Compare commits

..

1 Commits

Author SHA1 Message Date
66f30ce6dd [ONNX] Support float4 (#151069)
- Support exporting float4 models (note: currently we use IR version 10 universally in the exporter, which does not include float 4 support. Eventually when onnx runtime and the ecosystem moves to support the new IR version 11 we should bump our version to 11 in the exporter as well)
- The shape of the type is set according to https://github.com/pytorch/pytorch/pull/148791#discussion_r2038704986 (added last dim with size 2)
- Use ml_dtypes types when converting to numpy for consistency with ONNX IR

Fix https://github.com/pytorch/pytorch/issues/150202

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151069
Approved by: https://github.com/titaiwangms
2025-05-18 14:06:21 -07:00
6539 changed files with 155200 additions and 291856 deletions

View File

@ -2,7 +2,7 @@ build --cxxopt=--std=c++17
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. torch/headeronly/macros/cmake_macros.h) by making the generated directory a
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin

View File

@ -3,8 +3,10 @@ set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
export TORCH_CUDA_ARCH_LIST="9.0;10.0;12.0"
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
@ -25,7 +27,6 @@ if [ "$DESIRED_CUDA" = "cpu" ]; then
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
export USE_SYSTEM_NCCL=1
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -31,47 +31,33 @@ def build_ArmComputeLibrary() -> None:
"build=native",
]
acl_install_dir = "/acl"
acl_checkout_dir = os.getenv("ACL_SOURCE_DIR", "ComputeLibrary")
if os.path.isdir(acl_install_dir):
shutil.rmtree(acl_install_dir)
if not os.path.isdir(acl_checkout_dir) or not len(os.listdir(acl_checkout_dir)):
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v25.02",
"--depth",
"1",
"--shallow-submodules",
]
)
acl_checkout_dir = "ComputeLibrary"
os.makedirs(acl_install_dir)
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v25.02",
"--depth",
"1",
"--shallow-submodules",
]
)
check_call(
["scons", "Werror=1", f"-j{os.cpu_count()}"] + acl_build_flags,
["scons", "Werror=1", "-j8", f"build_dir=/{acl_install_dir}/build"]
+ acl_build_flags,
cwd=acl_checkout_dir,
)
for d in ["arm_compute", "include", "utils", "support", "src", "build"]:
for d in ["arm_compute", "include", "utils", "support", "src"]:
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
def replace_tag(filename) -> None:
with open(filename) as f:
lines = f.readlines()
for i, line in enumerate(lines):
if line.startswith("Tag:"):
lines[i] = line.replace("-linux_", "-manylinux_2_28_")
print(f"Updated tag from {line} to {lines[i]}")
break
with open(filename, "w") as f:
f.writelines(lines)
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
def update_wheel(wheel_path, desired_cuda) -> None:
"""
Package the cuda wheel libraries
Update the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
wheelname = os.path.basename(wheel_path)
@ -79,7 +65,6 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
os.system(f"unzip {wheel_path} -d {folder}/tmp")
libs_to_copy = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
@ -89,7 +74,7 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvToolsExt.so.1",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
@ -103,19 +88,30 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
if "129" in desired_cuda:
if enable_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
if "126" in desired_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.6",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
]
elif "128" in desired_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.8",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
]
else:
libs_to_copy += [
"/opt/OpenBLAS/lib/libopenblas.so.0",
]
# Copy libraries to unzipped_folder/a/lib
for lib_path in libs_to_copy:
lib_name = os.path.basename(lib_path)
@ -124,13 +120,6 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
)
# Make sure the wheel is tagged with manylinux_2_28
for f in os.scandir(f"{folder}/tmp/"):
if f.is_dir() and f.name.endswith(".dist-info"):
replace_tag(f"{f.path}/WHEEL")
break
os.mkdir(f"{folder}/cuda_wheel")
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
shutil.move(
@ -205,12 +194,8 @@ if __name__ == "__main__":
).decode()
print("Building PyTorch wheel")
build_vars = "CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
if enable_cuda:
build_vars += "MAX_JOBS=5 "
# nvshmem is broken for aarch64 see https://github.com/pytorch/pytorch/issues/160425
build_vars += "USE_NVSHMEM=OFF "
build_vars = "MAX_JOBS=5 CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
os.system("cd /pytorch; python setup.py clean")
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
desired_cuda = os.getenv("DESIRED_CUDA")
@ -257,6 +242,6 @@ if __name__ == "__main__":
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")
wheel_path = f"/pytorch/dist/{filename[0]}"
package_cuda_wheel(wheel_path, desired_cuda)
update_wheel(wheel_path, desired_cuda)
pytorch_wheel_name = complete_wheel("/pytorch/")
print(f"Build Complete. Created {pytorch_wheel_name}..")

View File

@ -438,7 +438,9 @@ def build_torchvision(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -493,7 +495,9 @@ def build_torchdata(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -549,7 +553,9 @@ def build_torchtext(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -607,7 +613,9 @@ def build_torchaudio(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"

View File

@ -5,7 +5,7 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
@ -147,8 +147,8 @@ export DNNL_MAX_CPU_ISA=AVX2
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
# TODO(sdym@meta.com) remove this when the linked issue resolved.
# py is temporary until https://github.com/Teemu/pytest-sugar/issues/241 is fixed
pip install py==1.11.0
pip install pytest-sugar
pip install --user py==1.11.0
pip install --user pytest-sugar
# NB: Warnings are disabled because they make it harder to see what
# the actual erroring test is
"$PYTHON" \

View File

@ -36,104 +36,3 @@ See `build.sh` for valid build environments (it's the giant switch).
# Set flags (see build.sh) and build image
sudo bash -c 'TRITON=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```
## [Guidance] Adding a New Base Docker Image
### Background
The base Docker images in directory `.ci/docker/` are built by the `docker-builds.yml` workflow. Those images are used throughout the PyTorch CI/CD pipeline. You should only create or modify a base Docker image if you need specific environment changes or dependencies before building PyTorch on CI.
1. **Automatic Rebuilding**:
- The Docker image building process is triggered automatically when changes are made to files in the `.ci/docker/*` directory
- This ensures all images stay up-to-date with the latest dependencies and configurations
2. **Image Reuse in PyTorch Build Workflows** (example: linux-build):
- The images generated by `docker-builds.yml` are reused in `_linux-build.yml` through the `calculate-docker-image` step
- The `_linux-build.yml` workflow:
- Pulls the Docker image determined by the `calculate-docker-image` step
- Runs a Docker container with that image
- Executes `.ci/pytorch/build.sh` inside the container to build PyTorch
3. **Usage in Test Workflows** (example: linux-test):
- The same Docker images are also used in `_linux-test.yml` for running tests
- The `_linux-test.yml` workflow follows a similar pattern:
- It uses the `calculate-docker-image` step to determine which Docker image to use
- It pulls the Docker image and runs a container with that image
- It installs the wheels from the artifacts generated by PyTorch build jobs
- It executes test scripts (like `.ci/pytorch/test.sh` or `.ci/pytorch/multigpu-test.sh`) inside the container
### Understanding File Purposes
#### `.ci/docker/build.sh` vs `.ci/pytorch/build.sh`
- **`.ci/docker/build.sh`**:
- Used for building base Docker images
- Executed by the `docker-builds.yml` workflow to pre-build Docker images for CI
- Contains configurations for different Docker build environments
- **`.ci/pytorch/build.sh`**:
- Used for building PyTorch inside a Docker container
- Called by workflows like `_linux-build.yml` after the Docker container is started
- Builds PyTorch wheels and other artifacts
#### `.ci/docker/ci_commit_pins/` vs `.github/ci_commit_pins`
- **`.ci/docker/ci_commit_pins/`**:
- Used for pinning dependency versions during base Docker image building
- Ensures consistent environments for building PyTorch
- Changes here trigger base Docker image rebuilds
- **`.github/ci_commit_pins`**:
- Used for pinning dependency versions during PyTorch building and tests
- Ensures consistent dependencies for PyTorch across different builds
- Used by build scripts running inside Docker containers
### Step-by-Step Guide for Adding a New Base Docker Image
#### 1. Add Pinned Commits (If Applicable)
We use pinned commits for build stability. The `nightly.yml` workflow checks and updates pinned commits for certain repository dependencies daily.
If your new Docker image needs a library installed from a specific pinned commit or built from source:
1. Add the repository you want to track in `nightly.yml` and `merge-rules.yml`
2. Add the initial pinned commit in `.ci/docker/ci_commit_pins/`. The text filename should match the one defined in step 1
#### 2. Configure the Base Docker Image
1. **Add new Base Docker image configuration** (if applicable):
Add the configuration in `.ci/docker/build.sh`. For example:
```bash
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-new1)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
NEW_ARG_1=yes
;;
```
2. **Add build arguments to Docker build command**:
If you're introducing a new argument to the Docker build, make sure to add it in the Docker build step in `.ci/docker/build.sh`:
```bash
docker build \
....
--build-arg "NEW_ARG_1=${NEW_ARG_1}"
```
3. **Update Dockerfile logic**:
Update the Dockerfile to use the new argument. For example, in `ubuntu/Dockerfile`:
```dockerfile
ARG NEW_ARG_1
# Set up environment for NEW_ARG_1
RUN if [ -n "${NEW_ARG_1}" ]; then bash ./do_something.sh; fi
```
4. **Add the Docker configuration** in `.github/workflows/docker-builds.yml`:
The `docker-builds.yml` workflow pre-builds the Docker images whenever changes occur in the `.ci/docker/` directory. This includes the
pinned commit updates.

View File

@ -1,7 +1,7 @@
ARG CUDA_VERSION=12.6
ARG CUDA_VERSION=12.4
ARG BASE_TARGET=cuda${CUDA_VERSION}
ARG ROCM_IMAGE=rocm/dev-almalinux-8:6.3-complete
FROM amd64/almalinux:8.10-20250519 as base
FROM amd64/almalinux:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
@ -11,8 +11,6 @@ ARG DEVTOOLSET_VERSION=11
RUN yum -y update
RUN yum -y install epel-release
# install glibc-langpack-en make sure en_US.UTF-8 locale is available
RUN yum -y install glibc-langpack-en
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel openssl-devel yum-utils autoconf automake make gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
@ -52,6 +50,10 @@ ENV CUDA_VERSION=${CUDA_VERSION}
# Make things in our path by default
ENV PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
ENV DESIRED_CUDA=11.8
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
ENV DESIRED_CUDA=12.6
@ -60,10 +62,6 @@ FROM cuda as cuda12.8
RUN bash ./install_cuda.sh 12.8
ENV DESIRED_CUDA=12.8
FROM cuda as cuda12.9
RUN bash ./install_cuda.sh 12.9
ENV DESIRED_CUDA=12.9
FROM ${ROCM_IMAGE} as rocm
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
ADD ./common/install_mkl.sh install_mkl.sh
@ -78,8 +76,7 @@ RUN bash ./install_mnist.sh
FROM base as all_cuda
COPY --from=cuda11.8 /usr/local/cuda-11.8 /usr/local/cuda-11.8
COPY --from=cuda12.6 /usr/local/cuda-12.6 /usr/local/cuda-12.6
COPY --from=cuda12.8 /usr/local/cuda-12.8 /usr/local/cuda-12.8
COPY --from=cuda12.9 /usr/local/cuda-12.9 /usr/local/cuda-12.9
COPY --from=cuda12.4 /usr/local/cuda-12.8 /usr/local/cuda-12.8
# Final step
FROM ${BASE_TARGET} as final

View File

@ -50,23 +50,30 @@ if [[ "$image" == *xla* ]]; then
exit 0
fi
if [[ "$image" == *-jammy* ]]; then
if [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *-noble* ]]; then
UBUNTU_VERSION=24.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *rocm* ]]; then
# When using ubuntu - 22.04, start from Ubuntu docker image, instead of nvidia/cuda docker image.
if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
elif [[ "$image" == *xpu* ]]; then
DOCKERFILE="${OS}-xpu/Dockerfile"
@ -76,9 +83,6 @@ elif [[ "$image" == *cuda*linter* ]]; then
elif [[ "$image" == *linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter/Dockerfile"
elif [[ "$image" == *riscv* ]]; then
# Use RISC-V specific Dockerfile
DOCKERFILE="ubuntu-cross-riscv/Dockerfile"
fi
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
@ -94,8 +98,9 @@ tag=$(echo $image | awk -F':' '{print $2}')
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$tag" in
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11)
CUDA_VERSION=12.4
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc11)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
@ -104,18 +109,9 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -125,8 +121,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
pytorch-linux-focal-cuda12.4-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
@ -136,8 +133,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
pytorch-linux-focal-cuda12.4-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
@ -147,18 +145,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9)
CUDA_VERSION=12.8.1
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc9)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -167,24 +156,91 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-onnx)
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
CUDA_VERSION=11.8.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-focal-py3-clang10-onnx)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
CLANG_VERSION=10
VISION=yes
ONNX=yes
;;
pytorch-linux-jammy-py3.9-clang12)
pytorch-linux-focal-py3.9-clang10)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
CLANG_VERSION=10
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
else
ANACONDA_PYTHON_VERSION=3.12
fi
pytorch-linux-focal-py3.11-clang10)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=10
VISION=yes
TRITON=yes
;;
pytorch-linux-focal-py3.9-gcc9)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=9
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.3
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-rocm-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
@ -193,21 +249,7 @@ case "$tag" in
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
@ -225,7 +267,7 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
@ -234,13 +276,25 @@ case "$tag" in
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDA_VERSION=11.8
CUDNN_VERSION=9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-asan)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang15-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=15
VISION=yes
;;
pytorch-linux-jammy-py3-clang18-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=18
@ -273,23 +327,21 @@ case "$tag" in
GCC_VERSION=11
TRITON_CPU=yes
;;
pytorch-linux-jammy-linter)
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
PYTHON_VERSION=3.9
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter)
PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDA_VERSION=11.8
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
VISION=yes
CONDA_CMAKE=yes
OPENBLAS=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
@ -299,16 +351,11 @@ case "$tag" in
GCC_VERSION=11
ACL=yes
VISION=yes
CONDA_CMAKE=yes
OPENBLAS=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-noble-riscv64-py3.12-gcc14)
GCC_VERSION=14
;;
*)
# Catch-all for builds that are not hardcoded.
VISION=yes
@ -318,6 +365,7 @@ case "$tag" in
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
@ -346,6 +394,14 @@ esac
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 9 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
no_cache_flag=""
progress_flag=""
# Do not use cache and progress=plain when in CI
@ -362,6 +418,7 @@ docker build \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
@ -369,6 +426,9 @@ docker build \
--build-arg "PYTHON_VERSION=${PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
@ -386,7 +446,6 @@ docker build \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "OPENBLAS=${OPENBLAS:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
@ -429,14 +488,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
fi
if [ -n "$GCC_VERSION" ]; then
if [[ "$image" == *riscv* ]]; then
# Check RISC-V cross-compilation toolchain version
if !(drun riscv64-linux-gnu-gcc-${GCC_VERSION} --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "RISC-V GCC_VERSION=$GCC_VERSION, but:"
drun riscv64-linux-gnu-gcc-${GCC_VERSION} --version
exit 1
fi
elif !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
if !(drun gcc --version 2>&1 | grep -q " $GCC_VERSION\\W"); then
echo "GCC_VERSION=$GCC_VERSION, but:"
drun gcc --version
exit 1

View File

@ -39,7 +39,6 @@ RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG BUILD_ENVIRONMENT
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt

View File

@ -1 +1 @@
56392aa978594cc155fa8af48cd949f5b5f1823a
b173722085b3f555d6ba4533d6bbaddfd7c71144

View File

@ -1 +1 @@
v4.54.0
243e186efbf7fb93328dd6b34927a4e8c8f24395

View File

@ -1 +1 @@
v2.27.5-1
v2.26.5-1

View File

@ -1 +0,0 @@
e03a63be43e33596f7f0a43b0f530353785e4a59

View File

@ -1 +1 @@
ae324eeac8e102a2b40370e341460f3791353398
0bcc8265e677e5321606a3311bf71470f14456a8

View File

@ -1 +1 @@
f7888497a1eb9e98d4c07537f0d0bcfe180d1363
96316ce50fade7e209553aba4898cd9b82aab83b

View File

@ -23,10 +23,6 @@ conda_install() {
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_install_through_forge() {
as_jenkins conda install -c conda-forge -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_run() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION --no-capture-output $*
}

View File

@ -15,9 +15,6 @@ install_ubuntu() {
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "24.04"* ]]; then
cmake3="cmake=3.28*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
@ -33,6 +30,18 @@ install_ubuntu() {
maybe_libomp_dev=""
fi
# HACK: UCC testing relies on libnccl library from NVIDIA repo, and version 2.16 crashes
# See https://github.com/pytorch/pytorch/pull/105260#issuecomment-1673399729
# TODO: Eliminate this hack, we should not relay on apt-get installation
# See https://github.com/pytorch/pytorch/issues/144768
if [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "11.8"* ]]; then
maybe_libnccl_dev="libnccl2=2.15.5-1+cuda11.8 libnccl-dev=2.15.5-1+cuda11.8 --allow-downgrades --allow-change-held-packages"
elif [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "12.4"* ]]; then
maybe_libnccl_dev="libnccl2=2.26.2-1+cuda12.4 libnccl-dev=2.26.2-1+cuda12.4 --allow-downgrades --allow-change-held-packages"
else
maybe_libnccl_dev=""
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
@ -61,6 +70,7 @@ install_ubuntu() {
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
${maybe_libnccl_dev} \
software-properties-common \
wget \
sudo \

View File

@ -4,8 +4,12 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
@ -17,6 +21,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
@ -59,16 +64,11 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 --update-deps -c conda-forge
# Miniforge installer doesn't install sqlite by default
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
conda_install sqlite
fi
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
if [[ $(uname -m) != "aarch64" ]]; then
pip_install mkl==2024.2.0
pip_install mkl-static==2024.2.0
pip_install mkl-include==2024.2.0
if [[ $(uname -m) == "aarch64" ]]; then
conda_install "openblas==0.3.29=*openmp*"
else
conda_install "mkl=2021.4.0 mkl-include=2021.4.0"
fi
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
@ -82,10 +82,6 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
conda_run ${SCRIPT_FOLDER}/install_magma_conda.sh $(cut -f1-2 -d'.' <<< ${CUDA_VERSION})
fi
if [[ "$UBUNTU_VERSION" == "24.04"* ]] ; then
conda_install_through_forge libstdcxx-ng=14
fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt

View File

@ -3,10 +3,11 @@
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads # @lint-ignore
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t 3.14.0 3.14.0t"}
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t"}
function check_var {
if [ -z "$1" ]; then
@ -23,8 +24,9 @@ function do_cpython_build {
tar -xzf Python-$py_ver.tgz
local additional_flags=""
if [[ "$py_ver" == *"t" ]]; then
if [ "$py_ver" == "3.13.0t" ]; then
additional_flags=" --disable-gil"
mv cpython-3.13/ cpython-3.13t/
fi
pushd $py_folder
@ -66,29 +68,32 @@ function do_cpython_build {
ln -s pip3 ${prefix}/bin/pip
fi
# install setuptools since python 3.12 is required to use distutils
# packaging is needed to create symlink since wheel no longer provides needed information
${prefix}/bin/pip install packaging==25.0 wheel==0.45.1 setuptools==80.9.0
local abi_tag=$(${prefix}/bin/python -c "from packaging.tags import interpreter_name, interpreter_version; import sysconfig ; from sysconfig import get_config_var; print('{0}{1}-{0}{1}{2}'.format(interpreter_name(), interpreter_version(), 't' if sysconfig.get_config_var('Py_GIL_DISABLED') else ''))")
${prefix}/bin/pip install wheel==0.34.2 setuptools==68.2.2
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -sf ${prefix} /opt/python/${abi_tag}
}
function build_cpython {
local py_ver=$1
check_var $py_ver
local py_suffix=$py_ver
local py_folder=$py_ver
check_var $PYTHON_DOWNLOAD_URL
local py_ver_folder=$py_ver
# Special handling for nogil
if [[ "${py_ver}" == *"t" ]]; then
py_suffix=${py_ver::-1}
py_folder=$py_suffix
if [ "$py_ver" = "3.13.0t" ]; then
PY_VER_SHORT="3.13"
PYT_VER_SHORT="3.13t"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PYT_VER_SHORT
elif [ "$py_ver" = "3.13.0" ]; then
PY_VER_SHORT="3.13"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PY_VER_SHORT
else
wget -q $PYTHON_DOWNLOAD_URL/$py_ver_folder/Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_ver
fi
# Only b3 is available now
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0b3"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix
rm -f Python-$py_ver.tgz
}

View File

@ -10,8 +10,6 @@ else
arch_path='sbsa'
fi
NVSHMEM_VERSION=3.3.9
function install_cuda {
version=$1
runfile=$2
@ -42,40 +40,18 @@ function install_cudnn {
rm -rf tmp_cudnn
}
function install_nvshmem {
cuda_major_version=$1 # e.g. "12"
nvshmem_version=$2 # e.g. "3.3.9"
function install_118 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.4.0"
install_cuda 11.8.0 cuda_11.8.0_520.61.05_linux
case "${arch_path}" in
sbsa)
dl_arch="aarch64"
;;
x86_64)
dl_arch="x64"
;;
*)
dl_arch="${arch}"
;;
esac
install_cudnn 11 $CUDNN_VERSION
tmpdir="tmp_nvshmem"
mkdir -p "${tmpdir}" && cd "${tmpdir}"
CUDA_VERSION=11.8 bash install_nccl.sh
# nvSHMEM license: https://docs.nvidia.com/nvshmem/api/sla.html
filename="libnvshmem_cuda${cuda_major_version}-linux-${arch_path}-${nvshmem_version}"
url="https://developer.download.nvidia.com/compute/redist/nvshmem/${nvshmem_version}/builds/cuda${cuda_major_version}/txz/agnostic/${dl_arch}/${filename}.tar.gz"
CUDA_VERSION=11.8 bash install_cusparselt.sh
# download, unpack, install
wget -q "${url}"
tar xf "${filename}.tar.gz"
cp -a "libnvshmem/include/"* /usr/local/cuda/include/
cp -a "libnvshmem/lib/"* /usr/local/cuda/lib64/
# cleanup
cd ..
rm -rf "${tmpdir}"
echo "nvSHMEM ${nvshmem_version} for CUDA ${cuda_major_version} (${arch_path}) installed."
ldconfig
}
function install_124 {
@ -93,14 +69,12 @@ function install_124 {
}
function install_126 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
CUDNN_VERSION=9.5.1.17
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.6.3"
install_cuda 12.6.3 cuda_12.6.3_560.35.05_linux
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.6 bash install_nccl.sh
CUDA_VERSION=12.6 bash install_cusparselt.sh
@ -108,22 +82,35 @@ function install_126 {
ldconfig
}
function install_129 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.9.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.9.1 in the same container
install_cuda 12.9.1 cuda_12.9.1_575.57.08_linux
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
install_nvshmem 12 $NVSHMEM_VERSION
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
CUDA_VERSION=12.9 bash install_nccl.sh
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
CUDA_VERSION=12.9 bash install_cusparselt.sh
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
ldconfig
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
function prune_124 {
@ -196,15 +183,13 @@ function prune_126 {
function install_128 {
CUDNN_VERSION=9.8.0.87
echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.8.1 in the same container
install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux
echo "Installing CUDA 12.8.0 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.6.3"
# install CUDA 12.8.0 in the same container
install_cuda 12.8.0 cuda_12.8.0_570.86.10_linux
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.8 bash install_nccl.sh
CUDA_VERSION=12.8 bash install_cusparselt.sh
@ -216,13 +201,13 @@ function install_128 {
while test $# -gt 0
do
case "$1" in
11.8) install_118; prune_118
;;
12.4) install_124; prune_124
;;
12.6|12.6.*) install_126; prune_126
12.6) install_126; prune_126
;;
12.8|12.8.*) install_128;
;;
12.9|12.9.*) install_129;
12.8) install_128;
;;
*) echo "bad argument $1"; exit 1
;;

View File

@ -0,0 +1,26 @@
#!/bin/bash
if [[ -n "${CUDNN_VERSION}" ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn
pushd tmp_cudnn
if [[ ${CUDA_VERSION:0:4} == "12.8" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.8.0.87_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.5.1.17_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "12" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
else
print "Unsupported CUDA version ${CUDA_VERSION}"
exit 1
fi
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -5,13 +5,13 @@ set -ex
# cuSPARSELt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && cd tmp_cusparselt
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-9]$ ]]; then
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-8]$ ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.7.1.0-archive"
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.3.2-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
arch_path='sbsa'
@ -21,6 +21,9 @@ elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.2.3-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUSPARSELT_NAME="libcusparse_lt-linux-x86_64-0.4.0.7-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/${CUSPARSELT_NAME}.tar.xz
else
echo "Not sure which libcusparselt version to install for this ${CUDA_VERSION}"
fi

View File

@ -15,37 +15,11 @@ function install_timm() {
commit=$(get_pinned_commit timm)
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
}
function install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
python install.py --continue_on_fail
# soxr comes from https://github.com/huggingface/transformers/pull/39429
pip install transformers==4.54.0 soxr==0.5.0
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
chown -R jenkins torchbench
chown -R jenkins /opt/conda
# Clean up
conda_run pip uninstall -y torch torchvision triton
}
# Pango is needed for weasyprint which is needed for doctr
conda_install pango
# Stable packages are ok here, just to satisfy TorchBench check
pip_install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
install_torchbench
install_huggingface
install_timm
# Clean up
conda_run pip uninstall -y torch torchvision torchaudio triton torchao

View File

@ -8,6 +8,16 @@ retry () {
"$@" || (sleep 10 && "$@") || (sleep 20 && "$@") || (sleep 40 && "$@")
}
# A bunch of custom pip dependencies for ONNX
pip_install \
beartype==0.15.0 \
filelock==3.9.0 \
flatbuffers==2.0 \
mock==5.0.1 \
ninja==1.10.2 \
networkx==2.5 \
numpy==1.24.2
# ONNXRuntime should be installed before installing
# onnx-weekly. Otherwise, onnx-weekly could be
# overwritten by onnx.
@ -19,8 +29,12 @@ pip_install \
transformers==4.36.2
pip_install coloredlogs packaging
pip_install onnxruntime==1.18.1
pip_install onnxscript==0.3.1
pip_install onnx==1.17.0
pip_install onnxscript==0.2.2 --no-deps
# required by onnxscript
pip_install ml_dtypes
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -4,9 +4,9 @@
set -ex
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.30}" --depth 1 --shallow-submodules
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.29 --depth 1 --shallow-submodules
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
OPENBLAS_BUILD_FLAGS="
NUM_THREADS=128
USE_OPENMP=1
@ -14,8 +14,9 @@ NO_SHARED=0
DYNAMIC_ARCH=1
TARGET=ARMV8
CFLAGS=-O3
BUILD_BFLOAT16=1
"
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -8,11 +8,9 @@ ver() {
install_ubuntu() {
apt-get update
# gpg-agent is not available by default
apt-get install -y --no-install-recommends gpg-agent
if [[ $(ver $UBUNTU_VERSION) -ge $(ver 22.04) ]]; then
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
@ -28,27 +26,13 @@ Pin: release o=repo.radeon.com
Pin-Priority: 600
EOF
# we want the patch version of 6.4 instead
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
ROCM_VERSION="${ROCM_VERSION}.2"
fi
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
@ -82,33 +66,25 @@ EOF
done
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
# CI no longer builds for ROCm 6.3, but
# ROCm 6.4 did not yet fix the regression, also HIP branch names are different
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.4) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.2) ]]; then
HIP_TAG=rocm-6.4.2
CLR_HASH=74d78ba3ac4bac235d02bcb48511c30b5cfdd457 # branch release/rocm-rel-6.4.2-statco-hotfix
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.1) ]]; then
HIP_TAG=rocm-6.4.1
CLR_HASH=efe6c35790b9206923bfeed1209902feff37f386 # branch release/rocm-rel-6.4.1-statco-hotfix
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]] || [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
HIP_BRANCH=rocm-6.3.x
VER_STR=6.3
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
HIP_TAG=rocm-6.4.0
CLR_HASH=600f5b0d2baed94d5121e2174a9de0851b040b0c # branch release/rocm-rel-6.4-statco-hotfix
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
fi
# clr build needs CppHeaderParser but can only find it using conda's python
python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_TAG
/opt/conda/bin/python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_BRANCH
HIP_COMMON_DIR=$(readlink -f HIP)
git clone https://github.com/jeffdaily/clr
pushd clr
git checkout $CLR_HASH
popd
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-${VER_STR}-statco-hotfix
mkdir -p clr/build
pushd clr/build
# Need to point CMake to the correct python installation to find CppHeaderParser
cmake .. -DPython3_EXECUTABLE=/opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}/bin/python3 -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
cmake .. -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
make -j
cp hipamd/lib/libamdhip64.so.6.4.* /opt/rocm/lib/libamdhip64.so.6.4.*
cp hipamd/lib/libamdhip64.so.${VER_STR}.* /opt/rocm/lib/libamdhip64.so.${VER_STR}.*
popd
rm -rf HIP clr
fi

View File

@ -5,12 +5,7 @@ set -eou pipefail
function do_install() {
rocm_version=$1
if [[ ${rocm_version} =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
# chop off any patch version
rocm_version="${rocm_version%.*}"
fi
rocm_version_nodot=${rocm_version//./}
rocm_version_nodot=${1//./}
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6

View File

@ -51,12 +51,7 @@ as_jenkins git clone --recursive ${TRITON_REPO} triton
cd triton
as_jenkins git checkout ${TRITON_PINNED_COMMIT}
as_jenkins git submodule update --init --recursive
# Old versions of python have setup.py in ./python; newer versions have it in ./
if [ ! -f setup.py ]; then
cd python
fi
cd python
pip_install pybind11==2.13.6
# TODO: remove patch setup.py once we have a proper fix for https://github.com/triton-lang/triton/issues/4527
@ -98,10 +93,3 @@ fi
if [ -n "${NUMPY_VERSION}" ]; then
pip_install "numpy==${NUMPY_VERSION}"
fi
# IMPORTANT: helion needs to be installed without dependencies.
# It depends on torch and triton. We don't want to install
# triton and torch from production on Docker CI images
if [[ "$ANACONDA_PYTHON_VERSION" != 3.9* ]]; then
pip_install helion --no-deps
fi

View File

@ -34,27 +34,18 @@ function install_ubuntu() {
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
else # rolling driver
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
apt-get install -y intel-ocloc
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
@ -65,10 +56,14 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
fi
dnf install -y 'dnf-command(config-manager)'
@ -139,11 +134,11 @@ function install_sles() {
}
# Default use GPU driver rolling releases
XPU_DRIVER_VERSION=""
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
# Default use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
# Use GPU driver rolling releases
XPU_DRIVER_VERSION=""
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.0

View File

@ -54,6 +54,16 @@ COPY ./ci_commit_pins/nccl-cu* /ci_commit_pins/
COPY ./common/install_cusparselt.sh install_cusparselt.sh
ENV CUDA_HOME /usr/local/cuda
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
RUN bash ./install_magma.sh 11.8
RUN ln -sf /usr/local/cuda-11.8 /usr/local/cuda
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
RUN bash ./install_magma.sh 12.4
RUN ln -sf /usr/local/cuda-12.4 /usr/local/cuda
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
RUN bash ./install_magma.sh 12.6
@ -64,11 +74,6 @@ RUN bash ./install_cuda.sh 12.8
RUN bash ./install_magma.sh 12.8
RUN ln -sf /usr/local/cuda-12.8 /usr/local/cuda
FROM cuda as cuda12.9
RUN bash ./install_cuda.sh 12.9
RUN bash ./install_magma.sh 12.9
RUN ln -sf /usr/local/cuda-12.9 /usr/local/cuda
FROM cpu as rocm
ARG ROCM_VERSION
ARG PYTORCH_ROCM_ARCH

View File

@ -39,10 +39,6 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"

View File

@ -27,7 +27,5 @@ COPY ./common/install_linter.sh install_linter.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh
RUN chown -R jenkins:jenkins /var/lib/jenkins/ci_env
USER jenkins
CMD ["bash"]

View File

@ -26,7 +26,7 @@ ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
@ -103,7 +103,6 @@ ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /usr/local/lib/ /usr/local/lib/
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel

View File

@ -2,7 +2,7 @@ FROM quay.io/pypa/manylinux_2_28_aarch64 as base
ARG GCCTOOLSET_VERSION=13
# Language variables
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
@ -58,13 +58,12 @@ RUN git config --global --add safe.directory "*"
FROM base as openblas
# Install openblas
ARG OPENBLAS_VERSION
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM base as final
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6

View File

@ -60,7 +60,7 @@ RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM openssl as final
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6

View File

@ -5,9 +5,7 @@ ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
ENV LANGUAGE=C.UTF-8
# there is a bugfix in gcc >= 14 for precompiled headers and s390x vectorization interaction.
# with earlier gcc versions test/inductor/test_cpu_cpp_wrapper.py will fail.
ARG DEVTOOLSET_VERSION=14
ARG DEVTOOLSET_VERSION=13
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
@ -60,8 +58,7 @@ RUN yum install -y \
libxslt-devel \
libxml2-devel \
openssl-devel \
valgrind \
ninja-build
valgrind
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
@ -106,6 +103,9 @@ CMD ["/bin/bash"]
# install test dependencies:
# - grpcio requires system openssl, bundled crypto fails to build
RUN dnf install -y \
protobuf-devel \
protobuf-c-devel \
protobuf-lite-devel \
hdf5-devel \
python3-h5py \
git
@ -120,22 +120,15 @@ RUN python3 -mpip install cmake==3.28.0
# so just build it from upstream repository.
# h5py is dependency of onnxruntime_training.
# h5py==3.11.0 builds with hdf5-devel 1.10.5 from repository.
# h5py 3.11.0 doesn't build with numpy >= 2.3.0.
# install newest flatbuffers version first:
# for some reason old version is getting pulled in otherwise.
# packaging package is required for onnxruntime wheel build.
RUN pip3 install flatbuffers && \
pip3 install cython 'pkgconfig>=1.5.5' 'setuptools>=77' 'numpy<2.3.0' && \
pip3 install --no-build-isolation h5py==3.11.0 && \
pip3 install h5py==3.11.0 && \
pip3 install packaging && \
git clone https://github.com/microsoft/onnxruntime && \
cd onnxruntime && git checkout v1.21.0 && \
git submodule update --init --recursive && \
wget https://github.com/microsoft/onnxruntime/commit/f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
patch -p1 < f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
./build.sh --config Release --parallel 0 --enable_pybind \
--build_wheel --enable_training --enable_training_apis \
--enable_training_ops --skip_tests --allow_running_as_root \
--compile_no_warning_as_error && \
./build.sh --config Release --parallel 0 --enable_pybind --build_wheel --enable_training --enable_training_apis --enable_training_ops --skip_tests --allow_running_as_root && \
pip3 install ./build/Linux/Release/dist/onnxruntime_training-*.whl && \
cd .. && /bin/rm -rf ./onnxruntime

View File

@ -27,7 +27,6 @@ fi
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
OPENBLAS_VERSION=${OPENBLAS_VERSION:-}
case ${image} in
manylinux2_28-builder:cpu)
@ -41,7 +40,6 @@ case ${image} in
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13 --build-arg NINJA_VERSION=1.12.1"
MANY_LINUX_VERSION="2_28_aarch64"
OPENBLAS_VERSION="v0.3.30"
;;
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
TARGET=final
@ -75,10 +73,6 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
@ -115,7 +109,6 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
DOCKER_BUILDKIT=1 docker build \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION}" \
--target "${TARGET}" \
-t "${tmp_tag}" \
$@ \

View File

@ -16,7 +16,6 @@ click
#test that import:
coremltools==5.0b5 ; python_version < "3.12"
coremltools==8.3 ; python_version == "3.12"
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
@ -42,15 +41,18 @@ fbscribelogger==0.1.7
#Pinned versions: 0.1.6
#test that import:
flatbuffers==24.12.23
flatbuffers==2.0 ; platform_machine != "s390x"
#Description: cross platform serialization library
#Pinned versions: 24.12.23
#Pinned versions: 2.0
#test that import:
flatbuffers ; platform_machine == "s390x"
#Description: cross platform serialization library; Newer version is required on s390x for new python version
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 5.35.1
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
@ -63,12 +65,10 @@ lark==0.12.0
#Pinned versions: 0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11" and platform_machine != "s390x"
librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
librosa>=0.6.2 ; python_version < "3.11"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#librosa depends on numba; disable it for s390x while numba is disabled too
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
@ -93,10 +93,10 @@ librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
#Pinned versions:
#test that import:
mypy==1.16.0
mypy==1.14.0
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 1.16.0
#Pinned versions: 1.14.0
#test that import: test_typing.py, test_type_hints.py
networkx==2.8.8
@ -111,15 +111,13 @@ ninja==1.11.1.3
#Pinned versions: 1.11.1.3
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
numba==0.49.0 ; python_version < "3.9"
numba==0.55.2 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#Need release > 0.61.2 for s390x due to https://github.com/numba/numba/pull/10073
#numpy
#Description: Provides N-dimensional arrays and linear algebra
@ -168,10 +166,10 @@ pillow==11.0.0
#Pinned versions: 10.3.0
#test that import:
protobuf==5.29.4
#Description: Google's data interchange format
#Pinned versions: 5.29.4
#test that import: test_tensorboard.py, test/onnx/*
protobuf==3.20.2
#Description: Googles data interchange format
#Pinned versions: 3.20.1
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
@ -223,9 +221,9 @@ pygments==2.15.0
#Pinned versions: 2.12.0
#test that import: the doctests
#pyyaml
#PyYAML
#Description: data serialization format
#Pinned versions: 6.0.2
#Pinned versions:
#test that import:
#requests
@ -235,7 +233,7 @@ pygments==2.15.0
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 14.1.0
#Pinned versions: 10.9.0
#test that import:
scikit-image==0.19.3 ; python_version < "3.10"
@ -309,7 +307,7 @@ pytest-cpp==2.3.0
#Pinned versions: 2.3.0
#test that import:
z3-solver==4.15.1.0 ; platform_machine != "s390x"
z3-solver==4.12.6.0
#Description: The Z3 Theorem Prover Project
#Pinned versions:
#test that import:
@ -339,12 +337,12 @@ sympy==1.13.3
#Pinned versions:
#test that import:
onnx==1.18.0
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
onnx==1.17.0
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
onnxscript==0.3.1
onnxscript==0.2.2
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -363,11 +361,12 @@ pwlf==2.2.1
#Pinned versions: 2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
pyyaml
astunparse
PyYAML
pyzstd
setuptools>=70.1.0
six
setuptools
scons==4.5.2 ; platform_machine == "aarch64"
@ -383,16 +382,3 @@ dataclasses_json==0.6.7
cmake==4.0.0
#Description: required for building
tlparse==0.3.30
#Description: required for log parsing
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
#test that import: test_cuda.py
setuptools-git-versioning==2.1.0
scikit-build==0.18.1
pyre-extensions==0.0.32
tabulate==0.9.0
#Description: These package are needed to build FBGEMM and torchrec on PyTorch CI

View File

@ -1,11 +1,11 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@722b7e6f9ca512fcc526ad07d62b3d28c50bb6cd#egg=pytorch_sphinx_theme2
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.
# but it doesn't seem to work and hangs around idly. The initial thought is probably
# something related to Docker setup. We can investigate this later
sphinxcontrib.katex==0.8.6
#Description: This is used to generate PyTorch docs
@ -15,14 +15,9 @@ sphinxext-opengraph==0.9.1
#Description: This is used to generate PyTorch docs
#Pinned versions: 0.9.1
sphinx_sitemap==2.6.0
#Description: This is used to generate sitemap for PyTorch docs
#Pinned versions: 2.6.0
matplotlib==3.5.3 ; python_version < "3.13"
matplotlib==3.6.3 ; python_version >= "3.13"
matplotlib==3.5.3
#Description: This is used to generate PyTorch docs
#Pinned versions: 3.6.3 if python > 3.12. Otherwise 3.5.3.
#Pinned versions: 3.5.3
tensorboard==2.13.0 ; python_version < "3.13"
tensorboard==2.18.0 ; python_version >= "3.13"
@ -50,8 +45,8 @@ IPython==8.12.0
#Pinned versions: 8.12.0
myst-nb==0.17.2
#Description: This is used to generate PyTorch functorch and torch.compile docs.
#Pinned versions: 0.17.2
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 0.13.2
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
python-etcd==0.4.5

View File

@ -1 +1 @@
3.4.0
3.3.0

View File

@ -1 +0,0 @@
3.4.0

View File

@ -1,155 +0,0 @@
# Cross-compilation Docker container for RISC-V architecture
ARG UBUNTU_VERSION
FROM --platform=linux/amd64 ubuntu:${UBUNTU_VERSION} as base
ARG UBUNTU_VERSION
ENV GCC_VERSION=14
ENV PYTHON_VERSION=3.12.3
ENV DEBIAN_FRONTEND=noninteractive
ENV CC=riscv64-linux-gnu-gcc-${GCC_VERSION}
ENV CXX=riscv64-linux-gnu-g++-${GCC_VERSION}
ENV QEMU_LD_PREFIX=/usr/riscv64-linux-gnu/
ENV SYSROOT=/opt/sysroot
# Install basic dependencies
RUN apt-get update && apt-get install -y \
ninja-build \
autoconf \
automake \
libtool \
patchelf \
ccache \
git \
wget \
python3-pip \
python3-venv \
python-is-python3 \
cmake \
sudo \
lsb-release \
gcc-${GCC_VERSION}-riscv64-linux-gnu \
g++-${GCC_VERSION}-riscv64-linux-gnu \
pkg-config \
&& rm -rf /var/lib/apt/lists/*
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
FROM base as python
ARG ZLIB_VERSION=1.3.1
ARG FFI_VERSION=3.4.6
ARG BZ2_VERSION=1.0.8
ARG XZ_VERSION=5.4.6
ARG OPENSSL_VERSION=3.2.1
# Set up sysroot directory for dependencies
ENV PKG_CONFIG_PATH=${SYSROOT}/lib/pkgconfig
ENV PKG_CONFIG_SYSROOT_DIR=${SYSROOT}
WORKDIR /opt
# Build zlib (for compression)
RUN echo "--- Building zlib ---" \
&& wget -c https://www.zlib.net/zlib-${ZLIB_VERSION}.tar.gz \
&& tar -xf zlib-${ZLIB_VERSION}.tar.gz --no-same-permissions --no-same-owner \
&& cd zlib-${ZLIB_VERSION}/ \
&& mkdir build && cd build \
&& ../configure --prefix=${SYSROOT} \
&& make -j$(nproc) && make install \
&& cd ../..
# Build libffi (for ctypes module)
RUN echo "--- Building libffi ---" \
&& wget -c https://github.com/libffi/libffi/releases/download/v${FFI_VERSION}/libffi-${FFI_VERSION}.tar.gz \
&& tar -xf libffi-${FFI_VERSION}.tar.gz --no-same-permissions --no-same-owner \
&& cd libffi-${FFI_VERSION}/ \
&& mkdir build && cd build \
&& ../configure --prefix=${SYSROOT} --host=riscv64-linux-gnu --build=x86_64-linux-gnu \
&& make -j$(nproc) && make install \
&& cd ../..
# Build bzip2 (for bz2 module)
RUN echo "--- Building bzip2 ---" \
&& wget -c https://sourceware.org/pub/bzip2/bzip2-${BZ2_VERSION}.tar.gz \
&& tar -xf bzip2-${BZ2_VERSION}.tar.gz --no-same-permissions --no-same-owner \
&& cd bzip2-${BZ2_VERSION}/ \
&& make CC=riscv64-linux-gnu-gcc-${GCC_VERSION} bzip2 bzip2recover libbz2.a \
&& make CC=riscv64-linux-gnu-gcc-${GCC_VERSION} -f Makefile-libbz2_so \
&& make install PREFIX=${SYSROOT} \
&& cp libbz2.so.${BZ2_VERSION} ${SYSROOT}/lib/ \
&& cd ${SYSROOT}/lib/ \
&& ln -sf libbz2.so.${BZ2_VERSION} libbz2.so.1.0 \
&& ln -sf libbz2.so.1.0 libbz2.so \
&& cd /opt/
# Build xz (for lzma module)
RUN echo "--- Building xz ---" \
&& wget -c https://github.com/tukaani-project/xz/releases/download/v${XZ_VERSION}/xz-${XZ_VERSION}.tar.gz \
&& tar -xf xz-${XZ_VERSION}.tar.gz --no-same-permissions --no-same-owner \
&& cd xz-${XZ_VERSION} \
&& mkdir build && cd build \
&& ../configure --prefix=${SYSROOT} --host=riscv64-linux-gnu --build=x86_64-linux-gnu \
&& make -j$(nproc) && make install \
&& cd ../..
# Build OpenSSL (for ssl module)
RUN echo "--- Building OpenSSL ---" \
&& wget -c https://www.openssl.org/source/openssl-${OPENSSL_VERSION}.tar.gz \
&& tar -xf openssl-${OPENSSL_VERSION}.tar.gz --no-same-permissions --no-same-owner \
&& cd openssl-${OPENSSL_VERSION}/ \
&& mkdir build && cd build \
&& ../Configure linux64-riscv64 --prefix=${SYSROOT} \
&& make -j$(nproc) && make install_sw \
&& cd ../..
# Build SQLite3 (for sqlite3 module)
RUN echo "--- Building SQLite3 ---" \
&& wget -c https://www.sqlite.org/2024/sqlite-autoconf-3450200.tar.gz \
&& tar -xf sqlite-autoconf-3450200.tar.gz --no-same-permissions --no-same-owner \
&& cd sqlite-autoconf-3450200 \
&& mkdir build && cd build \
&& ../configure --prefix=${SYSROOT} --host=riscv64-linux-gnu --build=x86_64-linux-gnu \
&& make -j$(nproc) && make install \
&& cd ../..
# Build and install RISC-V Python with all modules
RUN wget -c https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tgz \
&& tar -xf Python-${PYTHON_VERSION}.tgz --no-same-permissions --no-same-owner \
&& cd Python-${PYTHON_VERSION} \
&& mkdir build && cd build \
&& ../configure \
--host=riscv64-linux-gnu \
--build=x86_64-linux-gnu \
--prefix=${SYSROOT} \
--enable-shared \
--disable-ipv6 \
--with-build-python=/usr/bin/python3 \
--with-ensurepip=no \
ac_cv_file__dev_ptmx=yes \
ac_cv_file__dev_ptc=no \
&& make -j$(nproc) \
&& make install
FROM base as final
COPY --from=python /opt/sysroot /opt/sysroot
# Install crossenv and cmake
RUN pip install crossenv cmake==4.0.0 --break-system-packages \
&& /usr/bin/python3 -m crossenv ${SYSROOT}/bin/python3 /opt/riscv-cross-env
# Add pip-installed cmake binaries to PATH
ENV PATH="/usr/local/bin:${PATH}"
# Set up cross Python environment
SHELL ["/bin/bash", "-c"]
RUN source /opt/riscv-cross-env/bin/activate \
&& pip install setuptools pyyaml typing_extensions wheel
# Set default environment variables for PyTorch build
ENV Python_ROOT_DIR=${SYSROOT}
ENV OPENSSL_ROOT_DIR=${SYSROOT}
USER jenkins
CMD ["bash"]

View File

@ -0,0 +1,170 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
FROM ${IMAGE_NAME} as base
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_magma_conda.sh install_magma_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
ARG INDUCTOR_BENCHMARKS
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
ARG TRITON
FROM base as triton-builder
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
COPY triton_version.txt triton_version.txt
RUN bash ./install_triton.sh
FROM base as final
COPY --from=triton-builder /opt/triton /opt/triton
RUN if [ -n "${TRITON}" ]; then pip install /opt/triton/*.whl; chown -R jenkins:jenkins /opt/conda; fi
RUN rm -rf /opt/triton
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ -n "${CUDNN_VERSION}" ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Install CUSPARSELT
ARG CUDA_VERSION
COPY ./common/install_cusparselt.sh install_cusparselt.sh
RUN bash install_cusparselt.sh
RUN rm install_cusparselt.sh
# Install NCCL
ARG CUDA_VERSION
COPY ./common/install_nccl.sh install_nccl.sh
COPY ./ci_commit_pins/nccl-cu* /ci_commit_pins/
RUN bash install_nccl.sh
RUN rm install_nccl.sh /ci_commit_pins/nccl-cu*
ENV USE_SYSTEM_NCCL=1
ENV NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
ENV NCCL_LIB_DIR="/usr/local/cuda/lib64/"
# Install CUDSS
ARG CUDA_VERSION
COPY ./common/install_cudss.sh install_cudss.sh
RUN bash install_cudss.sh
RUN rm install_cudss.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
RUN if [ -h /usr/local/cuda-12.1/cuda-12.1 ]; then rm /usr/local/cuda-12.1/cuda-12.1; fi
RUN if [ -h /usr/local/cuda-12.4/cuda-12.4 ]; then rm /usr/local/cuda-12.4/cuda-12.4; fi
USER jenkins
CMD ["bash"]

View File

@ -25,7 +25,6 @@ RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG BUILD_ENVIRONMENT
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
@ -98,9 +97,8 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# (optional) Install non-default Ninja version
ARG NINJA_VERSION

View File

@ -72,7 +72,7 @@ ARG TRITON
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-xpu.txt triton-xpu.txt
COPY triton_xpu_version.txt triton_version.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-xpu.txt triton_version.txt

View File

@ -98,9 +98,8 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
ARG TRITON
ARG TRITON_CPU
@ -148,12 +147,6 @@ RUN if [ -n "${ACL}" ]; then bash ./install_acl.sh; fi
RUN rm install_acl.sh
ENV INSTALLED_ACL ${ACL}
ARG OPENBLAS
COPY ./common/install_openblas.sh install_openblas.sh
RUN if [ -n "${OPENBLAS}" ]; then bash ./install_openblas.sh; fi
RUN rm install_openblas.sh
ENV INSTALLED_OPENBLAS ${OPENBLAS}
# Install ccache/sccache (do this last, so we get priority in PATH)
ARG SKIP_SCCACHE_INSTALL
COPY ./common/install_cache.sh install_cache.sh

View File

@ -1,31 +0,0 @@
# 🔧 Lumen_cli
A Python CLI tool for building and testing PyTorch-based components, using a YAML configuration file for structured, repeatable workflows.
## Features
- **Build**
- external projects (e.g. vLLM)
## 📦 Installation
at the root of the pytorch repo
```bash
pip install -e .ci/lumen_cli
```
## Run the cli tool
The cli tool must be used at root of pytorch repo, as example to run build external vllm:
```bash
python -m cli.run build external vllm
```
this will run the build steps with default behaviour for vllm project.
to see help messages, run
```bash
python3 -m cli.run --help
```
## Add customized external build logics
To add a new external build, for instance, add a new external build logics:
1. create the build function in cli/lib folder
2. register your target and the main build function at EXTERNAL_BUILD_TARGET_DISPATCH in `cli/build_cli/register_build.py`
3. [optional] create your ci config file in .github/ci_configs/${EXTERNAL_PACKAGE_NAME}.yaml

View File

@ -1,37 +0,0 @@
import argparse
import logging
from cli.lib.common.cli_helper import register_targets, RichHelp, TargetSpec
from cli.lib.core.vllm import VllmBuildRunner
logger = logging.getLogger(__name__)
# Maps targets to their argparse configuration and runner
# it adds new target to path python -m cli.run build external {target} with buildrunner
_TARGETS: dict[str, TargetSpec] = {
"vllm": {
"runner": VllmBuildRunner,
"help": "Build vLLM using docker buildx.",
}
# add yours ...
}
def register_build_commands(subparsers: argparse._SubParsersAction) -> None:
build_parser = subparsers.add_parser(
"build",
help="Build related commands",
formatter_class=RichHelp,
)
build_subparsers = build_parser.add_subparsers(dest="build_command", required=True)
overview = "\n".join(
f" {name:12} {spec.get('help', '')}" for name, spec in _TARGETS.items()
)
external_parser = build_subparsers.add_parser(
"external",
help="Build external targets",
description="Build third-party targets.\n\nAvailable targets:\n" + overview,
formatter_class=RichHelp,
)
register_targets(external_parser, _TARGETS)

View File

@ -1,71 +0,0 @@
"""
Cli Argparser Utility helpers for CLI tasks.
"""
import argparse
from abc import ABC, abstractmethod
try:
from typing import Any, Callable, Required, TypedDict # Python 3.11+
except ImportError:
from typing import Any, Callable, TypedDict
from typing_extensions import Required # Fallback for Python <3.11
class BaseRunner(ABC):
def __init__(self, args: Any) -> None:
self.args = args
@abstractmethod
def run(self) -> None:
"""runs main logics, required"""
# Pretty help: keep newlines + show defaults
class RichHelp(
argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter
):
pass
class TargetSpec(TypedDict, total=False):
"""CLI subcommand specification with bA."""
runner: Required[type[BaseRunner]]
help: str
description: str
add_arguments: Callable[[argparse.ArgumentParser], None]
def register_targets(
parser: argparse.ArgumentParser,
target_specs: dict[str, TargetSpec],
common_args: Callable[[argparse.ArgumentParser], None] = lambda _: None,
) -> None:
"""Register target subcommands."""
targets = parser.add_subparsers(
dest="target",
required=True,
metavar="{" + ",".join(target_specs.keys()) + "}",
)
for name, spec in target_specs.items():
desc = spec.get("description") or spec["runner"].__doc__ or ""
p = targets.add_parser(
name,
help=spec.get("help", ""),
description=desc.strip(),
formatter_class=RichHelp,
)
p.set_defaults(
func=lambda args, cls=spec["runner"]: cls(args).run(),
_runner_class=spec["runner"],
)
if "add_arguments" in spec and callable(spec["add_arguments"]):
spec["add_arguments"](p)
if common_args:
common_args(p)

View File

@ -1,42 +0,0 @@
"""
Docker Utility helpers for CLI tasks.
"""
import logging
from typing import Optional
import docker
from docker.errors import APIError, NotFound
logger = logging.getLogger(__name__)
# lazy singleton so we don't reconnect every call
_docker_client: Optional[docker.DockerClient] = None
def _get_client() -> docker.DockerClient:
global _docker_client
if _docker_client is None:
_docker_client = docker.from_env()
return _docker_client
def local_image_exists(
image_name: str, client: Optional[docker.DockerClient] = None
) -> bool:
"""Return True if a local Docker image exists."""
if not image_name:
return False
client = client or _get_client()
try:
client.images.get(image_name)
return True
except (NotFound, APIError) as e:
logger.error(
"Error when checking Docker image '%s': %s",
image_name,
e.explanation if hasattr(e, "explanation") else str(e),
)
return False

View File

@ -1,110 +0,0 @@
"""
Environment Variables and Dataclasses Utility helpers for CLI tasks.
"""
import os
from dataclasses import field, fields, is_dataclass, MISSING
from pathlib import Path
from textwrap import indent
from typing import Optional, Union
from cli.lib.common.utils import str2bool
def get_env(name: str, default: str = "") -> str:
"""Get environment variable with default fallback."""
return os.environ.get(name) or default
def env_path_optional(
name: str,
default: Optional[Union[str, Path]] = None,
resolve: bool = True,
) -> Optional[Path]:
"""Get environment variable as optional Path."""
val = get_env(name) or default
if not val:
return None
path = Path(val)
return path.resolve() if resolve else path
def env_path(
name: str,
default: Optional[Union[str, Path]] = None,
resolve: bool = True,
) -> Path:
"""Get environment variable as Path, raise if missing."""
path = env_path_optional(name, default, resolve)
if not path:
raise ValueError(f"Missing path value for {name}")
return path
def env_bool(
name: str,
default: bool = False,
) -> bool:
val = get_env(name)
if not val:
return default
return str2bool(val)
def env_bool_field(
name: str,
default: bool = False,
):
return field(default_factory=lambda: env_bool(name, default))
def env_path_field(
name: str,
default: Union[str, Path] = "",
*,
resolve: bool = True,
) -> Path:
return field(default_factory=lambda: env_path(name, default, resolve=resolve))
def env_str_field(
name: str,
default: str = "",
) -> str:
return field(default_factory=lambda: get_env(name, default))
def generate_dataclass_help(cls) -> str:
"""Auto-generate help text for dataclass fields."""
if not is_dataclass(cls):
raise TypeError(f"{cls} is not a dataclass")
def get_value(f):
if f.default is not MISSING:
return f.default
if f.default_factory is not MISSING:
try:
return f.default_factory()
except Exception as e:
return f"<error: {e}>"
return "<required>"
lines = [f"{f.name:<22} = {repr(get_value(f))}" for f in fields(cls)]
return indent("\n".join(lines), " ")
def with_params_help(params_cls: type, title: str = "Parameter defaults"):
"""
Class decorator that appends a help table generated from another dataclass
(e.g., VllmParameters) to the decorated class's docstring.
"""
if not is_dataclass(params_cls):
raise TypeError(f"{params_cls} must be a dataclass")
def _decorator(cls: type) -> type:
block = generate_dataclass_help(params_cls)
cls.__doc__ = (cls.__doc__ or "") + f"\n\n{title}:\n{block}"
return cls
return _decorator

View File

@ -1,69 +0,0 @@
"""
Git Utility helpers for CLI tasks.
"""
import logging
from pathlib import Path
from cli.lib.common.path_helper import remove_dir
from git import GitCommandError, RemoteProgress, Repo
logger = logging.getLogger(__name__)
class PrintProgress(RemoteProgress):
"""Simple progress logger for git operations."""
def __init__(self, interval: int = 5):
super().__init__()
self._last_percent = -1
self._interval = interval
def update(self, op_code, cur, max=None, message=""):
msg = self._cur_line or message
if max and cur:
percent = int(cur / max * 100)
if percent != self._last_percent and percent % self._interval == 0:
self._last_percent = percent
logger.info("Progress: %d%% - %s", percent, msg)
elif msg:
logger.info(msg)
def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules=False):
"""Clone repository with pinned commit and optional submodules."""
dst = dst or target
try:
logger.info("Cloning %s to %s", target, dst)
# Clone and fetch
remove_dir(dst)
r = Repo.clone_from(repo, dst, progress=PrintProgress())
r.git.fetch("--all", "--tags")
# Checkout pinned commit
commit = get_post_build_pinned_commit(target)
logger.info("Checking out pinned commit %s", commit)
r.git.checkout(commit)
# Update submodules if requested
if update_submodules and r.submodules:
logger.info("Updating %d submodule(s)", len(r.submodules))
for sm in r.submodules:
sm.update(init=True, recursive=True, progress=PrintProgress())
logger.info("Successfully cloned %s", target)
return r
except GitCommandError as e:
logger.error("Git operation failed: %s", e)
raise
def get_post_build_pinned_commit(name: str, prefix=".github/ci_commit_pins") -> str:
path = Path(prefix) / f"{name}.txt"
if not path.exists():
raise FileNotFoundError(f"Pin file not found: {path}")
return path.read_text(encoding="utf-8").strip()

View File

@ -1,14 +0,0 @@
"""
Logger Utility helpers for CLI tasks.
"""
import logging
import sys
def setup_logging(level: int = logging.INFO):
logging.basicConfig(
level=level,
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
stream=sys.stdout,
)

View File

@ -1,62 +0,0 @@
"""Path utility helpers for CLI tasks."""
import logging
import shutil
from pathlib import Path
from typing import Union
logger = logging.getLogger(__name__)
def get_path(path: Union[str, Path], resolve: bool = False) -> Path:
"""Convert to Path object, optionally resolving to absolute path."""
if not path:
raise ValueError("Path cannot be None or empty")
result = Path(path)
return result.resolve() if resolve else result
def ensure_dir_exists(path: Union[str, Path]) -> Path:
"""Create directory if it doesn't exist."""
path_obj = get_path(path)
path_obj.mkdir(parents=True, exist_ok=True)
return path_obj
def remove_dir(path: Union[str, Path, None]) -> None:
"""Remove directory if it exists."""
if not path:
return
path_obj = get_path(path)
if path_obj.exists():
shutil.rmtree(path_obj)
def force_create_dir(path: Union[str, Path]) -> Path:
"""Remove directory if exists, then create fresh empty directory."""
remove_dir(path)
return ensure_dir_exists(path)
def copy(src: Union[str, Path], dst: Union[str, Path]) -> None:
"""Copy file or directory from src to dst."""
src_path = get_path(src, resolve=True)
dst_path = get_path(dst, resolve=True)
if not src_path.exists():
raise FileNotFoundError(f"Source does not exist: {src_path}")
dst_path.parent.mkdir(parents=True, exist_ok=True)
if src_path.is_file():
shutil.copy2(src_path, dst_path)
elif src_path.is_dir():
shutil.copytree(src_path, dst_path, dirs_exist_ok=True)
else:
raise ValueError(f"Unsupported path type: {src_path}")
def is_path_exist(path: Union[str, Path, None]) -> bool:
"""Check if path exists."""
return bool(path and get_path(path).exists())

View File

@ -1,79 +0,0 @@
"""
General Utility helpers for CLI tasks.
"""
import logging
import os
import shlex
import subprocess
import sys
from typing import Optional
logger = logging.getLogger(__name__)
def run_command(
cmd: str,
use_shell: bool = False,
log_cmd: bool = True,
cwd: Optional[str] = None,
env: Optional[dict] = None,
check: bool = True,
) -> int:
"""Run a command with optional shell execution."""
if use_shell:
args = cmd
log_prefix = "[shell]"
executable = "/bin/bash"
else:
args = shlex.split(cmd)
log_prefix = "[cmd]"
executable = None
if log_cmd:
display_cmd = cmd if use_shell else " ".join(args)
logger.info("%s %s", log_prefix, display_cmd)
run_env = {**os.environ, **(env or {})}
proc = subprocess.run(
args,
shell=use_shell,
executable=executable,
stdout=sys.stdout,
stderr=sys.stderr,
cwd=cwd,
env=run_env,
check=False,
)
if check and proc.returncode != 0:
logger.error(
"%s Command failed (exit %s): %s", log_prefix, proc.returncode, cmd
)
raise subprocess.CalledProcessError(
proc.returncode, args if not use_shell else cmd
)
return proc.returncode
def str2bool(value: Optional[str]) -> bool:
"""Convert environment variables to boolean values."""
if not value:
return False
if not isinstance(value, str):
raise ValueError(
f"Expected a string value for boolean conversion, got {type(value)}"
)
value = value.strip().lower()
true_value_set = {"1", "true", "t", "yes", "y", "on", "enable", "enabled", "found"}
false_value_set = {"0", "false", "f", "no", "n", "off", "disable"}
if value in true_value_set:
return True
if value in false_value_set:
return False
raise ValueError(f"Invalid string value for boolean conversion: {value}")

View File

@ -1,263 +0,0 @@
import logging
import os
import textwrap
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
from cli.lib.common.cli_helper import BaseRunner
from cli.lib.common.docker_helper import local_image_exists
from cli.lib.common.envs_helper import (
env_bool_field,
env_path_field,
env_str_field,
with_params_help,
)
from cli.lib.common.git_helper import clone_external_repo
from cli.lib.common.path_helper import (
copy,
ensure_dir_exists,
force_create_dir,
get_path,
is_path_exist,
)
from cli.lib.common.utils import run_command
logger = logging.getLogger(__name__)
# Default path for docker build artifacts
_DEFAULT_RESULT_PATH = "./shared"
# Temp folder in vllm work place to cp torch whls in vllm work directory for docker build
_VLLM_TEMP_FOLDER = "tmp"
@dataclass
class VllmBuildParameters:
"""
Parameters defining the vllm external input configurations.
Combine with VllmDockerBuildArgs to define the vllm build environment
"""
# USE_TORCH_WHEEL: when true, use local Torch wheels; requires TORCH_WHEELS_PATH.
# Otherwise docker build pull torch nightly during build
# TORCH_WHEELS_PATH: directory containing local torch wheels when use_torch_whl is True
use_torch_whl: bool = env_bool_field("USE_TORCH_WHEEL", True)
torch_whls_path: Path = env_path_field("TORCH_WHEELS_PATH", "./dist")
# USE_LOCAL_BASE_IMAGE: when true, use an existing local Docker base image; requires BASE_IMAGE
# Otherwise, pull dockerfile's default image remotely
# BASE_IMAGE: name:tag (only needed when use_local_base_image is True)
use_local_base_image: bool = env_bool_field("USE_LOCAL_BASE_IMAGE", True)
base_image: str = env_str_field("BASE_IMAGE")
# USE_LOCAL_DOCKERFILE: when true("1"), use a local Dockerfile; requires DOCKERFILE_PATH.
# otherwise, use vllm's default dockerfile.torch_nightly for build
# DOCKERFILE_PATH: path to Dockerfile used when use_local_dockerfile is True"
use_local_dockerfile: bool = env_bool_field("USE_LOCAL_DOCKERFILE", True)
dockerfile_path: Path = env_path_field(
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
)
# OUTPUT_DIR: where docker buildx (local exporter) will write artifacts
output_dir: Path = env_path_field("OUTPUT_DIR", "shared")
# --- Build args ----------------------------------------------------------
target_stage: str = env_str_field("TARGET_STAGE", "export-wheels")
tag_name: str = env_str_field("TAG", "vllm-wheels")
cuda_version: str = env_str_field("CUDA_VERSION", "12.8.1")
python_version: str = env_str_field("PYTHON_VERSION", "3.12")
max_jobs: str = env_str_field("MAX_JOBS", "64")
sccache_bucket: str = env_str_field("SCCACHE_BUCKET")
sccache_region: str = env_str_field("SCCACHE_REGION")
torch_cuda_arch_list: str = env_str_field("TORCH_CUDA_ARCH_LIST", "8.9")
def __post_init__(self):
checks = [
(
self.use_torch_whl, # flag
True, # trigger_value
"torch_whls_path", # resource
is_path_exist, # check_func
"TORCH_WHEELS_PATH is not provided, but USE_TORCH_WHEEL is set to 1",
),
(
self.use_local_base_image,
True,
"base_image",
local_image_exists,
f"BASE_IMAGE {self.base_image} does not found, but USE_LOCAL_BASE_IMAGE is set to 1",
),
(
self.use_local_dockerfile,
True,
"dockerfile_path",
is_path_exist,
" DOCKERFILE_PATH path does not found, but USE_LOCAL_DOCKERFILE is set to 1",
),
]
for flag, trigger_value, attr_name, check_func, error_msg in checks:
value = getattr(self, attr_name)
if flag == trigger_value:
if not value or not check_func(value):
raise ValueError(error_msg)
else:
logger.info("flag %s is not set", flag)
if not self.output_dir:
raise ValueError("missing required output_dir")
@with_params_help(VllmBuildParameters)
class VllmBuildRunner(BaseRunner):
"""
Build vLLM using docker buildx.
Environment variable options:
"USE_TORCH_WHEEL": "1: use local wheels; 0: pull nightly from pypi",
"TORCH_WHEELS_PATH": "Path to local wheels (when USE_TORCH_WHEEL=1)",
"USE_LOCAL_BASE_IMAGE": "1: use local base image; 0: default image",
"BASE_IMAGE": "name:tag to indicate base image the dockerfile depends on (when USE_LOCAL_BASE_IMAGE=1)",
"USE_LOCAL_DOCKERFILE": "1: use local Dockerfile; 0: vllm repo default dockerfile.torch_nightly",
"DOCKERFILE_PATH": "Path to Dockerfile (when USE_LOCAL_DOCKERFILE=1)",
"OUTPUT_DIR": "e.g. './shared'",
"TORCH_CUDA_ARCH_LIST": "e.g. '8.0' or '8.0;9.0'",
"CUDA_VERSION": "e.g. '12.8.1'",
"PYTHON_VERSION": "e.g. '3.12'",
"MAX_JOBS": "e.g. '64'",
"SCCACHE_BUCKET": "e.g. 'my-bucket'",
"SCCACHE_REGION": "e.g. 'us-west-2'",
"""
def __init__(self, args=None):
self.work_directory = "vllm"
def run(self):
"""
main function to run vllm build
1. prepare vllm build environment
2. prepare the docker build command args
3. run docker build
"""
inputs = VllmBuildParameters()
clone_vllm()
self.cp_dockerfile_if_exist(inputs)
# cp torch wheels from root direct to vllm workspace if exist
self.cp_torch_whls_if_exist(inputs)
ensure_dir_exists(inputs.output_dir)
cmd = self._generate_docker_build_cmd(inputs)
logger.info("Running docker build: \n %s", cmd)
run_command(cmd, cwd="vllm", env=os.environ.copy())
def cp_torch_whls_if_exist(self, inputs: VllmBuildParameters) -> str:
if not inputs.use_torch_whl:
return ""
tmp_dir = f"./{self.work_directory}/{_VLLM_TEMP_FOLDER}"
tmp_path = Path(tmp_dir)
force_create_dir(tmp_path)
copy(inputs.torch_whls_path, tmp_dir)
return tmp_dir
def cp_dockerfile_if_exist(self, inputs: VllmBuildParameters):
if not inputs.use_local_dockerfile:
logger.info("using vllm default dockerfile.torch_nightly for build")
return
dockerfile_path = get_path(inputs.dockerfile_path, resolve=True)
vllm_torch_dockerfile = Path(
f"./{self.work_directory}/docker/Dockerfile.nightly_torch"
)
copy(dockerfile_path, vllm_torch_dockerfile)
def get_result_path(self, path):
"""
Get the absolute path of the result path
"""
if not path:
path = _DEFAULT_RESULT_PATH
abs_path = get_path(path, resolve=True)
return abs_path
def _get_torch_wheel_path_arg(self, torch_whl_dir: Optional[Path]) -> str:
if not torch_whl_dir:
return ""
return f"--build-arg TORCH_WHEELS_PATH={_VLLM_TEMP_FOLDER}"
def _get_base_image_args(self, inputs: VllmBuildParameters) -> tuple[str, str, str]:
"""
Returns:
- base_image_arg: docker buildx arg string for base image
- final_base_image_arg: docker buildx arg string for vllm-base stage
- pull_flag: --pull=true or --pull=false depending on whether the image exists locally
"""
if not inputs.use_local_base_image:
return "", "", ""
base_image = inputs.base_image
# set both base image and final base image to the same local image
base_image_arg = f"--build-arg BUILD_BASE_IMAGE={base_image}"
final_base_image_arg = f"--build-arg FINAL_BASE_IMAGE={base_image}"
if local_image_exists(base_image):
pull_flag = "--pull=false"
return base_image_arg, final_base_image_arg, pull_flag
logger.info(
"[INFO] Local image not found:%s will try to pull from remote", {base_image}
)
return base_image_arg, final_base_image_arg, ""
def _generate_docker_build_cmd(
self,
inputs: VllmBuildParameters,
) -> str:
base_image_arg, final_base_image_arg, pull_flag = self._get_base_image_args(
inputs
)
torch_arg = self._get_torch_wheel_path_arg(inputs.torch_whls_path)
return textwrap.dedent(
f"""
docker buildx build \
--output type=local,dest={inputs.output_dir} \
-f docker/Dockerfile.nightly_torch \
{pull_flag} \
{torch_arg} \
{base_image_arg} \
{final_base_image_arg} \
--build-arg max_jobs={inputs.max_jobs} \
--build-arg CUDA_VERSION={inputs.cuda_version} \
--build-arg PYTHON_VERSION={inputs.python_version} \
--build-arg USE_SCCACHE={int(bool(inputs.sccache_bucket and inputs.sccache_region))} \
--build-arg SCCACHE_BUCKET_NAME={inputs.sccache_bucket} \
--build-arg SCCACHE_REGION_NAME={inputs.sccache_region} \
--build-arg torch_cuda_arch_list='{inputs.torch_cuda_arch_list}' \
--target {inputs.target_stage} \
-t {inputs.tag_name} \
--progress=plain .
"""
).strip()
def clone_vllm():
clone_external_repo(
target="vllm",
repo="https://github.com/vllm-project/vllm.git",
dst="vllm",
update_submodules=True,
)

View File

@ -1,38 +0,0 @@
# main.py
import argparse
import logging
from cli.build_cli.register_build import register_build_commands
from cli.lib.common.logger import setup_logging
logger = logging.getLogger(__name__)
def main():
# Define top-level parser
parser = argparse.ArgumentParser(description="Lumos CLI")
subparsers = parser.add_subparsers(dest="command", required=True)
parser.add_argument(
"--log-level", default="INFO", help="Log level (DEBUG, INFO, WARNING, ERROR)"
)
# registers second-level subcommands
register_build_commands(subparsers)
# parse args after all options are registered
args = parser.parse_args()
# setup global logging
setup_logging(getattr(logging, args.log_level.upper(), logging.INFO))
logger.debug("Parsed args: %s", args)
if hasattr(args, "func"):
args.func(args)
else:
parser.print_help()
if __name__ == "__main__":
main()

View File

@ -1,22 +0,0 @@
[project]
name = "lumen-ci"
version = "0.1.0"
dependencies = [
"pyyaml==6.0.2",
"GitPython==3.1.45",
"docker==7.1.0",
"pytest==7.3.2",
]
[tool.setuptools]
packages = ["cli"]
[tool.setuptools.package-dir]
cli = "cli"
[tool.ruff.lint]
# Enable preview mode for linting
preview = true
# Now you can select your preview rules, like RUF048
extend-select = ["RUF048"]

View File

@ -1,47 +0,0 @@
# tests/test_cli.py
import io
import sys
import unittest
from contextlib import redirect_stderr, redirect_stdout
from unittest.mock import patch
from cli.run import main
class TestArgparseCLI(unittest.TestCase):
@patch("cli.build_cli.register_build.VllmBuildRunner.run", return_value=None)
@patch("cli.build_cli.register_build.VllmBuildRunner.__init__", return_value=None)
def test_cli_run_build_external(self, mock_init, mock_run):
from cli.run import main # import after patches if needed
test_args = ["cli.run", "build", "external", "vllm"]
with patch.object(sys, "argv", test_args):
# argparse may call sys.exit on error; capture to avoid test aborts
try:
main()
except SystemExit:
pass
mock_init.assert_called_once() # got constructed
mock_run.assert_called_once_with() # run() called
def test_build_help(self):
test_args = ["cli.run", "build", "--help"]
with patch.object(sys, "argv", test_args):
stdout = io.StringIO()
stderr = io.StringIO()
# --help always raises SystemExit(0)
with self.assertRaises(SystemExit) as cm:
with redirect_stdout(stdout), redirect_stderr(stderr):
main()
self.assertEqual(cm.exception.code, 0)
output = stdout.getvalue()
self.assertIn("usage", output)
self.assertIn("external", output)
if __name__ == "__main__":
unittest.main()

View File

@ -1,115 +0,0 @@
import argparse
import io
import unittest
from contextlib import redirect_stderr
from unittest.mock import patch
from cli.lib.common.cli_helper import BaseRunner, register_targets, RichHelp, TargetSpec
# ---- Dummy runners for unittests----
class FooRunner(BaseRunner):
"""Foo description from docstring."""
def run(self) -> None: # replaced by mock
pass
class BarRunner(BaseRunner):
def run(self) -> None: # replaced by mock
pass
def add_foo_args(p: argparse.ArgumentParser) -> None:
p.add_argument("--x", type=int, required=True, help="x value")
def common_args(p: argparse.ArgumentParser) -> None:
p.add_argument("--verbose", action="store_true", help="verbose flag")
def build_parser(specs: dict[str, TargetSpec]) -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(prog="app", formatter_class=RichHelp)
register_targets(
parser=parser,
target_specs=specs,
common_args=common_args,
)
return parser
def get_subparser(
parser: argparse.ArgumentParser, name: str
) -> argparse.ArgumentParser:
subparsers_action = next(
a
for a in parser._subparsers._group_actions # type: ignore[attr-defined]
if isinstance(a, argparse._SubParsersAction)
)
return subparsers_action.choices[name]
class TestRegisterTargets(unittest.TestCase):
def test_metavar_lists_targets(self):
specs: dict[str, TargetSpec] = {
"foo": {"runner": FooRunner, "add_arguments": add_foo_args},
"bar": {"runner": BarRunner},
}
parser = build_parser(specs)
subparsers_action = next(
a
for a in parser._subparsers._group_actions # type: ignore[attr-defined]
if isinstance(a, argparse._SubParsersAction)
)
self.assertEqual(subparsers_action.metavar, "{foo,bar}")
def test_add_arguments_and_common_args_present(self):
specs: dict[str, TargetSpec] = {
"foo": {"runner": FooRunner, "add_arguments": add_foo_args},
}
parser = build_parser(specs)
foo = get_subparser(parser, "foo")
help_text = foo.format_help()
self.assertIn("--x", help_text)
self.assertIn("--verbose", help_text)
def test_runner_constructed_with_ns_and_run_called(self):
specs: dict[str, TargetSpec] = {
"foo": {"runner": FooRunner, "add_arguments": add_foo_args},
}
parser = build_parser(specs)
with (
patch.object(FooRunner, "__init__", return_value=None) as mock_init,
patch.object(FooRunner, "run", return_value=None) as mock_run,
):
ns = parser.parse_args(["foo", "--x", "3", "--verbose"])
ns.func(ns) # set by register_targets
# __init__ received the Namespace
self.assertEqual(mock_init.call_count, 1)
(called_ns,), _ = mock_init.call_args
self.assertIsInstance(called_ns, argparse.Namespace)
# run() called with no args
mock_run.assert_called_once_with()
def test_runner_docstring_used_as_description_when_missing(self):
specs: dict[str, TargetSpec] = {
"foo": {"runner": FooRunner, "add_arguments": add_foo_args},
}
parser = build_parser(specs)
foo = get_subparser(parser, "foo")
help_text = foo.format_help()
self.assertIn("Foo description from docstring.", help_text)
def test_missing_target_raises_systemexit_with_usage(self):
specs: dict[str, TargetSpec] = {"foo": {"runner": FooRunner}}
parser = build_parser(specs)
buf = io.StringIO()
with self.assertRaises(SystemExit), redirect_stderr(buf):
parser.parse_args([])
err = buf.getvalue()
self.assertIn("usage:", err)
if __name__ == "__main__":
unittest.main()

View File

@ -1,75 +0,0 @@
import unittest
from unittest import mock
from unittest.mock import MagicMock
import docker.errors as derr
from cli.lib.common.docker_helper import _get_client, local_image_exists
class TestDockerImageHelpers(unittest.TestCase):
def setUp(self):
# Reset the singleton in the target module
patcher = mock.patch("cli.lib.common.docker_helper._docker_client", None)
self.addCleanup(patcher.stop)
patcher.start()
def test_local_image_exists_true(self):
# Mock a docker client whose images.get returns an object (no exception)
mock_client = MagicMock()
mock_client.images.get.return_value = object()
ok = local_image_exists("repo:tag", client=mock_client)
self.assertTrue(ok)
def test_local_image_exists_not_found_false(self):
mock_client = MagicMock()
# Raise docker.errors.NotFound
mock_client.images.get.side_effect = derr.NotFound("nope")
ok = local_image_exists("missing:latest", client=mock_client)
self.assertFalse(ok)
def test_local_image_exists_api_error_false(self):
mock_client = MagicMock()
mock_client.images.get.side_effect = derr.APIError("boom", None)
ok = local_image_exists("broken:tag", client=mock_client)
self.assertFalse(ok)
def test_local_image_exists_uses_lazy_singleton(self):
# Patch docker.from_env used by _get_client()
with mock.patch(
"cli.lib.common.docker_helper.docker.from_env"
) as mock_from_env:
mock_docker_client = MagicMock()
mock_from_env.return_value = mock_docker_client
# First call should create and cache the client
c1 = _get_client()
self.assertIs(c1, mock_docker_client)
mock_from_env.assert_called_once()
# Second call should reuse cached client (no extra from_env calls)
c2 = _get_client()
self.assertIs(c2, mock_docker_client)
mock_from_env.assert_called_once() # still once
def test_local_image_exists_without_client_param_calls_get_client_once(self):
# Ensure _get_client is called and cached; local_image_exists should reuse it
with mock.patch("cli.lib.common.docker_helper._get_client") as mock_get_client:
mock_client = MagicMock()
mock_get_client.return_value = mock_client
# 1st call
local_image_exists("repo:tag")
# 2nd call
local_image_exists("repo:tag2")
# local_image_exists should call _get_client each time,
# but your _get_client itself caches docker.from_env.
self.assertEqual(mock_get_client.call_count, 2)
self.assertEqual(mock_client.images.get.call_count, 2)
mock_client.images.get.assert_any_call("repo:tag")
mock_client.images.get.assert_any_call("repo:tag2")
if __name__ == "__main__":
unittest.main()

View File

@ -1,149 +0,0 @@
import os
import unittest
from dataclasses import dataclass
from pathlib import Path
from unittest.mock import patch
import cli.lib.common.envs_helper as m
class TestEnvHelpers(unittest.TestCase):
def setUp(self):
# Keep a copy of the original environment to restore later
self._env_backup = dict(os.environ)
def tearDown(self):
# Restore environment to original state
os.environ.clear()
os.environ.update(self._env_backup)
# -------- get_env --------
def test_get_env_unset_returns_default(self):
with patch.dict(os.environ, {}, clear=True):
self.assertEqual(m.get_env("FOO", "default"), "default")
def test_get_env_empty_returns_default(self):
with patch.dict(os.environ, {"FOO": ""}, clear=True):
self.assertEqual(m.get_env("FOO", "default"), "default")
def test_get_env_set_returns_value(self):
with patch.dict(os.environ, {"FOO": "bar"}, clear=True):
self.assertEqual(m.get_env("FOO", "default"), "bar")
def test_get_env_not_exist_returns_default(self):
with patch.dict(os.environ, {"FOO": "bar"}, clear=True):
self.assertEqual(m.get_env("TEST_NOT_EXIST", "default"), "default")
def test_get_env_not_exist_without_default(self):
with patch.dict(os.environ, {"FOO": "bar"}, clear=True):
self.assertEqual(m.get_env("TEST_NOT_EXIST"), "")
# -------- env_bool --------
def test_env_bool_uses_default_when_unset(self):
with patch.dict(os.environ, {}, clear=True):
self.assertTrue(m.env_bool("FLAG", default=True))
self.assertFalse(m.env_bool("FLAG", default=False))
def test_env_bool_uses_str2bool_when_set(self):
# Patch str2bool used by env_bool so we don't depend on its exact behavior
def fake_str2bool(s: str) -> bool:
return s.lower() in {"1", "true", "yes", "on", "y"}
with (
patch.dict(os.environ, {"FLAG": "yEs"}, clear=True),
patch.object(m, "str2bool", fake_str2bool),
):
self.assertTrue(m.env_bool("FLAG", default=False))
# -------- env_path_optional / env_path --------
def test_env_path_optional_unset_returns_none_by_default(self):
with patch.dict(os.environ, {}, clear=True):
self.assertIsNone(m.env_path_optional("P"))
def test_env_path_optional_unset_returns_none_when_env_var_is_empty(self):
with patch.dict(os.environ, {"P": ""}, clear=True):
self.assertIsNone(m.env_path_optional("P"))
def test_env_path_optional_unset_returns_default_str(self):
# default as string; resolve=True by default -> absolute path
default_str = "x/y"
with patch.dict(os.environ, {}, clear=True):
p = m.env_path_optional("P", default=default_str)
self.assertIsInstance(p, Path)
self.assertIsNotNone(p)
if p:
self.assertTrue(p.is_absolute())
self.assertEqual(p.parts[-2:], ("x", "y"))
def test_env_path_optional_unset_returns_default_path_no_resolve(self):
d = Path("z")
with patch.dict(os.environ, {}, clear=True):
p = m.env_path_optional("P", default=d, resolve=False)
self.assertEqual(p, d)
def test_env_path_optional_respects_resolve_true(self):
with patch.dict(os.environ, {"P": "a/b"}, clear=True):
p = m.env_path_optional("P", resolve=True)
self.assertIsInstance(p, Path)
if p:
self.assertTrue(p.is_absolute())
def test_env_path_optional_respects_resolve_false(self):
with patch.dict(os.environ, {"P": "rel/dir"}, clear=True):
p = m.env_path_optional("P", resolve=False)
self.assertEqual(p, Path("rel/dir"))
if p:
self.assertFalse(p.is_absolute())
def test_env_path_raises_when_missing_and_default_none(self):
with patch.dict(os.environ, {}, clear=True):
with self.assertRaises(ValueError):
m.env_path("P", None, resolve=True)
def test_env_path_returns_path_when_present(self):
tmp = Path("./b").resolve()
with patch.dict(os.environ, {"P": str(tmp)}, clear=True):
p = m.env_path("P", None, resolve=True)
self.assertEqual(p, tmp)
# -------- dataclass field helpers --------
def test_dataclass_fields_read_env_at_instantiation(self):
@dataclass
class Cfg:
flag: bool = m.env_bool_field("FLAG", default=False)
out: Path = m.env_path_field("OUT", default="ab", resolve=True)
name: str = m.env_str_field("NAME", default="anon")
# First instantiation
with patch.dict(
os.environ, {"FLAG": "true", "OUT": "outdir", "NAME": "alice"}, clear=True
):
cfg1 = Cfg()
self.assertTrue(cfg1.flag)
self.assertIsInstance(cfg1.out, Path)
self.assertTrue(cfg1.out.is_absolute())
self.assertEqual(cfg1.name, "alice")
cfg1.name = "bob" # change instance value
self.assertEqual(cfg1.name, "bob") # change is reflected
# Change env; new instance should reflect new values
with patch.dict(os.environ, {"FLAG": "false", "NAME": ""}, clear=True):
cfg2 = Cfg()
self.assertFalse(cfg2.flag) # str2bool("false") -> False
self.assertTrue("ab" in str(cfg2.out))
self.assertIsInstance(cfg2.out, Path)
self.assertTrue(cfg2.out.is_absolute())
self.assertEqual(cfg2.name, "anon") # empty -> fallback to default
def test_dataclass_path_field_with_default_value(self):
@dataclass
class C2:
out: Path = m.env_path_field("OUT", default="some/dir", resolve=False)
with patch.dict(os.environ, {}, clear=True):
c = C2()
self.assertEqual(c.out, Path("some/dir"))
if __name__ == "__main__":
unittest.main()

View File

@ -1,122 +0,0 @@
# test_path_utils.py
# Run: pytest -q
import os
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from cli.lib.common.path_helper import (
copy,
ensure_dir_exists,
force_create_dir,
get_path,
is_path_exist,
remove_dir,
)
class TestPathHelper(unittest.TestCase):
def setUp(self):
self.tmpdir = TemporaryDirectory()
self.tmp_path = Path(self.tmpdir.name)
def tearDown(self):
self.tmpdir.cleanup()
# -------- get_path --------
def test_get_path_returns_path_for_str(self):
# Use relative path to avoid absolute-ness
rel_str = "sub/f.txt"
os.chdir(self.tmp_path)
p = get_path(rel_str, resolve=False)
self.assertIsInstance(p, Path)
self.assertFalse(p.is_absolute())
self.assertEqual(str(p), rel_str)
def test_get_path_resolves(self):
rel_str = "sub/f.txt"
p = get_path(str(self.tmp_path / rel_str), resolve=True)
self.assertTrue(p.is_absolute())
self.assertTrue(str(p).endswith(rel_str))
def test_get_path_with_path_input(self):
p_in = self.tmp_path / "sub/f.txt"
p_out = get_path(p_in, resolve=False)
self.assertTrue(str(p_out) == str(p_in))
def test_get_path_with_none_raises(self):
with self.assertRaises(ValueError):
get_path(None) # type: ignore[arg-type]
def test_get_path_invalid_type_raises(self):
with self.assertRaises(TypeError):
get_path(123) # type: ignore[arg-type]
# -------- ensure_dir_exists / force_create_dir / remove_dir --------
def test_ensure_dir_exists_creates_and_is_idempotent(self):
d = self.tmp_path / "made"
ensure_dir_exists(d)
self.assertTrue(d.exists() and d.is_dir())
ensure_dir_exists(d)
def test_force_create_dir_clears_existing(self):
d = self.tmp_path / "fresh"
(d / "inner").mkdir(parents=True)
(d / "inner" / "f.txt").write_text("x")
force_create_dir(d)
self.assertTrue(d.exists())
self.assertEqual(list(d.iterdir()), [])
def test_remove_dir_none_is_noop(self):
remove_dir(None) # type: ignore[arg-type]
def test_remove_dir_nonexistent_is_noop(self):
ghost = self.tmp_path / "ghost"
remove_dir(ghost)
def test_remove_dir_accepts_str(self):
d = self.tmp_path / "to_rm"
d.mkdir()
remove_dir(str(d))
self.assertFalse(d.exists())
# -------- copy --------
def test_copy_file_to_file(self):
src = self.tmp_path / "src.txt"
dst = self.tmp_path / "out" / "dst.txt"
src.write_text("hello")
copy(src, dst)
self.assertEqual(dst.read_text(), "hello")
def test_copy_dir_to_new_dir(self):
src = self.tmp_path / "srcdir"
(src / "a").mkdir(parents=True)
(src / "a" / "f.txt").write_text("content")
dst = self.tmp_path / "destdir"
copy(src, dst)
self.assertEqual((dst / "a" / "f.txt").read_text(), "content")
def test_copy_dir_into_existing_dir_overwrite_true_merges(self):
src = self.tmp_path / "srcdir"
dst = self.tmp_path / "destdir"
(src / "x").mkdir(parents=True)
(src / "x" / "new.txt").write_text("new")
dst.mkdir()
(dst / "existing.txt").write_text("old")
copy(src, dst)
self.assertEqual((dst / "existing.txt").read_text(), "old")
self.assertEqual((dst / "x" / "new.txt").read_text(), "new")
def test_is_str_path_exist(self):
p = self.tmp_path / "x.txt"
p.write_text("1")
self.assertTrue(is_path_exist(str(p)))
self.assertTrue(is_path_exist(p))
self.assertFalse(is_path_exist(str(self.tmp_path / "missing")))
self.assertFalse(is_path_exist(self.tmp_path / "missing"))
self.assertFalse(is_path_exist(""))
if __name__ == "__main__":
unittest.main()

View File

@ -1,181 +0,0 @@
import os
import tempfile
import unittest
from pathlib import Path
from unittest.mock import MagicMock, patch
import cli.lib.core.vllm as vllm
class TestVllmBuildParameters(unittest.TestCase):
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
@patch("cli.lib.core.vllm.is_path_exist", return_value=True)
@patch(
"cli.lib.common.envs_helper.env_path_optional",
side_effect=lambda name, default=None, resolve=True: {
"DOCKERFILE_PATH": Path("/abs/vllm/Dockerfile"),
"TORCH_WHEELS_PATH": Path("/abs/dist"),
"OUTPUT_DIR": Path("/abs/shared"),
}.get(name, Path(default) if default is not None else None),
)
@patch.dict(
os.environ,
{
"USE_TORCH_WHEEL": "1",
"USE_LOCAL_BASE_IMAGE": "1",
"USE_LOCAL_DOCKERFILE": "1",
"BASE_IMAGE": "my/image:tag",
"DOCKERFILE_PATH": "vllm/Dockerfile",
"TORCH_WHEELS_PATH": "dist",
"OUTPUT_DIR": "shared",
},
clear=True,
)
def test_params_success_normalizes_and_validates(
self, mock_env_path, mock_is_path, mock_local_img
):
params = vllm.VllmBuildParameters()
self.assertEqual(params.torch_whls_path, Path("/abs/dist"))
self.assertEqual(params.dockerfile_path, Path("/abs/vllm/Dockerfile"))
self.assertEqual(params.output_dir, Path("/abs/shared"))
self.assertEqual(params.base_image, "my/image:tag")
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ, {"USE_TORCH_WHEEL": "1", "TORCH_WHEELS_PATH": "dist"}, clear=True
)
def test_params_missing_torch_whls_raises(self, _is_path):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm.VllmBuildParameters(
use_local_base_image=False,
use_local_dockerfile=False,
)
err = cm.exception
self.assertIn("TORCH_WHEELS_PATH", str(err))
@patch("cli.lib.core.vllm.local_image_exists", return_value=False)
@patch.dict(
os.environ, {"USE_LOCAL_BASE_IMAGE": "1", "BASE_IMAGE": "img:tag"}, clear=True
)
def test_params_missing_local_base_image_raises(self, _local_img):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm.VllmBuildParameters(
use_torch_whl=False,
use_local_dockerfile=False,
)
err = cm.exception
self.assertIn("BASE_IMAGE", str(err))
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ,
{"USE_LOCAL_DOCKERFILE": "1", "DOCKERFILE_PATH": "Dockerfile"},
clear=True,
)
def test_params_missing_dockerfile_raises(self, _is_path):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm.VllmBuildParameters(
use_torch_whl=False,
use_local_base_image=False,
)
err = cm.exception
self.assertIn("DOCKERFILE_PATH", str(err))
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ,
{"OUTPUT_DIR": ""},
clear=True,
)
def test_params_missing_output_dir(self, _is_path):
with self.assertRaises(FileNotFoundError):
vllm.VllmBuildParameters()
class TestBuildCmdAndRun(unittest.TestCase):
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
def test_generate_docker_build_cmd_includes_bits(self, _exists):
runner = vllm.VllmBuildRunner()
# Craft inputs that simulate a prepared build
inputs = MagicMock()
inputs.output_dir = Path("/abs/out")
inputs.use_local_base_image = True
inputs.base_image = "img:tag"
inputs.torch_whls_path = Path("./vllm/tmp")
inputs.max_jobs = 64
inputs.cuda_version = "12.8.1"
inputs.python_version = "3.12"
inputs.sccache_bucket = "my-bucket"
inputs.sccache_region = "us-west-2"
inputs.torch_cuda_arch_list = "8.0;9.0"
inputs.target_stage = "export-wheels"
inputs.tag_name = "vllm-wheels"
cmd = runner._generate_docker_build_cmd(inputs)
squashed = " ".join(cmd.split()) # normalize whitespace for matching
self.assertIn("--output type=local,dest=/abs/out", squashed)
self.assertIn("-f docker/Dockerfile.nightly_torch", squashed)
self.assertIn("--pull=false", squashed)
self.assertIn("--build-arg TORCH_WHEELS_PATH=tmp", squashed)
self.assertIn("--build-arg BUILD_BASE_IMAGE=img:tag", squashed)
self.assertIn("--build-arg FINAL_BASE_IMAGE=img:tag", squashed)
self.assertIn("--build-arg max_jobs=64", squashed)
self.assertIn("--build-arg CUDA_VERSION=12.8.1", squashed)
self.assertIn("--build-arg PYTHON_VERSION=3.12", squashed)
self.assertIn("--build-arg USE_SCCACHE=1", squashed)
self.assertIn("--build-arg SCCACHE_BUCKET_NAME=my-bucket", squashed)
self.assertIn("--build-arg SCCACHE_REGION_NAME=us-west-2", squashed)
self.assertIn("--build-arg torch_cuda_arch_list='8.0;9.0'", squashed)
self.assertIn("--target export-wheels", squashed)
self.assertIn("-t vllm-wheels", squashed)
@patch("cli.lib.core.vllm.run_command")
@patch("cli.lib.core.vllm.ensure_dir_exists")
@patch("cli.lib.core.vllm.clone_vllm")
@patch.object(
vllm.VllmBuildRunner,
"_generate_docker_build_cmd",
return_value="docker buildx ...",
)
@patch.dict(
os.environ,
{
# Make __post_init__ validations pass cheaply
"USE_TORCH_WHEEL": "0",
"USE_LOCAL_BASE_IMAGE": "0",
"USE_LOCAL_DOCKERFILE": "0",
"OUTPUT_DIR": "shared",
},
clear=True,
)
def test_run_calls_clone_prepare_and_build(
self, mock_gen, mock_clone, mock_ensure, mock_run
):
# Stub parameters instance so we avoid FS/Docker accesses in run()
params = MagicMock()
params.output_dir = Path("shared")
params.use_local_dockerfile = False
params.use_torch_whl = False
with patch("cli.lib.core.vllm.VllmBuildParameters", return_value=params):
runner = vllm.VllmBuildRunner()
runner.run()
mock_clone.assert_called_once()
mock_ensure.assert_called_once_with(Path("shared"))
mock_gen.assert_called_once_with(params)
mock_run.assert_called_once()
# ensure we run in vllm workdir
_, kwargs = mock_run.call_args
assert kwargs.get("cwd") == "vllm"
if __name__ == "__main__":
unittest.main()

View File

@ -1,7 +1,7 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_CUDA ?= 12.8
DESIRED_CUDA ?= 11.8
DESIRED_CUDA_SHORT = $(subst .,,$(DESIRED_CUDA))
PACKAGE_NAME = magma-cuda
CUDA_ARCH_LIST ?= -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90
@ -16,21 +16,15 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma/build_magma.sh
.PHONY: all
all: magma-cuda129
all: magma-cuda128
all: magma-cuda126
all: magma-cuda118
.PHONY:
clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-cuda129
magma-cuda129: DESIRED_CUDA := 12.9
magma-cuda129: CUDA_ARCH_LIST += -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
magma-cuda129:
$(DOCKER_RUN)
.PHONY: magma-cuda128
magma-cuda128: DESIRED_CUDA := 12.8
magma-cuda128: CUDA_ARCH_LIST += -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
@ -41,3 +35,9 @@ magma-cuda128:
magma-cuda126: DESIRED_CUDA := 12.6
magma-cuda126:
$(DOCKER_RUN)
.PHONY: magma-cuda118
magma-cuda118: DESIRED_CUDA := 11.8
magma-cuda118: CUDA_ARCH_LIST += -gencode arch=compute_37,code=sm_37
magma-cuda118:
$(DOCKER_RUN)

View File

@ -5,6 +5,10 @@ set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
case "${GPU_ARCH_TYPE:-BLANK}" in
BLANK)
# Legacy behavior for CircleCI
bash "${SCRIPTPATH}/build_cuda.sh"
;;
cuda)
bash "${SCRIPTPATH}/build_cuda.sh"
;;

View File

@ -18,10 +18,12 @@ retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
PLATFORM=""
PLATFORM="manylinux2014_x86_64"
# TODO move this into the Docker images
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
PLATFORM="manylinux_2_28_x86_64"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
@ -31,11 +33,9 @@ elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
# We use the package name to test the package by passing this to 'pip install'
@ -79,6 +79,8 @@ if [[ -e /opt/openssl ]]; then
export CMAKE_INCLUDE_PATH="/opt/openssl/include":$CMAKE_INCLUDE_PATH
fi
mkdir -p /tmp/$WHEELHOUSE_DIR
export PATCHELF_BIN=/usr/local/bin/patchelf
@ -97,7 +99,6 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
case ${DESIRED_PYTHON} in
@ -138,11 +139,28 @@ fi
echo "Calling setup.py bdist at $(date)"
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "Calling setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
echo "Calling setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR --cmake
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
fi
echo "Finished setup.py bdist at $(date)"
# Build libtorch packages
@ -255,6 +273,10 @@ ls /tmp/$WHEELHOUSE_DIR
mkdir -p "/$WHEELHOUSE_DIR"
mv /tmp/$WHEELHOUSE_DIR/torch*linux*.whl /$WHEELHOUSE_DIR/
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
mv /tmp/$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/ || true
fi
if [[ -n "$BUILD_PYTHONLESS" ]]; then
mkdir -p /$LIBTORCH_HOUSE_DIR
mv /tmp/$LIBTORCH_HOUSE_DIR/*.zip /$LIBTORCH_HOUSE_DIR
@ -431,8 +453,16 @@ if [[ -z "$BUILD_PYTHONLESS" ]]; then
pushd $PYTORCH_ROOT/test
# Install the wheel for this Python version
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip uninstall -y "$TORCH_NO_PYTHON_PACKAGE_NAME" || true
fi
pip uninstall -y "$TORCH_PACKAGE_NAME"
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip install "$TORCH_NO_PYTHON_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
fi
pip install "$TORCH_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
# Print info on the libraries installed in this wheel

View File

@ -15,9 +15,6 @@ export INSTALL_TEST=0 # dont install test binaries into site-packages
export USE_CUPTI_SO=0
export USE_CUSPARSELT=${USE_CUSPARSELT:-1} # Enable if not disabled by libtorch build
export USE_CUFILE=${USE_CUFILE:-1}
export USE_SYSTEM_NCCL=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
# Keep an array of cmake variables to add to
if [[ -z "$CMAKE_ARGS" ]]; then
@ -39,8 +36,10 @@ if [[ -n "$DESIRED_CUDA" ]]; then
if [[ ${DESIRED_CUDA} =~ ^[0-9]+\.[0-9]+$ ]]; then
CUDA_VERSION=${DESIRED_CUDA}
else
# cu126, cu128 etc...
if [[ ${#DESIRED_CUDA} -eq 5 ]]; then
# cu90, cu92, cu100, cu101
if [[ ${#DESIRED_CUDA} -eq 4 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3:1}"
elif [[ ${#DESIRED_CUDA} -eq 5 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4:1}"
fi
fi
@ -51,23 +50,24 @@ else
fi
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6"
case ${CUDA_VERSION} in
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
12.8)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
;;
12.9)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
# WAR to resolve the ld error in libtorch build with CUDA 12.9
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
fi
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX" #removing sm_50-sm_70 as these architectures are deprecated in CUDA 12.8 and will be removed in future releases
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
12.6)
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
12.4)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
11.8)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7;9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
*)
echo "unknown cuda version $CUDA_VERSION"
@ -91,15 +91,14 @@ fi
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
DEPS_LIST=(
@ -109,12 +108,31 @@ DEPS_SONAME=(
"libgomp.so.1"
)
# CUDA 11.8 have to ship the libcusparseLt.so.0 with the binary
# since nvidia-cusparselt-cu11 is not available in PYPI
if [[ $USE_CUSPARSELT == "1" && $CUDA_VERSION == "11.8" ]]; then
DEPS_SONAME+=(
"libcusparseLt.so.0"
)
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcusparseLt.so.0"
)
fi
# CUDA_VERSION 12.6, 12.8, 12.9
# Turn USE_CUFILE off for CUDA 11.8, 12.4 since nvidia-cufile-cu11 and 1.9.0.20 are
# not available in PYPI
if [[ $CUDA_VERSION == "11.8" || $CUDA_VERSION == "12.4" ]]; then
export USE_CUFILE=0
fi
# CUDA_VERSION 12.4, 12.6, 12.8
if [[ $CUDA_VERSION == 12* ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
@ -130,13 +148,9 @@ if [[ $CUDA_VERSION == 12* ]]; then
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcusparseLt.so.0"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
"/usr/local/cuda/lib64/libnvshem_host.so.3"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
@ -151,18 +165,19 @@ if [[ $CUDA_VERSION == 12* ]]; then
"libcublasLt.so.12"
"libcusparseLt.so.0"
"libcudart.so.12"
"libnvToolsExt.so.1"
"libnvrtc.so.12"
"libnvrtc-builtins.so"
"libnvshmem_host.so.3"
"libcufile.so.0"
"libcufile_rdma.so.1"
"libcupti.so.12"
"libnvperf_host.so"
)
# Add libnvToolsExt only if CUDA version is not 12.9
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
if [[ $USE_CUFILE == 1 ]]; then
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
)
DEPS_SONAME+=(
"libcufile.so.0"
"libcufile_rdma.so.1"
)
fi
else
echo "Using nvidia libs from pypi."
@ -176,21 +191,94 @@ if [[ $CUDA_VERSION == 12* ]]; then
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/cusparselt/lib'
'$ORIGIN/../../cusparselt/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvshmem/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
'$ORIGIN/../../nvidia/cufile/lib'
)
if [[ $USE_CUFILE == 1 ]]; then
CUDA_RPATHS+=(
'$ORIGIN/../../nvidia/cufile/lib'
)
fi
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
elif [[ $CUDA_VERSION == "11.8" ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
# Bundle ptxas into the wheel, see https://github.com/pytorch/pytorch/pull/119750
export BUILD_BUNDLE_PTXAS=1
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
"/usr/local/cuda/lib64/libcudnn_graph.so.9"
"/usr/local/cuda/lib64/libcudnn_ops.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.11"
"/usr/local/cuda/lib64/libcublasLt.so.11"
"/usr/local/cuda/lib64/libcudart.so.11.0"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.11.2" # this is not a mistake, it links to more specific cuda version
"/usr/local/cuda/lib64/libnvrtc-builtins.so.11.8"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
"libcudnn_cnn.so.9"
"libcudnn_graph.so.9"
"libcudnn_ops.so.9"
"libcudnn_engines_runtime_compiled.so.9"
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.11"
"libcublasLt.so.11"
"libcudart.so.11.0"
"libnvToolsExt.so.1"
"libnvrtc.so.11.2"
"libnvrtc-builtins.so.11.8"
)
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
)
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
else
echo "Unknown cuda version $CUDA_VERSION"

View File

@ -22,7 +22,9 @@ retry () {
# TODO move this into the Docker images
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
retry dnf install -q -y zip openssl
@ -33,9 +35,6 @@ elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
# Version: setup.py uses $PYTORCH_BUILD_VERSION.post$PYTORCH_BUILD_NUMBER if
@ -92,7 +91,6 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
retry pip install -q numpy==2.0.1
@ -104,7 +102,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling 'python -m pip install .' at $(date)"
echo "Calling setup.py install at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
@ -120,7 +118,7 @@ fi
# TODO: Remove this flag once https://github.com/pytorch/pytorch/issues/55952 is closed
CFLAGS='-Wno-deprecated-declarations' \
BUILD_LIBTORCH_CPU_WITH_DEBUG=1 \
python -m pip install --no-build-isolation -v .
python setup.py install
mkdir -p libtorch/{lib,bin,include,share}

View File

@ -95,7 +95,6 @@ ROCM_SO_FILES=(
"libroctracer64.so"
"libroctx64.so"
"libhipblaslt.so"
"libhipsparselt.so"
"libhiprtc.so"
)
@ -187,28 +186,20 @@ do
OS_SO_FILES[${#OS_SO_FILES[@]}]=$file_name # Append lib to array
done
ARCH=$(echo $PYTORCH_ROCM_ARCH | sed 's/;/|/g') # Replace ; separated arch list to bar for grep
# rocBLAS library files
ROCBLAS_LIB_SRC=$ROCM_HOME/lib/rocblas/library
ROCBLAS_LIB_DST=lib/rocblas/library
ROCBLAS_ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
ROCBLAS_OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ROCBLAS_ARCH_SPECIFIC_FILES $ROCBLAS_OTHER_FILES)
ARCH=$(echo $PYTORCH_ROCM_ARCH | sed 's/;/|/g') # Replace ; seperated arch list to bar for grep
ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# hipblaslt library files
HIPBLASLT_LIB_SRC=$ROCM_HOME/lib/hipblaslt/library
HIPBLASLT_LIB_DST=lib/hipblaslt/library
HIPBLASLT_ARCH_SPECIFIC_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -E $ARCH)
HIPBLASLT_OTHER_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -v gfx)
HIPBLASLT_LIB_FILES=($HIPBLASLT_ARCH_SPECIFIC_FILES $HIPBLASLT_OTHER_FILES)
# hipsparselt library files
HIPSPARSELT_LIB_SRC=$ROCM_HOME/lib/hipsparselt/library
HIPSPARSELT_LIB_DST=lib/hipsparselt/library
HIPSPARSELT_ARCH_SPECIFIC_FILES=$(ls $HIPSPARSELT_LIB_SRC | grep -E $ARCH)
#HIPSPARSELT_OTHER_FILES=$(ls $HIPSPARSELT_LIB_SRC | grep -v gfx)
HIPSPARSELT_LIB_FILES=($HIPSPARSELT_ARCH_SPECIFIC_FILES $HIPSPARSELT_OTHER_FILES)
ARCH_SPECIFIC_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -v gfx)
HIPBLASLT_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# ROCm library files
ROCM_SO_PATHS=()
@ -243,14 +234,12 @@ DEPS_SONAME=(
DEPS_AUX_SRCLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_SRC/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_SRC/}"
"${HIPSPARSELT_LIB_FILES[@]/#/$HIPSPARSELT_LIB_SRC/}"
"/opt/amdgpu/share/libdrm/amdgpu.ids"
)
DEPS_AUX_DSTLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_DST/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_DST/}"
"${HIPSPARSELT_LIB_FILES[@]/#/$HIPSPARSELT_LIB_DST/}"
"share/libdrm/amdgpu.ids"
)

View File

@ -19,7 +19,7 @@ git config --global --add safe.directory /var/lib/jenkins/workspace
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# TODO: This can be removed later once vision is also part of the Docker image
pip install -q --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
pip install -q --user --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
# JIT C++ extensions require ninja, so put it into PATH.
export PATH="/var/lib/jenkins/.local/bin:$PATH"
# NB: ONNX test is fast (~15m) so it's ok to retry it few more times to avoid any flaky issue, we

34
.ci/pytorch/build-mobile.sh Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env bash
# DO NOT ADD 'set -x' not to reveal CircleCI secret context environment variables
set -eu -o pipefail
# This script uses linux host toolchain + mobile build options in order to
# build & test mobile libtorch without having to setup Android/iOS
# toolchain/simulator.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Install torch & torchvision - used to download & trace test model.
# Ideally we should use the libtorch built on the PR so that backward
# incompatible changes won't break this script - but it will significantly slow
# down mobile CI jobs.
# Here we install nightly instead of stable so that we have an option to
# temporarily skip mobile CI jobs on BC-breaking PRs until they are in nightly.
retry pip install --pre torch torchvision \
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html \
--progress-bar off
# Run end-to-end process of building mobile library, linking into the predictor
# binary, and running forward pass with a real model.
if [[ "$BUILD_ENVIRONMENT" == *-mobile-custom-build-static* ]]; then
TEST_CUSTOM_BUILD_STATIC=1 test/mobile/custom_build/build.sh
elif [[ "$BUILD_ENVIRONMENT" == *-mobile-lightweight-dispatch* ]]; then
test/mobile/lightweight_dispatch/build.sh
else
TEST_DEFAULT_BUILD=1 test/mobile/custom_build/build.sh
fi
print_sccache_stats

View File

@ -11,6 +11,10 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
if [[ "$BUILD_ENVIRONMENT" == *-mobile-*build* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-mobile.sh" "$@"
fi
echo "Python version:"
python --version
@ -23,12 +27,6 @@ cmake --version
echo "Environment variables:"
env
# The sccache wrapped version of nvcc gets put in /opt/cache/lib in docker since
# there are some issues if it is always wrapped, so we need to add it to PATH
# during CI builds.
# https://github.com/pytorch/pytorch/blob/0b6c0898e6c352c8ea93daec854e704b41485375/.ci/docker/common/install_cache.sh#L97
export PATH="/opt/cache/lib:$PATH"
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
# Use jemalloc during compilation to mitigate https://github.com/pytorch/pytorch/issues/116289
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2
@ -50,6 +48,15 @@ if [[ ${BUILD_ENVIRONMENT} == *"parallelnative"* ]]; then
export ATEN_THREADING=NATIVE
fi
# Enable LLVM dependency for TensorExpr testing
export USE_LLVM=/opt/llvm
export LLVM_DIR=/opt/llvm/lib/cmake/llvm
if [[ "$BUILD_ENVIRONMENT" == *executorch* ]]; then
# To build test_edge_op_registration
export BUILD_EXECUTORCH=ON
export USE_CUDA=0
fi
if ! which conda; then
# In ROCm CIs, we are doing cross compilation on build machines with
@ -92,27 +99,6 @@ if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export ACL_ROOT_DIR=/ComputeLibrary
fi
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then
if [[ -f /opt/riscv-cross-env/bin/activate ]]; then
# shellcheck disable=SC1091
source /opt/riscv-cross-env/bin/activate
else
echo "Activation file not found"
exit 1
fi
export CMAKE_CROSSCOMPILING=TRUE
export CMAKE_SYSTEM_NAME=Linux
export CMAKE_SYSTEM_PROCESSOR=riscv64
export USE_CUDA=0
export USE_MKLDNN=0
export SLEEF_TARGET_EXEC_USE_QEMU=ON
sudo chown -R jenkins /var/lib/jenkins/workspace /opt
fi
if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
POSSIBLE_JAVA_HOMES=()
POSSIBLE_JAVA_HOMES+=(/usr/local)
@ -138,8 +124,26 @@ if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
fi
# Use special scripts for Android builds
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
export ANDROID_NDK=/opt/ndk
build_args=()
if [[ "${BUILD_ENVIRONMENT}" == *-arm-v7a* ]]; then
build_args+=("-DANDROID_ABI=armeabi-v7a")
elif [[ "${BUILD_ENVIRONMENT}" == *-arm-v8a* ]]; then
build_args+=("-DANDROID_ABI=arm64-v8a")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_32* ]]; then
build_args+=("-DANDROID_ABI=x86")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_64* ]]; then
build_args+=("-DANDROID_ABI=x86_64")
fi
if [[ "${BUILD_ENVIRONMENT}" == *vulkan* ]]; then
build_args+=("-DUSE_VULKAN=ON")
fi
build_args+=("-DUSE_LITE_INTERPRETER_PROFILER=OFF")
exec ./scripts/build_android.sh "${build_args[@]}" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *android* && "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
export USE_VULKAN=1
# shellcheck disable=SC1091
source /var/lib/jenkins/vulkansdk/setup-env.sh
@ -194,8 +198,10 @@ fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && echo "${TORCH_CUDA_ARCH_LIST}" | tr ' ' '\n' | sed 's/$/>= 8.0/' | bc | grep -q 1; then
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]] && [ -z "$MAX_JOBS_OVERRIDE" ]; then
echo "WARNING: FlashAttention files require large amounts of memory to build and will OOM"
echo "Setting MAX_JOBS=(nproc-2)/3 to reduce memory usage"
export MAX_JOBS="$(( $(nproc --ignore=2) / 3 ))"
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
@ -210,6 +216,7 @@ if [[ "$BUILD_ENVIRONMENT" == *-clang*-asan* ]]; then
export USE_ASAN=1
export REL_WITH_DEB_INFO=1
export UBSAN_FLAGS="-fno-sanitize-recover=all"
unset USE_LLVM
fi
if [[ "${BUILD_ENVIRONMENT}" == *no-ops* ]]; then
@ -220,7 +227,7 @@ if [[ "${BUILD_ENVIRONMENT}" == *-pch* ]]; then
export USE_PRECOMPILED_HEADERS=1
fi
if [[ "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
@ -230,7 +237,7 @@ fi
# Do not change workspace permissions for ROCm and s390x CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *riscv64* && -d /var/lib/jenkins/workspace ]]; then
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /var/lib/jenkins/workspace ]]; then
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
cleanup_workspace() {
@ -250,7 +257,6 @@ if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
set -e -o pipefail
get_bazel
python3 tools/optional_submodules.py checkout_eigen
# Leave 1 CPU free and use only up to 80% of memory to reduce the change of crashing
# the runner
@ -275,38 +281,32 @@ else
# XLA test build fails when WERROR=1
# set only when building other architectures
# or building non-XLA tests.
if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *xla* && "$BUILD_ENVIRONMENT" != *riscv64* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *rocm* &&
"$BUILD_ENVIRONMENT" != *xla* ]]; then
# Install numpy-2.0.2 for builds which are backward compatible with 1.X
python -mpip install numpy==2.0.2
WERROR=1 python setup.py clean
WERROR=1 python setup.py bdist_wheel
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
python3 tools/packaging/split_wheel.py bdist_wheel
else
WERROR=1 python setup.py bdist_wheel
fi
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
python setup.py bdist_wheel
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "USE_SPLIT_BUILD cannot be used with xla or rocm"
exit 1
else
python setup.py bdist_wheel
fi
fi
pip_install_whl "$(echo dist/*.whl)"
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *vision* ]]; then
install_torchvision
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *audio* ]]; then
install_torchaudio
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchrec* || "${BUILD_ADDITIONAL_PACKAGES:-}" == *fbgemm* ]]; then
install_torchrec_and_fbgemm
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchao* ]]; then
install_torchao
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
echo "Checking that xpu is compiled"
pushd dist/
@ -394,8 +394,10 @@ else
# This is an attempt to mitigate flaky libtorch build OOM error. By default, the build parallelization
# is set to be the number of CPU minus 2. So, let's try a more conservative value here. A 4xlarge has
# 16 CPUs
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
if [ -z "$MAX_JOBS_OVERRIDE" ]; then
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
fi
# NB: Install outside of source directory (at the same level as the root
# pytorch folder) so that it doesn't get cleaned away prior to docker push.
@ -412,7 +414,7 @@ if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]];
# don't do this for libtorch as libtorch is C++ only and thus won't have python tests run on its build
python tools/stats/export_test_times.py
fi
# don't do this for bazel or s390x or riscv64 as they don't use sccache
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *riscv64* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
# don't do this for bazel or s390x as they don't use sccache
if [[ "$BUILD_ENVIRONMENT" != *s390x* && "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
print_sccache_stats
fi

View File

@ -313,7 +313,7 @@ if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" == 'manywheel' ]]; then
# Please see issue for reference: https://github.com/pytorch/pytorch/issues/152426
if [[ "$(uname -m)" == "s390x" ]]; then
cxx_abi="19"
elif [[ "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
elif [[ "$DESIRED_CUDA" != 'cu118' && "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
cxx_abi="18"
else
cxx_abi="16"

View File

@ -13,13 +13,6 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
fi
if which sccache > /dev/null; then
# Clear SCCACHE_BUCKET and SCCACHE_REGION if they are empty, otherwise
# sccache will complain about invalid bucket configuration
if [[ -z "${SCCACHE_BUCKET:-}" ]]; then
unset SCCACHE_BUCKET
unset SCCACHE_REGION
fi
# Save sccache logs to file
sccache --stop-server > /dev/null 2>&1 || true
rm -f ~/sccache_error.log || true

View File

@ -15,6 +15,6 @@ if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
export PYTORCH_TEST_WITH_ROCM=1
fi
# TODO: Reenable libtorch testing for MacOS, see https://github.com/pytorch/pytorch/issues/62598
# TODO: Renable libtorch testing for MacOS, see https://github.com/pytorch/pytorch/issues/62598
# shellcheck disable=SC2034
BUILD_TEST_LIBTORCH=0

View File

@ -78,34 +78,6 @@ function pip_install_whl() {
fi
}
function pip_build_and_install() {
local build_target=$1
local wheel_dir=$2
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
python3 -m pip wheel \
--no-build-isolation \
--no-deps \
--no-use-pep517 \
-w "${wheel_dir}" \
"${build_target}"
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
}
function pip_install() {
# retry 3 times
@ -152,7 +124,14 @@ function get_pinned_commit() {
function install_torchaudio() {
local commit
commit=$(get_pinned_commit audio)
pip_build_and_install "git+https://github.com/pytorch/audio.git@${commit}" dist/audio
if [[ "$1" == "cuda" ]]; then
# TODO: This is better to be passed as a parameter from _linux-test workflow
# so that it can be consistent with what is set in build
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
else
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
fi
}
function install_torchtext() {
@ -160,8 +139,8 @@ function install_torchtext() {
local text_commit
data_commit=$(get_pinned_commit data)
text_commit=$(get_pinned_commit text)
pip_build_and_install "git+https://github.com/pytorch/data.git@${data_commit}" dist/data
pip_build_and_install "git+https://github.com/pytorch/text.git@${text_commit}" dist/text
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/data.git@${data_commit}"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/text.git@${text_commit}"
}
function install_torchvision() {
@ -174,19 +153,17 @@ function install_torchvision() {
echo 'char* dlerror(void) { return "";}'|gcc -fpic -shared -o "${HOME}/dlerror.so" -x c -
LD_PRELOAD=${orig_preload}:${HOME}/dlerror.so
fi
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
# Not sure if both are needed, but why not
export FORCE_CUDA=1
export WITH_CUDA=1
fi
pip_build_and_install "git+https://github.com/pytorch/vision.git@${commit}" dist/vision
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/vision.git@${commit}"
if [ -n "${LD_PRELOAD}" ]; then
LD_PRELOAD=${orig_preload}
fi
}
function install_tlparse() {
pip_install --user "tlparse==0.3.30"
PATH="$(python -m site --user-base)/bin:$PATH"
}
function install_torchrec_and_fbgemm() {
local torchrec_commit
torchrec_commit=$(get_pinned_commit torchrec)
@ -201,71 +178,25 @@ function install_torchrec_and_fbgemm() {
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]] ; then
# install torchrec first because it installs fbgemm nightly on top of rocm fbgemm
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
pip_uninstall fbgemm-gpu-nightly
# Set ROCM_HOME isn't available, use ROCM_PATH if set or /opt/rocm
ROCM_HOME="${ROCM_HOME:-${ROCM_PATH:-/opt/rocm}}"
# Find rocm_version.h header file for ROCm version extract
rocm_version_h="${ROCM_HOME}/include/rocm-core/rocm_version.h"
if [ ! -f "$rocm_version_h" ]; then
rocm_version_h="${ROCM_HOME}/include/rocm_version.h"
fi
# Error out if rocm_version.h not found
if [ ! -f "$rocm_version_h" ]; then
echo "Error: rocm_version.h not found in expected locations." >&2
exit 1
fi
# Extract major, minor and patch ROCm version numbers
MAJOR_VERSION=$(grep 'ROCM_VERSION_MAJOR' "$rocm_version_h" | awk '{print $3}')
MINOR_VERSION=$(grep 'ROCM_VERSION_MINOR' "$rocm_version_h" | awk '{print $3}')
PATCH_VERSION=$(grep 'ROCM_VERSION_PATCH' "$rocm_version_h" | awk '{print $3}')
ROCM_INT=$((MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_VERSION))
echo "ROCm version: $ROCM_INT"
export BUILD_ROCM_VERSION="$MAJOR_VERSION.$MINOR_VERSION"
pip_install tabulate # needed for newer fbgemm
pip_install patchelf # needed for rocm fbgemm
local wheel_dir=dist/fbgemm_gpu
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}" --recurse-submodules
python setup.py bdist_wheel \
--build-variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
# Save the wheel before cleaning up
mkdir -p dist/fbgemm_gpu
cp fbgemm/fbgemm_gpu/dist/*.whl dist/fbgemm_gpu
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py install \
--package_variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
rm -rf fbgemm
else
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_build_and_install "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#subdirectory=fbgemm_gpu" dist/fbgemm_gpu
# See https://github.com/pytorch/pytorch/issues/106971
CUDA_PATH=/usr/local/cuda-12.1 pip_install --no-use-pep517 --user "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#egg=fbgemm-gpu&subdirectory=fbgemm_gpu"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
fi
}
@ -281,10 +212,34 @@ function clone_pytorch_xla() {
fi
}
function checkout_install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
# TODO (huydhn): transformers-4.44.2 added by https://github.com/pytorch/benchmark/pull/2488
# is regressing speedup metric. This needs to be investigated further
pip install transformers==4.38.1
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
function install_torchao() {
local commit
commit=$(get_pinned_commit torchao)
pip_build_and_install "git+https://github.com/pytorch/ao.git@${commit}" dist/ao
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/ao.git@${commit}"
}
function print_sccache_stats() {

View File

@ -0,0 +1,123 @@
from datetime import datetime, timedelta, timezone
from tempfile import mkdtemp
from cryptography import x509
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID
temp_dir = mkdtemp()
print(temp_dir)
def genrsa(path):
key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
)
with open(path, "wb") as f:
f.write(
key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption(),
)
)
return key
def create_cert(path, C, ST, L, O, key):
subject = issuer = x509.Name(
[
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
cert = (
x509.CertificateBuilder()
.subject_name(subject)
.issuer_name(issuer)
.public_key(key.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
)
.add_extension(
x509.BasicConstraints(ca=True, path_length=None),
critical=True,
)
.sign(key, hashes.SHA256())
)
# Write our certificate out to disk.
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
def create_req(path, C, ST, L, O, key):
csr = (
x509.CertificateSigningRequestBuilder()
.subject_name(
x509.Name(
[
# Provide various details about who we are.
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
)
.sign(key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(csr.public_bytes(serialization.Encoding.PEM))
return csr
def sign_certificate_request(path, csr_cert, ca_cert, private_ca_key):
cert = (
x509.CertificateBuilder()
.subject_name(csr_cert.subject)
.issuer_name(ca_cert.subject)
.public_key(csr_cert.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
# Sign our certificate with our private key
)
.sign(private_ca_key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
ca_key = genrsa(temp_dir + "/ca.key")
ca_cert = create_cert(
temp_dir + "/ca.pem",
"US",
"New York",
"New York",
"Gloo Certificate Authority",
ca_key,
)
pkey = genrsa(temp_dir + "/pkey.key")
csr = create_req(
temp_dir + "/csr.csr",
"US",
"California",
"San Francisco",
"Gloo Testing Company",
pkey,
)
cert = sign_certificate_request(temp_dir + "/cert.pem", csr, ca_cert, ca_key)

View File

@ -40,7 +40,7 @@ if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel
fi
if which sccache > /dev/null; then
print_sccache_stats

View File

@ -20,4 +20,14 @@ print_cmake_info() {
CONDA_INSTALLATION_DIR=$(dirname "$CMAKE_EXEC")
# Print all libraries under cmake rpath for debugging
ls -la "$CONDA_INSTALLATION_DIR/../lib"
export CMAKE_EXEC
# Explicitly add conda env lib folder to cmake rpath to address the flaky issue
# where cmake dependencies couldn't be found. This seems to point to how conda
# links $CMAKE_EXEC to its package cache when cloning a new environment
install_name_tool -add_rpath @executable_path/../lib "${CMAKE_EXEC}" || true
# Adding the rpath will invalidate cmake signature, so signing it again here
# to trust the executable. EXC_BAD_ACCESS (SIGKILL (Code Signature Invalid))
# with an exit code 137 otherwise
codesign -f -s - "${CMAKE_EXEC}" || true
}

View File

@ -5,6 +5,11 @@ set -x
# shellcheck source=./macos-common.sh
source "$(dirname "${BASH_SOURCE[0]}")/macos-common.sh"
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# Test that OpenMP is enabled
pushd test
if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available()))") == "1" ]]; then
@ -157,36 +162,9 @@ test_jit_hooks() {
assert_git_not_dirty
}
# Shellcheck doesn't like it when you pass no arguments to a function
# that can take args. See https://www.shellcheck.net/wiki/SC2120
# shellcheck disable=SC2120
checkout_install_torchbench() {
local commit
commit=$(cat .ci/docker/ci_commit_pins/torchbench.txt)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
# soxr comes from https://github.com/huggingface/transformers/pull/39429
pip install transformers==4.54.0 soxr==0.5.0
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
torchbench_setup_macos() {
git clone --recursive https://github.com/pytorch/vision torchvision
git clone --recursive https://github.com/pytorch/audio torchaudio
brew install jpeg-turbo libpng
pushd torchvision
git fetch
@ -201,15 +179,17 @@ torchbench_setup_macos() {
git checkout "$(cat ../.github/ci_commit_pins/audio.txt)"
git submodule update --init --recursive
python setup.py clean
#TODO: Remove me, when figure out how to make TorchAudio find brew installed openmp
USE_OPENMP=0 python setup.py develop
python setup.py develop
popd
# Shellcheck doesn't like it when you pass no arguments to a function that can take args. See https://www.shellcheck.net/wiki/SC2120
# shellcheck disable=SC2119,SC2120
checkout_install_torchbench
}
pip_benchmark_deps() {
python -mpip install --no-input requests cython scikit-learn six
conda_benchmark_deps() {
conda install -y astunparse numpy scipy ninja pyyaml setuptools cmake typing-extensions requests protobuf numba cython scikit-learn
conda install -y -c conda-forge librosa
}
@ -217,7 +197,7 @@ test_torchbench_perf() {
print_cmake_info
echo "Launching torchbench setup"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
TEST_REPORTS_DIR=$(pwd)/test/test-reports
@ -244,7 +224,7 @@ test_torchbench_smoketest() {
print_cmake_info
echo "Launching torchbench setup"
pip_benchmark_deps
conda_benchmark_deps
# shellcheck disable=SC2119,SC2120
torchbench_setup_macos
@ -252,52 +232,53 @@ test_torchbench_smoketest() {
mkdir -p "$TEST_REPORTS_DIR"
local device=mps
local dtypes=(undefined float16 bfloat16 notset)
local dtype=${dtypes[$1]}
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo)
local hf_models=(GoogleFnet YituTechConvBert)
for backend in eager inductor; do
echo "Launching torchbench inference performance run for backend ${backend} and dtype ${dtype}"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--performance --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_huggingface_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--accuracy --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_huggingface_${dtype}_inference_${device}_accuracy.csv" || true
fi
if [ "$dtype" == notset ]; then
for dtype_ in notset amp; do
echo "Launching torchbench training performance run for backend ${backend} and dtype ${dtype_}"
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype_}_training_${device}_performance.csv"
local dtype_arg="--${dtype_}"
if [ "$dtype_" == notset ]; then
for dtype in notset float16 bfloat16; do
echo "Launching torchbench inference performance run for backend ${backend} and dtype ${dtype}"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
for model in "${models[@]}"; do
fi
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --training --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype_}_training_${device}_performance.csv" || true
done
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
fi
for model in "${hf_models[@]}"; do
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
done
for dtype in notset amp; do
echo "Launching torchbench training performance run for backend ${backend} and dtype ${dtype}"
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --training --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv" || true
done
done
done
@ -308,7 +289,7 @@ test_hf_perf() {
print_cmake_info
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
echo "Launching HuggingFace training perf run"
@ -324,7 +305,7 @@ test_timm_perf() {
print_cmake_info
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
echo "Launching timm training perf run"
@ -336,6 +317,8 @@ test_timm_perf() {
echo "timm benchmark on mps device completed"
}
install_tlparse
if [[ $TEST_CONFIG == *"perf_all"* ]]; then
test_torchbench_perf
test_hf_perf
@ -347,7 +330,7 @@ elif [[ $TEST_CONFIG == *"perf_hf"* ]]; then
elif [[ $TEST_CONFIG == *"perf_timm"* ]]; then
test_timm_perf
elif [[ $TEST_CONFIG == *"perf_smoketest"* ]]; then
test_torchbench_smoketest "${SHARD_NUMBER}"
test_torchbench_smoketest
elif [[ $TEST_CONFIG == *"mps"* ]]; then
test_python_mps
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then

18
.ci/pytorch/run_glootls_test.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
CREATE_TEST_CERT="$(dirname "${BASH_SOURCE[0]}")/create_test_cert.py"
TMP_CERT_DIR=$(python "$CREATE_TEST_CERT")
openssl verify -CAfile "${TMP_CERT_DIR}/ca.pem" "${TMP_CERT_DIR}/cert.pem"
export GLOO_DEVICE_TRANSPORT=TCP_TLS
export GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY=${TMP_CERT_DIR}/pkey.key
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT=${TMP_CERT_DIR}/cert.pem
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE=${TMP_CERT_DIR}/ca.pem
time python test/run_test.py --include distributed/test_c10d_gloo --verbose -- ProcessGroupGlooTest
unset GLOO_DEVICE_TRANSPORT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE

View File

@ -74,13 +74,12 @@ else
fi
# Environment initialization
retry pip install -qUr requirements-build.txt
if [[ "$(uname)" == Darwin ]]; then
# Install the testing dependencies
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest setuptools six typing_extensions pyyaml
else
retry pip install -qr requirements.txt || true
retry pip install -q hypothesis protobuf pytest || true
retry pip install -q hypothesis protobuf pytest setuptools || true
numpy_ver=1.15
case "$(python --version 2>&1)" in
*2* | *3.5* | *3.6*)

View File

@ -93,7 +93,7 @@ def check_lib_symbols_for_abi_correctness(lib: str) -> None:
f"Found pre-cxx11 symbols, but there shouldn't be any, see: {pre_cxx11_symbols[:100]}"
)
if num_cxx11_symbols < 100:
raise RuntimeError("Didn't find enough cxx11 symbols")
raise RuntimeError("Didn't find enought cxx11 symbols")
def main() -> None:

View File

@ -46,9 +46,6 @@ def get_gomp_thread():
# use the default gomp path of AlmaLinux OS
libgomp_path = "/usr/lib64/libgomp.so.1"
# if it does not exist, try Ubuntu path
if not os.path.exists(libgomp_path):
libgomp_path = f"/usr/lib/{os.uname().machine}-linux-gnu/libgomp.so.1"
os.environ["GOMP_CPU_AFFINITY"] = "0-3"

View File

@ -276,7 +276,7 @@ def smoke_test_cuda(
torch_nccl_version = ".".join(str(v) for v in torch.cuda.nccl.version())
print(f"Torch nccl; version: {torch_nccl_version}")
# Pypi dependencies are installed on linux only and nccl is available only on Linux.
# Pypi dependencies are installed on linux ony and nccl is availbale only on Linux.
if pypi_pkg_check == "enabled" and sys.platform in ["linux", "linux2"]:
compare_pypi_to_torch_versions(
"cudnn", find_pypi_package_version("nvidia-cudnn"), torch_cudnn_version
@ -385,29 +385,6 @@ def smoke_test_compile(device: str = "cpu") -> None:
x_pt2 = torch.compile(model, mode="max-autotune")(x)
def smoke_test_nvshmem() -> None:
if not torch.cuda.is_available():
print("CUDA is not available, skipping NVSHMEM test")
return
# Check if NVSHMEM is compiled in current build
try:
from torch._C._distributed_c10d import _is_nvshmem_available
except ImportError:
# Not built with NVSHMEM support.
# torch is not compiled with NVSHMEM prior to 2.9
if torch.__version__ < "2.9":
return
else:
# After 2.9: NVSHMEM is expected to be compiled in current build
raise RuntimeError("torch not compiled with NVSHMEM") from None
print("torch compiled with NVSHMEM")
# Check if NVSHMEM is available on current system.
print(f"NVSHMEM available at run time: {_is_nvshmem_available()}")
def smoke_test_modules():
cwd = os.getcwd()
for module in MODULES:
@ -502,8 +479,6 @@ def main() -> None:
options.pypi_pkg_check,
)
smoke_test_nvshmem()
if __name__ == "__main__":
main()

View File

@ -11,8 +11,6 @@ export TERM=vt100
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Do not change workspace permissions for ROCm and s390x CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
@ -165,6 +163,8 @@ elif [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
export PYTORCH_TESTING_DEVICE_ONLY_FOR="xpu"
# setting PYTHON_TEST_EXTRA_OPTION
export PYTHON_TEST_EXTRA_OPTION="--xpu"
# Disable sccache for xpu test due to flaky issue https://github.com/pytorch/pytorch/issues/143585
sudo rm -rf /opt/cache
fi
if [[ "$TEST_CONFIG" == *crossref* ]]; then
@ -196,12 +196,12 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
xpu-smi discovery
fi
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]] ; then
# JIT C++ extensions require ninja.
pip_install "ninja==1.10.2"
pip_install --user "ninja==1.10.2"
# ninja is installed in $HOME/.local/bin, e.g., /var/lib/jenkins/.local/bin for CI user jenkins
# but this script should be runnable by any user, including root
export PATH="$HOME/.local/bin:$PATH"
@ -212,6 +212,8 @@ if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export VALGRIND=OFF
fi
install_tlparse
# DANGER WILL ROBINSON. The LD_PRELOAD here could cause you problems
# if you're not careful. Check this if you made some changes and the
# ASAN test is not working
@ -224,7 +226,7 @@ if [[ "$BUILD_ENVIRONMENT" == *asan* ]]; then
export PYTORCH_TEST_WITH_ASAN=1
export PYTORCH_TEST_WITH_UBSAN=1
# TODO: Figure out how to avoid hard-coding these paths
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-18/bin/llvm-symbolizer
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-15/bin/llvm-symbolizer
export TORCH_USE_RTLD_GLOBAL=1
# NB: We load libtorch.so with RTLD_GLOBAL for UBSAN, unlike our
# default behavior.
@ -289,12 +291,6 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
if [[ "${TEST_CONFIG}" == "legacy_nvidia_driver" ]]; then
# Make sure that CUDA can be initialized
(cd test && python -c "import torch; torch.rand(2, 2, device='cuda')")
export USE_LEGACY_DRIVER=1
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -328,29 +324,6 @@ test_python_smoke() {
assert_git_not_dirty
}
test_h100_distributed() {
# Distributed tests at H100
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
# This test requires multicast support
time python test/run_test.py --include distributed/_composable/fsdp/test_fully_shard_comm.py -k TestFullyShardAllocFromPG $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_symm_mem() {
# symmetric memory test
time python test/run_test.py --include distributed/test_symmetric_memory.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem_triton.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nccl.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_cutlass_backend() {
# cutlass backend tests for H100
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_backend -k "not addmm" $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_evt $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
}
test_lazy_tensor_meta_reference_disabled() {
export TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE=1
echo "Testing lazy tensor operations without meta reference"
@ -379,24 +352,12 @@ test_dynamo_wrapped_shard() {
assert_git_not_dirty
}
test_einops() {
pip install einops==0.6.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.7.0
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.8.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
assert_git_not_dirty
}
test_inductor_distributed() {
# Smuggle a few multi-gpu tests here so that we don't have to request another large node
echo "Testing multi_gpu tests in test_torchinductor"
python test/run_test.py -i inductor/test_torchinductor.py -k test_multi_gpu --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_cuda_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_replicate_on_devices --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_on_gpu_device1 --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_gpu_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_load_package_multiple_gpus --verbose
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
python test/run_test.py -i distributed/tensor/test_dtensor_compile.py --verbose
python test/run_test.py -i distributed/tensor/parallel/test_micro_pipeline_tp.py --verbose
@ -448,21 +409,14 @@ test_inductor_aoti() {
python3 tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *sm86* ]]; then
BUILD_COMMAND=(TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python -m pip install --no-build-isolation -v -e .)
BUILD_AOT_INDUCTOR_TEST=1 TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python setup.py develop
# TODO: Replace me completely, as one should not use conda libstdc++, nor need special path to TORCH_LIB
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="/opt/conda/envs/py_3.10/lib:${TORCH_LIB_DIR}:${LD_LIBRARY_PATH}")
LD_LIBRARY_PATH=/opt/conda/envs/py_3.10/lib/:${TORCH_LIB_DIR}:$LD_LIBRARY_PATH
CPP_TESTS_DIR="${BUILD_BIN_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
else
BUILD_COMMAND=(python -m pip install --no-build-isolation -v -e .)
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}")
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
fi
# aoti cmake custom command requires `torch` to be installed
# initialize the cmake build cache and install torch
/usr/bin/env "${BUILD_COMMAND[@]}"
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
test_inductor_cpp_wrapper_shard() {
@ -475,26 +429,47 @@ test_inductor_cpp_wrapper_shard() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
if [[ "$1" -eq "2" ]]; then
# For now, manually put the opinfo tests in shard 2, and all other tests in
# shard 1. Run all CPU tests, as well as specific GPU tests triggering past
# bugs, for now.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--verbose
exit
fi
# Run certain inductor unit tests with cpp wrapper. In the end state, we
# should be able to run all the inductor unit tests with cpp_wrapper.
#
# TODO: I'm pretty sure that "TestInductorOpInfoCPU" is not a valid filter,
# but change that in another PR to more accurately monitor the increased CI
# usage.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py \
--include inductor/test_torchinductor inductor/test_max_autotune inductor/test_cpu_repro \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor \
--include test_torch \
-k 'take' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor --include test_torch -k 'take' --verbose
# Run inductor benchmark tests with cpp wrapper.
# Skip benchmark tests if it's in rerun-disabled-mode.
if [[ "${PYTORCH_TEST_RERUN_DISABLED_TESTS}" == "1" ]]; then
echo "skip dynamo benchmark tests for rerun-disabled-test"
else
echo "run dynamo benchmark tests with cpp wrapper"
python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
--training --inductor --disable-cudagraphs --only vit_base_patch16_224 \
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_timm_training.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_torchbench_inference.csv"
fi
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -507,7 +482,7 @@ DYNAMO_BENCHMARK_FLAGS=()
pr_time_benchmarks() {
pip_install "fbscribelogger"
pip_install --user "fbscribelogger"
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
@ -615,9 +590,7 @@ test_perf_for_dashboard() {
local device=cuda
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_x86_zen* ]]; then
device=cpu_x86_zen
elif [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
device=cpu_x86
elif [[ "${TEST_CONFIG}" == *cpu_aarch64* ]]; then
device=cpu_aarch64
@ -627,19 +600,13 @@ test_perf_for_dashboard() {
device=cuda_a10g
elif [[ "${TEST_CONFIG}" == *h100* ]]; then
device=cuda_h100
elif [[ "${TEST_CONFIG}" == *b200* ]]; then
device=cuda_b200
elif [[ "${TEST_CONFIG}" == *rocm* ]]; then
device=rocm
fi
for mode in "${modes[@]}"; do
if [[ "$mode" == "inference" ]]; then
if [[ "$device" == "cpu_x86" ]]; then
dtype=amp
else
dtype=bfloat16
fi
dtype=bfloat16
elif [[ "$mode" == "training" ]]; then
dtype=amp
fi
@ -651,10 +618,6 @@ test_perf_for_dashboard() {
target_flag+=( --no-translation-validation)
fi
if [[ "$DASHBOARD_TAG" == *freezing-true* ]]; then
target_flag+=( --freezing)
fi
if [[ "$DASHBOARD_TAG" == *default-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
@ -803,16 +766,6 @@ test_dynamo_benchmark() {
if [[ "${TEST_CONFIG}" == *perf_compare* ]]; then
test_single_dynamo_benchmark "training" "$suite" "$shard_id" --training --amp "$@"
elif [[ "${TEST_CONFIG}" == *perf* ]]; then
# TODO (huydhn): Just smoke test some sample models
if [[ "${TEST_CONFIG}" == *b200* ]]; then
if [[ "${suite}" == "huggingface" ]]; then
export TORCHBENCH_ONLY_MODELS="DistillGPT2"
elif [[ "${suite}" == "timm_models" ]]; then
export TORCHBENCH_ONLY_MODELS="inception_v3"
elif [[ "${suite}" == "torchbench" ]]; then
export TORCHBENCH_ONLY_MODELS="hf_Bert"
fi
fi
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
else
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
@ -867,7 +820,16 @@ test_inductor_torchbench_smoketest_perf() {
done
}
test_inductor_get_core_number() {
if [[ "${TEST_CONFIG}" == *aarch64* ]]; then
echo "$(($(lscpu | grep 'Cluster(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per cluster:' | awk '{print $4}')))"
else
echo "$(($(lscpu | grep 'Socket(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per socket:' | awk '{print $4}')))"
fi
}
test_inductor_set_cpu_affinity(){
#set jemalloc
JEMALLOC_LIB="$(find /usr/lib -name libjemalloc.so.2)"
export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
@ -879,23 +841,14 @@ test_inductor_set_cpu_affinity(){
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
fi
# Use nproc here instead of lscpu because it takes into account cgroups slice
cpus=$(nproc)
thread_per_core=$(lscpu | grep 'Thread(s) per core:' | awk '{print $4}')
cores=$((cpus / thread_per_core))
# Set number of cores to 16 on aarch64 for performance runs
cores=$(test_inductor_get_core_number)
# Set number of cores to 16 on Aarch64 for performance runs.
if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then
cores=16
fi
export OMP_NUM_THREADS=$cores
# Handle cgroups slice start and end CPU
start_cpu=$(python -c 'import os; print(min(os.sched_getaffinity(0)))')
# Leaving one physical CPU for other tasks
end_cpu=$(($(python -c 'import os; print(max(os.sched_getaffinity(0)))') - thread_per_core))
export TASKSET="taskset -c $start_cpu-$end_cpu"
end_core=$((cores-1))
export TASKSET="taskset -c 0-$end_core"
}
test_inductor_torchbench_cpu_smoketest_perf(){
@ -940,6 +893,12 @@ test_torchbench_gcp_smoketest(){
popd
}
test_python_gloo_with_tls() {
source "$(dirname "${BASH_SOURCE[0]}")/run_glootls_test.sh"
assert_git_not_dirty
}
test_aten() {
# Test ATen
# The following test(s) of ATen have already been skipped by caffe2 in rocm environment:
@ -986,8 +945,6 @@ test_without_numpy() {
if [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;torch.compile(lambda x:print(x))('Hello World')"
fi
# Regression test for https://github.com/pytorch/pytorch/pull/157734 (torch.onnx should be importable without numpy)
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch; import torch.onnx"
popd
}
@ -1051,10 +1008,20 @@ test_libtorch_api() {
mkdir -p $TEST_REPORTS_DIR
OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="${MNIST_DIR}" "$TORCH_BIN_DIR"/test_api --gtest_filter='-IMethodTest.*' --gtest_output=xml:$TEST_REPORTS_DIR/test_api.xml
"$TORCH_BIN_DIR"/test_tensorexpr --gtest_output=xml:$TEST_REPORTS_DIR/test_tensorexpr.xml
else
# Exclude IMethodTest that relies on torch::deploy, which will instead be ran in test_deploy
OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="${MNIST_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_api -k "not IMethodTest"
# On s390x, pytorch is built without llvm.
# Even if it would be built with llvm, llvm currently doesn't support used features on s390x and
# test fails with errors like:
# JIT session error: Unsupported target machine architecture in ELF object pytorch-jitted-objectbuffer
# unknown file: Failure
# C++ exception with description "valOrErr INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/torch/csrc/jit/tensorexpr/llvm_jit.h":34, please report a bug to PyTorch. Unexpected failure in LLVM JIT: Failed to materialize symbols: { (main, { func }) }
if [[ "${BUILD_ENVIRONMENT}" != *s390x* ]]; then
python test/run_test.py --cpp --verbose -i cpp/test_tensorexpr
fi
fi
# quantization is not fully supported on s390x yet
@ -1164,12 +1131,6 @@ test_custom_backend() {
test_custom_script_ops() {
echo "Testing custom script operators"
if [[ "$BUILD_ENVIRONMENT" == *s390x* ]]; then
echo "Skipping custom script operators until it's fixed"
return 0
fi
CUSTOM_OP_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/custom-op-build"
pushd test/custom_operator
cp -a "$CUSTOM_OP_BUILD" build
@ -1322,13 +1283,10 @@ EOF
# Step 2. Make sure that the public API test "test_correct_module_names" fails when an existing
# file is modified to introduce an invalid public API function.
# The filepath here must not have __all__ defined in it, otherwise the test will pass.
# If your PR introduces __all__ to torch/cuda/streams.py please point this to another file
# that does not have __all__ defined.
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/cuda/streams.py"
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/nn/parameter.py"
cp -v "${EXISTING_FILEPATH}" "${EXISTING_FILEPATH}.orig"
echo "${BAD_PUBLIC_FUNC}" >> "${EXISTING_FILEPATH}"
invalid_api="torch.cuda.streams.new_public_func"
invalid_api="torch.nn.parameter.new_public_func"
echo "Appended an invalid public API function to existing file ${EXISTING_FILEPATH}..."
check_public_api_test_fails \
@ -1483,8 +1441,8 @@ test_bazel() {
test_benchmarks() {
if [[ "$BUILD_ENVIRONMENT" == *cuda* && $TEST_CONFIG != *nogpu* ]]; then
pip_install "pytest-benchmark==3.2.3"
pip_install "requests"
pip_install --user "pytest-benchmark==3.2.3"
pip_install --user "requests"
BENCHMARK_DATA="benchmarks/.data"
mkdir -p ${BENCHMARK_DATA}
pytest benchmarks/fastrnns/test_bench.py --benchmark-sort=Name --benchmark-json=${BENCHMARK_DATA}/fastrnns_default.json --fuser=default --executor=default
@ -1592,12 +1550,11 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
python setup.py install
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
--output-csv "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.json" \
--output-dir "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv"
pip_install pandas
python check_perf_csv.py \
@ -1612,13 +1569,7 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
fi
if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
# Install numpy-2.0.2 and compatible scipy & numba versions
# Force re-install of pandas to avoid error where pandas checks numpy version from initial install and fails upon import
TMP_PANDAS_VERSION=$(python -c "import pandas; print(pandas.__version__)" 2>/dev/null)
if [ -n "$TMP_PANDAS_VERSION" ]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0 pandas=="$TMP_PANDAS_VERSION" --force-reinstall
else
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python -mpip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
test_linux_aarch64
@ -1672,39 +1623,52 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == cachebench ]]; then
install_torchaudio
install_torchaudio cuda
install_torchvision
PYTHONPATH=/torchbench test_cachebench
checkout_install_torchbench nanogpt BERT_pytorch resnet50 hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_cachebench
elif [[ "${TEST_CONFIG}" == verify_cachebench ]]; then
install_torchaudio
install_torchaudio cpu
install_torchvision
PYTHONPATH=/torchbench test_verify_cachebench
checkout_install_torchbench nanogpt
PYTHONPATH=$(pwd)/torchbench test_verify_cachebench
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
install_torchaudio
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchvision
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install git+https://github.com/pytorch/ao.git
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
if [[ "${TEST_CONFIG}" == *inductor_torchbench_smoketest_perf* ]]; then
PYTHONPATH=/torchbench test_inductor_torchbench_smoketest_perf
checkout_install_torchbench hf_Bert hf_Albert timm_vision_transformer
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_smoketest_perf
elif [[ "${TEST_CONFIG}" == *inductor_torchbench_cpu_smoketest_perf* ]]; then
PYTHONPATH=/torchbench test_inductor_torchbench_cpu_smoketest_perf
checkout_install_torchbench timm_vision_transformer phlippe_densenet basic_gnn_edgecnn \
llama_v2_7b_16h resnet50 timm_efficientnet mobilenet_v3_large timm_resnest \
functorch_maml_omniglot yolov3 mobilenet_v2 resnext50_32x4d densenet121 mnasnet1_0
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_cpu_smoketest_perf
elif [[ "${TEST_CONFIG}" == *torchbench_gcp_smoketest* ]]; then
TORCHBENCHPATH=/torchbench test_torchbench_gcp_smoketest
checkout_install_torchbench
TORCHBENCHPATH=$(pwd)/torchbench test_torchbench_gcp_smoketest
else
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
fi
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchaudio cuda
install_torchvision
PYTHONPATH=/torchbench:$PYTHONPATH test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti
fi
checkout_install_torchbench hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
test_inductor_aoti
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
@ -1713,8 +1677,6 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
test_inductor_distributed
fi
fi
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
test_einops
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
install_torchvision
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
@ -1762,12 +1724,6 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
test_xpu_bin
elif [[ "${TEST_CONFIG}" == smoke ]]; then
test_python_smoke
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else
install_torchvision
install_monkeytype

View File

@ -1,34 +0,0 @@
# If you want to rebuild, run this with $env:REBUILD=1
# If you want to build with CUDA, run this with $env:USE_CUDA=1
# If you want to build without CUDA, run this with $env:USE_CUDA=0
# Check for setup.py in the current directory
if (-not (Test-Path "setup.py")) {
Write-Host "ERROR: Please run this build script from PyTorch root directory."
exit 1
}
# Get the script's parent directory
$ScriptParentDir = Split-Path -Parent $MyInvocation.MyCommand.Definition
# Set TMP_DIR and convert to Windows path
$env:TMP_DIR = Join-Path (Get-Location) "build\win_tmp"
$env:TMP_DIR_WIN = $env:TMP_DIR # Already in Windows format, no cygpath needed
# Set final package directory with default fallback
if (-not $env:PYTORCH_FINAL_PACKAGE_DIR) {
$env:PYTORCH_FINAL_PACKAGE_DIR = "C:\w\build-results"
}
# Create the final package directory if it doesn't exist
if (-not (Test-Path $env:PYTORCH_FINAL_PACKAGE_DIR)) {
New-Item -Path $env:PYTORCH_FINAL_PACKAGE_DIR -ItemType Directory -Force | Out-Null
}
# Set script helpers directory
$env:SCRIPT_HELPERS_DIR = Join-Path $ScriptParentDir "win-test-helpers\arm64"
# Run the main build script
& "$env:SCRIPT_HELPERS_DIR\build_pytorch.ps1"
Write-Host "BUILD PASSED"

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex -o pipefail
SCRIPT_PARENT_DIR=$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
# shellcheck source=./common.sh
source "$SCRIPT_PARENT_DIR/common.sh"
run_tests() {
echo Running smoke_test.py...
python ./.ci/pytorch/smoke_test/smoke_test.py --package torchonly
echo Running test_autograd.oy, test_nn.py, test_torch.py...
cd test
CORE_TEST_LIST=("test_autograd.py" "test_nn.py" "test_modules.py")
for t in "${CORE_TEST_LIST[@]}"; do
echo "Running test: $t"
python "$t" --verbose --save-xml --use-pytest -vvvv -rfEsxXP -p no:xdist
done
}
run_tests
echo "TEST PASSED"

View File

@ -31,7 +31,7 @@ PYLONG_API_CHECK=$?
if [[ $PYLONG_API_CHECK == 0 ]]; then
echo "Usage of PyLong_{From,As}{Unsigned}Long API may lead to overflow errors on Windows"
echo "because \`sizeof(long) == 4\` and \`sizeof(unsigned long) == 4\`."
echo "Please include \"torch/csrc/utils/python_numbers.h\" and use the corresponding APIs instead."
echo "Please include \"torch/csrc/utils/python_numbers.h\" and use the correspoding APIs instead."
echo "PyLong_FromLong -> THPUtils_packInt32 / THPUtils_packInt64"
echo "PyLong_AsLong -> THPUtils_unpackInt (32-bit) / THPUtils_unpackLong (64-bit)"
echo "PyLong_FromUnsignedLong -> THPUtils_packUInt32 / THPUtils_packUInt64"

View File

@ -1,98 +0,0 @@
# TODO: we may can use existing build_pytorch.bat for arm64
if ($env:DEBUG -eq "1") {
$env:BUILD_TYPE = "debug"
} else {
$env:BUILD_TYPE = "release"
}
# This inflates our log size slightly, but it is REALLY useful to be
# able to see what our cl.exe commands are. (since you can actually
# just copy-paste them into a local Windows setup to just rebuild a
# single file.)
# log sizes are too long, but leaving this here in case someone wants to use it locally
# $env:CMAKE_VERBOSE_MAKEFILE = "1"
$env:INSTALLER_DIR = Join-Path $env:SCRIPT_HELPERS_DIR "installation-helpers"
cd ..
# Environment variables
$env:SCCACHE_IDLE_TIMEOUT = "0"
$env:SCCACHE_IGNORE_SERVER_IO_ERROR = "1"
$env:CMAKE_BUILD_TYPE = $env:BUILD_TYPE
$env:CMAKE_C_COMPILER_LAUNCHER = "sccache"
$env:CMAKE_CXX_COMPILER_LAUNCHER = "sccache"
$env:libuv_ROOT = Join-Path $env:DEPENDENCIES_DIR "libuv\install"
$env:MSSdk = "1"
if ($env:PYTORCH_BUILD_VERSION) {
$env:PYTORCH_BUILD_VERSION = $env:PYTORCH_BUILD_VERSION
$env:PYTORCH_BUILD_NUMBER = "1"
}
$env:CMAKE_POLICY_VERSION_MINIMUM = "3.5"
# Set BLAS type
if ($env:ENABLE_APL -eq "1") {
$env:BLAS = "APL"
$env:USE_LAPACK = "1"
} elseif ($env:ENABLE_OPENBLAS -eq "1") {
$env:BLAS = "OpenBLAS"
$env:OpenBLAS_HOME = Join-Path $env:DEPENDENCIES_DIR "OpenBLAS\install"
}
# Change to source directory
Set-Location $env:PYTORCH_ROOT
# Copy libuv.dll
Copy-Item -Path (Join-Path $env:libuv_ROOT "lib\Release\uv.dll") -Destination "torch\lib\uv.dll" -Force
# Create virtual environment
python -m venv .venv
.\.venv\Scripts\Activate.ps1
where.exe python
# Python install dependencies
python -m pip install --upgrade pip
pip install setuptools pyyaml
pip install -r requirements.txt
# Set after installing psutil
$env:DISTUTILS_USE_SDK = "1"
# Print all environment variables
Get-ChildItem Env:
# Start and inspect sccache
sccache --start-server
sccache --zero-stats
sccache --show-stats
# Build the wheel
python setup.py bdist_wheel
if ($LASTEXITCODE -ne 0) { exit 1 }
# Install the wheel locally
$whl = Get-ChildItem -Path "dist\*.whl" | Select-Object -First 1
if ($whl) {
python -mpip install --no-index --no-deps $whl.FullName
}
# Copy final wheel
robocopy "dist" "$env:PYTORCH_FINAL_PACKAGE_DIR" *.whl
# Export test times
python tools/stats/export_test_times.py
# Copy additional CI files
robocopy ".additional_ci_files" "$env:PYTORCH_FINAL_PACKAGE_DIR\.additional_ci_files" /E
# Save ninja log
Copy-Item -Path "build\.ninja_log" -Destination $env:PYTORCH_FINAL_PACKAGE_DIR -Force
# Final sccache stats and stop
sccache --show-stats
sccache --stop-server
exit 0

View File

@ -10,7 +10,7 @@ set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocol
:: able to see what our cl.exe commands are (since you can actually
:: just copy-paste them into a local Windows setup to just rebuild a
:: single file.)
:: log sizes are too long, but leaving this here in case someone wants to use it locally
:: log sizes are too long, but leaving this here incase someone wants to use it locally
:: set CMAKE_VERBOSE_MAKEFILE=1
@ -42,7 +42,7 @@ call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=Syste
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
call pip install mkl-include==2021.4.0 mkl-devel==2021.4.0
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
@ -61,10 +61,9 @@ if "%USE_XPU%"=="1" (
call "C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat"
call "C:\Program Files (x86)\Intel\oneAPI\ocloc\latest\env\vars.bat"
if errorlevel 1 exit /b 1
:: Reduce build time
SET TORCH_XPU_ARCH_LIST=bmg
:: Re-setup python env for build
call pip install -r requirements.txt
:: Reduce build time. Only have MTL self-hosted runner now
SET TORCH_XPU_ARCH_LIST=xe-lpg
SET USE_KINETO=0
)
@echo on

View File

@ -52,7 +52,7 @@ if __name__ == "__main__":
if os.path.exists(debugger):
command_args = [debugger, "-o", "-c", "~*g; q"] + command_args
command_string = " ".join(command_args)
print("Rerunning with traceback enabled")
print("Reruning with traceback enabled")
print("Command:", command_string)
subprocess.run(command_args, check=False)
sys.exit(e.returncode)

View File

@ -38,10 +38,10 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
fi
# TODO: Move both of them to Windows AMI
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 pytest-subtests==0.13.1
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.15.1.0
python -m pip install z3-solver==4.12.2.0
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
python -m pip install tlparse==0.3.30
@ -52,9 +52,6 @@ python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
python -m pip install expecttest==0.3.0
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do

View File

@ -7,7 +7,7 @@ if not exist "%DOWNLOADS_DIR%" mkdir %DOWNLOADS_DIR%
if not exist "%DEPENDENCIES_DIR%" mkdir %DEPENDENCIES_DIR%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
cd %DEPENDENCIES_DIR%

View File

@ -7,7 +7,7 @@ if not exist "%DOWNLOADS_DIR%" mkdir %DOWNLOADS_DIR%
if not exist "%DEPENDENCIES_DIR%" mkdir %DEPENDENCIES_DIR%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: Clone OpenBLAS

View File

@ -2,7 +2,7 @@
cd %PYTORCH_ROOT%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: create virtual environment

View File

@ -21,7 +21,7 @@ if %ENABLE_APL% == 1 (
)
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: change to source directory

View File

@ -21,7 +21,7 @@ if %ENABLE_APL% == 1 (
)
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: change to source directory

View File

@ -33,7 +33,7 @@ pushd tmp
set VC_VERSION_LOWER=14
set VC_VERSION_UPPER=36
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
set install_root=%CD%
set INCLUDE=%INCLUDE%;%install_root%\include;%install_root%\include\torch\csrc\api\include

Some files were not shown because too many files have changed in this diff Show More