_device_type_cpu, this->device_idx_, &buf2_handle));
    RAIIAtenTensorHandle buf2(buf2_handle);
    // [Provenance debug handles] cpp_fused_mul_relu_sigmoid_0:2
    {
    KernelContextGuard _ctx("cpp_fused_mul_relu_sigmoid_0", R"(
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 831, in forward
    x = self.sigmoid(x)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/torch/nn/modules/activation.py", line 359, in forward
    return torch.sigmoid(input)
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 830, in forward
    x = self.relu(x)
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/torch/nn/modules/activation.py", line 144, in forward
    return F.relu(input, inplace=self.inplace)
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 832, in forward
    d = a * 3.14
)");
    cpp_fused_mul_relu_sigmoid_0((float*)(buf1.data_ptr()), (const float*)(arg3_1.data_ptr()), (float*)(buf2.data_ptr()));
    }
    arg3_1.reset();
    static constexpr int64_t int_array_6[] = {10L, 30L};
    static constexpr int64_t int_array_7[] = {30L, 1L};
    AtenTensorHandle buf3_handle;
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided(2, int_array_6, int_array_7, cached_torch_dtype_float32, cached_torch_device_type_cpu, this->device_idx_, &buf3_handle));
    RAIIAtenTensorHandle buf3(buf3_handle);
    // Topologically Sorted Source Nodes: [mul, addmm], Original ATen: [aten.mul, aten.addmm]
    // [Provenance debug handles] aoti_torch_cpu_addmm_out:3
    {
    KernelContextGuard _ctx("aoti_torch_cpu_addmm_out", R"(
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 833, in forward
    y = torch.addmm(c, d, b)
)");
    RAIIAtenRecordFunctionHandle record_aoti_torch_cpu_addmm_out_("aoti_torch_cpu_addmm_out", nullptr);
    AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_cpu_addmm_out(buf3, arg5_1, buf2, arg4_1, 1L, 1L));
    }
    arg4_1.reset();
    arg5_1.reset();
    buf2.reset();
    auto buf4 = std::move(buf3);  // reuse
    // [Provenance debug handles] cpp_fused_gelu_1:4
    {
    KernelContextGuard _ctx("cpp_fused_gelu_1", R"(
File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/cba6f4fb5faa5f79/caffe2/test/inductor/__provenance_tracing__/provenance_tracing#link-tree/caffe2/test/inductor/test_provenance_tracing.py", line 834, in forward
    z = torch.nn.functional.gelu(y)
)");
    cpp_fused_gelu_1((float*)(buf4.data_ptr()));
    }
    output_handles[0] = buf1.release();
    output_handles[1] = buf4.release();
} // AOTInductorModel::run_impl
```

Test Plan:
```
buck run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing -- -r  stack_traces
```

Rollback Plan:

Differential Revision: D78436007

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160539
Approved by: https://github.com/yiming0416
2025-10-29 22:47:52 +00:00
972030fe2e Revert "[pytree] add treespec_{leaf,tuple,dict} functions for args_spec modification (#160843)"
This reverts commit 284716a691580cf0508a7c5a4f9f7306a32092ad.

Reverted https://github.com/pytorch/pytorch/pull/160843 on behalf of https://github.com/atalman due to failing internal torchrec test' ([comment](https://github.com/pytorch/pytorch/pull/160843#issuecomment-3464647878))
2025-10-29 22:46:48 +00:00
d401e4e70a [ROCm][CUDA] add unit test utility busy_wait_for_flag (#166218)
torch.cuda._busy_wait_for_flag() will launch a kernel that spins until a flag is set by a corresponding torch.cuda._clear_flag(). These **must** be run on separate streams or it will deadlock.

When used correctly these kernels will put work on the GPU that is more predictable than torch.cuda._sleep() in cases where the unit test is depending on the GPU being busy.

Fixes #120318.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166218
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-10-29 22:40:23 +00:00
f1a3440715 FC/BC policy for libtorch stable ABI (#163991)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163991
Approved by: https://github.com/janeyx99
ghstack dependencies: #163899
2025-10-29 22:35:36 +00:00
82ff07c788 Add py 3.14 CI docker build pytorch-linux-jammy-py3.14-clang12 (#164791)
Related to https://github.com/pytorch/pytorch/issues/156856
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164791
Approved by: https://github.com/huydhn, https://github.com/malfet, https://github.com/albanD
2025-10-29 22:21:22 +00:00
e0604d3170 [dynamo] Fix ListIterator tracking mutations to original list (#166350)
Currently ListIteratorVariable copies the underlying list, which prevents it
from seeing mutations to the original list.  Remove the copy to match cpython behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166350
Approved by: https://github.com/guilhermeleobas
ghstack dependencies: #166349, #162768
2025-10-29 21:54:37 +00:00
8101fd46d4 [dynamo] Implement iter with a polyfill (#162768)
Currently most variable trackers implement `iter` via `_call_iter_tuple_list`.
This makes it difficult to customize the behavior of `iter` for different
variable types.  Instead, implement `iter` via a polyfill, which will delegate
to the appropriate `__iter__` method.

While this method is more flexible, it increases the overhead of dynamo tracing.
For example, `iter(x)` will generate 9x more instructions than the current
implementation for common iterable types.  Microbenchmarking shows a ~6x
slowdown for this operation.  I suspect this would be much less for realistic
workloads, but more work would be needed to get specific numbers.  If the
performance is a concern we could also consider adding a fast path for types
that are known to correctly implement `__iter__`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/162768
Approved by: https://github.com/guilhermeleobas
ghstack dependencies: #166349
2025-10-29 21:54:37 +00:00
3d4a2d8a93 [dynamo] Add __iter__ for iterable VariableTrackers (#166349)
This is in preparation for implementing iter with a polyfill

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166349
Approved by: https://github.com/guilhermeleobas
2025-10-29 21:54:37 +00:00
59ddfb69a7 [cpu/gpu split] (#165696)
Summary: cpu/gpu split. cuda is default due to some downstream targets configurations.

Test Plan: test in CI

Differential Revision: D80712802

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165696
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/atalman
2025-10-29 21:44:52 +00:00
bebabd7fce [Graph Partition] move custom rules to inductor config (#166458)
This PR adds `custom_should_partition_ops: list[str]` to specify the name of custom ops upon which graph partition happens. It works with cache since it is a `list[str]` in the config file. The op name should be of format "mylib::baz".

Close: #165341

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166458
Approved by: https://github.com/ProExpertProg, https://github.com/eellison, https://github.com/zou3519
2025-10-29 21:43:58 +00:00
56a809aa07 [DTensor] Fix torch.all() using incorrect reduction operator (#165924)
Fixes #165923
Corrects the reduction operation to be product.

Enables "all" in the boolean tensor tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165924
Approved by: https://github.com/malfet, https://github.com/Skylion007
2025-10-29 20:58:35 +00:00
b33762bd2f Fix incomplete test_memory_plots_metadata (#166508)
The different context cases were not fully tested before this PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166508
Approved by: https://github.com/Skylion007
2025-10-29 20:55:00 +00:00
f02708c2be [DeviceMesh] Remove slicing submesh warning messages and clean up in fsdp params (#166466)
Differential Revision: [D85735294](https://our.internmc.facebook.com/intern/diff/D85735294)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166466
Approved by: https://github.com/fegin
2025-10-29 20:52:49 +00:00
a186aa8d6c [ONNX] Change stacklevel in warning message for export (#166558)
Change to 3 so that the warning shows user callsite. (Where user calls torch.onnx.export)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166558
Approved by: https://github.com/titaiwangms
2025-10-29 20:45:25 +00:00
48c3b71ecc transform fr traces for ft (#166149)
Summary:
- the ranks in the default pg config are local ranks
- however fr trace analysis requires them to be global ranks
- so we transform the local ranks to global ranks before the analysis kicks in based on a cli flag

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166149
Approved by: https://github.com/fduwjj
2025-10-29 20:44:48 +00:00
2c9f877fa7 Revert "[PyTorch] Improve aarch64 performance of bfloat16 ops (#166028)"
This reverts commit 3e77a2b478f596a8a0aef0af502f6bb1a247aa85.

Otherwise it fails ARM build with older compilers with errors that looks
as follows:
```
vec128_bfloat16_neon.h:666:12: error: operation not permitted on type ‘bfloat16_t’
  666 |   return (-x) * y - z;
```

For more self-contained example see https://godbolt.org/z/bbY4xWh45
(that compiles the same code using clang-15 and clang-19)
2025-10-29 13:35:59 -07:00
fc540cefd4 set pg name based on ranks (#166182)
Summary:
- in torchft we have multiple default pg's, 1 for each task group
- for flight recorder to work, each of these need to have a different name, so entries can be matched
- change the `init_process_group` api to optionally take a list of ranks. if provided, we use the hash of the ranks as the name of the pg. for torchft, we'll pass global ranks here so the default pg have a different name on each task group

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166182
Approved by: https://github.com/fduwjj
2025-10-29 20:13:48 +00:00
d1a6e006e0 Fix syntax for pyrefly errors (#166496)
Last one! This ensures all existing suppressions match the syntax expected and will silence only one error code

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166496
Approved by: https://github.com/Skylion007, https://github.com/mlazos
2025-10-29 20:00:25 +00:00
fa560e1158 [ao][pruning] Replace assert statements with AssertionError exceptions (#164926)
Replace assert statement with explicit ValueError exception to ensure the validation check is not removed when Python runs with optimization flag (-O).

This is a draft PR to confirm the process.

Fixes partially #164878.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164926
Approved by: https://github.com/fffrog, https://github.com/albanD

Co-authored-by: Jiawei Li <ljw1101.vip@gmail.com>
2025-10-29 17:46:46 +00:00
a3fe1825aa Fix incomplete torch.cdist tests (#166507)
Because the `p` value is not used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/166507
Approved by: https://github.com/Skylion007
2025-10-29 17:11:07 +00:00
deb776319b [ROCm] Reduce duplication in bfloat16_support_literal definition (#166147)
This PR refactors the bfloat16_support_literal constant in the PyTorch build logic to eliminate duplicated ROCm-specific code.

Previously, there were two nearly identical branches for ROCM_VERSION < 70000 and ROCM_VERSION >= 70000, differing only by a single typedef. These have been unified into one conditional block with a minimal version guard inside. (https://github.com/ROCm/pytorch/pull/2502)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166147
Approved by: https://github.com/jerrymannil, https://github.com/jeffdaily
2025-10-29 16:59:03 +00:00
d7040e6d75 Revert "[dynamo][guards] 1/N Guard selectively for DTensor (#165824)"
This reverts commit ee7434be822cf6e75b4566d8159f550ee233d8ae.

Reverted https://github.com/pytorch/pytorch/pull/165824 on behalf of https://github.com/anijain2305 due to internal job failed ([comment](https://github.com/pytorch/pytorch/pull/165824#issuecomment-3462667536))
2025-10-29 16:52:31 +00:00
35f3572fa4 Revert "[ROCm] Enable group gemm through CK (#166334)"
This reverts commit 1fa520ea654f5fc0b3c65ce6e056dd73442dd65d.

Reverted https://github.com/pytorch/pytorch/pull/166334 on behalf of https://github.com/atalman due to Internal build failures ([comment](https://github.com/pytorch/pytorch/pull/166334#issuecomment-3462640668))
2025-10-29 16:45:02 +00:00
bc5111cd8d [Inductor] Prevent kernel fusion with too many unique inputs and outputs (#166275)
MTIA triton currently has a limit that it can't support the cases when there are too many input/output buffers. This PR adds the limitation to prevent large fusion with many input/output buffer.

Differential Revision: [D85509351](https://our.internmc.facebook.com/intern/diff/D85509351/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166275
Approved by: https://github.com/eellison
ghstack dependencies: #166274
2025-10-29 16:41:34 +00:00
398fdd32bb [Inductor] Lower fallback nodes annotated with "should_fallback" (#166339)
Summary:
This PR introduces an inductor-level fallback mechanism that gives users control over which operations or subgraphs Inductor should lower and which should fall back to preexisting kernels. This has similar motivation as #164776 in providing flexibility to selectively disable Inductor lowering for specific nodes.

The implementation simply adds a check for the `"should_fallback"` metadata annotation on FX graph nodes. If this is set to `True`, the lowerer falls back before attempting the normal lowering path. Note that since these are user-directed fallbacks dependent upon specific, customized conditions, use `add_to_fallback_set=False` to avoid permanent overwrites of inductor's lowering/fallback rules.

Simple example marking nodes for fallback based on custom predicates:

```
def should_fallback_predicate(node: torch.fx.Node, pred: Callable[torch.fx.Node, bool]):
    # Apply predicate and mark for fallback if needed
    if self.predicate(node):
         node.meta["should_fallback"] = True
```

Test Plan: added a CI test

Differential Revision: D85347587

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166339
Approved by: https://github.com/blaine-rister, https://github.com/eellison
2025-10-29 16:33:55 +00:00
5fd1d41e62 Revert "[user-streams] Make device-agnostic streams weakref compatible (#164304)"
This reverts commit bfc2050db975e589795cd3eceaed2e83bf89ad35.

Reverted https://github.com/pytorch/pytorch/pull/164304 on behalf of https://github.com/atalman due to Breaks periodic: test/dynamo/test_streams.py::TestStreams::test_stream_weakref [GH job link](https://github.com/pytorch/pytorch/actions/runs/18909552619/job/53979171605) [HUD commit link](cde81e92b9) ([comment](https://github.com/pytorch/pytorch/pull/164304#issuecomment-3462489278))
2025-10-29 16:09:54 +00:00
c594950e86 Revert "nn.Linear: nD contiguous input + bias -- dispatch to addmm also when weight is sparse (#166071)"
This reverts commit 467c21ad9ae4133c20a3c098a0355e9ac20d48aa.

Reverted https://github.com/pytorch/pytorch/pull/166071 on behalf of https://github.com/atalman due to Multiple CI breakages: test/profiler/test_profiler_tree.py::TestProfilerTree::test_profiler_experimental_tree_with_stack_and_modules [GH job link](https://github.com/pytorch/pytorch/actions/runs/18909087335/job/53976915830) [HUD commit link](467c21ad9a) ([comment](https://github.com/pytorch/pytorch/pull/166071#issuecomment-3462458968))
2025-10-29 16:05:30 +00:00
14102fb1f3 add new line in log (#164240)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164240
Approved by: https://github.com/ColinPeppler, https://github.com/Skylion007, https://github.com/ezyang
ghstack dependencies: #164075
2025-10-29 16:03:32 +00:00
5cdbcb5233 Revert "[User-streams] Make torch.Event weakref compatible (#164522)"
This reverts commit cde81e92b95eee9af2879c9c75f7b03699ca72ad.

Reverted https://github.com/pytorch/pytorch/pull/164522 on behalf of https://github.com/atalman due to Breaks periodic: test/dynamo/test_streams.py::TestStreams::test_stream_weakref [GH job link](https://github.com/pytorch/pytorch/actions/runs/18909552619/job/53979171605) [HUD commit link](cde81e92b9) ([comment](https://github.com/pytorch/pytorch/pull/164522#issuecomment-3462450571))
2025-10-29 16:03:03 +00:00
eae701cad0 Add scaffolding for StableIValue FC/BC (no PoC) (#164332)
1. Add `extension_build_version` and `is_internal` to `FromImpl`/`ToImpl` (this will be useful for future if we need to break the BC of any type) #163832 has the PoC of how we would actually use this system
2. Add `aoti_torch_library_impl_v2` that takes in an additional `extension_build_version` argument, updates callsite in `torch/csrc/stable/library.h` to always pass `TORCH_ABI_VERSION` for this argument
3. Add `extension_build_version` to `from_ivalue` and `to_ivalue` and update all callsites
4. Add a private `_from` and `_to` that pass `is_internal=True` to `FromImpl`/`ToImpl`, making it easier to reason about what is being called from libtorch-land / extension-land

**Note: This PR does not include a linter that tells the user to update from/to if changing the ABI of a type in headeronly, which I intend to do in https://github.com/pytorch/pytorch/pull/163998**

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164332
Approved by: https://github.com/janeyx99
ghstack dependencies: #164356, #166373, #163683
2025-10-29 15:41:45 +00:00
8f51556daa Add scaffolding for aoti_torch_call_dispatcher BC with native ops (#163683)
Part 1 of plan in https://docs.google.com/document/d/1MaX51H5aEQE5XnOlnZIpf9oCYwzGrTWkgBACxNzsmWE/edit?usp=sharing

- Upgrade `aoti_torch_call_dispatcher` to v2 with an `extension_build_version`
- Allow registration of StableIValue stack  --> IValue stack adapters for schema changes

#### Note: This PR does not include a linter that tells the user to add the upgrader if the schema changes, which is an important piece that will be added in a separate PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163683
Approved by: https://github.com/janeyx99
ghstack dependencies: #164356, #166373
2025-10-29 15:41:45 +00:00
c0bbda37e8 Move static from_ivalue/to_ivalue to new shim_common.cpp (#166373)
Move `from_ivalue` and `to_ivalue` and their dependents `StableIValueBoxedKernel`, `aoti_torch_library_impl` `aoti_torch_call_dispatcher` into new (non-aoti shim_common.cpp)

This is in prep for the above PRs where I add v2s (`torch_call_dispatcher` and `torch_library_impl`) that are versioning aware

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166373
Approved by: https://github.com/janeyx99
ghstack dependencies: #164356
2025-10-29 15:41:36 +00:00
fefb546b91 Add TORCH_TARGET_VERSION for stable ABI (#164356)
And update it so comparisons can be done by the preprocessor

**Note: We also need to gate in shim.h and figure out how to enforce this**

Differential Revision: [D85683549](https://our.internmc.facebook.com/intern/diff/D85683549)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164356
Approved by: https://github.com/janeyx99
2025-10-29 15:41:28 +00:00
d6d6fa26f5 Revert "bwd pass (#164504)"
This reverts commit f36f372acc28062e0988d84699c62689b0d89a6e.

Reverted https://github.com/pytorch/pytorch/pull/164504 on behalf of https://github.com/jeffdaily due to CI had been clean for both cuda and rocm before merge, broke post merge? ([comment](https://github.com/pytorch/pytorch/pull/164504#issuecomment-3462116676))
2025-10-29 15:10:40 +00:00
467c21ad9a nn.Linear: nD contiguous input + bias -- dispatch to addmm also when weight is sparse (#166071)
As per title.

It seems safe to be able to generalize to arbitrary contiguous inputs since `at::matmul` is likely to do the flattening to avoid `baddmm`.

Additionally, we guard for bias to be 1D and contiguous which is guaranteed to be fused with no copies.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166071
Approved by: https://github.com/ngimel
2025-10-29 13:13:40 +00:00
4a94591321 filter out alloc-free pairs from trace plot (#165752)
Summary:
When dealing with a large memory trace, the resulting plot can be challenging to interpret and analyze.
This commit introduces a feature that enables filtering of allocations that have already been freed, providing a more focused view.
The remaining events in the plot often warrant closer examination, as they may be indicative of potential out-of-memory (OOM) issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165752
Approved by: https://github.com/zdevito
2025-10-29 12:44:54 +00:00
5e7272b60a Revert "[BE] Move GreenContext implementation details to cpp (#166462)"
This reverts commit afaaaa314cc9358a10e9b1986642d49c00773560.

Reverted https://github.com/pytorch/pytorch/pull/166462 on behalf of https://github.com/atalman due to multiple internal build failures ([comment](https://github.com/pytorch/pytorch/pull/166462#issuecomment-3461145801))
2025-10-29 11:59:41 +00:00
691 changed files with 18954 additions and 8227 deletions

View File

@ -195,13 +195,16 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-n-py3)
pytorch-linux-jammy-xpu-n-py3 | pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
TRITON=yes
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10

View File

@ -1 +1 @@
7416ffcb92cdbe98d9f97e4e6f95247e46dfc9fd
318fa9c42fd9f0f7807d57b79640d3abb44f58bd

View File

@ -3,7 +3,7 @@
set -eux
ACL_VERSION=${ACL_VERSION:-"v25.02"}
ACL_VERSION=${ACL_VERSION:-"v52.6.0"}
ACL_INSTALL_DIR="/acl"
# Clone ACL

View File

@ -49,12 +49,20 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
export SYSROOT_DEP="sysroot_linux-64=2.17"
fi
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
if [ "$ANACONDA_PYTHON_VERSION" = "3.14" ]; then
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="3.14.0" \
${SYSROOT_DEP} \
-c conda-forge
else
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="$ANACONDA_PYTHON_VERSION" \
${SYSROOT_DEP}
fi
# libstdcxx from conda default channels are too old, we need GLIBCXX_3.4.30
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 --update-deps -c conda-forge

View File

@ -40,11 +40,7 @@ EOF
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# post merge of https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -97,7 +97,7 @@ case ${image} in
manylinux2_28-builder:xpu)
TARGET=xpu_final
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=11"
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13"
MANY_LINUX_VERSION="2_28"
;;
*)

View File

@ -138,10 +138,12 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13"
numpy==2.1.2; python_version >= "3.13" and python_version < "3.14"
numpy==2.3.4; python_version >= "3.14"
pandas==2.0.3; python_version < "3.13"
pandas==2.2.3; python_version >= "3.13"
pandas==2.2.3; python_version >= "3.13" and python_version < "3.14"
pandas==2.3.3; python_version >= "3.14"
#onnxruntime
#Description: scoring engine for Open Neural Network Exchange (ONNX) models
@ -153,7 +155,8 @@ opt-einsum==3.3
#Pinned versions: 3.3
#test that import: test_linalg.py
optree==0.13.0
optree==0.13.0 ; python_version < "3.14"
optree==0.17.0 ; python_version >= "3.14"
#Description: A library for tree manipulation
#Pinned versions: 0.13.0
#test that import: test_vmap.py, test_aotdispatch.py, test_dynamic_shapes.py,
@ -252,7 +255,8 @@ scikit-image==0.22.0
#test that import:
scipy==1.10.1 ; python_version <= "3.11"
scipy==1.14.1 ; python_version >= "3.12"
scipy==1.14.1 ; python_version > "3.11" and python_version < "3.14"
scipy==1.16.2 ; python_version >= "3.14"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.10.1
@ -324,7 +328,8 @@ pywavelets==1.7.0 ; python_version >= "3.12"
#Pinned versions: 1.4.1
#test that import:
lxml==5.3.0
lxml==5.3.0 ; python_version < "3.14"
lxml==6.0.2 ; python_version >= "3.14"
#Description: This is a requirement of unittest-xml-reporting
PyGithub==2.3.0
@ -334,7 +339,9 @@ sympy==1.13.3
#Pinned versions:
#test that import:
onnx==1.19.1
onnx==1.19.1 ; python_version < "3.14"
# Unpin once Python 3.14 is supported. See onnxruntime issue 26309.
onnx==1.18.0 ; python_version == "3.14"
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -359,7 +366,7 @@ pwlf==2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
pyyaml==6.0.2
pyyaml==6.0.3
pyzstd
setuptools==78.1.1
packaging==23.1

View File

@ -54,12 +54,15 @@ ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
ARG INDUCTOR_BENCHMARKS
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface-requirements.txt huggingface-requirements.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface-requirements.txt torchbench.txt
# Install XPU Dependencies
ARG XPU_VERSION

View File

@ -6,7 +6,7 @@ dependencies = [
"GitPython==3.1.45",
"docker==7.1.0",
"pytest==7.3.2",
"uv==0.9.5"
"uv==0.9.6"
]
[tool.setuptools]

View File

@ -1,7 +1,7 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_ROCM ?= 7.0
DESIRED_ROCM ?= 7.1
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
PACKAGE_NAME = magma-rocm
# inherit this from underlying docker image, do not pass this env var to docker
@ -16,6 +16,7 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma-rocm/build_magma.sh
.PHONY: all
all: magma-rocm71
all: magma-rocm70
all: magma-rocm64
@ -24,6 +25,11 @@ clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-rocm71
magma-rocm71: DESIRED_ROCM := 7.1
magma-rocm71:
$(DOCKER_RUN)
.PHONY: magma-rocm70
magma-rocm70: DESIRED_ROCM := 7.0
magma-rocm70:

View File

@ -6,8 +6,8 @@ set -eou pipefail
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# post merge of https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=c0792ae825fb36872784892ea643dd6f3456bc5f
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
git clone https://github.com/jeffdaily/magma
git clone https://github.com/icl-utk-edu/magma
pushd magma
git checkout ${MAGMA_VERSION}
popd

View File

@ -426,7 +426,7 @@ fi
if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]]; then
# export test times so that potential sharded tests that'll branch off this build will use consistent data
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
python tools/stats/export_test_times.py
PYTHONPATH=. python tools/stats/export_test_times.py
fi
# don't do this for bazel or s390x or riscv64 as they don't use sccache
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *riscv64* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then

View File

@ -572,6 +572,8 @@ fi
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device xpu)
else
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
fi
@ -665,6 +667,8 @@ test_perf_for_dashboard() {
device=cuda_b200
elif [[ "${TEST_CONFIG}" == *rocm* ]]; then
device=rocm
elif [[ "${TEST_CONFIG}" == *xpu* ]]; then
device=xpu
fi
for mode in "${modes[@]}"; do
@ -1757,7 +1761,7 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
else
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
if [[ "${TEST_CONFIG}" != *cpu* && "${TEST_CONFIG}" != *xpu* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"

View File

@ -0,0 +1,319 @@
---
name: add-uint-support
description: Add unsigned integer (uint) type support to PyTorch operators by updating AT_DISPATCH macros. Use when adding support for uint16, uint32, uint64 types to operators, kernels, or when user mentions enabling unsigned types, barebones unsigned types, or uint support.
---
# Add Unsigned Integer (uint) Support to Operators
This skill helps add support for unsigned integer types (uint16, uint32, uint64) to PyTorch operators by updating their AT_DISPATCH macros.
## When to use this skill
Use this skill when:
- Adding uint16, uint32, or uint64 support to an operator
- User mentions "unsigned types", "uint support", "barebones unsigned types"
- Enabling support for kUInt16, kUInt32, kUInt64 in kernels
- Working with operator implementations that need expanded type coverage
## Quick reference
**Add unsigned types to existing dispatch:**
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
// After (method 1: add unsigned types explicitly)
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
// After (method 2: use V2 integral types if AT_INTEGRAL_TYPES present)
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES));
```
## Type group reference
**Unsigned type groups:**
- `AT_BAREBONES_UNSIGNED_TYPES`: kUInt16, kUInt32, kUInt64
- `AT_INTEGRAL_TYPES_V2`: AT_INTEGRAL_TYPES + AT_BAREBONES_UNSIGNED_TYPES
**Relationship:**
```cpp
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + BAREBONES_UNSIGNED_TYPES
```
## Instructions
### Step 1: Determine if conversion to V2 is needed
Check if the file uses AT_DISPATCH_V2:
**If using old AT_DISPATCH:**
- First convert to AT_DISPATCH_V2 using the at-dispatch-v2 skill
- Then proceed with adding uint support
**If already using AT_DISPATCH_V2:**
- Proceed directly to Step 2
### Step 2: Analyze the current dispatch macro
Identify what type groups are currently in use:
```cpp
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
// body
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
^^^^^^^^^^^^^^^^^^^^^^^^^
Current type coverage
```
Common patterns:
- `AT_EXPAND(AT_ALL_TYPES)` → includes AT_INTEGRAL_TYPES + AT_FLOATING_TYPES
- `AT_EXPAND(AT_INTEGRAL_TYPES)` → signed integers only
- `AT_EXPAND(AT_FLOATING_TYPES)` → floating point types
### Step 3: Choose the uint addition method
Two approaches:
**Method 1: Add AT_BAREBONES_UNSIGNED_TYPES explicitly**
- Use when: You want to be explicit about adding uint support
- Add `AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)` to the type list
**Method 2: Substitute AT_INTEGRAL_TYPES with AT_INTEGRAL_TYPES_V2**
- Use when: The dispatch already uses `AT_EXPAND(AT_INTEGRAL_TYPES)`
- More concise: replaces one type group with its superset
- Only applicable if AT_INTEGRAL_TYPES is present
### Step 4: Apply the transformation
**Method 1 example:**
```cpp
// Before
AT_DISPATCH_V2(
dtype,
"min_values_cuda",
AT_WRAP([&]() {
kernel_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
// After (add unsigned types)
AT_DISPATCH_V2(
dtype,
"min_values_cuda",
AT_WRAP([&]() {
kernel_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES),
kBFloat16, kHalf, kBool
);
```
**Method 2 example:**
```cpp
// Before
AT_DISPATCH_V2(
dtype,
"integral_op",
AT_WRAP([&]() {
kernel<scalar_t>();
}),
AT_EXPAND(AT_INTEGRAL_TYPES)
);
// After (substitute with V2)
AT_DISPATCH_V2(
dtype,
"integral_op",
AT_WRAP([&]() {
kernel<scalar_t>();
}),
AT_EXPAND(AT_INTEGRAL_TYPES_V2)
);
```
### Step 5: Handle AT_ALL_TYPES vs individual type groups
If the dispatch uses `AT_EXPAND(AT_ALL_TYPES)`:
- `AT_ALL_TYPES` = `AT_INTEGRAL_TYPES` + `AT_FLOATING_TYPES`
- To add uint: add `AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES)` to the list
If the dispatch separately lists INTEGRAL and FLOATING:
```cpp
// Before
AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES)
// After (Method 2 preferred)
AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES)
```
### Step 6: Verify all dispatch sites
Check the file for ALL dispatch macros that need uint support:
- Some operators have multiple dispatch sites (CPU, CUDA, different functions)
- Apply the transformation consistently across all sites
- Ensure each gets the same type coverage updates
### Step 7: Validate the changes
Check that:
- [ ] AT_DISPATCH_V2 format is used (not old AT_DISPATCH)
- [ ] Unsigned types are added via one of the two methods
- [ ] All relevant dispatch sites in the file are updated
- [ ] Type groups use `AT_EXPAND()`
- [ ] Arguments are properly formatted and comma-separated
## Common patterns
### Pattern 1: AT_ALL_TYPES + extras
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
```
### Pattern 2: Separate INTEGRAL + FLOATING
```cpp
// Before
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES), AT_EXPAND(AT_FLOATING_TYPES));
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_INTEGRAL_TYPES_V2), AT_EXPAND(AT_FLOATING_TYPES));
```
### Pattern 3: Old dispatch needs conversion first
```cpp
// Before (needs v2 conversion first)
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>();
});
// After v2 conversion
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
// After adding uint support
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kHalf, kBFloat16);
```
## Multiple dispatch sites example
For a file with multiple functions:
```cpp
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_V2(iter.dtype(), "min_values_cuda", AT_WRAP([&]() {
impl<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Added uint support
}
void min_launch_kernel(TensorIterator &iter) {
AT_DISPATCH_V2(iter.input_dtype(), "min_cuda", AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t>(iter);
}), AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES), kBFloat16, kHalf);
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Added uint support here too
}
```
## Decision tree
Use this decision tree to determine the approach:
```
Is the file using AT_DISPATCH_V2?
├─ No → Use at-dispatch-v2 skill first, then continue
└─ Yes
└─ Does it use AT_EXPAND(AT_INTEGRAL_TYPES)?
├─ Yes → Replace with AT_EXPAND(AT_INTEGRAL_TYPES_V2)
└─ No → Add AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES) to type list
```
## Edge cases
### Case 1: Dispatch with only floating types
If the operator only supports floating point types, don't add uint support:
```cpp
// Leave as-is - floating point only operator
AT_DISPATCH_V2(dtype, "float_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf);
```
### Case 2: Complex types present
Unsigned types work alongside complex types:
```cpp
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kHalf, kBFloat16);
```
### Case 3: Already has uint support
Check if uint types are already present:
- If `AT_INTEGRAL_TYPES_V2` is used → already has uint support
- If `AT_BAREBONES_UNSIGNED_TYPES` is already in list → already has uint support
- Skip the file if uint support is already present
## Workflow
When asked to add uint support:
1. Read the target file
2. Check if using AT_DISPATCH_V2:
- If not → use at-dispatch-v2 skill first
3. Identify all dispatch macro sites
4. For each dispatch:
- Analyze current type groups
- Choose method (add BAREBONES_UNSIGNED or upgrade to V2)
- Apply transformation with Edit tool
5. Show the user the changes
6. Explain what was modified
## Important notes
- Always check if v2 conversion is needed first
- Apply changes consistently across all dispatch sites in the file
- Method 2 (AT_INTEGRAL_TYPES_V2) is cleaner when applicable
- Method 1 (explicit AT_BAREBONES_UNSIGNED_TYPES) is more explicit
- Unsigned types are: kUInt16, kUInt32, kUInt64 (not kByte which is uint8)
- Some operators may not semantically support unsigned types - use judgment
## Testing
After adding uint support, the operator should accept uint16, uint32, and uint64 tensors. The user is responsible for functional testing.

View File

@ -0,0 +1,305 @@
---
name: at-dispatch-v2
description: Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations.
---
# AT_DISPATCH to AT_DISPATCH_V2 Converter
This skill helps convert PyTorch's legacy AT_DISPATCH macros to the new AT_DISPATCH_V2 format, as defined in `aten/src/ATen/Dispatch_v2.h`.
## When to use this skill
Use this skill when:
- Converting AT_DISPATCH_* macros to AT_DISPATCH_V2
- Porting ATen kernels to use the new dispatch API
- Working with files in `aten/src/ATen/native/` that use dispatch macros
- User mentions "AT_DISPATCH", "dispatch v2", "Dispatch_v2.h", or macro conversion
## Quick reference
**Old format:**
```cpp
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, dtype, "kernel_name", [&]() {
// lambda body
});
```
**New format:**
```cpp
AT_DISPATCH_V2(dtype, "kernel_name", AT_WRAP([&]() {
// lambda body
}), AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool);
```
## Key transformations
1. **Reorder arguments**: `scalar_type` and `name` come first, then lambda, then types
2. **Wrap the lambda**: Use `AT_WRAP(lambda)` to handle internal commas
3. **Expand type groups**: Use `AT_EXPAND(AT_ALL_TYPES)` instead of implicit expansion
4. **List individual types**: Add extra types (kHalf, kBFloat16, etc.) after expanded groups
5. **Add include**: `#include <ATen/Dispatch_v2.h>` near other Dispatch includes
## Instructions
### Step 1: Add the Dispatch_v2.h include
Add the v2 header near the existing `#include <ATen/Dispatch.h>`:
```cpp
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
```
Keep the old Dispatch.h include for now (other code may still need it).
### Step 2: Identify the old dispatch pattern
Common patterns to convert:
- `AT_DISPATCH_ALL_TYPES_AND{2,3,4}(type1, type2, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_FLOATING_TYPES_AND{2,3}(type1, type2, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND{2,3}(type1, ..., scalar_type, name, lambda)`
- `AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND{2,3}(type1, ..., scalar_type, name, lambda)`
### Step 3: Map the old macro to type groups
Identify which type group macro corresponds to the base types:
| Old macro base | AT_DISPATCH_V2 type group |
|----------------|---------------------------|
| `ALL_TYPES` | `AT_EXPAND(AT_ALL_TYPES)` |
| `FLOATING_TYPES` | `AT_EXPAND(AT_FLOATING_TYPES)` |
| `INTEGRAL_TYPES` | `AT_EXPAND(AT_INTEGRAL_TYPES)` |
| `COMPLEX_TYPES` | `AT_EXPAND(AT_COMPLEX_TYPES)` |
| `ALL_TYPES_AND_COMPLEX` | `AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX)` |
For combined patterns, use multiple `AT_EXPAND()` entries:
```cpp
// Old: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(...)
// New: AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES), type1, type2
```
### Step 4: Extract the individual types
From `AT_DISPATCH_*_AND2(type1, type2, ...)` or `AT_DISPATCH_*_AND3(type1, type2, type3, ...)`, extract the individual types (type1, type2, etc.).
These become the trailing arguments after the type group:
```cpp
AT_DISPATCH_V2(..., AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool)
^^^^^^^^^^^^^^^^^^^^^^^^
Individual types from AND3
```
### Step 5: Transform to AT_DISPATCH_V2
Apply the transformation:
**Pattern:**
```cpp
AT_DISPATCH_V2(
scalar_type, // 1st: The dtype expression
"name", // 2nd: The debug string
AT_WRAP(lambda), // 3rd: The lambda wrapped in AT_WRAP
type_groups, // 4th+: Type groups with AT_EXPAND()
individual_types // Last: Individual types
)
```
**Example transformation:**
```cpp
// BEFORE
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool,
iter.dtype(),
"min_values_cuda",
[&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}
);
// AFTER
AT_DISPATCH_V2(
iter.dtype(),
"min_values_cuda",
AT_WRAP([&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
```
### Step 6: Handle multi-line lambdas
For lambdas with internal commas or complex expressions, AT_WRAP is essential:
```cpp
AT_DISPATCH_V2(
dtype,
"complex_kernel",
AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(upper_bound(), 0) // Commas inside!
);
}),
AT_EXPAND(AT_ALL_TYPES)
);
```
### Step 7: Verify the conversion
Check that:
- [ ] `AT_WRAP()` wraps the entire lambda
- [ ] Type groups use `AT_EXPAND()`
- [ ] Individual types don't have `AT_EXPAND()` (just `kBFloat16`, not `AT_EXPAND(kBFloat16)`)
- [ ] Argument order is: scalar_type, name, lambda, types
- [ ] Include added: `#include <ATen/Dispatch_v2.h>`
## Type group reference
Available type group macros (use with `AT_EXPAND()`):
```cpp
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_FLOATING_TYPES // kDouble, kFloat
AT_COMPLEX_TYPES // kComplexDouble, kComplexFloat
AT_QINT_TYPES // kQInt8, kQUInt8, kQInt32
AT_ALL_TYPES // INTEGRAL_TYPES + FLOATING_TYPES
AT_ALL_TYPES_AND_COMPLEX // ALL_TYPES + COMPLEX_TYPES
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + unsigned types
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_FLOAT8_TYPES // Float8 variants
```
## Common patterns
### Pattern: AT_DISPATCH_ALL_TYPES_AND2
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>(data);
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>(data);
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
```
### Pattern: AT_DISPATCH_FLOATING_TYPES_AND3
```cpp
// Before
AT_DISPATCH_FLOATING_TYPES_AND3(kHalf, kBFloat16, kFloat8_e4m3fn,
tensor.scalar_type(), "float_op", [&] {
process<scalar_t>(tensor);
});
// After
AT_DISPATCH_V2(tensor.scalar_type(), "float_op", AT_WRAP([&] {
process<scalar_t>(tensor);
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn);
```
### Pattern: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kComplexHalf, kHalf,
self.scalar_type(),
"complex_op",
[&] {
result = compute<scalar_t>(self);
}
);
// After
AT_DISPATCH_V2(
self.scalar_type(),
"complex_op",
AT_WRAP([&] {
result = compute<scalar_t>(self);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kComplexHalf,
kHalf
);
```
## Edge cases
### Case 1: No extra types (rare)
```cpp
// Before
AT_DISPATCH_ALL_TYPES(dtype, "op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
```
### Case 2: Many individual types (AND4, AND5, etc.)
```cpp
// Before
AT_DISPATCH_FLOATING_TYPES_AND4(kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2,
dtype, "float8_op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "float8_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2);
```
### Case 3: Lambda with no captures
```cpp
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "op", []() {
static_kernel<scalar_t>();
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([]() {
static_kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBool);
```
## Benefits of AT_DISPATCH_V2
1. **No arity in macro name**: Don't need different macros for AND2, AND3, AND4
2. **Composable type sets**: Mix and match type groups with `AT_EXPAND()`
3. **Extensible**: Easy to add more types without hitting macro limits
4. **Clearer**: Type groups are explicit, not implicit in macro name
## Important notes
- Keep `#include <ATen/Dispatch.h>` - other code may need it
- The `AT_WRAP()` is mandatory - prevents comma parsing issues in the lambda
- Type groups need `AT_EXPAND()`, individual types don't
- The v2 API is in `aten/src/ATen/Dispatch_v2.h` - refer to it for full docs
- See the header file for the Python script to regenerate the macro implementation
## Workflow
When asked to convert AT_DISPATCH macros:
1. Read the file to identify all AT_DISPATCH uses
2. Add `#include <ATen/Dispatch_v2.h>` if not present
3. For each dispatch macro:
- Identify the pattern and extract components
- Map the base type group
- Extract individual types
- Construct the AT_DISPATCH_V2 call
- Apply with Edit tool
4. Show the user the complete converted file
5. Explain what was changed
Do NOT compile or test the code - focus on accurate conversion only.

View File

@ -27,7 +27,9 @@ runs:
docker system prune -af
diskspace_new=$(df -H --output=pcent ${docker_root_dir} | sed -n 2p | sed 's/%//' | sed 's/ //')
if [[ "$diskspace_new" -gt "$diskspace_cutoff" ]] ; then
echo "Error: Available diskspace is less than $diskspace_cutoff percent. Not enough diskspace."
diskspace_cutoff_int=$((diskspace_cutoff + 0))
difference=$((100 - diskspace_cutoff_int))
echo "Error: Available diskspace is less than $difference percent. Not enough diskspace."
echo "$msg"
exit 1
else

View File

@ -1 +1 @@
69bbe7363897764f9e758d851cd0340147d27f94
3b0e7a6f192ca2715e7e6cbe5db007aea7165fe2

View File

@ -1 +1 @@
218d2ab791d437309f91e0486eb9fa7f00badc17
cfbc5c2f1c798991715a6b06bb3ce46478c4487c

View File

@ -19,6 +19,7 @@ ciflow_push_tags:
- ciflow/inductor-perf-test-nightly-rocm-mi300
- ciflow/inductor-perf-test-nightly-rocm-mi355
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-perf-test-nightly-xpu
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/linux-aarch64
@ -26,6 +27,7 @@ ciflow_push_tags:
- ciflow/nightly
- ciflow/op-benchmark
- ciflow/periodic
- ciflow/periodic-rocm-mi200
- ciflow/periodic-rocm-mi300
- ciflow/pull
- ciflow/quantization-periodic

View File

@ -11,11 +11,17 @@ architectures:
* Latest XPU
"""
import json
import os
import re
from pathlib import Path
from typing import Optional
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
SCRIPT_DIR = Path(__file__).absolute().parent
REPO_ROOT = SCRIPT_DIR.parent.parent
CUDA_ARCHES = ["12.6", "12.8", "12.9", "13.0"]
CUDA_STABLE = "12.8"
CUDA_ARCHES_FULL_VERSION = {
@ -31,8 +37,7 @@ CUDA_ARCHES_CUDNN_VERSION = {
"13.0": "9",
}
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
ROCM_ARCHES = ["6.4", "7.0"]
ROCM_ARCHES = ["7.0", "7.1"]
XPU_ARCHES = ["xpu"]
@ -137,9 +142,48 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
}
def get_nccl_wheel_version(arch_version: str) -> str:
import re
# Used by tools/nightly.py
PYTORCH_NIGHTLY_PIP_INDEX_URL = "https://download.pytorch.org/whl/nightly"
NIGHTLY_SOURCE_MATRIX = {
"cpu": dict(
name="cpu",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cpu",
supported_platforms=["Linux", "macOS", "Windows"],
accelerator="cpu",
)
}
CUDA_NIGHTLY_SOURCE_MATRIX = {
f"cuda-{major}.{minor}": dict(
name=f"cuda-{major}.{minor}",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/cu{major}{minor}",
supported_platforms=["Linux", "Windows"],
accelerator="cuda",
)
for major, minor in (map(int, version.split(".")) for version in CUDA_ARCHES)
}
ROCM_NIGHTLY_SOURCE_MATRIX = {
f"rocm-{major}.{minor}": dict(
name=f"rocm-{major}.{minor}",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/rocm{major}.{minor}",
supported_platforms=["Linux"],
accelerator="rocm",
)
for major, minor in (map(int, version.split(".")) for version in ROCM_ARCHES)
}
XPU_NIGHTLY_SOURCE_MATRIX = {
"xpu": dict(
name="xpu",
index_url=f"{PYTORCH_NIGHTLY_PIP_INDEX_URL}/xpu",
supported_platforms=["Linux"],
accelerator="xpu",
)
}
NIGHTLY_SOURCE_MATRIX.update(CUDA_NIGHTLY_SOURCE_MATRIX)
NIGHTLY_SOURCE_MATRIX.update(ROCM_NIGHTLY_SOURCE_MATRIX)
NIGHTLY_SOURCE_MATRIX.update(XPU_NIGHTLY_SOURCE_MATRIX)
def get_nccl_wheel_version(arch_version: str) -> str:
requirements = map(
str.strip, re.split("[;|]", PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version])
)
@ -147,17 +191,14 @@ def get_nccl_wheel_version(arch_version: str) -> str:
def read_nccl_pin(arch_version: str) -> str:
from pathlib import Path
nccl_pin_path = os.path.join(
Path(__file__).absolute().parents[2],
".ci",
"docker",
"ci_commit_pins",
f"nccl-cu{arch_version[:2]}.txt",
nccl_pin_path = (
REPO_ROOT
/ ".ci"
/ "docker"
/ "ci_commit_pins"
/ f"nccl-cu{arch_version[:2]}.txt"
)
with open(nccl_pin_path) as f:
return f.read().strip()
return nccl_pin_path.read_text().strip()
def validate_nccl_dep_consistency(arch_version: str) -> None:
@ -165,7 +206,8 @@ def validate_nccl_dep_consistency(arch_version: str) -> None:
wheel_ver = get_nccl_wheel_version(arch_version)
if not nccl_release_tag.startswith(f"v{wheel_ver}"):
raise RuntimeError(
f"{arch_version} NCCL release tag version {nccl_release_tag} does not correspond to wheel version {wheel_ver}"
f"{arch_version} NCCL release tag version {nccl_release_tag} "
f"does not correspond to wheel version {wheel_ver}"
)
@ -412,7 +454,14 @@ def generate_wheels_matrix(
return ret
validate_nccl_dep_consistency("13.0")
validate_nccl_dep_consistency("12.9")
validate_nccl_dep_consistency("12.8")
validate_nccl_dep_consistency("12.6")
arch_version = ""
for arch_version in CUDA_ARCHES:
validate_nccl_dep_consistency(arch_version)
del arch_version
if __name__ == "__main__":
# Used by tools/nightly.py
(SCRIPT_DIR / "nightly_source_matrix.json").write_text(
json.dumps(NIGHTLY_SOURCE_MATRIX, indent=4) + "\n"
)

View File

@ -38,6 +38,10 @@ on:
default: ""
description: |
List of tests to include (empty string implies default list)
dashboard-tag:
required: false
type: string
default: ""
disable-monitor:
description: |
[Experimental] Disable utilization monitoring for tests.
@ -58,6 +62,11 @@ on:
required: false
type: number
default: 1
secrets:
HUGGING_FACE_HUB_TOKEN:
required: false
description: |
HF Auth token to avoid rate limits when downloading models or datasets from hub
permissions:
id-token: write
contents: read
@ -196,6 +205,8 @@ jobs:
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}
PYTORCH_TEST_RERUN_DISABLED_TESTS: ${{ matrix.rerun_disabled_tests && '1' || '0' }}
TESTS_TO_INCLUDE: ${{ inputs.tests-to-include }}
DASHBOARD_TAG: ${{ inputs.dashboard-tag }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
timeout-minutes: ${{ fromJson(steps.test-timeout.outputs.timeout) }}
run: |
# Fetch aws credential from IMDs
@ -246,6 +257,8 @@ jobs:
-e PYTORCH_TEST_RERUN_DISABLED_TESTS \
-e TESTS_TO_INCLUDE \
-e ZE_AFFINITY_MASK \
-e HUGGING_FACE_HUB_TOKEN \
-e DASHBOARD_TAG \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--ulimit stack=10485760:83886080 \
--ulimit core=0 \

View File

@ -36,7 +36,7 @@ jobs:
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.4", "rocm7.0", "cpu"]
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm7.0", "rocm7.1", "cpu"]
steps:
- name: Build docker image
uses: pytorch/pytorch/.github/actions/binary-docker-build@main

View File

@ -52,8 +52,8 @@ jobs:
{ tag: "cuda12.9" },
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "rocm6.4" },
{ tag: "rocm7.0" },
{ tag: "rocm7.1" },
{ tag: "cpu" },
]
steps:

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
rocm_version: ["70", "64"]
rocm_version: ["71", "70"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -54,8 +54,8 @@ jobs:
{ name: "manylinuxaarch64-builder", tag: "cuda12.9", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.1", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "xpu", runner: "linux.9xlarge.ephemeral" },

View File

@ -55,7 +55,7 @@ jobs:
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
- device: "rocm"
rocm_version: "7.0"
rocm_version: "7.1"
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
- device: "cuda"
rocm_version: ""
@ -159,12 +159,7 @@ jobs:
WITH_CLANG_LDD="--with-clang-ldd"
fi
if [[ "${BUILD_DEVICE}" == xpu ]]; then
docker exec -t "${container_name}" bash -c "dnf install -y gcc-toolset-13-gcc-c++"
docker exec -t "${container_name}" bash -c "source /opt/rh/gcc-toolset-13/enable && ${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE"
else
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
fi
docker exec -t "${container_name}" bash -c "${PYTHON_EXECUTABLE} /pytorch/.github/scripts/build_triton_wheel.py --device=$BUILD_DEVICE $RELEASE $WITH_CLANG_LDD"
if [[ ("${{ matrix.device }}" == "cuda" || "${{ matrix.device }}" == "xpu") ]]; then
docker exec -t "${container_name}" bash -c "auditwheel repair --plat ${PLATFORM} //artifacts/*.whl"

View File

@ -57,6 +57,7 @@ jobs:
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.10-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-py3.14-clang12,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-jammy-rocm-n-py3-benchmarks,
@ -66,6 +67,7 @@ jobs:
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-xpu-n-1-py3,
pytorch-linux-jammy-xpu-n-py3,
pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -384,124 +384,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_4-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm6_4-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm6_4-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm6_4-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm6_4-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm6.4
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm6_4-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm6_4-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: "6.4"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm6_4-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -619,3 +501,121 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_1-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm7_1-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm7_1-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm7_1-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
permissions:
id-token: write
contents: read
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm7_1-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm7.1
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm7_1-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm7_1-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.1
GPU_ARCH_VERSION: "7.1"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm7_1-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,148 @@
name: inductor-perf-nightly-xpu
on:
push:
tags:
- ciflow/inductor-perf-test-nightly-xpu/*
schedule:
- cron: 30 17 * * *
workflow_dispatch:
inputs:
training:
description: Run training (on by default)?
required: false
type: boolean
default: true
inference:
description: Run inference (on by default)?
required: false
type: boolean
default: true
default:
description: Run inductor_default?
required: false
type: boolean
default: false
dynamic:
description: Run inductor_dynamic_shapes?
required: false
type: boolean
default: false
cppwrapper:
description: Run inductor_cpp_wrapper?
required: false
type: boolean
default: false
cudagraphs:
description: Run inductor_cudagraphs?
required: false
type: boolean
default: false
freezing_cudagraphs:
description: Run inductor_cudagraphs with freezing for inference?
required: false
type: boolean
default: false
aotinductor:
description: Run aot_inductor for inference?
required: false
type: boolean
default: false
maxautotune:
description: Run inductor_max_autotune?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf,inductor_timm_perf,inductor_torchbench_perf,cachebench
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
jobs:
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
xpu-n-py3_10-inductor-benchmark-build:
name: xpu-n-py3.10-inductor-benchmark
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3-inductor-benchmarks
runner: linux.c7i.12xlarge
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_xpu", shard: 1, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 2, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 3, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 4, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_huggingface_perf_xpu", shard: 5, num_shards: 5, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_timm_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 1, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 2, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 3, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 4, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 5, num_shards: 6, runner: "linux.idc.xpu" },
{ config: "inductor_torchbench_perf_xpu", shard: 6, num_shards: 6, runner: "linux.idc.xpu" },
]}
secrets: inherit
xpu-n-py3_10-inductor-benchmark-test-nightly:
permissions:
id-token: write
contents: read
if: github.event_name != 'workflow_dispatch'
name: xpu-n-py3.10-inductor-benchmark
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-false-cppwrapper-true-aotinductor-true-freezing_cudagraphs-false-cudagraphs_low_precision-false
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
# Disable monitor in perf tests for more investigation
disable-monitor: true
monitor-log-interval: 10
monitor-data-collect-interval: 2
secrets: inherit
xpu-n-py3_10-inductor-benchmark-test:
permissions:
id-token: write
contents: read
if: github.event_name == 'workflow_dispatch'
name: xpu-n-py3.10-inductor-test
uses: ./.github/workflows/_xpu-test.yml
needs: xpu-n-py3_10-inductor-benchmark-build
with:
build-environment: linux-jammy-xpu-n-py3.10
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.xpu-n-py3_10-inductor-benchmark-build.outputs.test-matrix }}
timeout-minutes: 720
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit

View File

@ -0,0 +1,84 @@
name: periodic-rocm-mi200
on:
schedule:
# We have several schedules so jobs can check github.event.schedule to activate only for a fraction of the runs.
# Also run less frequently on weekends.
- cron: 45 0,8,16 * * 1-5
- cron: 45 4 * * 0,6
- cron: 45 4,12,20 * * 1-5
- cron: 45 12 * * 0,6
- cron: 29 8 * * * # about 1:29am PDT, for mem leak check and rerun disabled tests
push:
tags:
- ciflow/periodic/*
- ciflow/periodic-rocm-mi200/*
branches:
- release/*
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}-${{ github.event.schedule }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
llm-td:
if: github.repository_owner == 'pytorch'
name: before-test
uses: ./.github/workflows/llm_td_retrieval.yml
permissions:
id-token: write
contents: read
target-determination:
name: before-test
uses: ./.github/workflows/target_determination.yml
needs: llm-td
permissions:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch'
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.4", owners: ["module:rocm", "oncall:distributed"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit

View File

@ -204,37 +204,6 @@ jobs:
test-matrix: ${{ needs.linux-jammy-cuda13_0-py3_10-gcc11-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-rocm-py3_10-build:
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "distributed", shard: 1, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 2, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
{ config: "distributed", shard: 3, num_shards: 3, runner: "linux.rocm.gpu.mi250.4", owners: ["module:rocm", "oncall:distributed"] },
]}
secrets: inherit
linux-jammy-rocm-py3_10-test:
permissions:
id-token: write
contents: read
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_rocm-test.yml
needs:
- linux-jammy-rocm-py3_10-build
- target-determination
with:
build-environment: linux-jammy-rocm-py3.10
docker-image: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-rocm-py3_10-build.outputs.test-matrix }}
secrets: inherit
linux-jammy-cuda12_8-py3-gcc11-slow-gradcheck-build:
name: linux-jammy-cuda12.8-py3-gcc11-slow-gradcheck
uses: ./.github/workflows/_linux-build.yml

View File

@ -6,6 +6,7 @@ on:
- pull
- trunk
- periodic
- periodic-rocm-mi200
- periodic-rocm-mi300
- inductor
- unstable

2
.gitignore vendored
View File

@ -143,6 +143,7 @@ scripts/release_notes/*.json
sccache-stats*.json
lint.json
merge_record.json
.github/scripts/nightly_source_matrix.json
# These files get copied over on invoking setup.py
torchgen/packaged/*
@ -397,3 +398,4 @@ CLAUDE.local.md
/test_*.py
/debug_*.py
CLAUDE_CONTEXT/
/.claude/settings.local.json

View File

@ -374,7 +374,7 @@ cmake_dependent_option(
"Build the lazy Torchscript backend, not compatible with mobile builds" ON
"NOT INTERN_BUILD_MOBILE" OFF)
cmake_dependent_option(BUILD_FUNCTORCH "Build Functorch" ON "BUILD_PYTHON" OFF)
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin fodler"
cmake_dependent_option(BUILD_BUNDLE_PTXAS "Bundle PTX into torch/bin folder"
OFF "USE_CUDA" OFF)
cmake_dependent_option(USE_KLEIDIAI "Use KleidiAI for the ARM CPU & AARCH64 architecture." ON
"CPU_AARCH64" OFF)

View File

@ -11,7 +11,6 @@ aspects of contributing to PyTorch.
<!-- toc -->
- [Developing PyTorch](#developing-pytorch)
- [Setup the development environment](#setup-the-development-environment)
- [Tips and Debugging](#tips-and-debugging)
- [Nightly Checkout & Pull](#nightly-checkout--pull)
- [Codebase structure](#codebase-structure)
@ -67,23 +66,6 @@ aspects of contributing to PyTorch.
Follow the instructions for [installing PyTorch from source](https://github.com/pytorch/pytorch#from-source). If you get stuck when developing PyTorch on your machine, check out the [tips and debugging](#tips-and-debugging) section below for common solutions.
### Setup the development environment
First, you need to [fork the PyTorch project on GitHub](https://github.com/pytorch/pytorch/fork) and follow the instructions at [Connecting to GitHub with SSH](https://docs.github.com/en/authentication/connecting-to-github-with-ssh) to setup your SSH authentication credentials.
Then clone the PyTorch project and setup the development environment:
```bash
git clone git@github.com:<USERNAME>/pytorch.git
cd pytorch
git remote add upstream git@github.com:pytorch/pytorch.git
make setup-env
# Or run `make setup-env-cuda` for pre-built CUDA binaries
# Or run `make setup-env-rocm` for pre-built ROCm binaries
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
```
### Tips and Debugging
* If you want to have no-op incremental rebuilds (which are fast), see [Make no-op build fast](#make-no-op-build-fast) below.

View File

@ -825,6 +825,14 @@ void Context::setDisplayVmapFallbackWarnings(bool enabled) {
display_vmap_fallback_warnings_ = enabled;
}
bool Context::warnOnAccumulateGradStreamMismatch() const {
return warn_on_accumulate_grad_stream_mismatch_;
}
void Context::setWarnOnAccumulateGradStreamMismatch(bool enabled) {
warn_on_accumulate_grad_stream_mismatch_ = enabled;
}
bool Context::isDefaultMobileCPUAllocatorSet() {
return prev_allocator_ptr_ != nullptr;
}

View File

@ -404,6 +404,9 @@ class TORCH_API Context {
void setDisplayVmapFallbackWarnings(bool enabled);
bool areVmapFallbackWarningsEnabled() const;
void setWarnOnAccumulateGradStreamMismatch(bool enabled);
bool warnOnAccumulateGradStreamMismatch() const;
bool isDefaultMobileCPUAllocatorSet();
void setDefaultMobileCPUAllocator();
void unsetDefaultMobileCPUAllocator();
@ -494,6 +497,7 @@ class TORCH_API Context {
bool release_original_weights = false;
#endif
bool display_vmap_fallback_warnings_ = false;
bool warn_on_accumulate_grad_stream_mismatch_ = true;
std::atomic<at::QEngine> quantized_engine = at::QEngine::NoQEngine;
bool enable_sparse_tensor_invariant_checks = false;
bool allow_fp16_reduction_cpu = false;

View File

@ -19,6 +19,13 @@ inline namespace CPU_CAPABILITY {
#error "Big endian is not supported."
#endif
// GCC does not properly optimize bf16 operators
#if defined(__ARM_FEATURE_BF16) && (__clang_major__ >= 19)
#define BF16_ARITHMETIC_SUPPORTED() 1
#else
#define BF16_ARITHMETIC_SUPPORTED() 0
#endif
// Unlike the float16_t family of types, bfloat16_t is not available
// when we're not targeting bfloat16 hardware support on some
// platforms (but not Mac, so we have to be careful not to shadow the
@ -352,18 +359,35 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
other, &Vectorized<float>::name); \
}
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
Vectorized frac() const;
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
#ifdef __ARM_FEATURE_BF16
// Flip sign bit
Vectorized<c10::BFloat16> neg() const {
return -values;
return vreinterpretq_bf16_s16(vreinterpretq_s16_bf16(values) ^ (-32768));
}
// Fast reciprocal is fine because we are truncating results
Vectorized<c10::BFloat16> reciprocal() const {
return 1.0f / values;
auto x = vcvtq_low_f32_bf16(values);
auto y = vcvtq_high_f32_bf16(values);
x = vrecpeq_f32(x);
y = vrecpeq_f32(y);
return vcvtq_high_bf16_f32(vcvtq_low_bf16_f32(x), y);
}
// Clearing the sign bit
Vectorized<c10::BFloat16> abs() const {
return vreinterpretq_bf16_u16(vreinterpretq_u16_bf16(values) & 0x7FFF);
}
#else
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
#endif
// These functions are optimized on clang-21+
#if BF16_ARITHMETIC_SUPPORTED() && (__clang_major__ >= 21)
Vectorized<c10::BFloat16> operator==(
const Vectorized<c10::BFloat16>& other) const {
return values == other.values;
@ -394,8 +418,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
return values >= other.values;
}
#else
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<)
@ -451,7 +473,7 @@ template <>
Vectorized<c10::BFloat16> inline operator+(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x + y;
@ -464,7 +486,7 @@ template <>
Vectorized<c10::BFloat16> inline operator-(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x - y;
@ -477,7 +499,7 @@ template <>
Vectorized<c10::BFloat16> inline operator*(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x * y;
@ -490,7 +512,7 @@ template <>
Vectorized<c10::BFloat16> inline operator/(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x / y;
@ -607,7 +629,7 @@ Vectorized<c10::BFloat16> inline fmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -627,7 +649,7 @@ Vectorized<c10::BFloat16> inline fnmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -643,7 +665,7 @@ Vectorized<c10::BFloat16> inline fmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
@ -659,7 +681,7 @@ Vectorized<c10::BFloat16> inline fnmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
#if BF16_ARITHMETIC_SUPPORTED()
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;

View File

@ -6,9 +6,9 @@ namespace at::vec {
inline namespace CPU_CAPABILITY {
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
// Enable auto-vectorization for GCC-13+ and clang-17+
// Enable auto-vectorization for clang-17+
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
#if defined(__clang__) && (__clang_major__ >= 17)
template <typename from_type, typename to_type>
inline void convertImpl(

View File

@ -309,7 +309,7 @@ class Vectorized<float> {
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
// Implementation copied from Arm Optimized Routine
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
Vectorized<float> exp_u20() const {
inline Vectorized<float> vexpq_f32_u20() const {
// bail out to sleef if it's a special case:
// i.e. there's an input s.t. |input| > 87.3....
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
@ -348,6 +348,9 @@ class Vectorized<float> {
return vfmaq_f32(scale, poly, scale);
}
Vectorized<float> exp_u20() const {
return vexpq_f32_u20();
}
Vectorized<float> fexp_u20() const {
return exp_u20();
}
@ -634,7 +637,7 @@ inline Vectorized<float> Vectorized<float>::erf() const {
// - exp(- x * x)
auto pow_2 = (*this) * (*this);
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
auto tmp4 = neg_pow_2.exp();
auto tmp4 = neg_pow_2.vexpq_f32_u20();
auto tmp5 = tmp4 ^ neg_zero_vec;
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
auto tmp6 = t * tmp5;

View File

@ -7,6 +7,8 @@
#define HAS_CUDA_GREEN_CONTEXT() 1
#else
#define HAS_CUDA_GREEN_CONTEXT() 0
// Suppress unsued private field warnings as this class is not supposed to be called
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-private-field")
#endif
namespace at::cuda {

View File

@ -7,17 +7,6 @@
#endif
#if defined(USE_ROCM)
// hipSparse const API added in v2.4.0
#if HIPSPARSE_VERSION >= 200400
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#else
#define AT_USE_HIPSPARSE_GENERIC_API() 1
#endif
#else // USE_ROCM
#define AT_USE_HIPSPARSE_GENERIC_API() 0
#endif // USE_ROCM
// cuSparse Generic API spsv function was added in CUDA 11.3.0
#if defined(CUDART_VERSION) && defined(CUSPARSE_VERSION) && (CUSPARSE_VERSION >= 11500)
#define AT_USE_CUSPARSE_GENERIC_SPSV() 1

View File

@ -1,6 +1,7 @@
#include <ATen/cuda/CUDAContextLight.h>
#include <ATen/cuda/Sleep.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAStream.h>
@ -24,8 +25,22 @@ __global__ void spin_kernel(int64_t cycles) {
#endif
}
}
thread_local int *flag = nullptr;
__global__ void busy_wait_for_flag_kernel(int *flag) {
atomicExch(flag, 1);
while (atomicAdd(flag, 0) == 1) {
// do nothing
}
}
__global__ void clear_flag_kernel(int *flag) {
atomicExch(flag, 0);
}
} // anonymous namespace
void sleep(int64_t cycles) {
dim3 grid(1);
dim3 block(1);
@ -33,6 +48,26 @@ void sleep(int64_t cycles) {
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void busy_wait_for_flag() {
if (!flag) {
flag = (int*)c10::cuda::CUDACachingAllocator::raw_alloc(sizeof(int));
}
dim3 grid(1);
dim3 block(1);
busy_wait_for_flag_kernel<<<grid, block, 0, c10::cuda::getCurrentCUDAStream()>>>(flag);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
void clear_flag() {
if (!flag) {
flag = (int*)c10::cuda::CUDACachingAllocator::raw_alloc(sizeof(int));
}
dim3 grid(1);
dim3 block(1);
clear_flag_kernel<<<grid, block, 0, c10::cuda::getCurrentCUDAStream()>>>(flag);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#ifdef USE_ROCM
__global__ void flush_icache_kernel()
{

View File

@ -7,6 +7,11 @@ namespace at::cuda {
// enqueues a kernel that spins for the specified number of cycles
TORCH_CUDA_CU_API void sleep(int64_t cycles);
// enqueues a kernel that spins until a flag is cleared by a
// corresponding call to clear_flag()
TORCH_CUDA_CU_API void busy_wait_for_flag();
TORCH_CUDA_CU_API void clear_flag();
// flushes instruction cache for ROCm; no-op for CUDA
TORCH_CUDA_CU_API void flush_icache();

View File

@ -2,8 +2,6 @@
#include <ATen/Tensor.h>
#include <ATen/cuda/Exceptions.h>
#include <mutex>
namespace at {
namespace cuda {
namespace detail {
@ -12,39 +10,36 @@ __device__ __constant__ float cublas_one_device;
__device__ __constant__ float cublas_zero_device;
float *get_cublas_device_one() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
static float *ptr = nullptr;
static auto init_flag = [&]() {
const float one = 1.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_one_device, &one, sizeof(float)));
});
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return true;
}();
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_one_device));
return ptr;
}
float *get_cublas_device_zero() {
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
static float *ptr = nullptr;
static auto init_flag = [&]() {
const float zero = 0.f;
AT_CUDA_CHECK(cudaMemcpyToSymbol(cublas_zero_device, &zero, sizeof(float)));
});
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return true;
}();
float *ptr;
AT_CUDA_CHECK(cudaGetSymbolAddress(reinterpret_cast<void**>(&ptr), cublas_zero_device));
return ptr;
}
float *get_user_alpha_ptr() {
static float *alpha_ptr;
static c10::once_flag init_flag;
c10::call_once(init_flag, []() {
static bool init_flag [[maybe_unused]] = []() {
AT_CUDA_CHECK(cudaMalloc(&alpha_ptr, sizeof(float)));
});
return true;
}();
return alpha_ptr;
}

View File

@ -1,5 +1,6 @@
#pragma once
#include <c10/core/CachingDeviceAllocator.h>
#include <c10/core/Device.h>
#include <c10/util/Exception.h>
@ -151,6 +152,36 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
}
virtual bool isAvailable() const override;
/* MTIAGraph related APIs */
virtual int64_t mtiagraphCreate(bool keep_graph = false) const {
FAIL_MTIAHOOKS_FUNC(__func__);
return -1;
}
virtual void mtiagraphCaptureBegin(int64_t handle, MempoolId_t pool) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphCaptureEnd(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphInstantiate(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphReplay(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual void mtiagraphReset(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
virtual MempoolId_t mtiagraphPool(int64_t handle) const {
FAIL_MTIAHOOKS_FUNC(__func__);
}
};
struct TORCH_API MTIAHooksArgs {};

View File

@ -534,20 +534,20 @@ Tensor trace_decomp(const Tensor& tensor) {
std::tuple<Tensor, std::optional<int64_t>> tril_batch_rule(
const Tensor& self,
std::optional<int64_t> self_bdim,
int64_t diagonal = 0) {
c10::SymInt diagonal = 0) {
TORCH_CHECK(self.dim() >= 2, "tril: The input tensor must have at least 2 dimensions.");
auto self_ = moveBatchDimToFront(self, self_bdim);
auto result = at::tril(self_, diagonal);
auto result = at::tril_symint(self_, std::move(diagonal));
return std::make_tuple(std::move(result), 0);
}
std::tuple<Tensor, std::optional<int64_t>> triu_batch_rule(
const Tensor& self,
std::optional<int64_t> self_bdim,
int64_t diagonal = 0) {
c10::SymInt diagonal = 0) {
TORCH_CHECK(self.dim() >= 2, "triu: The input tensor must have at least 2 dimensions.");
auto self_ = moveBatchDimToFront(self, self_bdim);
auto result = at::triu(self_, diagonal);
auto result = at::triu_symint(self_, std::move(diagonal));
return std::make_tuple(std::move(result), 0);
}

View File

@ -1,7 +1,5 @@
// Copyright © 2022 Apple Inc.
#include <c10/util/CallOnce.h>
#include <ATen/mps/IndexKernels.h>
#include <ATen/mps/MPSAllocatorInterface.h>
#include <ATen/mps/MPSDevice.h>
@ -10,9 +8,6 @@
namespace at::mps {
static std::unique_ptr<MPSDevice> mps_device;
static c10::once_flag mpsdev_init;
static inline MTLLanguageVersion getMetalLanguageVersion(const id<MTLDevice>& device) {
// MPS Advanced Indexing needs at least Metal 2.0 (support for Argument Buffers and function constants)
// host_name attribute needs at least Metal 2.2 and ulong needs Metal 2.3 (supported on MacOS 11+
@ -21,8 +16,8 @@ static inline MTLLanguageVersion getMetalLanguageVersion(const id<MTLDevice>& de
}
MPSDevice* MPSDevice::getInstance() {
c10::call_once(mpsdev_init, [] { mps_device = std::unique_ptr<MPSDevice>(new MPSDevice()); });
return mps_device.get();
static MPSDevice mps_device;
return &mps_device;
}
MPSDevice::~MPSDevice() {

View File

@ -25,18 +25,19 @@ TORCH_PRECOMPUTE_META_FUNC(avg_pool2d)
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
"avg_pool2d: kernel_size must either be a single int, or a tuple of two ints");
const int64_t kH = kernel_size[0];
const int64_t kW = kernel_size.size() == 1 ? kH : kernel_size[1];
const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
"avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints");
const int64_t dH = stride.empty() ? kH : stride[0];
const int64_t dW = stride.empty() ? kW : stride.size() == 1 ? dH : stride[1];
const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
"avg_pool2d: padding must either be a single int, or a tuple of two ints");
const int64_t padH = padding[0];
const int64_t padW = padding.size() == 1 ? padH : padding[1];
const int padH = safe_downcast<int, int64_t>(padding[0]);
const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
"divisor must be not zero");

View File

@ -410,8 +410,8 @@ struct ConvParams {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8
if (cudnn_version >= 90800) {
// broken on cuDNN 9.8 - 9.14
if (cudnn_version >= 90800 && cudnn_version < 91500) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
(input.scalar_type() == at::kBFloat16 || input.scalar_type() == at::kHalf) &&
weight.dim() == 5) {

View File

@ -640,7 +640,7 @@ Tensor einsum(std::string_view equation, TensorList operands, at::OptionalIntArr
}
}
return ops[0];
return std::move(ops[0]);
}
// _trilinear computes a trilinear einstein sum with an unrolled dimension

View File

@ -139,7 +139,7 @@ void smooth_l1_backward_cpu_kernel(TensorIterator& iter, const Scalar& norm, dou
}
);
} else {
AT_DISPATCH_ALL_TYPES(dtype, "smooth_l1_backward_cpu_out", [&] {
AT_DISPATCH_ALL_TYPES_AND(kHalf, dtype, "smooth_l1_backward_cpu_out", [&] {
auto norm_val = norm.to<scalar_t>();
scalar_t beta_val(beta);
auto norm_val_vec = Vectorized<scalar_t>(norm_val);

View File

@ -170,10 +170,14 @@ static bool isInputCompliesAddmmCudaLt(Tensor& result, const Tensor& self, const
#if defined(CUDA_VERSION) || defined(USE_ROCM)
const auto scalar_type = mat1.scalar_type();
return (beta.toComplexDouble() == 1.0
// self.dim() == 1 && result.dim() == 2 && self.sizes()[0] == mat2_sizes[1]
// is to use lt interface only when self is bias.
&& self.dim() == 1 && self.sizes()[0] == mat2_sizes[1] && self.is_contiguous()
&& result.dim() == 2 && result.is_contiguous()
// Conditions for bias to be fusable
&& (
self.is_contiguous() &&
// NOTE: fine to have 1-len dims to the left from the right-most one
(self.dim() == 1 || self.squeeze().dim() == 1) &&
self.sizes().back() == mat2_sizes[1]
)
&& ( // some dtype restrictions
#ifndef USE_ROCM
scalar_type == at::ScalarType::Double ||

View File

@ -22,9 +22,6 @@
#include <ATen/native/cuda/RowwiseScaledMM.h>
#include <ATen/native/cuda/ScaledGroupMM.h>
#include <ATen/native/cuda/GroupMM.h>
#ifdef USE_ROCM
#include <ATen/native/hip/ck_group_gemm.h>
#endif
#include <ATen/ceil_div.h>
#ifdef USE_FBGEMM_GENAI
@ -216,9 +213,9 @@ _f4_f4_bf16_grouped_mm_fbgemm(
const Tensor& mat_a,
const Tensor& mat_b,
const Tensor& scale_a,
const Tensor& global_scale_a,
const std::optional<Tensor>& global_scale_a,
const Tensor& scale_b,
const Tensor& global_scale_b,
const std::optional<Tensor>& global_scale_b,
const std::optional<Tensor>& offs,
const std::optional<Tensor>& bias,
Tensor& out) {
@ -228,14 +225,28 @@ _f4_f4_bf16_grouped_mm_fbgemm(
"mat_a must be Float4_e2n1fn_2, got: ", mat_a.scalar_type());
TORCH_CHECK_VALUE(mat_b.scalar_type() == at::kFloat4_e2m1fn_x2,
"mat_b must be Float4_e2n1fn_2, got: ", mat_b.scalar_type());
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e4m3fn,
"scale_a must be Float8_e4m3fn, got: ", scale_a.scalar_type());
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e4m3fn,
"scale_b must be Float8_e4m3fn, got: ", scale_b.scalar_type());
TORCH_CHECK_VALUE(global_scale_a.scalar_type() == at::kFloat,
"global_scale_a must be Float, got: ", global_scale_a.scalar_type());
TORCH_CHECK_VALUE(global_scale_b.scalar_type() == at::kFloat,
"global_scale_b must be Float, got: ", global_scale_b.scalar_type());
std::optional<Tensor> combined_global_scale = std::nullopt;
if (global_scale_a.has_value() || global_scale_b.has_value()) {
// NVFP4
TORCH_CHECK_VALUE(global_scale_a.has_value() && global_scale_b.has_value(),
"For NVFP4 grouped gemm both of global_scale_{a,b} must have values")
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e4m3fn,
"scale_a must be Float8_e4m3fn, got: ", scale_a.scalar_type());
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e4m3fn,
"scale_b must be Float8_e4m3fn, got: ", scale_b.scalar_type());
TORCH_CHECK_VALUE(global_scale_a.value().scalar_type() == at::kFloat,
"global_scale_a must be Float, got: ", global_scale_a.value().scalar_type());
TORCH_CHECK_VALUE(global_scale_b.value().scalar_type() == at::kFloat,
"global_scale_b must be Float, got: ", global_scale_b.value().scalar_type());
combined_global_scale = global_scale_a.value().mul(global_scale_b.value());
} else {
// MXFP4
TORCH_CHECK_VALUE(scale_a.scalar_type() == at::kFloat8_e8m0fnu,
"scale_a must be Float8_e8m0fnu, got: ", scale_a.scalar_type());
TORCH_CHECK_VALUE(scale_b.scalar_type() == at::kFloat8_e8m0fnu,
"scale_b must be Float8_e8m0fnu, got: ", scale_b.scalar_type());
}
auto o = fbgemm_gpu::f4f4bf16_grouped_mm(
mat_a,
@ -244,7 +255,7 @@ _f4_f4_bf16_grouped_mm_fbgemm(
scale_b,
offs.value(),
out,
global_scale_a.mul(global_scale_b)
combined_global_scale
);
#else
TORCH_CHECK_NOT_IMPLEMENTED(false, "nvfp4 grouped gemm is not supported without USE_FBGEMM_GENAI, and only for CUDA")
@ -474,9 +485,10 @@ namespace {
using acceptance_fn = std::function<bool(c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&, c10::ScalarType, std::vector<ScalingType>&, ArrayRef<Tensor>&)>;
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 3> scale_grouped_kernel_dispatch = {{
std::array<std::tuple<std::string, acceptance_fn, ScaledGemmImplementation>, 4> scale_grouped_kernel_dispatch = {{
{ "rowwise_rowwise", scaled_blas::check_rowwise_recipe, ScaledGemmImplementation::ROWWISE_ROWWISE},
{ "mxfp8_mxfp8", scaled_blas::check_mxfp8_recipe, ScaledGemmImplementation::MXFP8_MXFP8},
{ "mxfp4_mxfp4", scaled_blas::check_mxfp4_recipe, ScaledGemmImplementation::MXFP4_MXFP4},
{ "nvfp4_nvfp4", scaled_blas::check_nvfp4_recipe, ScaledGemmImplementation::NVFP4_NVFP4}}};
} // anonymous namespace
@ -602,6 +614,21 @@ _scaled_grouped_mm_cuda_v2(
offs.value(),
out);
}
case ScaledGemmImplementation::MXFP4_MXFP4: {
// scale shape checks
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
_check_scales_blocked(mat_b, scale_b[0], 1 /* dim */, 1 /* arg_idx */);
return _f4_f4_bf16_grouped_mm_fbgemm(
mat_a,
mat_b,
scale_a[0], /* block-scale A */
std::nullopt, /* global-scale A */
scale_b[0], /* block-scale B */
std::nullopt, /* global-scale B */
offs.value(),
std::nullopt, /* bias */
out);
}
case ScaledGemmImplementation::NVFP4_NVFP4: {
// scale shape checks
_check_scales_blocked(mat_a, scale_a[0], 0 /* dim */, 0 /* arg_idx */);
@ -639,19 +666,12 @@ std::optional<c10::ScalarType> out_dtype) {
// _scaled_mm_allowed_device is used here within _grouped_mm_cuda which seems incorrect since scale is not used.
// the _grouped_mm_fallback should be safe for any ROCm GPU since it's just calling typical mm/bmm
bool use_fast_path = false;
if (at::detail::getCUDAHooks().isGPUArch({"gfx942", "gfx950"})) {
use_fast_path = true;
}
#endif
const auto out_dtype_ = _resolve_grouped_mm_out_dtype(mat_a, mat_b, out_dtype);
Tensor out = create_grouped_gemm_output_tensor(mat_a, mat_b, offs, out_dtype_);
if (use_fast_path) {
// fast path, no d2h sync needed
#ifndef USE_ROCM
at::cuda::detail::bf16bf16_grouped_mm(mat_a, mat_b, offs, bias, out);
#else
at::hip::detail::group_gemm_ck(mat_a, mat_b, offs, bias, out);
#endif
} else {
_grouped_mm_fallback(mat_a, mat_b, offs, bias, out_dtype, out);
}

View File

@ -13,7 +13,7 @@ __global__ void vectorized_gather_kernel(char * out, char * inp, index_t * idx,
if (allow_neg_indices) {
ind = (ind < 0) ? ind + ind_dim_size : ind;
}
CUDA_KERNEL_ASSERT(ind >=0 && ind < ind_dim_size && "vectorized gather kernel index out of bounds");
CUDA_KERNEL_ASSERT_VERBOSE(ind >=0 && ind < ind_dim_size && "vectorized gather kernel index out of bounds", "Expected 0 <= index < ind_dim_size(%ld), but got index = %ld", ind_dim_size, ind);
int32_t off = (blockDim.x * blockIdx.y + threadIdx.x) * Alignment; // off is guaranteed to be within int32 limits
if (off >= slice_size) return;
auto vec = at::native::memory::ld_vec<Alignment>(inp + ind * inp_stride + off);

View File

@ -794,6 +794,24 @@ void _check_deepseek_scale_stride(const Tensor& scale, const Tensor& t, const Sc
}
}
void
_check_deepseek_support() {
#ifndef USE_ROCM
auto dprops = at::cuda::getCurrentDeviceProperties();
if (dprops->major != 9) {
// Only on Hopper GPUs
TORCH_CHECK_NOT_IMPLEMENTED(
dprops->major == 9,
"DeepSeek style (1x128, 128x128) scaling only supported in CUDA for SM90")
}
// Only in cublasLt >= 12.9
TORCH_CHECK_NOT_IMPLEMENTED(
CUBLAS_VERSION < 120900 || cublasLtGetVersion() < 120900,
"DeepSeek style (1x128, 128x128) scaling requires cublasLt >= 12.9"
);
#endif
}
Tensor&
_scaled_block1x128_block1x128(
const Tensor& mat_a, const Tensor& mat_b,
@ -802,8 +820,12 @@ _scaled_block1x128_block1x128(
const c10::ScalarType out_dtype,
const bool use_fast_accum,
Tensor& out) {
#ifndef USE_ROCM
// Restrictions:
// A, B are FP8, scales are fp32, shape K//128
// CUDA: Only Hopper GPUs
_check_deepseek_support();
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(), mat_b.scalar_type());
TORCH_CHECK_VALUE(scale_a.sizes()[0] == mat_a.sizes()[0] && scale_a.sizes()[1] == mat_a.sizes()[1] / 128 && scale_a.scalar_type() == kFloat,
@ -821,6 +843,12 @@ _scaled_block1x128_block1x128(
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
return out;
#else
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"1x128 and 128x128 scaling not available with ROCm"
);
#endif
}
Tensor&
@ -831,10 +859,12 @@ _scaled_block128x128_block1x128(
const c10::ScalarType out_dtype,
const bool use_fast_accum,
Tensor& out) {
#ifndef USE_ROCM
// Restrictions:
// A, B are FP8, scales are fp32, shape K//128
std::cout << "mat_b: " << mat_b.dim() << ", " << mat_b.sizes() << ", " << mat_b.strides() << std::endl;
std::cout << "scale_b: " << scale_b.dim() << ", " << scale_b.sizes() << ", " << scale_b.strides() << std::endl;
// CUDA: Only Hopper GPUs
_check_deepseek_support();
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(), mat_b.scalar_type());
TORCH_CHECK_VALUE(scale_a.sizes()[0] == ceil_div<int64_t>(mat_a.sizes()[0], 128) && scale_a.sizes()[1] == ceil_div<int64_t>(mat_a.sizes()[1], 128) && scale_a.scalar_type() == kFloat,
@ -852,6 +882,12 @@ _scaled_block128x128_block1x128(
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
return out;
#else
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"1x128 and 128x128 scaling not available with ROCm"
);
#endif
}
Tensor&
@ -862,8 +898,12 @@ _scaled_block1x128_block128x128(
const c10::ScalarType out_dtype,
const bool use_fast_accum,
Tensor& out) {
#ifndef USE_ROCM
// Restrictions:
// A, B are FP8, scales are fp32, A: shape K//128, B: K//128, N//128
// CUDA: Only Hopper GPUs
_check_deepseek_support();
TORCH_CHECK_VALUE(isFloat8Type(mat_a.scalar_type()) && isFloat8Type(mat_b.scalar_type()), "mat_a and mat_b must be fp8 types, got: ",
mat_a.scalar_type(), mat_b.scalar_type());
TORCH_CHECK_VALUE(scale_a.sizes()[0] == mat_a.sizes()[0] && scale_a.sizes()[1] == mat_a.sizes()[1] / 128 && scale_a.scalar_type() == kFloat,
@ -881,6 +921,12 @@ _scaled_block1x128_block128x128(
_scaled_gemm(mat_a, mat_b, scale_a, scale_b, scaling_choice_a, scaling_choice_b, bias, use_fast_accum, out);
return out;
#else
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"1x128 and 128x128 scaling not available with ROCm"
);
#endif
}
Tensor&

View File

@ -160,8 +160,8 @@ struct _cuda_scatter_gather_internal_kernel {
auto offsets = offset_calc.get(i);
int64_t idx_dim = *(index_t*)(index_ptr + offsets[2]);
CUDA_KERNEL_ASSERT(idx_dim >= 0 && idx_dim < index_size
&& "scatter gather kernel index out of bounds");
CUDA_KERNEL_ASSERT_VERBOSE(idx_dim >= 0 && idx_dim < index_size
&& "scatter gather kernel index out of bounds", "Expected 0 <= idx_dim < index_size (%ld), but got idx_dim = %ld", index_size, idx_dim);
f(
(scalar_t*)(self_ptr + offsets[0]),
@ -406,9 +406,8 @@ struct _cuda_scatter_fill_internal_kernel {
auto offsets = offset_calc.get(i);
int64_t idx_dim = *(index_t*)(index_ptr + offsets[1]);
CUDA_KERNEL_ASSERT(idx_dim >= 0 && idx_dim < index_size
&& "index out of bounds"
);
CUDA_KERNEL_ASSERT_VERBOSE(idx_dim >= 0 && idx_dim < index_size
&& "index out of bounds", "Expected 0 <= idx_dim < index_size (%ld), but got idx_dim = %ld", index_size, idx_dim);
f(
(scalar_t*)(self_ptr + offsets[0]),

View File

@ -141,7 +141,8 @@ WelfordDataLN cuWelfordOnlineSum(
if constexpr (!rms_norm){
U delta = val - curr_sum.mean;
U new_count = curr_sum.count + 1.f;
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
//Due to low CU count, we run into accuracy issues on gfx90a with `__builtin_amdgcn_rcpf`
#if defined(USE_ROCM) && !defined(__gfx90a__) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
U new_mean = curr_sum.mean + delta * __builtin_amdgcn_rcpf(new_count);
#else
U new_mean = curr_sum.mean + delta * (1.f/new_count); //proper division is slow, this is less accurate but noticeably faster
@ -163,7 +164,8 @@ WelfordDataLN cuWelfordCombine(
U count = dataA.count + dataB.count;
U mean, sigma2;
if (count > decltype(dataB.count){0}) {
#if defined(USE_ROCM) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
//Due to low CU count, we run into accuracy issues on gfx90a with `__builtin_amdgcn_rcpf`
#if defined(USE_ROCM) && !defined(__gfx90a__) && defined(USE_LAYERNORM_FAST_RECIPROCAL)
auto coef = __builtin_amdgcn_rcpf(count);
#else
auto coef = 1.f/count; //NB we don't use --use_fast_math, but this is emulation, 1./count goes to intrinsic, `* coef` is multiplication, instead of slow fp division

View File

@ -1,19 +0,0 @@
#pragma once
#include <ATen/Tensor.h>
#include <c10/core/ScalarType.h>
#include <optional>
namespace at {
namespace hip {
namespace detail {
void group_gemm_ck(
const at::Tensor& mat_a,
const at::Tensor& mat_b,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& bias,
at::Tensor& out);
} // namespace detail
} // namespace hip
} // namespace at

View File

@ -1,458 +0,0 @@
#undef __HIP_NO_HALF_CONVERSIONS__
#include <ATen/hip/HIPContext.h>
#include <ATen/Tensor.h>
#include <ATen/TensorAccessor.h>
#include <c10/hip/HIPStream.h>
#include <iostream>
#include <vector>
#include <optional>
#include <type_traits>
#include <ck/ck.hpp>
#include <ck/tensor_operation/gpu/device/tensor_layout.hpp>
#include <ck/tensor_operation/gpu/device/gemm_specialization.hpp>
#include <ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_splitk_xdl_cshuffle_two_stage.hpp>
#include <ck/tensor_operation/gpu/element/element_wise_operation.hpp>
#include <ck/utility/tuple.hpp>
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
namespace at {
namespace hip {
namespace detail {
namespace CkTypes {
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
}
template <typename ALayout, typename BLayout, typename DataType>
using GroupedGemmKernel = ck::tensor_operation::device::DeviceGroupedGemmMultipleDSplitKXdlCShuffleTwoStage<
ALayout, BLayout, ck::Tuple<>, ck::tensor_layout::gemm::RowMajor,
DataType, DataType, CkTypes::F32, DataType, ck::Tuple<>, DataType,
CkTypes::PassThrough, CkTypes::PassThrough, CkTypes::PassThrough,
ck::tensor_operation::device::GemmSpecialization::MNKPadding,
1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2,
S<1,4,64,1>, S<0,2,1,3>, S<0,2,1,3>,
3, 8, 8, 1,
S<1,4,64,1>, S<0,2,1,3>, S<0,2,1,3>,
3, 8, 8, 1,
1, 1,
S<1,32,1,8>, 4
>;
template <typename ALayout, typename BLayout, typename DataType>
void launch_grouped_bgemm_ck_impl_dispatch(
const at::Tensor& mat_a,
const at::Tensor& mat_b,
const std::optional<at::Tensor>& offs,
at::Tensor& out)
{
using DeviceOp = GroupedGemmKernel<ALayout, BLayout, DataType>;
using PassThrough = CkTypes::PassThrough;
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<const void*> p_a_ptrs, p_b_ptrs;
std::vector<void*> p_e_ptrs;
// Note: d_ptrs will be resized after we populate the other vectors
const int mat_a_dim = mat_a.dim();
const int mat_b_dim = mat_b.dim();
const char* a_ptr_base = reinterpret_cast<const char*>(mat_a.data_ptr());
const char* b_ptr_base = reinterpret_cast<const char*>(mat_b.data_ptr());
char* out_ptr_base = reinterpret_cast<char*>(out.data_ptr());
const size_t a_element_size = mat_a.element_size();
const size_t b_element_size = mat_b.element_size();
const size_t out_element_size = out.element_size();
// for each group, calculate m,n,k,lda,ldb,ldc and A,B,out pointer base addresses.
if (mat_a_dim == 2 && mat_b_dim == 2) {
// 2D*2D case requires offset tensor
auto offs_accessor = offs->accessor<int, 1>();
int num_groups = offs_accessor.size(0);
const int M = mat_a.size(0); // number of rows in A
const int N = mat_b.size(1); // number of columns in B
const int K = mat_a.size(1); // columns in A == rows in B
// for 2d*2d input, output is 3d.
// for each group, A columns (K) are sliced. M and N dimensions are not sliced.
for (int i = 0; i < num_groups; ++i) {
int start_k = (i == 0) ? 0 : offs_accessor[i-1];
int end_k = offs_accessor[i];
int k = end_k - start_k;
//K dimension are sliced, hence select stride(1) always.
//K dimension is always dimension 1, regardless of memory layout (row/column major)
const void* group_a_ptr = a_ptr_base + start_k * mat_a.stride(1) * a_element_size;
const void* group_b_ptr;
int ldb;
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major B [K,N]: K values are horizontally adjacent, use stride(1) for K offset
group_b_ptr = b_ptr_base + start_k * mat_b.stride(1) * b_element_size;
// Leading dimension = distance between rows = stride(0)
ldb = mat_b.stride(0);
} else {
// Column-major B [K,N]: K values are vertically adjacent, use stride(0) for K offset
group_b_ptr = b_ptr_base + start_k * mat_b.stride(0) * b_element_size;
// Leading dimension = distance between columns = stride(1)
ldb = mat_b.stride(1);
}
// Calculate output pointer for group i in 3D tensor [num_groups, M, N]
// stride(0) = M*N elements between groups, so skip i*stride(0) elements to reach group i
void* group_e_ptr = out_ptr_base + i * out.stride(0) * out_element_size;
int lda, ldc;
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major A [M,K]: leading dimension = distance between rows = stride(0)
lda = mat_a.stride(0);
} else {
// Column-major A [M,K]: leading dimension = distance between columns = stride(1)
lda = mat_a.stride(1);
}
// Output is always row-major in 3D tensor [num_groups, M, N]
// Leading dimension for each group's [M,N] slice = stride(1) = N
ldc = out.stride(1);
size_t output_group_bytes = M * N * out_element_size;
void* group_e_ptr_end = (char*)group_e_ptr + output_group_bytes;
gemm_descs.push_back({
static_cast<ck::index_t>(M),
static_cast<ck::index_t>(N),
static_cast<ck::index_t>(k),
static_cast<ck::index_t>(lda),
static_cast<ck::index_t>(ldb),
static_cast<ck::index_t>(ldc)
});
p_a_ptrs.push_back(group_a_ptr);
p_b_ptrs.push_back(group_b_ptr);
p_e_ptrs.push_back(group_e_ptr);
}
} else if (mat_a_dim == 2 && mat_b_dim == 3) {
// 2D*3D case requires offset tensor
auto offs_accessor = offs->accessor<int, 1>();
int num_groups = offs_accessor.size(0);
// 2d*3d input, output is 2d.
// A: [m * n_groups, k], B: [n_groups, n, k] or [n_groups, k, n], Output: [m * n_groups, n]
// Offset divides M dimension (rows of A), each group gets different rows of A and different batch of B
const int K = mat_a.size(1); // columns in A
// For 2D-3D case: The output determines N (result width)
const int N = out.size(1); // N is the width of the output tensor
for (int i = 0; i < num_groups; ++i) {
int start_m = (i == 0) ? 0 : offs_accessor[i - 1];
int end_m = offs_accessor[i];
int m = end_m - start_m;
// Skip zero-sized groups but continue processing subsequent groups
if (m <= 0) {
continue;
}
// Select A rows for group i: skip start_m rows
const void* group_a_ptr;
int lda;
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major A [total_m, K]: skip start_m rows, each row is stride(0) elements apart
group_a_ptr = a_ptr_base + start_m * mat_a.stride(0) * a_element_size;
lda = mat_a.stride(0); // distance between rows
} else {
// Column-major A [total_m, K]: skip start_m elements in the first dimension (stride(0) is between rows)
group_a_ptr = a_ptr_base + start_m * mat_a.stride(0) * a_element_size;
// Detect stride pattern for A tensor to determine appropriate lda calculation
bool a_is_strided_tensor = (mat_a.stride(0) > mat_a.size(0));
if (a_is_strided_tensor) {
// For strided A tensors: stride(0) gives the actual leading dimension
lda = mat_a.stride(0);
} else {
// For non-strided A tensors: use the M dimension (total rows)
lda = mat_a.size(0); // Total M dimension for column-major layout
}
}
// Select B batch for group i: B[i, :, :]
const void* group_b_ptr = b_ptr_base + i * mat_b.stride(0) * b_element_size;
int ldb;
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major GEMM: expecting B as [K, N] but we have [N, K], so transpose needed
ldb = mat_b.stride(2); // Leading dimension for accessing as [K, N]
} else {
// Detect stride pattern to determine appropriate ldb calculation
bool is_strided_tensor = (mat_b.stride(2) > mat_b.size(2));
if (is_strided_tensor) {
// For strided tensors: stride(2) gives the actual leading dimension
ldb = mat_b.stride(2);
} else {
// For non-strided tensors: use the N dimension
ldb = mat_b.size(1);
}
}
// Output for this group: rows [start_m:end_m, :] in 2D output [total_m, N]
void* group_e_ptr = out_ptr_base + start_m * out.stride(0) * out_element_size;
int ldc = out.stride(0); // distance between rows in output (should be N for 2D case)
gemm_descs.push_back({
static_cast<ck::index_t>(m),
static_cast<ck::index_t>(N),
static_cast<ck::index_t>(K),
static_cast<ck::index_t>(lda),
static_cast<ck::index_t>(ldb),
static_cast<ck::index_t>(ldc)
});
p_a_ptrs.push_back(group_a_ptr);
p_b_ptrs.push_back(group_b_ptr);
p_e_ptrs.push_back(group_e_ptr);
}
} else if (mat_a_dim == 3 && mat_b_dim == 3) {
// 3d*3d input, output is 3d - batched matrix multiplication
// A: [batch, m, k], B: [batch, k, n] or [batch, n, k] (depending on transpose), Output: [batch, m, n]
// Each batch is processed as a separate GEMM operation
const int batch_size = mat_a.size(0);
const int M = mat_a.size(1); // rows in each A matrix
const int K = mat_a.size(2); // columns in A == rows in B (or columns if B is transposed)
// Determine N from B tensor - it could be B.size(1) or B.size(2) depending on layout
int N;
if (mat_b.size(1) == K) {
// B is [batch, k, n] - normal layout
N = mat_b.size(2);
} else if (mat_b.size(2) == K) {
// B is [batch, n, k] - transposed layout
N = mat_b.size(1);
} else {
TORCH_CHECK(false, "CK Group GEMM 3D-3D: B tensor dimensions incompatible with A. A=[",
batch_size, ",", M, ",", K, "], B=[", mat_b.size(0), ",", mat_b.size(1), ",", mat_b.size(2), "]");
}
for (int i = 0; i < batch_size; ++i) {
// Select A batch for group i: A[i, :, :]
const void* group_a_ptr = a_ptr_base + i * mat_a.stride(0) * a_element_size;
// Select B batch for group i: B[i, :, :]
const void* group_b_ptr = b_ptr_base + i * mat_b.stride(0) * b_element_size;
// Select output batch for group i: Output[i, :, :]
void* group_e_ptr = out_ptr_base + i * out.stride(0) * out_element_size;
int lda, ldb, ldc;
if (std::is_same<ALayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major A: leading dimension = distance between rows = stride(1)
lda = mat_a.stride(1);
} else {
// Column-major A: leading dimension = distance between columns = stride(2)
lda = mat_a.stride(2);
}
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major B: leading dimension = distance between rows
if (mat_b.size(1) == K) {
// B is [batch, k, n] - normal layout
ldb = mat_b.stride(1); // stride between K rows
} else {
// B is [batch, n, k] - transposed layout, treat as [k, n] for GEMM
ldb = mat_b.stride(2); // stride between N rows (since we're accessing as [k,n])
}
} else {
// Column-major B: leading dimension = distance between columns
if (mat_b.size(1) == K) {
// B is [batch, k, n] - normal layout
ldb = mat_b.stride(2); // stride between N columns
} else {
// B is [batch, n, k] - transposed layout
ldb = mat_b.stride(1); // stride between K columns (since we're accessing as [n,k]→[k,n])
}
}
// Output is typically row-major: leading dimension = distance between rows = stride(1)
ldc = out.stride(1);
gemm_descs.push_back({
static_cast<ck::index_t>(M),
static_cast<ck::index_t>(N),
static_cast<ck::index_t>(K),
static_cast<ck::index_t>(lda),
static_cast<ck::index_t>(ldb),
static_cast<ck::index_t>(ldc)
});
p_a_ptrs.push_back(group_a_ptr);
p_b_ptrs.push_back(group_b_ptr);
p_e_ptrs.push_back(group_e_ptr);
}
} else if (mat_a_dim == 3 && mat_b_dim == 2) {
// 3D*2D case requires offset tensor
auto offs_accessor = offs->accessor<int, 1>();
int num_groups = offs_accessor.size(0);
// 3d*2d input, output is 3d.
// A: [n_groups, m, k], B: [k, total_n] (assuming row-major for both)
// Offset divides N dimension of B, each group gets different slice of B and different batch of A
const int batch_size = mat_a.size(0); // n_groups
const int M = mat_a.size(1); // rows in each A matrix
const int K = mat_a.size(2); // columns in A
// For row-major A and B case: B should be [K, total_N]
const int total_N = mat_b.size(1); // B is [K, total_N] for row-major
for (int i = 0; i < num_groups; ++i) {
int start_n = (i == 0) ? 0 : offs_accessor[i - 1];
int end_n = offs_accessor[i];
int n = end_n - start_n;
// Skip zero-sized groups but continue processing subsequent groups
if (n <= 0) {
continue;
}
// Select A batch for group i: A[i, :, :]
const void* group_a_ptr = a_ptr_base + i * mat_a.stride(0) * a_element_size;
// Select B slice for group i: B[:, start_n:end_n] (B[K, total_N])
const void* group_b_ptr;
int ldb;
// Check if B is row-major or column-major
if (std::is_same<BLayout, ck::tensor_layout::gemm::RowMajor>::value) {
// Row-major B [K, total_N]: slice columns [start_n:end_n]
group_b_ptr = b_ptr_base + start_n * mat_b.stride(1) * b_element_size;
ldb = mat_b.stride(0); // distance between rows (should be total_N)
} else {
// Column-major B [K, total_N]: slice columns [start_n:end_n]
group_b_ptr = b_ptr_base + start_n * mat_b.stride(1) * b_element_size;
ldb = mat_b.stride(1); // distance between columns (should be K)
}
// Select output slice for group i: Output[:, start_n:end_n]
void* group_e_ptr = out_ptr_base + start_n * out.stride(1) * out_element_size;
int lda, ldc;
// Row-major A: leading dimension = distance between rows = stride(1)
lda = mat_a.stride(1);
// Output is row-major: leading dimension = distance between rows = stride(0)
ldc = out.stride(0);
gemm_descs.push_back({
static_cast<ck::index_t>(M),
static_cast<ck::index_t>(n),
static_cast<ck::index_t>(K),
static_cast<ck::index_t>(lda),
static_cast<ck::index_t>(ldb),
static_cast<ck::index_t>(ldc)
});
p_a_ptrs.push_back(group_a_ptr);
p_b_ptrs.push_back(group_b_ptr);
p_e_ptrs.push_back(group_e_ptr);
}
} else {
TORCH_CHECK(false, "CK Group GEMM: Unsupported dimensions, mat A dim is ", mat_a_dim, ", mat B dim is ", mat_b_dim);
}
TORCH_INTERNAL_ASSERT(p_a_ptrs.size() > 0, "CK Group GEMM: No valid groups");
// Initialize d_ptrs with the correct size
std::vector<std::array<const void*, 0>> d_ptrs(p_a_ptrs.size());
static DeviceOp gemm_instance;
auto argument = gemm_instance.MakeArgument(
p_a_ptrs, p_b_ptrs, d_ptrs, p_e_ptrs,
gemm_descs, PassThrough{}, PassThrough{}, PassThrough{}
);
TORCH_INTERNAL_ASSERT(gemm_instance.IsSupportedArgument(argument),
"CK Group GEMM: argument unsupported (shape/strides/type config)");
size_t arg_buf_size = gemm_instance.GetDeviceKernelArgSize(&argument);
size_t ws_size = gemm_instance.GetWorkSpaceSize(&argument);
void* gemm_arg_buf = nullptr;
void* ws_buf = nullptr;
hipMalloc(&gemm_arg_buf, arg_buf_size);
hipMalloc(&ws_buf, ws_size);
gemm_instance.SetDeviceKernelArgs(&argument, gemm_arg_buf);
gemm_instance.SetWorkSpacePointer(&argument, ws_buf);
auto invoker = gemm_instance.MakeInvoker();
hipStream_t stream = c10::hip::getCurrentHIPStream();
invoker.Run(argument, {stream});
hipFree(gemm_arg_buf);
hipFree(ws_buf);
}
void group_gemm_ck(
const at::Tensor& input_a,
const at::Tensor& input_b_colmajor,
const std::optional<at::Tensor>& offs,
const std::optional<at::Tensor>& /*bias*/,
at::Tensor& out)
{
// Detect if input_a is row-major based on stride pattern
bool a_row_major = (input_a.dim() == 3) ? (input_a.stride(2) == 1) : (input_a.stride(1) == 1);
bool b_col_major = (input_b_colmajor.dim() == 3) ? (input_b_colmajor.stride(1) == 1) : (input_b_colmajor.stride(0) == 1);
// Ensure tensor A is row-major and contiguous if not already
at::Tensor mat_a = input_a;
if (!a_row_major) {
// If A is not row-major, make it contiguous (row-major)
mat_a = input_a.contiguous();
}
// Force tensor B to be column-major using double transpose trick
// This guarantees stride(0) == 1 and stride(1) == K for [K, N] shape
at::Tensor mat_b = input_b_colmajor;
if (!b_col_major) {
mat_b = input_b_colmajor.transpose(-2, -1).contiguous().transpose(-2, -1);
}
// For 3D tensors, check the last dimension stride for row-major detection
a_row_major = (mat_a.dim() == 3) ? (mat_a.stride(2) == 1) : (mat_a.stride(1) == 1);
bool b_row_major = (mat_b.dim() == 3) ? (mat_b.stride(2) == 1) : (mat_b.stride(1) == 1);
if (mat_a.dtype() == at::kBFloat16) {
// bf16 path
if (a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
} else if (a_row_major && !b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
} else if (!a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
} else {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::BF16>(mat_a, mat_b, offs, out);
}
} else if (mat_a.dtype() == at::kHalf) {
// fp16 path
if (a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
} else if (a_row_major && !b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
} else if (!a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
} else {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F16>(mat_a, mat_b, offs, out);
}
} else if (mat_a.dtype() == at::kFloat) {
// fp32 path
if (a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
} else if (a_row_major && !b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::RowMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
} else if (!a_row_major && b_row_major) {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::RowMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
} else {
launch_grouped_bgemm_ck_impl_dispatch<ck::tensor_layout::gemm::ColumnMajor, ck::tensor_layout::gemm::ColumnMajor, CkTypes::F32>(mat_a, mat_b, offs, out);
}
} else {
TORCH_CHECK(false, "CK Group GEMM: Unsupported mat_a dtype");
}
}
} // namespace detail
} // namespace hip
} // namespace at

View File

@ -86,6 +86,28 @@ struct zeta_functor {
}
};
struct logaddexp_functor {
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
inline T operator()(const T a, const T b) {
return c10::metal::logaddexp(a, b);
}
template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
inline float operator()(const T a, const T b) {
return c10::metal::logaddexp(float(a), float(b));
}
};
struct logaddexp2_functor {
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
inline T operator()(const T a, const T b) {
return c10::metal::logaddexp2(a, b);
}
template <typename T, enable_if_t<is_integral_v<T>, bool> = true>
inline float operator()(const T a, const T b) {
return c10::metal::logaddexp2(float(a), float(b));
}
};
struct xlog1py_functor {
template <typename T, enable_if_t<is_floating_point_v<T>, bool> = true>
inline T operator()(const T a, const T b) {
@ -377,6 +399,10 @@ REGISTER_FLOAT_BINARY_OP(fmin);
REGISTER_FLOAT_BINARY_OP(nextafter);
REGISTER_FLOAT_BINARY_OP(zeta);
REGISTER_INT2FLOAT_BINARY_OP(zeta);
REGISTER_FLOAT_BINARY_OP(logaddexp);
REGISTER_INT2FLOAT_BINARY_OP(logaddexp);
REGISTER_FLOAT_BINARY_OP(logaddexp2);
REGISTER_INT2FLOAT_BINARY_OP(logaddexp2);
REGISTER_FLOAT_BINARY_OP(xlog1py);
REGISTER_INT2FLOAT_BINARY_OP(xlog1py);
REGISTER_FLOAT_BINARY_OP(chebyshev_polynomial_t);
@ -463,6 +489,8 @@ REGISTER_BINARY_OP(add, float2, float2);
REGISTER_BINARY_OP(add, half2, half2);
REGISTER_BINARY_OP(sub, float2, float2);
REGISTER_BINARY_OP(sub, half2, half2);
REGISTER_BINARY_OP(logaddexp, float2, float2);
REGISTER_BINARY_OP(logaddexp, half2, half2);
REGISTER_BINARY_ALPHA_OP(add_alpha, float2, float2, float2);
REGISTER_BINARY_ALPHA_OP(add_alpha, half2, half2, half2);
REGISTER_BINARY_ALPHA_OP(sub_alpha, float2, float2, float2);

View File

@ -89,6 +89,14 @@ static void zeta_mps_kernel(TensorIteratorBase& iter) {
lib.exec_binary_kernel(iter, "zeta");
}
static void logaddexp_mps_kernel(TensorIteratorBase& iter) {
lib.exec_binary_kernel(iter, "logaddexp");
}
static void logaddexp2_mps_kernel(TensorIteratorBase& iter) {
lib.exec_binary_kernel(iter, "logaddexp2");
}
static void xlog1py_mps_kernel(TensorIteratorBase& iter) {
TORCH_CHECK_TYPE(isFloatingType(iter.common_dtype()), "xlog1py_mps not implemented for non-floating types");
lib.exec_binary_kernel(iter, "xlog1py");
@ -211,6 +219,8 @@ REGISTER_DISPATCH(fmin_stub, &fmin_mps_kernel)
REGISTER_DISPATCH(copysign_stub, &copysign_mps_kernel)
REGISTER_DISPATCH(nextafter_stub, &nextafter_mps_kernel)
REGISTER_DISPATCH(zeta_stub, &zeta_mps_kernel)
REGISTER_DISPATCH(logaddexp_stub, &logaddexp_mps_kernel);
REGISTER_DISPATCH(logaddexp2_stub, &logaddexp2_mps_kernel);
REGISTER_DISPATCH(xlog1py_stub, &xlog1py_mps_kernel)
REGISTER_DISPATCH(chebyshev_polynomial_t_stub, &chebyshev_polynomial_t_mps_kernel)
REGISTER_DISPATCH(chebyshev_polynomial_u_stub, &chebyshev_polynomial_u_mps_kernel)

View File

@ -17,8 +17,6 @@
#include <ATen/ops/ge_native.h>
#include <ATen/ops/gt_native.h>
#include <ATen/ops/le_native.h>
#include <ATen/ops/logaddexp2_native.h>
#include <ATen/ops/logaddexp_native.h>
#include <ATen/ops/logical_and_native.h>
#include <ATen/ops/logical_or_native.h>
#include <ATen/ops/logical_xor_native.h>
@ -277,30 +275,6 @@ TORCH_IMPL_FUNC(pow_Scalar_out_mps)(const Scalar& base, const Tensor& exp, const
}
}
TORCH_IMPL_FUNC(logaddexp_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
mps::BinaryOpBlock logaddexp_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
MPSGraph* mpsGraph = cachedGraph->graph();
MPSGraphTensor* sumTensor =
[mpsGraph additionWithPrimaryTensor:[mpsGraph exponentWithTensor:primaryCastTensor name:nil]
secondaryTensor:[mpsGraph exponentWithTensor:secondaryCastTensor name:nil]
name:nil];
return [mpsGraph logarithmWithTensor:sumTensor name:nil];
};
mps::binaryOpTensor(self, other, output, "logaddexp_out_mps", logaddexp_op_block);
}
TORCH_IMPL_FUNC(logaddexp2_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
mps::BinaryOpBlock logaddexp2_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
MPSGraph* mpsGraph = cachedGraph->graph();
MPSGraphTensor* sumTensor =
[mpsGraph additionWithPrimaryTensor:[mpsGraph exponentBase2WithTensor:primaryCastTensor name:nil]
secondaryTensor:[mpsGraph exponentBase2WithTensor:secondaryCastTensor name:nil]
name:nil];
return [mpsGraph logarithmBase2WithTensor:sumTensor name:nil];
};
mps::binaryOpTensor(self, other, output, "logaddexp2_out_mps", logaddexp2_op_block);
}
TORCH_IMPL_FUNC(xlogy_out_mps)(const Tensor& self, const Tensor& other, const Tensor& output) {
mps::BinaryOpBlock xlogy_op_block = ^BinaryOpFn(cachedGraph, primaryCastTensor, secondaryCastTensor) {
MPSGraph* mpsGraph = cachedGraph->graph();

View File

@ -370,7 +370,7 @@ static void nllnd_loss_backward_impl(Tensor& grad_input_arg,
onValue:-1.0f
offValue:0.0f
name:nil];
oneHotTensor = castMPSTensor(mpsGraph, oneHotTensor, inputTensor.dataType);
oneHotTensor = castMPSTensor(mpsGraph, oneHotTensor, [inputTensor dataType]);
if (isWeightsArrayValid) {
oneHotTensor = [mpsGraph multiplicationWithPrimaryTensor:oneHotTensor
secondaryTensor:weightTensor
@ -705,6 +705,7 @@ static void smooth_l1_loss_template(const Tensor& input,
TORCH_CHECK(beta >= 0, "smooth_l1_loss does not support negative values for beta.");
TORCH_CHECK(input.is_mps());
TORCH_CHECK(target.is_mps());
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "MPS doesn't know how to do square_i64");
if ((input.numel() == 0) || (target.numel() == 0)) {
reduction == Reduction::Mean ? output.fill_(std::numeric_limits<float>::quiet_NaN()) : output.zero_();
return;
@ -771,7 +772,7 @@ static void smooth_l1_loss_backward_impl(const Tensor& grad_output,
MPSGraphTensor* targetTensor = mpsGraphRankedPlaceHolder(mpsGraph, target);
MPSGraphTensor* gradOutputTensor = mpsGraphRankedPlaceHolder(mpsGraph, grad_output);
MPSGraphTensor* betaTensor = [mpsGraph constantWithScalar:beta dataType:MPSDataTypeFloat32];
MPSGraphTensor* betaTensor = [mpsGraph constantWithScalar:beta dataType:[inputTensor dataType]];
// xn - yn
MPSGraphTensor* diffTensor = [mpsGraph subtractionWithPrimaryTensor:inputTensor
secondaryTensor:targetTensor
@ -797,7 +798,8 @@ static void smooth_l1_loss_backward_impl(const Tensor& grad_output,
name:@"lossTensor"];
MPSGraphTensor* outputTensor = lossTensor;
if (reduction == Reduction::Mean) {
MPSGraphTensor* numelTensor = [mpsGraph constantWithScalar:(double)input.numel() dataType:MPSDataTypeFloat32];
MPSGraphTensor* numelTensor = [mpsGraph constantWithScalar:(double)input.numel()
dataType:[lossTensor dataType]];
outputTensor = [mpsGraph divisionWithPrimaryTensor:lossTensor secondaryTensor:numelTensor name:nil];
}
MPSGraphTensor* gradInputTensor = [mpsGraph multiplicationWithPrimaryTensor:outputTensor

View File

@ -84,6 +84,9 @@ std::tuple<Tensor&, Tensor&, Tensor&> batch_norm_mps_out(const Tensor& self,
Tensor& output,
Tensor& save_mean,
Tensor& save_var) {
TORCH_CHECK_NOT_IMPLEMENTED(self.scalar_type() != kLong, "Long batch norm is not supported with MPS");
TORCH_CHECK_NOT_IMPLEMENTED(!c10::isComplexType(self.scalar_type()),
"Batch norm for complex is not supported for MPS");
using namespace at::native::mps;
struct CachedGraph : public MPSCachedGraph {
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
@ -918,6 +921,7 @@ std::tuple<Tensor, Tensor, Tensor> layer_norm_mps(const Tensor& input,
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
const int axis = input_ndim - normalized_ndim;
MPSStream* stream = getCurrentMPSStream();
TORCH_CHECK_NOT_IMPLEMENTED(input.scalar_type() != kLong, "Not implemented for long on MPS");
@autoreleasepool {
mps::dispatch_sync_with_rethrow(stream->queue(), ^() {
// which kernel variant to use based on the normalized axis N size

View File

@ -10,6 +10,7 @@
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/aminmax.h>
#include <ATen/ops/avg_pool2d.h>
#include <ATen/ops/avg_pool2d_backward.h>
#include <ATen/ops/avg_pool2d_backward_native.h>
@ -544,8 +545,9 @@ static void max_unpool_out_mps_template(const Tensor& input,
if (indices.defined() && indices.numel() > 0) {
auto output_image_size = c10::multiply_integers(output_size_);
int64_t min_idx = indices.min().item<int64_t>();
int64_t max_idx = indices.max().item<int64_t>();
auto [min_idx_tensor, max_idx_tensor] = indices.aminmax();
int64_t min_idx = min_idx_tensor.item<int64_t>();
int64_t max_idx = max_idx_tensor.item<int64_t>();
if (min_idx < 0 || max_idx >= output_image_size) {
int64_t error_idx = (min_idx < 0) ? min_idx : max_idx;

View File

@ -1028,15 +1028,18 @@ TORCH_IMPL_FUNC(prod_out_mps)
}
TORCH_IMPL_FUNC(amax_out_mps)(const Tensor& input_t, IntArrayRef dim, bool keepdim, const Tensor& output_t) {
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "amax is not defined for complex types");
reduction_out_mps(input_t, dim, keepdim, std::nullopt, output_t, MPSReductionType::AMAX, "amax_out_mps");
}
TORCH_IMPL_FUNC(amin_out_mps)(const Tensor& input_t, IntArrayRef dim, bool keepdim, const Tensor& output_t) {
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "amin is not defined for complex types");
reduction_out_mps(input_t, dim, keepdim, std::nullopt, output_t, MPSReductionType::AMIN, "amin_out_mps");
}
TORCH_IMPL_FUNC(aminmax_out_mps)
(const Tensor& input_t, std::optional<int64_t> dim_opt, bool keepdim, const Tensor& min_t, const Tensor& max_t) {
TORCH_CHECK(!c10::isComplexType(input_t.scalar_type()), "aminmax is not defined for complex types");
reduction_out_mps(input_t,
dim_opt.has_value() ? OptionalIntArrayRef({*dim_opt}) : std::nullopt,
keepdim,

View File

@ -83,6 +83,31 @@ std::string get_type_str<int32_t>() {
return "int32_t";
}
// If all tensors are contiguous with the same dtype and the cat dimension is 0,
// then we can simply copy each tensor's underlying buffer contiguously into the
// output.
static void cat_out_mps_contiguous_impl(const ITensorListRef& inputs, const Tensor& output) {
MPSStream* stream = getCurrentMPSStream();
id<MTLBuffer> output_buffer = getMTLBufferStorage(output);
size_t output_offset = output.storage_offset() * output.itemsize();
for (const Tensor& input : inputs) {
if (cat_should_skip_tensor(input)) {
continue;
}
id<MTLBuffer> input_buffer = getMTLBufferStorage(input);
size_t input_offset = input.storage_offset() * input.itemsize();
auto nbytes = input.nbytes();
auto profile_id =
getMPSProfiler().beginProfileCopy(input_buffer, output_buffer, input, output, nbytes, /*non_blocking=*/true);
stream->copy(input_buffer, output_buffer, nbytes, input_offset, output_offset, profile_id, SyncType::NONE);
output_offset += nbytes;
}
}
// NOTE: `output` is expected to already have the correct size.
template <typename idx_type_t>
static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, const Tensor& output) {
@ -105,7 +130,7 @@ static void cat_out_mps_impl(const ITensorListRef& inputs, int64_t dimension, co
// copy all the input tensor data into a packed buffer, which would not be
// ideal.
for (const Tensor& input : inputs) {
if (input.numel() == 0) {
if (cat_should_skip_tensor(input)) {
continue;
}
@ -243,101 +268,16 @@ TORCH_IMPL_FUNC(cat_out_mps)
if (out.numel() == 0) {
return;
}
auto materialized_inputs = inputs.materialize();
auto out_dtype = at::native::result_type(inputs);
bool has_large_tensor =
isTooLargeForMPSGraph(out) || std::any_of(materialized_inputs.begin(), materialized_inputs.end(), [](auto& t) {
return !cat_should_skip_tensor(t) && isTooLargeForMPSGraph(t);
});
int idx = 0;
for (const Tensor& t : materialized_inputs) {
TORCH_CHECK(t.dim() > 0, "zero-dimensional tensor (at position ", idx, ") cannot be concatenated");
auto lap = at::get_overlap_status(out, t);
TORCH_CHECK(lap != at::MemOverlapStatus::Partial && lap != at::MemOverlapStatus::Full,
"torch.cat(): unsupported operation: the input tensors cannot refer to any "
"of the output memory locations. Found overlap in input tensor ",
idx);
idx++;
}
// Check for type promotion
TORCH_CHECK(canCast(out_dtype, out.scalar_type()),
"torch.cat(): input types can't be cast to the desired output type ",
out.scalar_type());
TORCH_CHECK(!inputs.empty(), "torch.cat(): invalid number of inputs ", inputs.size());
dimension = legacy_cat_wrap_dim(dimension, materialized_inputs);
TORCH_CHECK(dimension >= 0, "torch.cat(): invalid dimension ", dimension);
// previously, size [0] tensors were the only possible empty tensors; thus, it
// wasn't possible to cat empty tensors unless all the other tensors were
// 1-dimensional, so we allowed these tensors to be "skipped". We maintain
// this behavior for backwards compatibility, but only for this specific size
// (i.e. other empty sizes are not skipped).
// FIXME: warn if this is the case
auto should_skip = [](const Tensor& t) { return t.dim() == 1 && t.size(0) == 0; };
at::assert_no_internal_overlap(out);
Tensor notSkippedTensor;
// Indices of tensors to be skipped because they're empty
std::vector<int64_t> skipped_tensor_indices;
// Tensors to be read
std::vector<Tensor> input_tensors;
int tensor_idx = 0;
for (const Tensor& t : materialized_inputs) {
if (t.numel() == 0 || should_skip(t)) {
skipped_tensor_indices.push_back(tensor_idx);
tensor_idx++;
continue;
}
input_tensors.push_back(t);
// TODO: Is this OK?
notSkippedTensor = t;
tensor_idx++;
}
// If all inputs are empty tensors, return an empty tensor
if (!notSkippedTensor.defined()) {
return;
}
for (const Tensor& t : inputs) {
TORCH_CHECK(t.device() == notSkippedTensor.device(),
"torch.cat(): all input tensors must be on the same device. Received ",
t.device(),
" and ",
notSkippedTensor.device());
}
TORCH_CHECK(out.device() == notSkippedTensor.device(),
"torch.cat(): all input tensors and out must be on the same device, but inputs are on ",
notSkippedTensor.device(),
" and out is on ",
out.device());
std::vector<int64_t> size(notSkippedTensor.sizes().vec());
// Compute size of the result in the cat dimension
int64_t cat_dim_size = 0;
idx = 0;
bool has_large_tensor = false;
for (const Tensor& tensor : materialized_inputs) {
if (isTooLargeForMPSGraph(tensor)) {
has_large_tensor |= true;
}
if (!should_skip(tensor)) {
// TODO: Factor out `check_shape_except_dim`
check_shape_except_dim(notSkippedTensor, tensor, dimension, idx);
cat_dim_size += tensor.size(dimension);
idx++;
}
}
// Compute the size of the result
size[dimension] = cat_dim_size;
// skip resizing if size of result is same as expected
if (out.sizes() != size) {
out.resize_(size, MemoryFormat::Contiguous);
}
if (out.numel() == 0) {
return;
}
has_large_tensor |= isTooLargeForMPSGraph(out);
if (has_large_tensor) {
if (all_contiguous && all_same_dtype && (memory_format == MemoryFormat::Contiguous) && (dimension == 0)) {
return mps::cat_out_mps_contiguous_impl(materialized_inputs, out);
} else if (has_large_tensor) {
return mps::cat_out_mps_impl<int64_t>(materialized_inputs, dimension, out);
} else {
return mps::cat_out_mps_impl<int32_t>(materialized_inputs, dimension, out);

View File

@ -31,6 +31,7 @@ void kthvalue_out_mps_impl(const Tensor& self, int64_t k, int64_t dim, Tensor& v
indices.copy_(values.toType(at::ScalarType::Long));
return;
}
TORCH_CHECK_NOT_IMPLEMENTED(!c10::isComplexType(self.scalar_type()), "kthvalue is not implemented for complex types");
// issue #154890, raising error to prevent crash within MPSGraph until
// workaround is implemented.
TORCH_CHECK(self.dim() - dim <= 4, "On-going issue on MPSGraph topk when ndims() - axis > 4, see issue #154890");

View File

@ -2602,12 +2602,16 @@
device_check: NoCheck # TensorIterator
structured_delegate: exp.out
variants: function, method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: exp_sparse
tags: [core, pointwise]
- func: exp_(Tensor(a!) self) -> Tensor(a!)
device_check: NoCheck # TensorIterator
structured_delegate: exp.out
variants: function, method
dispatch:
SparseCPU, SparseCUDA, SparseMPS: exp_sparse_
tags: pointwise
- func: exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
@ -2616,6 +2620,7 @@
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA, MPS, MTIA: exp_out
SparseCPU, SparseCUDA, SparseMPS: exp_sparse_out
tags: pointwise
- func: exp2(Tensor self) -> Tensor
@ -3622,8 +3627,7 @@
structured: True
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA: logaddexp_out
MPS: logaddexp_out_mps
CPU, CUDA, MPS: logaddexp_out
tags: pointwise
- func: logaddexp(Tensor self, Tensor other) -> Tensor
@ -3635,8 +3639,7 @@
structured: True
structured_inherits: TensorIteratorBase
dispatch:
CPU, CUDA: logaddexp2_out
MPS: logaddexp2_out_mps
CPU, CUDA, MPS: logaddexp2_out
tags: pointwise
- func: logaddexp2(Tensor self, Tensor other) -> Tensor
@ -8867,11 +8870,11 @@
autogen: bitwise_right_shift.Scalar_Tensor_out
tags: pointwise
- func: tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
- func: tril_(Tensor(a!) self, SymInt diagonal=0) -> Tensor(a!)
structured_delegate: tril.out
variants: method
- func: triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)
- func: triu_(Tensor(a!) self, SymInt diagonal=0) -> Tensor(a!)
structured_delegate: triu.out
variants: method
@ -8995,25 +8998,25 @@
- func: cross(Tensor self, Tensor other, int? dim=None) -> Tensor
variants: method, function
- func: triu.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
- func: triu.out(Tensor self, SymInt diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU: triu_cpu
CUDA: triu_cuda
MPS: triu_mps_out
- func: triu(Tensor self, int diagonal=0) -> Tensor
- func: triu(Tensor self, SymInt diagonal=0) -> Tensor
structured_delegate: triu.out
variants: method, function
- func: tril.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
- func: tril.out(Tensor self, SymInt diagonal=0, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU: tril_cpu
CUDA: tril_cuda
MPS: tril_mps_out
- func: tril(Tensor self, int diagonal=0) -> Tensor
- func: tril(Tensor self, SymInt diagonal=0) -> Tensor
structured_delegate: tril.out
variants: method, function

View File

@ -467,6 +467,28 @@ Tensor sparse_coo_tensor(const Tensor& indices, const Tensor& values, IntArrayRe
!options.has_layout() || options.layout() == kSparse,
"expected sparse layout, but got layout ",
options.layout());
if (indices.numel() > 0) {
Tensor min_indices =
std::get</* values */ 0>(indices.min(/* dim */ 1, /* keepdim */ false));
Tensor cpu_min_indices;
if (!indices.is_cpu()) {
cpu_min_indices = min_indices.to(at::DeviceType::CPU);
} else {
cpu_min_indices = min_indices;
}
auto cpu_min_indices_accessor = cpu_min_indices.accessor<int64_t, 1>();
for (const auto d : c10::irange(indices.size(0))) {
int64_t min_index_in_dim = cpu_min_indices_accessor[d];
TORCH_CHECK(
min_index_in_dim >= 0,
"found negative index ",
min_index_in_dim,
" for dim ",
d);
}
}
return at::native::_sparse_coo_tensor_unsafe(
indices,
values,

View File

@ -26,6 +26,8 @@
#include <ATen/ops/erf_native.h>
#include <ATen/ops/erfinv.h>
#include <ATen/ops/erfinv_native.h>
#include <ATen/ops/exp.h>
#include <ATen/ops/exp_native.h>
#include <ATen/ops/expm1.h>
#include <ATen/ops/expm1_native.h>
#include <ATen/ops/floor.h>
@ -175,6 +177,7 @@ COALESCED_UNARY_UFUNC(atanh)
COALESCED_UNARY_UFUNC(ceil)
COALESCED_UNARY_UFUNC(deg2rad)
COALESCED_UNARY_UFUNC(erf)
COALESCED_UNARY_UFUNC(exp)
COALESCED_UNARY_UFUNC(erfinv)
COALESCED_UNARY_UFUNC(expm1)
COALESCED_UNARY_UFUNC(floor)

View File

@ -1837,6 +1837,10 @@ class BenchmarkRunner:
def skip_models_for_cuda(self):
return set()
@property
def skip_models_for_xpu(self):
return set()
@property
def skip_models_for_cpu(self):
return set()
@ -3927,6 +3931,8 @@ def run(runner, args, original_dir=None):
runner.skip_models.update(runner.skip_models_for_cpu_aarch64)
elif args.devices == ["cuda"]:
runner.skip_models.update(runner.skip_models_for_cuda)
elif args.devices == ["xpu"]:
runner.skip_models.update(runner.skip_models_for_xpu)
if not args.multiprocess:
runner.skip_models.update(runner.skip_multiprocess_models)

View File

@ -56,6 +56,20 @@ def list_benchmarks():
print(f"Available benchmarks: {list(BENCHMARK_REGISTRY.keys())}")
def _run_benchmark(
benchmark_cls,
script_args,
):
benchmark = benchmark_cls(script_args)
benchmark.benchmark()
benchmark.report_geomean_speedup()
if script_args.print_benchmark_result:
print(f"Benchmarking results {benchmark.name}:")
print(benchmark.profiling_results)
if script_args.visualize:
benchmark.visualize()
def run_benchmark(
benchmark_name: str,
script_args,
@ -71,10 +85,7 @@ def run_benchmark(
print("=" * 60)
benchmark_class = BENCHMARK_REGISTRY[benchmark_name]
benchmark = benchmark_class(script_args)
benchmark.benchmark()
if script_args.visualize:
benchmark.visualize()
_run_benchmark(benchmark_class, script_args)
return True
@ -87,10 +98,7 @@ def run_all_benchmarks(script_args):
for name, cls in BENCHMARK_REGISTRY.items():
print(f"\n{'=' * 20} {name.upper()} {'=' * 20}")
benchmark = cls(script_args)
benchmark.benchmark()
if script_args.visualize:
benchmark.visualize()
_run_benchmark(cls, script_args)
print()
@ -149,8 +157,43 @@ Examples:
help="Whether to exit with an error message for accuracy failure",
)
parser.add_argument(
"--print-benchmark-result",
action="store_true",
help="Whether to print the raw benchmarking result. Easier to quickly check the benchmark results on a server without GUI",
)
parser.add_argument(
"--custom-compile-name",
type=str,
default=None,
help="Name for the curve with customized compilation options",
)
parser.add_argument(
"--custom-compile-options",
type=str,
default=None,
help="Json string for the custom compile options.",
)
args = parser.parse_args()
if args.custom_compile_options:
import json
try:
args.custom_compile_options = json.loads(args.custom_compile_options)
except json.decoder.JSONDecodeError as e:
raise RuntimeError(
f"Invalid json string for --custom-compile-options: {args.custom_compile_options}"
) from e
if not args.custom_compile_options:
raise RuntimeError("Found no options for --custom-compile-options")
if not args.custom_compile_name:
raise RuntimeError("Missing label name for the custom compilation")
# Handle list option
if args.list:
list_benchmarks()

View File

@ -8,6 +8,15 @@ import torch
import torch.nn.functional as F
# more important shapes used by internal models
extra_shapes_for_norm = (
(1152 * 500, 384),
(1152 * 500, 512),
(1152 * 1000, 384),
(1152 * 1000, 512),
)
class CrossEntropyForward(BenchmarkKernel):
def __init__(self, script_args):
super().__init__(script_args)
@ -346,7 +355,7 @@ class RMSNormForward(BenchmarkKernel):
(32768, 65536),
(16384, 131072),
(8192, 262144),
)
) + extra_shapes_for_norm
def get_memory_bytes(self, args, kwargs) -> int:
x, w = args
@ -438,8 +447,7 @@ class RMSNormBackward(BenchmarkKernel):
(32768, 4096),
(32768, 8192),
(32768, 16384),
(32768, 32768),
)
) + extra_shapes_for_norm
def get_memory_bytes(self, args, kwargs) -> int:
x, w, dy = args
@ -553,7 +561,7 @@ class LayerNormForward(BenchmarkKernel):
(32768, 16384),
(32768, 32768),
(32768, 65536),
)
) + extra_shapes_for_norm
def get_memory_bytes(self, args, kwargs) -> int:
x, w = args
@ -627,7 +635,7 @@ class LayerNormBackward(BenchmarkKernel):
(32768, 16384),
(32768, 32768),
(32768, 65536),
)
) + extra_shapes_for_norm
def get_memory_bytes(self, args, kwargs) -> int:
x, w, dy = args

View File

@ -6,6 +6,7 @@ from dataclasses import dataclass
from typing import Any, Optional
import matplotlib.pyplot as plt
from scipy.stats import gmean
import torch
from torch._inductor.runtime.benchmarking import benchmarker
@ -107,6 +108,18 @@ class BenchmarkKernel:
for backend in self.available_backends:
args_ref, kwargs_ref = self.clone_inputs(args, kwargs)
res[backend] = getattr(self, backend)(args_ref, kwargs_ref)()
if (
"compiled" in self.available_backends
and self.script_args.custom_compile_options
):
torch._dynamo.reset() # cause recompile
with torch._inductor.config.patch(self.script_args.custom_compile_options):
args_ref, kwargs_ref = self.clone_inputs(args, kwargs)
res[self.script_args.custom_compile_name] = self.compiled(
args_ref, kwargs_ref
)()
gold = res["eager"]
tol = {}
@ -115,7 +128,7 @@ class BenchmarkKernel:
"atol": self.script_args.tolerance,
"rtol": self.script_args.tolerance,
}
for backend in self.available_backends:
for backend in res:
if backend == "eager":
continue
try:
@ -134,37 +147,83 @@ class BenchmarkKernel:
print("Exit right away since --exit-on-accuracy-failure is set")
sys.exit(1)
def benchmark_single_shape_for_backend(
self, backend, args, kwargs, setting, fn=None
) -> bool:
if fn is None:
fn = getattr(self, backend)
args_ref, kwargs_ref = self.clone_inputs(args, kwargs)
try:
avg_time = benchmark_kernel_in_milliseconds(fn(args_ref, kwargs_ref))
except Exception as e:
print(
f"Failed to run {backend} backend on {self.name} kernel for {setting} due to {e}"
)
self.available_backends.remove(backend) # noqa: B909
return False
mem_bytes = self.get_memory_bytes(args_ref, kwargs_ref)
perf = Performance(setting, avg_time, mem_bytes)
print(f"{self.name} kernel on {backend} backend. {perf}")
self.profiling_results[backend].append(perf)
return True
def benchmark_single_shape(
self, args, kwargs=None, should_check_accuracy=True, setting: str = ""
):
for backend in self.available_backends:
args_ref, kwargs_ref = self.clone_inputs(args, kwargs)
try:
avg_time = benchmark_kernel_in_milliseconds(
getattr(self, backend)(args_ref, kwargs_ref)
self.benchmark_single_shape_for_backend(backend, args, kwargs, setting)
if (
"compiled" in self.available_backends
and self.script_args.custom_compile_options
):
torch._dynamo.reset() # cause recompile
with torch._inductor.config.patch(self.script_args.custom_compile_options):
status = self.benchmark_single_shape_for_backend(
self.script_args.custom_compile_name,
args,
kwargs,
setting,
fn=self.compiled,
)
except Exception as e:
print(
f"Failed to run {backend} backend on {self.name} kernel for {setting} due to {e}"
if not status:
self.script_args.custom_compile_options = (
None # once fail, don't run again
)
self.available_backends.remove(backend) # noqa: B909
continue
mem_bytes = self.get_memory_bytes(args_ref, kwargs_ref)
perf = Performance(setting, avg_time, mem_bytes)
print(f"{self.name} kernel on {backend} backend. {perf}")
self.profiling_results[backend].append(perf)
if should_check_accuracy:
self.check_accuracy(args, kwargs)
def visualize(self) -> None:
device_name = torch.cuda.get_device_name(0)
visualize_comparison(
self.profiling_results,
title=f"{self.name}",
title=f"{self.name} ({device_name})",
output_path=f"{self.name}_bench",
)
return
def report_geomean_speedup(self) -> None:
print(f"Geomean speedup for benchmark {self.name}")
eager_result = {
result.setting: result for result in self.profiling_results["eager"]
}
print(f" eager {len(eager_result)} data points")
for backend, backend_result in self.profiling_results.items():
if backend == "eager":
continue
speeduplist = []
for result in backend_result:
eager_latency = eager_result[result.setting].latency
backend_latency = result.latency
speeduplist.append(
eager_latency / backend_latency if backend_latency != 0 else 0.0
)
if len(speeduplist) > 0:
print(
f" {backend} {len(speeduplist)} data points, {gmean(speeduplist):.2f}x speedup"
)
def get_backend_colors() -> dict[str, str]:
"""Get consistent color scheme for different backends."""
@ -252,5 +311,6 @@ def visualize_comparison(
os.makedirs("pics", exist_ok=True)
full_path = os.path.join("pics", output_path + ".png")
plt.savefig(full_path, dpi=300, bbox_inches="tight", facecolor="white")
print(f"Chart saved to {full_path}")
plt.close()

View File

@ -74,7 +74,8 @@ REQUIRE_HIGHER_TOLERANCE = {
REQUIRE_HIGHER_TOLERANCE_AMP = {}
REQUIRE_EVEN_HIGHER_TOLERANCE = {
"beit_base_patch16_224",
"deit_base_distilled_patch16_224",
"vit_base_patch16_siglip_256",
}
# These models need higher tolerance in MaxAutotune mode
@ -354,7 +355,9 @@ class TimmRunner(BenchmarkRunner):
if is_training:
from torch._inductor import config as inductor_config
if name in REQUIRE_EVEN_HIGHER_TOLERANCE or (
if name == "beit_base_patch16_224":
tolerance = 16 * 1e-2
elif name in REQUIRE_EVEN_HIGHER_TOLERANCE or (
inductor_config.max_autotune
and name in REQUIRE_EVEN_HIGHER_TOLERANCE_MAX_AUTOTUNE
):

View File

@ -124,6 +124,10 @@ class TorchBenchmarkRunner(BenchmarkRunner):
def skip_models_for_cuda(self):
return self._skip["device"]["cuda"]
@property
def skip_models_for_xpu(self):
return self._skip["device"]["xpu"]
@property
def skip_models_for_freezing_cuda(self):
return self._skip["freezing"]["cuda"]

View File

@ -217,6 +217,9 @@ skip:
cuda: []
xpu:
- *DETECTRON2_MODELS
test:
training:
- *DETECTRON2_MODELS

View File

@ -482,6 +482,7 @@ inductor_core_resources = [
"torch/csrc/inductor/aoti_torch/oss_proxy_executor.cpp",
"torch/csrc/inductor/inductor_ops.cpp",
"torch/csrc/jit/serialization/pickle.cpp",
"torch/csrc/shim_common.cpp",
]
libtorch_core_sources = sorted(

View File

@ -15,7 +15,6 @@ namespace c10::cuda {
namespace {
// Global stream state and constants
c10::once_flag init_flag;
DeviceIndex num_gpus = -1;
constexpr int kStreamsPerPoolBits = 5;
constexpr int kStreamsPerPool = 1 << kStreamsPerPoolBits;
@ -226,7 +225,10 @@ void initDeviceStreamState(DeviceIndex device_index) {
// Init front-end to ensure initialization only occurs once
void initCUDAStreamsOnce() {
// Inits default streams (once, globally)
c10::call_once(init_flag, initGlobalStreamState);
auto static init_flag [[maybe_unused]] = [] {
initGlobalStreamState();
return true;
}();
if (current_streams) {
return;

View File

@ -1,4 +1,4 @@
// Implementation of specal math functions for Metal
// Implementation of special math functions for Metal
#pragma once
#include <c10/metal/expm1f.h>
#include <c10/metal/igamma.h>
@ -624,6 +624,64 @@ inline T spherical_bessel_j0(T x) {
return static_cast<T>(::metal::sin(x) / x);
}
template <typename T>
inline ::metal::enable_if_t<is_scalar_floating_point_v<T>, T> logaddexp(
T a,
T b) {
float a0 = static_cast<float>(a);
float b0 = static_cast<float>(b);
if (::metal::isinf(a0) && a0 == b0) {
return static_cast<T>(a0);
} else {
float m0 = ::metal::max(a0, b0);
return static_cast<T>(
m0 + ::c10::metal::log1p(::metal::exp(-::metal::abs(a0 - b0))));
}
}
// The function is ported from mlx
template <typename T>
inline ::metal::enable_if_t<is_complex_v<T>, T> logaddexp(T a, T b) {
if (::metal::isnan(a.x) || ::metal::isnan(a.y) || ::metal::isnan(b.x) ||
::metal::isnan(b.y)) {
return T(NAN, NAN);
}
T maxval = a.x > b.x ? a : b;
T minval = a.x < b.x ? a : b;
constexpr auto inf = ::metal::numeric_limits<T>::infinity().x;
if (minval.x == -inf || maxval.x == inf) {
return maxval;
}
float2 maxval_ = static_cast<float2>(maxval);
float2 minval_ = static_cast<float2>(minval);
float m = ::metal::exp(minval_.x - maxval_.x);
float2 dexp{
m * ::metal::cos(minval_.y - maxval_.y),
m * ::metal::sin(minval_.y - maxval_.y),
};
return static_cast<T>(maxval_ + ::c10::metal::log1p(dexp));
}
template <typename T>
inline T logaddexp2(T a, T b) {
constexpr auto log_2 = float(0.693147180559945309417232121458176);
constexpr auto inv_log_2 = float(1) / log_2;
float a0 = static_cast<float>(a);
float b0 = static_cast<float>(b);
if (::metal::isinf(a0) && a0 == b0) {
return static_cast<T>(a0);
} else {
float m0 = ::metal::max(a0, b0);
return static_cast<T>(
m0 +
::c10::metal::log1p(::metal::pow(float(2), -::metal::abs(a0 - b0))) *
inv_log_2);
}
}
template <typename T>
inline float xlog1py(T x, T y) {
if (::metal::isnan(y)) {

View File

@ -322,6 +322,24 @@ inline float log1p(float x) {
return rc;
}
// The function is ported from mlx
inline float2 log1p(float2 in) {
float x = in.x;
float y = in.y;
float zabs = ::metal::precise::sqrt(x * x + y * y);
float theta = ::metal::atan2(y, x + 1);
if (zabs < 0.5f) {
float r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return {x, theta};
}
return {0.5f * log1p(r), theta};
} else {
auto z0 = ::metal::sqrt((x + 1) * (x + 1) + y * y);
return {::metal::log(z0), theta};
}
}
template <typename T1, typename T2 = T1>
struct pair {
T1 first;

View File

@ -34,7 +34,7 @@ struct MemEvent {
bool overlaps(const MemBlock& a, const MemBlock& b) {
// two blocks dont overlap if
// |---a--------|--------------b--------|
// strat_a end_a <= start_b end_b
// start_a end_a <= start_b end_b
return !(
(a.end_offset <= b.start_offset) || (b.end_offset <= a.start_offset));
}

View File

@ -239,7 +239,7 @@ struct Class2 {
struct mapper_call_func {
template <class T>
decltype(auto) operator()(T) {
auto operator()(T) {
return T::type::func();
}
};
@ -254,7 +254,7 @@ TEST(TypeListTest, MapTypesToValues_members) {
struct mapper_call_nonexistent_function {
template <class T>
decltype(auto) operator()(T) {
auto operator()(T) {
return T::type::this_doesnt_exist();
}
};

View File

@ -33,7 +33,7 @@ struct bitset final {
constexpr bitset() noexcept = default;
constexpr bitset(const bitset&) noexcept = default;
constexpr bitset(bitset&&) noexcept = default;
// there is an issure for gcc 5.3.0 when define default function as constexpr
// there is an issue for gcc 5.3.0 when define default function as constexpr
// see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68754.
bitset& operator=(const bitset&) noexcept = default;
bitset& operator=(bitset&&) noexcept = default;

View File

@ -53,7 +53,7 @@ namespace guts {
// member functions.
namespace detail {
template <class F, class Tuple, std::size_t... INDEX>
C10_HOST_DEVICE constexpr decltype(auto) apply_impl(
C10_HOST_DEVICE constexpr auto apply_impl(
F&& f,
Tuple&& t,
std::index_sequence<INDEX...>) {
@ -62,7 +62,7 @@ C10_HOST_DEVICE constexpr decltype(auto) apply_impl(
} // namespace detail
template <class F, class Tuple>
C10_HOST_DEVICE constexpr decltype(auto) apply(F&& f, Tuple&& t) {
C10_HOST_DEVICE constexpr auto apply(F&& f, Tuple&& t) {
return detail::apply_impl(
std::forward<F>(f),
std::forward<Tuple>(t),

View File

@ -469,7 +469,7 @@ C10_API std::string GetExceptionString(const std::exception& e);
namespace c10::detail {
template <typename... Args>
decltype(auto) torchCheckMsgImpl(const char* /*msg*/, const Args&... args) {
auto torchCheckMsgImpl(const char* /*msg*/, const Args&... args) {
return ::c10::str(args...);
}
inline C10_API const char* torchCheckMsgImpl(const char* msg) {

View File

@ -135,7 +135,7 @@ struct _str_wrapper<> final {
// Convert a list of string-like arguments into a single string.
template <typename... Args>
inline decltype(auto) str(const Args&... args) {
inline auto str(const Args&... args) {
return detail::_str_wrapper<
typename detail::CanonicalizeStrTypes<Args>::type...>::call(args...);
}

View File

@ -507,7 +507,7 @@ struct map_types_to_values<typelist<Types...>> final {
} // namespace detail
template <class TypeList, class Func>
decltype(auto) map_types_to_values(Func&& func) {
auto map_types_to_values(Func&& func) {
return detail::map_types_to_values<TypeList>::call(std::forward<Func>(func));
}

View File

@ -554,6 +554,17 @@ class DeviceCachingAllocator {
}
}
double getMemoryFraction() {
if (!set_fraction) {
return 1.0;
}
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
return static_cast<double>(allowed_memory_maximum) /
static_cast<double>(device_prop.global_mem_size);
}
void setMemoryFraction(double fraction) {
c10::xpu::DeviceProp device_prop;
c10::xpu::get_device_properties(&device_prop, device_index);
@ -724,6 +735,11 @@ class XPUAllocator : public DeviceAllocator {
device_allocators[device]->resetAccumulatedStats();
}
double getMemoryFraction(DeviceIndex device) {
assertValidDevice(device);
return device_allocators[device]->getMemoryFraction();
}
void setMemoryFraction(double fraction, DeviceIndex device) {
assertValidDevice(device);
TORCH_CHECK_VALUE(
@ -777,6 +793,10 @@ void recordStream(const DataPtr& dataPtr, XPUStream stream) {
return allocator.recordStream(dataPtr, stream);
}
double getMemoryFraction(DeviceIndex device) {
return allocator.getMemoryFraction(device);
}
void setMemoryFraction(double fraction, DeviceIndex device) {
return allocator.setMemoryFraction(fraction, device);
}

View File

@ -25,6 +25,8 @@ C10_XPU_API void raw_delete(void* ptr);
C10_XPU_API void recordStream(const DataPtr& dataPtr, XPUStream stream);
C10_XPU_API double getMemoryFraction(DeviceIndex device);
C10_XPU_API void setMemoryFraction(double fraction, DeviceIndex device);
} // namespace c10::xpu::XPUCachingAllocator

View File

@ -1,4 +1,3 @@
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/xpu/XPUFunctions.h>
@ -33,7 +32,6 @@ namespace {
* one iGPU and enumerate all iGPUs on that platform.
* 3. If neither dGPUs nor iGPUs are found, conclude that no GPUs are available.
*/
c10::once_flag init_flag;
thread_local DeviceIndex curDeviceIndex = 0;
struct DevicePool {
@ -149,7 +147,10 @@ inline void initGlobalDevicePoolState() {
}
inline void initDevicePoolCallOnce() {
c10::call_once(init_flag, initGlobalDevicePoolState);
auto static init_flag [[maybe_unused]] = [] {
initGlobalDevicePoolState();
return true;
}();
}
void initDeviceProperties(DeviceProp* device_prop, DeviceIndex device) {

View File

@ -12,7 +12,6 @@ namespace c10::xpu {
namespace {
// Global stream state and constants
c10::once_flag init_flag;
DeviceIndex num_gpus = -1;
constexpr int kStreamsPerPoolBits = 5;
constexpr int kStreamsPerPool = 1 << kStreamsPerPoolBits;
@ -163,7 +162,10 @@ void initDeviceStreamState(DeviceIndex device) {
}
void initXPUStreamsOnce() {
c10::call_once(init_flag, initGlobalStreamState);
auto static init_flag [[maybe_unused]] = [] {
initGlobalStreamState();
return true;
}();
if (current_streams) {
return;

View File

@ -38,7 +38,7 @@ uint32_t crc32_combine (uint32_t crcA, uint32_t crcB, size_t lengthB);
/// compute CRC32 (bitwise algorithm)
uint32_t crc32_bitwise (const void* data, size_t length, uint32_t previousCrc32 = 0);
/// compute CRC32 (half-byte algoritm)
/// compute CRC32 (half-byte algorithm)
uint32_t crc32_halfbyte(const void* data, size_t length, uint32_t previousCrc32 = 0);
#ifdef CRC32_USE_LOOKUP_TABLE_BYTE
@ -96,7 +96,7 @@ uint32_t crc32_16bytes_prefetch(const void* data, size_t length, uint32_t previo
#define __BIG_ENDIAN 4321
#endif
// define endianess and some integer data types
// define endianness and some integer data types
#if defined(_MSC_VER) || defined(__MINGW32__)
// Windows always little endian
#define __BYTE_ORDER __LITTLE_ENDIAN
@ -168,7 +168,7 @@ namespace
/// zlib's CRC32 polynomial
const uint32_t Polynomial = 0xEDB88320;
/// swap endianess
/// swap endianness
static inline uint32_t swap(uint32_t x)
{
#if defined(__GNUC__) || defined(__clang__)
@ -229,7 +229,7 @@ uint32_t crc32_bitwise(const void* data, size_t length, uint32_t previousCrc32)
}
/// compute CRC32 (half-byte algoritm)
/// compute CRC32 (half-byte algorithm)
uint32_t crc32_halfbyte(const void* data, size_t length, uint32_t previousCrc32)
{
uint32_t crc = ~previousCrc32; // same as previousCrc32 ^ 0xFFFFFFFF
@ -662,7 +662,7 @@ uint32_t crc32_combine(uint32_t crcA, uint32_t crcB, size_t lengthB)
// - if you append length(B) zeros to A and call it A' (think of it as AAAA000)
// and prepend length(A) zeros to B and call it B' (think of it as 0000BBB)
// then exists a C' = A' ^ B'
// - remember: if you XOR someting with zero, it remains unchanged: X ^ 0 = X
// - remember: if you XOR something with zero, it remains unchanged: X ^ 0 = X
// - that means C' = A concat B so that crc(A concat B) = crc(C') = crc(A') ^ crc(B')
// - the trick is to compute crc(A') based on crc(A)
// and crc(B') based on crc(B)

View File

@ -76,7 +76,7 @@ typedef struct mz_zip_archive mz_zip_archive;
// 2) Writing with 1-pass sequential access
// -> We must take care not to require updating values that have already
// been written. We place the variable-length index at the end and do
// not put any indicies into the header to fulfill this constraint.
// not put any index into the header to fulfill this constraint.
// The model.json, which contains all the metadata information,
// should be written as the last file. One reason is that the size of tensor

View File

@ -519,7 +519,7 @@ TEST(PyTorchStreamWriterAndReader, SaveAndLoadWithAllocator) {
std::tie(data_ptr, size) = reader.getRecord("key1", &overrideAllocator);
EXPECT_EQ(overrideAllocator.getAllocatedBytes(), kBytes1);
EXPECT_EQ(baseAllocator.getAllocatedBytes(), allocBytes);
// allcoate with base allocator
// allocate with base allocator
std::tie(data_ptr, size) = reader.getRecord("key1");
EXPECT_EQ(overrideAllocator.getAllocatedBytes(), kBytes1);
EXPECT_EQ(baseAllocator.getAllocatedBytes(), allocBytes + kBytes1);

View File

@ -423,8 +423,10 @@ Also see {ref}`saved-tensors-hooks-doc`.
```{eval-rst}
.. autofunction:: torch.autograd.graph.get_gradient_edge
```
```{eval-rst}
.. autofunction:: torch.autograd.graph.set_warn_on_accumulate_grad_stream_mismatch
```
% This module needs to be documented. Adding here in the meantime

Some files were not shown because too many files have changed in this diff Show More