Compare commits

..

1283 Commits

Author SHA1 Message Date
e44ca7305f vllm setup
Signed-off-by: Yang Wang <elainewy@meta.com>
2025-07-21 17:40:32 -07:00
2bb684304d Fix the typos in the right nav by pulling the latest theme (#158746)
This will fix broken links in the right nav.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158746
Approved by: https://github.com/malfet
2025-07-21 22:51:07 +00:00
f09a484b81 Remove is_arvr_mode() from xnnpack.buck.bzl (#158682)
Summary:
**Changes**
*   Deleted function import from build definition utilities
    *   Removed `load("//tools/build_defs:fbsource_utils.bzl", "is_arvr_mode")`
*   Replaced is_arvr_mode() function calls with direct references to configuration flags
    *  Changed from `is_arvr_mode()` to `"ovr_config//build_mode:arvr_mode"`
*   Changed conditional expressions to Buck `select()` statements

Test Plan:
Check if CI passes

Rollback Plan:

Differential Revision: D78520947

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158682
Approved by: https://github.com/malfet
2025-07-21 22:49:26 +00:00
feaa02f9ad Revert "[build] pin setuptools>=77 to enable PEP 639 (#158104)"
This reverts commit a78fb63dbdf98a1db219095293de1a11005e0390.

Reverted https://github.com/pytorch/pytorch/pull/158104 on behalf of https://github.com/malfet due to It still breaks inductor-perf-nightly, see https://github.com/pytorch/pytorch/actions/runs/16425364208/job/46417088208, I'm going to dismiss all previous reviews ([comment](https://github.com/pytorch/pytorch/pull/158104#issuecomment-3099706457))
2025-07-21 22:46:53 +00:00
b3c868d603 [vllm]Add vllm.txt for pinned commit (#158754)
It seems the nightly.yml won't auto-generate txt file when it does not existed, so added the file with latest merged commit from vllm:

[vllm commit](https://github.com/vllm-project/vllm/commits/main)

Error:
https://github.com/pytorch/pytorch/actions/runs/16405915719/job/46351847504
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158754
Approved by: https://github.com/huydhn
2025-07-21 22:41:07 +00:00
cab28330f8 Setup TorchBench in Docker (#158613)
This reduces the time spending to setup TorchBench in A100/H100 by another half an hour

### Testing

* H100 benchmark https://github.com/pytorch/pytorch/actions/runs/16396172453.  Once this done, I will review the results on [HUD](https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Fri%2C%2011%20Jul%202025%2023%3A01%3A24%20GMT&stopTime=Fri%2C%2018%20Jul%202025%2023%3A01%3A24%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/huydhn/6/head&lCommit=14a38c719b29a19f518239b5edb084838ac5d2fb&rBranch=main&rCommit=0a99b026d6bd0f67dc2c0a20fe3228ddc4144854) to confirm that all models are there
* A100 benchmark https://github.com/pytorch/pytorch/actions/runs/16396173932

Signed-off-by: Huy Do <huydhn@gmail.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158613
Approved by: https://github.com/janeyx99
2025-07-21 22:34:08 +00:00
4366610f5a [c10d] block_current_stream: correctness fixes (#158757)
This fixes a number of issues that were present in https://github.com/pytorch/pytorch/pull/156883 as pointed out by @ngimel

Test plan:

Expanded tests to cover use after free behavior + non-default stream

```
pytest test/distributed/test_c10d_pypg.py -v -k block_current_stream
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158757
Approved by: https://github.com/ngimel
2025-07-21 22:23:44 +00:00
dd0adc9386 [SymmMem] Add NVSHMEM broadcast support into Triton (#158514)
Adds broadcast collective operation for distributing data from root PE to all other PEs in NVSHMEM Triton kernels.

Tests: `python test/distributed/test_nvshmem_triton.py -k test_triton_broadcast`
<details>
<summary> Quick debug print for sanity check </summary>

```markdown
============================================================
[Rank 0] Starting broadcast test with world_size=2
============================================================
[Rank 0] Configuration:
  - nelems: 4
  - dtype: torch.int64, element_size: 8 bytes
  - nelems_bytes: 32
============================================================
[Rank 1] Starting broadcast test with world_size=2
============================================================
[Rank 1] Configuration:
  - nelems: 4
  - dtype: torch.int64, element_size: 8 bytes
  - nelems_bytes: 32
[Rank 1] Non-root source data: [-1, -1, -1, -1]
[Rank 0] Root source data: [100, 101, 102, 103]
[Rank 1] Initial destination: [-999, -999, -999, -999]
[Rank 0] Initial destination: [-999, -999, -999, -999]
[Rank 0] Executing broadcast operation...
[Rank 1] Executing broadcast operation...
[Rank 0] Broadcast operation completed
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
[Rank 1] Broadcast operation completed
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
[Rank 1] Results after broadcast:
[Rank 0] Results after broadcast:
[Rank 1] Destination buffer: [100, 101, 102, 103]
[Rank 1] Expected: [100, 101, 102, 103]
[Rank 0] Destination buffer: [100, 101, 102, 103]
[Rank 0] Expected: [100, 101, 102, 103]
[Rank 1] Match: ✓
[Rank 0] Match: ✓
[Rank 1] ============================================================
[Rank 1] Broadcast test PASSED ✓
[Rank 1] Summary: Root PE 0 broadcasted [100, 101, 102, 103] to all PEs
[Rank 1] ============================================================
[Rank 0] ============================================================
[Rank 0] Broadcast test PASSED ✓
[Rank 0] Summary: Root PE 0 broadcasted [100, 101, 102, 103] to all PEs
[Rank 0] ============================================================
```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158514
Approved by: https://github.com/fduwjj, https://github.com/mandroid6
ghstack dependencies: #158511, #158512, #158513
2025-07-21 22:23:26 +00:00
734826d88e Revert "[AOTI] windows package load dev (#158671)"
This reverts commit d42c40976727fed4c9908d4194f26917d0a3da66.

Reverted https://github.com/pytorch/pytorch/pull/158671 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. @angelayi can you please help them validate the fixes internally? You can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts ([comment](https://github.com/pytorch/pytorch/pull/158671#issuecomment-3099570374))
2025-07-21 22:20:46 +00:00
5a56e6a72b Revert "[AOTI] fix extract file failed on Windows. (#158702)"
This reverts commit 7cc1a9546c135f8e7635e0d38aa2bba797f8907d.

Reverted https://github.com/pytorch/pytorch/pull/158702 on behalf of https://github.com/ZainRizvi due to Sorry but I had to revert this PR in order to revert https://github.com/pytorch/pytorch/pull/158671 ([comment](https://github.com/pytorch/pytorch/pull/158702#issuecomment-3099556215))
2025-07-21 22:18:19 +00:00
e8af168ee0 Revert "[AOTI] normalize path and process model files. (#158705)"
This reverts commit ff0da08f4bc5ee135b495926cd58a36a1c0e1a5b.

Reverted https://github.com/pytorch/pytorch/pull/158705 on behalf of https://github.com/ZainRizvi due to Sorry but I had to revert this PR in order to revert https://github.com/pytorch/pytorch/pull/158671 ([comment](https://github.com/pytorch/pytorch/pull/158705#issuecomment-3099532516))
2025-07-21 22:16:03 +00:00
97d7dc197f Revert "[AOTI] Convert C-struct zip handling to RAII container (#158687)"
This reverts commit 8ed5e1844c77d952bcea89ca7d0225d876fec4e8.

Reverted https://github.com/pytorch/pytorch/pull/158687 on behalf of https://github.com/ZainRizvi due to Sorry but I had to revert this PR in order to revert https://github.com/pytorch/pytorch/pull/158671 ([comment](https://github.com/pytorch/pytorch/pull/158687#issuecomment-3099515618))
2025-07-21 22:13:26 +00:00
9498d95b9c [Dynamo][BetterEngineering] Type trace_rules.py (#158679)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a core file, `trace_rules.py`
Running
```
mypy torch/_dynamo/trace_rules.py   --linecount-report /tmp/coverage_log
```
| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  2564 | 3997 | 64.15% | 34 | 53 | 64.15% |
| This PR | 4022 | 4022 | 100.00% | 53 | 53 | 100.00% |
| Delta    | +1458 | +25 | +35.85% | +19 | 0 | +35.85% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158679
Approved by: https://github.com/williamwen42
2025-07-21 22:12:59 +00:00
0e46f54286 [ROCm][CI] update HIP patch for 6.4.1 (#158651)
patch is intended to fix hipGraph capture for some miopen kernels

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158651
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-07-21 22:09:36 +00:00
216ba6e5f2 Fix MaskedTensor to device ignored mask (#151205)
Fixes #147140

## Changes

- Add `to` implementation in `MaskedTensor` to support move `mask` to target device

## Test Result

```python
In [1]: import torch
   ...: from torch.masked import as_masked_tensor
   ...: data = torch.tensor([1,2,3])
   ...: mask = torch.tensor([True,False,True])
   ...: mt = as_masked_tensor(data, mask).to('cuda')
   ...: mt.get_data().device, mt.get_mask().device
/home/zong/code/pytorch/torch/masked/maskedtensor/core.py:247: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project.
  return MaskedTensor(data, mask)
/home/zong/code/pytorch/torch/masked/maskedtensor/_ops_refs.py:354: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project.
  return MaskedTensor(new_data, _maybe_get_mask(args[0]))
Out[1]: (device(type='cuda', index=0), device(type='cuda', index=0))

In [2]: mt.sum(dim=0)
/home/zong/code/pytorch/torch/masked/maskedtensor/core.py:247: UserWarning: The PyTorch API of MaskedTensors is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.masked module for further information about the project.
  return MaskedTensor(data, mask)
Out[2]: MaskedTensor(4, True)

```

```bash
pytest test/test_maskedtensor.py -vv
```

![image](https://github.com/user-attachments/assets/640b809c-b4f0-4aca-a09e-04049017a745)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151205
Approved by: https://github.com/ezyang
2025-07-21 21:44:49 +00:00
c774180e59 Bump requests from 2.32.2 to 2.32.4 in /tools/build/bazel (#158006)
Bumps [requests](https://github.com/psf/requests) from 2.32.2 to 2.32.4.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a href="https://github.com/psf/requests/releases">requests's releases</a>.</em></p>
<blockquote>
<h2>v2.32.4</h2>
<h2>2.32.4 (2025-06-10)</h2>
<p><strong>Security</strong></p>
<ul>
<li>CVE-2024-47081 Fixed an issue where a maliciously crafted URL and trusted
environment will retrieve credentials for the wrong hostname/machine from a
netrc file. (<a href="https://redirect.github.com/psf/requests/issues/6965">#6965</a>)</li>
</ul>
<p><strong>Improvements</strong></p>
<ul>
<li>Numerous documentation improvements</li>
</ul>
<p><strong>Deprecations</strong></p>
<ul>
<li>Added support for pypy 3.11 for Linux and macOS. (<a href="https://redirect.github.com/psf/requests/issues/6926">#6926</a>)</li>
<li>Dropped support for pypy 3.9 following its end of support. (<a href="https://redirect.github.com/psf/requests/issues/6926">#6926</a>)</li>
</ul>
<h2>v2.32.3</h2>
<h2>2.32.3 (2024-05-29)</h2>
<p><strong>Bugfixes</strong></p>
<ul>
<li>Fixed bug breaking the ability to specify custom SSLContexts in sub-classes of
HTTPAdapter. (<a href="https://redirect.github.com/psf/requests/issues/6716">#6716</a>)</li>
<li>Fixed issue where Requests started failing to run on Python versions compiled
without the <code>ssl</code> module. (<a href="https://redirect.github.com/psf/requests/issues/6724">#6724</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a href="https://github.com/psf/requests/blob/main/HISTORY.md">requests's changelog</a>.</em></p>
<blockquote>
<h2>2.32.4 (2025-06-10)</h2>
<p><strong>Security</strong></p>
<ul>
<li>CVE-2024-47081 Fixed an issue where a maliciously crafted URL and trusted
environment will retrieve credentials for the wrong hostname/machine from a
netrc file.</li>
</ul>
<p><strong>Improvements</strong></p>
<ul>
<li>Numerous documentation improvements</li>
</ul>
<p><strong>Deprecations</strong></p>
<ul>
<li>Added support for pypy 3.11 for Linux and macOS.</li>
<li>Dropped support for pypy 3.9 following its end of support.</li>
</ul>
<h2>2.32.3 (2024-05-29)</h2>
<p><strong>Bugfixes</strong></p>
<ul>
<li>Fixed bug breaking the ability to specify custom SSLContexts in sub-classes of
HTTPAdapter. (<a href="https://redirect.github.com/psf/requests/issues/6716">#6716</a>)</li>
<li>Fixed issue where Requests started failing to run on Python versions compiled
without the <code>ssl</code> module. (<a href="https://redirect.github.com/psf/requests/issues/6724">#6724</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a href="021dc729f0"><code>021dc72</code></a> Polish up release tooling for last manual release</li>
<li><a href="821770e822"><code>821770e</code></a> Bump version and add release notes for v2.32.4</li>
<li><a href="59f8aa2adf"><code>59f8aa2</code></a> Add netrc file search information to authentication documentation (<a href="https://redirect.github.com/psf/requests/issues/6876">#6876</a>)</li>
<li><a href="5b4b64c346"><code>5b4b64c</code></a> Add more tests to prevent regression of CVE 2024 47081</li>
<li><a href="7bc45877a8"><code>7bc4587</code></a> Add new test to check netrc auth leak (<a href="https://redirect.github.com/psf/requests/issues/6962">#6962</a>)</li>
<li><a href="96ba401c12"><code>96ba401</code></a> Only use hostname to do netrc lookup instead of netloc</li>
<li><a href="7341690e84"><code>7341690</code></a> Merge pull request <a href="https://redirect.github.com/psf/requests/issues/6951">#6951</a> from tswast/patch-1</li>
<li><a href="6716d7c9f2"><code>6716d7c</code></a> remove links</li>
<li><a href="a7e1c745dc"><code>a7e1c74</code></a> Update docs/conf.py</li>
<li><a href="c799b8167a"><code>c799b81</code></a> docs: fix dead links to kenreitz.org</li>
<li>Additional commits viewable in <a href="https://github.com/psf/requests/compare/v2.32.2...v2.32.4">compare view</a></li>
</ul>
</details>
<br />

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=requests&package-manager=pip&previous-version=2.32.2&new-version=2.32.4)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/pytorch/pytorch/network/alerts).

</details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158006
Approved by: https://github.com/Skylion007

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-07-21 21:35:38 +00:00
a991e285ae [AOTI] Add more default options to compile_standalone (#158560)
Summary: When compiling for standalone, make embed_kernel_binary and emit_multi_arch_kernel default to True, and add a default name for model_name_for_generated_files to make the generated cpp project easier to understand. Also improved the weights object file naming to be more readable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158560
Approved by: https://github.com/yushangdi
2025-07-21 21:16:48 +00:00
9e0473b566 removed zero dim cpu logic from fake_tensor.py (#147501)
Fixes #144748
In #144748, the inconsistency between the eager mode and the inductor mode is reported as a bug.
The root cause is fake_tenosr.py's find-common-device method, 0b0da81021/torch/_subclasses/fake_tensor.py (L833), takes zero dim cpu tensor into account but  the device check in adaption.h doesn't.

This fix is to add a list for some ops to bypass zero-dim-cpu-tensor check to align with the eager mode.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147501
Approved by: https://github.com/ezyang
2025-07-21 21:11:10 +00:00
5e17932c22 [DCP] Add support for ShardedTensor to PgTransport (#158573)
Add support for ShardedTensors in when PGTransport is used for send/recv checkpoints

Test is pulled from https://github.com/pytorch/pytorch/pull/157963

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158573
Approved by: https://github.com/meetv18
2025-07-21 21:04:23 +00:00
6b0526a2c4 ban fusion of large amount of reads (#158667)
This is an reland attempt of https://github.com/pytorch/pytorch/pull/157563, but insteading of introducing the `realize_acc_reads_size_threshold` config and setting to a default value, we set it to `None` for now to unblock an internal use case. Will deep dive into the issue and harden the logic in later PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158667
Approved by: https://github.com/yf225
2025-07-21 21:00:40 +00:00
bc379aebe2 Revert "Still run TritonBundler with BundledAOTAutogradCache, save autotune results (#158048)"
This reverts commit 8e57cdb746b4ab28865fdf01532f87b0d21700e9.

Reverted https://github.com/pytorch/pytorch/pull/158048 on behalf of https://github.com/jeffdaily due to rocm failures due to unit test introduced in this PR, but no pre-merge signal available ([comment](https://github.com/pytorch/pytorch/pull/158048#issuecomment-3098746624))
2025-07-21 20:45:21 +00:00
b1a0c34dd3 [pt2 event logging] add configurable prefix (#157678)
Summary:
# Why

make experiments easier to find

# What

- dynamo config to provide a prefix
- use the prefix when sending data to scuba through the self.id_ field

Test Plan:
```
# code edited to set the prefix as `coconutruben-02`
buck2 run mode/opt scripts/coconutruben/torchmm:experiment 2>&1 | tee /tmp/epx040
```

on scuba

```
| autotune_dtypes | autotune_offset | autotune_shape | autotune_strides | event | run_id |
| -----| -----| -----| -----| -----| ----- |
| "torch.float16, torch.float16" | "0, 0" | "4096x3008, 3008x2048" | "[3008, 1], [2048, 1]" | "mm_template_autotuning" | "coconutruben-02-e6bdccc5-6dcf-4d68-9a04-b34f2c6d94fd" |
| "torch.float16, torch.float16" | "0, 0" | "4096x3008, 3008x2048" | "[3008, 1], [2048, 1]" | "mm_template_autotuning" | "coconutruben-02-14165153-5842-4eaa-9e6c-3b0cbc016375" |

```

Rollback Plan:

Differential Revision: D77837550

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157678
Approved by: https://github.com/stashuk-olek
2025-07-21 20:41:03 +00:00
851e953f68 ci: Only run lint jobs on relevant files (#158773)
Conditionally run lint jobs on relevant files, this
is mainly targetd at clangtidy since it takes a long time
but also includes mypy since that's an additional 4 minutes
of runtime that we can save.

Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158773
Approved by: https://github.com/malfet
2025-07-21 20:21:34 +00:00
b66f429827 Fix torch.randint, torch.mul param missing description (#158731)
Wrong separator cause param description truncated.

- Change separator of param and its description
- Remove quote make `torch.dtype` display as reference to the class

## Test Result

### Before

<img width="1092" height="784" alt="image" src="https://github.com/user-attachments/assets/e8d96b26-07e9-40ff-9392-fa6665d4bbe4" />
<img width="1111" height="457" alt="image" src="https://github.com/user-attachments/assets/a3c2e333-f861-4aeb-b4fb-05c8d880ae81" />

### After

<img width="897" height="820" alt="image" src="https://github.com/user-attachments/assets/d1b5cefa-717a-4223-84b0-4346b7eecf44" />
<img width="872" height="409" alt="image" src="https://github.com/user-attachments/assets/96223c37-cd9d-4656-9e55-032d09cbe5c1" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158731
Approved by: https://github.com/ngimel
2025-07-21 20:17:27 +00:00
ea5b06ed5b [Dynamo][BetterEngineering] Type side_effects.py (#158605)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a core file, `side_effects.py`
Running
```
mypy torch/_dynamo/side_effects.py   --linecount-report /tmp/coverage_log
```
| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  365 | 1166 | 31.30% | 16 | 51 | 31.37% |
| This PR | 1185 | 1185 | 100.00% | 51 | 51 | 100.00% |
| Delta    | +820 | +19 | +68.70% | +35 | 0 | +68.63% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158605
Approved by: https://github.com/StrongerXi
2025-07-21 19:34:14 +00:00
25fbf09d5f Use more fine-grained locks in sym mem kernels (#158523)
Summary: Use only acq in the beginning of the kernel, and only release in the end

Test Plan:
Existing tests

Rollback Plan:

Differential Revision: D78458020

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158523
Approved by: https://github.com/drisspg, https://github.com/kwen2501
2025-07-21 19:23:47 +00:00
22920c9138 Grab bag of (mostly) typing improvements (#158075)
Collects some scattershot improvements made while attempting to enable training for AOTInductor. Non-typing changes are:

1. Swapping a few custom searches for the output node in an FX graph for calling `graph.output_node()`.
2. Removing two unused parameters from `torch.export._unlift._unlift`.
3. Switching handles to constants in `cpp_wrapper_cpu` to use C++ references for memory efficiency.
4. Cleaning out unused, unexported imports from `torch/export/__init__.py`, and adding one missing export to `__all__`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158075
Approved by: https://github.com/Skylion007
2025-07-21 19:17:01 +00:00
ad2dec1997 [SymmMem] Add NVSHMEM alltoall support into Triton (#158513)
Implements collective alltoall operation for NVSHMEM Triton kernels. Enables data exchange where each PE sends unique data to every other PE in the team.

Tests: `python test/distributed/test_nvshmem_triton.py -k test_triton_alltoall`

<details>
<summary>Quick debug print for sanity check</summary>

```markdown
============================================================
[Rank 0] Starting alltoall test with world_size=2
============================================================
[Rank 0] Configuration:
  - nelems_per_pe: 2
  - dtype: torch.int64, element_size: 8 bytes
  - nelems_bytes: 16
/dvs/p4/build/sw/rel/gpgpu/toolkit/r12.8/main_nvshmem/src/modules/transport/ibrc/ibrc.cpp:1653: NULL value get_device_list failed
/dvs/p4/build/sw/rel/gpgpu/toolkit/r12.8/main_nvshmem/src/modules/transport/ibrc/ibrc.cpp:1653: NULL value get_device_list failed
[Rank 0] Preparing source data:
[Rank 1] Preparing source data:
  - Data for PE 0: [0, 0] (indices 0-1)
  - Data for PE 1: [1, 1] (indices 2-3)
[Rank 0] Complete source buffer: [0, 0, 1, 1]
  - Data for PE 0: [100, 100] (indices 0-1)
  - Data for PE 1: [101, 101] (indices 2-3)
[Rank 1] Complete source buffer: [100, 100, 101, 101]
[Rank 1] Initial destination buffer: [-1, -1, -1, -1]
[Rank 0] Initial destination buffer: [-1, -1, -1, -1]
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
[rank0]:[W716 15:30:06.215666766 ProcessGroupNCCL.cpp:5064] [PG ID 0 PG GUID 0 Rank 0]  using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can specify device_id in init_process_group() to force use of a particular device.
[rank1]:[W716 15:30:06.215752786 ProcessGroupNCCL.cpp:5064] [PG ID 0 PG GUID 0 Rank 1]  using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can specify device_id in init_process_group() to force use of a particular device.
NCCL version 2.27.5+cuda12.4
[Rank 1] Executing alltoall operation...
[Rank 0] Executing alltoall operation...
[Rank 1] alltoall operation completed
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
[Rank 0] alltoall operation completed
/data/users/suryasub/pytorch/torch/distributed/distributed_c10d.py:4809: UserWarning: No device id is provided via `init_process_group` or `barrier `. Using the current device set by the user.
  warnings.warn(  # warn only once
[Rank 0] Results after alltoall:
[Rank 1] Results after alltoall:[Rank 0] Destination buffer: [0, 0, 100, 100]
[Rank 0] Verifying results:
  - From PE 0 (indices 0-1):
    Expected: [0, 0]
    Actual:   [0, 0]
[Rank 1] Destination buffer: [1, 1, 101, 101]
[Rank 1] Verifying results:
  - From PE 0 (indices 0-1):
    Expected: [1, 1]
    Actual:   [1, 1]
    Match:    ✓
    Match:    ✓
  - From PE 1 (indices 2-3):
    Expected: [100, 100]
  - From PE 1 (indices 2-3):
    Expected: [101, 101]
    Actual:   [100, 100]
    Actual:   [101, 101]
    Match:    ✓
    Match:    ✓
[Rank 0] ============================================================
[Rank 0] Summary: ALL TESTS PASSED ✓
[Rank 0] Data flow explanation:
  - Each rank sends 2 elements to every other rank
[Rank 1] ============================================================
[Rank 1] Summary: ALL TESTS PASSED ✓
  - Rank 0 sent: [0, 0, 1, 1]
[Rank 1] Data flow explanation:
  - Each rank sends 2 elements to every other rank
  - Rank 0 received: [0, 0, 100, 100]
  - My data for PE 0 (0) went to PE 0's buffer
  - I received PE 0's data for me (0)
  - My data for PE 1 (1) went to PE 1's buffer
  - Rank 1 sent: [100, 100, 101, 101]
  - I received PE 1's data for me (100)
[Rank 0] ============================================================
  - Rank 1 received: [1, 1, 101, 101]
  - My data for PE 0 (100) went to PE 0's buffer
  - I received PE 0's data for me (1)
  - My data for PE 1 (101) went to PE 1's buffer
  - I received PE 1's data for me (101)
[Rank 1] ============================================================
```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158513
Approved by: https://github.com/fduwjj, https://github.com/mandroid6
ghstack dependencies: #158511, #158512
2025-07-21 19:14:47 +00:00
662dd7db5b [cutlass backend] cache maybe_append_choices (#156781)
This PR attempts to cache:
* codegen for cutlass backend for the same kernel. Even if runtime params are different.

From some profiling, most of the time spent is on render. So we only target to cache that part for now.

The output of render is `code`, and we are able to cache that easily. Also, I have to cache size_args, since it depends on `kernel.get_dynamic_shape_args()`, which depends on the state of self when we call render.

make_key is doing most of the work here: We are hashing on input node layouts, output node layout and op.configuration_name() (this is what hash(op) would do anyway).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156781
Approved by: https://github.com/ColinPeppler
2025-07-21 19:02:39 +00:00
72db0a98a3 Revert "[DTensor] Assert DTensorSpec has valid placements (#158133)"
This reverts commit 1839e8d04b81ee6eda0cff6fbfc218a7a600f6f7.

Reverted https://github.com/pytorch/pytorch/pull/158133 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. See D78496151 for details. To validate your fixes internally, you can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts ([comment](https://github.com/pytorch/pytorch/pull/158133#issuecomment-3097994857))
2025-07-21 18:54:07 +00:00
8ed5e1844c [AOTI] Convert C-struct zip handling to RAII container (#158687)
Attempts to fix a memory leak reported in #158614 by wrapping manually managed MiniZ C-structs in an RAII container. I have been unable to reproduce the reported leak, but this seems like the most likely candidate.

Fixes #158614 (hopefully)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158687
Approved by: https://github.com/desertfire
2025-07-21 18:53:14 +00:00
393fecb2cc [Optimus][Unit test] clean up the unit test (#158696)
Summary: We should only patch the specific pattern(s) for each unit test.

Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:group_batch_fusion
```

Buck UI: https://www.internalfb.com/buck2/f8d37674-91c4-4244-90fa-f24fc3f91e4b
Test UI: https://www.internalfb.com/intern/testinfra/testrun/2533275088644915
Network: Up: 100KiB  Down: 233KiB  (reSessionID-92039f44-bc6f-4e78-87b1-93bca1bd1c66)
Analyzing targets. Remaining     0/296
Executing actions. Remaining     0/20196                                                                    5.8s exec time total
Command: test.     Finished 2 local, 2 cache (50% hit)                                                      4.6s exec time cached (79%)
Time elapsed: 3:55.1s
Tests finished: Pass 13. Fail 0. Fatal 0. Skip 0. Build failure 0

Rollback Plan:

Differential Revision: D78598127

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158696
Approved by: https://github.com/Skylion007, https://github.com/masnesral
2025-07-21 18:05:09 +00:00
9285b8245c [BE][testing] fix test_cat_max_autotune_triton (#158589)
Summary: This test often fails internally -- looks like it's because autotuning sometimes chooses not to do the epilog tuning. Turning off `benchmark_epilogue_fusion` seems to fix.

Test Plan:
`buck test '@fbcode//mode/opt' fbcode//caffe2/test/inductor:max_autotune -- --exact 'caffe2/test/inductor:max_autotune - test_cat_max_autotune_triton (caffe2.test.inductor.test_max_autotune.TestMaxAutotune)' --run-disabled`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158589
Approved by: https://github.com/eellison
2025-07-21 18:02:18 +00:00
637e75433c [BE] always use uv pip if possible in pip_init.py for lintrunner init (#157199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157199
Approved by: https://github.com/ezyang, https://github.com/ZainRizvi
2025-07-21 17:56:05 +00:00
a78fb63dbd [build] pin setuptools>=77 to enable PEP 639 (#158104)
For reference here is the link PEP 639: [peps.python.org/pep-0639](https://peps.python.org/pep-0639/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158104
Approved by: https://github.com/rgommers, https://github.com/Skylion007, https://github.com/atalman
2025-07-21 17:46:40 +00:00
7205458b85 [Easy] Show some clear error when torch.ops.load_library fails. (#157524)
**Background**:

```Shell
torch       2.5.1+cpu
torchvision 0.20.1
```

```Python
import torch
import torchvision

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torchvision/__init__.py", line 10, in <module>
    from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils  # usort:skip
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torchvision/_meta_registrations.py", line 164, in <module>
    def meta_nms(dets, scores, iou_threshold):
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/library.py", line 795, in register
    use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/library.py", line 184, in _register_fake
    handle = entry.fake_impl.register(func_to_register, source)
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/_library/fake_impl.py", line 31, in register
    if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, "Meta"):
RuntimeError: operator torchvision::nms does not exist
```

**Cause**:

```
torchvision's .so file lacks some symbol definitions, because these symbols come from CUDA, but the current environment does not have CUDA and GPU. The above error message is very confusing.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157524
Approved by: https://github.com/ezyang
2025-07-21 17:32:31 +00:00
35f1b4ad9e Revert "Fused RMSNorm implementation (#153666)"
This reverts commit 15ef4f28df0a14e9f0d55a57a4e2db415a303be7.

Reverted https://github.com/pytorch/pytorch/pull/153666 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking tests internally. @albanD can you please help land this change?You can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts.  See D78599667 for more info ([comment](https://github.com/pytorch/pytorch/pull/153666#issuecomment-3097690935))
2025-07-21 17:31:42 +00:00
cbe1cb7018 [CMake] Move xpu flag to xpu.cmake (#158542)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158542
Approved by: https://github.com/gujinghui, https://github.com/ezyang
2025-07-21 17:19:59 +00:00
9894d43b6c [AOTI] explicit aoti wrapper functions for Windows. (#158713)
On Windows, we need to explicit declaration for export APIs. Because the package loader call these API via GetProcAddress.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158713
Approved by: https://github.com/desertfire
2025-07-21 15:59:44 +00:00
f168cf49a8 [BE] Always use python 3.9 for pre-push hook's lintrunner (#158693)
A follow up to https://github.com/pytorch/pytorch/pull/158389

Sets up the pre-push lintrunner to always use python 3.9
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158693
Approved by: https://github.com/atalman
2025-07-21 15:19:27 +00:00
393377d215 Revert "[CI] update flake8 and mypy lint dependencies (#158720)"
This reverts commit a527e816935957a164d74dd7c5069310b2857695.

Reverted https://github.com/pytorch/pytorch/pull/158720 on behalf of https://github.com/malfet due to This broke lint, see 8e57cdb746/1 ([comment](https://github.com/pytorch/pytorch/pull/158720#issuecomment-3096893256))
2025-07-21 13:58:50 +00:00
8e57cdb746 Still run TritonBundler with BundledAOTAutogradCache, save autotune results (#158048)
When running BundledAOTAutogradCache with precompile, we still need to run triton bundling so that the precompiled CompiledFxGraph has triton cuda kernels. We also pre save the autotune results in the precompile artifact.

It would be even better to pre trim the cuda kernels on save and apply them, which we can work on later.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158048
Approved by: https://github.com/zhxchen17
2025-07-21 13:35:46 +00:00
d5a29fc58a De-abstract premature generalization with InductorWrapper (#158528)
See docblock on InductorWrapper for the distinction.  This will matter
on a later refactor PR where I will change the signature for one of
these but not the other.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158528
Approved by: https://github.com/jamesjwu
ghstack dependencies: #158449
2025-07-21 13:27:07 +00:00
979fae761c Rename modules in AOTAutograd (#158449)
Fixes https://github.com/pytorch/pytorch/issues/158382

```
renamed:    torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py -> torch/_functorch/_aot_autograd/graph_capture.py
renamed:    torch/_functorch/_aot_autograd/traced_function_transforms.py -> torch/_functorch/_aot_autograd/graph_capture_wrappers.py
renamed:    torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py -> torch/_functorch/_aot_autograd/graph_compile.py
```

Everything else is ONLY import changes. I did not rename any functions
even if we probably should have.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158449
Approved by: https://github.com/jamesjwu
2025-07-21 13:27:07 +00:00
1eb6b2089f [Inductor] Set the default value of min_chunk_size to 512 (#150762)
Change the default value of min_chunk_size from 4096 to 512 to allow more for loops to be parallelized.
I tested the Inductor benchmark with this PR on CPU, and saw ~10% improvement in torchbench geomean speedup, and no change in huggingface/timm_models. There are about 15 torchbench models with different degrees of performance improvement, among which functorch_dp_cifar10, opacus_cifar10, hf_Reformer, and pyhpc_turbulent_kinetic_energy have more than 50% performance improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150762
Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel
2025-07-21 12:46:05 +00:00
bbc32d680f [SymmMem] Add NVSHMEM sync_all support into Triton (#158512)
Adds `sync_all()` function for local store visibility synchronization in NVSHMEM Triton kernels. Provides memory ordering for local operations without remote completion guarantees.

Tests: `python test/distributed/test_nvshmem_triton.py -k test_triton_sync`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158512
Approved by: https://github.com/fduwjj
ghstack dependencies: #158511
2025-07-21 10:27:59 +00:00
a527e81693 [CI] update flake8 and mypy lint dependencies (#158720)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158720
Approved by: https://github.com/Skylion007
2025-07-21 09:24:29 +00:00
1c6328a588 [EZ][BE] Fix compilation warning in Pooling.metal (#158729)
This one
```
Compiling /Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Pooling.metal to Pooling_30.air
/Users/malfet/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Pooling.metal:172:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]
}
^
1 warning generated.
```
Although functionally one is not supposed to hit this codepath ever, it's not not to throw warning
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158729
Approved by: https://github.com/Skylion007
2025-07-21 04:34:14 +00:00
70b4a8880b [SymmMem] Add NVSHMEM barrier_all, my_pe, n_pes support into Triton (#158511)
Adds device-side barrier synchronization and PE identification functions for NVSHMEM Triton integration. Includes `barrier_all()` for collective synchronization and `my_pe()`/`n_pes()` for PE identification within kernels.

We are launching with cooperative grid launch (for all the PRs in this stack) because the `nvshmemx_collective_launch` function must be used to launch kernels on the GPU when the kernels use NVSHMEM synchronization or collective APIs, and `nvshmemx_collective_launch` essentially boils down to a CUDA cooperative group launch.

Tests: `python test/distributed/test_nvshmem_triton.py -k test_triton_barrier`

Also tested that if you remove the barrier, you get an assertion error/race conditions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158511
Approved by: https://github.com/fduwjj
2025-07-21 02:37:33 +00:00
5e1232871b Revert "[build] pin setuptools>=77 to enable PEP 639 (#158104)"
This reverts commit a4ec381302f8acd279033707b182bed30ffd2091.

Reverted https://github.com/pytorch/pytorch/pull/158104 on behalf of https://github.com/malfet due to This break inductor-perf-nighly-macos by failing to build torchvision, see https://github.com/pytorch/pytorch/issues/158728 ([comment](https://github.com/pytorch/pytorch/pull/158104#issuecomment-3095048940))
2025-07-21 02:24:11 +00:00
ff0da08f4b [AOTI] normalize path and process model files. (#158705)
Continued to https://github.com/pytorch/pytorch/pull/158702 , split `zip_filename_str` and real file path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158705
Approved by: https://github.com/desertfire
2025-07-21 01:08:59 +00:00
2cdafab0bd [BE] Raise ValueError from torch.cat meta func (#158249)
Followup after https://github.com/pytorch/pytorch/pull/155460

From [Python documentation](https://docs.python.org/3/library/exceptions.html#ValueError):
> Raised when an operation or function receives an argument that has the right type but an inappropriate value, and the situation is not described by a more precise exception such as IndexError.

Raise [`TypeError`](https://docs.python.org/3/library/exceptions.html#TypeError) when input-output types are incompatible with each other
> Raised when an operation or function is applied to an object of inappropriate type. The associated value is a string giving details about the type mismatch.

> This exception may be raised by user code to indicate that an attempted operation on an object is not supported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an implementation, [NotImplementedError](https://docs.python.org/3/library/exceptions.html#NotImplementedError) is the proper exception to raise.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158249
Approved by: https://github.com/jbschlosser, https://github.com/Skylion007, https://github.com/albanD
2025-07-20 23:49:18 +00:00
4b02bd76d3 DCP safetensors test fix (#158685)
https://github.com/pytorch/pytorch/pull/158069 removed the consolidated output path argument without updating the test. Reported by a user here https://github.com/pytorch/pytorch/pull/156705#issuecomment-3090748034.
Adding back the logic from the original PR https://github.com/pytorch/pytorch/pull/158069 and fixing the test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158685
Approved by: https://github.com/teja-rao
2025-07-20 22:52:54 +00:00
2e038793ef [inductor][templates] Finalize all registered hooks (#157270)
This refactor ensures all registered template hooks have been finalised before accessing the code object of the template. In `simd.SimdScheduling.codegen_template` the template hooks are finalised manually with `template.finalize_hook(hook_name)` calls, so it is the responsibility of the caller to finalise all the template hooks. This PR adds:
- `RenderPartial.finalize_remaining` a function that can be called at the end to finalise the remaining active hooks after a selection of hooks have been finalised manually.
- A test with a custom template implementation that registers custom hooks that the scheduler needs to finalise. This test should fail if the scheduler does not finalise the registered custom hook.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157270
Approved by: https://github.com/eellison
2025-07-20 22:07:32 +00:00
5e149a6482 Add deprecation warning (#158203)
Summary: export_for_training exist because we couldn't migrate internal usages of export to the final IR. Now that we have completed the migration, we should deprecate and delete this API.

Test Plan:
CI

Rollback Plan:

Differential Revision: D78240836

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158203
Approved by: https://github.com/JacobSzwejbka
2025-07-20 17:02:01 +00:00
badf002014 [Reland] Add warning about removed sm50 and sm60 arches (#158700)
Related to https://github.com/pytorch/pytorch/issues/157517

Detect when users are executing torch build with cuda 12.8/12.9 and running on Maxwell or Pascal architectures.
We would like to include reference to the issue: https://github.com/pytorch/pytorch/issues/157517 as well as ask people to install CUDA 12.6 builds if they are running on sm50 or sm60 architectures.

Test:
```
>>> torch.cuda.get_arch_list()
['sm_70', 'sm_75', 'sm_80', 'sm_86', 'sm_90', 'sm_100', 'sm_120', 'compute_120']
>>> torch.cuda.init()
/home/atalman/.conda/envs/py312/lib/python3.12/site-packages/torch/cuda/__init__.py:263: UserWarning:
    Found <GPU Name> which is of cuda capability 5.0.
    PyTorch no longer supports this GPU because it is too old.
    The minimum cuda capability supported by this library is 7.0.

  warnings.warn(
/home/atalman/.conda/envs/py312/lib/python3.12/site-packages/torch/cuda/__init__.py:268: UserWarning:
                        Support for Maxwell and Pascal architectures is removed for CUDA 12.8+ builds.
                        Please see https://github.com/pytorch/pytorch/issues/157517
                        Please install CUDA 12.6 builds if you require Maxwell or Pascal support.
```

Please note I reverted original PR https://github.com/pytorch/pytorch/pull/158301 because it broke internal users. This is a reland, added added check for non empty torch.cuda.get_arch_list()
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158700
Approved by: https://github.com/huydhn, https://github.com/Skylion007, https://github.com/eqy
2025-07-20 14:57:46 +00:00
4869f71170 don't set CUDA_MODULE_LOADING (#158712)
If needed, it'll be set in `_C._cuda_init()`. setenv is not threadsafe, so this can cause segfaults due to getenv/setenv races.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158712
Approved by: https://github.com/eqy
2025-07-20 01:36:26 +00:00
b4abf41425 Raise BufferError for DLPack buffer-related errors. (#150691)
This PR addresses the Array API documentation for [`__dlpack__`][1] and
[`from_dlpack`][2] by making some buffer-related errors `BufferError`
instead of `RuntimeError`, e.g. incompatible dtype, strides, or device.

[1]: https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
[2]: https://data-apis.org/array-api/latest/API_specification/generated/array_api.from_dlpack.html#from-dlpack
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150691
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #150216, #150217, #150218
2025-07-20 00:46:21 +00:00
a10f15718d [DLPack] Add support for missing keyword-arguments. (#150218)
This PR introduces the rest of the keyword-arguments added in DLPack
version 2023.12: `dl_device` and `copy`.

In summary, we handle these arguments in the C++ implementation of
`to_dlpack(...)` at _torch/csrc/Module.cpp_, by calling the
`maybeCopyTensor` function at _aten/src/ATen/DLConvertor.cpp_. It also
introduces the following changes:

- Add a new Python API `torchDeviceToDLDevice()`, which is simply a
  refactoring of the `getDLDevice()` function at
  _aten/src/ATen/DLConvertor.cpp_.
- Add both keyword-arguments to the `from_dlpack()` function at
  _torch/utils/dlpack.py_ and to the `Tensor.__dlpack__()` dunder
  method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150218
Approved by: https://github.com/albanD
ghstack dependencies: #150216, #150217
2025-07-20 00:46:20 +00:00
1d526fe78f Fix DLPack stream logic. (#150217)
This PR fixes the logic for dealing with CUDA and ROCm streams whenever
we are trying to create a DLPack capsule from a tensor.

In summary, this PR:

- Uses the legacy default stream if `tensor.__dlpack__(stream=None)` is
  called for a CUDA tensor.
- Errors if `tensor.__dlpack__(stream=2)` is called for a CUDA tensor:
  PyTorch doesn't support the per-thread default stream.
- Errors if `tensor.__dlpack__(stream=stream)`, where `stream` is 1 or
  2, is called for a CUDA tensor using ROCm.

For more details, see [the documentation][1].

[1]: https://data-apis.org/array-api/latest/API_specification/generated/array_api.array.__dlpack__.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150217
Approved by: https://github.com/msaroufim, https://github.com/albanD
ghstack dependencies: #150216
2025-07-20 00:46:20 +00:00
b64f338da4 [DLPack] add NumPy exchange tests. (#150216)
This PR resolves an old TODO that requested NumPy DLPack exchange tests
once version 1.22 was required.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150216
Approved by: https://github.com/msaroufim, https://github.com/albanD
2025-07-20 00:46:20 +00:00
a1cfe7f1df [nativert] benchmark util (#158678)
Differential Revision: D78514241

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158678
Approved by: https://github.com/SherlockNoMad, https://github.com/georgiaphillips
2025-07-20 00:28:09 +00:00
d36afac83b Build domain libraries for all workflows with TorchBench config (#158601)
They are expensive GPU runners and should not spend time building packages

Signed-off-by: Huy Do <huydhn@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158601
Approved by: https://github.com/ZainRizvi
2025-07-19 21:51:39 +00:00
7cc1a9546c [AOTI] fix extract file failed on Windows. (#158702)
Changes:
1. rename zip index name, and keep it out of normalize path.
2. normalize output path for extract file.

Extract files successful:
<img width="683" height="247" alt="image" src="https://github.com/user-attachments/assets/72dff7b9-5ec0-4523-a6ee-7768b37bbe63" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158702
Approved by: https://github.com/angelayi
2025-07-19 08:58:42 +00:00
7cc5d03dfc Document the rest of the specific optimizer module APIs (#158669)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158669
Approved by: https://github.com/albanD
ghstack dependencies: #158483
2025-07-19 07:27:15 +00:00
f73594164a [BE] document Adadelta and Adagrad APIs properly (#158483)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158483
Approved by: https://github.com/albanD
2025-07-19 07:27:15 +00:00
a9f84021fb [CI] Fixes CI for CUDA Version > 12.9 (#157385)
Compute capabilities older than volta (inclusive) is no longer supported in CUDA Version > 12.9
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157385
Approved by: https://github.com/eqy
2025-07-19 06:51:57 +00:00
22d82222c6 GenAI Layer Benchmark (#158536)
This PR adds GenAI layer benchmark. It compares pytorch eager, pytorch compiler, liger, and quack.

It covers all kernels supported by [quack](https://github.com/Dao-AILab/quack?tab=readme-ov-file#kernels-) (CrossEntropy Fwd/Bwd, Softmax Fwd/Bwd, RMSNorm Fwd/Bwd, LayerNorm Fwd) and LayerNormBwd.

## Motivations

- Many OSS users asked how to properly benchmark torch.compile generated kernels. One common error is to compile a kernel/layer for one shape (e.g., batch size=1) and benchmark for another shape (e.g., batch size = 1024), which leads to bad performance. This provides an simple & clear example for proper benchmark.
- We recently added GenAI model benchmark (based on [vLLM](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm)). But it's usually hard to optimize models directly due to complexity. Layer benchmarks are easier to reason and optimize.

## Key Settings

- Avoid reusing a kernel specializing on 1 shape for benchmark on another shape.
```python
torch._dynamo.config.automatic_dynamic_shapes = False
# Needed since changing args to function causes recompiles
torch._dynamo.config.recompile_limit = 1000000
```

- For forward, people may mark batch size as dynamic to avoid runtime recompilation. We respect the setting in this kernel-level benchmark.
```
torch._dynamo.mark_dynamic(x, 0)
```

GPU: H100 (devvm006.dkl0)

Results: [P1874246170](https://www.internalfb.com/phabricator/paste/view/P1874246170)

Note: for numerical accuracy, we use the default tolerance of torch.testing.assert_close (i.e., for `torch.bfloat16`, use rtol `1.6e-2` and atol `1e-5`). It shows numerical issues for some backends and kernels.

Next step is to add roofline analysis, add to ci for checking regression, cover more GenAI Kernels, and include GenAI Layers for common fusion patterns.

<img width="3564" height="2368" alt="CrossEntropyBackward_bench" src="https://github.com/user-attachments/assets/7aa77ad1-83eb-41ea-a27d-50fd5b1dd6be" />
<img width="3564" height="2368" alt="CrossEntropyForward_bench" src="https://github.com/user-attachments/assets/a26ec028-3791-4a41-a12a-05e10f60e9aa" />
<img width="3564" height="2368" alt="LayerNormBackward_bench" src="https://github.com/user-attachments/assets/cc6673ed-c148-4dd2-a729-5f02e717ab3e" />
<img width="3564" height="2368" alt="LayerNormForward_bench" src="https://github.com/user-attachments/assets/f71f9f9d-7b45-4ce7-89d0-e9bce727efae" />
<img width="3564" height="2368" alt="RMSNormBackward_bench" src="https://github.com/user-attachments/assets/e012821a-b7e6-4e83-a24c-c97fa8cd37b5" />
<img width="3564" height="2368" alt="RMSNormForward_bench" src="https://github.com/user-attachments/assets/2d52ee1e-9a8c-4bd1-a180-97b93f07171d" />
<img width="3564" height="2368" alt="SoftmaxBackward_bench" src="https://github.com/user-attachments/assets/02aad056-3ce1-4b40-8cfe-adae81fd017a" />
<img width="3564" height="2368" alt="SoftmaxForward_bench" src="https://github.com/user-attachments/assets/779f6b0d-a102-4164-8300-86fff0329ddf" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158536
Approved by: https://github.com/yf225, https://github.com/eellison
2025-07-19 05:41:01 +00:00
5cde34473c Fix MakeTensor::computeStorageSize() (#158690)
For tensor with non-zero offset, it must be multiplied by element size

Add regression test by creating Tensor in array of 6 elements with offset 3, which before the fix crashed with
```
C++ exception with description "setStorage: sizes [3, 3], strides [0, 1], storage offset 3, and itemsize 4 requiring a storage size of 24 are out of bounds for storage of size 15
Exception raised from checkInBoundsForStorage at /Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/Resize.h:123 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 56 (0x104a9cd44 in libc10.dylib)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 120 (0x104a9a05c in libc10.dylib)
frame #2: void at::native::checkInBoundsForStorage<long long>(c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long, caffe2::TypeMeta const&, c10::Storage const&) + 656 (0x111dbd314 in libtorch_cpu.dylib)
frame #3: void at::native::setStrided<long long>(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, long long) + 152 (0x111dcd22c in libtorch_cpu.dylib)
frame #4: at::native::as_strided_tensorimpl(at::Tensor const&, c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) + 312 (0x111dccf98 in libtorch_cpu.dylib)
frame #5: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU__as_strided(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>>>, at::Tensor (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 104 (0x1129a1e94 in libtorch_cpu.dylib)
frame #6: at::_ops::as_strided::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>, std::__1::optional<c10::SymInt>) + 476 (0x112200ad0 in libtorch_cpu.dylib)
frame #7: at::Tensor::as_strided(c10::ArrayRef<long long>, c10::ArrayRef<long long>, std::__1::optional<long long>) const + 236 (0x1115db098 in libtorch_cpu.dylib)
frame #8: at::native::expand(at::Tensor const&, c10::ArrayRef<long long>, bool) + 348 (0x111dcc0d4 in libtorch_cpu.dylib)
frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::ADInplaceOrView::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 116 (0x1157ac410 in libtorch_cpu.dylib)
frame #10: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool), &torch::autograd::VariableType::(anonymous namespace)::expand(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool>>, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 992 (0x114e8b010 in libtorch_cpu.dylib)
frame #11: at::_ops::expand::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, bool) + 316 (0x112743c90 in libtorch_cpu.dylib)
frame #12: at::expand_size(at::Tensor const&, c10::ArrayRef<long long>) + 164 (0x1047d82b4 in basic)
frame #13: BasicTest_TestForBlobResizeCPU_Test::TestBody() + 284 (0x1047d8048 in basic)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158690
Approved by: https://github.com/angelayi
2025-07-19 05:21:33 +00:00
fac0be7b9c [async-TP] Turn asserts back into silent skips (#158572)
https://github.com/pytorch/pytorch/pull/149946 modified some checks that verify whether async-TP is "applicable" to a given collective operation in a graph. Before, the pattern-mathcing+replacement would just be skipped, but now these are asserts that fail and raise.

This is causing concrete issues in some graphs where 2-dimensional device meshes are being used (e.g., TP + CP) but only one dimension has symm-mem enabled. See #158569.

This PR is turning these asserts back into harmless early-exits. Note that this only needed to be done for reduce-scatters, as it was already the case for all-gathers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158572
Approved by: https://github.com/danielvegamyhre, https://github.com/atalman
2025-07-19 04:54:38 +00:00
64dabb2cf5 only fail regressions>10% on pr_time benchmarks (#158577)
Moving to a new framework, maintaitning the pr_time benchmark test right now is hard and often breaking.
1. only fail PRs >10% regressions.
2. post monitor with pr_time benchmarks dashboard (oncall), and update expected results (frequently or on big changes)
(supposed to already be doing https://www.internalfb.com/unidash/dashboard/pt2_diff_time_metrics)
3. setting up some one detections  detectors warnings that would be triggered at regressions and notify internally post land
https://www.internalfb.com/monitoring/detector/1140915271179237

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158577
Approved by: https://github.com/xmfan, https://github.com/janeyx99
2025-07-19 04:35:31 +00:00
ab557421a4 [cca] [c10d] Refactor CUDAEventCache into separate files (#158616)
Summary:
Refactored CUDAEventCache from ProcessGroupNCCL.hpp/.cpp into dedicated header and implementation files for better code organization and maintainability.

Split out CUDAEventCache into:
- New header file: CUDAEventCache.hpp
- New implementation file: CUDAEventCache.cpp
- Updated build_variables.bzl to include the new file

This change improves code maintainability, readability, and follows better code organization practices.
---
> Generated by [Confucius Code Assist (CCA)](https://www.internalfb.com/wiki/Confucius/Analect/Shared_Analects/Confucius_Code_Assist_(CCA)/)
[Session](https://www.internalfb.com/confucius?session_id=61b9029a-636b-11f0-9d9a-f1bcc55be1ce&tab=Chat), [Trace](https://www.internalfb.com/confucius?session_id=61b9029a-636b-11f0-9d9a-f1bcc55be1ce&tab=Trace)

Test Plan:
Verified build with:
```
buck build //caffe2/test/distributed:c10d
```
---
> Generated by [Confucius Code Assist (CCA)](https://www.internalfb.com/wiki/Confucius/Analect/Shared_Analects/Confucius_Code_Assist_(CCA)/)
[Session](https://www.internalfb.com/confucius?session_id=61b9029a-636b-11f0-9d9a-f1bcc55be1ce&tab=Chat), [Trace](https://www.internalfb.com/confucius?session_id=61b9029a-636b-11f0-9d9a-f1bcc55be1ce&tab=Trace)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158616
Approved by: https://github.com/fduwjj
2025-07-19 02:51:28 +00:00
90b082e207 enable_caching_generated_triton_templates=True by default (#158592)
Got some risk, but good to catch issues if there is any, easy to revert single flag flip.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158592
Approved by: https://github.com/eellison
2025-07-19 02:19:34 +00:00
a741094159 Build domain libraries on the build job (#158600)
By setting the name of the domain libraries to build via `BUILD_ADDITIONAL_PACKAGES` environment variable, the build job will build them and make them available as artifacts in the same way as the PyTorch CI wheel. To ensure that this doesn't break CI, the test job will still build them as usual if the wheels are not there.  Building dependencies like FBGEMM on the test job is bad, especially for GPU jobs, because it leave the GPU resource idle

Fixes https://github.com/pytorch/pytorch/issues/152024

Signed-off-by: Huy Do <huydhn@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158600
Approved by: https://github.com/yangw-dev
ghstack dependencies: #158598, #158599
2025-07-19 02:03:50 +00:00
2955acaed6 Clean up some unused build env variables (#158599)
* Parameter build-with-debug isn't needed, it isn't even passed into Docker. Debug build is detected via the build environment name
* AWS_DEFAULT_REGION is a leftover from ARC and isn't used anywhere in .ci/pytorch nor .github

Signed-off-by: Huy Do <huydhn@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158599
Approved by: https://github.com/cyyever, https://github.com/ZainRizvi
ghstack dependencies: #158598
2025-07-19 01:59:00 +00:00
2c16eb9f3d [dynamo] Support more basic output types for nonstrict_trace (#157969)
Fixes #157397 and improves the user-facing error message for remaining
unsupported cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157969
Approved by: https://github.com/zou3519
2025-07-19 00:59:54 +00:00
c2c88846a9 Revert "[Easy] Show some clear error when torch.ops.load_library fails. (#157524)"
This reverts commit 555f3562541992b66a550eca8e8740884b1247f8.

Reverted https://github.com/pytorch/pytorch/pull/157524 on behalf of https://github.com/wdvr due to reverting for now to reopen the discussion ([comment](https://github.com/pytorch/pytorch/pull/157524#issuecomment-3091317252))
2025-07-19 00:45:31 +00:00
5b40f6581e Revert "Add warning about removed sm50 and sm60 arches (#158301)"
This reverts commit fb731fe371cb1b5bf95de84b19c213590526acb2.

Reverted https://github.com/pytorch/pytorch/pull/158301 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/158301#issuecomment-3091307023))
2025-07-19 00:32:04 +00:00
d42c409767 [AOTI] windows package load dev (#158671)
changes:
1. add extract file fail handler for Windows develop.
2. normalize more file paths.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158671
Approved by: https://github.com/angelayi
2025-07-19 00:06:40 +00:00
a3aacd6cb2 [DTensor] fix copy_ strategy (#158538)
The previous strategy directly used 'self' input strategy for 'src'
input.  The fixed strategy correctly maps the self dim to src dim
so that it works even if the src input is broadcast.

E.g. for this program, broadcasting will occur on dims 0,1,3 of self.

```
self = torch.ones((2,3,4,5))
src = torch.ones((4,1))
self.copy_(src)
```

These are the correct sharding combinations:

|   self   |     src |
|-------|------|
| Shard(0)  |   Replicate() |
| Shard(1)  |   Replicate() |
| Shard(2)  |   Shard(0) |
| Shard(3)  |   Shard(1) |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158538
Approved by: https://github.com/zpcore, https://github.com/XilunWu, https://github.com/wanchaol
ghstack dependencies: #158490
2025-07-18 23:44:43 +00:00
36bddcd18c [DTensor] Fix default_strategy and rename for clarity (#158490)
Fixes several bugs in the original.
- foremost, fixes a serious bug where we returned incorrect strategies
  by mixing input_specs that were frozen from
  select_strategy.strategies[0] with output_specs that varied across
  select_strategy.strategies[0..N] (e.g. we could create a nonsense
  strategy like input:Shard(0) output(Replicate) for an op like clone
- fixes the redistribute costs: they should not actually be 0, they
  should be the cost of redistributing our single input from another
  strategy to the current strategy, in our list of output strategies
- adds a note, wondering if we should have just literally returned the
  input strategy instead of creating this new object
- Currently, using default_strategy is incorrect becuase it maps 'self'
  tensor's strategies directly onto 'src' tensor without accounting for
  the fact that copy_ supports broadcasting a smaller rank tensor into a
  larger one.

Separates out copy_  op from default strategy, adds missing test case,
but does not fix the underlying issue with copy_, leaves that for future
PR

Renames to `propagate_single_input_strategy` since that's more
descriptive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158490
Approved by: https://github.com/wanchaol, https://github.com/XilunWu
2025-07-18 23:44:42 +00:00
15ef4f28df Fused RMSNorm implementation (#153666)
Relevant #72643

Benchmarked versus unfused torch implementation and torch.compile implementation. Around 9x speedup vs unfused implementation on cuda and slightly faster vs inductor compile on 5090.

```py
import torch
import torch.nn as nn

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        norm_x = x.norm(2, dim=-1, keepdim=True)
        rms_x = norm_x * torch.rsqrt(torch.tensor(x.shape[-1], dtype=x.dtype))
        x_normed = x / (rms_x + self.eps)
        return self.scale * x_normed

def benchmark_rmsnorm_cuda(input_shape, normalized_dim, num_iterations=100, warmup_iterations=10, dtype=torch.float16):
    rms_norm_layer = torch.nn.RMSNorm(normalized_dim, device='cuda', dtype=dtype)
    input_data = torch.randn(input_shape, device='cuda', dtype=dtype)

    for _ in range(warmup_iterations):
        _ = rms_norm_layer(input_data)
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    start_event.record()
    for _ in range(num_iterations):
        _ = rms_norm_layer(input_data)

    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    avg_time_ms = elapsed_time_ms / num_iterations

    print(f"--- RMSNorm CUDA Benchmark ---")
    print(f"Input Shape: {input_shape}")
    print(f"Normalized Dimension: {normalized_dim}")
    print(f"Benchmark Iterations: {num_iterations}")
    print(f"--- Fused Implementation ---")
    print(f"Average Time per Iteration: {avg_time_ms:.4f} ms")
    print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms")

    compiled_rms_norm = torch.compile(RMSNorm(dim=normalized_dim)).cuda()
    for _ in range(warmup_iterations):
        _ = compiled_rms_norm(input_data)
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    start_event.record()
    for _ in range(num_iterations):
        _ = compiled_rms_norm(input_data)
    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    avg_time_ms = elapsed_time_ms / num_iterations

    print(f"--- TorchCompile Implementation ---")
    print(f"Average Time per Iteration: {avg_time_ms:.4f} ms")
    print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms")

    print("-" * 50)

if __name__ == '__main__':
    parameter_sets = [
        {'batch_size': 16, 'sequence_length': 256, 'hidden_features': 512, 'dtype': torch.float16},
        {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float16},
        {'batch_size': 64, 'sequence_length': 1024, 'hidden_features': 1024, 'dtype': torch.float16},
        {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float32},
        {'batch_size': 8, 'sequence_length': 2048, 'hidden_features': 2048, 'dtype': torch.float16},
    ]

    num_benchmark_iterations = 200
    num_warmup_iterations = 20

    for params in parameter_sets:
        batch_size = params['batch_size']
        sequence_length = params['sequence_length']
        hidden_features = params['hidden_features']
        data_type = params.get('dtype', torch.float16)

        shape = (batch_size, sequence_length, hidden_features)
        norm_dim_to_normalize = hidden_features

        print(f"Benchmarking with: BS={batch_size}, SeqLen={sequence_length}, Hidden={hidden_features}, DType={data_type}")
        benchmark_rmsnorm_cuda(input_shape=shape,
                               normalized_dim=norm_dim_to_normalize,
                               num_iterations=num_benchmark_iterations,
                               warmup_iterations=num_warmup_iterations,
                               dtype=data_type)
```

Here are the triton compile tests ran on a 5090 (comparing this branch vs main)
```py
import torch
import torch.nn as nn
from torch._inductor.utils import run_and_get_code, run_fw_bw_and_get_code

torch.manual_seed(0)

device = torch.device("cuda")

for batch in range(0, 9):
    for i in range(9, 16):
        normalized_shape_arg = (2**batch, 2**i)
        input_tensor = torch.randn(2**batch, 2**i, device=device, requires_grad=True)
        weight_tensor = torch.randn(2**batch, 2**i,device=device, requires_grad=True)

        model = torch.nn.functional.rms_norm
        compiled_model = torch.compile(model)
        loss = torch.randn_like(input_tensor)

        num_iter = 5
        for j in range(num_iter):
            output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor)
            output.backward(loss)

        start_event = torch.cuda.Event(enable_timing=True)
        end_event = torch.cuda.Event(enable_timing=True)
        start_event.record()
        num_iter = 10
        for j in range(num_iter):
            output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor)
            output.backward(loss)

        end_event.record()
        torch.cuda.synchronize()

        elapsed_time_ms = start_event.elapsed_time(end_event)
        avg_time_ms = round(elapsed_time_ms / num_iter, 5)
        print(2**batch, 2**i, avg_time_ms)
```
main
```
32 512 0.1812
32 1024 0.19021
32 2048 0.18871
32 4096 0.17019
32 8192 0.21944
32 16384 0.38871
32 32768 0.83282
64 512 0.14705
64 1024 0.13987
64 2048 0.14111
64 4096 0.21699
64 8192 0.43141
64 16384 0.90652
64 32768 2.18573
128 512 0.19361
128 1024 0.1963
128 2048 0.20122
128 4096 0.38888
128 8192 0.93795
128 16384 2.23437
128 32768 5.50079
256 512 0.16722
256 1024 0.22856
256 2048 0.39421
256 4096 0.96621
256 8192 2.48746
256 16384 5.53571
256 32768 11.97932
```
current branch
```
32 512 0.16328
32 1024 0.18104
32 2048 0.15508
32 4096 0.14356
32 8192 0.20111
32 16384 0.45974
32 32768 0.94799
64 512 0.16874
64 1024 0.18701
64 2048 0.16107
64 4096 0.20152
64 8192 0.46568
64 16384 0.96599
64 32768 2.21661
128 512 0.14982
128 1024 0.15565
128 2048 0.22241
128 4096 0.46128
128 8192 0.88883
128 16384 2.3097
128 32768 5.84448
256 512 0.14346
256 1024 0.2007
256 2048 0.45927
256 4096 0.87876
256 8192 2.10571
256 16384 5.73948
256 32768 12.98581
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153666
Approved by: https://github.com/ngimel, https://github.com/eqy, https://github.com/albanD
2025-07-18 23:24:21 +00:00
60b9b06a53 [caffe2] Fix Missing override in get_buffer of NCCLSymmetricMemory (#158597)
Summary:
Fix the error that occurs in the devarm environment when compiling with Clang:
```
caffe2/torch/csrc/distributed/c10d/symm_mem/NCCLSymmetricMemory.cu:97:20: error: 'get_buffer' overrides a member function but is not marked 'override' [-Werror,-Winconsistent-missing-override]
97 | virtual at::Tensor get_buffer(int
| ^
caffe2/torch/csrc/distributed/c10d/symm_mem/SymmetricMemory.hpp:56:20: note: overridden virtual function is here
56 | virtual at::Tensor get_buffer(int rank, c10::IntArrayRef sizes, c10::ScalarType dtype, int64_t storage_offset) = 0;
| ^
1 error generated.
```

Test Plan:
See D78520305

Rollback Plan:

Differential Revision: D78517953

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158597
Approved by: https://github.com/janeyx99
2025-07-18 23:12:29 +00:00
a835dbc096 [c10d][ez] Fix error message to reflect the correct API name (#158668)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158668
Approved by: https://github.com/VieEeEw
2025-07-18 23:10:47 +00:00
f76f4abf3f Track monitor (#156907)
Tracking gpu mem allocation, we were tracking the gpu bandwidth memory, the mem allocation is the one reflect wether the gpu is oom or not, upcoming ui fix.

UI fix: https://github.com/pytorch/test-infra/pull/6878/files

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156907
Approved by: https://github.com/huydhn
2025-07-18 22:54:13 +00:00
be483a5481 setup pinned commit for vllm in pytorch ci (#158591)
Set up pinned commit for vllm in nightly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158591
Approved by: https://github.com/seemethere, https://github.com/huydhn
2025-07-18 22:30:20 +00:00
bc7b1f5252 [AOTI] Use libstdc++ only for fbcode cpu case (#158659)
Differential Revision: D78567218

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158659
Approved by: https://github.com/kflu, https://github.com/zoranzhao
2025-07-18 22:27:10 +00:00
07c4c2a792 [dynamo][be] hide warnings without invalidating warnings cache (#158520)
I feel uneasy about touching `__warningregistry__` since it is undocumented and private surface. The only public API hook that doesn't increment warnings version seems to be https://docs.python.org/3/library/warnings.html#warnings.showwarning.

So we could wack a mole all the warnings muters in compile to just not display warnings, and we wouldn't invalidate warnings cache. This PR adds it for torch/_dynamo, and I didn't find any warnings versioning mutation from torch/_inductor.

There is a behavior change if someone calls a compiled graph with simplefilter("error"):
```python
# e.g. test/dynamo_expected_failures/TestAutogradFallback.test_no_autograd_kernel_inplace_mode_nothing
with warnings.catch_warnings():
    warnings.simplefilter("error")  # turns all warnings into errors
    compiled_fn()  # will throw if any of the muted warnings fire
```

FIXES https://github.com/pytorch/pytorch/issues/128427

A note for the future: The warnings module doesn't offer a thread safe way of using it. Even regular filters have this problem, directly editing `__warningregistry__` would be very bad, and this PR would mute all threads. Someone will need to build a thread safe warnings interface.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158520
Approved by: https://github.com/anijain2305, https://github.com/zou3519
2025-07-18 22:02:31 +00:00
89850bbc07 [Dynamo] Use proper sources for constructing dataclass defaults (#157993)
Partially fixes https://github.com/pytorch/pytorch/issues/154009

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157993
Approved by: https://github.com/williamwen42, https://github.com/anijain2305
2025-07-18 21:51:40 +00:00
3bb729df97 Revert "Fix test consolidate hf safetensors (#157386)"
This reverts commit fa1c20ae9285f7994a73d2d06025065f96b67a57.

Reverted https://github.com/pytorch/pytorch/pull/157386 on behalf of https://github.com/jithunnair-amd due to Need to revert this so we can revert PR 156705, which introduced errors on ROCm CI. These errors were not seen on CUDA CI because CUDA CI docker images do not have safetensors installed and the test silently passes ([comment](https://github.com/pytorch/pytorch/pull/157386#issuecomment-3090706074))
2025-07-18 21:00:12 +00:00
e3351b3ddf Revert "[DCP][HF] [ez]Change where sharded tensors are saved (#158069)"
This reverts commit 627ba411366bcc15019c49756d3f22fd3914bd50.

Reverted https://github.com/pytorch/pytorch/pull/158069 on behalf of https://github.com/jithunnair-amd due to Didn't remove reference to `consolidated_output_path` in test_hf_safetensor_e2e.py; CUDA runs do not surface issue because safetensors is not installed and the test silently passes ([comment](https://github.com/pytorch/pytorch/pull/158069#issuecomment-3090692336))
2025-07-18 20:54:19 +00:00
1ab1ab38a0 Use linux.12xlarge.memory to build for H100/sm_90 (#158598)
Use a bigger runner here because CUDA_ARCH 9.0 is only built for H100 or newer GPUs, so it doesn't benefit much from existing compiler cache from trunk. Also use a memory-intensive runner here because memory is usually the bottleneck

Signed-off-by: Huy Do <huydhn@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158598
Approved by: https://github.com/ZainRizvi, https://github.com/malfet
2025-07-18 20:31:56 +00:00
8b2a650572 pt2_remote_cache: Log sample for failures, and log the explicit reason we're faling. (#156874)
Summary: This allows us to start alerting on cache failures, based on scuba data

Test Plan:
Added new tests explicitly for the Remote Cache API.

Note that we have existing tests for memcache, but not for manifold AFAICT.

There are two potential wrinkles. One we're adding a new field (and everything uses ScubaData AFAICT, so this should just work).

The other one is the implicit api contract that if the sample is None, then it will be ignored (and not crash). I believe the second one is implemented correctly (and tested). The first one is a little more nebulous, but I think won't cause any breakages.

Also manually ran a compile and made sure it didn't break - P1851504490 as well as forcing it to break and checking we didn't screw up the exception handling - P1851504243

Rollback Plan:

Differential Revision: D77054339

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156874
Approved by: https://github.com/oulgen, https://github.com/masnesral
2025-07-18 20:28:27 +00:00
ec0b538961 [inductor] Make times and repeat parameters command line args (#158590)
Summary: Small change to make the `times` and `repeat` variables controllable as command line args.

Test Plan:
Execute:
```
buck2 run <run params> <path>:inductor_benchmark -- --times=1 --repeat=1
```
Only runs once, and without passing the args it runs with default values of 10.

Rollback Plan:

Reviewed By: malfet

Differential Revision: D78458680

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158590
Approved by: https://github.com/FindHao, https://github.com/malfet
2025-07-18 20:07:55 +00:00
599f94e7b9 [AOTI] add Windows file ext to package loader. (#158578)
Add `object` and `extension` file type for Windows

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158578
Approved by: https://github.com/angelayi
2025-07-18 19:57:12 +00:00
04ac258cf6 [BE][testing] Fix test_cudacodecache.py (#158259)
Summary: According to internal test failures, looks like we're missing a check for cuda: https://fburl.com/testinfra/eznzkyha

Test Plan:c`buck test`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158259
Approved by: https://github.com/exclamaforte, https://github.com/BoyuanFeng
2025-07-18 19:56:13 +00:00
1b5fdb23b9 [BE] Add pre-push hook for lintrunner to the PyTorch repo (#158389)
Adds a pre-commit hook (technically a pre-push hook) to the PyTorch repo.
**This is currently an opt-in feature**, which one can opt into by running `python scripts/setup_hooks.py` locally.

### Features
- **Run Lintrunner Before Push**: Before every `git push`, automatically runs lintrunner on your changes.
  - Really need to skip the checks? Run `git push --no-verify`
- **Consistent, Isolated, Lintrunner Environment**: During pre-push, Lintrunner runs in it's own virtual en environment that contain all lintrunner dependencies in a consistent, isolated environment.  No more lintrunner failures because you created a new .venv. (Did you know you needed to run `lintrunner init` every time you make a new .venv?)
- **Dependencies Automatically Updated**: If .lintrunner.toml is updated, this will automatically re-run `lintrunner init` to ensure you install the latest dependencies specified

### Installation
- Run `python scripts/setup_hooks.py`. Now every `git push` will first run lintrunner.

### Additional details
- The lintrunner used by the pre-push hook runs in a special per-repo virtual environment managed by the commit-hook tool located under `$USER/.cache/pre-commit`
- Does not affect your regularly used lintrunner
  - Manual invocations of lintrunner will continue to depend on your local environment instead of the special pre-push one. If there's enough interest, we could explore consolidating them.
- Does not run `lintrunner -a` for you.
  - You still need to manually run that (can be changed later though!)
- Have staged/unstaged changes? No worries
  - This runs `git stash` before running the pre-commit hooks and pops back your changes afterwards, so only the changes actaully being pushed will be tested

### Downsides
- No streaming UI updates
  - While you still get the same output from lintrunner that you're used to, the commit-hook framework doesn't show any output while lintrunner is actually running. Instead, it shows the entire output after linter has completed execution, which could be a few minutes (especially if it has to run `lintrunner init` first)
- `uv` installation is required to run the setup script. The setup script will ask users to install uv if it's not available.
  - This is required to be able to install the pre-commit package in a safe way that's available no matter what .venv you are running in.

### Opting out
- Disable hook for a single push: Run `git push --no-verify`
- Disable hook permanently: If something goes wrong and you need to wipe your setup:
  - Delete the `$USER/.cache/pre-commit` folder and the `.git/hooks/pre-push` file in your local repo.
  - You can now rerun `python scripts/setup_hooks.py` to setup your git push hook again if you want.

### Potential Future Changes
Things that could be done to make this even better if folks like these ideas:
- Automatic setup
  - Our `CONTRIBUTING.md` file tells devs to run `make setup-env`.  That could be a good entry point to hook the installation into
- Fix the console output streaming
- Make every lintrunner invocation (including manual ones) use the same repo-specific venv that the commit-hook uses.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158389
Approved by: https://github.com/seemethere
2025-07-18 19:55:35 +00:00
75e2628782 Add lower bounds for fsspec and networkx dependencies (#158565)
Fixes #156587

This sets lower bounds for fsspec and networkx in both setup.py and requirements,txt.

- fsspec>= 0.8.5 (released December 15, 2020)
- netowrkx>= 2.5.1 (released April 3, 2021)

These are the first stable versions released after Python 3.9 came out on October 5, 2020. Since Python 3.8 is no longer maintained, setting these minimums helps ensure PyTorch won't be installed alongside unexpectedly old versions of these packages.

Tested with these versions locally to make sure they don't break anything. Adding CI for lower-bound testing could be a follow up later if need.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158565
Approved by: https://github.com/janeyx99
2025-07-18 19:42:09 +00:00
79e49efadd Pull latest Sphinx theme (#158595)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158595
Approved by: https://github.com/albanD
2025-07-18 18:46:47 +00:00
b87e50db5e [BE][testing] Fix internal test failures in test/dynamo/test_unspec (#158485)
Summary: These tests failing internally because the number of underlying calls to the rng differ by virtue of various library initializations that get sucked in with an internal build.

Test Plan:
```
buck test '@fbcode//mode/opt' fbcode//caffe2/test/dynamo:test_dynamo -- --exact 'caffe2/test/dynamo:test_dynamo - test_unspec.py::UnspecTests::test_random_object' --run-disabled
buck test '@fbcode//mode/opt' fbcode//caffe2/test/dynamo:test_dynamo -- --exact 'caffe2/test/dynamo:test_dynamo - test_unspec.py::UnspecTests::test_random_values_with_graph_break' --run-disabled
buck test '@fbcode//mode/opt' fbcode//caffe2/test/dynamo:test_dynamo -- --exact 'caffe2/test/dynamo:test_dynamo - test_unspec.py::UnspecTests::test_feed_random_values_into_graph_only' --run-disabled
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158485
Approved by: https://github.com/williamwen42
2025-07-18 18:41:03 +00:00
656885b614 [Dynamo][Better Engineering] Type devices, resume_execution and testing utils (#158593)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a set of utilities in dynamo, `device_interface.py`, `resume_execution.py`, `tensor_version_ops.py`, `test_case.py`, and `test_minifier_common.py`

Running
```
mypy torch/_dynamo/device_interface.py torch/_dynamo/resume_execution.py torch/_dynamo/tensor_version_op.py torch/_dynamo/test_case.py torch/_dynamo/test_minifier_common.py  --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  976 | 1672 | 58.37% | 76 | 112 | 67.86% |
| This PR | 1719 | 1719 | 100.00% | 112 | 112 | 100.00% |
| Delta    | +743 | +47 | +41.63% | +36 | 0 | +32.14% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158593
Approved by: https://github.com/mlazos
2025-07-18 18:22:06 +00:00
6e07d6a0ff [Dynamo][Better Engineering] Add typing support for _dynamo/repro and debug_utils (#158504)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to an important set of utilities in dynamo, `repro/` and the base `debug_utils.py`

Running
```
mypy torch/_dynamo/repro/ torch/_dynamo/debug_utils.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  905 | 3268 | 27.69% | 22 | 81 | 27.16% |
| This PR | 3368 | 3368 | 100.00% | 81 | 81 | 100.00% |
| Delta    | +2463 | +100 | +72.31% | +59 | 0 | +72.84% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158504
Approved by: https://github.com/mlazos
2025-07-18 18:15:55 +00:00
b4358c5e87 [inductor] Explicitly link c10 in inductor. (#158622)
MSVC have error "unresolved external symbol" when compiling inductor. Explicitly link c10 in inductor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158622
Approved by: https://github.com/desertfire

Co-authored-by: Xu Han <xu.han@outlook.com>
2025-07-18 18:00:50 +00:00
86675af3f0 Revert "[ROCm][CI] update fbgemm_gpu hash used by inductor tests (#158602)"
This reverts commit 9308261a2afb69d807ea06508bb8582b066d9ccd.

Reverted https://github.com/pytorch/pytorch/pull/158602 on behalf of https://github.com/ZainRizvi due to The lint job failure was hiding a real lint failure. See here for more details: [GH job link](https://github.com/pytorch/pytorch/actions/runs/16375911199/job/46275682191) [HUD commit link](6f73e06796) ([comment](https://github.com/pytorch/pytorch/pull/158602#issuecomment-3090209891))
2025-07-18 17:46:11 +00:00
725cdb218e Name threads in caffe2/torch/distributed/checkpoint AsyncCheckpointExecutor (#158612)
Differential Revision: D78493333

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158612
Approved by: https://github.com/d4l3k
2025-07-18 17:33:12 +00:00
8c3f84908b [aot] fix greater_than_max build fail on Windows. (#158479)
Error snapshot:
<img width="937" height="110" alt="image" src="https://github.com/user-attachments/assets/10195f84-83c4-42db-af3c-76f875a6a983" />

Reason:
`std::numeric_limits::max` is confilct to windef.h:`max(a, b)`

Fix code:
<img width="488" height="269" alt="image" src="https://github.com/user-attachments/assets/3328c37b-7c89-435e-944c-4ca7c9b6c5b6" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158479
Approved by: https://github.com/desertfire
2025-07-18 17:18:10 +00:00
6f73e06796 [iter] exhaust ListIterator when unpack_var_sequence is called (#156370)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156370
Approved by: https://github.com/zou3519
ghstack dependencies: #156369
2025-07-18 16:48:27 +00:00
acffd1a297 [iter] Update some of the tests to not call pickle (#156369)
Some tests in test_iter only fail because of pickle. I'm skipping the pickle section as Dynamo doesn't support it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156369
Approved by: https://github.com/zou3519
2025-07-18 16:48:27 +00:00
bf4aa78279 Revert "[DTensor] Fix default_strategy and rename for clarity (#158490)"
This reverts commit d8b084312b54e97bdbaf6a178fe2fc628a23243b.

Reverted https://github.com/pytorch/pytorch/pull/158490 on behalf of https://github.com/clee2000 due to broke lint? [GH job link](https://github.com/pytorch/pytorch/actions/runs/16361950974/job/46231492581) [HUD commit link](d8b084312b) ([comment](https://github.com/pytorch/pytorch/pull/158490#issuecomment-3090042448))
2025-07-18 16:45:32 +00:00
50f33a6fca Revert "[DTensor] fix copy_ strategy (#158538)"
This reverts commit 7b05bdd925f0f4b49e68662f9761fabaa27f2faf.

Reverted https://github.com/pytorch/pytorch/pull/158538 on behalf of https://github.com/clee2000 due to broke lint? [GH job link](https://github.com/pytorch/pytorch/actions/runs/16361950974/job/46231492581) [HUD commit link](d8b084312b) ([comment](https://github.com/pytorch/pytorch/pull/158490#issuecomment-3090042448))
2025-07-18 16:45:32 +00:00
35df895d05 [AOTI] package loader normalize path separator (#158630)
Add `normalize_path_separator` to handle Windows path simplify.

This solution is working well on `torch/_inductor/cpp_builder.py`: a00cd8cf25/torch/_inductor/cpp_builder.py (L406-L409)

Let's copy it to package loader.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158630
Approved by: https://github.com/angelayi
2025-07-18 15:55:24 +00:00
193b29ee0c [BE][EZ] Minor doc fixes (#158574)
[BE] Minor doc fixes
2025-07-18 10:34:55 -05:00
036eb1f65d [precompile] Filter out ID_MATCH family of guards with caching_precompile. (#158368)
Summary: For case like caching_precompile, we almost always want to drop ID_MATCH-type guards since they will block serialization. This diff add this behavior when this global flag is toggled on so that ID_MATCH guards are excluded from compilation and serialization.

Test Plan:
test_dynamo -- -k test_id_match_with_config

Rollback Plan:

Differential Revision: D78363609

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158368
Approved by: https://github.com/jamesjwu
2025-07-18 14:47:11 +00:00
e882c761dd Add STD_TORCH_CHECK to headeronly (#158377)
Differential Revision: [D78366519](https://our.internmc.facebook.com/intern/diff/D78366519/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158377
Approved by: https://github.com/albanD
2025-07-18 14:35:20 +00:00
0eae6b68f4 Unify torch.tensor and torch.ops.aten.scalar_tensor behavior (#158537)
Fixes #158376

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158537
Approved by: https://github.com/atalman
2025-07-18 14:05:52 +00:00
a4ec381302 [build] pin setuptools>=77 to enable PEP 639 (#158104)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158104
Approved by: https://github.com/rgommers, https://github.com/Skylion007, https://github.com/atalman
2025-07-18 11:49:54 +00:00
27af877f84 [ATen][CUDA][SDPA] Flash Attention: Refactor sm version checks (#158558)
The architecture version checks are unnecessary fine-grained in PyTorch. Considering the fact that PyTorch's Flash Attention works on all `sm_80+` machines, it makes more sense to just check for lower bound.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158558
Approved by: https://github.com/eqy
2025-07-18 09:59:41 +00:00
7b05bdd925 [DTensor] fix copy_ strategy (#158538)
The previous strategy directly used 'self' input strategy for 'src'
input.  The fixed strategy correctly maps the self dim to src dim
so that it works even if the src input is broadcast.

E.g. for this program, broadcasting will occur on dims 0,1,3 of self.

```
self = torch.ones((2,3,4,5))
src = torch.ones((4,1))
self.copy_(src)
```

These are the correct sharding combinations:

|   self   |     src |
|-------|------|
| Shard(0)  |   Replicate() |
| Shard(1)  |   Replicate() |
| Shard(2)  |   Shard(0) |
| Shard(3)  |   Shard(1) |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158538
Approved by: https://github.com/zpcore, https://github.com/XilunWu, https://github.com/wanchaol
ghstack dependencies: #158495, #158490
2025-07-18 09:59:37 +00:00
ead80f3202 Fix s390x CI: ensure that all python dependencies are installed when … (#158552)
…building pytorch for tests on s390x

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158552
Approved by: https://github.com/huydhn
2025-07-18 09:13:41 +00:00
32aade9d8d Revert "Support DeepSeek-style blockwise scaling scaled-mm for fp8 on Hopper+ (#158037)"
This reverts commit 39ac189808c61588f3594dbc2fc1d69bb6194c47.

Reverted https://github.com/pytorch/pytorch/pull/158037 on behalf of https://github.com/jithunnair-amd due to Ignored ROCm failures while ROCm was unstable, but HUD clearly shows this PR introduced failures on trunk ([comment](https://github.com/pytorch/pytorch/pull/158037#issuecomment-3087982975))
2025-07-18 07:47:46 +00:00
be896d6b41 Revert "Forward-fix unused variables warning/error (#158549)"
This reverts commit eeda1a75ace75ce8a6763050fb91d236a6d3287b.

Reverted https://github.com/pytorch/pytorch/pull/158549 on behalf of https://github.com/jithunnair-amd due to Sorry, need to revert this first, so we can revert PR 158037, which broke ROCm CI ([comment](https://github.com/pytorch/pytorch/pull/158549#issuecomment-3087942475))
2025-07-18 07:44:14 +00:00
a3396a9b85 [hop] set capture_scalar_outputs=True by default for compiled hops (#158480)
We want to do it for two reasons:
1. It's tedious for users to manually turn on capture_scalar_outputs=True when compiling map and scan with inductor, where we decomposing them into while_loop and use the idx tensor.item() to select a slice of output buffer and write into it. This pr turns on the flag by default.
2. a graph break caused by capture_scalar_outputs=False would cause the hop to fail, and we should turn it on by default so that the error message is more meaningful.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158480
Approved by: https://github.com/zou3519
2025-07-18 07:16:50 +00:00
fda3f3b2ec [while_loop] fix constant tensor used as carried inputs (#158381)
Address second part of #158366, where torch.tensor(0), is treated as a constant tensor and its .item() gets specailized to 0 which causes a silent specialization. The fix is to unspecialize the constant carries and make them non-constant.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158381
Approved by: https://github.com/zou3519
2025-07-18 07:08:11 +00:00
a00cd8cf25 Add a way to disable compile for debugging flex-attention (#158534)
Finally got around to doing this, this flag lets us do:

```Python

#!/usr/bin/env python3
"""
FlexAttention Debug: Using breakpoints and unwrap
"""

import torch
import torch.nn.attention.flex_attention as fa

unwrap = torch._C._functorch.get_unwrapped

def score_mod(score, batch, head, q_idx, kv_idx):
    # Set breakpoint here to debug
    breakpoint()

    # In debugger, unwrap to see actual tensor values:
    # >>> actual_score = unwrap(unwrap(unwrap(unwrap(score))))
    # >>> actual_batch = unwrap(batch)
    # >>> actual_head = unwrap(head)
    # >>> actual_q_idx = unwrap(q_idx)
    # >>> actual_kv_idx = unwrap(kv_idx)
    # >>> print(actual_score)
    # >>> print(f"q_idx: {actual_q_idx}, kv_idx: {actual_kv_idx}")

    return torch.where(q_idx >= kv_idx, score, torch.tensor(float('-inf')))

def main():
    # Enable debug mode
    fa._FLEX_ATTENTION_DISABLE_COMPILE_DEBUG = True

    # Small example
    B, H, S, D = 1, 2, 4, 8
    q = torch.randn(B, H, S, D)
    k = torch.randn(B, H, S, D)
    v = torch.randn(B, H, S, D)

    # Run - will hit breakpoint
    output = fa.flex_attention(q, k, v, score_mod=score_mod)

    # Disable debug mode
    fa._FLEX_ATTENTION_DISABLE_COMPILE_DEBUG = False

if __name__ == "__main__":
    main()

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158534
Approved by: https://github.com/Chillee, https://github.com/zou3519
2025-07-18 05:33:45 +00:00
eb73650723 [BE] Make PyObjectSlot use a global PyInterpreter and remove (#158427)
This PR is a bit more involved but effectively works to drastically simplify PyObjectSlot and PyInterpreter.
1) For PyObjectSlot we now use a global pyinterpreter since there only is one. From here we change all of the call sites to rely on this assumption.
2) We also remove the "tags" of the PyInterpreter by deprecating `PyInterpreterStatus`.

For the reviewer, sadly it seems like `functorch/csrc/dim/dim.cpp` needed to get linted, so there is an unreadable amount of changes there. Fortunately, the only actual change in the file is as follows which just removes `getPyInterpreter()` from  the `check_pyobj` call.

```
 mpy::handle handle_from_tensor(Arena& A, TensorRef t) {
-    // fast case: tensor is live in python
-    std::optional<PyObject*> mb_obj =
-        t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter(), /*ignore_hermetic_tls=*/false);
-    if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
-        return *mb_obj;
-    }
-    return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
-}
-}
+  // fast case: tensor is live in python
+  std::optional<PyObject*> mb_obj =
+      t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(
+          /*ignore_hermetic_tls=*/false);
+  if (mb_obj.has_value() &&
+      !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
+    return *mb_obj;
+  }
+  return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t)));
+}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158427
Approved by: https://github.com/albanD
2025-07-18 05:23:00 +00:00
9308261a2a [ROCm][CI] update fbgemm_gpu hash used by inductor tests (#158602)
fbgemm_gpu build started failing with asmjit errors.  Moving to latest tip of fbgemm for inductor tests resolves the build failures.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158602
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-07-18 05:02:31 +00:00
9a7c2f1f64 Revert "Add torch compile force disable caches alias (#158072)"
This reverts commit 2ecf083b7247f265a03ec296ba9d7b795f035118.

Reverted https://github.com/pytorch/pytorch/pull/158072 on behalf of https://github.com/jeffdaily due to fails on rocm, signal ignored while rocm was unstable ([comment](https://github.com/pytorch/pytorch/pull/158072#issuecomment-3086740829))
2025-07-18 04:58:24 +00:00
d8b084312b [DTensor] Fix default_strategy and rename for clarity (#158490)
Fixes several bugs in the original.
- foremost, fixes a serious bug where we returned incorrect strategies
  by mixing input_specs that were frozen from
  select_strategy.strategies[0] with output_specs that varied across
  select_strategy.strategies[0..N] (e.g. we could create a nonsense
  strategy like input:Shard(0) output(Replicate) for an op like clone
- fixes the redistribute costs: they should not actually be 0, they
  should be the cost of redistributing our single input from another
  strategy to the current strategy, in our list of output strategies
- adds a note, wondering if we should have just literally returned the
  input strategy instead of creating this new object
- Currently, using default_strategy is incorrect becuase it maps 'self'
  tensor's strategies directly onto 'src' tensor without accounting for
  the fact that copy_ supports broadcasting a smaller rank tensor into a
  larger one.

Separates out copy_  op from default strategy, adds missing test case,
but does not fix the underlying issue with copy_, leaves that for future
PR

Renames to `propagate_single_input_strategy` since that's more
descriptive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158490
Approved by: https://github.com/wanchaol, https://github.com/XilunWu
ghstack dependencies: #158495
2025-07-18 04:09:32 +00:00
1e86fa2e5b Add stack trace to Inductor IR nodes if inductor.config.trace.provenance_tracing=True (#158576)
Summary:
- Split `create_mapping` to `create_mapping_pre_post_grad_nodes` and  ` create_node_mapping_kernel_to_post_grad`
- Store a mapping from pre_grad graph node names to stack traces in `_inductor_pre_grad_node_stack_trace`
- Add `stack_traces` member to ir.Node and add it to the string representation of ir.Node
- When we create an IR node, if `inductor.config.trace.provenance_tracing=True`, we populate `stack_traces` from `origins`. The nodes in `origins` are post_grad graph nodes. If a node has `node.stack_trace`, we store the stack_trace directly. This is particularly important for backward graph nodes because they don't have a mapping to pre-grad graph nodes. If a node doesn't have `.stack_trace ` (such as `linear`-> `addmm` nodes), we use the stack trace of the pre_grad graph nodes that it maps to.
  - A post grad graph node might not have stack trace if it correspond to multiple pre grad graph nodes, e.g. [GroupLinearFusion](a00442421a/torch/_inductor/fx_passes/group_batch_fusion.py (L299))

Example:

```
scheduling ExternKernelOut(
  python_kernel_name='extern_kernels.mm',
  name=buf0,
  layout=FixedLayout('cuda:0', torch.float32, size=[8, 16], stride=[16, 1]),
  inputs=[InputBuffer(name='arg2_1', layout=FixedLayout('cuda:0', torch.float32, size=[8, 10], stride=[10, 1])), ReinterpretView(
    StorageBox(
      ConstantBuffer(name='fc1_weight', layout=FixedLayout('cuda:0', torch.float32, size=[16, 10], stride=[10, 1]))
    ),
    FixedLayout('cuda:0', torch.float32, size=[10, 16], stride=[1, 10]),
    origins=OrderedSet([mm_default_1]),
    stack_traces = {,
    File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/7b4b7a52e15abb17/scripts/shangdiy/__aot__/aot#link-tree/scripts/shangdiy/aot.py", line 29, in forward,
        x = self.fc1(x),
      File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/7b4b7a52e15abb17/scripts/shangdiy/__aot__/aot#link-tree/torch/nn/modules/linear.py", line 125, in forward,
        return F.linear(input, self.weight, self.bias),
    }
  )],
  constant_args=(),
  kwargs={},
  output_view=None,
  python_kernel_name=extern_kernels.mm,
  cpp_kernel_name=at::mm_out,
  ordered_kwargs_for_cpp_kernel=(),
  op_overload=None,
  arg_properties=[{}, {}],
  allarg_properties={},
  kwarg_properties=None,
  unbacked_bindings={},
  mutation_outputs=[],
  origin_node=mm_default_1,
  origins=OrderedSet([mm_default_1]),
  stack_traces = {,
  File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/7b4b7a52e15abb17/scripts/shangdiy/__aot__/aot#link-tree/scripts/shangdiy/aot.py", line 29, in forward,
      x = self.fc1(x),
    File "/data/users/shangdiy/fbsource/buck-out/v2/gen/fbcode/7b4b7a52e15abb17/scripts/shangdiy/__aot__/aot#link-tree/torch/nn/modules/linear.py", line 125, in forward,
      return F.linear(input, self.weight, self.bias),
  }
)
```

Test Plan:
```
buck2 run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing
```

Rollback Plan:

Differential Revision: D78365534

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158576
Approved by: https://github.com/angelayi
2025-07-18 04:05:17 +00:00
86dbc0ef67 [NativeRT] Remove makeProxyExecutor from ModelRunner interface (#158587)
Summary: makeProxyExecutor shouldn't be exposed to ModelRunner Interface.

Test Plan:
CI

Rollback Plan:

Differential Revision: D78501011

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158587
Approved by: https://github.com/yiming0416, https://github.com/henryoier
2025-07-18 03:20:40 +00:00
89d842fec5 Make torch.distributed.breakpoint() set a long timeout (#158481)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158481
Approved by: https://github.com/d4l3k
ghstack dependencies: #158469
2025-07-18 02:18:43 +00:00
ce4554352b Shunt fx_interpreter graphmodule print on error into tlparse (#158469)
Include both the error stacktrace and the graphmodule in a new
structured trace artifact.  Log the shortened version to the console,
and also log a hint to look at the tlparse for more.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158469
Approved by: https://github.com/ezyang
2025-07-18 02:18:43 +00:00
583138d170 [Dynamo][Better Engineering] Add typing for comptime, cache, and convert_frame (#158379)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a critical tracing point for dynamo, primarily for`comptime.py` but also `cache_size.py` and `convert_frame.py`.

Running
```
mypy torch/_dynamo/comptime.py torch/_dynamo/cache_size.py torch/_dynamo/convert_frame.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  1837 | 2215 | 82.93% | 45 | 82 | 54.88% |
| This PR | 2230 | 2230 | 100.00% | 82 | 82 | 100.00% |
| Delta    | +393 | +15 | +17.07% | +37 | 0 | +45.12% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158379
Approved by: https://github.com/mlazos
2025-07-18 02:11:57 +00:00
eqy
6fd6fc418d [B200] Fix flex-attention heuristic for test_tma_with_customer_kernel_options_cuda (#158494)
Otherwise fails with
```
torch._inductor.exc.InductorError: RuntimeError: No valid triton configs. OutOfMemoryError: out of resource: triton_tem_fused__to_copy_ones_sort_sum_zeros_2 Required: 264224 Hardware limit: 232448 Reducing block sizes or `num_stages` may help.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158494
Approved by: https://github.com/drisspg
2025-07-18 02:03:49 +00:00
ddbecdfb66 [DTensor] Document redistribute_costs (#158495)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158495
Approved by: https://github.com/zpcore, https://github.com/XilunWu
2025-07-18 01:43:38 +00:00
ef38edb284 Add stride check for attn_mask on non-cpu device (#158424)
Fixes #158374

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158424
Approved by: https://github.com/Valentine233, https://github.com/drisspg, https://github.com/atalman
2025-07-18 01:10:58 +00:00
6673ac746c Fix test linalg for MKL upgrading (#158312)
Fixes #158054

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158312
Approved by: https://github.com/albanD
2025-07-18 01:08:33 +00:00
7b72e5b3ad Fix Pandas version mismatch upon reinstalling numpy (#158584)
If you reinstall numpy after having installed pandas, it will error out sometimes if the versions are different enough (see below snippet). This change forces pandas to be reinstalled when installing numpy. It doesn't work in a separate pip call, because then pip takes the version of numpy requested by pandas as the one to install, undoing the command in the first place.
```
(numpy_pandas) [gabeferns@devvm2497.eag0 ~/pt-envs/at (exclamaforte/just-gemm-model)]$ pip list
Package            Version
------------------ -----------
attrs              25.3.0
build              1.2.2.post1
certifi            2025.7.14
charset-normalizer 3.4.2
cmake              4.0.3
exceptiongroup     1.3.0
expecttest         0.3.0
filelock           3.18.0
fsspec             2025.5.1
hypothesis         6.135.32
idna               3.10
importlib_metadata 8.7.0
Jinja2             3.1.6
lintrunner         0.12.7
MarkupSafe         2.1.5
mpmath             1.3.0
networkx           3.2.1
ninja              [1.11.1.4](https://www.internalfb.com/phabricator/paste/view/1.11.1.4)
opt-einsum         3.3.0
optree             0.16.0
packaging          25.0
pip                25.1
psutil             7.0.0
pyproject_hooks    1.2.0
python-dateutil    2.9.0.post0
pytz               2025.2
PyYAML             6.0.2
requests           2.32.4
setuptools         78.1.1
six                1.17.0
sortedcontainers   2.4.0
sympy              1.14.0
tomli              2.2.1
typing_extensions  4.14.0
tzdata             2025.2
urllib3            2.5.0
uv                 0.7.21
wheel              0.45.1
zipp               3.23.0
(numpy_pandas) [gabeferns@devvm2497.eag0 ~/pt-envs/at (exclamaforte/just-gemm-model)]$ pip install numpy==1.22.4
Collecting numpy==1.22.4
  Using cached numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.0 kB)
Using cached numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB)
Installing collected packages: numpy
Successfully installed numpy-1.22.4
(numpy_pandas) [gabeferns@devvm2497.eag0 ~/pt-envs/at (exclamaforte/just-gemm-model)]$ pip install pandas==2.0.3
Collecting pandas==2.0.3
  Using cached pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages (from pandas==2.0.3) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages (from pandas==2.0.3) (2025.2)
Requirement already satisfied: tzdata>=2022.1 in /home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages (from pandas==2.0.3) (2025.2)
Requirement already satisfied: numpy>=1.20.3 in /home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages (from pandas==2.0.3) (1.22.4)
Requirement already satisfied: six>=1.5 in /home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas==2.0.3) (1.17.0)
Using cached pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB)
Installing collected packages: pandas
Successfully installed pandas-2.0.3
(numpy_pandas) [gabeferns@devvm2497.eag0 ~/pt-envs/at (exclamaforte/just-gemm-model)]$ pip install --pre numpy==2.0.2
Collecting numpy==2.0.2
  Using cached numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB)
Using cached numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB)
Installing collected packages: numpy
  Attempting uninstall: numpy
    Found existing installation: numpy 1.22.4
    Uninstalling numpy-1.22.4:
      Successfully uninstalled numpy-1.22.4
Successfully installed numpy-2.0.2
(numpy_pandas) [gabeferns@devvm2497.eag0 ~/pt-envs/at (exclamaforte/just-gemm-model)]$ python
Python 3.9.23 (main, Jun  5 2025, 13:40:20)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/__init__.py", line 22, in <module>
    from pandas.compat import is_numpy_dev as _is_numpy_dev  # pyright: ignore # noqa:F401
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/compat/__init__.py", line 25, in <module>
    from pandas.compat.numpy import (
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/compat/numpy/__init__.py", line 4, in <module>
    from pandas.util.version import Version
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/util/__init__.py", line 2, in <module>
    from pandas.util._decorators import (  # noqa:F401
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/util/_decorators.py", line 14, in <module>
    from pandas._libs.properties import cache_readonly
  File "/home/gabeferns/.conda/envs/numpy_pandas/lib/python3.9/site-packages/pandas/_libs/__init__.py", line 13, in <module>
    from pandas._libs.interval import Interval
  File "pandas/_libs/interval.pyx", line 1, in init pandas._libs.interval
ValueError: numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158584
Approved by: https://github.com/huydhn
2025-07-18 00:14:16 +00:00
33c9b414aa [CI][MPS] Enable test_indexing on MPS (#158582)
- Skip `test_index_put_accumulate_large_tensor_mps` as it crashes with
```
/com.apple.xbs/Sources/MetalPerformanceShaders/MPSCore/Types/MPSNDArray.mm:829: failed assertion `[MPSNDArray initWithDevice:descriptor:isTextureBacked:] Error: NDArray dimension length > INT_MAX'
```
while running `torch.ones([2**31+5], dtype=torch.int8, device='mps')`

- Adjust types for `test_index_put_src_datatype` as index_put on MPS is not implemented for complex (yet)
- Adjust `test_index` to avoid using DoubleTensors for MPS

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158582
Approved by: https://github.com/dcci, https://github.com/Skylion007, https://github.com/manuelcandales
2025-07-17 23:33:52 +00:00
b0e325c2c8 [Dynamo][Better Engineering] Add type coverage to decorators (#158509)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to an important file in dynamo, `decorators.py`

NOTE: Untyped fns are because there is a conflict with `__init__.py` in compiler so we can't type these at this time

Running
```
mypy torch/_dynamo/decorators.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  209 | 908 | 23.02% | 9 | 39 | 23.08% |
| This PR | 870 | 943 | 100.00% | 36 | 39 | 100.00% |
| Delta    | +661 | +35 | +76.98% | +27 | 0 | +76.92% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158509
Approved by: https://github.com/williamwen42
2025-07-17 23:31:26 +00:00
f63988ae00 [BE]Clean up old APIs in AOTI c shim (#158400)
Summary:
The shims for aten ops are now generated by torchgen. But there are some still old APIs in `aoti_torch/c/shim.h`

This diff moves the old to-be-deprecated APIs for aten ops to a separate header file `shim_deprecated.h`

The to-be-deprecated APIs are determined by comparing APIs in `shim.h` and ops in `fallback_ops.py`

Test Plan:
CI

Rollback Plan:

Differential Revision: D78378373

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158400
Approved by: https://github.com/jingsh, https://github.com/desertfire
2025-07-17 23:24:50 +00:00
2df2e3bb51 [ROCm][CI] Last known good HIP patch (#158596)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158596
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-07-17 22:52:16 +00:00
0ecfb93a0b Avoid globally modifying torch.testing._internal.common_methods_invocations.wrapper_set_seed (#158548)
Test modules that depend on the original definition of `wrapper_set_seed` will inadvertently be affected if they import from test_torchinductor_opinfo.py. Additionally, using pytest `test_torchinductor_opinfo.py test_other_module.py` when run in the same process may affect the test behaviour of `test_other_module.py` if the tests depend on `wrapper_set_seed`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158548
Approved by: https://github.com/janeyx99
2025-07-17 22:31:59 +00:00
74f4cf4bd5 Add missing <vector> in c10/util/WaitCounter.h (#158354)
It seems that `#include <vector>` is being pulled in indirectly, but it is being used directly, so it is best to explicitly include it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158354
Approved by: https://github.com/janeyx99
2025-07-17 22:23:05 +00:00
cyy
1b91954b9f Suppress volatile type error (#158435)
Fixes
```
/var/lib/jenkins/workspace/torch/csrc/dynamo/guards.cpp:5320:10:
error: compound assignment to object of volatile-qualified type 'volatile char' is deprecated [-Werror,-Wdeprecated-volatile]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158435
Approved by: https://github.com/janeyx99
2025-07-17 22:21:04 +00:00
41b2c4d119 Reduce random reads for offset metadata when calling torch.load under FakeTensorMode (#157931)
We already test the `_get_offset` functionality with that TORCH_SERIALIZATION_DEBUG flag that is set in CI, so I didn't add more testing specifically for FakeTensor

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157931
Approved by: https://github.com/albanD
2025-07-17 22:17:52 +00:00
af6624023e [dynamo] Skip training flag check id already guarding on nn modules (#158492)
This might help some legacy models that still have
inline_inbuilt_nn_modules False for some reason.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158492
Approved by: https://github.com/StrongerXi
2025-07-17 21:42:19 +00:00
a00442421a [CI][TD] Enable TD on all test configs (#158163)
I think the main one that was missing is dynamo_wrapped

There's also slow and inductor, but the filter later for workflows stops TD from running on those anyways

dynamo_wrapped is the second longest jobs for pull right now
<img width="1265" height="311" alt="image" src="https://github.com/user-attachments/assets/d4ca034c-a8f0-4b31-a80f-0f4f21fce32a" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158163
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi
2025-07-17 21:05:25 +00:00
ced5cf042d Revert "Cleanup old caffe2 scripts (#158475)"
This reverts commit 94d7f0c1ef9a4cb4db0eb5d6b1ffc55941cbeab1.

Reverted https://github.com/pytorch/pytorch/pull/158475 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/158475#issuecomment-3085447409))
2025-07-17 20:58:34 +00:00
1b88da1cac [MPS] Improve performance of max_pool3d (#157875)
To check how the changes from this PR affect performance, I wrote a script here: 55ef32a127/max_pool_mps/perf.py.

Before this PR, I get this:

```
===================
max_pool3d
===================
0: 0.013105 ms, max_pool3d, (3, 2, 2, 2), {'kernel_size': 2}
1: 0.038003 ms, max_pool3d, (3, 10, 10, 10), {'kernel_size': 5}
2: 0.212963 ms, max_pool3d, (3, 100, 100, 100), {'kernel_size': 5}
3: 1.224645 ms, max_pool3d, (3, 200, 200, 200), {'kernel_size': 5}
4: 7.317867 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 4, 'padding': 1}
5: 34.679233 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20}
6: 34.626383 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20, 'dilation': 1}
7: 44.835892 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20, 'dilation': 1, 'stride': 40}
8: 0.083579 ms, max_pool3d, (10, 10, 10, 10, 10), {'kernel_size': 2}
9: 0.936575 ms, max_pool3d, (10, 10, 30, 30, 30), {'kernel_size': 2}
10: 5.329883 ms, max_pool3d, (10, 10, 50, 50, 50), {'kernel_size': 2}
11: 11.713617 ms, max_pool3d, (10, 10, 70, 70, 70), {'kernel_size': 2}
12: 25.450454 ms, max_pool3d, (10, 10, 90, 90, 90), {'kernel_size': 2}
13: 0.058375 ms, max_pool3d, (10, 10, 10, 10, 10), {'kernel_size': 2, 'dilation': 2}
14: 3.757558 ms, max_pool3d, (10, 10, 50, 50, 50), {'kernel_size': 2, 'dilation': 2}
15: 33.451588 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 2, 'dilation': 2}
```

After this PR, I get this:

```
===================
max_pool3d
===================
0: 0.007202 ms, max_pool3d, (3, 2, 2, 2), {'kernel_size': 2}
1: 0.018596 ms, max_pool3d, (3, 10, 10, 10), {'kernel_size': 5}
2: 0.130717 ms, max_pool3d, (3, 100, 100, 100), {'kernel_size': 5}
3: 0.966795 ms, max_pool3d, (3, 200, 200, 200), {'kernel_size': 5}
4: 4.095804 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 4, 'padding': 1}
5: 12.833446 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20}
6: 12.859346 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20, 'dilation': 1}
7: 14.080529 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 50, 'padding': 20, 'dilation': 1, 'stride': 40}
8: 0.029283 ms, max_pool3d, (10, 10, 10, 10, 10), {'kernel_size': 2}
9: 0.175700 ms, max_pool3d, (10, 10, 30, 30, 30), {'kernel_size': 2}
10: 0.742750 ms, max_pool3d, (10, 10, 50, 50, 50), {'kernel_size': 2}
11: 1.939596 ms, max_pool3d, (10, 10, 70, 70, 70), {'kernel_size': 2}
12: 4.074821 ms, max_pool3d, (10, 10, 90, 90, 90), {'kernel_size': 2}
13: 0.028425 ms, max_pool3d, (10, 10, 10, 10, 10), {'kernel_size': 2, 'dilation': 2}
14: 0.384375 ms, max_pool3d, (10, 10, 50, 50, 50), {'kernel_size': 2, 'dilation': 2}
15: 2.623346 ms, max_pool3d, (10, 10, 100, 100, 100), {'kernel_size': 2, 'dilation': 2}
```

Every case is improved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157875
Approved by: https://github.com/malfet
2025-07-17 20:34:12 +00:00
66c9bc5062 [export] Add runnable code to export docs (#158506)
Preview: https://docs-preview.pytorch.org/pytorch/pytorch/158506/export.html

Yay I can add runnable code to export docs now
Also moved export API reference to a different file.

With these changes, we can start to consolidate the [export tutorial](https://docs.pytorch.org/tutorials/intermediate/torch_export_tutorial.html) with the docs on pytorch docs. We just need to move the section on DDE and 0/1 specialization, and then I think we can delete the export tutorial.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158506
Approved by: https://github.com/pianpwk, https://github.com/svekars
2025-07-17 20:15:22 +00:00
80ac73c057 [ca] reset between tests (#158418)
CA reset is much faster than dynamo reset, so it's probably okay to run it every time. I'm not sure if this will fix the flaky autograd tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158418
Approved by: https://github.com/jansel
2025-07-17 20:14:29 +00:00
eeb0783fe6 [simple_fsdp][inductor_collectives] rewrite reorder_collectives, sink_waits_iterative (#158062)
Differential Revision: [D78159013](https://our.internmc.facebook.com/intern/diff/D78159013)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158062
Approved by: https://github.com/wconstab
2025-07-17 20:04:42 +00:00
ef256ad17b Make Inductor imports TYPE_CHECKING only (#158524)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158524
Approved by: https://github.com/cyyever, https://github.com/albanD
2025-07-17 19:55:19 +00:00
fd51bcdd21 check if USE_ROCM is defined (#158571)
Summary:
check if USE_ROCM is defined

D78424375 broke some builds: see T231304402

Test Plan:
rerunning failed builds

Rollback Plan:

Reviewed By: Camyll

Differential Revision: D78493019

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158571
Approved by: https://github.com/huydhn, https://github.com/malfet
2025-07-17 19:48:26 +00:00
7ebbf2cae7 Revert "[PT2][fusion] ban fusions with large accumulated reads (#157563) (#158550)
This reverts commit 8554c8007ddaa8029e7e01bb1af12f358bf597c2 #157563 due to causing a few breakages on ROCm

Reverted expected_results.csv to 26807dcf277feb2d99ab88d7b6da526488baea93

> @xuanzhang816 Sorry, but I have to revert this PR yet again because it clearly reintroduced failures on ROCm after the remerge: f4d8bc46c7/2
and the failures are still showing up on tip-of-tree on HUD

Context
https://github.com/pytorch/pytorch/pull/157563#issuecomment-3083350857

Needs to be relanded in non bc-breaking way, or sanity checked for correctness.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158550
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily
2025-07-17 19:47:41 +00:00
8dcebaa7b0 [AOTI] add WIN32 implement for create_temp_dir (#158570)
add Windows implement for `create_temp_dir`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158570
Approved by: https://github.com/angelayi
2025-07-17 19:22:59 +00:00
7e34f9c292 Add torch._C._log_api_usage_once to datapipes (mapper) (#155489)
This is to get a better understanding of how datapipes is used right now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155489
Approved by: https://github.com/ramanishsingh
2025-07-17 19:01:49 +00:00
25f4d7e482 Use new type statement to fix public API of types (#158487)
Since type statement breaks older python version, trying to find equivalent behavior without the type mechanics.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158487
Approved by: https://github.com/andrewor14
2025-07-17 18:46:44 +00:00
ad223a6c5f Add FP8 Types (#158430)
Summary: Add FP8 Types

Test Plan:
sandcastle

Rollback Plan:

Differential Revision: D78395110

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158430
Approved by: https://github.com/henryoier
2025-07-17 18:09:56 +00:00
f92a2035e4 ci: Update lint workflow to only run on changed files for PRs (#158518)
This modifies the lint workflow to use the new get-changed-files
workflow to optimize lint execution by only running on files
that have actually changed in pull requests.

This more closely mirrors the type of behavior that users
expect when running lint locally on their PRs.

This also leaves the default behavior as a fallback for when
you're not running on a pull request.

Since lint runs on the pull_request event I'm not really worried about
any type of ciflow shenanigans in this.

This also splits mypy into its own job since mypy needs to run on all-files all the time.

Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158518
Approved by: https://github.com/huydhn
ghstack dependencies: #158517
2025-07-17 18:00:44 +00:00
bff69f25c2 [BE][testing] fix test/dynamo/test_repros:test_longtensor_list (#158458)
Summary: This test is failing internally because the number of underlying calls to the rng differ by virtue of various library initializations that get sucked in with an internal build.

Test Plan: `buck test '@fbcode//mode/opt' fbcode//caffe2/test/dynamo:test_dynamo -- --exact 'caffe2/test/dynamo:test_dynamo - test_repros.py::ReproTests::test_longtensor_list' --run-disabled`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158458
Approved by: https://github.com/jansel
2025-07-17 17:27:00 +00:00
6d31d38965 recovering node source from dict (#158373) (#158473)
Summary:

this diff recovers NodeSource object from its dict representation, which is crucial for NodeSource serde.

Test Plan:
ci

Rollback Plan:

Differential Revision: D78434648

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158473
Approved by: https://github.com/angelayi
2025-07-17 17:00:19 +00:00
bfe5674e22 Revert "[cuDNN][SDPA] cuDNN SDPA refactor/cleanup, nested tensor backward, test priority bump for sm90, sm100 (#149282)"
This reverts commit 0797b2b6a80cf70a7accc3d5413186e7693d4451.

Reverted https://github.com/pytorch/pytorch/pull/149282 on behalf of https://github.com/wdvr due to reverting as discussed with @drisspg - @eqy please reach out to @drisspg for more info  ([comment](https://github.com/pytorch/pytorch/pull/149282#issuecomment-3084759671))
2025-07-17 16:55:55 +00:00
94d7f0c1ef Cleanup old caffe2 scripts (#158475)
Testing on this one is grep based: if there were no reference to that script I can find, I deleted.
We can easily add any of these back if needed!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158475
Approved by: https://github.com/seemethere, https://github.com/huydhn, https://github.com/cyyever
2025-07-17 16:50:06 +00:00
23550ab735 Revert "DDE-Free select with unbacked index. (#157605)"
This reverts commit 79d7c754ab8ae0e5c3a614521632d2cfbfa0fdba.

Reverted https://github.com/pytorch/pytorch/pull/157605 on behalf of https://github.com/laithsakka due to fail pr time benchmarks  ([comment](https://github.com/pytorch/pytorch/pull/157605#issuecomment-3084663020))
2025-07-17 16:20:02 +00:00
16b21fa8b2 [AOTI] skip ld and objcopy on Windows. (#158545)
Skip `ld` and `objcopy` on Windows. They are not support on Windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158545
Approved by: https://github.com/desertfire
2025-07-17 15:43:24 +00:00
2ecf083b72 Add torch compile force disable caches alias (#158072)
Bunch of people keep thinking current alias only disables inductor cache because it has the name inductor in it. lets globalize the name

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158072
Approved by: https://github.com/ezyang
2025-07-17 15:40:36 +00:00
813c76b98d Revert "Unify torch.tensor and torch.ops.aten.scalar_tensor behavior (#158537)"
This reverts commit 58c7cf9ede6311da5533dbcaf238a912176a6a85.

Reverted https://github.com/pytorch/pytorch/pull/158537 on behalf of https://github.com/albanD due to This broke C++ tests ([comment](https://github.com/pytorch/pytorch/pull/158537#issuecomment-3084425920))
2025-07-17 15:06:43 +00:00
288bf54a23 Revert "Move off of deprecated API in 2.9 (#158527)"
This reverts commit 9636e2cfd3e995ef977f670ad47e8e895296d992.

Reverted https://github.com/pytorch/pytorch/pull/158527 on behalf of https://github.com/albanD due to breaks trunk ([comment](https://github.com/pytorch/pytorch/pull/158527#issuecomment-3084385585))
2025-07-17 14:55:28 +00:00
da4c7b4ced [AOTI] align signature to model_base.h (#158554)
Remove `const` keyword, align its signature to `model_base.h` eeda1a75ac/torch/csrc/inductor/aoti_runtime/model_base.h (L51-L53)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158554
Approved by: https://github.com/desertfire
2025-07-17 14:44:32 +00:00
a04bd11895 [AOTI] Use format_consts_to_cpp on Windows. (#158543)
`format_consts_to_asm` is not supported on Windows, force use `format_consts_to_cpp` on Windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158543
Approved by: https://github.com/desertfire
2025-07-17 14:40:34 +00:00
58c7cf9ede Unify torch.tensor and torch.ops.aten.scalar_tensor behavior (#158537)
Fixes #158376

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158537
Approved by: https://github.com/atalman
2025-07-17 13:39:25 +00:00
38c04415a9 [oss][hf][bug fix] Remove buggy consolidation logic (#158380)
Summary: I tried to add some logic that could optimize for the non-row wise sharded case and do it more efficiently, but this has some bugs, so removing it for now and will find a better algorithm for the non-row wise sharded case to find the maximum number of bytes that we can write at a time.

Test Plan:
ensure tests pass

Rollback Plan:

Differential Revision: D78366701

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158380
Approved by: https://github.com/Saiteja64
2025-07-17 13:05:06 +00:00
7892f5a007 [inductor][triton] Update HAS_WARP_SPEC to check triton.Config params. Update Triton Hash to top of release/3.4.x stack (#158459)
Update triton commit hash to `11ec6354315768a85da41032535e3b7b99c5f706`, which is the new release/3.4.x branch in triton-lang/triton.

Also, update HAS_WARP_SPEC handling: In triton 3.4, warp spec will have a different interface: num_consumer_groups will be determined automatically by the compiler. This breaks the current Inductor integration, so for now, update HAS_WARP_SPEC to check whether triton.Config takes num_consumer_groups and num_buffers_warp_spec as parameters.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158459
Approved by: https://github.com/atalman
2025-07-17 12:50:46 +00:00
d5af0eca8d [BE][3/5] fix typos in aten/ (aten/src/ATen/native/) (#157552)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157552
Approved by: https://github.com/albanD
ghstack dependencies: #156605, #157637, #157550, #157551
2025-07-17 12:08:34 +00:00
f57ef62ebc [BE][2/5] fix typos in aten/ (aten/src/ATen/native/) (#157551)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157551
Approved by: https://github.com/albanD
ghstack dependencies: #156605, #157637, #157550
2025-07-17 12:08:33 +00:00
4c8b408d16 [BE][1/5] fix typos in aten/ (#157550)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157550
Approved by: https://github.com/albanD
ghstack dependencies: #156605, #157637
2025-07-17 12:08:33 +00:00
c8d43cbc6e [BE][3/6] fix typos in test/ (#157637)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157637
Approved by: https://github.com/yewentao256, https://github.com/albanD
ghstack dependencies: #156605
2025-07-17 12:08:33 +00:00
3f8e2e91ad [BE][15/16] fix typos in torch/ (torch/distributed/tensor/) (#156605)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156605
Approved by: https://github.com/wanchaol, https://github.com/albanD
2025-07-17 12:08:33 +00:00
eeda1a75ac Forward-fix unused variables warning/error (#158549)
Introduced in https://github.com/pytorch/pytorch/pull/158037, didn't seem to trigger on PR, but trunk CI is failing in some `linux-jammy-cpu-py3.12-gcc11-inductor-*` jobs where this warning is turned into an error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158549
Approved by: https://github.com/danthe3rd
2025-07-17 09:44:19 +00:00
f4d8bc46c7 Enable TF32 as fp32 internal precision for matmul/linear/conv (#157520)
### Description

This PR is to enable TF32 as fp32 internal precision for matmul/linear/conv in `mkldnn backend`. Since we have refined fp32 precision API in https://github.com/pytorch/pytorch/pull/125888, we can easily extend the API to support TF32 for `mkldnn backend`.

```
torch.backends.mkldnn.matmul.fp32_precision = 'tf32'
torch.backends.mkldnn.conv.fp32_precision = "tf32"
```

Related kernel update and UTs update are done. And the wrapper `bf32_on_and _off` is updated to `reduced_f32_on_and_off`, and it can run tests 3 times, one is reduced_f32 OFF, the other two are reduced_f32 ON (including `bf32 ON` and `tf32 ON`).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157520
Approved by: https://github.com/mingfeima, https://github.com/jansel
2025-07-17 08:57:34 +00:00
39ac189808 Support DeepSeek-style blockwise scaling scaled-mm for fp8 on Hopper+ (#158037)
cuBLAS added support for them in CUDA 12.9. It's rather easy to call into them, the hardest thing is allowing the lhs and rhs operands to have different scaling types, as that changes the whole callstack.

The scaling format is still detected from the sizes of the scale tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158037
Approved by: https://github.com/eqy, https://github.com/drisspg
2025-07-17 08:26:27 +00:00
d76323d417 [NativeRT] Remove normalizeDevice (#158489)
Summary:
In pytorch, tensor.to("cuda") behaves differently from tensor.to("cuda:0).

tensor.to("cuda") will read from thread local DeviceGuard, aka cuda::current_device(), to infer the device index.

TBEPermute is relying on this behavior to route output tensor to a device specified by current thread.

For this reason, we remove the normalizeDevice(), and disallow index-less cuda device in Placement.

Device-to-device mapping must be done between concrete device!

Test Plan:
CI

Rollback Plan:

Differential Revision: D78443109

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158489
Approved by: https://github.com/henryoier
2025-07-17 06:48:25 +00:00
04349f9ee5 [PT2]: Skip AOTI Weight Loading during Init (#158416)
Summary: AOTI already has weights embedded in .so file. So for the initial load, no need to load the weights again. This allows lowered modules can have different set of weights on different hardwares.

Test Plan:
```
MODEL_TYPE=ads_mtml_offsite_cvr_oba_optout_dedicated_model
MODEL_ENTITY_ID=895279202
SNAPSHOT_ID=0
MODULE=merge

buck2 run mode/dev-nosan -c fbcode.nvcc_arch=a100,h100 -c fbcode.enable_gpu_sections=true fbcode//caffe2/torch/fb/model_transform/fx2trt/packaging:load_net_predictor -- --loadMode=Benchmark --inputNetFile=/data/users/$USER/models/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/${MODEL_ENTITY_ID}_${SNAPSHOT_ID}.predictor.disagg.gpu.${MODULE} --moduleName ${MODULE} --predictor-hardware-type 1 --submodToDevice ""  --benchmarkDontRebatchSamples=true --benchmarkNumIterations 1000
```

Rollback Plan:

Differential Revision: D78383881

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158416
Approved by: https://github.com/henryoier, https://github.com/SherlockNoMad
2025-07-17 06:47:47 +00:00
09db3a22e8 [BE] Get rid of final mentions of BUILD_SPLIT_CUDA (#158453)
BUILD_SPLIT_CUDA logic has been removed for a while

Differential Revision: [D78418191](https://our.internmc.facebook.com/intern/diff/D78418191/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158453
Approved by: https://github.com/albanD
ghstack dependencies: #158358, #158365
2025-07-17 06:47:10 +00:00
a38f433be2 [Docker builds] Move from Miniconda to Miniforge (#158370)
This is related to: https://www.anaconda.com/legal/terms/terms-of-service

Trying to fix outage with docker builds.
https://github.com/pytorch/pytorch/actions/runs/16298993712/job/46033590799

Rocm and XPU builds since they use Miniforge are not affected

```
#22 ERROR: process "/bin/sh -c bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt" did not complete successfully: exit code: 1
------
 > [base 14/42] RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt:
11.93 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding:
11.93     • https://repo.anaconda.com/pkgs/main
11.93     • https://repo.anaconda.com/pkgs/r
11.93
11.93 To accept a channel's Terms of Service, run the following and replace `CHANNEL` with the channel name/URL:
11.93     ‣ conda tos accept --override-channels --channel CHANNEL
```
Hence solution is:
1. using `` conda tos accept --override-channels --channel defaults``
2. use Miniforge instead of Miniconda.

Using solution 2.

Solution Tried that don't work:
1. Using ``CONDA_ALWAYS_YES = true ``

4. Using older version of miniconda
```
[Miniconda3-py310_25.5.1-0-Linux-x86_64.sh](https://repo.anaconda.com/miniconda/Miniconda3-py310_25.5.1-0-Linux-x86_64.sh)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158370
Approved by: https://github.com/seemethere

Co-authored-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
2025-07-17 06:33:08 +00:00
9f37cce693 Revert "[Docker builds] Move from Miniconda to Miniforge (#158370)"
This reverts commit 0a99b026d6bd0f67dc2c0a20fe3228ddc4144854.

Reverted https://github.com/pytorch/pytorch/pull/158370 on behalf of https://github.com/laithsakka due to this fail pr time benchmarks ([comment](https://github.com/pytorch/pytorch/pull/158370#issuecomment-3082744071))
2025-07-17 06:28:49 +00:00
9636e2cfd3 Move off of deprecated API in 2.9 (#158527)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158527
Approved by: https://github.com/danielvegamyhre
2025-07-17 06:18:13 +00:00
d9426a81d2 [BE] Modify PyObjectSlot the assume only a single interpreter is in use (#158407)
This PR makes some less risky changes to PyObjectSlot as there is a lot of stuff we do not need since there is only one interpreter. Specifically `check_interpreter` and `has_pyobj_nonhermetic` are removed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158407
Approved by: https://github.com/albanD
ghstack dependencies: #158288, #158290, #158291
2025-07-17 05:56:26 +00:00
0b9fb91f17 [BE] Remove __reduce_deploy__ (#158291)
This PR removes the integration point torch.fx had with torch::deploy (and another minor change).

Note: This PR has some broken mypy errors, but I believe those should have been in the code base beforehand, and should be fixed in a separate PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158291
Approved by: https://github.com/albanD
ghstack dependencies: #158288, #158290
2025-07-17 05:56:26 +00:00
a6de309ca1 [BE] Remove torch deploy | remove torch deploy specific files (#158290)
This PR removes specific files found in pytorch which are only used for torch::deploy. This is mostly testing code and a debugger.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158290
Approved by: https://github.com/albanD
ghstack dependencies: #158288
2025-07-17 05:56:18 +00:00
1a4268b811 [BE] remove torch deploy - conditionals (#158288)
This PR is part of the work to deprecate torch::deploy in OSS. Effectively it does 3 things to get started.
1. Remove test_deploy_interaction as we no longer need to worry about this
2. Remove all torch._running_with_deploy checks and use the False path always (surfaced 1)
3. Remove `USE_DEPLOY` and switch to the default path always

Note: MyPy does fail on a bunch of things here as a bunch of older files are touched. It may be better to fix these things on a separate PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158288
Approved by: https://github.com/albanD
2025-07-17 05:56:07 +00:00
79d7c754ab DDE-Free select with unbacked index. (#157605)
When select has data dependent input, we cant tell if the actual index shall be index+size or index.
to avoid throwing dde, we allocate a new unbacked symbol to represent the storage offset of the
output view and we compute its value dynamically at runtime when inductor is lowered.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157605
Approved by: https://github.com/ColinPeppler
2025-07-17 05:08:11 +00:00
415dfabe9b [Easy] Fix the format (#158450)
When I modify the code located in test/cpp_extensions/open_registration_extension/torch_openreg/torch_openreg,
some unrelated format error occurred.

```Python
Lint for torch/_inductor/fx_passes/fuse_attention.py:

  Error (CODESPELL) spelling error
    Failed due to ValueError:
    /pytorch/pytorch/torch/_inductor/fx_passes/fuse_attention.py:587: differnt
    ==> different

    Please either fix the error or add the word(s) to the dictionary file.
    HINT: all-lowercase words in the dictionary can cover all case variations.

Lint for torch/fx/traceback.py:

  Error (MYPY) [assignment]
    Incompatible types in assignment (expression has type "str", variable has
    type "None")

        101  |
        102  |    def _get_action_string(self):
        103  |        if self._action_string is None:
        104  |            self._action_string = "+".join([a.name.lower() for a in self.action])
        105  |        return self._action_string
        106  |
        107  |    def print_readable(self, indent=0):

  Error (MYPY) [assignment]
    Incompatible types in assignment (expression has type "dict[str, Any]",
    variable has type "None")

        121  |        if self._dict is None:
        122  |            # Convert the object to a dictionary
        123  |            action_string = self._get_action_string()
        124  |            self._dict = {
        125  |                "name": self.name,
        126  |                "target": self.target,
        127  |                "graph_id": self.graph_id,

  Error (MYPY) [return-value]
    Incompatible return value type (got "None", expected "dict[Any, Any]")

        130  |                "from_node": [node.to_dict() for node in self.from_node],
        131  |            }
        132  |
        133  |        return self._dict
        134  |
        135  |    def __eq__(self, other: object):
        136  |        if not isinstance(other, NodeSource):
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158450
Approved by: https://github.com/Skylion007
2025-07-17 04:56:10 +00:00
8eaa9f2701 Fix mask construction when dispatching index_put to masked_fill (#158472)
Fixes #158413
Previously trailing Nones in the index were incorrectly handled as implicit broadcasting dims in the mask, whereas they should just be ignored.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158472
Approved by: https://github.com/ezyang
2025-07-17 04:21:43 +00:00
ebf83b8b77 [audio hash update] update the pinned audio hash (#158402)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158402
Approved by: https://github.com/pytorchbot
2025-07-17 04:19:06 +00:00
24b49b9881 [Fix] Rework CUDA error explanation framework to be less destructive … (#158484)
…in fbsource

Fix-forward for #158395

Added `std::string c10::cuda::get_cuda_error_help(const char* error_string)` to provide a framework for appending clarifying messages to CUDA errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158484
Approved by: https://github.com/aorenste
2025-07-17 03:36:47 +00:00
1839e8d04b [DTensor] Assert DTensorSpec has valid placements (#158133)
This helped identify buggy sharding rules during debugging, why not
check it in.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158133
Approved by: https://github.com/XilunWu, https://github.com/zpcore
ghstack dependencies: #158132
2025-07-17 02:32:26 +00:00
2ad5c25cfc Add unified memory APIs for torch.accelerator (#152932)
# Motivation
The following API will be put under torch.accelerator
- empty_cache
- max_memory_allocated
- max_memory_reserved
- memory_allocated
- memory_reserved
- memory_stats
- reset_accumulated_memory_stats
- reset_peak_memory_stats

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152932
Approved by: https://github.com/albanD
ghstack dependencies: #138222
2025-07-17 01:56:01 +00:00
1179e33323 Add DeviceAllocator as the base device allocator (#138222)
# Motivation
In line with [RFC] [A device-agnostic Python device memory related API design for stream-based accelerators](https://github.com/pytorch/pytorch/issues/134978), some memory-related APIs are widely used in popular repositories, such as HuggingFace [so many if-else conditional code](https://github.com/search?q=repo%3Ahuggingface%2Faccelerate%20torch.cuda.empty_cache&type=code). We would like to introduce a generic API set under torch.accelerator namespace to generalize these user cases.

<div align="center">
<table>
<tr>
<td> Device-specific memory APIs torch.xxx.foo</td> <td> Device-agnostic memory APIs torch.accelerator.foo</td>
</tr>
<tr>
<td>

```python
torch.xxx.empty_cache
```

</td>
<td>

```python
torch.accelerator.empty_cache
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.reset_peak_memory_stats
```

</td>
<td>

```python
torch.accelerator.reset_peak_memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.reset_accumulated_memory_stats
```

</td>
<td>

```python
torch.accelerator.reset_accumulated_memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_stats
```

</td>
<td>

```python
torch.accelerator.memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_allocated
```

</td>
<td>

```python
torch.accelerator.memory_allocated
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.max_memory_allocated
```

</td>
<td>

```python
torch.accelerator.max_memory_allocated
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_reserved
```

</td>
<td>

```python
torch.accelerator.memory_reserved
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.max_memory_reserved
```

</td>
<td>

```python
torch.accelerator.max_memory_reserved
```

</td>
</tr>

</table>
</div>

# Solution
This design follows a similar pattern to `HostAllocator`. We're introducing a base class `DeviceAllocator`, from which `CUDAAllocator` and `XPUAllocator` will inherit. This allows us to provide a unified call path like: `torch.accelerator.empty_cache()` -> `GetDeviceAllocator(allocator)->empty_cache()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138222
Approved by: https://github.com/albanD, https://github.com/Camyll
2025-07-17 01:56:01 +00:00
f6d138807f Always disable ShardingPropagation cache if compiling (#156868)
Fixes #151106

Addresses issue (2) in #152963 for the DTensor sharding propagation cache being brittle under compile. The existing `_are_we_tracing` from `distributed._functional_collectives`, which mostly determines if currently tracing based on Fake Tensor dispatch mode, is reused here.

**Test Plan**:
There are already tests for DTensor + Compile with dynamic shape ([test_dtensor_dynamic](https://github.com/pytorch/pytorch/blob/main/test/distributed/tensor/test_dtensor_compile.py#L260),
[test_dynamo_dtensor_from_local_dynamic_shapes](https://github.com/pytorch/pytorch/blob/main/test/distributed/tensor/test_dtensor_compile.py#L402)) that cover the change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156868
Approved by: https://github.com/xmfan
2025-07-17 01:33:53 +00:00
c09eba877f [Device] Add support for PrivateUse1 device type in parse_type function (#157609)
This pull request refactors the `parse_type` function in `c10/core/Device.cpp` to improve the handling of the `PrivateUse1` device type. The main change involves reordering the logic to check for the `PrivateUse1` device type earlier in the function for better clarity and efficiency.

This help to migrate existed backend to PrivateUse1 smoothly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157609
Approved by: https://github.com/jgong5, https://github.com/albanD
2025-07-17 01:27:44 +00:00
2179afd714 [easy][guards] Add developer comment for posterity (#158471)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158471
Approved by: https://github.com/StrongerXi
2025-07-17 01:17:04 +00:00
d7e1b8b11d [dynamo] Constant fold torch.autograd._profiler_enabled (#158482)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158482
Approved by: https://github.com/williamwen42, https://github.com/StrongerXi
2025-07-17 01:07:42 +00:00
b6454a9058 [AOT_inductor] model_base.h add Windows include files. (#158477)
model_base.h add Windows include files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158477
Approved by: https://github.com/desertfire, https://github.com/jansel
2025-07-17 00:57:48 +00:00
e9367a7a42 ci: Add reusable workflow to get changed files in PRs (#158517)
Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158517
Approved by: https://github.com/huydhn
2025-07-17 00:57:43 +00:00
clr
e78f2ac92b inductor: Fix crash in split_cat when tensors is a Node (#157155)
If there is only one node passed to aten::cat, the argument is a single node,
rather than a list of nodes with a valid length.

Example stack
```
  File "/dev/shm/uid-99/be3468a8-seed-nspid4026546656_cgpid14993614-ns-4026546628/torch/_inductor/pattern_matcher.py", line 1115, in apply
    self.handler(match, *match.args, **match.kwargs)
  File "/dev/shm/uid-99/be3468a8-seed-nspid4026546656_cgpid14993614-ns-4026546628/torch/_inductor/fx_passes/split_cat.py", line 1786, in merge_split_cat_aten
    if len(cat_inputs) < threshold_to_cat:
torch._inductor.exc.InductorError: TypeError: object of type 'Node' has no len()
```

This has failed about 7 internal jobs in the last week, running pytorch trunk code from 06/15

I've attached a test which reproduces this issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157155
Approved by: https://github.com/jansel
2025-07-17 00:57:38 +00:00
82a1ee1135 Refactor Provenance Tracking (#158399)
Summary:
As inductor provenance tracking is getting more use cases, we want to separate the inductor provenance tracking guarding flag from the general `trace.enabled`, so we can enable provenance tracking without all the overhead of `trace.enabled`

- change the guard flag from `trace.enabled` to `trace.provenance_tracking`.  It is turned on by either `TORCH_COMPILE_DEBUG=1` or `INDUCTOR_PROVENANCE=1`.
- Move the provenance tracking logic and variables out of DebugContext, because DebugContext is only enabled with `trace.enabled`. Since the variables are now global variables, added `reset_provenance_globals()` context manager to reset them for each `compile_fx()` call.
- Move `set_kernel_post_grad_provenance_tracing` from `util.py` to `debug.py` so now all provenance related logic is in `debug.py`.

In the future, if we want to enable it further, we can change the provenance tracking flag to be enabled when `TORCH_TRACE` is set. I think we should do that in a separate PR, so it's easier to revert if this flag change creates any problem.

See more motivation in internal Diff

Test Plan:
```
buck2 run mode/dev-nosan fbcode//caffe2/test:fx -- -r test_graph_transform_observer
buck run mode/dev-nosan  fbcode//caffe2/test:fx -- -r graph_provenance
buck2 run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing
```

Differential Revision: D78287976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158399
Approved by: https://github.com/angelayi
2025-07-17 00:23:00 +00:00
306dd19216 update expeced results (#158497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158497
Approved by: https://github.com/xmfan
2025-07-17 00:02:52 +00:00
1d58476162 [PP] Add eval() API to schedule (#157795)
These change add an `eval()` API to PP schedules

## Context

Currently, you can run "Forward only" for a schedule in two ways:
1. Use a custom schedule `_ScheduleForwardOnly`
2. Do not pass in `loss_fn` in schedule constructor, and no backward computations will be executed.

However, this is still limiting because we may want to run forward through the pipeline / calculate the loss, but without backward, e.g. during validation. These changes allow for this.

```python
if self.rank == 0:
    schedule.eval(x)
elif self.rank == self.world_size - 1:
    losses = []
    schedule.eval(target=target, losses=losses)
else:
    schedule.eval()
```

TODO:
- in later PRs, we will deprecate the `_ScheduleForwardOnly`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157795
Approved by: https://github.com/wconstab
2025-07-16 23:48:45 +00:00
a4d753295e [Dynamo][Better Engineering] Add enhanced typing support to _dynamo/eval_frame.py (#158276)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to the main entrypoint for dynamo, `eval_frame.py`

Running
```
mypy torch/_dynamo/eval_frame.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  623 | 2232 | 27.91% | 19 | 68 | 27.94% |
| This PR | 2285 | 2285 | 100.00% | 68 | 68 | 100.00% |
| Delta    | +1662 | +63 | +72.09% | +49 | 0 | +72.06% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158276
Approved by: https://github.com/williamwen42

Co-authored-by: William Wen <williamwen@meta.com>
2025-07-16 23:31:10 +00:00
a9f902add0 [CUDA] Use runtime driver API for cuStreamWriteValue32 (#158295)
Reopen https://github.com/pytorch/pytorch/pull/156097

Fixes https://github.com/pytorch/pytorch/issues/154073

Reference: https://github.com/NVIDIA/Fuser/pull/4197

See PR https://github.com/pytorch/pytorch/pull/156097 and https://github.com/pytorch/pytorch/pull/154097

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158295
Approved by: https://github.com/Skylion007, https://github.com/ngimel, https://github.com/eqy, https://github.com/huydhn

Co-authored-by: Wei Wang <weiwan@nvidia.com>
2025-07-16 23:14:36 +00:00
e311886e3d Add transpose to torch/csrc/stable (#158160)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158160
Approved by: https://github.com/janeyx99
2025-07-16 22:50:57 +00:00
3cb11877aa [aoti][mps] Enable test_aot_inductor.py tests (#155598)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155598
Approved by: https://github.com/yushangdi
2025-07-16 22:26:57 +00:00
5951fcd50a [Dynamo][Better Engineering] Support typing in codegen.py (#158386)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a critical tracing point for dynamo, primarily for `codegen.py` but also `config.py`

Running
```
mypy torch/_dynamo/codegen.py torch/_dynamo/config.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  347 | 1330 | 26.09% | 24 | 50 | 48.00% |
| This PR | 1334 | 1334 | 100.00% | 50 | 50 | 100.00% |
| Delta    | +987 | +4 | +73.91.% | +26 | 0 | +52.00% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158386
Approved by: https://github.com/StrongerXi
2025-07-16 22:09:01 +00:00
ada44e5ba7 [Dynamo][Better Engineering] Add typing to bytecode analysis and transform (#158293)
As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo

This PR adds strict typing support to a critical tracing point for dynamo, `bytecode_transformation.py` and by extension, `bytecode_analysis.py`

Running
```
mypy torch/_dynamo/bytecode_transformation.py torch/_dynamo/bytecode_analysis.py --linecount-report /tmp/coverage_log
```

| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main  |  1422 | 1920 | 74.06% | 73 | 93 | 78.49% |
| This PR | 1968 | 1968 | 100.00% | 93 | 93 | 100.00% |
| Delta    | +546 | +48 | +25.94% | 20 | 0 | +21.51% |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158293
Approved by: https://github.com/StrongerXi, https://github.com/Skylion007
2025-07-16 21:50:55 +00:00
9df0176408 [BE][testing] Disable test_static_cuda_launcher:test_floats internally (#158296)
Summary: it seems the check for 'Offd' vs. 'Offf' doesn't work

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158296
Approved by: https://github.com/davidberard98
2025-07-16 21:27:40 +00:00
94c746bb43 [DTensor][BE] add document to ShardingPropagator.register_op_strategy (#158362)
**Summary**
Add document to `ShardingPropagator.register_op_strategy` on how to draft
`strategy_func` and when to use `schema_info`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158362
Approved by: https://github.com/zpcore
2025-07-16 21:08:59 +00:00
473208cb18 [ez][lint] Add pr_time_benchmarks to merge conflictless csv linter (#158353)
Discovered this when looking at a PR I was trying to revert and was surprised that the PR got rid of the spaces but didn't trigger the linter.  Turns out the file was following the rule but wasn't actually being checked
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158353
Approved by: https://github.com/seemethere, https://github.com/Camyll
2025-07-16 20:31:07 +00:00
fb731fe371 Add warning about removed sm50 and sm60 arches (#158301)
Related to https://github.com/pytorch/pytorch/issues/157517

Detect when users are executing torch build with cuda 12.8/12.9 and running on Maxwell or Pascal architectures.
We would like to include reference to the issue: https://github.com/pytorch/pytorch/issues/157517 as well as ask people to install CUDA 12.6 builds if they are running on sm50 or sm60 architectures.

Test:
```
>>> torch.cuda.get_arch_list()
['sm_70', 'sm_75', 'sm_80', 'sm_86', 'sm_90', 'sm_100', 'sm_120', 'compute_120']
>>> torch.cuda.init()
/home/atalman/.conda/envs/py312/lib/python3.12/site-packages/torch/cuda/__init__.py:263: UserWarning:
    Found <GPU Name> which is of cuda capability 5.0.
    PyTorch no longer supports this GPU because it is too old.
    The minimum cuda capability supported by this library is 7.0.

  warnings.warn(
/home/atalman/.conda/envs/py312/lib/python3.12/site-packages/torch/cuda/__init__.py:268: UserWarning:
                        Support for Maxwell and Pascal architectures is removed for CUDA 12.8+ builds.
                        Please see https://github.com/pytorch/pytorch/issues/157517
                        Please install CUDA 12.6 builds if you require Maxwell or Pascal support.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158301
Approved by: https://github.com/nWEIdia, https://github.com/albanD
2025-07-16 20:11:18 +00:00
a9ee4250d5 [4/n] Remove references to TorchScript in PyTorch docs (#158317)
Summary: jit.rst

Test Plan:
CI

Rollback Plan:

Differential Revision: D78309840

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158317
Approved by: https://github.com/svekars, https://github.com/zhxchen17
2025-07-16 20:01:34 +00:00
14ecc03361 Revert "recovering node source from dict (#158373)"
This reverts commit 4d055982e38f59fdb2a4c9d8855e58548bc42c12.

Reverted https://github.com/pytorch/pytorch/pull/158373 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/158373#issuecomment-3080093479))
2025-07-16 19:55:21 +00:00
1cc62c2cb9 [export] Update docs (#157750)
Preview: https://docs-preview.pytorch.org/pytorch/pytorch/157750/export.html

Changes:
* Rename draft_export.md -> export.draft_export.md for consistency.
* Removed non-strict section in export, instead pointed to programming model doc.
* Extended "Expressing Dynamism" section to include Dim hints, ShapeCollection, and AdditionalInputs.
* Removed Specialization section in favor of programming model doc
* Added pt2 archive doc
* Cleaned up sidebar
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157750
Approved by: https://github.com/pianpwk
2025-07-16 19:53:12 +00:00
f58a680d09 [c10d]Prototype of remote_group_merge (#158287)
Tentative implementation of merge_remote_group per the proposal here: [docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89](https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158287
Approved by: https://github.com/d4l3k
ghstack dependencies: #157716
2025-07-16 19:33:57 +00:00
944a140e90 Revert "[cuda][cupy] Improve cupy device placement when device is provided (#158320)"
This reverts commit 59f9b25f3cfc635053843372ea29ff4bf754da3f.

Reverted https://github.com/pytorch/pytorch/pull/158320 on behalf of https://github.com/wdvr due to reverting because most likely causing test/test_numba_integration.py::TestNumbaIntegration::test_from_cuda_array_interface_inferred_strides to fail ([comment](https://github.com/pytorch/pytorch/pull/158320#issuecomment-3079960616))
2025-07-16 19:15:33 +00:00
cyy
79ab84e9b8 Fix invalid formatting (#158436)
It causes errors under C++20
```
/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/mps/OperationUtils.mm:330:40:
error: call to consteval function 'fmt::fstring<>::fstring<std::string, 0>' is not a constant expression
```
Indeed the printed value is treated as format string and it may contain special chars in some cases. While this is not true in our case, it can't be determined in compile time.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158436
Approved by: https://github.com/Skylion007
2025-07-16 18:47:09 +00:00
2b0f9b1f61 Move c10/macros/Macros.h to headeronly (#158365)
^

Differential Revision: [D78361893](https://our.internmc.facebook.com/intern/diff/D78361893/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158365
Approved by: https://github.com/swolchok
ghstack dependencies: #158358
2025-07-16 18:46:52 +00:00
b40f48d191 Move the rest of c10/macros/Export.h (#158358)
Differential Revision: [D78356975](https://our.internmc.facebook.com/intern/diff/D78356975/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158358
Approved by: https://github.com/swolchok
2025-07-16 18:46:52 +00:00
4d055982e3 recovering node source from dict (#158373)
Summary: this diff recovers NodeSource object from its dict representation, which is crucial for NodeSource serde.

Test Plan:
ci

Rollback Plan:

Differential Revision: D78363882

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158373
Approved by: https://github.com/yushangdi
2025-07-16 18:46:09 +00:00
bc9091a524 Fix indexing with multi-dimensional boolean mask (#158369)
Fixes #71673

This fixes a bug in PyTorch indexing, that shows up when mixing multi-dimensional boolean masks with other forms of indexing. Examples:
```python
>>> import torch
>>> x = torch.ones([2, 2, 3])
>>> m = torch.tensor(((True, False), (False, False)))  # (2x2 boolean mask)

>>> x[m].shape  # this works fine (the boolean mask acts on the 2x2 subspace selecting one row)
torch.Size([1, 3])

>>> x[m, 0]  # this should produce a tensor of shape (1,)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: The shape of the mask [2, 2] at index 1 does not match the shape of the indexed tensor [2, 3] at index 1

>>> x[m, ::2]  # this should produce a tensor of shape (1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: The shape of the mask [2, 2] at index 1 does not match the shape of the indexed tensor [2, 1, 3] at index 1

>>> x[m, None]  # this should produce a tensor of shape (1, 1, 3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: The shape of the mask [2, 2] at index 1 does not match the shape of the indexed tensor [2, 1, 2, 3] at index 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158369
Approved by: https://github.com/ngimel
2025-07-16 18:30:57 +00:00
a26bf38927 Don't need to handle PyTrace_EXCEPTION in pyProfileFn (#154392)
According to the [document](https://python.readthedocs.io/fr/stable/c-api/init.html#c.PyTrace_EXCEPTION) and [comment](https://github.com/python/cpython/blob/3.9/Modules/_lsprof.c#L407), we don't need to handle PyTrace_EXCEPTION in pyProfileFn.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154392
Approved by: https://github.com/sraikund16, https://github.com/cyyever
2025-07-16 18:00:11 +00:00
da05b7fb94 [cond] add _FlopCounterMode support for cond (#158067)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158067
Approved by: https://github.com/zou3519
ghstack dependencies: #158077
2025-07-16 17:26:20 +00:00
82b1c48292 [hop] add supports_higher_order_operators flag to TorchDispatchMode (#158077)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158077
Approved by: https://github.com/zou3519
2025-07-16 17:26:20 +00:00
a369350065 enable compiled autograd on CPU windows (#158432)
compiled autograd on windows is disabled in PR #144707 because cuda windows cannot compile this code.
However these code can be compiled on CPU. This PR enable these code on CPU windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158432
Approved by: https://github.com/jansel, https://github.com/xmfan

Co-authored-by: Xu Han <xu.han@outlook.com>
2025-07-16 17:22:37 +00:00
ff611d971f [ROCm] check stream graph capture status in memcpy_and_sync inline function (#158165)
Check for stream graph capture when using hipMemcpyWithStream.

Fixes https://github.com/pytorch/pytorch/issues/155684, https://github.com/pytorch/pytorch/issues/155231

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158165
Approved by: https://github.com/jeffdaily
2025-07-16 17:17:34 +00:00
4805a6ead6 [aot][XPU] switch xpu to use consts cpp build. (#158425)
Intel compiler is not support `format_consts_to_asm`, let's use `format_consts_to_cpp`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158425
Approved by: https://github.com/jansel
2025-07-16 16:19:33 +00:00
a8b9736737 [BE][testing] disable test_custom_op_square internally (#158367)
Summary: test is failing with `ld.lld: error: unable to find library -laoti_custom_ops`

Test Plan: `buck test '@fbcode//mode/opt' fbcode//caffe2/test/inductor:test_aot_inductor_custom_ops -- --exact 'caffe2/test/inductor:test_aot_inductor_custom_ops - test_custom_op_square_cuda (caffe2.test.inductor.test_aot_inductor_custom_ops.AOTInductorTestABICompatibleCuda)' --run-disabled`

Differential Revision: [D78364617](https://our.internmc.facebook.com/intern/diff/D78364617)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158367
Approved by: https://github.com/desertfire
2025-07-16 16:16:14 +00:00
4b11428cb5 [BE][testing] Skip test_repeated_masked_load internally (#158355)
Summary: Test is failing internally because of the import from functorch.einops. _Maybe_ there's a way to get this dependence in the TARGETS file, but the obvious things didn't work. I'm wondering if this test is that important to have running in OSS and internally anyway?

Test Plan:
`buck test '@fbcode//mode/opt' fbcode//caffe2/test/inductor:cuda_repro -- --exact 'caffe2/test/inductor:cuda_repro - test_repeated_masked_load (caffe2.test.inductor.test_cuda_repro.CudaReproTests)' --run-disabled`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158355
Approved by: https://github.com/eellison
2025-07-16 16:15:44 +00:00
a04a13c449 [BE][testing] Skip test_triton_interpret internally (#158260)
Summary: Subprocesses in fbcode are tricky because of .par files. I'm thinking it's not an important enough test to get it running and skipping is fine.

Test Plan: `buck test`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158260
Approved by: https://github.com/eellison
2025-07-16 16:14:44 +00:00
a23f4471b9 [ROCm][Windows] Fix finding ROCm/HIP version (#156486)
This commit fixes Windows build issue related to trying to use rocm-core (rocm-core doesn't exist on HIP SDK)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156486
Approved by: https://github.com/jeffdaily, https://github.com/stellaraccident
2025-07-16 15:31:43 +00:00
06a67a8948 Fix sha256 for aotriton ROCm7.0 tarball (#158420)
Fixes following issue of building PyTorch with ROCm7.0:
```
-- verifying file...
       file='/var/lib/jenkins/pytorch/build/aotriton_external-prefix/src/aotriton-0.10b-manylinux_2_28_x86_64-rocm7.0-shared.tar.gz'
-- SHA256 hash of
    /var/lib/jenkins/pytorch/build/aotriton_external-prefix/src/aotriton-0.10b-manylinux_2_28_x86_64-rocm7.0-shared.tar.gz
  does not match expected value
    expected: '7e29c325d5bd33ba896ddb106f5d4fc7d715274dca7fe937f724fffa82017838'
      actual: '1e9b3dddf0c7fc07131c6f0f5266129e83ce2331f459fa2be8c63f4ae91b0f5b'
-- Hash mismatch, removing...
CMake Error at aotriton_external-prefix/src/aotriton_external-stamp/download-aotriton_external.cmake:163 (message):
  Each download failed!
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158420
Approved by: https://github.com/jeffdaily
2025-07-16 15:24:20 +00:00
9513b9d03f Revert "Support DeepSeek-style blockwise scaling scaled-mm for fp8 on Hopper+ (#158037)"
This reverts commit bc65253369933160a2da3fc786d027a572faf6b7.

Reverted https://github.com/pytorch/pytorch/pull/158037 on behalf of https://github.com/lw due to OSX failures are real ([comment](https://github.com/pytorch/pytorch/pull/158037#issuecomment-3079042171))
2025-07-16 15:04:10 +00:00
0b19d463d9 forward fix lint (#158448)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158448
Approved by: https://github.com/adamomainz
2025-07-16 14:55:33 +00:00
5763ec5f8d [BE] Replace lib with TORCH_INSTALL_LIB_DIR (#158235)
Their values are actually the same. Just staying in line with other `INSTALL` commands.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158235
Approved by: https://github.com/Skylion007
ghstack dependencies: #158234
2025-07-16 14:20:19 +00:00
2043f6911e [BE] Rename libnvshmem_extension to libtorch_nvshmem (#158234)
`libnvshmem_extension.so` creates an illusion that it is a shared library from NVSHMEM. But indeed it is built from torch source code, for symmetric tensor infrastructure and operations, though leveraging NVSHMEM APIs. Thus this PR renames `libnvshmem_extension.so` to `libtorch_nvshmem.so`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158234
Approved by: https://github.com/albanD
2025-07-16 14:20:19 +00:00
bc65253369 Support DeepSeek-style blockwise scaling scaled-mm for fp8 on Hopper+ (#158037)
cuBLAS added support for them in CUDA 12.9. It's rather easy to call into them, the hardest thing is allowing the lhs and rhs operands to have different scaling types, as that changes the whole callstack.

The scaling format is still detected from the sizes of the scale tensors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158037
Approved by: https://github.com/eqy, https://github.com/drisspg
2025-07-16 13:54:09 +00:00
51a708ffc6 [nativert] libtorch kernel registry (#157150)
Summary: att

Test Plan:
ci

Rollback Plan:

Differential Revision: D77451703

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157150
Approved by: https://github.com/georgiaphillips, https://github.com/henryoier
2025-07-16 12:36:55 +00:00
55d888a616 Add framework for explanations for common CUDA errors (#158395)
As popularly requested in user groups.

Test plan:
```
import torch

a = torch.randn(10000)
device = torch.device('cuda:1')
a = a.to(device)
```

Before:
```
Traceback (most recent call last):
  File "/data/users/raymo/pytorch/test/cuda.py", line 6, in <module>
    a = a.to(device)
        ^^^^^^^^^^^^
torch.AcceleratorError: CUDA error: invalid device ordinal
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
```

After:
```
Traceback (most recent call last):
  File "/data/users/raymo/pytorch/test/cuda.py", line 6, in <module>
    a = a.to(device)
        ^^^^^^^^^^^^
torch.AcceleratorError: CUDA error: invalid device ordinal
GPU device may be out of range, do you have enough GPUs?
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158395
Approved by: https://github.com/aorenste

Co-authored-by: Aaron Orenstein <aorenste@fb.com>
2025-07-16 12:31:18 +00:00
0a99b026d6 [Docker builds] Move from Miniconda to Miniforge (#158370)
This is related to: https://www.anaconda.com/legal/terms/terms-of-service

Trying to fix outage with docker builds.
https://github.com/pytorch/pytorch/actions/runs/16298993712/job/46033590799

Rocm and XPU builds since they use Miniforge are not affected

```
#22 ERROR: process "/bin/sh -c bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt" did not complete successfully: exit code: 1
------
 > [base 14/42] RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt:
11.93 CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please accept or remove them before proceeding:
11.93     • https://repo.anaconda.com/pkgs/main
11.93     • https://repo.anaconda.com/pkgs/r
11.93
11.93 To accept a channel's Terms of Service, run the following and replace `CHANNEL` with the channel name/URL:
11.93     ‣ conda tos accept --override-channels --channel CHANNEL
```
Hence solution is:
1. using `` conda tos accept --override-channels --channel defaults``
2. use Miniforge instead of Miniconda.

Using solution 2.

Solution Tried that don't work:
1. Using ``CONDA_ALWAYS_YES = true ``

4. Using older version of miniconda
```
[Miniconda3-py310_25.5.1-0-Linux-x86_64.sh](https://repo.anaconda.com/miniconda/Miniconda3-py310_25.5.1-0-Linux-x86_64.sh)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158370
Approved by: https://github.com/seemethere

Co-authored-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
2025-07-16 10:52:47 +00:00
ac706bfc7f disable multi kernel rocm (#158299)
Fixes https://github.com/pytorch/pytorch/issues/158274

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158299
Approved by: https://github.com/huydhn
2025-07-16 10:20:09 +00:00
9d184bda2f add device generalization support for distributed tests (#156796)
MOTIVATION
To generalize Distributed test cases for non-CUDA devices

CHANGES

- test/distributed/checkpoint/test_fsspec.py
- test/distributed/checkpoint/test_state_dict.py
- test/distributed/test_multi_threaded_pg.py

Replaced hard coded device names with torch.accelerator.current_accelerator

- torch/testing/_internal/distributed/_shard/sharded_tensor/__init__.py

support for hccl backend

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156796
Approved by: https://github.com/guangyey, https://github.com/ezyang
2025-07-16 09:37:03 +00:00
ea74fdd24a [Inductor][Triton] Update TMA Compatibility Requirements (#157881)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157881
Approved by: https://github.com/Skylion007, https://github.com/drisspg
2025-07-16 09:31:44 +00:00
e71bb021b9 Add a periodic test for older NVIDIA driver (#158300)
This is needed because of the botched landing of https://github.com/pytorch/pytorch/pull/156097 which crashed on older NVIDIA drivers `525.*`.  I add a periodic job to install the `525.105.17` on CI, then run:

1. A smoke to make sure that CUDA can be initialized
2. And the whole the test suite on the older driver
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158300
Approved by: https://github.com/ngimel
2025-07-16 08:18:18 +00:00
fb9a5d248f Fix torch._numpy to match NumPy when empty ellipsis causes advanced indexing separation (#158297)
Fixes #141563

In NumPy, an ellipsis always acts as a separator between advanced indices, even when the ellipsis doesn't actually match any dimensions. In PyTorch an empty ellipsis doesn't cause a separation. This leads to differing behavior between Numpy and PyTorch in this edge case.

This difference in behavior leads to a bug when using torch.compile:
```python
>>> import numpy as np
>>> f = lambda x: x[:,(0,1),...,(0,1)].shape
>>> a = np.ones((3, 4, 5))
>>> f(a)
(2, 3)
>>> torch.compile(f)(a)
(3, 2)
```

Similarly to #157676, this PR doesn't change PyTorch's behavior, but it fixes the translation layer, ensuring torch._numpy compatibility with NumPy. I am marking this PR as fixing #141563, even though PyTorch behavior isn't modified.

Notice that there are still some other bugs in PyTorch's advanced indexing, that need to be fixed (mainly regarding proper accounting of dimensions when multidimensional boolean masks are present). But those need to be fixed at the ATen operator level. Examples:
- #71673
- #107699
- #158125

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158297
Approved by: https://github.com/soumith
2025-07-16 08:11:53 +00:00
ddf502c988 [AOTI] add -lstdc++ into aoti link cmd for Meta internal (#158325)
Differential Revision: D78123716

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158325
Approved by: https://github.com/desertfire
2025-07-16 07:55:08 +00:00
555f356254 [Easy] Show some clear error when torch.ops.load_library fails. (#157524)
**Background**:

```Shell
torch       2.5.1+cpu
torchvision 0.20.1
```

```Python
import torch
import torchvision

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torchvision/__init__.py", line 10, in <module>
    from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils  # usort:skip
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torchvision/_meta_registrations.py", line 164, in <module>
    def meta_nms(dets, scores, iou_threshold):
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/library.py", line 795, in register
    use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/library.py", line 184, in _register_fake
    handle = entry.fake_impl.register(func_to_register, source)
  File "/usr/local/anaconda3/envs/test/lib/python3.10/site-packages/torch/_library/fake_impl.py", line 31, in register
    if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, "Meta"):
RuntimeError: operator torchvision::nms does not exist
```

**Cause**:

```
torchvision's .so file lacks some symbol definitions, because these symbols come from CUDA, but the current environment does not have CUDA and GPU. The above error message is very confusing.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157524
Approved by: https://github.com/ezyang
2025-07-16 07:33:22 +00:00
59f9b25f3c [cuda][cupy] Improve cupy device placement when device is provided (#158320)
This is an improvement over https://github.com/pytorch/pytorch/pull/132595 . That PR improves the case where `device` is not given. This PR tries to improve the case where `device` is given but the first step of auto-infer device from `cudaPointerGetAttributes` can be wrong (undesired). See https://github.com/pytorch/pytorch/issues/158316 for more details on when this can happen.

I think this is a reasonable improvement, as people expect `torch.as_tensor` + cupy should be zero-copy as much as possible. However, it does change some behaviors, because previously it might incur a device-to-device copy.

I will leave it to pytorch developers to see if the improvement is worthwhile.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158320
Approved by: https://github.com/ezyang
2025-07-16 07:12:36 +00:00
fedbd1a48e Enable ROCm 7.0 Alpha docker builds for PyTorch CI (#158390)
This PR adds ROCm 7.0 alpha docker builds to start testing latest ROCm in PyTorch CI and enable new MI350x hardware.

Highlights:
* Stop building `pytorch-linux-jammy-rocm-n-1-py3` docker images, as they're not currently used in any CI workflows
* Add `pytorch-linux-noble-rocm-alpha-py3` docker images that will use ROCm alpha (newer than latest official release) builds

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158390
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily
2025-07-16 06:09:37 +00:00
5484890539 Add better typing to avaialbe kernel options for flex attention (#158383)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158383
Approved by: https://github.com/joydddd, https://github.com/BoyuanFeng
2025-07-16 06:06:29 +00:00
61a7b09ef3 [BE][Easy] split build system requirements.txt to a separate file (#158111)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158111
Approved by: https://github.com/ezyang
2025-07-16 05:03:30 +00:00
e92e3eaf4e [Profiler] the doc of _ExperimentalConfig is incorrectly truncated by commas (#156586)
Hi team,

Please help review this trivial fix.

Without this change:

``` python
>>> import torch
>>> print(torch._C._profiler._ExperimentalConfig.__init__.__doc__)
__init__(self: torch._C._profiler._ExperimentalConfig, profiler_metrics: list[str] = [], profiler_measure_per_kernel: bool = False, verbose: bool = False, performance_events: list[str] = [], enable_cuda_sync_events: bool = False, adjust_profiler_step: bool = False, disable_external_correlation: bool = False, profile_all_threads: bool = False, capture_overload_names: bool = False) -> None

    capture_overload_names (bool) : whether to include ATen overload names in the profile
```

With this change:

```python
>>> import torch
>>> print(torch._C._profiler._ExperimentalConfig.__init__.__doc__)
__init__(self: torch._C._profiler._ExperimentalConfig, profiler_metrics: list[str] = [], profiler_measure_per_kernel: bool = False, verbose: bool = False, performance_events: list[str] = [], enable_cuda_sync_events: bool = False, adjust_profiler_step: bool = False, disable_external_correlation: bool = False, profile_all_threads: bool = False, capture_overload_names: bool = False) -> None

An experimental config for Kineto features. Please note thatbackward compatibility is not guaranteed.
    profiler_metrics : a list of CUPTI profiler metrics used
       to measure GPU performance events.
       If this list contains values Kineto runs in CUPTI profiler mode
    profiler_measure_per_kernel (bool) : whether to profile metrics per kernel
       or for the entire measurement duration.
    verbose (bool) : whether the trace file has `Call stack` field or not.
    performance_events : a list of profiler events to be used for measurement.
    enable_cuda_sync_events : for CUDA profiling mode, enable adding CUDA synchronization events
       that expose CUDA device, stream and event synchronization activities. This feature is new
       and currently disabled by default.
    adjust_profiler_step (bool) : whether to adjust the profiler step to
       match the parent python event duration. This feature is new and currently disabled by default.
    disable_external_correlation (bool) : whether to disable external correlation
    profile_all_threads (bool) : whether to profile all threads
    capture_overload_names (bool) : whether to include ATen overload names in the profile

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156586
Approved by: https://github.com/sraikund16, https://github.com/cyyever
2025-07-16 04:10:49 +00:00
0a9d450168 [DTensor] implement histc (#158298)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158298
Approved by: https://github.com/zpcore, https://github.com/XilunWu
2025-07-16 04:10:32 +00:00
e265b719bd Extract out prepare_aot_module_simplified for use in next PR (#158319)
Also a small amount of extra code cleanup.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158319
Approved by: https://github.com/jingsh
ghstack dependencies: #158149, #158150, #158173, #158176, #158213, #158251
2025-07-16 03:59:41 +00:00
7637c9718a Move functions from torch._functorch.aot_autograd that are not frontend functions to frontend_utils (#158251)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158251
Approved by: https://github.com/jamesjwu
ghstack dependencies: #158149, #158150, #158173, #158176, #158213
2025-07-16 03:59:41 +00:00
49d0332cef Introduce stages to aot_dispatch (#158213)
The starting point for this refactor is that I need access to the fully
general joint graph representation in an export-like interface, but I
then subsequently need a way to feed this joint graph into the rest of
the compilation pipeline so I can get an actual callable that I can run
once I've finished modifying it.  Previously, people had added export
capabilities to AOTAutograd by having an export flag that toggled what
exactly the functions return and triggering aot_dispatch to go to a
different "export" implementation, but I've found this difficult to
understand and has lead to a bit of duplicate code for the export path.

So the idea here is to reorganize the structure of the function calls in AOTAutograd. Here, it is helpful to first describe how things used to work:

* Start with aot_autograd.py top level functions like aot_function, _aot_export_function and aot_module_simplified. These call:
  * create_aot_dispatcher_function. This does a bunch of stuff (forward metadata collection) and adds many context managers. This calls:
    * One of aot_dispatch_base, aot_dispatch_export or aot_dispatch_autograd, which:
      * Call aot_dispatch_autograd_graph or aot_dispatch_base_graph to actually do the graph capture
      * Do some base/export/autograd specific post-processing on the graph

Notice the pattern of nested function invocations means that there is no way to easily get the graph capture result from the autograd case; furthermore, the export path is "bolted" on to force the entire chain of functions to have a different return result than normal, and no way to *resume* the rest of the post-processing to actually get a callable.

Here is the new structure:

* Start with aot_autograd.py top level functions like aot_function, _aot_export_function and aot_module_simplified. These now orchestrate this top level flow:
  * Start a context manager (stack); this stateful context block takes care of all of the nested context managers which originally necessitated the nested call structure
  * Call create_aot_state to do initial setup and setup all the context managers on stack. These context managers do NOT exit upon return of this.
  * Call aot_stage1_graph_capture to do the graph capture
  * Call aot_stage2_compile or aot_stage2_export depending on what postprocessing you want

With this new structure, it's now possible (although not done in this PR) to return the graph after aot_stage1_graph_capture and do something with it, before running aot_stage2_compile to finish the job.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158213
Approved by: https://github.com/jamesjwu
ghstack dependencies: #158149, #158150, #158173, #158176
2025-07-16 03:59:32 +00:00
84dec060b7 Hoist choose_dispatcher to top level, remove unnecessary returns (#158176)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158176
Approved by: https://github.com/jamesjwu
ghstack dependencies: #158149, #158150, #158173
2025-07-16 03:56:25 +00:00
5b0df2565e Pipeline _create_aot_dispatcher_function (#158173)
Two main things of note:

- Review this diff without whitespace changes
- To ensure that context managers correctly propagate to later pipeline
  stages, I am using the ExitStack trick: there is an ExitStack which is
  in scope for the entire pipeline, and inside of the individual
  pipeline stages we push context managers onto this stack when we want
  them to survive into the next pipeline stage.  This is not obviously
  what the best final form of the code is, but
  create_aot_dispatcher_function is called from multiple locations so I
  can't just inline the context managers into the call site.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158173
Approved by: https://github.com/jamesjwu, https://github.com/wconstab
ghstack dependencies: #158149, #158150
2025-07-16 03:56:25 +00:00
0cb36e2d62 cache dict and string rep for better perf (#158372)
Summary: NodeSouce should not be updated after created, so that it would be better if we cache its dict and string representation for better perf.

Test Plan:
ci

Rollback Plan:

Reviewed By: yushangdi

Differential Revision: D78298501

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158372
Approved by: https://github.com/yushangdi
2025-07-16 02:15:32 +00:00
584a0510b3 [inductor] fix windows path for fresh cache. (#158324)
`normalize_path_separator` for windows path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158324
Approved by: https://github.com/jansel
2025-07-16 01:54:35 +00:00
9768d393fa add sfdp pattern (#155792)
add sfdp pattern for MBartForCausalLM/PLBartForCausalLM in transformers==4.44.2.
Improve the inference performance of these model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155792
Approved by: https://github.com/Valentine233, https://github.com/jansel
2025-07-16 01:52:05 +00:00
900fba4c07 Update warning of TF32 (#158209)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158209
Approved by: https://github.com/jansel
2025-07-16 01:28:50 +00:00
03852ddc22 Revert "[ROCm] logsumexp on ROCm needs scaling back to natural base. (#156903)"
This reverts commit 1ea9cde598ead20194dbb6c5cb26e74e36e6ad55.

Reverted https://github.com/pytorch/pytorch/pull/156903 on behalf of https://github.com/atalman due to Breaks torchao and torchtitan nightly builds ([comment](https://github.com/pytorch/pytorch/pull/156903#issuecomment-3076423488))
2025-07-16 01:28:46 +00:00
8554c8007d [PT2][fusion] ban fusions with large accumulated reads (#157563)
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
    x = torch.rand(N, N)
    total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 =  torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.

[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details

**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.

**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.

<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
2025-07-16 01:05:25 +00:00
651b4a68f2 [hop][dynamo] track run-ahead sym variables in side effects (#158273)
Before the PR, for code like this:
```
        class Example2(torch.nn.Module):
            def forward(self, x, trigger, target):
                return torch.cond(
                    trigger == 1,
                    lambda: x + target,
                    lambda: x * target,
                    (),
                )

        m = Example2()
        x = torch.randn(2)
        trigger = 0
        target = 2
        args = (x, trigger, target)
        ep = torch.export.export(
            m, args, dynamic_shapes=(None, Dim.DYNAMIC, Dim.DYNAMIC)
        )
```
dynamo will wrap "target" (i.e. a symInt) twice, once when we speculate the first lambda and find target is a symint and decides to wrap it up, creating a new SymNodeVariable and a placeholder input to the top-level graph.

The second time happens when we speculate the second lambda. Tensors are de-duplicated by checking tracked side effects to make sure object with the same id (though different sources) is mapped to the same TensorVaraible. For symints, two things are missing:
1. it's not in the _can_lift_attrs_to_input list (the change in builder.py)
2. it's not in the tracked by runahead_side_effects, so when speculate_subgraph finishes, they're discarded (the change in side_effects.py)

Note: the auto lifting mechanism for HOPs happens at proxy level when we trace the subgraph, which is after SymNodeVariable are created (they're created when realizing the args and bind them to subgraph). At that time, builder has created two unique SymNodeVariable for the same symint so the auto lifting in hops cannot de-dup them.

Differential Revision: [D78298163](https://our.internmc.facebook.com/intern/diff/D78298163)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158273
Approved by: https://github.com/avikchaudhuri, https://github.com/zou3519
2025-07-15 23:48:20 +00:00
144965ca9a [BE][S538760] get rid of TORCH_CHECK_.* and CHECK macros (#158269)
Summary: check will be crit, causing program to exit, which is quite dangerous

Test Plan:
CI

Rollback Plan:

Differential Revision: D78050595

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158269
Approved by: https://github.com/SherlockNoMad, https://github.com/henryoier
2025-07-15 22:04:12 +00:00
ee0992871c Add test for user-managed weights with load_state_dict (#157496)
Summary:
Adds a unit test to verify that when 'user_managed=True' is passed to 'update_constant_buffer', the compiled AOTI model properly shares parameter storage with the eager model.

The test specifically covers the following:
1. Passes model weights to the AOTI model with 'user_managed=True''.
2. Updates the eager model weights using 'load_state_dict()', which performs in-place
3. Asserts that the compiled AOTI model reflects the updated weights, confirming shared memory behavior.

Fixes: #157474

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157496
Approved by: https://github.com/desertfire
2025-07-15 21:17:24 +00:00
05dfd312cf [3/n] Remove references to TorchScript in PyTorch docs (#158315)
Summary:
- cpp_index.rst
- fx.md
- jit_builtin_functions.rst
- jit_python_reference.md
- jit_unsupported.md

cpu_threading
large_scale_deployment

Test Plan:
CI

Rollback Plan:

Differential Revision: D78309320

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158315
Approved by: https://github.com/svekars, https://github.com/zhxchen17
2025-07-15 21:14:18 +00:00
abeae997a3 Use brew suggested miniconda install command (#158347)
Use ```brew install --cask miniconda``` as specified by https://formulae.brew.sh/cask/miniconda

Forward fix After: https://github.com/pytorch/pytorch/pull/156898#issuecomment-3074207175

Seeing in CI:
```
Run if [[ -n "$REINSTALL_BREW_MINICONDA" ]]; then
==> Caveats
Please run the following to setup your shell:
  conda init "$(basename "${SHELL}")"

Alternatively, manually add the following to your shell init:
  eval "$(conda "shell.$(basename "${SHELL}")" hook)"

==> Downloading https://repo.anaconda.com/miniconda/Miniconda3-py313_25.5.1-0-MacOSX-arm64.sh
Already downloaded: /Users/ec2-user/Library/Caches/Homebrew/downloads/2e356e8b147647692e4da77ce4c0c14eefee65ec86f29cc7e8c21a26ac9397ca--Miniconda3-py313_25.5.1-0-MacOSX-arm64.sh
==> Installing Cask miniconda
==> Running installer script 'Miniconda3-py313_25.5.1-0-MacOSX-arm64.sh'
PREFIX=/opt/homebrew/Caskroom/miniconda/base
Unpacking payload ...
entry_point.py:256: DeprecationWarning: Python 3.14 will, by default, filter extracted tar archives and reject files or modify their metadata. Use the filter argument to control this behavior.
entry_point.py:256: DeprecationWarning: Python 3.14 will, by default, filter extracted tar archives and reject files or modify their metadata. Use the filter argument to control this behavior.

Installing base environment...

Preparing transaction: ...working... done
Executing transaction: ...working...
done
entry_point.py:256: DeprecationWarning: Python 3.14 will, by default, filter extracted tar archives and reject files or modify their metadata. Use the filter argument to control this behavior.
installation finished.
==> Linking Binary 'conda' to '/opt/homebrew/bin/conda'
🍺  miniconda was successfully installed!
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158347
Approved by: https://github.com/seemethere
2025-07-15 21:08:25 +00:00
3f83e3eeca [ONNX] Remove legacy registration and dispatcher (#158283)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158283
Approved by: https://github.com/Skylion007, https://github.com/justinchuby
ghstack dependencies: #158258, #158262, #158282
2025-07-15 21:00:49 +00:00
0640cfa38c [2/n] Remove references to TorchScript in PyTorch docs (#158306)
Summary: Removed jit_language_reference.md

Test Plan:
CI

Rollback Plan:

Differential Revision: D78308133

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158306
Approved by: https://github.com/svekars, https://github.com/zhxchen17
2025-07-15 20:57:23 +00:00
e4c17d5e1c [ONNX] Remove fx_onnx_interpreter.py (#158282)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158282
Approved by: https://github.com/Skylion007, https://github.com/justinchuby
ghstack dependencies: #158258, #158262
2025-07-15 20:46:06 +00:00
cc0faeb80f [dynamo][guards] Instruction count for guard eval for development work (#158214)
Its turned off  by default. Even the code is hidden before of the define preprocessing flag. It will be used only for development work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158214
Approved by: https://github.com/StrongerXi
ghstack dependencies: #158215
2025-07-15 20:29:23 +00:00
205241a0d5 [ONNX] Remove legacy dynamo graph extractor (#158262)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158262
Approved by: https://github.com/justinchuby
ghstack dependencies: #158258
2025-07-15 20:21:49 +00:00
19625daf88 [1/n] Remove references to TorchScript in PyTorch docs (#158305)
Summary: Removed jit_language_reference_v2.md

Test Plan:
CI

Rollback Plan:

Differential Revision: D78308009

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158305
Approved by: https://github.com/jingsh, https://github.com/svekars
2025-07-15 20:16:53 +00:00
dbf7d421da [BE][testing] fix aot_inductor_package internally (#158270)
Summary: We have internal test failure for several aot_inductor_package tests. It looks like we're translating args like:
```
-Wl,--script=/home/slarsen/local/fbsource2/buck-out/v2/gen/fbcode/7ce8f48f92bc4ee6/caffe2/test/inductor/__aot_inductor_package__/aot_inductor_package#link-tree/torch/_inductor/script.ld
```

To:
```
-Wl,--script=/home/slarsen/local/fbsource2/buck-out/v2/gen/fbcode/7ce8f48f92bc4ee6/caffe2/test/inductor/__aot_inductor_package__/aot_inductor_package#link-tree/torch/_inductor//tmp/jZMktZ/tmpsqoxb_cq/data/aotinductor/model/script.ld
```

This PR changes to strings like:
```
-Wl,--script=/tmp/jZMktZ/tmpsqoxb_cq/data/aotinductor/model/script.ld
```

Test Plan: `buck test '@fbcode//mode/opt' fbcode//caffe2/test/inductor:aot_inductor_package --run-disabled`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158270
Approved by: https://github.com/desertfire
2025-07-15 20:15:18 +00:00
b86d5cef68 [dynamo][tensor] Skip HASATTR attribute on tensor guards (#158215)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158215
Approved by: https://github.com/StrongerXi
2025-07-15 20:10:47 +00:00
30587195d3 Migrate c10/macros/cmake_macros.h.in to torch/headeronly (#158035)
Summary: As above, also changes a bunch of the build files to be better

Test Plan:
internal and external CI

did run buck2 build fbcode//caffe2:torch and it succeeded

Rollback Plan:

Reviewed By: swolchok

Differential Revision: D78016591

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158035
Approved by: https://github.com/swolchok
2025-07-15 19:52:59 +00:00
250ae2531c Fix types in graphs.py (#158192)
Added type annotations for torch/cuda/graphs.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158192
Approved by: https://github.com/oulgen
2025-07-15 19:49:38 +00:00
011026205a make node source hashable (#158322)
Summary: as title

Test Plan:
ci

Rollback Plan:

Reviewed By: yushangdi

Differential Revision: D78296410

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158322
Approved by: https://github.com/yushangdi
2025-07-15 19:31:00 +00:00
4657a84bc5 [Optimus][fp8_activation_quantization] Only log when there's some node to be quantized (#158129)
Summary:
We add some extra check on whether there's some node has been marked as should quantize, otherwise we skip the quantizaton and tlparse log.

Rollback Plan:

Differential Revision: D78173788

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158129
Approved by: https://github.com/Skylion007, https://github.com/avicizhu
2025-07-15 19:22:26 +00:00
5606c516fd [ONNX] Remove legacy Dort (#158258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158258
Approved by: https://github.com/justinchuby, https://github.com/malfet
2025-07-15 19:14:06 +00:00
7afb834f93 Inline dispatch_and_compile into its call site. (#158150)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158150
Approved by: https://github.com/jamesjwu, https://github.com/wconstab
ghstack dependencies: #158149
2025-07-15 19:08:55 +00:00
148789ddd8 Avoid AOTAutogradCache.load in stack trace on cache miss path (#158149)
The general context for the upcoming stack of commits is I am attempting
to "pipeline" AOTAutograd.  Instead of having function f call function g
which is the next "stage" of compilation, instead f should return with
its outputs, which are then piped to g for the next stage.  This will
make it easier to implement early exit / resume pipeline without forcing
callback structure, which is good for export-style use cases.  It also
reduces the size of our stack traces, which makes tools like Perfetto
happy.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158149
Approved by: https://github.com/jamesjwu
2025-07-15 19:08:55 +00:00
3beb915004 Update CODEOWNERS for dataloading (#158348)
Adding Scott

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158348
Approved by: https://github.com/scotts, https://github.com/janeyx99
2025-07-15 19:06:18 +00:00
cf3247b74a Standalone compile API in _Exporter (#158139)
Given an `package: _ExportPackage`, users can get a ready-to-use workspace in `tmp_dir` by calling:
```python
package._compiled_and_package(
                tmp_dir + "/pt2_pacakge_name.pt2", True, package_example_inputs = True
            )
```

`tmp_dir` will contains:
- `main.cpp` (an example cpp file that create the models, if package_example_inputs is True, it'll also load the example inputs and run the models)
- `CMakeLists.txt`
- `pt2_pacakge_name/` (this is where the models are)
- `pt2_pacakge_name.pt2`
- `inputs.pt` files if package_example_inputs is True

Remaining TODOs
- support loading contants/weights
- the `package_example_inputs = True` option only supports a list of Tensors for now
- eventually we should remove the `torch` dependency, and use `SlimTensor`/`StableIValue` instead.

Test Plan:
```
python test/inductor/test_aot_inductor_package.py  -k test_compile_with_exporter
```

Example generated `main.cpp`:

```cpp
#include <dlfcn.h>
#include <fstream>
#include <iostream>
#include <memory>
#include <torch/torch.h>
#include <vector>
#include <torch/csrc/inductor/aoti_torch/tensor_converter.h>
#include "package/data/aotinductor/Plus__default/Plus__default.h"
#include "package/data/aotinductor/Minus__default/Minus__default.h"

using torch::aot_inductor::AOTInductorModelPlus__default;
using torch::aot_inductor::AOTInductorModelMinus__default;
using torch::aot_inductor::ConstantHandle;
using torch::aot_inductor::ConstantMap;

int main(int argc, char* argv[]) {
    std::string device_str = "cpu";
    try {
        c10::Device device(device_str);
        // Load input tensors for model Plus__default
        std::vector<at::Tensor> input_tensors1;
        for (int j = 0; j < 2; ++j) {
            std::string filename = "Plus__default_input_" + std::to_string(j) + ".pt";
            std::ifstream in(filename, std::ios::binary);
            if (!in.is_open()) {
                std::cerr << "Failed to open file: " << filename << std::endl;
                return 1;
            }
            std::vector<char> buffer((std::istreambuf_iterator<char>(in)), std::istreambuf_iterator<char>());
            torch::IValue ivalue = torch::pickle_load(buffer);
            input_tensors1.push_back(ivalue.toTensor().to(device));
        }

        // Load input tensors for model Minus__default
        std::vector<at::Tensor> input_tensors2;
        for (int j = 0; j < 2; ++j) {
            std::string filename = "Minus__default_input_" + std::to_string(j) + ".pt";
            std::ifstream in(filename, std::ios::binary);
            if (!in.is_open()) {
                std::cerr << "Failed to open file: " << filename << std::endl;
                return 1;
            }
            std::vector<char> buffer((std::istreambuf_iterator<char>(in)), std::istreambuf_iterator<char>());
            torch::IValue ivalue = torch::pickle_load(buffer);
            input_tensors2.push_back(ivalue.toTensor().to(device));
        }

// Create array of input handles
        auto input_handles1 =
            torch::aot_inductor::unsafe_alloc_new_handles_from_tensors(input_tensors1);
        auto input_handles2 =
            torch::aot_inductor::unsafe_alloc_new_handles_from_tensors(input_tensors2);

// Create array for output handles
        AtenTensorHandle output_handle1;
        AtenTensorHandle output_handle2;

// Create and load models
        auto constants_map1 = std::make_shared<ConstantMap>();
        auto constants_array1 = std::make_shared<std::vector<ConstantHandle>>();
        auto model1 = AOTInductorModelPlus__default::Create(
            constants_map1, constants_array1, device_str,
            "package/data/aotinductor/Plus__default/");
        model1->load_constants();
        auto constants_map2 = std::make_shared<ConstantMap>();
        auto constants_array2 = std::make_shared<std::vector<ConstantHandle>>();
        auto model2 = AOTInductorModelMinus__default::Create(
            constants_map2, constants_array2, device_str,
            "package/data/aotinductor/Minus__default/");
        model2->load_constants();

// Run the models
        torch::aot_inductor::DeviceStreamType stream1 = nullptr;
        model1->run(&input_handles1[0], &output_handle1, stream1, nullptr);
        torch::aot_inductor::DeviceStreamType stream2 = nullptr;
        model2->run(&input_handles2[0], &output_handle2, stream2, nullptr);

// Convert output handles to tensors
        auto output_tensor1 =
            torch::aot_inductor::alloc_tensors_by_stealing_from_handles(&output_handle1, 1);
        auto output_tensor2 =
            torch::aot_inductor::alloc_tensors_by_stealing_from_handles(&output_handle2, 1);

// Validate outputs
        std::cout << "output_tensor1" << output_tensor1 << std::endl;
        std::cout << "output_tensor2" << output_tensor2 << std::endl;
        return 0;
    } catch (const std::exception &e) {
        std::cerr << "Error: " << e.what() << std::endl;
        return 1;
    }
}

```

Rollback Plan:

Differential Revision: D78124705

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158139
Approved by: https://github.com/desertfire
2025-07-15 18:47:56 +00:00
46915b1361 Revert "Introduce AcceleratorAllocatorConfig as the common class (#149601)"
This reverts commit 1e8e9f745e43fa38bbfc7b67b30bc66c0e7ebbd6.

Reverted https://github.com/pytorch/pytorch/pull/149601 on behalf of https://github.com/huydhn due to See https://github.com/pytorch/pytorch/pull/149601#discussion_r2208325379 ([comment](https://github.com/pytorch/pytorch/pull/149601#issuecomment-3074965720))
2025-07-15 18:40:59 +00:00
8c3f206457 Fix AArch64 segfaults by disabling strict-aliasing in GridSamplerKernel for GCC 12 and above (#158117)
This PR disables `strict-aliasing` GCC C++ optimization flag on all AArch64 cpus for GCC versions 12 and above.

Pull Request #152825 upgraded gcc version from 11 to 13 in manywheel which caused several segmentation faults in unit tests ( not visible in CI workflows because the jammy gcc version has not been updated yet ).

We Identified the problem also exists in GCC12 hence the ` __GNUC__ >= 12`

Fixes #157626

fixes these tests failures when pytorch is built in GCC12 and above
```
test_ops.py::TestCommonCPU::test_noncontiguous_samples_grid_sampler_2d_cpu_float32 Fatal Python error: Segmentation fault
test_ops.py::TestCommonCPU::test_dtypes_grid_sampler_2d_cpu Fatal Python error: Segmentation fault
test_ops.py::TestMathBitsCPU::test_neg_view_nn_functional_grid_sample_cpu_float64 free(): invalid next size (fast)
test_ops.py::TestCompositeComplianceCPU::test_backward_grid_sampler_2d_cpu_float32 Fatal Python error: Segmentation fault
test_ops.py::TestCommonCPU::test_dtypes_nn_functional_grid_sample_cpu Fatal Python error: Segmentation fault

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158117
Approved by: https://github.com/malfet
2025-07-15 18:26:38 +00:00
41971335c9 Revert "Refactor CUDAAllocatorConfig to reuse AcceleratorAllocatorConfig (#150312)"
This reverts commit e241a07e6b88aa49d604803bc5a6562f0d9f94d2.

Reverted https://github.com/pytorch/pytorch/pull/150312 on behalf of https://github.com/huydhn due to Sorry for reverting your change but because https://github.com/pytorch/pytorch/pull/157908 has been reverted + this PR caused issue earlier, I think it is better to revert the whole stack and reland it from scratch to be sure ([comment](https://github.com/pytorch/pytorch/pull/150312#issuecomment-3074897532))
2025-07-15 18:24:36 +00:00
ea5f88dca6 Revert "Deprecate overleap functions in CUDAAllocatorConfig, use AcceleratorAllocatorConfig instead (#156165)"
This reverts commit e40ade5182233f548b25f2732effe3719d16e9ad.

Reverted https://github.com/pytorch/pytorch/pull/156165 on behalf of https://github.com/huydhn due to Sorry for reverting your change but because https://github.com/pytorch/pytorch/pull/157908 has been reverted + this PR caused issue earlier, I think it is better to revert the whole stack and reland it from scratch to be sure ([comment](https://github.com/pytorch/pytorch/pull/150312#issuecomment-3074897532))
2025-07-15 18:24:36 +00:00
f2ecf6145f Revert "Enable AcceleratorAllocatorConfig key check (#157908)"
This reverts commit 65fcca4f8c97de82d35d51ad9b790d10433e9b91.

Reverted https://github.com/pytorch/pytorch/pull/157908 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing internally per https://github.com/pytorch/pytorch/pull/157908#discussion_r2208204782 ([comment](https://github.com/pytorch/pytorch/pull/157908#issuecomment-3074833696))
2025-07-15 18:17:43 +00:00
b26da7741b Revert "[CI] Fixes CI for CUDA Version > 12.9 (#157385)"
This reverts commit 6c5227ba00a2904365af566c24b4681cd01a041c.

Reverted https://github.com/pytorch/pytorch/pull/157385 on behalf of https://github.com/clee2000 due to broke some slow tests test_cpp_extensions_jit.py::TestCppExtensionJIT::test_jit_cuda_archflags [GH job link](https://github.com/pytorch/pytorch/actions/runs/16286465717/job/45986677885) [HUD commit link](6c5227ba00) ([comment](https://github.com/pytorch/pytorch/pull/157385#issuecomment-3074737541))
2025-07-15 18:06:52 +00:00
243b12e565 [Optimus] add einsum_to_pointwise_pass pattern (#155666)
Summary: More context: https://docs.google.com/document/d/1ipiskqG13ZKNX1SGygB3QnHcSyXNQ8pACazPIcS4bnI/edit?tab=t.0

Test Plan:
### how to enable

```
torch._inductor.config.pre_grad_fusion_options={
            "einsum_to_pointwise_pass": {},
        },
```

### unit test

```
CUDA_VISIBLE_DEVICES=3 OC_CAUSE=1 buck2 test 'fbcode//mode/dev-nosan' //caffe2/test/inductor:kernel_optimization
```
Buck UI: https://www.internalfb.com/buck2/267263ff-6f5b-4fff-bfc0-d8f013440ba0
Test UI: https://www.internalfb.com/intern/testinfra/testrun/5629499820839168
Network: Up: 61KiB  Down: 675KiB  (reSessionID-fda8edfc-6eef-4bf0-b268-0f8d2e666571)
Loading targets.   Remaining     0/1                                                            1 dirs read, 2310 targets declared
Analyzing targets. Remaining     0/345                                                          284 actions, 329 artifacts declared
Executing actions. Remaining     0/18334                                                        8.0s exec time total
Command: test.     Finished 6 local
Time elapsed: 1:15.5s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

### local reproduce

baseline:

| Metric                | Value       |
|:----------------------|:------------|
| Batch size            | 4096        |
| GPU type              | H100        |
| Latency               | 196.06 ms   |
| Model size            | 1205.21 MB  |
| Flops                 | 7671.30 G   |
| Flops/example         | 1.87 G      |
| TFLOPS/sec            | 39.13       |
| MFU                   | 4.89%       |
| Activation/example    | 1.51 MB     |
| CPU time total        | 602.28 ms   |
| GPU time total        | 798.60 ms   |
| Estimated avg BW      | 234.62 GB/s |
| Estimated avg BW util | 9.78%       |
Trace link: https://our.intern.facebook.com/intern/perfdoctor/trace_view?filepath=tree/traces/efficient_module_suite/fused_attention_mlp.Jun_09_22_12_38_trace.json.gz&bucket=pyper_traces

with the pattern:

| Metric                | Value       |
|:----------------------|:------------|
| Batch size            | 4096        |
| GPU type              | H100        |
| Latency               | 184.94 ms   |
| Model size            | 1205.21 MB  |
| Flops                 | 7671.30 G   |
| Flops/example         | 1.87 G      |
| TFLOPS/sec            | 41.48       |
| MFU                   | 5.18%       |
| Activation/example    | 1.15 MB     |
| CPU time total        | 562.44 ms   |
| GPU time total        | 754.36 ms   |
| Estimated avg BW      | 201.40 GB/s |
| Estimated avg BW util | 8.39%       |
Trace link: https://our.intern.facebook.com/intern/perfdoctor/trace_view?filepath=tree/traces/efficient_module_suite/fused_attention_mlp.Jun_10_22_03_34_trace.json.gz&bucket=pyper_traces

### E2E

baseline: f713998364
with patter:

Rollback Plan:

Differential Revision: D76400889

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155666
Approved by: https://github.com/Yuzhen11
2025-07-15 17:50:23 +00:00
b7b1109f49 Expose opt_einsum in torch.backends (#157740)
Fixes the following issue:
```
:/tmp# python -c "import torch; print(torch.__version__)"
2.7.1+cu126
:/tmp# python -c "import torch; print(torch.backends.opt_einsum.is_available())"
Traceback (most recent call last):
  File "<string>", line 1, in <module>
AttributeError: module 'torch.backends' has no attribute 'opt_einsum'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157740
Approved by: https://github.com/Skylion007, https://github.com/benjaminglass1
2025-07-15 17:46:43 +00:00
26807dcf27 Revert "[PT2][fusion] ban fusions with large accumulated reads (#157563)"
This reverts commit c062550a3598d27c2d6572db7c0f4ff90a84cc84.

Reverted https://github.com/pytorch/pytorch/pull/157563 on behalf of https://github.com/clee2000 due to broke test_linear_and_cel on main c062550a35, caused OOM? Also broken on PR, Dr. CI classification is wrong (claims the test is disabled by an issue but the issue is for a different test).  Also I'm pretty sure the expected results json is supposed to have a ton of empty lines, its to prevent merge conflicts, I will add it to the linter ([comment](https://github.com/pytorch/pytorch/pull/157563#issuecomment-3074355331))
2025-07-15 16:35:55 +00:00
4f36743f5e Revert "[simple_fsdp][inductor_collectives] rewrite reorder_collectives, sink_waits_iterative (#158062)"
This reverts commit 5a54db14e3843cfa87fd8d27487dbf2f2dfb6c47.

Reverted https://github.com/pytorch/pytorch/pull/158062 on behalf of https://github.com/clee2000 due to sorry I want to revert something else and this is causing a merge conflict, all you should need to do is rebase and remerged ([comment](https://github.com/pytorch/pytorch/pull/158062#issuecomment-3074342140))
2025-07-15 16:31:13 +00:00
05d7288e31 Fix incorrect bin edge description in histogramdd docs (#158275)
Fixes #124435

This updates the torch.histogramdd documentation to correctly state that bins are inclusive of their left edges, not exclusive as currently written. There was a previous PR addressing this but it was closed due to inactivity. This picks that up and applies the fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158275
Approved by: https://github.com/albanD
2025-07-15 16:25:01 +00:00
5a54db14e3 [simple_fsdp][inductor_collectives] rewrite reorder_collectives, sink_waits_iterative (#158062)
Differential Revision: [D78159013](https://our.internmc.facebook.com/intern/diff/D78159013)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158062
Approved by: https://github.com/wconstab
2025-07-15 14:27:57 +00:00
90618581e9 Fix grouped MM output strides when compiled but not max-autotuned (#158143)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158143
Approved by: https://github.com/ngimel
2025-07-15 11:53:13 +00:00
4e13eca713 [BE] Remove CUDA 11.8 artifacts (#158303)
We are including cufile by default in all CUDA 12+ builds. Since CUDA 11.8 is removed we can safely remove this code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158303
Approved by: https://github.com/Camyll, https://github.com/cyyever
2025-07-15 11:52:08 +00:00
156a377f4c [AOTI][CPP] add flag TORCHINDUCTOR_CPP_FORCE_INLINE_KERNEL (#157949)
Summary: Add flag TORCHINDUCTOR_CPP_FORCE_INLINE_KERNEL to force inline the kernel function when TORCHINDUCTOR_CPP_FORCE_INLINE_KERNEL=1. It's disabled by default because force inlining may increase the build time.

Differential Revision: D77915987

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157949
Approved by: https://github.com/desertfire
2025-07-15 10:51:43 +00:00
6200584193 [cutlass backend][BE] remove force disable cache in tests (#158053)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158053
Approved by: https://github.com/coconutruben
2025-07-15 10:35:34 +00:00
e40ade5182 Deprecate overleap functions in CUDAAllocatorConfig, use AcceleratorAllocatorConfig instead (#156165)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156165
Approved by: https://github.com/albanD
ghstack dependencies: #150312
2025-07-15 10:14:35 +00:00
e241a07e6b Refactor CUDAAllocatorConfig to reuse AcceleratorAllocatorConfig (#150312)
# Motivation
Refactor `CUDAAllocatorConfig` to reuse `AcceleratorAllocatorConfig` and `ConfigTokenizer`. We would deprecate those option that overleap with `AcceleratorAllocatorConfig` in the following PR and keep them only for BC.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150312
Approved by: https://github.com/albanD
2025-07-15 10:14:35 +00:00
7f9fc7e67c [Inductor] Add CPU_MAX_FIRST_DIMENSION_DECOMPOSITION and CPU_MAX_OTHER_DIMENSION_DECOMPOSITION for decompose_mm_pass (#158183)
Differential Revision: D78209993

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158183
Approved by: https://github.com/houseroad
2025-07-15 10:07:25 +00:00
1b389025ba Refactor and Improve the OpenReg Module (#158090)
----
# Refactor and Improve the OpenReg Module

## Background

Since PrivateUse1 has become the main path for integrating new devices with PyTorch, there have been some feature requests related to PrivateUse1 regarding interfaces, documentation, reference examples, etc., such as the following:

- https://github.com/pytorch/pytorch/issues/155864
- https://github.com/pytorch/pytorch/issues/144955
- https://github.com/pytorch/pytorch/issues/144845

Taking these requests into consideration and combining them with the position of OpenReg, which is currently used as the test backend for PrivateUse1, I'm planning to make the following optimizations:

- Optimize the implementation of OpenReg to make it align with the standard specifications for real backend (C++) access, serving as a reference for new device integration code.
- Add comprehensive documentation to the [developer notes](https://docs.pytorch.org/docs/main/notes.html) to guide new accelerator integration, functioning as a reference manual.

## Design Principles:

- Minimization Principle: Keep the code small and clear; only implement the minimum set of code required for verification and as an integration reference.
- Authenticity Principle: Integrate OpenReg in the same way that real accelerators access PyTorch.

## More Infos:

Pleaes refer to [this](6b8020f1ab/test/cpp_extensions/open_registration_extension/torch_openreg/README.md) for more information about `OpenReg`.

## Current Progress:
- Refer to the implementation of [torch_xla](https://github.com/pytorch/xla) to refactor all of OpenReg's code, making it easier to understand.
- Ensure all tests in [test/test_openreg.py](https://github.com/FFFrog/pytorch/blob/openreg/test/test_openreg.py) pass after refactoring.

## Next Steps:
- Add more features to cover all integration points.
- Gradually add user guides and documentation to the [developer notes](https://docs.pytorch.org/docs/main/notes.html).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158090
Approved by: https://github.com/seemethere, https://github.com/albanD
2025-07-15 08:10:05 +00:00
6c5227ba00 [CI] Fixes CI for CUDA Version > 12.9 (#157385)
Compute capabilities older than volta (inclusive) is no longer supported in CUDA Version > 12.9
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157385
Approved by: https://github.com/huydhn
2025-07-15 07:04:54 +00:00
c8c221c0b3 [Inductor][Float8] Add float8_e4m3fn into assertion dtype list. (#157684)
Fix assert issue.
Add float8_e4m3fn into dtype list.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157684
Approved by: https://github.com/Xia-Weiwen, https://github.com/leslie-fang-intel, https://github.com/jansel
2025-07-15 06:02:01 +00:00
3341c131b7 [SymmMem] Fix NCCL Hang in NVSHMEM Triton Wait Until Test (#158167)
The `test_triton_wait_until` test was hanging due to an NCCL synchronization issue stemming from mismatched NVSHMEM operations. Specifically, the flag variable was updated using `nvshmemx_signal_op` (a signaling operation), but waited on with `nvshmem_wait_until` (intended for put/get updates). Per NVSHMEM documentation (see documentation reference section below), signal-updated variables require `nvshmem_signal_wait_until` for proper completion guarantees, so the mismatch caused a deadlock and NCCL hang.

**Fix:**
- A simple fix was to replace the flag update with a regular `nvshmem_putmem_block` (via `put_kernel`) to match `nvshmem_wait_until`. I also added a fence (`nvshmem_fence`) between data and flag puts on the sender (Rank 1) for ordered delivery.

- In a follow-up PR I will add a kernel/test to demonstrate usage of `nvshmemx_signal_op`

**Testing:**
- I ran `python test/distributed/test_nvshmem_triton.py` and  `python test/distributed/test_nvshmem_triton.py  -k test_triton_wait_until`

- I also verified with debug prints (Sender completes puts/fence before receiver's wait returns, and assertions confirm correct state). Multiple runs show no hangs or failures.

**Documentation Referenced:**
- [NVSHMEM Point-To-Point Synchronization](https://docs.nvidia.com/nvshmem/api/gen/api/sync.html) explicitly states: *"the sig_addr object at the calling PE is expected only to be updated as a signal, through the signaling operations available in Section NVSHMEM_PUT_SIGNAL and Section NVSHMEM_PUT_SIGNAL_NBI"*
- [NVIDIA's Official Ring Broadcast Example](https://docs.nvidia.com/nvshmem/api/examples.html) demonstrates the correct pairing: `nvshmemx_signal_op` with `nvshmem_signal_wait_until` (not `nvshmem_wait_until`)
- [NVSHMEM Signaling Operations](https://docs.nvidia.com/nvshmem/api/gen/api/signal.html) documents that signal operations work on special "signal data objects" with specific atomicity guarantees distinct from regular RMA operations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158167
Approved by: https://github.com/Skylion007, https://github.com/fduwjj
2025-07-15 05:57:27 +00:00
9cd521de4d Fix torchrec multiprocess tests (#158159)
Summary: The new version of `get_device_tflops` imported something from testing, which imported common_utils.py, which disabled global flags.

Test Plan:
Fixing existing tests

Rollback Plan:

Differential Revision: D78192700

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158159
Approved by: https://github.com/nipung90, https://github.com/huydhn
2025-07-15 05:44:37 +00:00
058fb1790f Fix compilation and "import torch" issues for cpython 3.14 (#158184)
Beginning of process for 3.14 bringup.

State of things from this PR:
- Nothing too scary looking from the Dynamo CPython side, nothing we heavily rely on seems to be missing @williamwen42
- The existing check that makes torch.compile() nicely fail is working as expected. So all these empty functions shouldn't cause any weirdness.
- The `__module__` update changes look suspicious, we should investigate what is the reason and impact of that, in particular for our public API checking @jbschlosser
- Leaving the weakref.py thread safety change as a follow up to keep this a bit simpler. I vendored the whole struct in the meantime FYI @ezyang

EDIT: The `__module__` change is even more cursed than I though due to changes to Union and Optional type where the `__module__` field cannot be changed anymore. See https://github.com/python/cpython/issues/132139 for details.
For now, I'm just skipping the `__module__` setting for 3.14 which will trip the public API checks. Will revisit once I have a final answer on the cpython issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158184
Approved by: https://github.com/msaroufim
2025-07-15 05:06:55 +00:00
add0b450bd [DTensor][BE] improve DTensor ops correctness check utils (#158112)
**Summary**
Implemented the test pattern described in https://github.com/pytorch/pytorch/pull/157991#discussion_r2196363170 as a util method in `DTensorTestBase`. The difference to `DTensorTestBase._test_op` is:
1. allowing users to specify the `Partial` placement.
2. supporting tree-like output structure.

**Test**
so far only adopt `DTensorTestBase._test_op_on_dtensor` in `DistTensorOpsTest.test_split_on_partial`.
`pytest test/distributed/tensor/test_tensor_ops.py -s -k test_split_on_partial`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158112
Approved by: https://github.com/Skylion007, https://github.com/zpcore
ghstack dependencies: #158051
2025-07-15 04:50:34 +00:00
4c1fabf2c9 [DTensor] have split_strategy return OpStrategy instead of TupleStrategy (#158051)
**Summary**
`split_strategy` used `TupleStrategy` as return type because DTensor sharding
propagation's `OpStrategy` support on multi-returns only applies to `Tuple`.

However, `TupleStrategy`'s not a good fit for `split` op. `TupleStrategy` was
initially introduced to handle the sharding strategy of `foreach_*` ops where
the input args can be split into independent subsets regarding sharding decisions,
so are the outputs.

To address the misuse, this PR adds `OpStrategy` propagation for `List[Tensor]`
(note that this support is INCOMPLETE because it only checks the return type
to be `torch.ListType`). Nevertheless, the logic for `Tuple` returns also made
similar assumption so I think it's fine to unblock in such a way.

Besides adding `OpStrategy` support to ops having `List[Tensor]` return type,
this PR also changes `split_strategy`'s return from `TupleStrategy` to `OpStrategy`.

**Test**
`pytest test/distributed/tensor/test_tensor_ops.py -s -k test_split_on_partial`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158051
Approved by: https://github.com/wconstab, https://github.com/zpcore
2025-07-15 04:50:34 +00:00
a2ad16be72 [ONNX] Remove legacy Dort tests (#158294)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158294
Approved by: https://github.com/justinchuby
ghstack dependencies: #158255, #158256, #158257
2025-07-15 04:44:14 +00:00
5fb07acbc3 [ONNX] Remove legacy modularization (#158257)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158257
Approved by: https://github.com/justinchuby
ghstack dependencies: #158255, #158256
2025-07-15 04:36:01 +00:00
336bff6d58 [ONNX] Remove legacy graph passes (#158256)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158256
Approved by: https://github.com/justinchuby
ghstack dependencies: #158255
2025-07-15 04:27:30 +00:00
12151c96d9 [ONNX] Remove legacy io_adapter (#158255)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158255
Approved by: https://github.com/justinchuby
2025-07-15 03:39:18 +00:00
4486a6dbfd [DTensor] Fix grouped_mm strategy for invalid stride cases (#158245)
local_tensor input to grouped_mm has a stride requirement.

(see `_meta_grouped_mm_common` in meta_registrations.py or
`check_valid_strides_and_return_transposed` in native/cuda/Blas.cpp)

Don't allow sharding a tensor if its shape would result in an
incompatible local_tensor stride.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158245
Approved by: https://github.com/zpcore, https://github.com/XilunWu
2025-07-15 03:29:49 +00:00
a5e68814d5 Allow dynamic shapes for DTensor slice (#157953)
This PR allows for symints in `gen_slice_strategy` which is the strategy for `aten.slice.Tensor`. Previously, using dynamic shapes with slicing would result in
```
   File ".../pytorch/torch/distributed/tensor/_ops/_tensor_ops.py", line 348, in gen_slice_strategy
     assert isinstance(end, int)
 torch._dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: call_function <built-in function getitem>(*(DTensor(local_tensor=FakeTensor(..., device='cuda:0', size=(s3, 2)), device_mesh=DeviceMesh('cuda', [0, 1]), placements=(Shard(dim=0),)), slice(None, (s77//2), None)), **{}): got AssertionError()
```

Questions before merge:
1. `dim` is still asserted to be int. Is this fine, or is this potentially dynamic as well?
2. I'm using argtype ignore for `normalize_dim`. Should I instead change types for `normalize_dim` and further dependency to be `IntLike` as well?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157953
Approved by: https://github.com/wconstab
2025-07-15 00:54:01 +00:00
ef4cca2d79 [precompile] Increment frame and add compile ids when loading packages (#158028)
When loading a package and calling package.install(backends), we create a new frame and compile id for each package load, so that tlparse and chromium events still show compile times on warm start.

There is an argument for not doing this in AOT precompile, as no "compile" occurs. So for now, we put it in `package.install`, which hopefully won't be a thing for AOT precompile.

## Recompiles
Recompiles get saved to the same frame and code entry, so on warm start, each recompile will get collapsed into the same entry. Therefore, dynamo compiles that have recompiles on cold start (0/0, 0/1, 0/2, etc) will all get collapsed into a single compile id (0/0), as warm start will load all of the entries properly.

## Graph breaks
Graph breaks get their own compile id, and therefore their own code entry. These are replicated on warm start, so if cold start you had 4 different graphs (and therefore 4 compile ids), you'll have 4 compile ids on warm start as well.

## Test plan
Added a frame counter check to existing unit tests for automatic dynamic, showing that old and new frame counter between old and new load is the same.

This is the chromium event for test_automatic_dynamo_graph_breaks_device_cuda:
```
python test/dynamo/test_package.py -k test_automatic_dynamo_graph_breaks_device_cuda
```

<img width="2216" height="508" alt="image" src="https://github.com/user-attachments/assets/f604ed33-5c31-464b-9320-d67b2e6f57a1" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158028
Approved by: https://github.com/oulgen
2025-07-15 00:53:52 +00:00
1c6057fd17 add eq function to NodeSource (#158170)
Summary: add eq function to NodeSouce by comparing their dict representation.

Test Plan:
ci

Rollback Plan:

Differential Revision: D78200762

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158170
Approved by: https://github.com/ezyang, https://github.com/yushangdi
2025-07-15 00:50:06 +00:00
7e433d5f42 [cutlass backend] cache a few things for codegen and properties (#158158)
Differential Revision: [D78193404](https://our.internmc.facebook.com/intern/diff/D78193404/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158158
Approved by: https://github.com/ColinPeppler
2025-07-15 00:18:31 +00:00
b7def5ff1c dist2: add support for passing custom configs directly to PG (#158147)
This is intended to make it easier to have backend specific "hints" that can be provided by the user to hint about certain options.

```py
import torch.distributed._dist2 as dist2

pg = dist2.new_group(backend="my_custom_backend", device=..., timeout=..., foo=1234, bar="1234")
pg.allreduce(...)
```

Test plan:

```
pytest test/distributed/test_dist2.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158147
Approved by: https://github.com/fduwjj
2025-07-15 00:02:54 +00:00
7cf31b4a42 [dynamo] fix NamedTupleVariable cloning (#158190)
FIXES https://github.com/pytorch/pytorch/issues/157945

## Explanation
1. Some VTs add additional attrs e.g. NamedTupleVariable has "dynamic_attributes"
a0308edb6c/torch/_dynamo/variables/lists.py (L1048-L1051)

2. VT.clone passes everything by dict, includes "dynamic_attributes"
a0308edb6c/torch/_dynamo/variables/base.py (L255-L259)

3. Non-handled args become kwargs in VT's `__init__`, `super().__init__()` passes kwargs to Base VT
a0308edb6c/torch/_dynamo/variables/lists.py (L1048-L1051)

4. Base VT's `__init__` gets unexpected "dynamic_attributes" kwarg
a0308edb6c/torch/_dynamo/variables/base.py (L609-L613)

You could also let Base VT's `__init__` ignore additional kwargs, but that seemed a bit too permissive, and I don't think many VT's add these derived class only attrs.

## After fix

```python
 ===== __compiled_fn_1_7f9541ed_e166_43fe_8322_c5225ce4207f =====
 /home/xmfan/core/miniconda3/envs/0712/lib/python3.12/site-packages/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
    def forward(self, L_x_: "f32[4, 8, 6][48, 6, 1]cpu"):
        l_x_ = L_x_

         # File: /home/xmfan/core/a/torchtitan/wtf.py:10 in forward, code: U, S = torch.linalg.svd(x)[:2]
        linalg_svd = torch._C._linalg.linalg_svd(l_x_);  l_x_ = None
        U: "f32[4, 8, 8][64, 1, 8]cpu" = linalg_svd[0]
        S: "f32[4, 6][6, 1]cpu" = linalg_svd[1];  linalg_svd = None

         # File: /home/xmfan/core/a/torchtitan/wtf.py:11 in forward, code: reduced = U[:, :, :self.k] @ torch.diag_embed(S[:, :self.k])
        getitem_3: "f32[4, 8, 5][64, 1, 8]cpu" = U[(slice(None, None, None), slice(None, None, None), slice(None, 5, None))];  U = None
        getitem_4: "f32[4, 5][6, 1]cpu" = S[(slice(None, None, None), slice(None, 5, None))];  S = None
        diag_embed: "f32[4, 5, 5][25, 5, 1]cpu" = torch.diag_embed(getitem_4);  getitem_4 = None
        reduced: "f32[4, 8, 5][40, 5, 1]cpu" = getitem_3 @ diag_embed;  getitem_3 = diag_embed = None
        return (reduced,)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158190
Approved by: https://github.com/StrongerXi
2025-07-14 23:39:25 +00:00
08799217ae [CI] Move main branch rocm binary builds to its own workflow (#158161)
Petition to move out of ciflow/trunk and into ciflow/rocm because it's a long pole for TTS

<img width="1192" height="312" alt="image" src="https://github.com/user-attachments/assets/b12a097a-3763-4c62-b09f-094ee9ae1c37" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158161
Approved by: https://github.com/seemethere
2025-07-14 23:07:49 +00:00
48315181c7 [CI] Do not run inductor rocm on ciflow/inductor (#158162)
Petition to only run inductor-rocm on ciflow/inductor-rocm and not ciflow/inductor because it's a long pole for TTS
<img width="1266" height="315" alt="image" src="https://github.com/user-attachments/assets/b3587bf7-b1a6-45f3-9b6a-c0e6d473d13b" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158162
Approved by: https://github.com/seemethere
2025-07-14 23:07:45 +00:00
38371f693b ci: Switch lintrunner-noclang to use linter image (#158261)
This changes the image the lintrunner jobs utilizes to be the base linter image
instead of the CUDA image. This is done to reduce the image size and speed up the
build time.

This was switched in https://github.com/pytorch/pytorch/pull/110502 when
clang used to run in the lintrunner jobs but it is now split out so we can
use the default image for non-clang jobs.

Difference in pull time (from running job): ~5min --> ~1min (80% reduction), this should result in an overall runtime decrease of ~25min --> ~20min (20% reduction)

Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158261
Approved by: https://github.com/Camyll, https://github.com/ZainRizvi, https://github.com/atalman, https://github.com/Skylion007
2025-07-14 22:54:51 +00:00
c062550a35 [PT2][fusion] ban fusions with large accumulated reads (#157563)
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
    x = torch.rand(N, N)
    total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 =  torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.

[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details

**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.

**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.

<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
2025-07-14 22:27:21 +00:00
9345279c6e skip inductor/test_torchinductor_opinfo in windows (#158225)
During enabling inductor CI in Windows, `test_torchinductor_opinfo.py` cost too many time (about 12 hours). This UT was seriously exceeding the time limit of CI. The compiler building was slower 4x in Windows than Linux after analyzing.

Thus, we decide to skip the UT temporary and @xuhancn will keep searching the solution of compiler building in Windows.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158225
Approved by: https://github.com/jansel

Co-authored-by: Xu Han <xu.han@outlook.com>
2025-07-14 22:14:52 +00:00
194539e9c3 Address NaNs if SDPA is called with all values masked from query (#157727)
Fixes #156707

Detect if all values along the softmax axis are infs and overwrite the outputs for those computations with zeros before the final matmul. The behavior should be aligned with the CPU implementation.

These types of cases where all values along the dimension in the attention mask are false leading to the undefined outputs in softmax occur with left padded batches for generation in HF transformers according to the original issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157727
Approved by: https://github.com/malfet
2025-07-14 22:09:35 +00:00
bcf50636ba [CI] Removing --user flag from all pip install commands (#154900)
Related to https://github.com/pytorch/pytorch/issues/148335

python virtualenv doesn't support using `--user` flag:

```
ERROR: Can not perform a '--user' install. User site-packages are not visible in this virtualenv.
+ python3 -m pip install --progress-bar off --user ninja==1.10.2
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154900
Approved by: https://github.com/jeffdaily

Co-authored-by: Jithun Nair <jithun.nair@amd.com>
2025-07-14 21:09:42 +00:00
6b2bef10af [c10d] Prototype of group_split for dist2 work (#157716)
This is to implement group_split as proposed in [docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89](https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157716
Approved by: https://github.com/d4l3k
2025-07-14 21:04:12 +00:00
1e4d8b5a4a Fix land race typos from #157290 (#158272)
TSIA, this is a new grammar linter being added recently.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158272
Approved by: https://github.com/clee2000
2025-07-14 20:55:13 +00:00
725c327284 [nativert] add memory overlap debug assertion (#157290)
Summary: better safe than sorry. will throw if memory overlap detected when using planned tensors and debug mode is enabled -- this will make our planning unit tests more robust.

Test Plan:
ci

Rollback Plan:

Differential Revision: D77327841

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157290
Approved by: https://github.com/SherlockNoMad, https://github.com/zhxchen17
2025-07-14 19:12:41 +00:00
f87d117939 redo of [Inductor][Cutlass] verify cutlass has cache_file attribute before moving...resolves cutlass cute exception (#158206)
trying to land https://github.com/pytorch/pytorch/pull/156672

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158206
Approved by: https://github.com/lessw2020, https://github.com/Skylion007
2025-07-14 18:50:23 +00:00
5633283574 [reland][DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#158204)
This PR is identical to https://github.com/pytorch/pytorch/pull/157216, which got reverted because of removing an outdated import of `torch._dynamo` https://www.internalfb.com/diff/D78021229?transaction_fbid=1713683499308113

The issue has been fixed by @weifengpy by D78199546, so this PR should be good to re-land.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158204
Approved by: https://github.com/weifengpy
2025-07-14 18:07:21 +00:00
5b10b0a96f Slightly improve error message from repeat_interleave kernel (#157996)
Summary:
In many investigations relating to invalid feature values, the three-argument form of `repeat_interleave` currently prints the following message if there is an inconsistency between `sum(repeats)` and `output_size`:
```
Assertion `result_size == cumsum_ptr[size - 1]` failed.
```

This is a bit hard for model authors to understand so I made the error slightly more comprehensible. After the fix the stdout contains the actual values of these parameters: https://fburl.com/mlhub/cfyyhh3q

```
Invalid input! In `repeat_interleave`, the `output_size` argument (949487) must be the same as the sum of the elements in the `repeats` tensor (949687).
```

In many cases, this is potentially useful information since we know for example that the difference between the two values above (949687-949487=200) happens to be the lengths of one of the features.

## What are my concerns with this change?
1. Outputs from `__assert_fail` go to `stderr` whereas `printf` writes to `stdout`. This is not the usual debugging flow where all logs can be found in `stderr`. I could not find a way to redirect `printf` to stderr or `__assert_fail` to stdout
2. Two checks happen instead of one in the error path. I wanted to preserve the semantics of what happens inside `__assert_fail`.
3. I have not seen this pattern in other PyTorch kernels but `repeat_interleave` with three arguments seems special in other ways too.

Test Plan:
* Built an ephemeral package with my changes:
https://www.internalfb.com/intern/servicelab/build/736441058/

* Verified that a job with these changes indeed prints out the expected message to stdout: https://fburl.com/mlhub/jgbqk8eg

* I will export to GH and run CI/CD tests.

Rollback Plan:
steps:
  - manual.note:
      content: >-
        Just reverting this diff should be sufficient. Since this change is in
        CUDA kernels, I do not believe there is a way to change the error
        message via a JK.

Reviewed By: mradmila

Differential Revision: D77904753

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157996
Approved by: https://github.com/ngimel, https://github.com/eqy
2025-07-14 17:55:14 +00:00
fb462cec8d Normalize placeholder names in AOTAutogradCache (#157916)
This PR adds a pass to sanitize_gm_for_cache which normalizes all placeholder names across input dynamo graphs to AOTAutogradCache. This is safe because nothing underneath AOTAutograd uses the node names on the
original dynamo graph: AOTAutograd re-traces with its own nodes, and guards are
in terms of original sources rather than placeholder names.

Note that the dynamo output graphs traced by tlparse will not show this change because it's done before this sanitization step. The aot autograd outputs also will not change because AOTAutograd's own traced graphs don't use the original placeholders of the dynamo graph. Thus, this change is essentially a no-op from everyone's perspective except for cache key checks.

Fixes #157792

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157916
Approved by: https://github.com/zou3519
2025-07-14 17:45:11 +00:00
9b0013c6bb [CI] Update mobile build docker image (#158153)
The docker image got removed and then the job started building its own -> takes a long time

I don't know why it uses the asan image

<img width="1906" height="330" alt="image" src="https://github.com/user-attachments/assets/72fbf40c-3cd6-44ea-b61b-6335d2a4b589" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158153
Approved by: https://github.com/Skylion007
2025-07-14 17:35:58 +00:00
6ea91f0672 Revert "[Inductor] Set the default value of min_chunk_size to 512 (#150762)"
This reverts commit 3321acc92e24859dbe2ac6499067d1afde5622c3.

Reverted https://github.com/pytorch/pytorch/pull/150762 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but an inductor compilation error shows up in trunk ([comment](https://github.com/pytorch/pytorch/pull/150762#issuecomment-3070286787))
2025-07-14 16:58:13 +00:00
6fe7456aa1 Revert "Refactor CUDAAllocatorConfig to reuse AcceleratorAllocatorConfig (#150312)"
This reverts commit 03b307575a98dc1d953c9d3521a9489e0e61e70c.

Reverted https://github.com/pytorch/pytorch/pull/150312 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing to build PyTorch internally ([comment](https://github.com/pytorch/pytorch/pull/150312#issuecomment-3070218901))
2025-07-14 16:33:48 +00:00
e8cca7bac7 Revert "Deprecate overleap functions in CUDAAllocatorConfig, use AcceleratorAllocatorConfig instead (#156165)"
This reverts commit 85857181ebca86e9c709e9922a9d9ef41a9c4ef9.

Reverted https://github.com/pytorch/pytorch/pull/156165 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing to build PyTorch internally ([comment](https://github.com/pytorch/pytorch/pull/150312#issuecomment-3070218901))
2025-07-14 16:33:48 +00:00
59c3cac454 Tag CPython test files with the commit or tag they were copied from. (#158038)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158038
Approved by: https://github.com/XuehaiPan, https://github.com/zou3519
ghstack dependencies: #157799, #157800, #157801, #157802, #156981
2025-07-14 15:42:19 +00:00
826f12b829 [SymmMem] Avoid library mismatch in CMake search (#157836)
Before, if NVSHMEM is installed at *BOTH* system location (e.g. `/usr/local`) and conda location (e.g. `/path/to/conda/lib/python3.10/site-packages/nvidia/nvshmem`, there can be a mismatch in where host lib and device lib are found:
```
-- NVSHMEM_HOME set to:  ''
-- NVSHMEM wheel installed at:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem'
-- NVSHMEM_HOST_LIB:  '/usr/local/lib/libnvshmem_host.so'
-- NVSHMEM_DEVICE_LIB:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem/lib/libnvshmem_device.a'
-- NVSHMEM_INCLUDE_DIR:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem/include'
```

The reason is that CMake prioritize name search over dir search. In the script below, CMake will search all locations for `libnvshmem_host.so` first, before it searches for `.so.3`.
```
find_library(NVSHMEM_HOST_LIB
      # In pip install case, the lib suffix is `.so.3` instead of `.so`
      NAMES nvshmem_host nvshmem_host.so.3
      HINTS $ENV{NVSHMEM_HOME} ${NVSHMEM_PY_DIR}
      PATH_SUFFIXES lib lib64 cuda/lib cuda/lib64 lib/x64)
```

This PR adds the `NAMES_PER_DIR` flag, according to CMake's doc:
> The NAMES_PER_DIR option tells this command to consider one directory at a time and search for all names in it.

After this PR:
```
-- NVSHMEM_HOME set to:  ''
-- NVSHMEM wheel installed at:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem'
-- NVSHMEM_HOST_LIB:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem/lib/libnvshmem_host.so.3'
-- NVSHMEM_DEVICE_LIB:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem/lib/libnvshmem_device.a'
-- NVSHMEM_INCLUDE_DIR:  '.conda/envs/pytorch-3.10/lib/python3.10/site-packages/nvidia/nvshmem/include'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157836
Approved by: https://github.com/fegin, https://github.com/fduwjj
ghstack dependencies: #157513, #157695
2025-07-14 14:13:02 +00:00
86d8af6a6c Add sm_70 to windows 12.9 build (#158126)
Please see: https://github.com/pytorch/pytorch/issues/157517
Volta architectures will be kept for 12.8/12.9 builds for release 2.8 (12.8 win build does not need change since already including sm70)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158126
Approved by: https://github.com/Skylion007, https://github.com/atalman
2025-07-14 13:11:10 +00:00
0bb733ba23 Add cuda 12.4 build in CI (#157958)
Fixes to https://github.com/pytorch/pytorch/issues/156747

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157958
Approved by: https://github.com/malfet, https://github.com/Skylion007
2025-07-14 13:01:16 +00:00
0f21fa84fb Documentation Fix: torch.empty_like memory preservation (#158050)
updated docs for torch.empty_like to reflect view and dense memory behavior

Fixes #158022

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158050
Approved by: https://github.com/ngimel, https://github.com/cyyever
2025-07-14 06:02:54 +00:00
aa11628576 Issue warning with reference to user code rather than torch (#155112)
Re-raising of #129959 as that was closed.

Warning message before:
```
/home/admin/.local/share/hatch/env/virtual/toms-project-1/Qv9k_r_5/dev/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:120: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
```

Warning message after:
```
/path/to/my/code:91: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available.  Disabling.
```

Helps the user find where the issue stems from in their code. What do you think?

(Looks like "skip_file_prefixes" is not available until Python 3.12 minimum...)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155112
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-07-14 05:24:23 +00:00
9ca080db87 [MPS] Extend atomic operations to all int types (#158179)
That fixes `index_put(..., accumulate=True)` for all dtypes

int64 operation is not really atomic, but eventually consistent from the `index_put_accumulate` kernel point of view: i.e. by the end of the operation results in the global memory are indeed accumulation of the operands at given indices
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158179
Approved by: https://github.com/dcci, https://github.com/Skylion007
ghstack dependencies: #158064, #158178
2025-07-14 04:25:05 +00:00
1ea9cde598 [ROCm] logsumexp on ROCm needs scaling back to natural base. (#156903)
Fixes #156012

This is a temporary solution that makes context parallelism working before logsumexp behavior changes landed in AOTriton.

After discussion we are not going to release AOTriton 0.10.1 to fix this due to
* Even if the interface is not changed, changing the behavior of returned logsumexp tensor should still be considered as an ABI break. Such changes do not fall into the "ABI compatible" category and should be postponed to next release.
* AOTriton 0.11 is scheduled to be released before end of July, which is less than five weeks

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156903
Approved by: https://github.com/jeffdaily, https://github.com/XilunWu
2025-07-14 02:50:36 +00:00
edb92e16ba feat(dynamo): raise UnsupportedError for ndarray.astype(object) (#157810)
Fixes #157720

###  What's in this PR?

This PR improves the error handling in `torch.compile` for `ndarray.astype('O')` (or `object`). It now explicitly raises a `torch._dynamo.exc.Unsupported` exception with a clear explanation, instead of failing with a less intuitive error during fake tensor propagation.

This is achieved by adding a check within `NumpyNdarrayVariable.call_method` for this specific `astype` pattern.

A new test, `test_ndarray_astype_object_graph_break`, is also added to `test/test_numpy_interop.py` to verify this new behavior.

### Background

Previously, attempting to `torch.compile` a function containing `ndarray.astype('O')` would result in a `TorchRuntimeError` wrapping a `TypeError: data type 'O' not understood`. This error message, originating deep within the tensor mechanism, was not very user-friendly and didn't clearly state *why* it was unsupported.

This change makes the failure more explicit and provides a better user experience by giving a direct, actionable error message.

**Old Behavior (Error Traceback):**
```
torch.dynamo.exc.TorchRuntimeError: Dynamo failed to run FX node with fake tensors: ... got TypeError("data type 'O' not understood")
```

**New Behavior (Error Message):**
```
torch.dynamo.exc.Unsupported: ndarray.astype(object)
Explanation: ndarray.astype('O') or ndarray.astype(object) is not supported by torch.compile, as there is no equivalent to object type in torch.
```

### Testing

A new test has been added to `test_numpy_interop.py` which decorates a function containing `ndarray.astype("O")` with `torch.compile`. The test asserts that a `torch._dynamo.exc.Unsupported` exception is raised, confirming the new error handling works as expected.

The test can be run with:
`pytest test/test_numpy_interop.py -k test_ndarray_astype_object_graph_break`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157810
Approved by: https://github.com/jansel
2025-07-14 01:22:49 +00:00
3321acc92e [Inductor] Set the default value of min_chunk_size to 512 (#150762)
Change the default value of min_chunk_size from 4096 to 512 to allow more for loops to be parallelized.
I tested the Inductor benchmark with this PR on CPU, and saw ~10% improvement in torchbench geomean speedup, and no change in huggingface/timm_models. There are about 15 torchbench models with different degrees of performance improvement, among which functorch_dp_cifar10, opacus_cifar10, hf_Reformer, and pyhpc_turbulent_kinetic_energy have more than 50% performance improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150762
Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel
2025-07-14 01:14:30 +00:00
1f57e0e04d [CPU] Support GQA for flash attention (#157893)
As many models require GQA, we support it in flash attention for CPU path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157893
Approved by: https://github.com/mingfeima, https://github.com/jansel
2025-07-13 09:49:02 +00:00
c68af9af1b Fix XPU CI UT test_circular_dependencies (#158189)
# Motivation
fix https://github.com/pytorch/pytorch/issues/110040

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158189
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-07-13 09:30:57 +00:00
5aee022d8b [BE] Move repeated code into helper functions (#158178)
Namely `index_get_offsets`, giving thread index computes offsets into
input, output and indices tensors
And `index_apply_indices` applies offests to either input or output
tensor index
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158178
Approved by: https://github.com/dcci, https://github.com/Skylion007
ghstack dependencies: #158064
2025-07-12 18:24:12 +00:00
31326a9ad7 Fix typo in torch.set_float32_matmul_precision docs (#158191)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158191
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-07-12 18:23:11 +00:00
a0308edb6c [build] remove wheel from build requirements (#158027)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158027
Approved by: https://github.com/Skylion007
2025-07-12 16:45:51 +00:00
9508d73307 remove allow-untyped-defs from torch/ao/nn/intrinsic/quantized/dynamic/modules/linear_relu.py (#157848)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157848
Approved by: https://github.com/Skylion007
ghstack dependencies: #157847
2025-07-12 15:42:12 +00:00
066bf29334 remove allow-untyped-defs from torch/_higher_order_ops/run_const_graph.py (#157847)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157847
Approved by: https://github.com/Skylion007, https://github.com/zou3519
2025-07-12 15:42:12 +00:00
5221448574 multi-kernel matmuls based on varying hint sizes (#156628)
The core idea is to generate multiple matmul kernels using different hints for symbolic variables, then select the most appropriate one at runtime for each unique shape we encounter. You can find some early experimentation details in these posts:

https://fb.workplace.com/groups/8940092306109185/posts/9803850776399996/
https://fb.workplace.com/groups/8940092306109185/posts/9695805170537891/
https://fb.workplace.com/groups/257735836456307/posts/906589324904285/

Here’s a graph illustrating the empirically observed worst-case performance if an oracle always selected the least optimal hint for a given runtime size:

![image](https://github.com/user-attachments/assets/6d90ee06-a572-453e-9cba-03006f343301)

This graph illustrates the performance of a hint size of 64 relative to the worst case. Notice that as the runtime sizes increase, the performance gradually approaches the worst case:

![image](https://github.com/user-attachments/assets/85ad49fe-165a-474c-8d03-db2e57654213)

This graph shows the performance of a hint size of 4096 — very poor for small sizes, and also suboptimal for some mid-sized shapes:

![image](https://github.com/user-attachments/assets/adea1106-3bc8-40f3-97b0-20d940fb74f1)

Finally, here’s the graph that motivated this PR. It illustrates the performance when selecting the best of three kernels generated with three different hints — 64, 256, and 4096:

![image](https://github.com/user-attachments/assets/a7cb0ce5-8139-48b1-b5c9-7670e75cbfce)

## How to review this PR

At a high level, this extends @shunting314's multi-kernel abstraction to support varying GEMM choices driven by different hints. A few key points:

1. Unlike reduction kernels, triton template matmuls pass their grid as arguments to the kernel. This PR updates `MultiKernelCall` to support kernels with varying arguments.
2. The `V.graph.sizevars.size_hints` API is extended to accept a `hint_override`, allowing us to substitute the example input’s size hint with a custom value when generating multiple kernels.
3. The choice generation and benchmarking logic is updated to support multiple hint values. One kernel is generated per value in `torch._inductor.config.multi_kernel_hints`, and at runtime, we select the most suitable kernel for the current shape.
4. This PR does not add support for cpp wrapper codegen to keep it scoped. That will be added in the next PR.

## Results

The following is a basic test that shows our basic multi kernel working where we no longer show significant variance based on the original hint size: https://gist.github.com/bobrenjc93/ba711d529e65fd65839b34799f6323ec

Before
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0948   |   0.3124   |   4.9477
    256      |   0.2243   |   0.2256   |   3.3880
    4096     |   0.3384   |   0.3404   |   3.3010
```

After
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0951   |   0.2289   |   3.3013
    256      |   0.0952   |   0.2258   |   3.4045
    4096     |   0.0957   |   0.2231   |   3.3146
```

We also see an average speedup of 5.04% for the matrix of all hint/runtime pairs in [64, 4096] for every increment of 64: https://docs.google.com/spreadsheets/d/12TmYUDrAAFASGuP3POXTKPeAvQWIRzKzdrVSIb3vQkA/edit?gid=480268938#gid=480268938

![Worst Case, multi-kernel](https://github.com/user-attachments/assets/712df23b-87e2-4d9d-95c2-cc25305ba2ed)

NB: This is just the beginning and I plan on doing more investigation to see further improve on this initial result.

For posterity the script used to generate that matrix is here: https://gist.github.com/bobrenjc93/c211fd0bd97fad8f46b91ad9dee76ad0

HUD benchmark runs:
base: https://github.com/pytorch/pytorch/actions/runs/15889871988
head: https://github.com/pytorch/pytorch/actions/runs/15889876842

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156628
Approved by: https://github.com/jansel
2025-07-12 15:08:21 +00:00
191693ac85 adding arg values and arg types to Strobelight USDT (#155185)
Summary: This diff makes changes to the USDT added by RihamSelim in D44636587. The "operator_start" USDT passes in the memory addresses of operator arguments and the argument types. This is so we can record argument values and types in the Strobelight GPUEvent Profiler. The previous diff records the ATEN operator, and this diff lays the groundwork to record ATEN op arguments.

Test Plan: I ensured this code builds by running the example in this diff, and testing profiler changes in this diff.

Reviewed By: RihamSelim

Differential Revision: D75606556

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155185
Approved by: https://github.com/malfet
2025-07-12 12:00:08 +00:00
aacb944079 [aot inductor] fix clang-asan for consts_cpp. (#158175)
From the perivous PR: https://github.com/pytorch/pytorch/pull/157608 , I added `format_consts_to_cpp` to build consts bytes.

But it still raise clang ASAN `stack alloction`, when build large size consts.

This PR:
1. add `test_aot_inductor_consts_cpp_build` to stack allocation skip list.
2. add ATTRIBUTE_NO_SANITIZE_ADDRESS to skip ASAN check, because consts array is locate in global area.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158175
Approved by: https://github.com/jansel
2025-07-12 07:14:05 +00:00
6b84cb29f9 [dynamo] trace through torch.get_device_module (#157980)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157980
Approved by: https://github.com/anijain2305
2025-07-12 06:25:46 +00:00
7f14b42adf [BE][2/16] fix typos in torch/ (torch/_*/) (#156312)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156312
Approved by: https://github.com/albanD
2025-07-12 05:47:06 +00:00
e90148c91d Revert "[PT2][fusion] ban fusions with large accumulated reads (#157563)"
This reverts commit 4b9a6f7211123511e856ac8c8524bc332a741241.

Reverted https://github.com/pytorch/pytorch/pull/157563 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but I suspect that it might contribute to a string of OOM error in trunk ([comment](https://github.com/pytorch/pytorch/pull/157563#issuecomment-3064678929))
2025-07-12 04:52:11 +00:00
a529a5daf5 [test][distributed][vllm] stabilize the p2p sharing through ipc (#158089)
vLLM's RLHF integration cf75cd2098/examples/offline_inference/rlhf_utils.py (L93) depends on this hidden feature, adding the test so that PyTorch will not break it in a backward-incompatible way.

The goal is to create p2p shared tensors across devices, say sharing process 0's memory on GPU 0, to process 1's memory space on GPU 1, when GPU 0 and GPU 1 can use GPU direct p2p access.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158089
Approved by: https://github.com/houseroad, https://github.com/ngimel
2025-07-12 04:41:13 +00:00
e15f4248ad Revert "[BE][2/16] fix typos in torch/ (torch/_*/) (#156312)"
This reverts commit 7a92b5119654c07d15f5c0818e6ae804b01e836c.

Reverted https://github.com/pytorch/pytorch/pull/156312 on behalf of https://github.com/XuehaiPan due to landrace ([comment](https://github.com/pytorch/pytorch/pull/156312#issuecomment-3064672250))
2025-07-12 04:40:52 +00:00
9056279f81 don't error out in empty_cache under mempool context (#158152)
Now instead of erroring out on `empty_cache` call during graph capture or under mempool context, we will just silently do nothing. This used to be the behavior for mempools, cudagraphs used to error out, but it's fine to just ignore the call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158152
Approved by: https://github.com/zou3519, https://github.com/eqy
2025-07-12 04:37:05 +00:00
f45f6e86b9 Fix torch._numpy advanced indexing to match NumPy when indices are separated (#157676)
Written with Claude Code.

Fixes https://github.com/pytorch/pytorch/issues/157569
Fixes https://github.com/pytorch/pytorch/issues/158134

 NumPy and PyTorch handle advanced indexing differently when advanced indices are separated by slices (e.g., arr[:, [0], :, 0]). PyTorch uses "outer" indexing placing result dimensions in original positions, while NumPy uses "vectorized"
 indexing moving advanced index dimensions to the front.

This adds _numpy_style_advanced_indexing() to detect separated advanced indices and transpose results to match NumPy's dimension ordering, ensuring torch._numpy maintains compatibility with NumPy's indexing behavior.

Fixes cases like:
- arr[:, [0], :, 0] now returns shape (1, 5, 7) instead of (5, 1, 7)
- arr[:, [0, 1], :, 0] now returns shape (2, 5, 7) instead of (5, 2, 7)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157676
Approved by: https://github.com/manuelcandales

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-12 04:35:04 +00:00
9c189ed29a Revert "multi-kernel matmuls based on varying hint sizes (#156628)"
This reverts commit 6c795306378c47341d58109da03371bba2bec46e.

Reverted https://github.com/pytorch/pytorch/pull/156628 on behalf of https://github.com/huydhn due to Sorry for reverting your change but some ROCM jobs went crazy after this lands, so I try to see if reverting helps ([comment](https://github.com/pytorch/pytorch/pull/156628#issuecomment-3064617123))
2025-07-12 03:48:39 +00:00
2eff14c445 [ONNX] Delete torch.onnx.dynamo_export (#158130)
It's deprecated since torch==2.7.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158130
Approved by: https://github.com/justinchuby
2025-07-12 02:30:47 +00:00
7a92b51196 [BE][2/16] fix typos in torch/ (torch/_*/) (#156312)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156312
Approved by: https://github.com/albanD
2025-07-12 01:47:22 +00:00
8b97e4dd8c #IS157973/numpy version issue (#158036)
Fixes #157973

`THPUtils_unpackNumberAsBool` now recognises `numpy.bool_ scalars` explicitly (using `torch::utils::is_numpy_bool`).
If the object is a NumPy boolean, we retrieve its truth value via `PyObject_IsTrue` and return it, avoiding the previous failing path that attempted to treat it as an integer.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158036
Approved by: https://github.com/jansel
2025-07-12 01:36:28 +00:00
627ba41136 [DCP][HF] [ez]Change where sharded tensors are saved (#158069)
Summary: Previously was saving sharded tensors to same directory as full tensors. But am realizing this doesn't make sense because on load(), you would be loading for a directory which contains both, with no way to distinguish them, so they should be in separate folders.

Test Plan:
ensure existing tests pass

Rollback Plan:

Differential Revision: D78108144

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158069
Approved by: https://github.com/teja-rao
2025-07-12 01:02:17 +00:00
f4406689b8 fix MPCT destroy_pg call (#157952)
I was seeing hangs / exceptions not raising in some cases. Only call `c10d.destroy_process_group()` for `MultiProcessContinuousTest` in the clean exit case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157952
Approved by: https://github.com/fduwjj
ghstack dependencies: #157589
2025-07-12 00:46:19 +00:00
7444debaca Revert "Fix logdet returning finite values for singular matrices on CUDA (#157910)"
This reverts commit 7d4228dbfd13d1ac8fac2c78c042dbb8314f042d.

Reverted https://github.com/pytorch/pytorch/pull/157910 on behalf of https://github.com/huydhn due to Sorry for reverting your change but this seems to fail some internal tests accuracy ([comment](https://github.com/pytorch/pytorch/pull/157910#issuecomment-3064368647))
2025-07-12 00:22:51 +00:00
8c928372b3 Make Q Indices optional (#157997)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157997
Approved by: https://github.com/BoyuanFeng, https://github.com/Chillee
2025-07-12 00:16:20 +00:00
22f3347fd9 [MTIA Aten Backend] Change relu / relu_ back to use relu kernel (#158101)
# Context
In D75803582, we migrated relu/relu_ from out-of-tree to pytorch in-tree. With that, we also changed it to use the ATen op-layer logic:
https://www.internalfb.com/code/fbsource/[04ec3fcd0b09b601ae26a785e595ab960a6ba684]/fbcode/caffe2/aten/src/ATen/native/Activation.cpp?lines=512-520

To summarize:
**The behavior before D75803582:**
The Relu operator calls this code(https://fburl.com/code/pezspv40) and launches Relu kernel.

**The behavior after D75803582:**
The Relu operator uses the ATen logic, which delegates to the clamp_min operator, and no longer launch Relu kernel.

-----------------

But according to my discussion with @vvk, we should keep using the Relu kernel, instead of adopting ATen logic that delegates to clamp_min, because MTIA's Relu kernel has special optimization for MTIA device.

# This diff

Change relu / relu_  to launch relu kernel, which is same as the original behavior before D75803582.

Note: this doesn't mean to revert D75803582, because we still want to move relu/relu_ to in-tree.

Differential Revision: [D78109262](https://our.internmc.facebook.com/intern/diff/D78109262/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158101
Approved by: https://github.com/albanD
2025-07-12 00:12:29 +00:00
0d77364ee3 dist2: cleanup non-option methods on PG (missing, timeouts) (#158123)
This updates the ProcessGroup.* API to include timeouts on all non-option based overloaded methods. This also adds 2 missing ones `alltoall_base` and `barrier`.

Following design in: https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89

Test plan:

```
pytest test/distributed/test_dist2.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158123
Approved by: https://github.com/Skylion007, https://github.com/fduwjj
2025-07-12 00:06:37 +00:00
f44a9eee47 [AOTI] Add missing ops to set of C-shim ops which can have nullptr returns (#158073)
Most added ops are backwards ops, which have not been well-tested previously (thus why they were missed). Necessary ops were identified by manual examination of torch/_meta_registrations.py return values.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158073
Approved by: https://github.com/desertfire
2025-07-11 23:35:26 +00:00
ff7dd1776f [cutlass backend] Global filter ops before situation based filter ops (#157866)
The idea of this PR is that, sometimes we are filtering ops based not based on the node specific information. For example, we always filter out simt ops. So I want to group them together into a global filtering function.

This can help shrink the config space as well. 20s -> 6s for instantiation 3332.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157866
Approved by: https://github.com/ColinPeppler
2025-07-11 23:13:20 +00:00
2a8795a981 [c10d] ProcessGroupGloo: support per operation timeouts (#158128)
This updates ProcessGroupGloo to support per operation timeouts. Previously the timeouts were ignored even if they were set.

* This checks if the timeout is `kUnsetTimeout` and conditionally uses the provided timeout or the default timeout from the context.
* This exposes `set_timeout` as a standard method on ProcessGroup/Backend so we can test the global timeout.

Test plan:

```
pytest test/distributed/test_c10d_gloo.py -v -k allreduce_timeout
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158128
Approved by: https://github.com/H-Huang, https://github.com/fduwjj
2025-07-11 23:09:50 +00:00
a8ec7babcf [dynamo] expand_hints does exc() to expand graph_break_hints (#158078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158078
Approved by: https://github.com/williamwen42
2025-07-11 22:51:28 +00:00
beed033b6e [MPS] Fix index_kernel for large tensors (#158064)
Move `MetalShaderLibrary::bind_tensors` private method to OperatorUtils.h and extract `iter_tensor_offset` method, that returns an offset from the start of the storage associated with given tensor inside the iterator

Migrated `index`, `index_put[_accumulate][_serial]` to the new paradigm that does not require additional tensor for indices nor special handling for 32 vs 64-bit offset, which resulted in almost 2x perf gain for 2000x2000 tensor, see results below before
```
[------------------------------------------------------------  -----------------------------------------------------------]
                                                |  11x50x50  |  11x100x100  |  11x500x500  |  11x1000x1000  |  11x2000x2000
1 threads: ----------------------------------------------------------------------------------------------------------------
      __getitem__ (torch.int8, torch.int64)     |   383.5    |    379.8     |    470.9     |     1232.9     |     4410.3
      __getitem__ (torch.float16, torch.int64)  |   379.6    |    354.5     |    533.2     |     1290.3     |     4442.2
      __getitem__ (torch.float32, torch.int64)  |   360.8    |    338.6     |    478.6     |     1348.9     |     4870.4

Times are in microseconds (us).
```
and after
```
[------------------------------------------------------------  -----------------------------------------------------------]
                                                |  11x50x50  |  11x100x100  |  11x500x500  |  11x1000x1000  |  11x2000x2000
1 threads: ----------------------------------------------------------------------------------------------------------------
      __getitem__ (torch.int8, torch.int64)     |   349.8    |    330.5     |    432.6     |     764.5      |     1961.2
      __getitem__ (torch.float16, torch.int64)  |   342.5    |    330.7     |    434.7     |     741.0      |     1969.4
      __getitem__ (torch.float32, torch.int64)  |   332.2    |    326.1     |    445.4     |     751.3      |     1972.6

Times are in microseconds (us).
```

While migrating also fixed index_put_accumulate for boolean types, by using compare_and_exchange trick over uint

Fixes https://github.com/pytorch/pytorch/issues/153560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158064
Approved by: https://github.com/dcci
2025-07-11 22:35:44 +00:00
93854e83b7 [DTensor] Rewrite doc of TupleStrategy (#158132)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158132
Approved by: https://github.com/XilunWu
2025-07-11 22:08:57 +00:00
4b9a6f7211 [PT2][fusion] ban fusions with large accumulated reads (#157563)
**Problem:**
Fusion can accumulate large amount of reads, which leads to significant increase in peak memory utilization. Imagine we have the following code snippet
```
total = torch.rand(N, N)
for _ in range(r):
    x = torch.rand(N, N)
    total = total + x
```
The default execution is memory efficient as only two tensors of size N-by-N is in memory at any given time. However, with fusion, the additions are fused into a single operation and the execution becomes something like:
```
x_1 = torch.rand(N, N)
x_2 =  torch.rand(N, N)
...
x_r = torch.rand(N, N)
total = x_1 + x_2 + ... + x_r
```
Though this is run-time efficient, in the case of large `N` and/or large `r`, this is not memory efficient.

[internal only] see [post](https://fb.workplace.com/groups/1075192433118967/permalink/1703374333634104/) for additional details

**Solution:**
Our proposed solution is to ban fusions in case where a large amount of reads are accumulated. This is in addition to some existing logics during torch compile.
* During lowering (i.e., `ir.py`), the config `realize_acc_reads_threshold`, which is default to be 8, controls _the number of_ buffers can be accumulated for a single operator. However, this is oblivious to the size of the buffers. Hence, we additionally introduce a config `realize_acc_reads_size_threshold` to control _the amount of buffers_ in size that can be accumulated.
* During scheduling (i.e., `scheduler.py`), additional fusion will be performed and thus we also need to capture such pattern there. The decisions are implemented under `choices.py`.

**Results:**
For a small example similar to be one in the test case (but with larger `N` and higher number of loop repeats), the memory snapshot before and after are shown below. Note the snapshot on the right is zoomed out so that the y-axis of the two snapshots match.

<img width="1328" alt="image" src="https://github.com/user-attachments/assets/670b5961-8454-4379-ae0f-62d4e7946c64" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157563
Approved by: https://github.com/jansel, https://github.com/mlazos
2025-07-11 21:07:57 +00:00
4ff9b7fa31 Fix diagnostic message for CUDA version mismatch in cuda.cmake (#157370)
This PR fixes  #157354

It fixes the issue in 'cmake/public/cuda.cmake' where a diagnostic message incorrectly showed an empty CUDA version when 'FindCUDA' and header-reported versions differed.

The problem was caused by this line:

set(${cuda_version_from_findcuda} ${CUDA_VERSION_STRING})

This incorrectly used the value of cuda_version_from_findcuda as a variable name. As a result the version string wasn't assigned and the error message omitted the version. This has been corrected to:

set(cuda_version_from_findcuda ${CUDA_VERSION_STRING})

Now the diagnostic message properly displays the CUDA version reported by FindCUDA.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157370
Approved by: https://github.com/soulitzer
2025-07-11 20:58:35 +00:00
eqy
00ae620b9f [CUDA] Allow cuDNN or flash attn in test_activation_checkpointing pattern match check (#153272)
Seems more robust than maintaining a mirror of dispatch condition based on compute capability etc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153272
Approved by: https://github.com/soulitzer
2025-07-11 20:58:12 +00:00
702a304b07 Revert "[CUDA] Use runtime driver API for cuStreamWriteValue32 (#156097)"
This reverts commit 9a5278225fc5e7b46d54a65ae1a3f049ee49824f.

Reverted https://github.com/pytorch/pytorch/pull/156097 on behalf of https://github.com/ngimel due to breaks 525 driver installs ([comment](https://github.com/pytorch/pytorch/pull/156097#issuecomment-3063742807))
2025-07-11 20:36:36 +00:00
eqy
9963845a4e [CUDA] Support family-conditional compute capabilies in TORCH_CUDA_ARCH_LIST (#157999)
Similar to arch-conditionals, such as 9.0a  and 10.0a, family conditionals such as 10.0f enable features specific to a family of architectures, such as between sm100 and sm103

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157999
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-07-11 20:34:59 +00:00
6c79530637 multi-kernel matmuls based on varying hint sizes (#156628)
The core idea is to generate multiple matmul kernels using different hints for symbolic variables, then select the most appropriate one at runtime for each unique shape we encounter. You can find some early experimentation details in these posts:

https://fb.workplace.com/groups/8940092306109185/posts/9803850776399996/
https://fb.workplace.com/groups/8940092306109185/posts/9695805170537891/
https://fb.workplace.com/groups/257735836456307/posts/906589324904285/

Here’s a graph illustrating the empirically observed worst-case performance if an oracle always selected the least optimal hint for a given runtime size:

![image](https://github.com/user-attachments/assets/6d90ee06-a572-453e-9cba-03006f343301)

This graph illustrates the performance of a hint size of 64 relative to the worst case. Notice that as the runtime sizes increase, the performance gradually approaches the worst case:

![image](https://github.com/user-attachments/assets/85ad49fe-165a-474c-8d03-db2e57654213)

This graph shows the performance of a hint size of 4096 — very poor for small sizes, and also suboptimal for some mid-sized shapes:

![image](https://github.com/user-attachments/assets/adea1106-3bc8-40f3-97b0-20d940fb74f1)

Finally, here’s the graph that motivated this PR. It illustrates the performance when selecting the best of three kernels generated with three different hints — 64, 256, and 4096:

![image](https://github.com/user-attachments/assets/a7cb0ce5-8139-48b1-b5c9-7670e75cbfce)

## How to review this PR

At a high level, this extends @shunting314's multi-kernel abstraction to support varying GEMM choices driven by different hints. A few key points:

1. Unlike reduction kernels, triton template matmuls pass their grid as arguments to the kernel. This PR updates `MultiKernelCall` to support kernels with varying arguments.
2. The `V.graph.sizevars.size_hints` API is extended to accept a `hint_override`, allowing us to substitute the example input’s size hint with a custom value when generating multiple kernels.
3. The choice generation and benchmarking logic is updated to support multiple hint values. One kernel is generated per value in `torch._inductor.config.multi_kernel_hints`, and at runtime, we select the most suitable kernel for the current shape.
4. This PR does not add support for cpp wrapper codegen to keep it scoped. That will be added in the next PR.

## Results

The following is a basic test that shows our basic multi kernel working where we no longer show significant variance based on the original hint size: https://gist.github.com/bobrenjc93/ba711d529e65fd65839b34799f6323ec

Before
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0948   |   0.3124   |   4.9477
    256      |   0.2243   |   0.2256   |   3.3880
    4096     |   0.3384   |   0.3404   |   3.3010
```

After
```
Hint\Runtime |     64     |    256     |    4096
---------------------------------------------------
     64      |   0.0951   |   0.2289   |   3.3013
    256      |   0.0952   |   0.2258   |   3.4045
    4096     |   0.0957   |   0.2231   |   3.3146
```

We also see an average speedup of 5.04% for the matrix of all hint/runtime pairs in [64, 4096] for every increment of 64: https://docs.google.com/spreadsheets/d/12TmYUDrAAFASGuP3POXTKPeAvQWIRzKzdrVSIb3vQkA/edit?gid=480268938#gid=480268938

![Worst Case, multi-kernel](https://github.com/user-attachments/assets/712df23b-87e2-4d9d-95c2-cc25305ba2ed)

NB: This is just the beginning and I plan on doing more investigation to see further improve on this initial result.

For posterity the script used to generate that matrix is here: https://gist.github.com/bobrenjc93/c211fd0bd97fad8f46b91ad9dee76ad0

HUD benchmark runs:
base: https://github.com/pytorch/pytorch/actions/runs/15889871988
head: https://github.com/pytorch/pytorch/actions/runs/15889876842

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156628
Approved by: https://github.com/jansel
2025-07-11 19:38:10 +00:00
bd364c901d Fix serialization of nans in torch.export (#155359)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155359
Approved by: https://github.com/angelayi
2025-07-11 19:33:15 +00:00
b487003182 [PyTorch Core] MTIA supports arbitrary strides (#157883)
Summary:
Currently, on MTIA the following case will return false

```
options.device().supports_as_strided()
```
As a result, whenever moving a tensor from CPU to MTIA, strides will not be preserved ([see here](e5edd013ab/aten/src/ATen/native/TensorConversions.cpp (L351))). This is a primary reason why deserializing tensors from .pt files will be contiguous.

Reviewed By: egienvalue, andyanwang

Differential Revision: D77843224

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157883
Approved by: https://github.com/albanD, https://github.com/andyanwang
2025-07-11 18:54:21 +00:00
cyy
b0556110e5 Remove unsafe PyTorchError constructor (#154961)
Use libfmt in call sites of PyTorchError.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154961
Approved by: https://github.com/albanD
2025-07-11 18:22:53 +00:00
1cb0597a89 [PyTorch] Deprecate numpy serialization for MTIA (#157884)
Summary:
NumPy based tensor rebuilding from serialization has been deprecated by other backends (eg. [XLA](https://github.com/pytorch/pytorch/pull/137444)). The new flow has CPU storage being constructed with data from the file and then moved to the target backend device.

Furthermore, relying on numpy for serialization will fail loudly when torch.load flips weights_only.

Reviewed By: andyanwang

Differential Revision: D77843238

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157884
Approved by: https://github.com/albanD
2025-07-11 17:57:33 +00:00
157683d862 [Reducer] Remove custom handling of view tensors for MTIA (#157882)
Summary: Following implementation of the updated ATen Backend for mtia, and diffs enabling in tree view ops (D75266206, D75385411), we can remove custom logic from reducer to handle MTIA view operations.

Test Plan:
CI

Rollback Plan:

Reviewed By: egienvalue

Differential Revision: D77843212

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157882
Approved by: https://github.com/albanD, https://github.com/andyanwang
2025-07-11 17:56:45 +00:00
92ee5bd9f6 Revert "[DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)"
This reverts commit d75d30eeb610b164e69d0678a2e2b2dea81eec0f.

Reverted https://github.com/pytorch/pytorch/pull/157216 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it turns out that the internal failure was legit ([comment](https://github.com/pytorch/pytorch/pull/157216#issuecomment-3063075001))
2025-07-11 17:07:26 +00:00
c4cdcda754 [aot] add format_consts_to_cpp function for further development. (#157608)
Changes:
1. Split `format_consts_to_asm` function, which is current way to convert consts to object.
2. Add `format_consts_to_cpp` function, which would support for more compiler support, such as `msvc` and `icx`.
3. Add `config.aot_inductor.use_consts_asm_build` for `format_consts_to_asm` and `format_consts_to_cpp` control.
4. Add UT for `format_consts_to_cpp`.

For `format_consts_to_cpp`, I have local tested it:
Case: https://docs.pytorch.org/docs/main/torch.compiler_aot_inductor.html
Run it and `cat` cpp code:
<img width="674" alt="image" src="https://github.com/user-attachments/assets/d47ccf84-06d2-47f5-8a0d-9a43a9020aa3" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157608
Approved by: https://github.com/desertfire, https://github.com/jansel
2025-07-11 17:02:41 +00:00
bb3c911c2d [DTensor] support split op on Partial placement (#157991)
**Summary**
To enable use case where the input DTensor to `split` op has `Partial()` placement,
this PR treats `Partial()` in the same way with `Replicate()`. That means, `split` op
only unshards the `Shard(dim=x)` if `x == split_dim` and keep other placement
untouched.

**Test**
Added a new test because `test_dtensor_ops` doesn't test `Partial()` placement.
`pytest test/distributed/tensor/test_tensor_ops.py -s -k test_split_on_partial`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157991
Approved by: https://github.com/zpcore
2025-07-11 16:19:31 +00:00
1f1f22991d Restore fake device (#157972)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157972
Approved by: https://github.com/ezyang
2025-07-11 16:12:01 +00:00
27c50799c1 Use new cuBLAS row-wise fp8 matmul for scaled-mm (#157905)
Most of the work had already been done by @jeffdaily in #154680, but there was one remaining check that needed to be modified in order for `torch._scaled_mm` to use cuBLAS over CUTLASS when available.

I tested this change by rebuilding PyTorch locally with CUDA 12.9 and ran `torch._scaled_mm` under the profiler, and observed that the kernel being launched is called `nvjet_qqtst_128x128_128x6_1x1_h_bz_coopA_algo2_ovscale_TNT` (where `ovscale` stands for "outer vector scaling", I believe, which is how cuBLAS calls this scaling mode).

I then benchmarked the new kernels against the old CUTLASS ones on a standard 700W H100 GPU. I used the same approach as in #134781, and obtained these speed-ups:
![image](https://github.com/user-attachments/assets/43dfb816-9ccf-40c5-8b2a-571ce9cb511d)
![image](https://github.com/user-attachments/assets/be7ac6f2-e16c-479b-ad5c-f8039caba4b1)

We see that the two kernels perform very closely (I'm surprised, I would have expected cuBLAS to outperform CUTLASS across the board), with some thin/skewed shapes becoming worse but some very large shapes becoming better.

I guess the questions are whether we consider this a net-zero change (given that there's improvements _and_ degradations), and how large we consider the burden of maintaining our own CUTLASS kernels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157905
Approved by: https://github.com/eqy, https://github.com/Skylion007, https://github.com/drisspg
2025-07-11 16:11:55 +00:00
0797b2b6a8 [cuDNN][SDPA] cuDNN SDPA refactor/cleanup, nested tensor backward, test priority bump for sm90, sm100 (#149282)
cleanup tuple/tensor boilerplate in cuDNN SDPA, preparation for nested/ragged tensor backward

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149282
Approved by: https://github.com/drisspg

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-07-11 16:07:54 +00:00
7a08755c5f [BE][Ez]: Update ruff to 0.12.2 (#157937)
Updates to the latest version of ruff and apply some fixes that it flagged and silence a few new lints

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157937
Approved by: https://github.com/ezyang
2025-07-11 15:16:20 +00:00
0d17029fea [BE][6/6] fix typos in test/ (test/distributed/) (#157640)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157640
Approved by: https://github.com/yewentao256, https://github.com/malfet
2025-07-11 14:09:37 +00:00
4283d96bcd [build] pin setuptools>=70.1.0 for integrated bdist_wheel command (#157783)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157783
Approved by: https://github.com/Skylion007
2025-07-11 12:10:42 +00:00
b4476ca378 Add cudaMallocAsync/cudaFreeAsync to cuda_to_hip_mappings (#158056)
Summary: Adding both functions as they're required for Hipification of https://fburl.com/code/165r7qhr

Test Plan:
Tested in D78090513

Rollback Plan:

Reviewed By: malfet, jiangyurong609

Differential Revision: D78090693
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158056
Approved by: https://github.com/Skylion007
2025-07-11 11:48:19 +00:00
85857181eb Deprecate overleap functions in CUDAAllocatorConfig, use AcceleratorAllocatorConfig instead (#156165)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156165
Approved by: https://github.com/albanD
ghstack dependencies: #149601, #157908, #150312
2025-07-11 11:41:34 +00:00
03b307575a Refactor CUDAAllocatorConfig to reuse AcceleratorAllocatorConfig (#150312)
# Motivation
Refactor `CUDAAllocatorConfig` to reuse `AcceleratorAllocatorConfig` and `ConfigTokenizer`. We would deprecate those option that overleap with `AcceleratorAllocatorConfig` in the following PR and keep them only for BC.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150312
Approved by: https://github.com/albanD
ghstack dependencies: #149601, #157908
2025-07-11 11:25:43 +00:00
8088958793 port 4 dynamo test files to Intel GPU (#157779)
For https://github.com/pytorch/pytorch/issues/114850, we will port test cases to Intel GPU. Six dynamo test files were ported in PR [#156056](https://github.com/pytorch/pytorch/pull/156056) and [#156575](https://github.com/pytorch/pytorch/pull/156575.) In this PR we will port 4 more dynamo test files.
We could enable Intel GPU with following methods and try the best to keep the original code styles:

- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- added XPU support in decorators like @requires_gpu
- enabled XPU for some test path
- added xfailIfXPU to skip xpu test when there is a bug.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157779
Approved by: https://github.com/guangyey, https://github.com/jansel
2025-07-11 10:11:49 +00:00
e1a20988f3 [Quant][CPU] Enable fp8 qconv (#157076)
**Summary**
Enable fp8 qconv on CPU. It's part of the plan to enable fp8 static quantization on CPU. This PR only adds FP8 support of the existing int8 qconv op. It does not add a new op nor does it affect frontend or quantization flow. The schema of the qconv op is not changed either.

So, the FP8 qconv shares the same op as INT8 qconv and the difference is that src/wei dtype is fp8 instead of int8. The output dtype can be fp8/float32/bfloat16. The implementation uses the oneDNN library.

Note:
OneDNN does not support quantized fp8 convolution until v3.9 but the version used in PyTorch is v3.7.2. So, the op goes to the reference kernel for now. And we have also update the oneDNN path so that it's compatible with the fp8 dtype. Once oneDNN is upgraded to v3.9 or newer, minimum changes are needed to enable the oneDNN path. And we have ensured that the behavior of the reference kernel is the same as the new oneDNN's implementation.
- oneDNN version < 3.9 (now)
  - Always go to the reference kernel
- oneDNN version >= 3.9 (future)
  - Go to reference kernel on old platforms (without AMX)
  - Use oneDNN on new platforms (with AMX)

**Test plan**
```
pytest test/quantization/core/test_quantized_op.py -k "qconv and fp8"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157076
Approved by: https://github.com/leslie-fang-intel, https://github.com/jerryzh168
2025-07-11 10:00:57 +00:00
ed508cc018 [inductor][triton] Add experimental use_tensor_descriptor config option (#157906)
Refactor to allow TMA descriptors to be used in general codegen. TMA descriptors can only be generated if the conditions listed in the triton documentation for [make_tensor_descriptor](https://triton-lang.org/main/python-api/generated/triton.language.make_tensor_descriptor.html) are met.

Some implementation details:
- The `TMACompatibilityChecker` class holds and checks the conditions required for a load / store operation to be represented by a tma descriptor load / store
- The current TMA API requires that the innermost block size loads atleast 16 bytes of data. e.g. if the block shape is [YBLOCK, XBLOCK] and the tensor dtype is float32, this requires that XBLOCK >= 4. It is therefore required that the triton heuristics are aware of the minimum block sizes for the IO operations in the kernel. The minimum block sizes are determined in the `TMACompatibilityChecker` class and are passed to the triton heuristics when the block sizes are not static. The heuristic config options are then filtered to ensure that the minimum block size restriction is met.

Testing:
- Refactored test_torchinductor_strided_blocks.py to also test the `use_tensor_descriptor` option.

This requires an upgrade to Triton version 3.4.0: https://github.com/pytorch/pytorch/issues/154206

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157906
Approved by: https://github.com/jansel
2025-07-11 09:32:40 +00:00
02724b5f64 [Bugfix][Inductor] Fix dependency list merged incorrectly for a custom op with multiple mutated inputs and None return type. (#157133)
This is an attempt to fix a memory allocation issue when using `torch.compile` with a custom layernorm kernel in vllm:
```C++
  // In-place fused Add and RMS Normalization.
  ops.def(
      "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
      "float epsilon) -> ()");
  ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
```
We observed abnormal extra memory allocations with this op enabled using `torch.compile`:
<img width="738" alt="{374E9FCF-FB46-4750-8B60-D31E3ADCE00A}" src="https://github.com/user-attachments/assets/6c45e1aa-ccde-4c56-99dc-bf4776d699d5" />
and without this op:
<img width="738" alt="{9BB08EFE-FFE3-4D06-82C0-C70BBE6ADD56}" src="https://github.com/user-attachments/assets/56e2ee43-ab87-492d-834c-69e9cafbb0df" />

After investigation, we found that this is because the compiler considers the two buffers for the two mutated inputs `Tensor input` and `Tensor residual` should share a same dependency list, which makes it can not reuse the buffer of `Tensor input`.
```
buf1.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
buf16.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
```
```
op13: ExternKernelSchedulerNode(FallbackKernel)
op13.writes =
    [   StarDep(name='buf17', mode=None),
        StarDep(name='buf18', mode=None),
        StarDep(name='buf19', mode=None)]
op13.unmet_dependencies =
    [   StarDep(name='buf13', mode=None),
        StarDep(name='buf16', mode=None),
        WeakDep(name='buf11', mutating_buf='buf18'),
        WeakDep(name='buf12', mutating_buf='buf18'),
        WeakDep(name='buf13', mutating_buf='buf18'),
        WeakDep(name='buf2', mutating_buf='buf18'),
        WeakDep(name='buf3', mutating_buf='buf18')]
op13.met_dependencies = [StarDep(name='arg11_1', mode=None)]
op13.outputs = [
    buf17: FallbackKernel
    buf17.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf17.aliases = ['buf16', 'buf1']
    buf17.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op2'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op9'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op13'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=False),
    ]
    buf18: MutationOutput
    buf18.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf18.mutations = ['buf16']
    buf18.users = [
        NodeUser(node=ExternKernelSchedulerNode(name='op14'), can_inplace=False, is_weak=False),
        NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op24'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op31'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op35'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op42'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op46'), can_inplace=False, is_weak=True),
        NodeUser(node=ExternKernelSchedulerNode(name='op53'), can_inplace=False, is_weak=True),
    ]
    buf19: MutationOutput
    buf19.layout = NoneLayout(device=device(type='cuda', index=0), size=[0], stride=[0])
    buf19.mutations = ['buf1']
    buf19.users = [NodeUser(node=ExternKernelSchedulerNode(name='op20'), can_inplace=False, is_weak=False)]
]
op13.node.kernel = torch.ops._C.fused_add_rms_norm.default
```
Here we can see `buf16` shares the same dependency list with `buf1` because `buf16` and `buf1` are in the aliases list of `buf17`. This is incorrect since those two are two separate tensors. And this makes the compiler could not reuse `buf16` for subsequent ops.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157133
Approved by: https://github.com/jansel
2025-07-11 09:06:31 +00:00
44303caabf [APS] Expose max_autotune lookup table config to frontend (#158070)
Summary: As titled. We reuse optimus config to receive the yaml config file from users

Test Plan:
### how to enable max_autotune lookup table hardcode config

```
            inductor.config.post_grad_fusion_options = {
                "inductor_autotune_lookup_table":  <your yaml manifold path>
            }
```
for example, "manifold://ads_training_p9e/tree/max_autotune/mast_omnifm_v3_1kgpu/mast_omnifm_v3_lookup_table.yaml",

see D78052050

Rollback Plan:

Reviewed By: PaulZhang12, jackiexu1992

Differential Revision: D77202285

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158070
Approved by: https://github.com/Mingming-Ding
2025-07-11 09:02:52 +00:00
11d6ad8b2e [Docs] Update PT2 Profiler Torch-Compiled Region Image (#158066)
Summary: In Pytorch 2.5 we added source code attribution to PT2 traces. Each Torch-Compiled Region will now have its frame id and frame compile id associated with it. Update the image in the doc and add a description of this in the doc itself

Test Plan:
{F1980179183}

Rollback Plan:

Differential Revision: D78118228

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158066
Approved by: https://github.com/aaronenyeshi
2025-07-11 07:56:45 +00:00
cd80f9a4c3 xpu: support custom ops with torch.library on xpu backend (#152879)
Fixes: https://github.com/intel/torch-xpu-ops/issues/1626

This PR started enabling of tests for `torch.library`, but more work is needed. Tests are using `torch._custom_ops` deprecated API planned for removal at pytorch 2.6 (not done). I think cleanup of pytorch would be nice before enabling more tests for xpu.
a2ccda3c60/torch/_custom_op/impl.py (L47)

CC: @EikanWang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152879
Approved by: https://github.com/EikanWang, https://github.com/malfet, https://github.com/guangyey, https://github.com/albanD
2025-07-11 07:36:04 +00:00
442aca44d6 Fix XPU broken CI (#158092)
# Motivation
https://github.com/pytorch/pytorch/pull/157739 introduces the new UT `test_sdpfa` that block XPU CI since `_scaled_dot_product_flash_attention is not supported on XPU yet`.

# Additional Context
See https://github.com/pytorch/pytorch/actions/runs/16201010860/job/45741815895?pr=138222#step:15:6399
fix https://github.com/pytorch/pytorch/issues/158095

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158092
Approved by: https://github.com/jansel, https://github.com/malfet
2025-07-11 07:23:27 +00:00
d89f30ad45 [MPS] Avoid calling tensor ops in max_pool3d impl (#157874)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157874
Approved by: https://github.com/malfet
2025-07-11 06:47:29 +00:00
b4fc42ca80 Add torch.segment_reduce docs (#154352)
Fixes #153138

## Test Result

![image](https://github.com/user-attachments/assets/62346d62-d048-4259-906b-f8261e10b4cc)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154352
Approved by: https://github.com/albanD
2025-07-11 06:16:38 +00:00
cec59b76ca [2/N] cost coverage improvment (#157738)
Part of plan https://github.com/pytorch/pytorch/issues/157495.

Details:
1. Fill in missing redistribute_cost in `cat` and `slice_scatter`;
2. Expand the `cat` strategy based on placement of each input tensor. Previously `cat` only outputs one strategy. Now it output at the level of number_of_input_tensor*number_OpSpec_each_tensor_input_strategy.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157738
Approved by: https://github.com/wconstab
2025-07-11 05:54:16 +00:00
ecd73c58ee Revert "[BE] Replace std::runtime_error with TORCH_CHECK [2/N] (#152080)"
This reverts commit b85f10ea5006e8ae8fc769f48659ab7ad5eafb69.

Reverted https://github.com/pytorch/pytorch/pull/152080 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing some internal tests ([comment](https://github.com/pytorch/pytorch/pull/152080#issuecomment-3060337857))
2025-07-11 03:58:31 +00:00
94995eba07 [Log] add a hook for recompile user context (#157961)
Users may want compile-related but customized logging info to dynamo_compile. One example is to logging the current training iteration index when recompilation happens. In general, current training iteration index is not available to compiler, since the same compiled function may be called multiple times in the same training iteration. The user could provide the training iteration index in a user hook where torch.compile logs it when recompilation happens.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157961
Approved by: https://github.com/masnesral
2025-07-11 03:41:33 +00:00
11a86ad2fa Remove pytorch quant docs since we are moving to torchao (#157766)
Summary:
att

Test Plan:
doc page generated from CI

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157766
Approved by: https://github.com/Skylion007
2025-07-11 03:21:47 +00:00
dd93883231 [exported_program] Remove _postprocess_graph_module_outputs (#158059)
Summary: Appears to be dead as of https://github.com/pytorch/pytorch/pull/120019.

Test Plan:
CI

Rollback Plan:

Differential Revision: D78112302

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158059
Approved by: https://github.com/angelayi
2025-07-11 02:40:15 +00:00
326e751d07 [AOTI] Add device guard when launching autotune kernels (#158034)
Summary: Fix https://github.com/pytorch/pytorch/issues/157737. When launching Triton kernels in the autotune block, we need to consider the fact that the model may not always be on device 0. The reason this was not caught on CI is because test_on_gpu_device1 requires multi_gpu and was not run on a multi_gpu instance. Added test_on_gpu_device1 and other similar multi_gpu tests back.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158034
Approved by: https://github.com/eqy, https://github.com/yushangdi
2025-07-11 02:34:31 +00:00
7d4228dbfd Fix logdet returning finite values for singular matrices on CUDA (#157910)
Fixes https://github.com/pytorch/pytorch/issues/154312

Fix logdet returning finite values for singular matrices on CUDA (https://github.com/pytorch/pytorch/issues/154312
https://github.com/pytorch/pytorch/issues/154312)

PyTorch's logdet function returns mathematically incorrect finite values for
singular matrices on CUDA devices instead of the expected -inf. This occurs
because cuSOLVER and LAPACK produce tiny non-zero diagonal elements (~1e-16)
instead of exact zeros for singular matrices.

**Problem:**
Issue https://github.com/pytorch/pytorch/issues/154312 matrix returns finite values instead of -inf for singular matrices.

**Solution:**
Implemented NumPy-style two-tier singularity detection with GPU sync point removal:

1. **Primary detection**: Use LAPACK's built-in singularity detection via info parameter
2. **Backup detection**: Apply threshold-based detection for numerical edge cases
3. **Zero GPU sync points**: Eliminated all .item(), std::get<0>(), and scalar extractions
4. **Pure tensor operations**: All computations use tensor operations throughout

**Performance Impact:**
Based on comprehensive benchmarking across matrix sizes and data types:

- **Overall Impact**: 0.85× average speedup (+18.0% overhead)
- **CPU Performance**: 0.84× average speedup (+18.8% overhead)
- **CUDA Performance**: 0.85× average speedup (+17.3% overhead)

**Performance Trade-offs:**
- **Small matrices (16×16, 64×64)**: Higher overhead due to tensor operation setup costs
- **Large matrices (512×512, 2048×2048)**: Near-zero overhead, with some cases showing slight improvements
- **GPU sync elimination**: Removes expensive GPU→CPU synchronization bottlenecks

**Results:**
-  All singular matrices now correctly return -inf on both CPU and CUDA
-  Original issue https://github.com/pytorch/pytorch/issues/154312 matrix now works correctly
-  Results match NumPy's slogdet behavior exactly
-  Zero GPU synchronization points for improved performance
-  Comprehensive edge case testing added

**Verification:**
Before: torch.linalg.slogdet(singular_matrix) → finite values (incorrect)
After:  torch.linalg.slogdet(singular_matrix) → (sign=0, logabsdet=-inf) 

The implementation uses pure tensor operations to eliminate GPU sync points while
maintaining robust singularity detection through a two-tier approach.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157910
Approved by: https://github.com/lezcano, https://github.com/IvanYashchuk, https://github.com/albanD

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-11 02:23:46 +00:00
65fcca4f8c Enable AcceleratorAllocatorConfig key check (#157908)
# Motivation
Add a mechanism to ensure raise the key if the key is unrecognized in allocator config.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157908
Approved by: https://github.com/albanD
ghstack dependencies: #149601
2025-07-11 02:11:08 +00:00
905b084690 Add size_hints to cache key (#158026)
Differential Revision: D78089705

Previously to support overriding autotune configs for post fusion kernels in Inductor with a lookup table, we only keyed on the source code. However, the same source code could have multiple optimal configs, due to the input sizes. With this, we have many collisions in our lookup table, leading to subpar configs. A way around this is to add the size_hints to the lookup key as well

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158026
Approved by: https://github.com/jansel
2025-07-11 01:47:50 +00:00
37ccc532f7 Update'unit_batch_dynamic_prepacked' tests to use ASSERT_NEAR instead of ASSERT_EQ (#157860) (#157861)
Summary:

Replaced ASSERT_FLOAT_EQ which defaults to fixed kMaxUlps ( = 4-ULP , See gtest-internal.h) with ASSERT_NEAR which lets us set epsilon to 1e-3, (approximately 3 ULPs). This allows for slightly stricter and tunable comparison.

Test Plan:
**Before Fix**

✗ Fail:
qnnpack:pytorch_qnnpack_testApple - FULLY_CONNECTED_SPARSE_OP_8x1/unit_batch_dynamic_prepacked (0.0s)
'Expected equality of these values:
  output_dynamic[i * outputChannels() + c]
    Which is: 9.9160004
  accumulators_float[i * outputChannels() + c]
    Which is: 9.9159956
at 0, 17: reference = 9.9159955978393555, optimized = 9.9160003662109375

------------------------------

**After Fix**

Everything passes

Rollback Plan:

Differential Revision: D77911682

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157861
Approved by: https://github.com/kimishpatel, https://github.com/lucylq, https://github.com/malfet
2025-07-11 01:05:50 +00:00
7599bebead Add CPython test test_itertools (#156981)
Test the itertools module

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156981
Approved by: https://github.com/zou3519
ghstack dependencies: #157799, #157800, #157801, #157802
2025-07-11 00:12:50 +00:00
397ca98510 Add CPython test test_with (#157802)
Test with statement behavior and dunder methods __enter__ and __exit__
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157802
Approved by: https://github.com/zou3519
ghstack dependencies: #157799, #157800, #157801
2025-07-11 00:12:50 +00:00
4809f43867 Add CPython test test_numeric_tower (#157801)
Test abstract numeric types and dunder methods like __int__, __float__, __index__, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157801
Approved by: https://github.com/zou3519
ghstack dependencies: #157799, #157800
2025-07-11 00:12:50 +00:00
0ebf2447da Add CPython test test_operator (#157800)
Test operators via operator module like add, sub, eq, lt, etc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157800
Approved by: https://github.com/zou3519
ghstack dependencies: #157799
2025-07-11 00:12:50 +00:00
91041f559d Add CPython test test_bool (#157799)
Test dunder methods `__bool__` and `__len__`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157799
Approved by: https://github.com/zou3519, https://github.com/XuehaiPan
2025-07-11 00:12:50 +00:00
ae86e8f6c8 [1/N] cost coverage improvment (#157504)
Part of plan https://github.com/pytorch/pytorch/issues/157495.

Details:
1. Fill missing redistribute_cost for ops like `aten::detach`, `aten::bernoulli `, `aten::_to_copy`, `aten::bucketize.Tensor`, `aten::stack`, `aten::clone`, `aten::copy_`, `aten::zero_ `.
2.  Fix redistribute_cost error in new_factory_strategy.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157504
Approved by: https://github.com/wconstab
2025-07-10 23:55:45 +00:00
8b68e5b1bb [ROCm][Inductor][CK] update API for gemm-multiD change (#156122)
Fixes for the compilation errors in the generated code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156122
Approved by: https://github.com/chenyang78
2025-07-10 23:12:20 +00:00
e517066f41 Revert "[dynamo][fsdp] Consistent behavior of int attributes (#157262)"
This reverts commit 178fe7aa98987111a73534375099f4ad255e8b59.

Reverted https://github.com/pytorch/pytorch/pull/157262 on behalf of https://github.com/huydhn due to This fails some internal tests and needs to be relanded ([comment](https://github.com/pytorch/pytorch/pull/157262#issuecomment-3059463896))
2025-07-10 23:11:18 +00:00
1a195bf7d6 Tests for #158030 (#158033)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158033
Approved by: https://github.com/bdhirsh, https://github.com/albanD
ghstack dependencies: #158030
2025-07-10 22:51:28 +00:00
bfcababbcb [OrderedDict] Implement explicit OrderedDict dunder method call (#154943)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154943
Approved by: https://github.com/zou3519
ghstack dependencies: #154003, #154793, #154794, #154942
2025-07-10 22:50:39 +00:00
ba71eb496b [dict] Implement dict.__eq__ and dict.__ne__ (#154942)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154942
Approved by: https://github.com/zou3519
ghstack dependencies: #154003, #154793, #154794
2025-07-10 22:50:39 +00:00
ba8d19ec02 [dict] Allow Dynamo to trace through explicit dict dunder method call (#154794)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154794
Approved by: https://github.com/mlazos
ghstack dependencies: #154003, #154793
2025-07-10 22:50:39 +00:00
57d64298a0 [dict] Add dict.popitem (#154793)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154793
Approved by: https://github.com/mlazos, https://github.com/zou3519
ghstack dependencies: #154003
2025-07-10 22:50:39 +00:00
e84710d1e7 [dict] Raise TypeError in dict methods (#154003)
Raise TypeError in the following scenarios:
* #args mismatch
* arg is unhashable
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154003
Approved by: https://github.com/mlazos, https://github.com/zou3519
2025-07-10 22:50:39 +00:00
9bf41633d7 Allow Custom Time Unit When Printing Profiler Table (#157913)
## Overview
This PR adds a kwarg to the `table()` method of the profiler allowing users to specify a time unit to be used for all results in the profiling table. The available options are: `s`, `ms` and `us`. If an invalid unit or no unit is provided, then a time unit is selected based on the size of the value (current default behaviour).

## Testing
A unit test has been added to verify this works correctly.

## Documentation
I couldn't find any documentation specific to the `table()` function beyond doc strings which have been updated.

## Example Output
```
import torch
from torch.profiler import profile

with profile() as prof:
    res = torch.mm(torch.rand(1024, 1024), torch.rand(1024, 1024))

print(prof.key_averages().table(time_unit="s"))
print(prof.key_averages().table(time_unit="ms"))
print(prof.key_averages().table(time_unit="us"))
print(prof.key_averages().table())

```

```
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
            aten::rand         0.04%        0.000s        10.36%        0.014s        0.007s             2
           aten::empty         0.04%        0.000s         0.04%        0.000s        0.000s             2
        aten::uniform_        10.27%        0.014s        10.27%        0.014s        0.007s             2
              aten::mm        89.64%        0.119s        89.64%        0.119s        0.119s             1
    aten::resolve_conj         0.00%        0.000s         0.00%        0.000s        0.000s             3
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 0.133s

----------------------  ------------  ------------  ------------  ------------  ------------  ------------
                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
            aten::rand         0.04%       0.055ms        10.36%      13.735ms       6.868ms             2
           aten::empty         0.04%       0.054ms         0.04%       0.054ms       0.027ms             2
        aten::uniform_        10.27%      13.626ms        10.27%      13.626ms       6.813ms             2
              aten::mm        89.64%     118.892ms        89.64%     118.896ms     118.896ms             1
    aten::resolve_conj         0.00%       0.004ms         0.00%       0.004ms       0.001ms             3
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 132.631ms

----------------------  ------------  ------------  ------------  ------------  ------------  ------------
                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
            aten::rand         0.04%      55.495us        10.36%   13735.202us    6867.601us             2
           aten::empty         0.04%      54.121us         0.04%      54.121us      27.061us             2
        aten::uniform_        10.27%   13625.586us        10.27%   13625.586us    6812.793us             2
              aten::mm        89.64%  118892.284us        89.64%  118895.981us  118895.981us             1
    aten::resolve_conj         0.00%       3.697us         0.00%       3.697us       1.232us             3
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 132631.183us

----------------------  ------------  ------------  ------------  ------------  ------------  ------------
                  Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
            aten::rand         0.04%      55.495us        10.36%      13.735ms       6.868ms             2
           aten::empty         0.04%      54.121us         0.04%      54.121us      27.061us             2
        aten::uniform_        10.27%      13.626ms        10.27%      13.626ms       6.813ms             2
              aten::mm        89.64%     118.892ms        89.64%     118.896ms     118.896ms             1
    aten::resolve_conj         0.00%       3.697us         0.00%       3.697us       1.232us             3
----------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 132.631ms
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157913
Approved by: https://github.com/sraikund16
2025-07-10 22:44:34 +00:00
83700b4488 dist2: add group context manager (#157988)
This adds new context manager based PG management to dist2. This allows for managing the active process group much in the same way as a stream

```py
with dist2.process_group(pg):
   dist2.current_process_group().allreduce(...).wait()
```

matches

```py
with torch.cuda.stream(stream):
    torch.cuda.current_stream().synchronize()
```

Test plan:

```
pytest test/distributed/test_dist2.py -k context
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157988
Approved by: https://github.com/fduwjj
2025-07-10 22:30:19 +00:00
fca7013f85 Fix DCE eliminating random operations by improving is_impure() (#151524) (#157981)
DCE was incorrectly eliminating unused random operations like torch.rand() that have global RNG side effects, causing inconsistent results between eager and compiled execution modes.

**Root cause**: Python random functions (torch.rand, torch.randn, etc.) don't have the _nondeterministic_seeded attribute, so node.is_impure() returns False, allowing DCE to eliminate them despite advancing global RNG state.

**Solution**: Enhanced is_impure() in torch/fx/node.py to recognize Python random functions and mark them as impure when they use global RNG, regardless of the impure_random parameter setting. This ensures consistency between eager and compiled execution even when config.fallback_random=False.

**Key features**:
- Handles comprehensive list of random functions: rand, randn, randint, randperm, rand_like, randn_like, randint_like, normal, poisson, bernoulli, multinomial
- Generator optimization: Only marks as impure when using global RNG (no generator or generator=None). Operations with explicit generators don't affect global state and can be optimized.
- Works with both impure_random=True and impure_random=False cases
- Cleaner architecture: addresses root cause rather than working around it

**Tests**: Enhanced test_impure_random to verify both FX tracing and AOT compilation codepaths, ensuring random operations are preserved and eager/compiled execution consistency is maintained.

🤖 Generated with [Claude Code](https://claude.ai/code)

Fixes https://github.com/pytorch/pytorch/issues/151524

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157981
Approved by: https://github.com/mlazos

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-10 22:24:29 +00:00
590607c599 [cuDNN][SDPA] Bump cuDNN frontend submodule version to 1.12.1 (#158044)
Really we are just interested in this change which fixes an apparent regression for d=256 support on Hopper bc5f4fd88d

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158044
Approved by: https://github.com/Skylion007
2025-07-10 22:01:18 +00:00
5f1225ef48 [EZ][BE] Delete redundant header (#157966)
Not sure why it was there in the first place. And why `Indexing.m`` needed to include QScheme.h is also unclear
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157966
Approved by: https://github.com/Skylion007
2025-07-10 21:59:36 +00:00
96897e721b Return false in statically_known_multiple_of if numerator has more than 20 unique symbols (#157855)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157855
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #155590, #157845
2025-07-10 21:00:57 +00:00
d7e0098bf3 Fix is_unaligned usage of statically_known_true (#157845)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157845
Approved by: https://github.com/ColinPeppler
ghstack dependencies: #155590
2025-07-10 21:00:57 +00:00
76ca23c41c [dynamo] Add FakeProcessGroup support for fx_graph_runnable with distributed collectives (#157162)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

Summary:
- Modified generate_compiler_repro_string() to automatically detect distributed operations and inject FakeProcessGroup setup code
- Added distributed collective tests in test/dynamo/test_fx_graph_runnable.py using FakeProcessGroup API to test distributed collective operations
- Generated fx_graph_runnable code now runs successfully standalone when containing distributed operations

```import os
os.environ['TORCHINDUCTOR_CACHE_DIR'] = '/var/folders/fd/kcv8m1kn0lqgxz42wvgr46sc0000gn/T/torchinductor_skarjala'

import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims
import torch.distributed as dist
from torch.testing._internal.distributed.fake_pg import FakeStore

import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config

torch._functorch.config.functionalize_rng_ops = False
torch._functorch.config.fake_tensor_allow_unsafe_data_ptr_access = True
torch._functorch.config.unlift_effect_tokens = True

isolate_fails_code_str = None

# torch version: 2.9.0a0+gitf23d314
# torch cuda version: None
# torch git version: f23d31463ca452918e23063409a2bdc55efc0d46

# torch.cuda.is_available()==False, no GPU info collected

from torch.nn import *
class Repro(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, arg0_1):
        all_reduce = torch.ops._c10d_functional.all_reduce.default(arg0_1, 'sum', '0')
        wait_tensor = torch.ops._c10d_functional.wait_tensor.default(all_reduce);  all_reduce = None
        mul = torch.ops.aten.mul.Tensor(wait_tensor, 2)
        copy_ = torch.ops.aten.copy_.default(arg0_1, wait_tensor);  arg0_1 = wait_tensor = copy_ = None
        return (mul,)

def load_args(reader):
    buf0 = reader.storage(None, 64)
    reader.tensor(buf0, (4, 4), is_leaf=True)  # arg0_1
load_args._version = 0
mod = Repro()
if __name__ == '__main__':
    from torch._dynamo.repro.after_aot import run_repro
    # Initialize FakeProcessGroup for distributed operations
    store = FakeStore()
    dist.init_process_group(
        backend="fake",
        rank=0,
        world_size=2,
        store=store
    )
    with torch.no_grad():
        run_repro(mod, load_args, accuracy=False, command='run', save_dir=None, tracing_mode='real', check_str=None)
        # To run it separately, do
        # mod, args = run_repro(mod, load_args, accuracy=False, command='get_args', save_dir=None, tracing_mode='real', check_str=None)
        # mod(*args)
    dist.destroy_process_group()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157162
Approved by: https://github.com/xmfan
2025-07-10 20:30:27 +00:00
a3ec6d64b2 Update test after CUTLASS upgrade (#157903)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157903
Approved by: https://github.com/ngimel
2025-07-10 20:10:20 +00:00
8c5b070d1f Documentation Fix: torch.tensor.scatter_ docs (#157929)
updated torch.tensor.scatter_ docs to reflect proper broadcasting behavior

Fixes #157419

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157929
Approved by: https://github.com/albanD
2025-07-10 19:22:52 +00:00
da4e7c77a1 [caffe2] Enable auto vectorization (#157984)
Summary:
We are testing enabling back autovectorization in some codepaths.
These resulted in crashes when compiling using clang17, we are now relying on clang19.

Test Plan:
buck2 build //caffe2/caffe2/fb/transforms:sigrid_interface

We are going to deploy it on ads workloads

Rollback Plan:

Differential Revision: D77448445

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157984
Approved by: https://github.com/Skylion007
2025-07-10 19:19:45 +00:00
5bd7804be2 Support caching if joint_custom_pre_pass/joint_custom_post_pass implement the proper interface (#157990)
Summary: Essentially, treat joint_custom_pre_pass/joint_custom_post_pass the same as post_grad_custom_post_pass/post_grad_custom_pre_pass.

Test Plan: More unit tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157990
Approved by: https://github.com/oulgen
2025-07-10 19:17:11 +00:00
e172309880 Documentation Fix: Torch gather broadcasting (#157920)
updated torch gather docs to reflect proper broadcasting behavior for specific backends

Fixes #157425

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157920
Approved by: https://github.com/albanD
2025-07-10 19:08:51 +00:00
e2f64eedaf Fix DTensor handling of conjugate bit. (#158030)
Fixes https://github.com/pytorch/pytorch/issues/130646 specifically for DTensor

Fixes https://github.com/pytorch/torchtitan/issues/267

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158030
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2025-07-10 18:28:12 +00:00
2db1a54465 Add deprecation hint for accelerator APIs (#158013)
[torch.accelerator.set_device_idx](https://docs.pytorch.org/docs/stable/generated/torch.accelerator.set_device_idx.html#torch.accelerator.set_device_idx) and [torch.accelerator.current_device_idx](https://docs.pytorch.org/docs/stable/generated/torch.accelerator.current_device_idx.html#torch.accelerator.current_device_idx) are deprecated, but not reflect in their docs.

## Test Result

### Before
![image](https://github.com/user-attachments/assets/6e0d8c4a-d5e5-420c-8f3a-b2742f0fe263)
![image](https://github.com/user-attachments/assets/4bd99b15-31dc-4043-82e8-3d2c1dfcb57b)
![image](https://github.com/user-attachments/assets/a3d342da-79f2-4950-b17a-d01257603c97)

### After

![image](https://github.com/user-attachments/assets/faf138a8-bd92-4f31-bd7c-4414aee6da5b)
![image](https://github.com/user-attachments/assets/212456bc-1c6b-48c6-9d8c-075d5096b900)
![image](https://github.com/user-attachments/assets/49bb9c8c-203e-424e-bdc0-0f197239146e)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158013
Approved by: https://github.com/guangyey, https://github.com/albanD
2025-07-10 18:09:22 +00:00
e3f8141c25 Fix UB in BFloat16 round_to_nearest_even (#157942)
Type punning using unions is undefined behavior in C++ (you may not access a member of a union that is not the active member). bit_cast is the right way.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157942
Approved by: https://github.com/Skylion007
2025-07-10 18:03:39 +00:00
a9ac9f2635 [cutlass backend] Change serialization protocol to use more json and cache (#157840)
Differential Revision: [D77949177](https://our.internmc.facebook.com/intern/diff/D77949177/)

What this diff does:
* use lru_cache for serialization and deserialization
* json dumps more. This seems to help perf.

For instantiation level 3332, the loading time decreases from 33s to 20s (roughly 40%) decrease.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157840
Approved by: https://github.com/ColinPeppler
ghstack dependencies: #157839
2025-07-10 17:44:33 +00:00
1d0f45d5d1 [c10d][PGNCCL] Cleanup unused params for nccl comm split (#157978)
Previously we add global ranks as a input params for nccl comm. Now this is not needed, let's clean that up.

Differential Revision: [D78051047](https://our.internmc.facebook.com/intern/diff/D78051047)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157978
Approved by: https://github.com/Skylion007
2025-07-10 17:36:23 +00:00
b40c0b61eb Make guard collective logging less chatty (#157995)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157995
Approved by: https://github.com/Microve, https://github.com/albanD, https://github.com/Skylion007
2025-07-10 17:18:37 +00:00
fb45649df7 [cutlass backend] Make config request key depend on serialization.py and cutlass_utils.py (#157839)
Differential Revision: [D77893241](https://our.internmc.facebook.com/intern/diff/D77893241/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157839
Approved by: https://github.com/ColinPeppler
2025-07-10 17:09:32 +00:00
7caf6c801d [ez][CI] Add docker instructions for linux build (#157974)
Copied from linux-test.yml

I'm not sure how necessary this is because the wiki also has this info, and has more details about it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157974
Approved by: https://github.com/huydhn
2025-07-10 16:15:28 +00:00
493bd625e2 Revert "[BE]: Reduce binary size 40% using aggressive fatbin compression. (#157791)"
This reverts commit 9bdf87e8918b9a3f78d7bcb8a770c19f7c82ac15.

Reverted https://github.com/pytorch/pytorch/pull/157791 on behalf of https://github.com/albanD due to Reverting to avoid regressing on the driver supported ([comment](https://github.com/pytorch/pytorch/pull/157791#issuecomment-3058091176))
2025-07-10 16:14:06 +00:00
4781d72faa [AOTI] codegen for static linkage (#157129)
Design doc: https://docs.google.com/document/d/1ncV7RpJ8xDwy8-_aCBfvZmpTTL824C-aoNPBLLVkOHM/edit?tab=t.0 (internal)

- Add codegen for static linkage
- refactor test code for test_compile_after_package tests

For now,  the following options must be used together with `"aot_inductor.compile_standalone": True`.
"aot_inductor.package_cpp_only": True,

Will change `"aot_inductor.package_cpp_only"` to be automatically set to True in followup PR.

```
python test/inductor/test_aot_inductor_package.py -k test_compile_after_package
python test/inductor/test_aot_inductor_package.py -k test_run_static_linkage_model
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157129
Approved by: https://github.com/desertfire
2025-07-10 16:03:50 +00:00
9bdf87e891 [BE]: Reduce binary size 40% using aggressive fatbin compression. (#157791)
NVCC apparently has a [compression-mode flag](https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#compress-mode-default-size-speed-balance-none-compress-mode) to tell it how you want to compress the fatbinary since 12.4. This mode defaults to speed (pick a low compression mode that loads the file quickly). Since we are running into PyPi size issues, this will allow us to upload smaller wheel files.

From: https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#compress-mode-default-size-speed-balance-none-compress-mode
```
size
Uses a compression mode more focused on reduced binary size, at the cost of compression and decompression time.
```

Up to 37.2%  reduction in binary size with virtually no drawback (except potentially a little slower loading of the .so at PyTorch startup).

694 MB for CUDA 12.9 builds with 6.0;7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX
vs
1.08GB for CUDA 12.9 builds with 7.5;8.0;8.6;9.0;10.0;12.0+PTX

CUDA 12.9 ***694MB*** vs ***1.08GB***

CUDA 12.8 ***604MB*** vs ***845MB***

This ends up saving PyPi.org approximately 19.6 PiB of bandwidth per month for the CUDA 12.9 case.

This will also allow us to add back CUDA 12.8 12.0+PTX which will make the package forward compatible on newer GPUs. Undoing the need for PR https://github.com/pytorch/pytorch/pull/157516 and https://github.com/pytorch/pytorch/pull/157634

<img alt="Screenshot 2025-07-08 at 5 36 44 PM" width="1061" src="https://private-user-images.githubusercontent.com/7563158/463890713-a53ec774-b036-4c0b-a5d5-301756e3644f.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NTIwNzY3OTIsIm5iZiI6MTc1MjA3NjQ5MiwicGF0aCI6Ii83NTYzMTU4LzQ2Mzg5MDcxMy1hNTNlYzc3NC1iMDM2LTRjMGItYTVkNS0zMDE3NTZlMzY0NGYucG5nP1gtQW16LUFsZ29yaXRobT1BV1M0LUhNQUMtU0hBMjU2JlgtQW16LUNyZWRlbnRpYWw9QUtJQVZDT0RZTFNBNTNQUUs0WkElMkYyMDI1MDcwOSUyRnVzLWVhc3QtMSUyRnMzJTJGYXdzNF9yZXF1ZXN0JlgtQW16LURhdGU9MjAyNTA3MDlUMTU1NDUyWiZYLUFtei1FeHBpcmVzPTMwMCZYLUFtei1TaWduYXR1cmU9Yzg1OGExN2VjYmI3ZDFhNjIwZDk0NTBjOWFlZDIzYzY3MmExYTFiOGZhZjc0NTI1ZTk2YzM3YzdhYzkyYzZlMiZYLUFtei1TaWduZWRIZWFkZXJzPWhvc3QifQ.2-YmmfXrBFuXCrjDCQ_iTgbtbwv9xNFqM6Goc_liDKE">

More details can be found in Nvidia's technical blog for CUDA 12.4: https://developer.nvidia.com/blog/runtime-fatbin-creation-using-the-nvidia-cuda-toolkit-12-4-compiler/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157791
Approved by: https://github.com/malfet, https://github.com/atalman
2025-07-10 15:51:04 +00:00
f85954e043 Update OpenBLAS commit (#151547)
Motivation: Update OpenBLAS and change build script to enable SBGEMM kernels . Update pytorch `jammy` builds for aarch64 to use `install_openblas.sh` instead of `conda_install`

Link to full [TorchInductor Performance Dashboard AArch64](https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Fri%2C%2006%20Jun%202025%2009%3A46%3A35%20GMT&stopTime=Fri%2C%2013%20Jun%202025%2009%3A46%3A35%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cpu%20(aarch64)&lBranch=adi/update_openblas&lCommit=0218b65bcf61971c1861cfe8bc586168b73aeb5f&rBranch=main&rCommit=9d59b516e9b3026948918e3ff8c2ef55a33d13ad)

1. This shows a promising speedup across most of the HF models in benchmark, specifically giving a significant boost to SDPA layers.
2. Overall torch-bench pass-rate (cpp_wrapper mode) increased `[87%, 65/75 → 96%, 72/75]`

<img width="676" alt="Screenshot 2025-06-20 at 17 05 15" src="https://github.com/user-attachments/assets/2ca9c1bc-80c6-464a-8db6-b758f2476582" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151547
Approved by: https://github.com/malfet, https://github.com/snadampal, https://github.com/fadara01

Co-authored-by: Christopher Sidebottom <chris.sidebottom@arm.com>
Co-authored-by: Ryo Suzuki <ryo.suzuki@arm.com>
Co-authored-by: Ye Tao <ye.tao@arm.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-07-10 14:58:12 +00:00
7702855228 [logging] dynamo_timed the synchronize in CachingAutotuner make_launchers (#157747)
Summary: There's some evidence that some very long compile times are actually attributable to the sync. This should make it easier to say for sure.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157747
Approved by: https://github.com/aorenste, https://github.com/mlazos
2025-07-10 14:48:51 +00:00
9a5278225f [CUDA] Use runtime driver API for cuStreamWriteValue32 (#156097)
Fixes  #154073

Reference: https://github.com/NVIDIA/Fuser/pull/4197

See PR #154097

@nWEIdia is currently out of the office, so I’ve temporarily taken over his work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156097
Approved by: https://github.com/syed-ahmed, https://github.com/wujingyue, https://github.com/atalman

Co-authored-by: Wei Wang <weiwan@nvidia.com>
2025-07-10 14:38:18 +00:00
8532033679 RPC tutorial audit (#157938)
Fix [T228333894](https://www.internalfb.com/intern/tasks/?t=228333894)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157938
Approved by: https://github.com/AlannaBurke
2025-07-10 14:15:37 +00:00
8dff457f42 [simple_fsdp] Port fx pass to bucket reduce_scatters (#157780)
Porting fx passes for reduce_scatters bucketing (similar to all_gather bucketing) for simple_fsdp and autoparallel testing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157780
Approved by: https://github.com/wconstab
2025-07-10 14:04:43 +00:00
a9537b626c [standalone_compile] Fix single Tensor outputs from split_module (#157803)
We assumed that the output in an FX graph would always just be a
list[Tensor], even in the single tensor return case.
It is possible for the output to be a single Tensor. This can happen
by calling torch.fx.split_module on the module.

Test Plan:
- new test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157803
Approved by: https://github.com/oulgen
2025-07-10 12:49:03 +00:00
82765dad16 Fix logging of config_suppress_errors and config_inline_inbuilt_nn_modules (#157947)
Currently ~50% of the time we fail or crash before logging metrics, so moving where this is logged will let us have more comprehensive (less-null) data.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157947
Approved by: https://github.com/masnesral, https://github.com/jovianjaison
2025-07-10 12:05:43 +00:00
cd995bfb2a [inductor] re-enable TMA templates w/ AOTI (#157819)
Follow-up from #155896: now that AOTI can codegen non-null TMA workspace args, we can re-enable TMA templates w/ AOTI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157819
Approved by: https://github.com/drisspg
2025-07-10 08:35:29 +00:00
1e8e9f745e Introduce AcceleratorAllocatorConfig as the common class (#149601)
# Motivation
This PR aims to generalize `AllocatorConfig` to be device-agnostic. Introduce the class `AcceleratorAllocatorConfig` to clarify its scope as a configuration manager for accelerator backends (e.g., CUDA, XPU). The another name `AllocatorConfig` is now reserved for a potential future base class that can unify configuration handling for both CPU and accelerator allocators, should similar requirements arise for the CPU path.

# Design Rule
## Overall
This class configures memory allocation for both device and host memory. A single `AcceleratorAllocatorConfig` instance is shared across all accelerator backends, such as CUDA and XPU, under the assumption that relevant environment variables apply uniformly to all accelerators. Device-specific configuration extensions are supported via hooks (see `registerDeviceConfigParserHook`).
Introduce a new class `ConfigTokenizer` to help process the env variable config key-value pair

## Naming Convention:
- Public API names in `AcceleratorAllocatorConfig` should be device-generic.
- Members prefixed with `pinned_` are specific to the host/pinned allocator.
- Environment variable names should be generic across backends.
- Comma-separated key-value pairs in the format: `key:value`. Use square brackets `[]` for list values Example: `key1:123, key2:[val1,val2]`

## Environment Variables:
- The default environment variable for configuration is `PYTORCH_ALLOC_CONF`.
- For backward compatibility, `PYTORCH_CUDA_ALLOC_CONF` and `PYTORCH_HIP_ALLOC_CONF` are also supported with lower priority.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149601
Approved by: https://github.com/albanD
2025-07-10 07:05:39 +00:00
af3d069094 [BE][Easy] remove unused build-time dependency astunparse and change astunparse.unparse -> ast.unparse (#157907)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157907
Approved by: https://github.com/Skylion007
2025-07-10 07:04:42 +00:00
ba0d0de5e6 Enable set SDPA backend by torch.nn.attention.sdpa_kernel on XPU (#156669)
Introduces support for a new `OVERRIDEABLE` backend in the SDPA module, improves backend selection logic, and adds corresponding tests. In addition, a fallback mechanism was added when a specific backend is unavailable, enhancing user configurability.

### Backend Support and Selection Enhancements:
* Added `at::SDPBackend::overrideable` to the list of available SDPA backends in the `Context` class (`aten/src/ATen/Context.h`).
* Updated the backend selection logic in `select_sdp_backend_xpu` to include the `OVERRIDEABLE` backend and added a fallback mechanism for unsupported `FLASH_ATTENTION` on XPU.
* Adjusted error messaging in `_fused_sdp_choice_xpu` to reflect the inclusion of the `OVERRIDEABLE` backend. (`aten/src/ATen/native/mkldnn/xpu/Attention.cpp`)

### Test Additions for Backend Fallback and Selection:
* Added new unit tests to validate fallback behavior for `FLASH_ATTENTION` to `OVERRIDEABLE` and to verify correct backend selection when `MATH` is enabled. (`test/test_transformers.py`,)

### Codebase Updates for Backend Integration:
* Introduced `OVERRIDEABLE` as a new member of the `_SDPBackend` enum. (`torch/_C/__init__.pyi.in`)
* Extended `_backend_names` and updated related methods to handle the `OVERRIDEABLE` backend. (`torch/nn/attention/__init__.py`)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156669
Approved by: https://github.com/guangyey, https://github.com/drisspg
2025-07-10 06:52:22 +00:00
4cc13c4af6 [dynamic shapes] avoid unnecessary slices (#157528)
Fixes #157289, by extending optimization to slices where the end index exceeds the size.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157528
Approved by: https://github.com/angelayi
2025-07-10 06:34:46 +00:00
565fd07909 [Easy] Make the error message shown by THPUtils_unpackLong to be clearer (#157886)
As the title stated.

The error message of `THPUtils_unpackLong` is the same as `THPUtils_unpackInt`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157886
Approved by: https://github.com/Skylion007
2025-07-10 06:26:13 +00:00
b85f10ea50 [BE] Replace std::runtime_error with TORCH_CHECK [2/N] (#152080)
Part of: #148114

Related commits:

- #151880

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152080
Approved by: https://github.com/cyyever, https://github.com/albanD
2025-07-10 06:02:47 +00:00
fadc936fad Updates to build and test on Noble (Ubuntu24.04) and py3.12 (#152240)
This PR enables Ubuntu24.04 testing on CI:
* Builds a base docker image using Noble (Ubuntu24.04) and py3.12 for ROCm N version
* Builds and tests PyTorch on Ubuntu24.04 as part of the `rocm-mi300` workflow

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152240
Approved by: https://github.com/jeffdaily, https://github.com/malfet
2025-07-10 05:55:42 +00:00
b7860c7863 Implement fast exp for AVX2 and AVX512 for the flash attention (#151441)
**Implement fexp for avx2 and avx512**

Cristiano and all propose a clever exp using the IEEE representation with a fine control of the precision, especially useful
for mix computation of the flash attention.

- Implement Fast Exponential Computation on SIMD Architectures
  A. Cristiano I. Malossi, Yves Ineichen, Costas Bekas, and Alessandro Curioni
- AVX2 and AVX512 float only, up to 20% faster for mix precision flash attention
  than the current implementation.
- For the other types legacy implementation.

**Precision**

1 ULP only valid in hybrid mode fp32 -> f16 due to the cast during the
store operation in the flash attention:

**Benchmark**

Machine Xeon 6972P, results in TOPs, Python forward pass flash attention

numhead 16, Head dimension 64

|Seq. L.| PT   | fexp |
|-------|------|------|
| 512   | 0.8  | 1.3  |
| 1024  | 1.7  | 1.7  |
| 2048  | 6    | 6.1  |
| 4096  | 16   | 16.8 |
| 8192  | 30.6 | 32.3 |
| 16384 | 40   | 40.8 |
| 32768 | 44.9 | 51.4 |
| 65536 | 45.8 | 54.4 |

numhead 16, Head dimension 128

|Seq. L.| PT   | fexp |
|-------|------|------|
| 512   | 2.5  | 4.1  |
| 1024  | 3.3  | 4    |
| 2048  | 11.4 | 10.5 |
| 4096  | 27.4 | 28.4 |
| 8192  | 44.4 | 46   |
| 16384 | 64.2 | 68.1 |
| 32768 | 77.8 | 83   |
| 65536 | 82.1 | 88.1 |

numhead 16, Head dimension 256

|Seq. L.| PT   | fexp |
|-------|------|------|
| 512   | 1.7  | 3.4  |
| 1024  | 4.2  | 6.5  |
| 2048  | 14.6 | 16.1 |
| 4096  | 30.1 | 31.1 |
| 8192  | 60   | 62   |
| 16384 | 83.3 | 87.3 |
| 32768 | 98.7 | 106  |
| 65536 | 102.2| 107.1|

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151441
Approved by: https://github.com/mingfeima
2025-07-10 05:51:31 +00:00
9222552572 [non-strict export] uncovered cases of select and slice (#157821)
Summary:
`None` and `Ellipsis` in multi-dimensional indexing was previously not covered.

Moreover, we introduce a small optimization for `slice(None)` and a passthrough when symints do not appear in the indexing.

The remaining case is where indexing is by tensor, which is fairly complicated; we passthrough in that case.

Test Plan:
added tests

Rollback Plan:

Differential Revision: D77943929

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157821
Approved by: https://github.com/pianpwk
2025-07-10 05:48:12 +00:00
3584e84c24 Fixed the function to get the origin nodes of fused triton kernel. (#157578)
Summary:
This DIFF is to fix the following issue:
In python source code for CompiledFxGraph,the FX graph segment for the Triton kernel is broken. For example, the following function
  def fn(a, b, c):
      x = torch.nn.functional.linear(a, b)
      x = x.sin()
      x = x.t() + c
      return x
Inductor compiled this FX graph into two nodes: the first one is mm, the second one is a triton kernel for sin + transpose + add. The FX graph segment for the triton kernel is like the following:
Graph fragment:
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %arg2_1), kwargs = {})
Basically only "add" node in the FX graph.
The root cause is function caffe2/torch/_inductor/utils.py:gather_origins does not detect the realized node correctly.
To fix this issue, the IRNode is checked if it is one of the following IRNode:
    ir.ComputedBuffer,
    ir.InputsKernel,
    ir.InputBuffer,
    ir.ReinterpretView,
    ir.TemplateBuffer,

If it is one of them, it is realized, otherwise, it is not.

Test Plan:
buck2 run mode/opt caffe2/test/inductor:provenance_tracing -- caffe2.test.inductor.test_provenance_tracing.TestProvenanceTracingArtifact.test_triton_kernel_to_post_grad_tracing_cuda

Rollback Plan:

Differential Revision: D77748371

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157578
Approved by: https://github.com/mlazos
2025-07-10 05:34:50 +00:00
b146ca74f0 docs: add get_default_backend_for_device to distributed documentation (#156783)
`torch.distributed.get_default_backend_for_device()` API was added to torch 2.6, but is still missing in distributed documentation. This commit addresses the gap.

CC: @guangyey, @EikanWang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156783
Approved by: https://github.com/guangyey, https://github.com/malfet
2025-07-10 05:11:30 +00:00
eddddea908 Upgrade MKL in CI (#154198)
This PR is to upgrade MKL in CI as PyTorch release uses MKL 2024.2 while MKL in CI is 2021.4. MKL 2021.4 can't trigger issues like https://github.com/pytorch/pytorch/issues/154477 caused by MKL upgrading in Torch release.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154198
Approved by: https://github.com/leslie-fang-intel, https://github.com/malfet
ghstack dependencies: #154585
2025-07-10 05:09:51 +00:00
80bcaa4195 have dynamic sources only apply to sizes and not strides (#157960)
@animesh pointed out using whitelist for strides can result in confusing graphs as follows

```
s60: "Sym(s60)", L_hidden_states_: "bf16[1, 4096, 3072][s60, 3072, 1]cuda:0"
```

We probably want to capture the relationship between sizes and strides anyways so let's make it so the whitelist only makes the sizes dynamic. That same graph now looks lik ethis

```
L_hidden_states_: "bf16[1, 4096, 64][262144, 64, 1]cuda:0"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157960
Approved by: https://github.com/pianpwk
2025-07-10 05:03:51 +00:00
88cd9f34b0 [audio hash update] update the pinned audio hash (#157873)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157873
Approved by: https://github.com/pytorchbot
2025-07-10 04:59:50 +00:00
2b19d85d70 FractionalMaxPool3d add kernel_size check (#155549)
Fixes #96316

## Test Result

```python
>>> import torch
>>> from torch.func import jacrev, grad, vmap
>>>
>>> torch.manual_seed(420)
<torch._C.Generator object at 0x7fe4767810d0>
>>>
>>> input = torch.randn(1, 1, 5, 5, 5, requires_grad=True)
>>>
>>> def func(input):
...     model = torch.nn.FractionalMaxPool3d(kernel_size=0, output_size=(1, 1, 1))
...     output = model(input)
...     return output
...
>>>
>>> func(input).sum().backward()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in func
  File "/home/zong/code/pytorch/torch/nn/modules/pooling.py", line 1054, in __init__
    raise ValueError(f"kernel_size must greater than 0, but got {kernel_size}")
ValueError: kernel_size must greater than 0, but got 0

```

![image](https://github.com/user-attachments/assets/52780ce7-3951-4d1c-95a4-5ce2bf65c727)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155549
Approved by: https://github.com/albanD
2025-07-10 04:55:06 +00:00
06a40b6850 Fix MKL error: Inconsistent configuration parameters (#154585)
Fixes #154477.

PyTorch release uses 2024.2 MKL, which has some changes to the usage of DFTI: if `DFTI_NUMBER_OF_TRANSFORMS > 1`, `DFTI_INPUT_DISTANCE` and `DFTI_OUTPUT_DISTANCE` also needs to be explicitly set to a positive integer. In addition, the requirement "the datasets to be transformed cannot contain common elements" should also be satisfied. This means that we need to avoid the case where the input strides have 0.

See https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2024-2/configuring-data-layouts.html and https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/dfti-number-of-transforms.html

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154585
Approved by: https://github.com/leslie-fang-intel, https://github.com/soumith, https://github.com/malfet
2025-07-10 03:42:38 +00:00
0a624c2dc5 Fix from_node's graph_id in unlift() (#157943)
Summary: We should use the node before deepcopy in NodeSource

Test Plan:
```
buck run fbcode//caffe2/test:test_export -- -r test_from_node_metadata_export
```

Rollback Plan:

Differential Revision: D78022070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157943
Approved by: https://github.com/angelayi, https://github.com/Gasoonjia
2025-07-10 03:23:55 +00:00
4cfc0a3208 [Inductor] Introduce Lookup Table for Overriding Triton Kernel autotune configs post fusion (#157924)
Summary:
Introduce lookup table for kernels post fusion, hashing on inductor generated source code

Rollback Plan:

Differential Revision: D77866885

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157924
Approved by: https://github.com/jansel
2025-07-10 03:23:50 +00:00
3232b57cd8 Updates to safetensors checkpoint consolidation script to be faster (#157936)
Summary:
- adding mmap-ing
- more efficient writing in larger chunks

latency from ~150s to ~6s for simple row-wise consolidation of a 7gb model sharded across 4 ranks

Test Plan:
ran consolidation with the following code:

```
from torch.distributed.checkpoint._consolidate_hf_safetensors import consolidate_safetensors_files
import time

start_time = time.time()
consolidate_safetensors_files(base_path, consolidated_path)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds")
```

With the old code this was taking a couple minutes and this is now down to ~6s.
Internal users can find the tensor shards in the manifold path: manifold://ankita_test_bucket/tree/safetensors

Rollback Plan:

Differential Revision: D77960054

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157936
Approved by: https://github.com/teja-rao, https://github.com/pradeepfn
2025-07-10 02:50:20 +00:00
3404c1f0cf [HF][DCP] Upload local consolidated files to remote storage if needed (#157371)
If the final output file is in remote storage, then create a local temp directory to write the files and upload the files to the remotes storage after they are written.
Add a new config to the storage writer, `enable_consolidation`, so we don't need to rely on the presence of the `consolidation_output_path` to decide if consolidation is enabled. If `enable_consolidation` is True and `consolidation_output_path` isn't provided, the consolidated safetensors will be added to the same path as the sharded ones.

Differential Revision: [D77554585](https://our.internmc.facebook.com/intern/diff/D77554585/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157371
Approved by: https://github.com/pradeepfn
2025-07-10 02:40:25 +00:00
aab949aa96 Deprecated pkg_resources and use distributions instead (#151915)
As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151915
Approved by: https://github.com/malfet, https://github.com/atalman, https://github.com/albanD
2025-07-10 01:51:26 +00:00
6442ae9256 Make the name assert actually do something, and reserve some more names (#157342)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157342
Approved by: https://github.com/albanD
2025-07-10 01:39:40 +00:00
db188503cb [BE] Remove stale pyre-fixme (#157816)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157816
Approved by: https://github.com/Skylion007, https://github.com/jingsh, https://github.com/albanD
2025-07-10 01:33:32 +00:00
693116f765 [doc] DeviceMesh invariant on DTensorSpec (#157806)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157806
Approved by: https://github.com/Skylion007, https://github.com/wanchaol
ghstack dependencies: #157805
2025-07-10 01:27:40 +00:00
9a4ac71b58 [doc] Document an invariant in OpSpec (#157805)
I am not sure if this is actually true though, please reject this PR if it is not.

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157805
Approved by: https://github.com/wanchaol, https://github.com/zpcore
2025-07-10 01:27:40 +00:00
8387984257 Improve error message for torch.binomial enforcing float inputs (#157658)
Fixes #157195
### Summary:
 Fixed Issue 157195 by adding a new error message for torch.binomial in **aten/src/ATen/native/Distributions.cpp**

### Explanation
 According to the issue,
```
import torch
torch.binomial(torch.tensor([10]).long(), torch.tensor([0.5]))
```
`RuntimeError: Found dtype Float but expected Long`

 It looks like we are getting a Tensor error rather than a binomial function error. Since the error is coming from **pytorch/aten/src/ATen/TensorIterator.cpp**,  it seems like it is trying to align the tensor data to the same datatype for smooth tensor computations instead of giving a binomial function error.

I tried using both arguments as longs and both as ints and got the right binomial function error
```
torch.binomial(torch.tensor([10]).long(), torch.tensor([0.5]).long())
NotImplementedError: "binomial_cpu" not implemented for 'Long'
```

```
torch.binomial(torch.tensor([10.0]).int(), torch.tensor([0.5]).int())
NotImplementedError: "binomial_cpu" not implemented for 'Int'
```

But when I have both as different datatypes, the TensorIterator.cpp error comes back trying to align the datatypes.
`RuntimeError: Found dtype Float but expected Long`

I then tried finding where the NotImplementation Error was documented and found it in **pytorch/aten/src/ATen/Dispatch.h** in lines 193 - 211

```
#define AT_DISPATCH_SWITCH(TYPE, NAME, ...)                                 \
  [&] {                                                                     \
    const auto& the_type = TYPE;                                            \
    constexpr const char* at_dispatch_name = NAME;                          \
    /* don't use TYPE again in case it is an expensive or side-effect op */ \
    at::ScalarType _st = ::detail::scalar_type(the_type);                   \
    RECORD_KERNEL_FUNCTION_DTYPE(at_dispatch_name, _st);                    \
    switch (_st) {                                                          \
      __VA_ARGS__                                                           \
      default:                                                              \
        TORCH_CHECK_NOT_IMPLEMENTED(                                        \
            false,                                                          \
            '"',                                                            \
            at_dispatch_name,                                               \
            "\" not implemented for '",                                     \
            toString(_st),                                                  \
            "'");                                                           \
    }                                                                       \
  }()
```
 In the **AT_DISPATCH_SWITCH** function, it picks a tensor and its datatype and checks if the Tensor datatype matches the supported datatypes. If not we get the Not Implemented error. Unfortunately, I think the **AT_DISPATCH_SWITCH** function, uses the `common_dtype` from TensorIterator  in order to run. So TensorIterator.cpp needs to happen before the AT_DISPATCH_SWITCH function.

###  Summary: We are getting the wrong error message because **TensorIterator.cpp** gets called and errors out due to Tensor datatype mismatch before we can get the right error message in **Dispatch.h**  for torch.binomial not supporting that datatype.

### Options for the Fix
**Option 1**: Make the error message in TensorIterator.cpp more general so it applies to torch.binomial. An error message along the lines
`RunTime Error : "Tensor Datatypes", op.target_dtype," and ", common_dtype_, "are different "`

**Option 2**: Add an error message for the binomial function datatype mismatch before the the TensorIterator.cpp error message gets called.

Although Option 1 seemed easier I think Option 2 might be better as it is more specific to the binomial function while Option1 would affect all Tensors with datatype mismatch.

 **This PR applies the fix for Option 2**

After Fix :
```
torch.binomial(torch.tensor([10]).long(), torch.tensor([0.5]))
RuntimeError: Binomial function arguments count and prob must have same datatype of type Float, got: count = Long, prob = Float
```
```
torch.binomial(torch.tensor([10]).long(), torch.tensor([0.5]).long())
NotImplementedError: "binomial_cpu" not implemented for 'Long'
```
@malfet

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157658
Approved by: https://github.com/soulitzer
2025-07-10 00:58:56 +00:00
54a7e5b598 _aot_export_function: allow keeping input mutations in the graph (#157730)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157730
Approved by: https://github.com/ezyang
2025-07-10 00:47:51 +00:00
ed03492238 Add check nested_tensor_from_jagged param jagged_dim >= 1 (#157770)
Fixes #157404

## Test Result

```bash
pytest test/test_nestedtensor.py

...............................................s..........ssssss.................................................................................................s.s..sssss..s...ss............................................................. [ 44%]
...........................................................sssss....sss...s.........ss....s....sss.........s.sss...s..s......s............s.sss.ss...............s.....................s....s......................s.s.....s....s..s..ssssssssss [ 59%]
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss..ssssss.ssssssssssssssssssssssssssssssssssssssssssssssssssssssssss.ssssssss...............................s........................................... [ 74%]
.......sss...................................................................................................................................................................................................................................... [ 89%]
....sss..........................................................................................................................................................                                                                                [100%]

==================================================================================================== 1317 passed, 258 skipped in 2504.27s (0:41:44) ====================================================================================================
```

![image](https://github.com/user-attachments/assets/dcc8e46d-b88f-4580-b4ad-0999bad33ec9)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157770
Approved by: https://github.com/soulitzer

Co-authored-by: Jeffrey Wan <soulitzer@gmail.com>
2025-07-10 00:34:39 +00:00
752f202ef3 [PGO] include module int attributes in PGO state (#157518)
Dynamo specializes on int module attributes by default. This includes them in PGO state despite specialization, if they're involved in guards.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157518
Approved by: https://github.com/bobrenjc93
2025-07-09 23:57:54 +00:00
ed051c3084 torch.distributed: add initial _dist2 prototype API (#157841)
This adds the initial dist2 API as proposed in https://docs.google.com/document/d/13R-1t_yESTvmAjcCN-wQjQQadIEu0JNIdS65uZawZzY/edit?tab=t.0#heading=h.3ctbqqopzc89

This is a WIP experimental API and is a sandbox for a number of new features and quality of life improvements/changes to c10d.

Test plan:

```
pytest test/distributed/test_dist2.py
```

Docs

```
cd docs
make html
```

![Screenshot 2025-07-08 at 13-39-23 Object Oriented Distributed API - torch distributed _dist2 — PyTorch main documentation](https://github.com/user-attachments/assets/9c03a7ec-09e5-42b9-8478-1ec28bc2b6bd)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157841
Approved by: https://github.com/fduwjj
2025-07-09 23:40:43 +00:00
39456edbba [PT2][memory] mutation size correctness (#157562)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157562
Approved by: https://github.com/yf225
2025-07-09 22:14:20 +00:00
a1dad2f2d2 [BE][Ez]: Autotype torch/profiler with ruff ANN (#157923)
Apply ruff autotyping fixes to add annotations to torch profiler

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157923
Approved by: https://github.com/albanD, https://github.com/sraikund16
2025-07-09 22:07:50 +00:00
53ab73090e [inductor] support unbacked symint in sdpfa (#157739)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157739
Approved by: https://github.com/laithsakka
2025-07-09 22:01:29 +00:00
08e9dd280f [ONNX] Support symbolic arguments in onnx exporter (#157734)
Previous to this PR, torch.onnx.export(..., dynamo=True, veriy=True, report=True) does not support symbolic arguments. Such examples are like follwing:

```python
class M(torch.nn.Module):
    def forward(self, a, x):
        return a + torch.tensor(1) + x

op = torch.onnx.export(M(), (1, torch.ones(2)),
                       dynamic_shapes=(torch.export.Dim.DYNAMIC, {0: torch.export.Dim.DYNAMIC}),
                       dynamo=True, report=True)
```

symbolic arguments are like constant arguments that they don't have tensor_meta wither. Besides, torch.export.export supports model inputs having constants, which is different from the legacy issue: https://github.com/pytorch/pytorch/issues/99534 where we tried to get the FX directly from dynamo export. Thus, `_remove_non_tensor` is deleted from args processing.

NOTE: If the ConstantArugment shows up in exported_program, it was kept to align the length of inputs to nn.Module, but it's irrelevant to the model graph, hwich is why in ONNX model the input is omitted.

The test `test_constant_argument_user_input_is_omitted_in_onnx_graph` needs #157719
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157734
Approved by: https://github.com/justinchuby
2025-07-09 21:15:45 +00:00
163f0d8f2a [BE][Ez]: Auto add return type annotations for methods in torch/nn/module (#157925)
Automatically type a bunch of methods in nn.Module using ruff's type inference rules

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157925
Approved by: https://github.com/albanD
2025-07-09 21:12:25 +00:00
f742b32a2f [dynamo] Avoid recompiling over unused objects (#156891)
Dynamo was aggressively specializing on lazy VTs over `set_name_hint` in
`STORE_FAST`, etc., and `isinstance` in `LOAD_FAST_CHECK`. This causes
regional `torch.compile` from optimizing ComfyUI GGUF + LoRA to either
(1). exceed the recompialtion limit of 8, which results in suboptimal
performance, and (2). even if recompilation limit is increased, the
compilation time gets unnecessarily high (180s v.s. 20s for Flux).

This patch fixes the recompilation issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156891
Approved by: https://github.com/williamwen42, https://github.com/mlazos
2025-07-09 20:14:34 +00:00
317520bf6e Add an ovrsource target for torch/headeronly (#157912)
Summary: no idea how this works

Test Plan:
will things just pass?

Rollback Plan:

Differential Revision: D77965219

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157912
Approved by: https://github.com/albanD
2025-07-09 19:32:03 +00:00
dfa2649434 Revert "[Inductor] Fix epilogue fusion decision with 1 Triton caller as choice (#156500)"
This reverts commit c48d0f4643b7a69ebe24069e932ce1465a31cdbe.

Reverted https://github.com/pytorch/pytorch/pull/156500 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/156500#issuecomment-3053680762))
2025-07-09 18:56:10 +00:00
52772765e0 Change AOTI_RUNTIME_DEVICE_CHECK to be device device specific (#157818)
Summary:
Change AOTI_RUNTIME_DEVICE_CHECK to the following depending on device:

AOTI_RUNTIME_CUDA_CHECK
AOTI_RUNTIME_XPU_CHECK
AOTI_RUNTIME_CPU_CHECK

Currently in the codebase, only `AOTI_RUNTIME_CUDA_CHECK` is used.

This shouldn't change anything as of now, but we do this to prepare for simultaneouly loading multiple backends (e..g CPU and CUDA) in AOTI standalone.

We don't want people writing `AOTI_RUNTIME_DEVICE_CHECK` for both CPU and CUDA checks. This could cause compilation problems when we statically link both CPU and CUDA models.

Test Plan:
CI

Rollback Plan:

Reviewed By: muchulee8

Differential Revision: D77742977

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157818
Approved by: https://github.com/jingsh
2025-07-09 18:34:56 +00:00
c54778625e Update is_sparse doc to mention that it is sparse_coo specific (#157378)
## Issue being addressed
`is_sparse` presents itself as determining if a tensor is sparse. HOWEVER, it only does checks against the tensor for `sparse_coo`. This has lead to confusion from developers as when non-coo sparse tensors are provided it return false, despite those tensors being sparse.

## Considered Remedy
Fixing this is do-able however would result in complexity as existing systems may depend on this behavior remaining consistent, and even inside of pytorch is_sparse is used by `bform` which states that it supports only `sparse_csr and sparse_coo` meaning additional work/thought would have to go into solving for `sparse_csc` and `sparse_bsr`

## Remedy provided in this PR
In lieu of these complications the lowest risk highest gain action was to add clear warning messaging to the function for now to avoid confusion to developers utilizing the function. The rest of the function behavior remains identical

## Issue content
Addresses issue number: #101385
Original issue: https://github.com/pytorch/pytorch/issues/101385

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157378
Approved by: https://github.com/soulitzer
2025-07-09 18:22:14 +00:00
81c7445eb9 [FSDP2] Use reduceOpSum for world size 1 (#157529)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157529
Approved by: https://github.com/Skylion007, https://github.com/lw, https://github.com/weifengpy
2025-07-09 18:08:48 +00:00
28aae93f24 [Memory Snapshot] Fix Linter for Global Annotations flag in Snapshot (#157858)
Summary: We added the ability to make Annotating Global or Local based on an input flag in PyTorch but didn't add the args to the linter

Reviewed By: mzzchy

Differential Revision: D77959409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157858
Approved by: https://github.com/mzzchy
2025-07-09 17:28:22 +00:00
b354328ecd [AOTI] add flag AOT_INDUCTOR_ENABLE_LTO (#157773)
Add env var AOT_INDUCTOR_ENABLE_LTO to enable clang's ThinLTO by setting AOT_INDUCTOR_ENABLE_LTO=1. The LTO is disabled by default because it may increase the build time.

Rollback Plan:

Differential Revision: D77899195

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157773
Approved by: https://github.com/desertfire
2025-07-09 16:54:19 +00:00
d75d30eeb6 [DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)
This is to unblock "dp2ep" Expert Parallel + TP integration in torchtitan https://github.com/pytorch/torchtitan/pull/1324.

It does two things:
1. Slightly modifies the glue code for FSDP/HSDP + TP to work with FSDP/HSDP + EP and FSDP/HSDP + EP + TP. I kept the name `FSDPParam._tp_spec` to make the change minimal. We can consider renaming it in the future if it confuses people, but I heard @wanchaol has a plan to rewrite DTensor strided sharding entirely.
2. Lifts the check of `_validate_tp_mesh_dim` for `torch.distributed.tensor.parallel.parallelize_module`, as in EP or EP+TP this check is too strict. In particular it assumes a DeviceMesh must have `mesh_dim_names` which is not always true. I'm also removing the file `torch/distributed/tensor/parallel/_utils.py` it belongs entirely, as the other check `_deprecate_warnings`, added two years ago, is not used any more.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157216
Approved by: https://github.com/wanchaol, https://github.com/weifengpy
2025-07-09 16:49:34 +00:00
cb711c8fa0 Revert "[BE] always use uv pip if possible in pip_init.py for lintrunner init (#157199)"
This reverts commit 754699610b0abec2fe3f5a73269b1dd09a330445.

Reverted https://github.com/pytorch/pytorch/pull/157199 on behalf of https://github.com/malfet due to It breaks lintrunner init` for default environments, see https://github.com/pytorch/pytorch/issues/152999 ([comment](https://github.com/pytorch/pytorch/pull/157199#issuecomment-3053279711))
2025-07-09 16:26:47 +00:00
981c99fdff Uninstall brew miniconda while running MacOS testing (#156898)
That results in torch.compile being unable to produce working artifacts
But reinstall it later, when done

Should fix https://github.com/pytorch/pytorch/issues/156833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156898
Approved by: https://github.com/seemethere, https://github.com/atalman
2025-07-09 16:02:55 +00:00
054cd4ca28 [CPU Generator] Remove the unused CPUGeneratorImplStateLegacy in set_state (#153934)
As the title stated.

The old state named CPUGeneratorImplStateLegacy in set_state will not been used,
so just remove it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153934
Approved by: https://github.com/Skylion007, https://github.com/albanD, https://github.com/malfet, https://github.com/atalman
2025-07-09 15:45:19 +00:00
f4d60a68dd Adding a change to kick off the theme pull (#157732)
Adding a small change so that Docker container is rebuild and reflects the latest changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157732
Approved by: https://github.com/malfet
2025-07-09 15:43:00 +00:00
6defd5084e Revert "[PT2][memory] mutation size correctness (#157562)"
This reverts commit 86670b39fa3df63a652a9a06b59b73f92d70c392.

Reverted https://github.com/pytorch/pytorch/pull/157562 on behalf of https://github.com/xuanzhang816 due to internal_test_failure ([comment](https://github.com/pytorch/pytorch/pull/157562#issuecomment-3053115025))
2025-07-09 15:38:29 +00:00
b4e3c9ea34 [ez][CI][testing] Set upload artifacts while running to default true if in CI (#157868)
I was confused about why the distributed tests weren't showing up quickly on HUD, its because the call of run_tests.py for distributed didn't include upload artifacts while running flag, so set it to default to IS_CI so I don't need to put the flag everywhere
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157868
Approved by: https://github.com/huydhn
2025-07-09 15:21:25 +00:00
fcc682be4b [BE][Ez]: Fully type nn.utils.clip_grad (#154801)
Full types clip_grad and exposed typing annotations that were hidden by a bad decorator

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154801
Approved by: https://github.com/jansel
2025-07-09 14:27:51 +00:00
ed6ae20cf0 [BE][Ez]: Update mimalloc submodule to 2.2.4 (#157794)
Fixes a few minor bugfixes with the previous release and better compiler support. Should be a NOOP.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157794
Approved by: https://github.com/atalman
2025-07-09 14:03:07 +00:00
02a9d9095f [BE] remove commented out code in c10/ovrsource_defs.bzl (#157856)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157856
Approved by: https://github.com/swolchok, https://github.com/albanD
2025-07-09 13:28:56 +00:00
86eaf452c3 [Easy][Profiler] Fix pattern matcher of profiler (#157711)
Per title, as it fails with the following error if "+PTX" was used in `TORCH_CUDA_ARCH_LIST`:
```
  File "/usr/local/lib/python3.12/dist-packages/torch/profiler/_pattern_matcher.py", line 313, in skip
    has_tf32 = all(int(arch[3:]) >= 80 for arch in torch.cuda.get_arch_list())
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/torch/profiler/_pattern_matcher.py", line 313, in <genexpr>
    has_tf32 = all(int(arch[3:]) >= 80 for arch in torch.cuda.get_arch_list())
                   ^^^^^^^^^^^^^
ValueError: invalid literal for int() with base 10: 'pute_120'
```
Because slicing `arch[3:]` will not end up on having only digits for `compute_120` element of `torch.cuda.get_arch_list()`:
```python
>>> torch.cuda.get_arch_list()
['sm_75', 'sm_80', 'sm_86', 'sm_90', 'sm_100', 'sm_120', 'compute_120']
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157711
Approved by: https://github.com/Skylion007, https://github.com/sraikund16
2025-07-09 12:09:46 +00:00
297daa1d30 [aarch64] Add sm_80 to CUDA SBSA build (#157843)
related to https://github.com/pytorch/pytorch/issues/152690

This adds sm_80 to CUDA SBSA builds (12.9), so that we will be able to support Ampere family (e.g: sm_86) and Ada family (e.g: sm_89) on CUDA SBSA builds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157843
Approved by: https://github.com/Skylion007, https://github.com/atalman
2025-07-09 11:46:34 +00:00
a355158fcb [Easy] Fix the compilation warning (#157889)
**Background:**

```Shell
[1376/2332] Building CUDA object caffe2/CMakeFiles/torch_...h/csrc/distributed/c10d/symm_mem/NCCLSymmetricMemory.cu.o
/root/Git.d/pytorch/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp(450): warning #68-D: integer conversion resulted in a change of sign
      size_t numelIn_ = -1;
                        ^

Remark: The warnings can be suppressed with "-diag-suppress <warning-number>"

/root/Git.d/pytorch/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp(451): warning #68-D: integer conversion resulted in a change of sign
      size_t numelOut_ = -1;
                         ^

/root/Git.d/pytorch/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp(450): warning #68-D: integer conversion resulted in a change of sign
      size_t numelIn_ = -1;
                        ^

Remark: The warnings can be suppressed with "-diag-suppress <warning-number>"

/root/Git.d/pytorch/pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp(451): warning #68-D: integer conversion resulted in a change of sign
      size_t numelOut_ = -1;
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157889
Approved by: https://github.com/mlazos
2025-07-09 11:41:02 +00:00
4dce5b71a0 [build] modernize build-frontend: python setup.py develop/install -> [uv ]pip install --no-build-isolation [-e ]. (#156027)
Modernize the development installation:

```bash
# python setup.py develop
python -m pip install --no-build-isolation -e .

# python setup.py install
python -m pip install --no-build-isolation .
```

Now, the `python setup.py develop` is a wrapper around `python -m pip install -e .` since `setuptools>=80.0`:

- pypa/setuptools#4955

`python setup.py install` is deprecated and will emit a warning during run. The warning will become an error on October 31, 2025.

- 9c4d383631/setuptools/command/install.py (L58-L67)

> ```python
> SetuptoolsDeprecationWarning.emit(
>     "setup.py install is deprecated.",
>     """
>     Please avoid running ``setup.py`` directly.
>     Instead, use pypa/build, pypa/installer or other
>     standards-based tools.
>     """,
>     see_url="https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html",
>     due_date=(2025, 10, 31),
> )
> ```

- pypa/setuptools#3849

Additional Resource:

- [Why you shouldn't invoke setup.py directly](https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156027
Approved by: https://github.com/ezyang
2025-07-09 11:24:27 +00:00
fc0376e8b1 [BE][2/6] fix typos in test/ (test/test_*.py) (#157636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157636
Approved by: https://github.com/yewentao256, https://github.com/mlazos
ghstack dependencies: #156311, #156609
2025-07-09 11:02:23 +00:00
ffe11b2bf2 [BE] fix typo in torch/distributed/tensor/: childs -> children (#156609)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156609
Approved by: https://github.com/wanchaol, https://github.com/cyyever
ghstack dependencies: #156311
2025-07-09 11:02:23 +00:00
4cc8b60d1b [BE][1/16] fix typos in torch/ (#156311)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156311
Approved by: https://github.com/albanD
2025-07-09 11:02:22 +00:00
f5bbaa2253 Fixes typo in nccl_window_registration test (#157293)
As mentioned here: https://github.com/pytorch/pytorch/pull/155134#discussion_r2175605192

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157293
Approved by: https://github.com/Skylion007
2025-07-09 11:01:18 +00:00
924fc52e18 [BE] add a linter to check consistency for cmake minimum version in requirements (#156961)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156961
Approved by: https://github.com/ezyang, https://github.com/malfet
2025-07-09 10:44:17 +00:00
b83d8827bc Revert "Deprecate DataLoader pin_memory_device param (#146821)"
This reverts commit ab655816b8f76f511fb2262d45276d8d1b13d59c.

Reverted https://github.com/pytorch/pytorch/pull/146821 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/146821#issuecomment-3052093902))
2025-07-09 10:29:31 +00:00
6f23f53599 [inductor] fix tensor.to(uint8) error when tensor src type is float (#157267)
The cpu inductor processes .to(torch.uint8) incorrectly, leading to numerical inconsistencies. The convert_float_to_int8 function may return incorrect results for negative inputs, such as -2.xx, when the data type is uint8_t, producing 0 instead of 255. This issue stems from the clamping logic; we should avoid converting min_val to uint8_t too early
Fixes https://github.com/pytorch/pytorch/issues/156788
@leslie-fang-intel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157267
Approved by: https://github.com/leslie-fang-intel
2025-07-09 07:03:38 +00:00
e3f2597b45 [Optimus] Fix normalization pass in the aten IR (#157857)
Summary: We found there's a special case in recent APS model where the input tensor has smaller size compared to the split size. It will be automatically truncated in split.Tensor thus we add extra condition check for split_with_sizes when do the normalization.

Test Plan:
### unit
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:split_cat_fx_aten_passes -- test_split_aten_normalization
```

Buck UI: https://www.internalfb.com/buck2/2ecd1ef8-8efe-4245-b4c8-282c23645b3c
Test UI: https://www.internalfb.com/intern/testinfra/testrun/7599824648585787
Network: Up: 3.9GiB  Down: 9.2GiB  (reSessionID-1396c91e-0dd2-457b-a49b-a6ab1f2a7d8f)
Loading targets.   Remaining      0/5344                                                                                                              99617 dirs read, 1074949 targets declared
Analyzing targets. Remaining      0/123279                                                                                                            4988547 actions, 5966764 artifacts declared
Executing actions. Remaining      0/728058                                                                                                            209:52:59.9s exec time total
Command: test.     Finished 12466 local, 209448 remote, 1226 cache (1% hit)                                                                           42:10.5s exec time cached (0%)
Time elapsed: 26:07.6s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

### E2E

before fix:
aps-afoc_apop_pt2_v0-db2fe0449a

after fix:
aps-afoc_apop_pt2_v0-755ad0cdc6

Rollback Plan:

Differential Revision: D77961394

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157857
Approved by: https://github.com/anijain2305
2025-07-09 05:38:15 +00:00
effe376db0 Adding aoti_standalone config (#157731)
Summary: When `compile_standalone` is True, we set `package_cpp_only` to True as well. We raise an error if  `package_cpp_only` is explicitly set to False in config.

Test Plan:
```
buck2 run  mode/dev-nosan fbcode//caffe2/test/inductor:test_aot_inductor -- -r  TestAOTInductorConfig
```

Rollback Plan:

Differential Revision: D77889754

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157731
Approved by: https://github.com/desertfire
2025-07-09 04:30:04 +00:00
fcbf7c749a [Windows][Inductor] normalize_path_separator compiler path (#157835)
Fixes #157673

For the call trace:
```
......

  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\common.py", line 2569, in reduction
    return self.kernel.reduction(dtype, src_dtype, reduction_type, value)
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 2155, in reduction
    self._gen_parallel_reduction_buffers(acc, acc_type, reduction_type, init_dtype)
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 1942, in _gen_parallel_reduction_buffers
    reduction_prefix_array(
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\codegen\cpp.py", line 335, in reduction_prefix_array
    if cpp_builder.is_msvc_cl()
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\cpp_builder.py", line 317, in is_msvc_cl
    return _is_msvc_cl(get_cpp_compiler())
  File "D:\Programs\Python\virtualenvs\torch_code-afvE469o\lib\site-packages\torch\_inductor\cpp_builder.py", line 240, in _is_msvc_cl
    subprocess.check_output([cpp_compiler, "/help"], stderr=subprocess.STDOUT)
torch._inductor.exc.InductorError: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd3 in position 0: invalid continuation byte
```
On non-English language pack msvc environment, compiler path has raised `utf-8` issue. I add the `normalize_path_separator` to normalize the compiler path and avoid the issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157835
Approved by: https://github.com/jansel
2025-07-09 04:02:20 +00:00
8bda95228f [autograd] Avoid creating and recording event when unnecessary (#157503)
Today, we always create and record an events in two places:
1) Upon seeing the first producer, we record an event on the producer, and we wait for this event in two places: (1) when the engine goes to run the consumer, the consumer stream waits for this event. (2) prior to doing accumulation, the accumulation stream waits for this event.

2) After doing accumulation, we record an event on the accumulation stream and wait for this event in a single place: when the engine goes to run the consumer.

We do not actually need to record the event in the cases where the 1st producer stream is the same as the consumer and as the accumulation stream, and where the accumulation stream is the same as the consumer stream.

Removing this unnecessary create + record event should save a few us for each instance avoided.

Fixes https://github.com/pytorch/pytorch/issues/157407

----

Manual test plan:
- [x] @eqy to confirm perf is restored
- [x] Running the repro originally reported before/after the patch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157503
Approved by: https://github.com/eqy
ghstack dependencies: #155715
2025-07-09 03:36:14 +00:00
8d070187e3 fix type hints for interpolation functions (#157202)
Fixes #129053

Previously interpolate had a bad signature and not correct type hints.
This fixes this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157202
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-07-09 03:11:37 +00:00
c515385b0a Add Intel GPU info collection to the collect env script (#157351)
https://github.com/pytorch/pytorch/pull/137846 was mistakenly closed. Reopen a PR to land the PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157351
Approved by: https://github.com/guangyey, https://github.com/malfet
2025-07-09 03:01:41 +00:00
d6237721c0 [Build] Make PyTorch compilable with gcc-14 on ARM (#157867)
Fixes numerous ICEs in vreg allocations for SVE+BF16
```
/pytorch/aten/src/ATen/ParallelOpenMP.h:25:9: error: unrecognizable insn:
   25 | #pragma omp parallel
      |         ^~~
(insn 257 256 258 30 (set (reg:VNx8BF 449 [ bf16_vec1_217 ])
        (unspec:VNx8BF [
                (reg:VNx8BF 455)
                (reg:VNx8BF 456)
            ] UNSPEC_IORF)) "/pytorch/aten/src/ATen/cpu/vec/sve/vec_bfloat16.h":228:31 discrim 1 -1
     (nil))
during RTL pass: vregs
/pytorch/aten/src/ATen/ParallelOpenMP.h:25:9: internal compiler error: in extract_insn, at recog.cc:2812
0xd73c33 internal_error(char const*, ...)
	???:0
0xd73d1f fancy_abort(char const*, int, char const*)
	???:0
0x890053 _fatal_insn(char const*, rtx_def const*, char const*, int, char const*)
	???:0
0x890087 _fatal_insn_not_found(rtx_def const*, char const*, int, char const*)
	???:0
0x1379093 extract_insn(rtx_insn*)
	???:0

```
And one in RTL-expand pass while compiling Activation.cpp
```
during RTL pass: expand
In file included from /pytorch/aten/src/ATen/native/cpu/Activation.cpp:12,
                 from /pytorch/build/aten/src/ATen/native/cpu/Activation.cpp.DEFAULT.cpp:1:
/pytorch/aten/src/ATen/native/cpu/Activation.cpp: In lambda function:
/pytorch/aten/src/ATen/native/cpu/Activation.cpp:94:7: internal compiler error: Segmentation fault
   94 |       });
      |       ^
/pytorch/aten/src/ATen/Dispatch.h:201:7: note: in definition of macro 'AT_DISPATCH_SWITCH'
  201 |       __VA_ARGS__                                                           \
      |       ^~~~~~~~~~~
/pytorch/aten/src/ATen/Dispatch.h:72:3: note: in expansion of macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
   72 |   AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
      |   ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/pytorch/aten/src/ATen/Dispatch.h:214:3: note: in expansion of macro 'AT_DISPATCH_CASE'
  214 |   AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
      |   ^~~~~~~~~~~~~~~~
/pytorch/aten/src/ATen/Dispatch.h:218:34: note: in expansion of macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
  218 |   AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
      |                                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/pytorch/aten/src/ATen/native/cpu/Activation.cpp:70:5: note: in expansion of macro 'AT_DISPATCH_FLOATING_TYPES'
   70 |     AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "log_sigmoid_cpu", [&] {
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~
0xd73c33 internal_error(char const*, ...)
	???:0
0x134f987 rebuild_jump_labels(rtx_insn*)
	???:0
```

Interestingly enough, attempt to compile `Unfold2d.cpp` for `-march=armv8-a+sve` (i.e. without sve+bf16) support also causes ICE
```
/pytorch/aten/src/ATen/native/cpu/Unfold2d.cpp:221:1: error: unrecognizable insn:
  221 | }
      | ^
(insn 2918 2917 2919 296 (set (reg:VNx8BI 5917)
        (unspec:VNx16BI [
                (reg:VNx8BI 5920)
                (reg:VNx8BI 5922)
                (const_vector:VNx4BI [
                        (const_int 0 [0]) repeated x8
                    ])
            ] UNSPEC_TRN1_CONV)) "/usr/include/aarch64-linux-gnu/bits/string_fortified.h":29:33 discrim 1 -1
     (expr_list:REG_EQUAL (const_vector:VNx8BI [
                (const_int 1 [0x1]) repeated x9
                (const_int 0 [0])
                (const_int 1 [0x1]) repeated x2
                (const_int 0 [0]) repeated x4
            ])
        (nil)))
during RTL pass: vregs
```

Which could be worked around by adding
```patch
diff --git a/aten/src/ATen/native/cpu/Unfold2d.cpp b/aten/src/ATen/native/cpu/Unfold2d.cpp
index 8ef0741e77af0a..59c76505dd6246 100644
--- a/aten/src/ATen/native/cpu/Unfold2d.cpp
+++ b/aten/src/ATen/native/cpu/Unfold2d.cpp
@@ -169,6 +169,10 @@ static void unfolded2d_acc_channels_last(

 /* note: due to write issues, this one cannot be parallelized as well as
  * unfolded2d_copy */
+#if defined(__GNUC__) && __GNUC__ == 14 && defined(__ARM_FEATURE_SVE)
+// Workaround for gcc-14.2.0 ICE during RTL pass: vregs when compiling for SVE
+__attribute__((optimize("no-tree-vectorize")))
+#endif
 void unfolded2d_acc_kernel(
     ScalarType dtype,
     void *finput_data,
```

Fixes https://github.com/pytorch/pytorch/issues/157842

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157867
Approved by: https://github.com/atalman, https://github.com/Skylion007
2025-07-09 02:59:08 +00:00
ab8874bd26 Suppress warning when using native arch for jit loading cuda extensions. (#156923)
Previeusly, if users want to let pytorch determine the cuda arch when jit loading cuda extensions, they should left environment variable `TORCH_CUDA_ARCH_LIST` empty, but which will raise an warning. This commit add an option to set `TORCH_CUDA_ARCH_LIST=native`, to tell pytorch users want to use native cuda arch intentionally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156923
Approved by: https://github.com/ezyang
2025-07-09 02:51:20 +00:00
bc6e0661a6 Fix more H100 CI (#157829)
Follow @d4l3k 's fix in https://github.com/pytorch/pytorch/pull/157826/files. Two more fixes might be needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157829
Approved by: https://github.com/davidberard98, https://github.com/d4l3k
2025-07-09 01:28:05 +00:00
e5edd013ab [AOTI] Skip test_simple_multi_arch_embed_kernel_binary_True_cuda (#157301)
Summary: For https://github.com/pytorch/pytorch/issues/156930, still no clue on what went wrong as it is not reproducible locally, but somehow the problem seems only exists when embed_kernel_binary is True. Let's skip it for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157301
Approved by: https://github.com/yushangdi
2025-07-09 01:18:36 +00:00
75f489d37f [Break XPU][Inductor UT] Align tolerance of newly added case with cuda. (#157702)
Align tolerance with cuda for the newly added case `test_comprehensive_logcumsumexp_xpu_float16` in #157512.

Fixes #157697

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157702
Approved by: https://github.com/jansel
2025-07-09 00:55:01 +00:00
3eb7084f7a [ci] fix h100-distributed (#157826)
This was broken by https://github.com/pytorch/pytorch/pull/157341

This should resolve the permission issue
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157826
Approved by: https://github.com/fduwjj, https://github.com/Skylion007, https://github.com/huydhn
2025-07-09 00:27:55 +00:00
86251eff40 Revert "Introduce AcceleratorAllocatorConfig as the common class (#149601)"
This reverts commit 55108074c0795be3b617d3b13b06794f63e1f8ca.

Reverted https://github.com/pytorch/pytorch/pull/149601 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/149601#issuecomment-3050628047))
2025-07-09 00:07:31 +00:00
1b3d69b59f Work: block_current_stream API (#156883)
This implements a new `wait_stream` API in Work that matches how `wait` works for ProcessGroupNCCL for CPU based backends such as Gloo.

The idea is to support Gloo communication overlap in FSDPv2/HSDP with minimal changes to FSDP.

There was a previous attempt to make FSDPv2 use Work.wait but given the extensive stream semantics used it doesn't play nicely. https://github.com/pytorch/pytorch/pull/148780

This uses a "Baton" CUDA kernel which spinlocks on a pinned CPU tensor waiting for it to be set.

Test plan:

```
pytest test/distributed/test_c10d_gloo.py -v -k wait_stream
pytest test/distributed/test_c10d_nccl.py -v -k wait_stream
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156883
Approved by: https://github.com/kwen2501, https://github.com/fduwjj
2025-07-08 23:55:46 +00:00
92f41ccc26 [Inductor] Support precomputed size args in the FX backend. (#157758)
# Feature
If a Triton kernel has a complicated indexing expression, Inductor may decide to precompute it on the host and pass it to the kernel as an argument. This happens in situations like broadcasts with dynamic shapes.

This PR adds support for this feature to Inductor's FX IR backend.

We generate FX IR for precomputed size args in 3 steps:
1. In `PythonWrapperCodegen`, this PR refactors the relevant code to use a `SymbolicCallArgLine` instead of raw Python strings. This stores a (symbol, expr) pair. (Prior to this PR, it was (str, expr), but changing this to a symbol makes it easier to do substitutions later on.)
2. In `WrapperFxCodegen`, keep a dict of {symbol: expr} arg defs which gets updated whenever we see a `SymbolicCallArgLine`.
3. When the FX backend sees a `KernelCallLine`, it uses this dict to replace symbolic call args with their definitions.

In the longer run, it might be desirable to emit FX nodes defining these symbolic call args. That way, we could reuse the size computation when the same kernel is called multiple times. However, I wasn't sure if there was an existing way to generate FX nodes from a sympy expression, and implementing that seemed like overkill for the present purposes.

# Test plan
Added a new CI test exercising this feature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157758
Approved by: https://github.com/jansel
2025-07-08 23:22:17 +00:00
95bc3da9f8 [c10d] support dynamic shapes for all_to_all_single_autograd (#157521)
`all_to_all_single_autograd` is not an op, all the code executed until the `all_to_all_single` dispatch is visible to the compiler. This means the `all_to_all_single_autograd` wrapper code must support symints in order to be traceable with dynamic shapes.

FIXES https://github.com/pytorch/pytorch/issues/157479

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157521
Approved by: https://github.com/wconstab
2025-07-08 23:19:59 +00:00
9f18482d41 [dynamo] removing string literals for weblink generation (#157820)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157820
Approved by: https://github.com/williamwen42
2025-07-08 23:08:06 +00:00
c5b46b5408 [BE] Standardize CPU capabilities name (#157809)
It's weird to call default x86 CPU capability `NO AVX`, when in reality it's something different. Also it's a bit strange to have it assigned different names on different platforms

Fixes https://github.com/pytorch/pytorch/issues/157538

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157809
Approved by: https://github.com/Skylion007
2025-07-08 23:06:09 +00:00
179dcc10e4 Add sm_70 arch for linux cuda 12.8 and 12.9 builds (#157558)
Please see: https://github.com/pytorch/pytorch/issues/157517
We would like to keep Volta architectures by default for release 2.8

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157558
Approved by: https://github.com/Skylion007, https://github.com/Camyll, https://github.com/seemethere, https://github.com/malfet
2025-07-08 23:02:10 +00:00
7a41f20794 [inductor] Quiesce Triton compile worker pool after each dynamo compile (#156187)
For internal usages, keeping the Triton compile worker pool active for the lifetime of the process has caused some challenges, e.g., it slows down and muddies profiling due to the huge number of threads on a box: N threads = 8 ranks * 32 subprocs * M threads started by torch. Also, each subproc can use more than 1GB each. This PR adds the functionality to shutdown worker subprocs after each dynamo compile when using the SubprocPool implementation. The idea is to leave the main sidecar process running, but signal it to tear down its internal ProcessPoolExecutor when compile is finished. Restarting the ProcessPoolExecutor is relatively fast, e.g., 500ms because the ProcessPoolExecutor forks from the sidecar. Changes:
* Do not start the ProcessPoolExecutor automatically when compile_fx is imported. Instead, start the sidecar process only. The sidecar process imports torch, so is still slow to start.
* Introduce wakeup() and quiesce() calls to the implementation to start and stop the ProcessPoolExecutor.
* Add a context manager to automatically quiesce() at the end of dynamo compilation.
* Signal a wakeup() in compile_fx only when we have cuda devices.
* Add a killswitch so we can turn of quiescing.

Testing:
For correctness, the stacked change at https://github.com/pytorch/pytorch/pull/156534 enables the feature for OSS so it's exercised in CI.

For performance, because of recent compile-time variance (see https://github.com/pytorch/pytorch/issues/152566), it's pretty hard to glean whether there's a regression....

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/210/head&lCommit=1b7315031c3bfad66a1a01700167a9ca1a2ae5f1&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

The wins (mostly for inference) don't make sense, but I'm also skeptical of the losses (mostly for training). I can't repro any of the slowdowns locally. Furthermore, check out the benchmarking results for the stacked diff, which actually enables the quiescing functionality for OSS. That should only slow down compile since there can only be overhead to stop and start the workers. But the results are somehow better:

* Training: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=training&dtype=amp&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801
* Inference: https://hud.pytorch.org/benchmark/compilers?dashboard=torchinductor&startTime=Tue%2C%2017%20Jun%202025%2021%3A32%3A04%20GMT&stopTime=Tue%2C%2024%20Jun%202025%2021%3A32%3A04%20GMT&granularity=hour&mode=inference&dtype=bfloat16&deviceName=cuda%20(h100)&lBranch=gh/masnesral/214/head&lCommit=41943253882a019b8ceafcd2bf4cd6acbe0cbca9&rBranch=main&rCommit=eab45643f22e58ee12d95d8b0162d51ca0a50801

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156187
Approved by: https://github.com/aorenste, https://github.com/jansel
2025-07-08 22:53:13 +00:00
178fe7aa98 [dynamo][fsdp] Consistent behavior of int attributes (#157262)
Reimpl of https://github.com/pytorch/pytorch/pull/150954

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157262
Approved by: https://github.com/bdhirsh
2025-07-08 22:11:33 +00:00
2e14069081 Revert "[DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)"
This reverts commit 777eca9f16aeecd7c362a235cf25e6b8e6eda57f.

Reverted https://github.com/pytorch/pytorch/pull/157216 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail a distributed test in trunk ([comment](https://github.com/pytorch/pytorch/pull/157216#issuecomment-3050258896))
2025-07-08 20:48:51 +00:00
391473cca0 [export] Fix lift constants bug (#157719)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157719
Approved by: https://github.com/yushangdi
2025-07-08 20:33:53 +00:00
b9dc2fa4f7 Add legacy note to autograd.profiler doc. (#157459)
Via google search I got to `torch.autograd.profiler` and implemented my code with it. Only to be taken by surprise finding `torch.profile.profiler`, which has a note saying the autograd one is legacy.

This just adds such note to `autograd.profiler` to avoid this confusion and waste of time to future people in my situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157459
Approved by: https://github.com/sraikund16
2025-07-08 20:33:23 +00:00
a73d9e0aec Fix einsum strategy shard dim > ndim (#157593)
Previously we didn't constrain Shard dim to be <= the tensor's ndim. This cause an invalid strategy like `(RR, RS(2)) -> RS(2),` for einsum `bmk,kn->bmn` on the 2d mesh.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157593
Approved by: https://github.com/wconstab, https://github.com/wanchaol
2025-07-08 20:27:17 +00:00
06b3265cb1 Increase nightly C++ docs build timeout to 6h (#157759)
This job has been timing out since May 261897734a/1, maybe it's time to figure out if this makes sense.

Issues https://github.com/pytorch/pytorch/issues/157763

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157759
Approved by: https://github.com/malfet
2025-07-08 19:28:48 +00:00
dea4864ce0 HF loads dcp - don't do a full deserialize on every file (#157715)
Summary: These changes in D76442012 got reverted after the PR landed due to aps_models/ads/launchers/pearl/tests/ne/e2e_deterministic_tests:pearl_e2e_ne_tests failing with `Config not loaded due to no timely response from configerator. Likely configerator_proxy or falcon_proxy are not healthy`, but that test failing is definitely transient and unrelated to my changes, so re-creating the diff

Test Plan:
ensure tests pass

Rollback Plan:

Differential Revision: D77871099

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157715
Approved by: https://github.com/meetv18
2025-07-08 18:13:27 +00:00
4f5be56612 [Pyrefly][Refactor] Replace dict() calls with literal dict syntax for improved readability (#157735)
There are 31 places that I spotted which construct literal dictionaries.

This PR refactors dictionary construction by replacing` dict(...) `calls with `literal {...}` syntax where applicable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157735
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-08 18:10:33 +00:00
0f31445139 Add stack trace of exception to MultiProcContinousTest (#157589)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157589
Approved by: https://github.com/Skylion007
2025-07-08 17:54:35 +00:00
5b4e0255d7 Check FakeScriptObject in _resolve_name_collision (#157736)
Summary:
Fix https://github.com/pytorch/pytorch/issues/157401

torch.equal cannot handle FakeScriptObject inputs.

Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r  test_aoti_torchbind_name_collision
```

Rollback Plan:

Differential Revision: D77894081

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157736
Approved by: https://github.com/angelayi
2025-07-08 17:51:46 +00:00
44d0800d60 [Intel GPU] Set higher tolerance for squeezenet1_1 with bf16 (#156920)
We need to increase the tolerance slightly to ensure that certain models pass the accuracy check on the XPU device.
This pull request preserves the original tolerance threshold for CUDA/CPU devices and introduces a new key, higher_bf16_xpu, which only affects the XPU device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156920
Approved by: https://github.com/soulitzer
2025-07-08 17:49:54 +00:00
a5c61eb78d [MPS][BE] Delete as_strided_tensorimpl_mps (#157772)
Because it's just copy-n-paste of `as_strided_tensorimpl` with call to `updateTensorBaseShape`, which is not called/used anywhere else.

Fixes https://github.com/pytorch/pytorch/issues/152701
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157772
Approved by: https://github.com/Skylion007
2025-07-08 17:02:36 +00:00
bbe681ed51 [cutlass backend][BE][ez] Make matmul layouts be row x column (#156656)
Differential Revision: [D77184232](https://our.internmc.facebook.com/intern/diff/D77184232/)

Motivation:
* This is the case we care the most.
* We are caching the kernels for this row x column layout. So testing on them can potentially make ci run faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156656
Approved by: https://github.com/ColinPeppler
2025-07-08 16:57:33 +00:00
ed911747c2 [dtensor] add support for fused optimizer with parameters across multiple meshes (#157682)
We are seeing more and more use cases where parameters in a model (under the same optimizer group) are put on different meshes. E.g.
- when FSDP and TP are both applied, some parameters are sharded only on the FSDP mesh but not TP mesh (see https://github.com/pytorch/pytorch/pull/153268).
- in [dp2ep Expert Parallel](https://github.com/pytorch/torchtitan/pull/1324), the routed experts are sharded on the (global FSDP \ EP) mesh for smaller FSDP and on the EP mesh for EP, whereas other params are sharded on the global FSDP mesh for FSDP.

This PR is, in some sense, a continuation of https://github.com/pytorch/pytorch/pull/147869 to tackle the problem when fused optimizers are used. In such cases, the [`fused_adam`](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/native_functions.yaml#L15786) / `fused_adamw` has a scalar tensor arg `state_steps` which gets automatically cast to DTensor on the default [`compute_mesh`](https://github.com/pytorch/pytorch/blob/main/torch/distributed/tensor/_dispatch.py#L350) (one of the multiple meshes), even though the it could correspond to different meshes.

To avoid hitting the cross-mesh propagation exception in `common_pointwise_strategy` and followup redistribute problems, we manually set the target mesh and placements to be the same as input mesh and placements, so that no redistribute will be triggered. This also helps bypass the situation where [`generate_redistribute_costs`](https://github.com/pytorch/pytorch/pull/157682/files#diff-eea32a36dd2d4e58307bc5229402e48048b2ecaef64a7c085495fba1ee10ac89R597) returns infinite cost due to cross mesh redistribute.

Moreover, this PR has minimal scope (restricted to the `fused_ops`) and doesn't need to modify other files such as `_sharding_prop.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157682
Approved by: https://github.com/wanchaol
2025-07-08 15:58:30 +00:00
777eca9f16 [DTensor][FSDP2] necessary changes to FSDP and TP to unblock EP (#157216)
This is to unblock "dp2ep" Expert Parallel + TP integration in torchtitan https://github.com/pytorch/torchtitan/pull/1324.

It does two things:
1. Slightly modifies the glue code for FSDP/HSDP + TP to work with FSDP/HSDP + EP and FSDP/HSDP + EP + TP. I kept the name `FSDPParam._tp_spec` to make the change minimal. We can consider renaming it in the future if it confuses people, but I heard @wanchaol has a plan to rewrite DTensor strided sharding entirely.
2. Lifts the check of `_validate_tp_mesh_dim` for `torch.distributed.tensor.parallel.parallelize_module`, as in EP or EP+TP this check is too strict. In particular it assumes a DeviceMesh must have `mesh_dim_names` which is not always true. I'm also removing the file `torch/distributed/tensor/parallel/_utils.py` it belongs entirely, as the other check `_deprecate_warnings`, added two years ago, is not used any more.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157216
Approved by: https://github.com/wanchaol, https://github.com/weifengpy
2025-07-08 15:57:37 +00:00
476874b37f [BE]: Update NCCL to 2.27.5 (#157108)
Update NCCL to 2.27.5. Minor version, improves Blackwell, Symmem FP8 support, and fixes a bug with MNVVL.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157108
Approved by: https://github.com/atalman
2025-07-08 15:40:54 +00:00
5dc75f72d4 Simplify the base classes of _PyFutureMeta (#157757)
Summary:

I'm fairly sure the use of a custom metaclass is a holdover from pre-3.7 where Generic used a custom metaclass so we had to use multiple inheritance to avoid import-time failures.

At this point, `type(Generic)` is just `type` so it isn't needed, and we will get the least metaclass from our base classes, which means the `type(torch._C.Future)` isn't needed either, it will happen automatically just by inheritance.

Test Plan:

I'm fairly confident from local testing that this should be a no-op.

But also, Pytorch CI should give us pretty strong signal that this change doesn't break anything in case there's some edge case I missed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157757
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-08 15:39:56 +00:00
f88d7a7a34 [BE] Do not add . after troubleshooting_url (#157753)
As it gets included into auto-hrefed URLs in say github logs to point to non existing location

For example from https://github.com/pytorch/pytorch/actions/runs/16130448756/job/45517004735?pr=157749#step:18:27
> W0708 00:23:20.150000 67082 torch/_dynamo/convert_frame.py:1047] [0/8] To diagnose recompilation issues, see [https://pytorch.org/docs/main/torch.compiler_troubleshooting.html.](https://pytorch.org/docs/main/torch.compiler_troubleshooting.html.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157753
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-07-08 15:38:24 +00:00
98bb0c0e78 [CI][MacOS] Add VENV_PATH to search path (#157749)
When building/testing PyTorch on MacOS

Shoudl prevent some flakiness when conda environment overtakes CI/CD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157749
Approved by: https://github.com/atalman, https://github.com/huydhn
2025-07-08 15:37:45 +00:00
76fe88fa56 Revert "Cleanup leftover miniconda brew installation (#156898)"
This reverts commit 214e2959dcdbf91a999d5c0a5d40c91e4442e8c5.

Reverted https://github.com/pytorch/pytorch/pull/156898 on behalf of https://github.com/malfet due to Breaks TorchVision builds ([comment](https://github.com/pytorch/pytorch/pull/156898#issuecomment-3049281232))
2025-07-08 14:54:42 +00:00
86670b39fa [PT2][memory] mutation size correctness (#157562)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157562
Approved by: https://github.com/yf225
2025-07-08 14:02:20 +00:00
c78bbdf410 [BE] Update xpu driver repo for CD used almalinux 8.10 (#157356)
XPU CD docker image built on `quay.io/pypa/manylinux_2_28_x86_64`, which based on almalinux 8.10
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157356
Approved by: https://github.com/EikanWang, https://github.com/malfet
2025-07-08 13:59:46 +00:00
b9afdd9bcc Add flag to fx.passes.split_module to normalize input names (#157733)
This is useful for vLLM, which runs AOTAutograd directly on graphs after
they have been split.

I created a new flag for this instead of reusing
`keep_original_node_name` (please let me know if you think I should reuse this).
The reasoning is:
- The names of the placeholder nodes is different from the targets of
  the placehoder nodes. The targets are the actual input names.
- Backwards compatibility: this API has been out for ~4 years, it
  looks public, and it has extensive public use. For example, this change
  would actually be BC-breaking to vLLM (they rely on the subgraph input
  names being different at the moment).

Test Plan:
- new tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157733
Approved by: https://github.com/ezyang
2025-07-08 13:47:24 +00:00
cyy
7381c77724 Use CMake wholearchive group (#156393)
Use CMake wholearchive group to simplify code. It may also support more OSes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156393
Approved by: https://github.com/ezyang
2025-07-08 12:20:29 +00:00
ab655816b8 Deprecate DataLoader pin_memory_device param (#146821)
Following [ #131858 suggestion](https://github.com/pytorch/pytorch/pull/131858#pullrequestreview-2517760602) to optimize DataLoader code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146821
Approved by: https://github.com/divyanshk

Co-authored-by: Divyansh Khanna <divyanshkhanna09@gmail.com>
2025-07-08 09:24:53 +00:00
41e8b826d0 S390x update test marks (#157541)
Update s390x test marks

test_logs_out from test/dynamo/test_logging.py is updated
and no longer fails on s390x.

test_qengine from test/test_torch.py doesn't work on s390x:
no QEngine is available.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157541
Approved by: https://github.com/huydhn
2025-07-08 09:08:33 +00:00
5430990bd7 Added philox based RNG context for HPU device in Dtensor scenarios (#156581)
In this PR, we are enabling `HPU` device-specific function calls for random operations. These calls will manage the setting and unsetting of the `context of Random Number Generator`.
While HPU devices typically utilize a `Mersenne-based RNG`, Dtensor-specific random operations employ an `offset-based (Philox) RNG tracker` which is specifically integrated with `CUDA` in scope.
To integrate a similar offset-based RNG tracker within the `HPU backend`, a backend-specific device handle function is necessary to identify the execution context of these random operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156581
Approved by: https://github.com/jeromean, https://github.com/wanchaol
2025-07-08 08:50:24 +00:00
55108074c0 Introduce AcceleratorAllocatorConfig as the common class (#149601)
# Motivation
This PR aims to generalize `AllocatorConfig` to be device-agnostic. Introduce the class `AcceleratorAllocatorConfig` to clarify its scope as a configuration manager for accelerator backends (e.g., CUDA, XPU). The another name `AllocatorConfig` is now reserved for a potential future base class that can unify configuration handling for both CPU and accelerator allocators, should similar requirements arise for the CPU path.

# Design Rule
## Overall
This class configures memory allocation for both device and host memory. A single `AcceleratorAllocatorConfig` instance is shared across all accelerator backends, such as CUDA and XPU, under the assumption that relevant environment variables apply uniformly to all accelerators. Device-specific configuration extensions are supported via hooks (see `registerDeviceConfigParserHook`).
Introduce a new class `ConfigTokenizer` to help process the env variable config key-value pair

## Naming Convention:
- Public API names in `AcceleratorAllocatorConfig` should be device-generic.
- Members prefixed with `pinned_` are specific to the host/pinned allocator.
- Environment variable names should be generic across backends.
- Comma-separated key-value pairs in the format: `key:value`. Use square brackets `[]` for list values Example: `key1:123, key2:[val1,val2]`

## Environment Variables:
- The default environment variable for configuration is `PYTORCH_ALLOC_CONF`.
- For backward compatibility, `PYTORCH_CUDA_ALLOC_CONF` and `PYTORCH_HIP_ALLOC_CONF` are also supported with lower priority.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149601
Approved by: https://github.com/albanD
2025-07-08 08:40:47 +00:00
84b77ec128 [BE] add a minimal linter to check pyproject.toml consistency (#156017)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156017
Approved by: https://github.com/ezyang
2025-07-08 08:17:36 +00:00
8134684d44 [inductor collectives] sink waits iterative (#157708)
Differential Revision: [D77861763](https://our.internmc.facebook.com/intern/diff/D77861763)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157708
Approved by: https://github.com/wconstab
ghstack dependencies: #157706
2025-07-08 07:17:10 +00:00
2af7c67e48 Mitigate some flaky tests in trunk (#157756)
(not really fix these issues, but we should be able to close them. This also allows CI from the PR to test them)

Fixes https://github.com/pytorch/pytorch/issues/156579
Fixes https://github.com/pytorch/pytorch/issues/156580
Fixes https://github.com/pytorch/pytorch/issues/126867

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157756
Approved by: https://github.com/clee2000
2025-07-08 07:07:11 +00:00
38757d94f1 Enable target-determination (TD) for ROCm CI (#156545)
Target determination sorts the tests in a PR CI run based on heuristics about which tests are more relevant to the PR's changes. This can help provide faster CI signal as well as help alleviate capacity concerns as job durations should decrease due to catching failures earlier.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156545
Approved by: https://github.com/jeffdaily, https://github.com/clee2000
2025-07-08 06:27:40 +00:00
1b58e7adab fix storage use_count (#157694)
# Motivation
https://github.com/pytorch/pytorch/pull/155451 decoupled `torch._C._storage_Use_Count` from CUDA and introduced a corresponding unit test:
815545f2dd/test/test_torch.py (L257-L262)
However, this test fails when PyTorch is built with debug assertions enabled. @clee2000 disabled this UT in https://github.com/pytorch/pytorch/pull/156731. The root cause is that `_cdata` is obtained from an `intrusive_ptr`, not a `weak_intrusive_ptr`. As a result, calling `c10::weak_intrusive_ptr::use_count` on it triggers the internal assertion:
815545f2dd/c10/util/intrusive_ptr.h (L912-L917)
For example:
```python
a = torch.randn(10, device=device) # refcount=1, weakcount=1
prev_cf = torch._C._storage_Use_Count(a.untyped_storage()._cdata) # violate the assertation
```
This violates the expected invariant inside `weak_intrusive_ptr::use_count`, which assumes the pointer was originally constructed from a valid `weak_intrusive_ptr`. Actually, `storage_impl` is obtained from an `intrusive_ptr`.
815545f2dd/torch/csrc/Module.cpp (L2105-L2109)

# Solution
Use `c10::intrusive_ptr::use_count` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157694
Approved by: https://github.com/albanD
2025-07-08 05:53:12 +00:00
8186af5a26 [BE][Easy] set end-of-line for .bat file to CRLF in .editorconfig (#156032)
See also:

54976bca10/.gitattributes (L1)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156032
Approved by: https://github.com/seemethere, https://github.com/ezyang
2025-07-08 05:40:57 +00:00
bdacf08b86 [BE][Easy] add .editorconfig setting for C/C++/CUDA/ObjC (#157692)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157692
Approved by: https://github.com/ezyang
2025-07-08 05:37:15 +00:00
987314aa96 Split batch-num-heads grid dim between y and z (#157745)
for #157018

doesn't totally fix the problem but should help alot

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157745
Approved by: https://github.com/Chillee
2025-07-08 05:17:43 +00:00
39a8f66d59 [BE] Use simdgroup_size constexpr (#157751)
Instead of every shader defining it separately, move it to `c10/metal/common.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157751
Approved by: https://github.com/Skylion007, https://github.com/dcci
ghstack dependencies: #157746
2025-07-08 03:46:20 +00:00
0b73f7c871 [EZ][BE] Move array def to c10/metal/common.h (#157746)
And use proper type aliasing instead of weird _ARRAY_NS

Also use `uint64_t` instead of `ulong`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157746
Approved by: https://github.com/Skylion007, https://github.com/dcci
2025-07-08 03:46:20 +00:00
a4c7e7f983 [PowerPC]: Fixed build issue that occur because of datatype f8 enablement for onednn in qlinear and prepack (#157469)
Getting the build issue because of enablement of data type fp8 for onednn in qlinear and qlinear_prepack file after this commit c2185dc4a5626848df37cad214b73d5ae7dd4f17

Currrently cpuinfo is disable for power system because of that  it is giving below error.

**Error:**
 ‘cpuinfo_has_x86_amx_int8’ was not declared in this scope

Made a required changes and now build issue got fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157469
Approved by: https://github.com/malfet
2025-07-08 03:45:06 +00:00
cyy
3ee8828c87 [1/N] Don't use CUDA.cmake module (#157188)
Small changes before removing CUDA.cmake.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157188
Approved by: https://github.com/ezyang
2025-07-08 03:05:35 +00:00
f56bfb3030 [CPU] Fix memory access for sbgemm bf16 (#156585)
Fixes #156022.

1. The original dtype conversion overwrites the whole `n_*ldc_` instead of `n_*m_` with stride `ldc_`, causing the potential memory issue.
2. Fix the None value issue in attention backward UT, as the sbgemm bf16 could be used.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156585
Approved by: https://github.com/mingfeima, https://github.com/aditew01, https://github.com/ezyang
2025-07-08 02:36:28 +00:00
12f9942b10 Fix slice op redistribute_cost compute (#157178)
For slice op backward, my understanding is that the `redistribute_cost` attribute is incorrectly assigned to previous placement strategy: 0decd966af/torch/distributed/tensor/_ops/_tensor_ops.py (L399-L400)

The mistake is hard to be tested since we didn't enforce the `redistribute_cost` for `strategy.strategies` with size one: 2815ade9a8/torch/distributed/tensor/_sharding_prop.py (L491-L499)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157178
Approved by: https://github.com/XilunWu
2025-07-08 02:28:59 +00:00
c5589074e6 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-08 01:21:59 +00:00
30a1cc11a4 Revert "[CI][MacOS] Add VENV_PATH to search path (#157749)"
This reverts commit 85111cd165f108ffabb4a90083d59d7a867ebd9f.

Reverted https://github.com/pytorch/pytorch/pull/157749 on behalf of https://github.com/huydhn due to It looks like lint was not green, so revert and reland I guess ([comment](https://github.com/pytorch/pytorch/pull/157749#issuecomment-3047032909))
2025-07-08 01:18:16 +00:00
19a01382bc Revert "[SymmMem] find_path does not search /usr/local/lib (#157695)"
This reverts commit 3effe0c293219b00a0eae7e139fe2d9aed84bc03.

Reverted https://github.com/pytorch/pytorch/pull/157695 on behalf of https://github.com/kwen2501 due to Changing it to be landable on 2.8 branch ([comment](https://github.com/pytorch/pytorch/pull/157695#issuecomment-3047020152))
2025-07-08 01:12:01 +00:00
df72078fe1 [dynamo] Replace unimplemented with unimplemented_v2 in torch/_dynamo/variables/torch.py (#157344)
Fixes part of #147913

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157344
Approved by: https://github.com/williamwen42

Co-authored-by: William Wen <william.wen42@gmail.com>
2025-07-08 00:46:56 +00:00
85111cd165 [CI][MacOS] Add VENV_PATH to search path (#157749)
When building/testing PyTorch on MacOS

Shoudl prevent some flakiness when conda environment overtakes CI/CD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157749
Approved by: https://github.com/atalman, https://github.com/huydhn
2025-07-08 00:38:37 +00:00
edf7bb4f51 Fix unbound local when an error occurs before pool is initialized (#156750)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156750
Approved by: https://github.com/jamesjwu
2025-07-08 00:28:21 +00:00
bbb930aba2 Bump urllib3 from 2.2.2 to 2.5.0 in /tools/build/bazel (#156390)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.2.2 to 2.5.0.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/2.2.2...2.5.0)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-version: 2.5.0
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-07-07 17:13:21 -07:00
60b41de0ca remove allow-untyped-defs from torch/ao/nn/quantized/modules/rnn.py (#157234)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157234
Approved by: https://github.com/jingsh
ghstack dependencies: #157231, #157232
2025-07-08 00:11:52 +00:00
e38a335d7f remove allow-untyped-defs from torch/backends/cusparselt/__init__.py (#157232)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157232
Approved by: https://github.com/jingsh
ghstack dependencies: #157231
2025-07-08 00:11:52 +00:00
9d8cf24b3b remove allow-untyped-defs from torch/_classes.py (#157231)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157231
Approved by: https://github.com/jingsh
2025-07-08 00:11:52 +00:00
be56a8d7ac Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 23:57:17 +00:00
3effe0c293 [SymmMem] find_path does not search /usr/local/lib (#157695)
This PR uses `find_library` to replace `find_path`.
It also searches for NVSHMEM host lib and device lib separately.

Tested against system install location: /usr/local/lib and /usr/local/include.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157695
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-07 23:16:45 +00:00
2fde2090d0 [inductor_collectives] Make reorder_collectives_preserve_peak pass grouping nodes (#157706)
Differential Revision: [D77861765](https://our.internmc.facebook.com/intern/diff/D77861765)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157706
Approved by: https://github.com/wconstab
2025-07-07 23:13:58 +00:00
5d8d126249 Fix einops x torch.compile interaction (#157600)
Fixes https://github.com/pytorch/pytorch/issues/157451

If/when einops releases a version greater than 0.8.1, it will just break
(without this patch).

The history is:
- Between 2.6 and 2.7, we tried to delete the einops import (#142847)
- That didn't work so well, so we applied a hotfix in 2.7.1. (#153925)
- The hotfix wasn't completely correct (0.8.1 is the latest version of
  einops, so the condition in the hotfix just always evaluates to True!)
- It turns out we didn't need to delete the einops import. We already
  do not eagerly import einops.
- I reverted the code back to the state it was in in 2.6.
  https://github.com/pytorch/pytorch/blob/release/2.6/torch/_dynamo/decorators.py

Test Plan:
- We have testing in CI for einops 0.6.1, 0.7.0, and 0.8.1. Wait for CI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157600
Approved by: https://github.com/guilhermeleobas, https://github.com/anijain2305
ghstack dependencies: #157416
2025-07-07 23:04:02 +00:00
378c121d5e Remove unnecessary warnings during the ATen compilation process. (#157703)
Comparing uint32_t(num_threads()) with int(kCUDABlockReduceMaxThreads) always results in a compilation warning. Just change the return type of kCUDABlockReduceMaxThreads to uint32_t to avoid it.
Fixes https://github.com/pytorch/pytorch/issues/157701

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157703
Approved by: https://github.com/malfet, https://github.com/Skylion007
2025-07-07 22:49:38 +00:00
7e83d50845 Inductor logging + analysis of torch.profile (#149697)
Prereqs:
 - https://github.com/pytorch/pytorch/pull/152708

Features:
1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses.
1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`.
1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`.
1. Extends Triton `torch.profiler` logging to `DebugAutotuner`.
1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side:
```python
Device(NVIDIA H100, 0):
 Kernel Name                              | resnet Kernel Count | resnet FLOPS       | resnet bw gbps        | resnet Dur (ms)    | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS    | newresnet bw gbps     | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth %
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 triton_poi_fused__native_batch_norm_legi | 24                  | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                       | 0.003401572611382541        | 24                     | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                          | 0.003401572611382541
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142                 | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583     | 0.007716441266265022        | 142                    | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583        | 0.007716441266265022
 triton_red_fused__native_batch_norm_legi | 39                  | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                       | 0.004176126863316074        | 39                     | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                          | 0.004176126863316074
 triton_poi_fused__native_batch_norm_legi | 25                  | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                       | 0.009499718184339253        | 25                     | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                          | 0.009499718184339253
 void cutlass::Kernel2<cutlass_80_tensoro | 98                  | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874     | 0.012827592254037562        | 98                     | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874        | 0.012827592254037562
 triton_red_fused__native_batch_norm_legi | 73                  | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                       | 0.009628003963020014        | 73                     | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                          | 0.009628003963020014
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                       | 0.043257347302946926        | 15                     | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                          | 0.043257347302946926
 void cutlass::Kernel2<cutlass_80_tensoro | 186                 | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027     | 0.007961586274361157        | 186                    | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027        | 0.007961586274361157
 triton_poi_fused__native_batch_norm_legi | 33                  | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                       | 0.044550915039384846        | 33                     | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                          | 0.044550915039384846
 triton_red_fused__native_batch_norm_legi | 29                  | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                       | 0.007630624036606301        | 29                     | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                          | 0.007630624036606301
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                       | 0.01752406619162008         | 13                     | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                          | 0.01752406619162008
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 0.41409928846284      | 2.853588235294117  | 0                       | 0.012361172789935523        | 34                     | 0                  | 0.41409928846284      | 2.853588235294117  | 0                          | 0.012361172789935523
 triton_per_fused__native_batch_norm_legi | 34                  | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                       | 0.0034941238826919864       | 34                     | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                          | 0.0034941238826919864
 triton_poi_fused__native_batch_norm_legi | 16                  | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                       | 0.005136672596156592        | 16                     | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                          | 0.005136672596156592
 triton_per_fused__native_batch_norm_legi | 30                  | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                       | 0.007879744244842555        | 30                     | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                          | 0.007879744244842555
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100                 | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531     | 0.005819245035648175        | 100                    | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531        | 0.005819245035648175
 triton_poi_fused__native_batch_norm_legi | 8                   | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                       | 0.029415213809625928        | 8                      | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                          | 0.029415213809625928
 void cublasLt::splitKreduce_kernel<32, 1 | 56                  | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628     | 0.024806865808245714        | 56                     | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628        | 0.024806865808245714
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                       | 0.02968359094286896         | 23                     | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                          | 0.02968359094286896
 triton_per_fused__native_batch_norm_legi | 10                  | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                       | 0.00545313748934644         | 10                     | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                          | 0.00545313748934644
 triton_poi_fused__native_batch_norm_legi | 10                  | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                       | 0.009459622642884923        | 10                     | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                          | 0.009459622642884923
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                       | 0.03421974596124114         | 34                     | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                          | 0.03421974596124114
 void cask_plugin_cudnn::xmma_cudnn::init | 44                  | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194     | 0.06167532194133924         | 44                     | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194        | 0.06167532194133924
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95                  | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802     | 0.014014750913273854        | 95                     | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802        | 0.014014750913273854
 triton_per_fused__native_batch_norm_legi | 41                  | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                       | 0.002037513395819492        | 41                     | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                          | 0.002037513395819492
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                       | 0.0026292999141582997       | 23                     | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                          | 0.0026292999141582997
 triton_per_fused__native_batch_norm_legi | 40                  | 0                  | 0.18179321034952417   | 4.556825           | 0                       | 0.005426662995508183        | 40                     | 0                  | 0.18179321034952417   | 4.556825           | 0                          | 0.005426662995508183
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                       | 0.017574373598370836        | 15                     | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                          | 0.017574373598370836
 void cutlass::Kernel2<cutlass_80_tensoro | 38                  | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546      | 0.007659474756834           | 38                     | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546         | 0.007659474756834
 triton_poi_fused__native_batch_norm_legi | 21                  | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                       | 0.017441376040091088        | 21                     | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                          | 0.017441376040091088
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                       | 0.0034356313950705724       | 16                     | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                          | 0.0034356313950705724
 triton_poi_fused__native_batch_norm_legi | 14                  | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                       | 0.00508857313505646         | 14                     | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                          | 0.00508857313505646
 triton_poi_fused__native_batch_norm_legi | 58                  | 0                  | 2.307520779930795     | 8.190706896551722  | 0                       | 0.06888121731136704         | 58                     | 0                  | 2.307520779930795     | 8.190706896551722  | 0                          | 0.06888121731136704
 triton_per_fused__native_batch_norm_legi | 29                  | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                       | 0.001111738775280038        | 29                     | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                          | 0.001111738775280038
 triton_poi_fused__native_batch_norm_legi | 20                  | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                       | 0.0014154327747549007       | 20                     | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                          | 0.0014154327747549007
 triton_per_fused__native_batch_norm_legi | 25                  | 0                  | 0.13357016893727824   | 3.37536            | 0                       | 0.003987169222008305        | 25                     | 0                  | 0.13357016893727824   | 3.37536            | 0                          | 0.003987169222008305
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                       | 0.009223469457612694        | 13                     | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                          | 0.009223469457612694
 triton_poi_fused__native_batch_norm_legi | 17                  | 0                  | 0.3129385387909844    | 2.673              | 0                       | 0.009341448919133863        | 17                     | 0                  | 0.3129385387909844    | 2.673              | 0                          | 0.009341448919133863
 triton_per_fused__native_batch_norm_legi | 19                  | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                       | 0.0066136363060691275       | 19                     | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                          | 0.0066136363060691275
 std::enable_if<!(false), void>::type int | 23                  | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447   | 0.030203868944223014        | 23                     | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447      | 0.030203868944223014
 triton_poi_fused_add_copy__38            | 56                  | 0                  | 0                     | 2.132482142857143  | 0                       | 0                           | 56                     | 0                  | 0                     | 2.132482142857143  | 0                          | 0
 triton_poi_fused_convolution_0           | 18                  | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                       | 0.012972719640279667        | 18                     | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                          | 0.012972719640279667
 triton_poi_fused_convolution_1           | 17                  | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                       | 0.0008601884319153051       | 17                     | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                          | 0.0008601884319153051
 void convolve_common_engine_float_NHWC<f | 44                  | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169     | 0.0007382250748795709       | 44                     | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169        | 0.0007382250748795709
 triton_per_fused__native_batch_norm_legi | 12                  | 0                  | 0.6809930918986744    | 4.82675            | 0                       | 0.020328151996975356        | 12                     | 0                  | 0.6809930918986744    | 4.82675            | 0                          | 0.020328151996975356
 triton_per_fused__native_batch_norm_legi | 14                  | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                       | 0.0008606061486377935       | 14                     | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                          | 0.0008606061486377935
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.0014658988233201874 | 2.098              | 0                       | 4.375817383045335e-05       | 16                     | 0                  | 0.0014658988233201874 | 2.098              | 0                          | 4.375817383045335e-05
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                       | 0.02963073785159611         | 13                     | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                          | 0.02963073785159611
 triton_poi_fused__native_batch_norm_legi | 9                   | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                       | 0.03883228983781048         | 9                      | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                          | 0.03883228983781048
 void at::native::(anonymous namespace):: | 98                  | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                       | 0.0027386076458833994       | 98                     | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                          | 0.0027386076458833994
 void at::native::vectorized_elementwise_ | 7                   | 0                  | 0                     | 1.7278571428571428 | 0                       | 0                           | 7                      | 0                  | 0                     | 1.7278571428571428 | 0                          | 0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-07-07 22:13:34 +00:00
6f05d58f2b [AOTI] Split aoti_runtime/model.h to prepare for model static linking (#157592)
Summary:
Prepare for https://github.com/pytorch/pytorch/pull/157129.

We split the file so we can re-use `model.h` part for codegen a separate header for each model in static linkage.

Test Plan:
CI

Rollback Plan:

Differential Revision: D77761249

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157592
Approved by: https://github.com/desertfire
2025-07-07 22:13:22 +00:00
a7eb153bba [MemoryViz] Add file selector button (#157647)
In some linux desktop environments like mine, there is no drag and dropping of files. Which made the memoryviz impossible for me to use. So this adds a file selector button as an alternative. Tested that it works locally, and also works with multiple files.

![image](https://github.com/user-attachments/assets/dcb61d68-6c6f-42f6-a075-1783d747d1b0)

And the button remains when something is loaded, to allow loading something else, but it moves out of the way to save vertical space:

![image](https://github.com/user-attachments/assets/4239d13c-3d80-4790-9696-0906c75e14e6)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157647
Approved by: https://github.com/sraikund16
2025-07-07 22:03:51 +00:00
ed6df0e324 correctly import torch.version (#157584)
The structure is

```
torch/
  __init__.py
  version.py
```

When we import torch, only `torch/__init__.py` is executed by default.

The submodules like `version.py` are not automatically imported or attached to the torch module.

So without anything in `__init__.py`, `torch.version` may not be found. So in this PR, we make the import explicit.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157584
Approved by: https://github.com/ezyang
2025-07-07 21:43:35 +00:00
5c79a55e7e [oss] Add version to metadata (#155343)
Summary: We want to add versioning to DCP to the metadata so that whenever planner logic changes, we can use the version on save to determine how to load the data

Test Plan:
added a test

Rollback Plan:

Differential Revision: D76135887

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155343
Approved by: https://github.com/teja-rao
2025-07-07 20:57:30 +00:00
3d06ff82a8 [release] Triton pin update to 3.4 (#156664)
Triton pin update issue: https://github.com/pytorch/pytorch/issues/154206
Please see post: https://dev-discuss.pytorch.org/t/2-8-final-rc-release-postponed-by-a-week/3101

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156664
Approved by: https://github.com/davidberard98
2025-07-07 20:52:25 +00:00
2efa5eaa65 swa avoid stream sync (#157705)
Summary:
When AveragedModel updates_parameters it calls self.n_averaged == 0 for each parameter, where n_averated is a buffer on GPU. Moving check before the cycle to call sync once

It improves update_parameter from 74ms to 57ms ~22% improvement
{F1980011097}
{F1980011111}

Test Plan:
CI

Rollback Plan:

Differential Revision: D77723025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157705
Approved by: https://github.com/albanD, https://github.com/Skylion007, https://github.com/janeyx99
2025-07-07 20:47:35 +00:00
c2510fcd86 Fix index_put propagate strategy arg unpack error (#157671)
Fix `index_put` propagate strategy didn't consider optional arg `accumulate`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157671
Approved by: https://github.com/fmassa, https://github.com/wconstab
2025-07-07 20:18:18 +00:00
510c398a4f Add max_pool3d backward pass for MPS (#157498)
Note on backward precision over fp16:

A float16 number has 10 bits of mantissa, 5 bits of exponent, and 1 bit for the sign. If the sign bit is positive, then with a mantissa $m$ and exponent $e$ represented in base 10, the number that the float16 format represents is $(1 + m / 1024)  \exp2(e)$. ([source](https://en.wikipedia.org/wiki/Half-precision_floating-point_format))

Consider adding two numbers $a$ and $b$ which have arbitrary mantissas, and say their exponents are $e_a = 1$ (so $2 \le a \lt 4$) and $e_b=-3$ (so $0.175 \le b \lt 0.25$). Assume that the result has the same exponent as $a$. Since the exponents differ by 4, we'll effectively need to truncate the 4 rightmost bits of $b$'s mantissa, which would introduce a maximum error on the order of $(2^4 / 1024)  \exp2(-3) \approx 0.002$.

The error is nearly the same if $e_b = -2$ (so $0.25 \le b \lt 0.5$), where the 3 rightmost bits are truncated, giving a maximum error on the order of $(2^3 / 1024)  \exp2(-2) \approx 0.002$. Same for $e_b=-1$.

So if we're adding up nine different numbers that all have exponents -3, -2, or -1, and they sum to a number with exponent 1, then we would expect a maximum error of several times greater than 0.002. In my comments above, summing those particular nine numbers in different ways gave results that ranged between 3.1816 and 3.1758, a difference of $0.0058 \approx 2.9  * 0.002$.

That's within the acceptable bounds, and we can safely just increase the error tolerance used in test_output_grad_match for the case of max_pool3d_backward with float16.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157498
Approved by: https://github.com/malfet
2025-07-07 19:46:44 +00:00
63a96eaeb8 [DeviceMesh] Add error when users try to slice non contiguous flattened dim submesh (#157523)
With https://github.com/pytorch/pytorch/issues/157393, we want to first throw a clearer error for users and then fix it in the long-term

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157523
Approved by: https://github.com/fegin
ghstack dependencies: #157501
2025-07-07 19:43:51 +00:00
2b8d3b1b2b [DeviceMesh] Use user set backend and pg option even for the global mesh (#157501)
Short term solution to https://github.com/pytorch/pytorch/issues/156593.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157501
Approved by: https://github.com/fegin, https://github.com/lw
2025-07-07 19:43:51 +00:00
bf1ebe0531 Fix typo: 'paramter' → 'parameter' in dynamo variable comment (#157651)
This PR fixes a minor typo in a comment in `torch/_dynamo/variables/torch.py`, changing 'paramter' to the correct spelling 'parameter'.

These small but meaningful changes help improve code readability and maintain the overall quality of the codebase.

Thanks for your time and review!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157651
Approved by: https://github.com/Skylion007
2025-07-07 19:42:44 +00:00
433a247102 [logging] [redo] dynamo_timed for CachingAutotuner.coordinate_descent_tuning (#156840)
Summary: This is a redo of https://github.com/pytorch/pytorch/pull/156517, but with pt2_compile_events logging disabled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156840
Approved by: https://github.com/jamesjwu
2025-07-07 19:09:48 +00:00
8a47f9d03b [CI] Fix xpu ci test sccache issue (#157693)
With PR #157341 land, it broken the PXU CI test on sccache which has been disabled by #143851. Re-disable it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157693
Approved by: https://github.com/atalman, https://github.com/huydhn
2025-07-07 18:29:38 +00:00
9e5f4a844c [FSDP2] Fix issue with set_reduce_scatter_divide_factor errors and MixedPrecisionPolicy (#155964)
fix https://github.com/pytorch/pytorch/issues/155223

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155964
Approved by: https://github.com/weifengpy
2025-07-07 17:09:29 +00:00
cyy
7c1f627828 Fix 'dllimport attribute ignored on inline function' (#157670)
There are lots of warnings in builds:
```
 2025-07-05T16:59:46.9208806Z C:\actions-runner\_work\pytorch\pytorch\build\aten\src\ATen\core\TensorBody.h(5043,29): warning: 'at::Tensor::less_' redeclared inline; 'dllimport' attribute ignored [-Wignored-attributes]
2025-07-05T16:59:46.9209030Z  5043 | inline at::Tensor & Tensor::less_(const at::Scalar & other) const {
2025-07-05T16:59:46.9209104Z       |                             ^
2025-07-05T16:59:46.9209671Z C:\actions-runner\_work\pytorch\pytorch\build\aten\src\ATen\core\TensorBody.h(5048,29): warning: 'at::Tensor::less_' redeclared inline; 'dllimport' attribute ignored [-Wignored-attributes]
2025-07-05T16:59:46.9209860Z  5048 | inline at::Tensor & Tensor::less_(const at::Tensor & other) const
```
This PR has fixed them and turned the warning into an error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157670
Approved by: https://github.com/albanD
2025-07-07 16:57:48 +00:00
b3b4d28f4c [submodule][cutlass] Update pin to b995f93 v4.0.0 (#157376)
@Skylion007 seems afk. https://github.com/pytorch/pytorch/pull/153541

https://github.com/NVIDIA/cutlass/releases/tag/v4.0.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157376
Approved by: https://github.com/drisspg, https://github.com/Skylion007
2025-07-07 16:55:47 +00:00
ae1094b72b Revert "[WIP] Automatically load and save dynamo entries via caching_precompile (#155913)"
This reverts commit e466dab164d9236bfe5817ec8e4d24c7b9d3e392.

Reverted https://github.com/pytorch/pytorch/pull/155913 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail a test in trunk ([comment](https://github.com/pytorch/pytorch/pull/155913#issuecomment-3045914878))
2025-07-07 16:53:35 +00:00
eda0a9cc90 [list] Add list.__delitem__ (#156339)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156339
Approved by: https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242, #156270, #156271
2025-07-07 14:51:32 +00:00
d74ccf4ffe [list] Add list.__mul__ and list.__imul__ (#156271)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156271
Approved by: https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242, #156270
2025-07-07 14:51:32 +00:00
689fba032d Implement list.__add__ and list.__iadd__ (#156270)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156270
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #153969, #156148, #156242
2025-07-07 14:51:25 +00:00
c1d69d5dd5 [list] Implement list.remove (#156242)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156242
Approved by: https://github.com/Skylion007, https://github.com/zou3519
ghstack dependencies: #153969, #156148
2025-07-07 14:51:17 +00:00
e49acfc5c5 [list] Raise exception in invalid list method call (#156148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156148
Approved by: https://github.com/zou3519
ghstack dependencies: #153969
2025-07-07 14:51:10 +00:00
034e996d37 [list] Implement list.count (#153969)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153969
Approved by: https://github.com/zou3519, https://github.com/XuehaiPan
2025-07-07 14:51:03 +00:00
16c3b4143b [gtest][listing] Enable gtest json listing for the fbcode/caffe2 project (#156816)
***SUMMARY***

The main function in this tests overrides that of the Gtest framework which contains it's `RUN_ALL_TESTS()` function. The main function in this test is called conditionally when conditions apply, in this case, when the C10_MOBILE directive is provided. This is wrong as we always want to call the `RUN_ALL_TEST()` function.

In this PR, we only make the test suite available for cases that apply, i.e if the C10_MOBILE directive exist which represents the caching allocator and is only exposed on mobile

***TEST PLAN***

This tests should run in modes where it applies which should be covered in the CI run.

Below shows a sample run in the dev-nosan mode which do not have the cache allocator

BEFORE
```
buck test fbcode//caffe2:cpu_caching_allocator_test
Discovered 0. Pass 0. Fail 0. Fatal 0. Skip 0. Timeout 0
⚠ Listing failed: caffe2:cpu_caching_allocator_test
Listing tests failed with error:
Failed to read from /data/users/ysuleiman/fbsource/buck-out/v2/test/buck-out/v2/test_discovery/fbcode/6dcc55a61c1b90b3/default/tpx_execution_dir/gtest_output_file.json. Listing process stdout: , stderr:
```

AFTER
```
buck test '@fbcode//mode/dev-nosan' fbcode//caffe2:cpu_caching_allocator_test
Analyzing targets. Remaining      0/46242                                                                                1871690 actions, 2251668 artifacts declared
Executing actions. Remaining      0/257870                                                                               83:28:24.4s exec time total
Command: test.     Finished 10 remote, 112314 cache (99% hit)                                                            83:22:43.5s exec time cached (99%)
Time elapsed: 2:57.7s
Tests finished: Pass 0. Fail 0. Fatal 0. Skip 0. Build failure 0
NO TESTS RAN
```

Rollback Plan:
steps:
  - manual.note:
      content: Revert this diff

Reviewed By: patskovn

Differential Revision: D77229077
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156816
Approved by: https://github.com/kimishpatel
2025-07-07 14:16:43 +00:00
54a4d34d10 [fbcode] switch to cutlass-4 (#157579)
Summary: Update cutlass version to 4. For most use cases.

Test Plan:
testing in progress

Rollback Plan:

Differential Revision: D77605011

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157579
Approved by: https://github.com/drisspg, https://github.com/Skylion007
2025-07-07 14:12:33 +00:00
78684e27ac [xla hash update] update the pinned xla hash (#156584)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156584
Approved by: https://github.com/pytorchbot
2025-07-07 12:09:20 +00:00
40e39ae21f Update slow tests (#157696)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157696
Approved by: https://github.com/pytorchbot
2025-07-07 12:09:06 +00:00
e466dab164 [WIP] Automatically load and save dynamo entries via caching_precompile (#155913)
This PR adds a new config option, `caching_precompile`, and a `DynamoCache`, which loads and saves Dynamo Cache entries automatically. It also hooks up DynamoCache to PrecompileContext, so that we can save multiple cache entries.

When this configuration is turned on, we:
- Automatically create and initialize a CompilePackage on every torch.compile
- Automatically use BundledAutogradcache
- Automatically save the CompilePackage entry to DynamoCache after every compile

You can also use PrecompileContext.serialize() to manually serialize a full object.

I've added unit tests to exhibit this behavior.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155913
Approved by: https://github.com/zhxchen17
2025-07-07 11:56:30 +00:00
d27d36136c Don't try installing missing cuda dependencies on s390x (#157540)
Don't try installing missing cuda dependencies on s390x

Fixes #157409

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157540
Approved by: https://github.com/seemethere, https://github.com/huydhn
2025-07-07 09:16:38 +00:00
815545f2dd [inductor] enable bf32 for mkldnn linear pointwise/binary in inductor (#127294)
When `torch.backends.mkldnn.matmul.fp32_precision=='bf16'`, we also enabled mkldnn linear in inductor path and allow to run with bf16 computation data type.

Testplan:
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_linear_unary
python test/inductor/test_mkldnn_pattern_matcher.py -k test_linear_fp32
python test/inductor/test_mkldnn_pattern_matcher.py -k test_multi_linear_share_same_input
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127294
Approved by: https://github.com/jgong5, https://github.com/jansel

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-07-07 06:03:41 +00:00
d26ca5de05 Support transpose and pack for bit8 (#156065)
To be used by CPU INT8 SDPA in torchao. https://github.com/pytorch/ao/pull/2380

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156065
Approved by: https://github.com/mingfeima, https://github.com/ezyang
2025-07-07 01:40:47 +00:00
Lei
2022588295 Fix: Ensure writeback handles NO_SHARD correctly by flattening tensors before copying (#154369)
Fixes #151223

Because FSDP stores original parameters as views into a flattened tensor, changing the flattened parameter’s tensor directly can desynchronize the views. With the NO_SHARD strategy this caused a shape mismatch error when writing back modified parameters.

Ensured writeback handles NO_SHARD correctly by flattening tensors before copying. The logic now flattens the source parameter or gradient when the strategy is unsharded to maintain the expected 1‑D shape for writeback operations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154369
Approved by: https://github.com/weifengpy
2025-07-06 09:20:31 +00:00
02715d0876 [BE][5/6] fix typos in test/ (test/dynamo/) (#157639)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157639
Approved by: https://github.com/yewentao256, https://github.com/jansel
ghstack dependencies: #157638
2025-07-06 06:34:25 +00:00
17687eb792 [BE][4/6] fix typos in test/ (test/inductor/) (#157638)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157638
Approved by: https://github.com/yewentao256, https://github.com/jansel
2025-07-06 06:34:25 +00:00
7cda4017dd Fix torch.utils.cpp_extension parser for clang version 20.1.7+libcxx (#157666)
When CC and CXX compiler is set to clang, and clang was compiled with libc++, compilation of torchvision fails with:

```
  File "/usr/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 585, in build_extensions
    compiler_name, compiler_version = self._check_abi()
                                      ^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 1034, in _check_abi
    _, version = get_compiler_abi_compatibility_and_version(compiler)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/site-packages/torch/utils/cpp_extension.py", line 449, in get_compiler_abi_compatibility_and_version
    if tuple(map(int, version)) >= minimum_required_version:
       ^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: invalid literal for int() with base 10: '7+libcxx'
```

Compiler identification is a valid semantic version:
```
$ clang -dumpfullversion -dumpversion
20.1.7+libcxx
```

After adjusting parser of version, clang is able to compile extensions successfully.

Fixes #157665

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157666
Approved by: https://github.com/msaroufim
2025-07-06 01:35:00 +00:00
3e56a9cdfb More testing of Python arithmetic operators between tensors and scalars (see 157266) (#157632)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157632
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-05 17:48:27 +00:00
ee9ac36c23 Fixing misspelling in documentation (#157565)
Fixes #157564

Fixes misspelling of the word parameter in documentation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157565
Approved by: https://github.com/awgu, https://github.com/cyyever
2025-07-05 17:04:13 +00:00
9be5860bc3 [dynamo] Fix dynamic shapes handling in after_aot repro generation (#157136)
Summary:
- Extract symbolic variables directly from graph placeholders and arguments
- Add symbolic variable definitions to generated repro code
- Add unit tests with ToyModel for testing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157136
Approved by: https://github.com/xmfan
ghstack dependencies: #157021
2025-07-05 15:38:41 +00:00
548c9d8281 Fix typo: 'paramter' → 'parameter' in quantization model report test (#157646)
This PR addresses a minor typo in the file `test/quantization/fx/test_model_report_fx.py`:

- Corrected the word "paramter" to "parameter" for better readability and accuracy.

While it's a small change, correcting such typographical errors contributes to maintaining the overall quality and professionalism of the codebase.

Thank you for your time and consideration in reviewing this PR. I'm happy to make any further adjustments if needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157646
Approved by: https://github.com/yewentao256, https://github.com/ezyang
2025-07-05 12:28:36 +00:00
71a650ad56 Fix typo: 'Intializing' → 'Initializing' in test_parametrization.py (#157362)
This pull request fixes a minor typo in the doc comments of `test/nn/test_parametrization.py`.

- Replaced `'Intializing'` with `'Initializing'` in two docstring comments to improve clarity and maintain consistency across the codebase.

This is a non-functional change and does not impact behavior or test outcomes.

Thank you for maintaining such a high-quality codebase. Please let me know if any adjustments are needed. I'd be happy to help!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157362
Approved by: https://github.com/ezyang
2025-07-05 12:21:15 +00:00
2471cc3355 [pc] verify max autotune is in generated source code (#157650)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157650
Approved by: https://github.com/aorenste
ghstack dependencies: #157305, #157614, #157619
2025-07-05 07:55:11 +00:00
db00e1699a [pc] introduce ProgressiveCompilationState and clear callback (#157619)
followup from https://github.com/pytorch/pytorch/pull/157305 where
@aorenste correctly suggested clearing callback. this refactor
introduces a new dataclass so we don't need to check nullability for
each field

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157619
Approved by: https://github.com/aorenste
ghstack dependencies: #157305, #157614
2025-07-05 07:55:11 +00:00
5ea832e5f6 [pc] migrate progression futures from list to deque (#157614)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157614
Approved by: https://github.com/aorenste
ghstack dependencies: #157305
2025-07-05 07:55:03 +00:00
a952956d05 Add isnan exit condition to special ops (#157464)
They might have been slow on CUDA-11.3, but this version of CUDA is long gone. More fundamental underlying issue were linear complexity of the recursive polynomial definitions for higher order polynomials, for example see this loop from implementation of Chebyshev polynomial of the first kind
7081b8233a/aten/src/ATen/native/Math.h (L2969-L2973)
which were tested by `test_compare_cpu` using following values (as sample index 16)
7081b8233a/torch/testing/_internal/opinfo/core.py (L2079)

Luckily chebyshev polynomials for absolute values higher than 1 pretty quickly reach infinity, see below
```
python3 -c "import torch;print(torch.special.chebyshev_polynomial_v(torch.nextafter(torch.tensor(1.0), torch.tensor(2.0)), torch.tensor(1e6)))"
tensor(nan)
```
Which is not the case for Laguerre polynomials, but it's probably fine to just limit it to 1e7

Before
```
$ PYTORCH_TEST_WITH_SLOW=1 python test_ops.py -k chebyshev_polynomial_
ssssssss..ssssss..ssssss..ssssssssssssssssssssss..ssssss/home/ubuntu/py3.10-nightly/lib/python3.10/site-packages/torch/backends/cuda/__init__.py:131: UserWarning: This API is going to be deprecated, please see https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices (Triggered internally at /pytorch/aten/src/ATen/Context.cpp:78.)
  return torch._C._get_cublas_allow_tf32()
....ssssssssssss..ssssss..ssssss............ssssssssssssssssssssssssssssssssssss..ssssssssssssss..ssssss..ssssssssssssssssssssssssssssss..ssssss....ssssssssssss..ssssss..ssssss............ssssssssssssssssssssssssssssssssssss..ssssss..ssssssssssssss..ssssss..ssssss..ssssssssssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssssssssssss
----------------------------------------------------------------------
Ran 432 tests in 8.575s

OK (skipped=344)
```
After
```
$ PYTORCH_TEST_WITH_SLOW=1 python test_ops.py -k chebyshev_polynomial_
ssssssss........................ssssssssssssssss......../home/ubuntu/pytorch/torch/backends/cuda/__init__.py:131: UserWarning: This API is going to be deprecated, please see https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices (Triggered internally at /home/ubuntu/pytorch/aten/src/ATen/Context.cpp:78.)
  return torch._C._get_cublas_allow_tf32()
........................................................................................xxxxxxxx................ssssssssssssssssssssssss........................................................................................................ssssssss........................ssssssss........................................................................................ssssssss
----------------------------------------------------------------------
Ran 432 tests in 45.580s

OK (skipped=72, expected failures=8)
```

Fixes https://github.com/pytorch/pytorch/issues/79528

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157464
Approved by: https://github.com/Skylion007, https://github.com/dcci
ghstack dependencies: #157488
2025-07-05 04:19:50 +00:00
63e87d6d05 [Refactor] Add maybe unused flag to remove warning (#157655)
Fixes #157653

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157655
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-07-05 03:23:39 +00:00
f7127b9b94 [Refactor] Remove unused variables (#157654)
Fixes #157653

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157654
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-07-05 02:12:15 +00:00
44f5b93122 fix: correct sentence punctuation in cuDNN note (#157623)
Fixes #ISSUE_NUMBER
This PR fixes a small punctuation issue in the PyTorch README.

Specifically:

Added a missing full stop at the end of the sentence:
"Note: You could refer to the cuDNN Support Matrix for cuDNN versions with the various supported CUDA, CUDA driver and NVIDIA hardware."

Added comma for clarity between "CUDA driver" and "NVIDIA hardware".

These edits improve the readability and grammatical correctness of the documentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157623
Approved by: https://github.com/Skylion007
2025-07-05 01:37:33 +00:00
e0fd48be7d Fix typo: 'occurances' → 'occurrences' in mobile model test (#157629)
This PR addresses a typo in the file `test/mobile/model_test/gen_test_model.py`.

### Changes:
- Corrected "occurances" to the correct spelling "occurrences"
- Renamed associated variables to reflect this change for consistency and clarity

This is a non-functional, cleanup-only PR to improve code readability.

Thanks to the PyTorch team for maintaining such a high-quality codebase

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157629
Approved by: https://github.com/Skylion007
2025-07-05 01:36:42 +00:00
43f7216327 Fix typo: 'paramters' → 'parameters' in ATen tunable README (#157575)
This PR addresses a minor typo in the documentation file aten/src/ATen/cuda/tunable/README.md, where paramters has been corrected to parameters for improved clarity and consistency.

Context
Accurate and clear documentation is crucial for helping developers and contributors understand PyTorch internals. This small fix contributes to the overall quality and readability of the project.

Thank you to the PyTorch team and maintainers for your continued efforts in building such an incredible framework. I'm happy to contribute in any way I can — even if just with a small doc improvement like this one.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157575
Approved by: https://github.com/eqy
2025-07-05 01:14:45 +00:00
8a8fac1131 [SymmMem] Move code to where it is used (#157611)
`maybe_initialize_env_vars` and `initialize_nvshmem_with_store` are only used in `NVSHMEMSymmetricMemory.cu`. Moving them there.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157611
Approved by: https://github.com/Skylion007
ghstack dependencies: #157513
2025-07-04 23:37:49 +00:00
bcc98bb2a4 Update _linux-test to support B200 runner (#157341)
This unblocks https://github.com/pytorch/test-infra/issues/6869.  The key changes to call out:

* B200 needs OIDC to access ECR and upload stats to S3, so we need to set `id-token: write` in `_linux-test`.  All workflows calling `_linux-test` also need to be updated accordingly
* Connecting sccache to S3 on B200 doesn't seem to work, so I disable it.  It still works locally though.

### Testing

https://github.com/pytorch/pytorch/actions/runs/16055549292/job/45312298376
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157341
Approved by: https://github.com/nWEIdia, https://github.com/atalman, https://github.com/malfet
2025-07-04 23:19:24 +00:00
524e827095 [build] modernize build-backend: setuptools.build_meta:__legacy__ -> setuptools.build_meta (#155998)
Change `build-system.build-backend`: `setuptools.build_meta:__legacy__` -> `setuptools.build_meta`. Also, move static package info from `setup.py` to `pyproject.toml`.

Now the repo can be installed from source via `pip` command instead of `python setup.py develop`:

```bash
python -m pip install --verbose --editable .

python -m pip install --verbose --no-build-isolation --editable .
```

In addition, the SDist is also buildable:

```bash
python -m build --sdist
python -m install dist/torch-*.tar.gz  # build from source using SDist
```

Note that we should build the SDist with a fresh git clone if we will upload the output to PyPI. Because all files under `third_party` will be included in the SDist. The SDist file will be huge if the git submodules are initialized.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155998
Approved by: https://github.com/ezyang, https://github.com/cyyever, https://github.com/atalman
ghstack dependencies: #157557
2025-07-04 19:25:14 +00:00
9968edd002 Fix #153942 (#153943)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153943
Approved by: https://github.com/malfet
2025-07-04 18:25:18 +00:00
7275f28045 Fix cuda 12.9 aarch64 GPU builds. Update CUDA_STABLE variable. (#157630)
This contains 2 fixes that required in main and will need to be cherry-picked to Release 2.8 branch:
1. The PR https://github.com/pytorch/pytorch/pull/155819 missed to include triton change.
2. CUDA STABLE variable needs to be set to 12.8. Updating CUDA stable updates full static build

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157630
Approved by: https://github.com/Skylion007, https://github.com/jeanschmidt
2025-07-04 18:08:31 +00:00
7be862ab8f [dynamo] Relax DUPLICATED_INPUT to be serializable. (#157492)
Since we don't actually rely on any real data while building DUPLICATE_INPUT guard, we can safely serialize it with sources and it should be able to reconstruct the guard correctly in the new process. Therefore we don't really need to prevent serializing it.

Differential Revision: [D77683302](https://our.internmc.facebook.com/intern/diff/D77683302/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157492
Approved by: https://github.com/jamesjwu, https://github.com/jansel
2025-07-04 15:19:34 +00:00
336f1e2d35 [AOTI] Fix AOT inductor CMake build dependency order (#157557)
compile_model.py -> aoti_custom_class -> torch

The custom command requires `torch` to be installed.

8408522976/test/cpp/aoti_inference/compile_model.py (L1-L7)

Fixes CI failure on trunk:

- https://github.com/pytorch/pytorch/actions/runs/16041370426/job/45275085572#step:22:18348

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157557
Approved by: https://github.com/Skylion007, https://github.com/cyyever
2025-07-04 14:33:36 +00:00
a46ea8a364 Fix typo: 'initalized' → 'initialized' in alias analysis test (#157628)
This PR corrects a small spelling error in `test/jit/test_alias_analysis.py`.

- "initalized" → "initialized"

This is a minor comment correction and does not affect functionality or logic.

Thank you for maintaining this amazing codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157628
Approved by: https://github.com/Skylion007
2025-07-04 13:41:53 +00:00
f41d017aa6 Add device check in mse_loss (#155089)
Fixes #154978

## Test Result

```python
>>> import torch
>>> import numpy as np
>>> import torch.nn as nn
>>> import torch.distributions.normal as norm
>>> device = torch.device(('cuda' if torch.cuda.is_available() else 'cpu'))
>>> print('Using {}'.format(device))
Using cuda
>>> m = nn.Sequential(nn.Linear(1, 128).cuda(), nn.Tanh(), nn.Linear(128, 128).cuda(), nn.Tanh(), nn.Linear(128, 128).cuda(), nn.Tanh())
>>> m.to(device, dtype=None, non_blocking=False)
Sequential(
  (0): Linear(in_features=1, out_features=128, bias=True)
  (1): Tanh()
  (2): Linear(in_features=128, out_features=128, bias=True)
  (3): Tanh()
  (4): Linear(in_features=128, out_features=128, bias=True)
  (5): Tanh()
)
>>> opt = torch.optim.Adam(m.parameters(), lr=0.001)
>>> print('Number of trainable parameters: ', sum((p.numel() for p in m.parameters() if p.requires_grad)))
Number of trainable parameters:  33280
>>> input_tensor = torch.tensor(77.0, device=device)
>>> target = torch.tensor(66.0)
>>> loss_function = nn.MSELoss()
>>> print('Loss Function: ', loss_function)
Loss Function:  MSELoss()
>>> loss = loss_function(input_tensor, target)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/zong/code/pytorch/torch/nn/modules/module.py", line 1767, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/zong/code/pytorch/torch/nn/modules/module.py", line 1778, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/zong/code/pytorch/torch/nn/modules/loss.py", line 610, in forward
    return F.mse_loss(input, target, reduction=self.reduction)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/zong/code/pytorch/torch/nn/functional.py", line 3903, in mse_loss
    return torch._C._nn.mse_loss(
           ^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155089
Approved by: https://github.com/cyyever, https://github.com/albanD
2025-07-04 12:37:48 +00:00
52e4e41cbc [dynamo] do not issue lru_cache warning for functions in the top-level torch namespace (#157598)
`lru_cache` usage warning was being raised for `torch.get_device_module()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157598
Approved by: https://github.com/Sidharth123-cpu
2025-07-04 08:17:50 +00:00
64f2ec77f8 [inductor] Fix fractional_max_pool2d 3D input causing assertion error (#156912)
Fixes #156682

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156912
Approved by: https://github.com/angelayi
2025-07-04 06:09:28 +00:00
fdc5b42a8f _broadcast_shapes gso generalizations (#157008)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157008
Approved by: https://github.com/ColinPeppler
ghstack dependencies: #155590
2025-07-04 05:56:42 +00:00
d58ed04d89 [async-compile] add progressive compile mode (#157305)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157305
Approved by: https://github.com/aorenste
2025-07-04 04:18:50 +00:00
386bc9e2e9 [audio hash update] update the pinned audio hash (#156905)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned audio hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156905
Approved by: https://github.com/pytorchbot
2025-07-04 04:06:59 +00:00
f2e712ca14 Revert "Fix is_unaligned usage of statically_known_true (#157400)"
This reverts commit b359571c6043b40c4ae4fbb07135fd0f04902e21.

Reverted https://github.com/pytorch/pytorch/pull/157400 on behalf of https://github.com/malfet due to It break tests, see 99c1a6bdd9/1 ([comment](https://github.com/pytorch/pytorch/pull/157400#issuecomment-3034353539))
2025-07-04 03:57:08 +00:00
99c1a6bdd9 [SymmMem] Find NVSHMEM from system installation (#157513)
Previously we only search for NVSHMEM from pip install location.
This PR adds search in system locations deemed default by CMake.
Related: #157453 untars NVSHMEM into `/usr/local` on our CI machines.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157513
Approved by: https://github.com/atalman, https://github.com/Skylion007
2025-07-04 03:34:44 +00:00
4ed1b03f72 Add missing graph and memory related symbols to cuda_to_hip_mappings (#157435) (#157573)
Summary: This PR adds missing CUDA symbols in `cuda_to_hip_mappings`.

Test Plan: Tested in D77642700.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157573
Approved by: https://github.com/Skylion007

Co-authored-by: Geon-Woo Kim <gwkim@meta.com>
2025-07-04 03:03:04 +00:00
8f9a191db6 [SymmMem] Fix CI name mismatch; remove TORCH_SYMMMEM requirement (#157597)
Thanks @huydhn for spotting two name mismatches in the CI configs.
We were matching against "test_h100_symm_mem" instead of "h100-symm-mem".

Also, replaced `TORCH_SYMMMEM` env setting with programmatic method:
`symm_mem.set_backend(...)`

Further, skips a hanged test in `test_nvshmem_trion.py`. (#TODO @codingwithsurya )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157597
Approved by: https://github.com/fduwjj, https://github.com/huydhn
2025-07-04 01:43:08 +00:00
ef97bd4713 [torch] Add MTIA to the list of devices supporting foreach/fused kernels (#157583)
Summary: We currently have foreach kernel implementations for MTIA, and for when we don't we internally decompose the ops. Anyone using this list for compatibility checks should be sending through the foreach kernels.

Reviewed By: egienvalue, scottxu0730

Differential Revision: D77751248

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157583
Approved by: https://github.com/egienvalue
2025-07-04 01:15:24 +00:00
f0b388665e Add dynamo_timed to bytecode hook (#157587)
Test Plan:
- ran tlparse on vLLM and saw this

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157587
Approved by: https://github.com/jingsh, https://github.com/BoyuanFeng
2025-07-04 01:11:03 +00:00
c9a5bf09ba [FP8] FP8 for SwishLayerNorm (#157574)
Summary: Add a pass use_triton_fp8_swish_replace_normal_swish to replace _triton_swish_rms_norm with its counterpart that supports fp8 triton_swish_rms_norm, and turn on fp8 during inference.

Test Plan:
```
buck2 run mode/opt  mode/inplace -c fbcode.platform010_cuda_version=12.4 -c fbcode.nvcc_arch=h100 caffe2/torch/fb/model_transform/experimental/benchmark:mts_gpu_benchmark -- --lower-backend=AOT_INDUCTOR   --model-snapshot-id=899072727_0 --node-replacement-dict="{}" --gpu-trace --add-passes=use_triton_fp8_swish_replace_normal_swish
```
The perf improvement on the 100x model with this pass is roughly ~7%, details are recorded [here](https://docs.google.com/document/d/1eIV_OTQyQcf_DlEDxwycTwhyGxT5OJkLzs8cPL6EMYc/edit?tab=t.0)

Rollback Plan:

Reviewed By: frank-wei

Differential Revision: D76531303

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157574
Approved by: https://github.com/frank-wei
2025-07-04 01:06:21 +00:00
dfcda613b6 Ensure Dynamo can trace through explicit dunder method call (#154366)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154366
Approved by: https://github.com/zou3519
ghstack dependencies: #153150, #152991, #154539, #153553, #154063, #154064, #154065, #154066, #154263
2025-07-04 00:46:05 +00:00
0e7f02fe2e [Dynamo] [FrozensetSubclass] Add support for user defined frozensets (#154263)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154263
Approved by: https://github.com/williamwen42
ghstack dependencies: #153150, #152991, #154539, #153553, #154063, #154064, #154065, #154066
2025-07-04 00:46:05 +00:00
308b88bde9 [Dynamo] [Set] Add comparison for set subclass (#154066)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154066
Approved by: https://github.com/Skylion007
ghstack dependencies: #153150, #152991, #154539, #153553, #154063, #154064, #154065
2025-07-04 00:45:58 +00:00
c51da57b55 [Dynamo] [Set] Raise TypeError in set.union(...) and "__or__" (#154065)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154065
Approved by: https://github.com/williamwen42
ghstack dependencies: #153150, #152991, #154539, #153553, #154063, #154064
2025-07-04 00:45:50 +00:00
f9544f1f0c [Dynamo] [Set] Raise TypeError if object is unhashable (#154064)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154064
Approved by: https://github.com/Skylion007
ghstack dependencies: #153150, #152991, #154539, #153553, #154063
2025-07-04 00:45:42 +00:00
11c71053e0 [Dynamo] [Set] Implement some binop operators for dict/set/frozenset/dict_keys (#154063)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154063
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #153150, #152991, #154539, #153553
2025-07-04 00:45:34 +00:00
22abe6ded4 [Dynamo] [SetSubclass] Add support for user defined sets (#153553)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153553
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #153150, #152991, #154539
2025-07-04 00:45:25 +00:00
2b82c61f04 [Generator] Implement generator.__contains__ (#154539)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154539
Approved by: https://github.com/williamwen42, https://github.com/zou3519
ghstack dependencies: #153150, #152991
2025-07-04 00:45:18 +00:00
f651e28f80 [FrozenSet] Fixes for FrozenSet (#152991)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152991
Approved by: https://github.com/zou3519
ghstack dependencies: #153150
2025-07-04 00:45:11 +00:00
e7167dbacf [Set] Support sets in VariableBuilder (#153150)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153150
Approved by: https://github.com/zou3519
2025-07-04 00:45:03 +00:00
6c42afe196 Introduce sync_cross_rank_decision (#156287)
Summary:
This is an improvement over `_broadcast_rank0_decision` where we uses the rank0's decision to broadcast to every rank. The issue of `_broadcast_rank0_decision` is that we observed large variance on the peak memory usage. One cause is that different ranks receive different dynamic shaped tensors and the hints of those tensors are different in different ranks. If we only rely on rank0's decision and it's unlucky to get unrepresentative hints, then the decision it makes may not be suitable for other ranks.

Here, we introduce `sync_cross_rank_decision` which comes up with the decision after comparing all ranks' local decision, it will:
1. all gather decisions from all ranks;
2. test each decision on the current rank and get its estimated memory usage;
3. all reduce estimated memory usage with ReduceOp.MAX, so that we know the maximum memory usage of each decision on all ranks;
4. pick the decision which gives us minimum maximum memory memory usage;

A graph to show more details
https://internalfb.com/excalidraw/EX484509

After applying sync_cross_rank_decision, we observed that the variance are much smaller

Rollback Plan:

Differential Revision: D76714005

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156287
Approved by: https://github.com/fmassa, https://github.com/bdhirsh
2025-07-03 23:43:53 +00:00
f7130c097e [nativert] Move Executor to PyTorch core (#157514)
Test Plan:
CI

Rollback Plan:

Differential Revision: D77693984

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157514
Approved by: https://github.com/zhxchen17
2025-07-03 23:31:54 +00:00
ad86c05b78 efficient zero_mask implementation for vec128_*_neon (#155766)
Differential Revision: [D76481039](https://our.internmc.facebook.com/intern/diff/D76481039/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155766
Approved by: https://github.com/malfet
2025-07-03 23:27:03 +00:00
b359571c60 Fix is_unaligned usage of statically_known_true (#157400)
Summary:
- symbolic shapes statically_known_true usage  is wrong, this API is meant to be used for SymNodes. what is needed is V.graph.sizevars.statically_known_true. or  V.graph.sizevars.statically_known_Equals or ideally  V.graph.sizevars.statically_known_multiple_of.

- The construction using == 0 is not symbolic, this used to always return false for symbolic inputs.

Differential Revision: D77619293

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157400
Approved by: https://github.com/ColinPeppler
2025-07-03 23:26:36 +00:00
a6fab82b16 [BE]: Fix NVSHMEM builds, add missing 12.9 dependency and update to latest for 2.8RC (#157453)
Fixed our bad builds of nvshmem, (we were not building or testing before) and also updates to the latest version. Newest versions has critical support for things that would actually make it useful, like bfloat16 and float16 support.

This is a proper fix for: https://github.com/pytorch/pytorch/pull/157411
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157453
Approved by: https://github.com/kwen2501, https://github.com/atalman
2025-07-03 22:55:18 +00:00
dd3e7170c2 Add async checkpointing impl to experimental checkpointer and add a builder API (#156927)
1. Adds an AsyncCheckpointer with out-of-process checkpointing and state_dict_stager with shared memory, pinned memory and Zero Overhead Support.

2. Adds two conveinient functions to create sync/async checkpointers

Differential Revision: [D77336833](https://our.internmc.facebook.com/intern/diff/D77336833/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156927
Approved by: https://github.com/pradeepfn
2025-07-03 22:49:20 +00:00
7081b8233a [BE] Accelerator agnostic timer.py (#157131)
Farewell to a lot of if statements - benefit is this now also supports mps synchronization

Still need to think of a good test strategy for the privateUse1 removal, granted I'm not sure what the semantics of something like https://docs.pytorch.org/docs/stable/generated/torch.cpu.synchronize.html actually since CPU is probably synchronous?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157131
Approved by: https://github.com/albanD
2025-07-03 22:23:04 +00:00
7b392bac13 all_gather_bucketing fx pass (#157396)
Porting passes to bucket all_gathers

The main logic of the pass is done via
1. Searching for all all_gathers from the buckets

Copying tests from @wconstab PR to test compatibility with reordering.
Test checks only compatibility, as because of (3) the joint all_gather will be scheduled already as early as possible and no space for reordering.

Pass changes:
Using mutation ops to match performance of fsdp, in future the perfect scenario will be to have only functional graph, that inductor does all memory optimizations on its own without mutable ops.

Inductor changes:
Adding foreach_copy_ lowering

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157396
Approved by: https://github.com/wconstab
2025-07-03 22:07:42 +00:00
19ae5afdaa Fix typo: 'recieve' → 'receive' in comments (#157544)
This PR corrects minor typos in developer-facing comments:

- Replaces 'recieve' with 'receive' in:
  - `FunctionalTensorWrapper.cpp`
  - `make_boxed_from_unboxed_functor.h`

These changes improve code readability and maintain comment correctness.

Thank you for reviewing!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157544
Approved by: https://github.com/soulitzer
2025-07-03 19:11:15 +00:00
3fd84a8592 [BE][PYFMT] migrate PYFMT for torch/[a-c]*/ to ruff format (#144554)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144554
Approved by: https://github.com/soulitzer
2025-07-03 18:56:07 +00:00
d56f11a1f2 [MPS] Implement logcumsumexp metal kernel (#156858)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156858
Approved by: https://github.com/malfet
ghstack dependencies: #157512
2025-07-03 18:16:25 +00:00
794b95d54b Enable Half dtype for logcumsumexp_backward (#157512)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157512
Approved by: https://github.com/malfet
2025-07-03 18:13:38 +00:00
e3fe001d9e Add einops x torch.compile testing in PyTorch CI (#157416)
Fixes #146782. This PR adds testing for multiple einops versions in
PyTorch CI. This occurs in a new "einops" CI job that runs for both
Python 3.9 and 3.13 (aka, what we test Dynamo over).

Test Plan:
- wait for CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157416
Approved by: https://github.com/guilhermeleobas, https://github.com/arogozhnikov, https://github.com/anijain2305
2025-07-03 17:36:39 +00:00
660dbea909 [cutlass backend] modify presets ahead of cutlass 4 upgrade (#157522)
Differential Revision: [D77707409](https://our.internmc.facebook.com/intern/diff/D77707409/)

Also asking in https://github.com/NVIDIA/cutlass/issues/2435

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157522
Approved by: https://github.com/coconutruben
2025-07-03 17:13:24 +00:00
5cfe4377d6 [dtensor] Rework partial propagation in pointwise op and support mul (#157340)
I am trying to see if I can easily add the linearity support for aten.mul to allow Partial placement to propagate through. But it turns out that I have to completely rework the current linearity propagation.

In short, before this PR, linearity mainly support aten.add and some trival ops. It is done by allowing input Partial to propagate, and in the meanwhile, redistribute Replicate inputs to Partial to preserve the single device semantic, i.e suppose we want to execute `aten.add(lhs, rhs)` on 2 ranks:
* `lhs` is partial, value on rank 0: `r0`, lhs value on rank 1: `r1`
* `rhs` is replicate, value: `a`

Then in order to preserve single device semantic (which should produce the value of `a + r0 + r1`), we do `rhs/world_size` first, then add `rhs` to `lhs`. This means every operand would first need be partial, then we can add them together.

But this become non-true for multiplicative operations, like `aten.mul`, for `aten.mul`, assuming the same `aten.mul(lhs, rhs)` and value, we don't need to divide lhs by world_size to preserve single device semantic, b.c. `a* (r0+r1) = a* r0 + a* r1`

So to accomodate the difference of add/mul, in this PR I:
* change linearity to be a int to support different linearity types, add linearity and multiplicative are separate
* add checks to ensure only a subset of partial types can support linearity (namely partial-sum/avg)
* handle the linearity type plumbing through the pointwise ops.
* add `mul.Tensor/Scalar` to be the multiplicative linearity
* added the tests to show that the partial placements can be propagated with `aten.mul`

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157340
Approved by: https://github.com/zpcore
2025-07-03 17:04:08 +00:00
898179331e [cutlass backend] fix CutlassTensor post-renaming (#157408)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157408
Approved by: https://github.com/mlazos
ghstack dependencies: #157402
2025-07-03 17:02:21 +00:00
2e64e45b0b Revert "[build] modernize build-backend: setuptools.build_meta:__legacy__ -> setuptools.build_meta (#155998)"
This reverts commit 404008e3efdabeaf5b140a3aff77131461c33a0a.

Reverted https://github.com/pytorch/pytorch/pull/155998 on behalf of https://github.com/malfet due to Broke inductor_cpp, wrapper see e472daa809/1 ([comment](https://github.com/pytorch/pytorch/pull/155998#issuecomment-3032915058))
2025-07-03 16:47:07 +00:00
e472daa809 [dynamo] Add fx_graph_runnable test coverage (#157021)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157021
Approved by: https://github.com/StrongerXi, https://github.com/xmfan

Co-authored-by: Simon Fan <xmfan@meta.com>
2025-07-03 16:42:06 +00:00
ec816d73b4 [MPS] Add shifted_chebyshev_polynomial_[tuvw] (#157488)
For eager and inductor

As for all other chebyshev ops, logic is simply compiled from 94716db222/aten/src/ATen/native/cuda/Math.cuh (L2821)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157488
Approved by: https://github.com/dcci
2025-07-03 15:48:37 +00:00
f17f658125 [profiler] add more CUDA API for kernel launcher (#156016)
Add more kernel detection options, resolving TODO
- References : [NVIDIA - docs](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156016
Approved by: https://github.com/albanD

Co-authored-by: albanD <desmaison.alban@gmail.com>
2025-07-03 15:26:42 +00:00
c9174a20f7 Revert "[BE] Unskip special ops (#157464)"
This reverts commit e124a0d88ca2aa04bfaca2dcabf5de6244048e45.

Reverted https://github.com/pytorch/pytorch/pull/157464 on behalf of https://github.com/clee2000 due to caused slow test config to time out [GH job link](https://github.com/pytorch/pytorch/actions/runs/16037776972/job/45254574100) [HUD commit link](e124a0d88c) ([comment](https://github.com/pytorch/pytorch/pull/157464#issuecomment-3032676989))
2025-07-03 15:24:15 +00:00
b6276a425f Revert "[MPS] Add shifted_chebyshev_polynomial_[tuvw] (#157488)"
This reverts commit 9620994067b18e846a097d1e99af85ec2426ef0a.

Reverted https://github.com/pytorch/pytorch/pull/157488 on behalf of https://github.com/clee2000 due to caused slow test config to time out [GH job link](https://github.com/pytorch/pytorch/actions/runs/16037776972/job/45254574100) [HUD commit link](e124a0d88c) ([comment](https://github.com/pytorch/pytorch/pull/157464#issuecomment-3032676989))
2025-07-03 15:24:15 +00:00
a0e0abd037 Fix typo: 'intialized' → 'initialized' in test_modules.py (#157226)
This PR fixes a minor typo in `test/jit/test_modules.py`:

- Before: `intialized`
- After:  `initialized`

There are no functional code changes — this is a comment-only fix to improve clarity and consistency.

Thank you to the PyTorch team for maintaining this outstanding project.
Please let me know if anything else is needed.

With appreciation,
Abhishek Nandy
[@abhitorch81](https://github.com/abhitorch81)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157226
Approved by: https://github.com/Skylion007
2025-07-03 14:56:02 +00:00
b221be9140 Fix typo: 'intial_query_grad' → 'initial_query_grad' in test_transformers.py (#157306)
This is a minor typo fix in `test/test_transformers.py`:

- Renamed `intial_query_grad` to `initial_query_grad` for improved clarity and correctness in test variable naming.

There are **no functional or logic changes** — this PR is aimed purely at improving readability and maintaining code quality.

Thanks to the PyTorch team for their work and review time
Please feel free to suggest if this needs any adjustment.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157306
Approved by: https://github.com/Skylion007
2025-07-03 14:08:12 +00:00
8408522976 Remove +PTX from CUDA 12.8 builds (#157516)
Remove +PTX from CUDA 12.8 builds and small refactor in build_cuda.sh.
Removing +PTX reduces binary size required to be able to upload binaries to pypi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157516
Approved by: https://github.com/malfet, https://github.com/ptrblck, https://github.com/tinglvv
2025-07-03 13:19:19 +00:00
c329a8f19c Fix CPU bitwise shifts for out-of-limit values in VSX-vec (#157463)
Similar to #96659 this implements the conditionals handling the out-of-limit values in the shift amounts (rhs) for the vectorized VSX code using the same logic as the scalar code.

Fixes #109777

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157463
Approved by: https://github.com/jgong5
2025-07-03 10:41:33 +00:00
5dfd8a9c7a Remove is_jit_trace option (#157387)
Summary: Title

Test Plan:
CI

Rollback Plan:

Differential Revision: D77319249

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157387
Approved by: https://github.com/pianpwk
2025-07-03 09:20:27 +00:00
8c2e450082 [PT][FSDP] fail set_allocate_memory_from_process_group if used together with custom comm hooks (#157487)
Summary:
This is a follow up after the PR to add comm override support: https://github.com/pytorch/pytorch/pull/155189

The previous PR loosely checks the allocation mixin classes, which isn't really safe as the actual hook may still override the behavior.
This may lead to unnecessary confusion for no good use case. So for now we just make the 2 sets of APIs largely incompatible:
1. setting custom comms after `set_allocate_memory_from_process_group_for_comm()` is ok.
2. setting `set_allocate_memory_from_process_group_for_comm()` after custom comms is ko.

Basically `set_allocate_memory_from_process_group_for_comm` is like a drop in hammer while the `set_custom_all_gather/reduce_scatter()` are like finer-grained scalpels that require more code crafted.

We can revisit this if there's use case in between but for now they can be largely viewed independent from each other (even tho we do share some of the underlying pieces for now, that could be subject to change and should not be exposed to end users).

Test Plan: added UT

Differential Revision: D77681620

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157487
Approved by: https://github.com/weifengpy
2025-07-03 07:00:35 +00:00
2bb33e7a08 Fixed triton kernel in ET due to Triton version change. (#157484)
Summary: Fixed triton kernel in ET due to Triton version change.

Test Plan:
buck2 run mode/opt param_bench/fb/integration_tests:test_et_replay

Rollback Plan:

Differential Revision: D77398841

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157484
Approved by: https://github.com/davidberard98
2025-07-03 06:16:23 +00:00
4ce6e6ec88 XCCL changes for DDP (#155497)
Add XCCL documentation for DDP

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155497
Approved by: https://github.com/guangyey, https://github.com/AlannaBurke

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
2025-07-03 05:18:08 +00:00
382598ef87 Fix unsafe collective reorder past wait (#157489)
Covers the case where the output of one collective feeds the input of another collective.
e.g. TP + FSDP - all_gather(tp+dp sharded param on TP dim) -> allgather dp_sharded buffer on DP dim

Fixes a bug where the reordering pass specifically exempted wait nodes from dependencies.
Note:  this exemption was incorrect, so it should be removed. But it was also put there for a reason, to help move collectives past wait nodes that are not related to that collective.  After this fix, reordering performance may be worse and we need to find a smarter way to decide if a particular wait node is a blocker for a given collective.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157489
Approved by: https://github.com/IvanKobzarev
ghstack dependencies: #156879
2025-07-03 05:04:19 +00:00
dc524efb4d Move logging into inner method for reorder pass (#156879)
The reason for inner/outer method is to keep the outer method conforming
to the typedef for a comms graph pass which returns one obj, while
allowing unit tests to call the inner method that returns more metadata
useful for testing the pass.  The logs should be in the inner part, so
they are functional also during unit testing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156879
Approved by: https://github.com/IvanKobzarev
2025-07-03 05:04:19 +00:00
5d5a5b3501 Fix GITHUB_OUTPUT syntax in create_release.yml workflow (#157466)
#149919 fixed a number of linting issues, however, the conversion of the deprecated `::set-output` command to the new `>> $GITHUB_OUTPUT` redirect syntax went wrong, resulting in [failing uploads of the 2.8.0 rc1-rc3 pre-release tarballs](https://github.com/pytorch/pytorch/actions/runs/15892205745/job/44816789782).

This PR fixes that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157466
Approved by: https://github.com/clee2000, https://github.com/atalman
2025-07-03 04:57:52 +00:00
404008e3ef [build] modernize build-backend: setuptools.build_meta:__legacy__ -> setuptools.build_meta (#155998)
Change `build-system.build-backend`: `setuptools.build_meta:__legacy__` -> `setuptools.build_meta`. Also, move static package info from `setup.py` to `pyproject.toml`.

Now the repo can be installed from source via `pip` command instead of `python setup.py develop`:

```bash
python -m pip install --verbose --editable .

python -m pip install --verbose --no-build-isolation --editable .
```

In addition, the SDist is also buildable:

```bash
python -m build --sdist
python -m install dist/torch-*.tar.gz  # build from source using SDist
```

Note that we should build the SDist with a fresh git clone if we will upload the output to PyPI. Because all files under `third_party` will be included in the SDist. The SDist file will be huge if the git submodules are initialized.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155998
Approved by: https://github.com/ezyang, https://github.com/cyyever, https://github.com/atalman
2025-07-03 04:10:44 +00:00
b642a5c118 [cutlass backend] Add dynamo timed (#157410)
Differential Revision: [D77631592](https://our.internmc.facebook.com/intern/diff/D77631592/)

Before:
![Screenshot 2025-07-01 at 4 08 06 PM](https://github.com/user-attachments/assets/8f6445aa-50c7-456f-b5ac-b2749eb9bf40)

After (different run):
![Screenshot 2025-07-01 at 5 11 09 PM](https://github.com/user-attachments/assets/7513d312-c4dc-4e39-9718-c63eb641bc30)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157410
Approved by: https://github.com/jingsh
2025-07-03 04:03:20 +00:00
493f42a541 [symm_mem] Create a one side get api for symm mem (#157294)
Doing similar like what we did in https://github.com/pytorch/pytorch/pull/156443 so that we can also have a one-side get API for symmetric memory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157294
Approved by: https://github.com/kwen2501
2025-07-03 03:52:05 +00:00
662c1cfed2 [c10d][PGNCCL] Add waitcounter for watchdog and heartbeat monitoring thread (#157480)
We want to have a wait counter for both side thread so that we can monitor its lifecycle.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157480
Approved by: https://github.com/d4l3k
2025-07-03 02:47:06 +00:00
5cc4e856fd Add device_id to XPU device properties (#156481)
# Motivation

Some older Intel iGPUs may share the same device name across different hardware products.
(See [device name example](aaa01c06f9/shared/source/dll/devices/devices_base.inl (L190-L199)))
To help disambiguate which specific iGPU product is being used, we introduce the use of a
[device id](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_intel_device_info.md#device-id). This device id corresponds to the Device ID in [official Intel product specification](https://www.intel.com/content/www/us/en/products/sku/232155/intel-core-i71360p-processor-18m-cache-up-to-5-00-ghz/specifications.html) and enables more accurate identification and troubleshooting for user issues.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156481
Approved by: https://github.com/EikanWang, https://github.com/albanD
2025-07-03 01:22:11 +00:00
7597988f1b [fake tensor] fix issue of no attribute tags (#156689)
Fixes #156688

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156689
Approved by: https://github.com/leslie-fang-intel, https://github.com/atalman
2025-07-03 01:16:01 +00:00
9620994067 [MPS] Add shifted_chebyshev_polynomial_[tuvw] (#157488)
For eager and inductor

As for all other chebyshev ops, logic is simply compiled from 94716db222/aten/src/ATen/native/cuda/Math.cuh (L2821)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157488
Approved by: https://github.com/dcci
ghstack dependencies: #157464
2025-07-02 23:29:35 +00:00
e124a0d88c [BE] Unskip special ops (#157464)
They were slow on CUDA-11.3, which has long been gone, let's see if they work now

Before
```
$ python test_ops.py -k chebyshev_polynomial_
ssssssss..ssssss..ssssss..ssssssssssssssssssssss..ssssss/home/ubuntu/py3.10-nightly/lib/python3.10/site-packages/torch/backends/cuda/__init__.py:131: UserWarning: This API is going to be deprecated, please see https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices (Triggered internally at /pytorch/aten/src/ATen/Context.cpp:78.)
  return torch._C._get_cublas_allow_tf32()
....ssssssssssss..ssssss..ssssss............ssssssssssssssssssssssssssssssssssss..ssssssssssssss..ssssss..ssssssssssssssssssssssssssssss..ssssss....ssssssssssss..ssssss..ssssss............ssssssssssssssssssssssssssssssssssss..ssssss..ssssssssssssss..ssssss..ssssss..ssssssssssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssss..ssssssssssssss
----------------------------------------------------------------------
Ran 432 tests in 8.575s

OK (skipped=344)
```
After
```
$ python test_ops.py -k chebyshev_polynomial_
ssssssss........................ssssssssssssssss......../home/ubuntu/py3.10-nightly/lib/python3.10/site-packages/torch/backends/cuda/__init__.py:131: UserWarning: This API is going to be deprecated, please see https://pytorch.org/docs/main/notes/cuda.html#tensorfloat-32-tf32-on-ampere-and-later-devices (Triggered internally at /pytorch/aten/src/ATen/Context.cpp:78.)
  return torch._C._get_cublas_allow_tf32()
........................................................................................ssssssss................ssssssssssssssssssssssss........................................................................................................ssssssss........................ssssssss........................................................................................ssssssss
----------------------------------------------------------------------
Ran 432 tests in 42.379s

OK (skipped=80)
```

Fixes https://github.com/pytorch/pytorch/issues/79528

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157464
Approved by: https://github.com/Skylion007
2025-07-02 23:16:52 +00:00
7cfd054075 [attempt 2] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#157472)
Summary:
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.

Test Plan:
contbuild & OSS CI,

Rollback Plan:

Reviewed By: malfet

Differential Revision: D77639021

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157472
Approved by: https://github.com/aorenste
2025-07-02 23:12:29 +00:00
d40aaa42ee [BE][16/16] fix typos in torch/ (torch/utils/) (#156606)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156606
Approved by: https://github.com/albanD
ghstack dependencies: #156318, #156320, #156602, #156604
2025-07-02 22:55:29 +00:00
11c07c848c [BE][14/16] fix typos in torch/ (torch/fx/) (#156604)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156604
Approved by: https://github.com/jingsh
ghstack dependencies: #156318, #156320, #156602
2025-07-02 22:55:29 +00:00
db259bd6b8 [BE][12/16] fix typos in torch/ (#156602)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156602
Approved by: https://github.com/justinchuby, https://github.com/albanD
ghstack dependencies: #156318, #156320
2025-07-02 22:55:29 +00:00
d5cdc36943 [BE][10/16] fix typos in torch/ (torch/csrc/jit/) (#156320)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156320
Approved by: https://github.com/albanD
ghstack dependencies: #156318
2025-07-02 22:55:29 +00:00
541584d22e [BE][8/16] fix typos in torch/ (torch/csrc/jit/) (#156318)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156318
Approved by: https://github.com/albanD
2025-07-02 22:55:29 +00:00
c0e155a8d2 [cutlass backend] Use alignment of D for EVT / Float8 (#157402)
I encountered an C++ compile error from running cutlass backend tests when upgrading cutlass version. It seems like Nvidia added
"static_assert(detail::is_aligned<ElementC_, AlignmentC, ElementD_, AlignmentD>(),"

b995f93317/include/cutlass/epilogue/collective/builders/sm90_builder.inl (L297)

However, it seems codegen have the wrong alignment for D. For C, 1 is okay since it is void. But for D, this is probably wrong.
```
    void, cutlass::layout::ColumnMajor, 1,
    cutlass::bfloat16_t, cutlass::layout::RowMajor, 1,
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157402
Approved by: https://github.com/ColinPeppler, https://github.com/mlazos
2025-07-02 22:55:00 +00:00
48560eef80 [dynamo] Fix bug in dict(mapping_proxy) (#157467)
Fixes https://github.com/pytorch/pytorch/issues/157284

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157467
Approved by: https://github.com/jansel, https://github.com/StrongerXi

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-07-02 22:13:02 +00:00
fd4f704905 [ez][CI] Print set output in CI (#157477)
Print what the output that's getting set is for better debugging

It's probably bad there are 4 of these, but I'm also not sure if imports will behave correctly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157477
Approved by: https://github.com/huydhn
2025-07-02 21:47:19 +00:00
60e66d11ab [CI] Keep-going on main (#157470)
Run an experiment where we turn on keep going on main.  Revert this PR to cancel the experiment

There have been a couple of changes that make it so that HUD will show the failure early even while the job is in progress, so triaging for reverts should still be able to happen quickly
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157470
Approved by: https://github.com/huydhn, https://github.com/ZainRizvi, https://github.com/malfet
2025-07-02 21:42:46 +00:00
4b4c2a7b1d Support complex numbers in DTensor redistribute (#157329)
Add complex number unwrapping in functional collectives used by DTensor.

Complex tensors are not directly supported by underlying comm kernels
(e.g. nccl) but complex tensors can be viewed as real tensors of a
higher rank (added size-2 tensor dim represents real vs im component).
Collective output is then viewed as complex to restore the
original/expected shape and dtype.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157329
Approved by: https://github.com/XilunWu
2025-07-02 21:37:16 +00:00
af9c92b4cb [CI] Remove redundant accuracy benchmarks for cpp_wrapper (#155966)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155966
Approved by: https://github.com/desertfire
2025-07-02 20:58:08 +00:00
c09cf29d7d [ez][BE] Tag deletion script to delete any old ciflow + autorevert tags (#157468)
Change the branch/tag deletion script that runs once per day to delete more tags

Previous: only delete ciflow tags that didn't correspond to an open PR
New: delete ciflow tags attached to commits that are > 7 days old.  Also delete `trunk/<sha>` (I think they are for autorevert) tags that are attached to commits that are > 7 days old

It's hard to figure out when the actual tag was pushed or created, so instead it looks at the commit date, which might lead to unexpected behavior if the tag was pushed much later than the commit (ex triggering periodic later to bisect).  I think it's ok though since you don't really need the tag after the workflow runs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157468
Approved by: https://github.com/izaitsevfb
2025-07-02 20:42:32 +00:00
6f60cfe9b1 [ez] Add super().setUp() in test_ops::TestFakeTensor (#157475)
Noticed some disable issues getting a bunch of comments, so I took a look

One day I'll write a better check for this
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157475
Approved by: https://github.com/huydhn
2025-07-02 20:34:00 +00:00
e20784f228 [dynamo] Support BUILTIN_MATCH serialization. (#157016)
Serialize BUILTIN_MATCH since they are all stored in __builtin__ dict.

Also fixed an issue that the wrong global scope is passed to CheckFunctionManager while loading guards. Previously we can always reuse the compile-time global scope for evaluating guards because the compile-time and runtime global scope are always the same.

For precompile, we need to serialize the compile-time global scope for loading only. We need to point the CheckFunctionManager to the new global scope after loading is finished for evaluating guards.

Differential Revision: [D77159313](https://our.internmc.facebook.com/intern/diff/D77159313/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157016
Approved by: https://github.com/jansel, https://github.com/jamesjwu
2025-07-02 20:24:24 +00:00
172853547a [inductor] more size_hint_or_throw usage (#157394)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157394
Approved by: https://github.com/jingsh
2025-07-02 20:20:59 +00:00
e0ab1b538a [ez][BE] Remove max jobs override for CI build jobs (#157473)
Basically reverts #147487 since it's not needed anymore

Not an exact revert because some things have already been removed in a different PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157473
Approved by: https://github.com/huydhn
2025-07-02 20:12:28 +00:00
3f569f9af7 [BE] Remove extra semicolon (#157486)
Fixes
```
/Users/nshulga/git/pytorch/pytorch/torch/nativert/executor/GraphExecutorBase.cpp:16:58: warning: extra ';' outside of a function is incompatible with C++98 [-Wc++98-compat-extra-semi]
   16 |       execPlan_(ExecutionPlanner{graph_}.createPlan()) {};
      |                                                          ^
1 warning generated.

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157486
Approved by: https://github.com/seemethere, https://github.com/atalman, https://github.com/Skylion007
2025-07-02 19:56:21 +00:00
94716db222 [BE][DCE] eliminate remnants of global gemm cache (#157327)
Summary: The global gemm cache has not been maintained in ~1 year, and the only entry point (`search_autotune_cache`) was recently deprecated. Meaning, this is now dead code that we can remove.

Test Plan:
CI

Rollback Plan:

Differential Revision: D77520979

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157327
Approved by: https://github.com/jansel
2025-07-02 19:52:35 +00:00
06f39a71b6 Add Release 2.8 CUDA matrix. Update Release schedule for 2.7.1 and 2.9 (#157482)
This PR:
- Adds Release 2.8 CUDA matrix
- Update Release 2.9 schedule, to make it more similar to 2.5 release schedule. Mid Oct release
- Update 2.7.1 release day
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157482
Approved by: https://github.com/Camyll
2025-07-02 19:52:24 +00:00
36dd598bda layernorm tests: Tweak test thresholds for comparing tensors (#156699)
After I landed this PR: https://github.com/pytorch/pytorch/pull/156600, this test was failing internally on large tensors because the differences were greater than tolerances on some cuda devices.

We now raise the tolerances for larger tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156699
Approved by: https://github.com/eqy, https://github.com/ngimel
2025-07-02 19:33:38 +00:00
32983ea698 [nativert] continue to move generated static dispatch kernels (#157460)
Summary: att

Test Plan:
ci

Rollback Plan:

Differential Revision: D77623080

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157460
Approved by: https://github.com/zhxchen17
2025-07-02 19:28:13 +00:00
5e636d664a [BE] @serialTest decorator must be called (#157388)
Otherwise it turns test into a trivial one(that always succeeds), as following example demonstrates
```python
import torch
from torch.testing._internal.common_utils import serialTest, run_tests, TestCase

class MegaTest(TestCase):
    @serialTest
    def test_foo(self):
        if hasattr(self.test_foo, "pytestmark"):
            print("foo has attr and it is", self.test_foo.pytestmark)
        print("foo")

    @serialTest()
    def test_bar(self):
        if hasattr(self.test_bar, "pytestmark"):
            print("bar has attr and it is", self.test_bar.pytestmark)
        print("bar")

if __name__ == "__main__":
    run_tests()
```

That will print
```
test_bar (__main__.MegaTest.test_bar) ... bar has attr and it is [Mark(name='serial', args=(), kwargs={})]
bar
ok
test_foo (__main__.MegaTest.test_foo) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.013s

```

Added assert that arg is boolean in the decorator to prevent such silent skips in the future

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157388
Approved by: https://github.com/clee2000
2025-07-02 19:15:19 +00:00
eaf32fffb7 fixed a tiny typo in torch.compiler.md (#157462)
Fixes #157444

there was a typo in [docs/source/torch.compiler.md](https://github.com/pytorch/pytorch/blob/main/docs/source/torch.compiler.md) : see -> seen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157462
Approved by: https://github.com/Skylion007, https://github.com/svekars
2025-07-02 19:15:15 +00:00
0e9d8032a3 [build] remove cmake cache and reconfigure again if it is invalid (#156958)
See also:

- astral-sh/uv#14269

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156958
Approved by: https://github.com/Skylion007
ghstack dependencies: #156742
2025-07-02 18:46:32 +00:00
0105cd89ab [ONNX] Fix conversion of attention - 4D (#157130)
Fixes a wrong conversion to onnx while investigation #149662.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157130
Approved by: https://github.com/gramalingam, https://github.com/justinchuby, https://github.com/titaiwangms

Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
2025-07-02 18:05:10 +00:00
d5d14ee823 [nativert] create persistent value helper (#157286)
Summary: att

Test Plan: CI

Reviewed By: georgiaphillips

Differential Revision: D74300519

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157286
Approved by: https://github.com/SherlockNoMad
2025-07-02 17:15:52 +00:00
156bc243f0 Back out "Include c++ stack traces when we hit constraint violation (#155603)" (#157406)
Summary:
Original commit changeset: 4b3fdaa8f2c6

Original Phabricator Diff: D76434787

Meta:
https://fb.workplace.com/groups/1286739428954016/permalink/1535462614081695/

Test Plan:
Meta:
Revert D76434787 for S536719

Rollback Plan:

Differential Revision: D77626334

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157406
Approved by: https://github.com/bobrenjc93
2025-07-02 16:51:07 +00:00
bd6b5fddbf [Precompile] [easy] Serialize requires_grad for tensors when serializing guards (#157372)
Need to keep requires_grad on the tensor when serializing/deserializing guards. This matters when there's a TENSOR_MATCH guard on a tensor that requires_grad. Added a unit test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157372
Approved by: https://github.com/jansel, https://github.com/zhxchen17
ghstack dependencies: #156433
2025-07-02 16:34:37 +00:00
54701a0c94 Add is_hidden_event method to KinetoEvent Python interface (#155214)
Fixes #155213

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155214
Approved by: https://github.com/sraikund16
2025-07-02 16:29:21 +00:00
0edc1b91f7 [Inductor] Disable decompose_k for AMD (#157283)
Differential Revision: D77544250

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157283
Approved by: https://github.com/bdhirsh
2025-07-02 15:21:46 +00:00
9f5276dc07 Fix typo: 'Intializes' → 'Initializes' in _distributed_c10d.pyi docst… (#157455)
Description:

This PR fixes a small documentation typo in torch/_C/_distributed_c10d.pyi, correcting:

Intializes → Initializes

This helps improve clarity in internal docstrings for maintainers and contributors.
Let me know if further changes are needed. Thanks for your time and the amazing work on PyTorch!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157455
Approved by: https://github.com/Skylion007, https://github.com/malfet
2025-07-02 15:19:05 +00:00
9d175bc7e6 Fixes for CPython int/float tests (#155978)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155978
Approved by: https://github.com/zou3519
2025-07-02 15:04:00 +00:00
b096341963 [BE] use pathlib.Path instead of os.path.* in setup.py (#156742)
Resolves:

- https://github.com/pytorch/pytorch/pull/155998#discussion_r2164376634

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156742
Approved by: https://github.com/malfet
2025-07-02 14:57:58 +00:00
82eefaedd9 [inductor][user triton] sanitize triple-quoted docstrings in kernel definitions (#157322)
Fixes #155006

Inductor sometimes codegens triton kernel definitions into a triple-quoted text block. If the text block itself contains triple-quotes, this breaks. Notably, this can happen for user-defined triton kernels, where the user may have added a docstring in their triton kernel.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157322
Approved by: https://github.com/zou3519, https://github.com/drisspg
2025-07-02 14:02:01 +00:00
c553c55be7 Revert "Fix full_like decomposition to preserve strides (#144765)"
This reverts commit 01b0f09931d47bd2716398a0c335b2807dc3074d.

Reverted https://github.com/pytorch/pytorch/pull/144765 on behalf of https://github.com/jeanschmidt due to Seems to be breaking internal tests see [D77652778](https://www.internalfb.com/diff/D77652778), @jansel may you help get this PR merged? ([comment](https://github.com/pytorch/pytorch/pull/144765#issuecomment-3027975098))
2025-07-02 13:56:03 +00:00
d5a89178b0 Revert "[dynamo] Add fx_graph_runnable test coverage (#157021)"
This reverts commit 77676753ecabf6a6645bdd3abfe01939e5751e76.

Reverted https://github.com/pytorch/pytorch/pull/157021 on behalf of https://github.com/jeanschmidt due to New tests are red internally, more details on [D77652793](https://www.internalfb.com/diff/D77652793). Maybe codev could be a better strategy to merge this PR faster... ([comment](https://github.com/pytorch/pytorch/pull/157021#issuecomment-3027952946))
2025-07-02 13:48:41 +00:00
bdb7819166 [dynamo, nested graph breaks] remove recursive cell/freevar in instruction tx (#154078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154078
Approved by: https://github.com/StrongerXi, https://github.com/jansel
2025-07-02 13:36:14 +00:00
34c8033fd3 Fix a div_mod bug in generic_math.h (#157383)
Summary: There is a bug in integer div_mod that when the remainder is 0 and the divisor is negative, mod operation produces a negative number. Fixed in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157383
Approved by: https://github.com/angelayi, https://github.com/jingsh
2025-07-02 12:22:57 +00:00
ab2294d828 [dynamo] fix _torchdynamo_orig_callable naming issues (#156901)
`_torchdynamo_orig_callable` was being used in two distinct places:
- to get the original user function from nested eval_frame.py decorators
- to get the original backend from nested convert_frame.py callbacks

We rename ~the first usage to `_torchdynamo_orig_fn`~ and the second to `_torchdynamo_orig_backend` in order to distinguish these cases.

UPDATE: seems like both internal and OSS users depend on `_torchdynamo_orig_callable`, but it only seems in the first context. We should thus keep the original name for the first case then.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156901
Approved by: https://github.com/StrongerXi, https://github.com/jansel
2025-07-02 09:53:55 +00:00
3173616532 [nativert] start to move generated static dispatch kernels (#157403)
Summary: att

Test Plan:
ci

Rollback Plan:

Differential Revision: D77622952

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157403
Approved by: https://github.com/georgiaphillips
2025-07-02 08:42:01 +00:00
8c0df6fe17 Revert "[dynamo][fsdp] Consistent behavior of int attributes (#157262)"
This reverts commit 42b48ee67229286127390000f103a11dfc8901f5.

Reverted https://github.com/pytorch/pytorch/pull/157262 on behalf of https://github.com/jeanschmidt due to Newly introduced tests are red in internal runs, check D77593713 ([comment](https://github.com/pytorch/pytorch/pull/157262#issuecomment-3026944993))
2025-07-02 08:30:39 +00:00
0364db7cd1 [PT] support custom all_gather and reduce_scatter comms (#155189)
Summary:
This change introduces 2 comm override APIs: `set_custom_all_gather` and `set_custom_reduce_scatter` to allow for custom behavior respectively.

This allow users to control how the comm buffers are allocated and the exact comm implementation for flexibility.
For details, see docstring in `Comm` in `_fsdp_api.py`

Related PR:
https://github.com/pytorch/pytorch/pull/150564

Test Plan: CI

Differential Revision: D75714362

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155189
Approved by: https://github.com/weifengpy
2025-07-02 06:58:45 +00:00
f8c0a4bd28 [inductor] enable bf32 test for mkldnn conv (#127293)
Enable more test on inductor conv + bf32
Testplan:
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_conv2d_unary_cpu
python test/inductor/test_mkldnn_pattern_matcher.py -k test_conv3d_unary_cpu
python test/inductor/test_mkldnn_pattern_matcher.py -k test_conv_transpose2d_unary
python test/inductor/test_mkldnn_pattern_matcher.py -k test_conv2d_binary
python test/inductor/test_mkldnn_pattern_matcher.py -k test_conv3d_binary
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127293
Approved by: https://github.com/jgong5
ghstack dependencies: #126050, #126054

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-07-02 01:49:01 +00:00
4c8eb65efb allow to use bf16 as fp32 internal precision for mkldnn conv backward (#126054)
Used for CI since depends on ideep update.

Allow to use `BF16` as the internal computation data types by `torch.backends.mkldnn.conv.fp32_precision="bf16"`

### TestPlan
python test/test_mkldnn.py -k conv

### Benchmarking

FP32 conv2d backward vs. BF16 internal computation conv backward on SPR

Single core:

Input | fp32 ms | bf16 internal  ms | Speed up
-- | -- | -- | --
IC:   64, OC: 256, kernel: 1, stride: 1, N: 256, H: 56, W: 56, G: 1, pad: 0 | 461.6734| 358.3779| 1.48
IC:   128, OC: 512, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 358.3779 | 247.8631| 1.46
IC: 256, OC: 256, kernel: 3, stride: 1,   N: 1, H: 16, W: 16, G: 1, pad: 0 | 4.3783| 3.8513| 1.14

56 cores:
Input | fp32 ms | bf16 internal ms | Speed up
-- | -- | -- | --
IC:   64, OC: 256, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 16.6119 | 12.2047 | 1.38
IC:   128, OC: 512, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 12.0016 | 8.6711 | 1.38
IC:   256, OC: 1024, kernel: 1, stride: 1, N: 256, H: 14, W: 14, G: 1, pad: 0 | 20.5947 | 15.9366 | 1.29
IC: 1024, OC: 256, kernel: 1, stride: 1,   N: 256, H: 14, W: 14, G: 1, pad: 0 | 40.0952 | 32.2222 | 1.24
IC: 256, OC: 256, kernel: 3, stride: 1,   N: 1, H: 16, W: 16, G: 1, pad: 0 | 162.7449 | 142.3054 | 1.14

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126054
Approved by: https://github.com/jgong5
ghstack dependencies: #126050

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-07-02 01:40:13 +00:00
5a2db5152d allow to use bf16 as fp32 internal precision for mkldnn conv (#126050)
Allow to use `BF16` as the internal computation data types by `torch.backends.mkldnn.conv.fp32_precision="bf16"`

### TestPlan
python test/test_mkldnn.py -k conv

### Benchmarking

FP32 conv2d vs. BF16 internal computation conv2d on SPR

Single core:

Input | fp32 ms | bf16 internal  ms | Speed up
-- | -- | -- | --
IC:   64, OC: 256, kernel: 1, stride: 1, N: 256, H: 56, W: 56, G: 1, pad: 0 | 185.5071 | 83.4749 | 2.22
IC:   128, OC: 512, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 194.7558 | 79.1683| 2.46
IC: 256, OC: 256, kernel: 3, stride: 1,   N: 1, H: 16, W: 16, G: 1, pad: 0 | 1.9213 | 1.3690 | 1.40

56 cores:
Input | fp32 ms | bf16 internal ms | Speed up
-- | -- | -- | --
IC:   64, OC: 256, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 6.5804  | 7.4349 | 0.89
IC:   128, OC: 512, kernel: 1, stride: 1, N: 256, H: 28, W: 28, G: 1, pad: 0 | 4.9940  | 3.8093 | 1.31
IC:   256, OC: 1024, kernel: 1, stride: 1, N: 256, H: 14, W: 14, G: 1, pad: 0 | 8.8359 | 5.5802 | 1.58
IC: 1024, OC: 256, kernel: 1, stride: 1,   N: 256, H: 14, W: 14, G: 1, pad: 0 | 16.5800 | 9.2367 | 1.80
IC: 256, OC: 256, kernel: 3, stride: 1,   N: 1, H: 16, W: 16, G: 1, pad: 0 | 79.5436 | 38.3861  | 2.07

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126050
Approved by: https://github.com/jgong5, https://github.com/jansel

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-07-02 01:31:23 +00:00
0a63053fe9 Don't store flamegraph to tmp folder (#157374)
Where it's accessible(and mutable) by multiple users. Instead use
`~/.cache` folder instead

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157374
Approved by: https://github.com/eqy
ghstack dependencies: #157373
2025-07-02 00:46:51 +00:00
bb476310a4 [dynamo][guards] Stash root guard manager pointer in the LeafGuard (#157325)
Preparing to simplify the recompilation reason codebase. This PR was 95% done by using AI tools.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157325
Approved by: https://github.com/jansel
2025-07-02 00:42:43 +00:00
fa1c20ae92 Fix test consolidate hf safetensors (#157386)
Need to change an argument name that was changed in the test so that it doesn't throw

Differential Revision: [D77604210](https://our.internmc.facebook.com/intern/diff/D77604210/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157386
Approved by: https://github.com/meetv18
ghstack dependencies: #154743, #156705
2025-07-02 00:16:21 +00:00
77676753ec [dynamo] Add fx_graph_runnable test coverage (#157021)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157021
Approved by: https://github.com/StrongerXi, https://github.com/xmfan

Co-authored-by: Simon Fan <xmfan@meta.com>
2025-07-02 00:10:01 +00:00
617e3f69f8 [FP8] Fix Benchmarking for certain Priors (#155722)
Summary: For priors like layer norm, the order of the weight quantization kernel might be different and therefore have a different suffix, so we use regular expression instead.

Test Plan:
Trying this on model id 737772166 with
```
buck2 run mode/opt  mode/inplace -c fbcode.platform010_cuda_version=12 -c fbcode.nvcc_arch=h100 caffe2/torch/fb/model_transform/experimental/benchmark:mts_gpu_benchmark -- --lower-backend=AOT_INDUCTOR   --model-snapshot-id=737772166_0 --trace-aot-inductor-module=True --disable-acc-tracer=False --batch-size=1024 --node_replacement_dict "{'(autotune)':{'(1000+,1000+)':'fp8_float_model_dynamic_quantization_rowwise'}"
```
will allow more linears to be correctly replaced with fp8.
An example of the gpu trace can be found in https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/hpc/new/models/feed/benchmark/libkineto_activities_773108_f58b57e208c04787acd3bcb01a3e8771.json.gz&bucket=gpu_traces.

Rollback Plan:

Differential Revision: D76092551

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155722
Approved by: https://github.com/Skylion007
2025-07-02 00:01:23 +00:00
ab6cb34480 Revert "[inductor][user triton] sanitize triple-quoted docstrings in kernel definitions (#157322)"
This reverts commit 563fd95563c5edd732ae260b3bd3d0c38822ab57.

Reverted https://github.com/pytorch/pytorch/pull/157322 on behalf of https://github.com/davidberard98 due to fails on rocm ([comment](https://github.com/pytorch/pytorch/pull/157322#issuecomment-3025826951))
2025-07-01 23:21:37 +00:00
c6a27bae36 Revert "[do not revert] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)"
This reverts commit d0a9629435aaceb5acbf31aad70f2109cb8a3ea2.

Reverted https://github.com/pytorch/pytorch/pull/155590 on behalf of https://github.com/laithsakka due to was asked by to land this internally  ([comment](https://github.com/pytorch/pytorch/pull/155590#issuecomment-3025796794))
2025-07-01 22:58:14 +00:00
563fd95563 [inductor][user triton] sanitize triple-quoted docstrings in kernel definitions (#157322)
Fixes #155006

Inductor sometimes codegens triton kernel definitions into a triple-quoted text block. If the text block itself contains triple-quotes, this breaks. Notably, this can happen for user-defined triton kernels, where the user may have added a docstring in their triton kernel.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157322
Approved by: https://github.com/zou3519, https://github.com/drisspg
2025-07-01 22:51:11 +00:00
6ef70edd9a Revert "Inductor logging + analysis of torch.profile (#149697)"
This reverts commit 47f10d0ad0dda281c886ff08ac2f938207027316.

Reverted https://github.com/pytorch/pytorch/pull/149697 on behalf of https://github.com/malfet due to Looks like it's breaking ROCM tests, see https://hud.pytorch.org/hud/pytorch/pytorch/main/1?per_page=50&name_filter=rocm%20%2F%20linux-jammy ([comment](https://github.com/pytorch/pytorch/pull/149697#issuecomment-3025673908))
2025-07-01 22:11:53 +00:00
3df6360e8c [BE][Easy][setup] use super().method(...) in command subclasses in setup.py (#156044)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156044
Approved by: https://github.com/albanD
ghstack dependencies: #156741
2025-07-01 22:09:10 +00:00
d0a9629435 [do not revert] Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
2025-07-01 21:39:38 +00:00
22edb457c9 [invoke_subgraph][partitioner] Add meta val on run_and_save_rng ops (#157319)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157319
Approved by: https://github.com/zou3519
2025-07-01 21:02:08 +00:00
e5f6ffd810 [BE] Replace checkcall("chmod") with os.chmod (#157373)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157373
Approved by: https://github.com/clee2000, https://github.com/eqy, https://github.com/Skylion007
2025-07-01 20:46:25 +00:00
019e30e3b8 [BE] Decorate LargeTensorTest with serialTests (#157382)
May be it'll help make M2-15 jobs more stable, as that was the last test run before OOM
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157382
Approved by: https://github.com/clee2000
2025-07-01 20:35:42 +00:00
4500a4aa50 remove allow-untyped-defs from torch/backends/mps/__init__.py (#157227)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157227
Approved by: https://github.com/Skylion007
2025-07-01 20:00:19 +00:00
6bc263809d [SymmMem] Add NVSHMEM_CHECK macro (#157174)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157174
Approved by: https://github.com/fduwjj, https://github.com/fegin
2025-07-01 19:50:28 +00:00
ffac0de07e [export] Remove stack trace from input/output (#157302)
Fixes https://github.com/pytorch/pytorch/issues/157183

https://github.com/pytorch/pytorch/pull/156257 consolidated the path for saving stack traces, but missed the part where stacktraces are not added to placeholder/output nodes in proxy_tensor tracing [(code)](https://github.com/pytorch/pytorch/pull/156257/files#diff-6960ce90e7162c0953b1ca07e92e7f0f2f6ba63b427b42df593e20cc6a096bb7L1107).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157302
Approved by: https://github.com/yushangdi
2025-07-01 19:16:28 +00:00
01b0f09931 Fix full_like decomposition to preserve strides (#144765)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144765
Approved by: https://github.com/amjames, https://github.com/jansel
2025-07-01 19:13:22 +00:00
6401d1d53d Revert "Fused RMSNorm implementation (#153666)"
This reverts commit e1aee86646aa6d1b9cb9d34351e43936401c5efc.

Reverted https://github.com/pytorch/pytorch/pull/153666 on behalf of https://github.com/davidberard98 due to causing build failures on main branch [GH job link](https://github.com/pytorch/pytorch/actions/runs/16007148842/job/45156382001) [HUD commit link](e1aee86646) ([comment](https://github.com/pytorch/pytorch/pull/153666#issuecomment-3025146176))
2025-07-01 18:46:45 +00:00
3a5677a380 Revert "ci: Add ability to test images for build-triton-wheel (#156894)"
This reverts commit 0e47312ae5a687f0aed61db753d03180118cddc4.

Reverted https://github.com/pytorch/pytorch/pull/156894 on behalf of https://github.com/seemethere due to causing issues in downstream builds see https://github.com/pytorch/pytorch/pull/156664 for more info ([comment](https://github.com/pytorch/pytorch/pull/156894#issuecomment-3025137790))
2025-07-01 18:43:34 +00:00
02608e560a [ROCm] Add more shards for inductor dashboard, more frequent runs (#157288)
Also increases regularity of dashboard runs on ROCm.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157288
Approved by: https://github.com/jeffdaily
2025-07-01 18:27:30 +00:00
e1aee86646 Fused RMSNorm implementation (#153666)
Relevant #72643

Benchmarked versus unfused torch implementation and torch.compile implementation. Around 9x speedup vs unfused implementation on cuda and slightly faster vs inductor compile on 5090.

```py
import torch
import torch.nn as nn

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.scale = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        norm_x = x.norm(2, dim=-1, keepdim=True)
        rms_x = norm_x * torch.rsqrt(torch.tensor(x.shape[-1], dtype=x.dtype))
        x_normed = x / (rms_x + self.eps)
        return self.scale * x_normed

def benchmark_rmsnorm_cuda(input_shape, normalized_dim, num_iterations=100, warmup_iterations=10, dtype=torch.float16):
    rms_norm_layer = torch.nn.RMSNorm(normalized_dim, device='cuda', dtype=dtype)
    input_data = torch.randn(input_shape, device='cuda', dtype=dtype)

    for _ in range(warmup_iterations):
        _ = rms_norm_layer(input_data)
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    start_event.record()
    for _ in range(num_iterations):
        _ = rms_norm_layer(input_data)

    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    avg_time_ms = elapsed_time_ms / num_iterations

    print(f"--- RMSNorm CUDA Benchmark ---")
    print(f"Input Shape: {input_shape}")
    print(f"Normalized Dimension: {normalized_dim}")
    print(f"Benchmark Iterations: {num_iterations}")
    print(f"--- Fused Implementation ---")
    print(f"Average Time per Iteration: {avg_time_ms:.4f} ms")
    print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms")

    compiled_rms_norm = torch.compile(RMSNorm(dim=normalized_dim)).cuda()
    for _ in range(warmup_iterations):
        _ = compiled_rms_norm(input_data)
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    start_event.record()
    for _ in range(num_iterations):
        _ = compiled_rms_norm(input_data)
    end_event.record()
    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    avg_time_ms = elapsed_time_ms / num_iterations

    print(f"--- TorchCompile Implementation ---")
    print(f"Average Time per Iteration: {avg_time_ms:.4f} ms")
    print(f"Total Time for {num_iterations} Iterations: {elapsed_time_ms:.3f} ms")

    print("-" * 50)

if __name__ == '__main__':
    parameter_sets = [
        {'batch_size': 16, 'sequence_length': 256, 'hidden_features': 512, 'dtype': torch.float16},
        {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float16},
        {'batch_size': 64, 'sequence_length': 1024, 'hidden_features': 1024, 'dtype': torch.float16},
        {'batch_size': 32, 'sequence_length': 512, 'hidden_features': 768, 'dtype': torch.float32},
        {'batch_size': 8, 'sequence_length': 2048, 'hidden_features': 2048, 'dtype': torch.float16},
    ]

    num_benchmark_iterations = 200
    num_warmup_iterations = 20

    for params in parameter_sets:
        batch_size = params['batch_size']
        sequence_length = params['sequence_length']
        hidden_features = params['hidden_features']
        data_type = params.get('dtype', torch.float16)

        shape = (batch_size, sequence_length, hidden_features)
        norm_dim_to_normalize = hidden_features

        print(f"Benchmarking with: BS={batch_size}, SeqLen={sequence_length}, Hidden={hidden_features}, DType={data_type}")
        benchmark_rmsnorm_cuda(input_shape=shape,
                               normalized_dim=norm_dim_to_normalize,
                               num_iterations=num_benchmark_iterations,
                               warmup_iterations=num_warmup_iterations,
                               dtype=data_type)
```

Here are the triton compile tests ran on a 5090 (comparing this branch vs main)
```py
import torch
import torch.nn as nn
from torch._inductor.utils import run_and_get_code, run_fw_bw_and_get_code

torch.manual_seed(0)

device = torch.device("cuda")

for batch in range(0, 9):
    for i in range(9, 16):
        normalized_shape_arg = (2**batch, 2**i)
        input_tensor = torch.randn(2**batch, 2**i, device=device, requires_grad=True)
        weight_tensor = torch.randn(2**batch, 2**i,device=device, requires_grad=True)

        model = torch.nn.functional.rms_norm
        compiled_model = torch.compile(model)
        loss = torch.randn_like(input_tensor)

        num_iter = 5
        for j in range(num_iter):
            output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor)
            output.backward(loss)

        start_event = torch.cuda.Event(enable_timing=True)
        end_event = torch.cuda.Event(enable_timing=True)
        start_event.record()
        num_iter = 10
        for j in range(num_iter):
            output = compiled_model(input_tensor, normalized_shape_arg, weight_tensor)
            output.backward(loss)

        end_event.record()
        torch.cuda.synchronize()

        elapsed_time_ms = start_event.elapsed_time(end_event)
        avg_time_ms = round(elapsed_time_ms / num_iter, 5)
        print(2**batch, 2**i, avg_time_ms)
```
main
```
32 512 0.1812
32 1024 0.19021
32 2048 0.18871
32 4096 0.17019
32 8192 0.21944
32 16384 0.38871
32 32768 0.83282
64 512 0.14705
64 1024 0.13987
64 2048 0.14111
64 4096 0.21699
64 8192 0.43141
64 16384 0.90652
64 32768 2.18573
128 512 0.19361
128 1024 0.1963
128 2048 0.20122
128 4096 0.38888
128 8192 0.93795
128 16384 2.23437
128 32768 5.50079
256 512 0.16722
256 1024 0.22856
256 2048 0.39421
256 4096 0.96621
256 8192 2.48746
256 16384 5.53571
256 32768 11.97932
```
current branch
```
32 512 0.16328
32 1024 0.18104
32 2048 0.15508
32 4096 0.14356
32 8192 0.20111
32 16384 0.45974
32 32768 0.94799
64 512 0.16874
64 1024 0.18701
64 2048 0.16107
64 4096 0.20152
64 8192 0.46568
64 16384 0.96599
64 32768 2.21661
128 512 0.14982
128 1024 0.15565
128 2048 0.22241
128 4096 0.46128
128 8192 0.88883
128 16384 2.3097
128 32768 5.84448
256 512 0.14346
256 1024 0.2007
256 2048 0.45927
256 4096 0.87876
256 8192 2.10571
256 16384 5.73948
256 32768 12.98581
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153666
Approved by: https://github.com/ngimel
2025-07-01 18:22:24 +00:00
1c8844d9e7 [MPS] Switch Cholesky decomp to column wise (#157014)
Everything should go thru a generalized kernels, and Metal kernels should work with the same sizes and strides as CPU or CUDA backends to avoid problems with `torch.compile` that relies on the meta kernels to tell what its ouput going to look like.

To avoid returning tensors with different layout depending on whether upper parameter is true or false, templatize `factorDiagonalBlock`, `applyTRSM` and `applySYRK` to take upper/lower (actually row-wise vs column-wise) as template argument and call appropriate templates from host

TODOs:
 - Rename upper parameter to something more sensible and add comments
 - Use simd_groupsize instead of hardcoded 32 everywhere

Fixes https://github.com/pytorch/pytorch/issues/156658

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157014
Approved by: https://github.com/Skylion007, https://github.com/dcci
ghstack dependencies: #157179
2025-07-01 18:00:59 +00:00
720c2c46b1 [Inductor UT][XPU] Reduce the runtime of the test case test_comprehensive_nn_functional_max_pool2d_xpu. (#157357)
This test case has over a thousand input samples, causing it to run for more than 30 minutes, which triggers the timeout mechanism and breaks the XPU CI. This PR limit the sample number as one for this XPU case .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157357
Approved by: https://github.com/chuanqi129, https://github.com/jansel
2025-07-01 17:47:49 +00:00
3bc6bdc866 [BE] add type annotations and run mypy on setup.py (#156741)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156741
Approved by: https://github.com/aorenste
2025-07-01 17:09:05 +00:00
47f10d0ad0 Inductor logging + analysis of torch.profile (#149697)
Prereqs:
 - https://github.com/pytorch/pytorch/pull/152708

Features:
1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses.
1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`.
1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`.
1. Extends Triton `torch.profiler` logging to `DebugAutotuner`.
1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side:
```python
Device(NVIDIA H100, 0):
 Kernel Name                              | resnet Kernel Count | resnet FLOPS       | resnet bw gbps        | resnet Dur (ms)    | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS    | newresnet bw gbps     | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth %
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 triton_poi_fused__native_batch_norm_legi | 24                  | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                       | 0.003401572611382541        | 24                     | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                          | 0.003401572611382541
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142                 | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583     | 0.007716441266265022        | 142                    | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583        | 0.007716441266265022
 triton_red_fused__native_batch_norm_legi | 39                  | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                       | 0.004176126863316074        | 39                     | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                          | 0.004176126863316074
 triton_poi_fused__native_batch_norm_legi | 25                  | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                       | 0.009499718184339253        | 25                     | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                          | 0.009499718184339253
 void cutlass::Kernel2<cutlass_80_tensoro | 98                  | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874     | 0.012827592254037562        | 98                     | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874        | 0.012827592254037562
 triton_red_fused__native_batch_norm_legi | 73                  | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                       | 0.009628003963020014        | 73                     | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                          | 0.009628003963020014
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                       | 0.043257347302946926        | 15                     | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                          | 0.043257347302946926
 void cutlass::Kernel2<cutlass_80_tensoro | 186                 | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027     | 0.007961586274361157        | 186                    | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027        | 0.007961586274361157
 triton_poi_fused__native_batch_norm_legi | 33                  | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                       | 0.044550915039384846        | 33                     | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                          | 0.044550915039384846
 triton_red_fused__native_batch_norm_legi | 29                  | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                       | 0.007630624036606301        | 29                     | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                          | 0.007630624036606301
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                       | 0.01752406619162008         | 13                     | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                          | 0.01752406619162008
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 0.41409928846284      | 2.853588235294117  | 0                       | 0.012361172789935523        | 34                     | 0                  | 0.41409928846284      | 2.853588235294117  | 0                          | 0.012361172789935523
 triton_per_fused__native_batch_norm_legi | 34                  | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                       | 0.0034941238826919864       | 34                     | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                          | 0.0034941238826919864
 triton_poi_fused__native_batch_norm_legi | 16                  | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                       | 0.005136672596156592        | 16                     | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                          | 0.005136672596156592
 triton_per_fused__native_batch_norm_legi | 30                  | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                       | 0.007879744244842555        | 30                     | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                          | 0.007879744244842555
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100                 | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531     | 0.005819245035648175        | 100                    | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531        | 0.005819245035648175
 triton_poi_fused__native_batch_norm_legi | 8                   | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                       | 0.029415213809625928        | 8                      | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                          | 0.029415213809625928
 void cublasLt::splitKreduce_kernel<32, 1 | 56                  | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628     | 0.024806865808245714        | 56                     | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628        | 0.024806865808245714
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                       | 0.02968359094286896         | 23                     | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                          | 0.02968359094286896
 triton_per_fused__native_batch_norm_legi | 10                  | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                       | 0.00545313748934644         | 10                     | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                          | 0.00545313748934644
 triton_poi_fused__native_batch_norm_legi | 10                  | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                       | 0.009459622642884923        | 10                     | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                          | 0.009459622642884923
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                       | 0.03421974596124114         | 34                     | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                          | 0.03421974596124114
 void cask_plugin_cudnn::xmma_cudnn::init | 44                  | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194     | 0.06167532194133924         | 44                     | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194        | 0.06167532194133924
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95                  | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802     | 0.014014750913273854        | 95                     | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802        | 0.014014750913273854
 triton_per_fused__native_batch_norm_legi | 41                  | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                       | 0.002037513395819492        | 41                     | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                          | 0.002037513395819492
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                       | 0.0026292999141582997       | 23                     | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                          | 0.0026292999141582997
 triton_per_fused__native_batch_norm_legi | 40                  | 0                  | 0.18179321034952417   | 4.556825           | 0                       | 0.005426662995508183        | 40                     | 0                  | 0.18179321034952417   | 4.556825           | 0                          | 0.005426662995508183
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                       | 0.017574373598370836        | 15                     | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                          | 0.017574373598370836
 void cutlass::Kernel2<cutlass_80_tensoro | 38                  | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546      | 0.007659474756834           | 38                     | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546         | 0.007659474756834
 triton_poi_fused__native_batch_norm_legi | 21                  | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                       | 0.017441376040091088        | 21                     | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                          | 0.017441376040091088
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                       | 0.0034356313950705724       | 16                     | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                          | 0.0034356313950705724
 triton_poi_fused__native_batch_norm_legi | 14                  | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                       | 0.00508857313505646         | 14                     | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                          | 0.00508857313505646
 triton_poi_fused__native_batch_norm_legi | 58                  | 0                  | 2.307520779930795     | 8.190706896551722  | 0                       | 0.06888121731136704         | 58                     | 0                  | 2.307520779930795     | 8.190706896551722  | 0                          | 0.06888121731136704
 triton_per_fused__native_batch_norm_legi | 29                  | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                       | 0.001111738775280038        | 29                     | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                          | 0.001111738775280038
 triton_poi_fused__native_batch_norm_legi | 20                  | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                       | 0.0014154327747549007       | 20                     | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                          | 0.0014154327747549007
 triton_per_fused__native_batch_norm_legi | 25                  | 0                  | 0.13357016893727824   | 3.37536            | 0                       | 0.003987169222008305        | 25                     | 0                  | 0.13357016893727824   | 3.37536            | 0                          | 0.003987169222008305
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                       | 0.009223469457612694        | 13                     | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                          | 0.009223469457612694
 triton_poi_fused__native_batch_norm_legi | 17                  | 0                  | 0.3129385387909844    | 2.673              | 0                       | 0.009341448919133863        | 17                     | 0                  | 0.3129385387909844    | 2.673              | 0                          | 0.009341448919133863
 triton_per_fused__native_batch_norm_legi | 19                  | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                       | 0.0066136363060691275       | 19                     | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                          | 0.0066136363060691275
 std::enable_if<!(false), void>::type int | 23                  | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447   | 0.030203868944223014        | 23                     | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447      | 0.030203868944223014
 triton_poi_fused_add_copy__38            | 56                  | 0                  | 0                     | 2.132482142857143  | 0                       | 0                           | 56                     | 0                  | 0                     | 2.132482142857143  | 0                          | 0
 triton_poi_fused_convolution_0           | 18                  | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                       | 0.012972719640279667        | 18                     | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                          | 0.012972719640279667
 triton_poi_fused_convolution_1           | 17                  | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                       | 0.0008601884319153051       | 17                     | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                          | 0.0008601884319153051
 void convolve_common_engine_float_NHWC<f | 44                  | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169     | 0.0007382250748795709       | 44                     | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169        | 0.0007382250748795709
 triton_per_fused__native_batch_norm_legi | 12                  | 0                  | 0.6809930918986744    | 4.82675            | 0                       | 0.020328151996975356        | 12                     | 0                  | 0.6809930918986744    | 4.82675            | 0                          | 0.020328151996975356
 triton_per_fused__native_batch_norm_legi | 14                  | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                       | 0.0008606061486377935       | 14                     | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                          | 0.0008606061486377935
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.0014658988233201874 | 2.098              | 0                       | 4.375817383045335e-05       | 16                     | 0                  | 0.0014658988233201874 | 2.098              | 0                          | 4.375817383045335e-05
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                       | 0.02963073785159611         | 13                     | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                          | 0.02963073785159611
 triton_poi_fused__native_batch_norm_legi | 9                   | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                       | 0.03883228983781048         | 9                      | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                          | 0.03883228983781048
 void at::native::(anonymous namespace):: | 98                  | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                       | 0.0027386076458833994       | 98                     | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                          | 0.0027386076458833994
 void at::native::vectorized_elementwise_ | 7                   | 0                  | 0                     | 1.7278571428571428 | 0                       | 0                           | 7                      | 0                  | 0                     | 1.7278571428571428 | 0                          | 0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-07-01 16:51:03 +00:00
0f9c1b374f [dynamo] Ensure global state guard is preserved across serialization. (#157285)
Currently, every time we construct a GLOBAL_STATE guard, we always create a fresh guard based on the current global state. For precompile, we want to create a GLOBAL_STATE guard always based on some external sources, e.g. serialized global states. This can also be applied with the normal case where we just pass in the global state guard from Python.

Differential Revision: [D77400988](https://our.internmc.facebook.com/intern/diff/D77400988/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157285
Approved by: https://github.com/jansel
2025-07-01 15:46:34 +00:00
b146e1a264 [BE] remove duplicates in generated torch._VF.__all__ (#157365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157365
Approved by: https://github.com/Skylion007
2025-07-01 15:43:20 +00:00
c78fce9e79 [dynamo] show frame information when recompilation is triggered on fail_on_recompile (#156433)
adding more information to the error message for debugging.

example error message:
```
Detected recompile when torch.compile stance is 'fail_on_recompile'. filename: 'caffe2/test/dynamo/test_misc.py', function name: 'fn', line number: 0
Failed on the following precompiled guards:

TREE_GUARD_MANAGER:
+- RootGuardManager
| +- LAMBDA_GUARD: isinstance(L['x'], bool)
GuardDebugInfo(
result=0,
verbose_code_parts=["isinstance(L['x'], bool)"],
num_guards_executed=1)
```

Differential Revision: [D76987126](https://our.internmc.facebook.com/intern/diff/D76987126/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156433
Approved by: https://github.com/jamesjwu
2025-07-01 15:15:58 +00:00
023887fc5a Revert "Switch to standard pep517 sdist generation (#152098)"
This reverts commit f16053f0c9a09fa337fbf85aaf64f88712b8dcdb.

Reverted https://github.com/pytorch/pytorch/pull/152098 on behalf of https://github.com/malfet due to IMO this PR needs to be split into few helper ones, with better test plan ([comment](https://github.com/pytorch/pytorch/pull/152098#issuecomment-3024223880))
2025-07-01 14:14:52 +00:00
1586521461 Revert "Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)"
This reverts commit 2c76f31221e117b217b8a6a96a5405f626d2218a.

Reverted https://github.com/pytorch/pytorch/pull/155590 on behalf of https://github.com/jeanschmidt due to Breaking 1000s of internal builds, it cant be properly landed internally, there are no options except revert and codev. ([comment](https://github.com/pytorch/pytorch/pull/155590#issuecomment-3023503929))
2025-07-01 11:23:00 +00:00
534c454e77 Revert "[xla hash update] update the pinned xla hash (#156584)"
This reverts commit b1a54fab9bcb0cc167773f9a885d4170447e1c68.

Reverted https://github.com/pytorch/pytorch/pull/156584 on behalf of https://github.com/jeanschmidt due to Need to revert in order to revert https://github.com/pytorch/pytorch/pull/155590 ([comment](https://github.com/pytorch/pytorch/pull/156584#issuecomment-3023492421))
2025-07-01 11:20:05 +00:00
13bf2655c1 Revert "HF loads dcp - don't do a full deserialize on every file (#155942)"
This reverts commit 117db5601d78cbc746b35eef71fc815e042e903f.

Reverted https://github.com/pytorch/pytorch/pull/155942 on behalf of https://github.com/jeanschmidt due to Newly introduced tests are red internally, more details on D76442012 ([comment](https://github.com/pytorch/pytorch/pull/155942#issuecomment-3023473036))
2025-07-01 11:15:08 +00:00
0bce390269 Revert "[dynamo] Add fx_graph_runnable test coverage (#157021)"
This reverts commit 20e40492b046b9287726d3ec656117e4dc38f0e2.

Reverted https://github.com/pytorch/pytorch/pull/157021 on behalf of https://github.com/jeanschmidt due to New tests are red internally, more details on D77471538 ([comment](https://github.com/pytorch/pytorch/pull/157021#issuecomment-3023455082))
2025-07-01 11:10:45 +00:00
a767e50adc remove allow-untyped-defs from torch/fx/experimental/migrate_gradual_types/util.py (#157236)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157236
Approved by: https://github.com/ezyang
2025-07-01 10:36:48 +00:00
210632fae1 [ROCm] support experimental CU carveout (#149466)
Fixes #149280.  Follow up to #147966, but now available for ROCm.

Since hipblaslt does not support HIPBLASLT_MATMUL_DESC_CU_COUNT_TARGET, we instead create a hipStream that has a CU mask applied.  We pass this masked stream to hipblaslt instead of pytorch's current stream.  We ensure stream ordering between streams using hipEvents and stream synchronization.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149466
Approved by: https://github.com/malfet, https://github.com/atalman
2025-07-01 08:54:52 +00:00
0596323c35 Better fix for __index__ SymInt issue (#157201)
This improves on #156928

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157201
Approved by: https://github.com/ezyang
2025-07-01 07:06:46 +00:00
c202a7329a Revert "Fixes for CPython int/float tests (#155978)"
This reverts commit 23491519d288dedb2a54cfad5fef7fcb2ad8eade.

Reverted https://github.com/pytorch/pytorch/pull/155978 on behalf of https://github.com/XuehaiPan due to sys.get_int_max_str_digits is not always available ([comment](https://github.com/pytorch/pytorch/pull/155978#issuecomment-3021990027))
2025-07-01 06:16:49 +00:00
754699610b [BE] always use uv pip if possible in pip_init.py for lintrunner init (#157199)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157199
Approved by: https://github.com/ezyang
2025-07-01 06:07:29 +00:00
8f0998aafe Check F2C BLAS for OpenBLAS and other vendors (#143846)
This issue came from https://github.com/conda-forge/pytorch-cpu-feedstock/issues/180. MKL follows the F2C convention for returning single precision floats as doubles and uses the G77 convention for returning complex valued scalars. OpenBLAS does the opposite. There is a check for this already, but it's done only when the Generic BLAS vendor code path is used and this PR moves that code to `Dependencies.cmake` to make it work when the BLAS vendor is OpenBLAS and others

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143846
Approved by: https://github.com/rgommers, https://github.com/atalman
2025-07-01 05:56:24 +00:00
04bd7e6850 [ROCm] Remove use of warpsize on host-side compilation (#156979)
Changes needed for ROCm7.0:
* `warpSize` is _not_ a compile-time constant on device-side compilation for ROCm anymore
* `warpSize` is _not_ defined on host-side compilation, hence `at::cuda::warp_size()` must be used to query warpsize at runtime
* Redefining `C10_WARP_SIZE` to be a compile-time constant, with a reasonable value for device-side compilation, but an unreasonable value of 1 for host-side compilation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156979
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-07-01 04:55:31 +00:00
c811f41cf5 [BE] Remove unused variable from Pooling.metal (#157332)
Fixes following compilation warning
```
/Users/nshulga/git/pytorch/pytorch/aten/src/ATen/native/mps/kernels/Pooling.metal:101:21: warning: unused variable 'indices_sizes' [-Wunused-variable]
  constant int64_t* indices_sizes = params.indices_sizes.data();
                    ^

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157332
Approved by: https://github.com/clee2000, https://github.com/huydhn, https://github.com/dcci
2025-07-01 04:28:04 +00:00
4d5d627e5f Remove super spammy log (#157157)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157157
Approved by: https://github.com/davidberard98
2025-07-01 03:51:58 +00:00
b40981c630 Fix incorrect stride handling in adaptive_avg_pool3d (#157326)
Fixes #157248

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157326
Approved by: https://github.com/eqy
ghstack dependencies: #157242
2025-07-01 03:03:48 +00:00
b5ce77c1f5 [ROCm] Initial AITER Integration for mha_bwd asm kernels (#152630)
Generates AITER plumbing via cmake. Calls into fav3 asm bwd CK kernels.

Update submodule composable kernel for this change

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152630
Approved by: https://github.com/xw285cornell, https://github.com/yoyoyocmu
2025-07-01 02:53:27 +00:00
f40efde2a4 [CI] Add prebuild command option, set prebuild command option for CI to build flash attention (#156236)
Build flash attention separately in build using 2 jobs since it OOMs on more, then the rest of the job uses 6
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156236
Approved by: https://github.com/malfet
2025-07-01 02:53:22 +00:00
3ed4384f5b [dynamo] temporarily disabling generation of weblinks for torch v2.8 release (#157299)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157299
Approved by: https://github.com/williamwen42
2025-07-01 02:31:17 +00:00
c174f3a6a5 [ONNX] Delete deprecated tutorial page link (#157310)
Related to https://github.com/pytorch/tutorials/issues/3420

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157310
Approved by: https://github.com/justinchuby
2025-07-01 01:18:26 +00:00
6dc2b22269 [ROCm][SymmetricMemory] Performance improvements for two-shot allreduce (#156746)
The biggest bottleneck that we found with two-shot allreduce was that the compiler was serializing all the load operations for some reason. To avoid these load delays, we've added de-serialization of loads. Along with this improvement, we also found that on AMD GPUs a different block and thread size gives a nice performance boost. Here are the bandwidth numbers I am getting with this PR:
![image](https://github.com/user-attachments/assets/57005856-4cb5-43cd-8e9c-46869f75ab0b)

The rows that are green are the tensor sizes that we are interested in because two-shot is only used for bigger sizes (one-shot is used for smaller sizes). As we can see, our baseline numbers wrt to fbgemm numbers were consistently underperforming. However, with this deserialize change, most of the tensor sizes have a performance boost (positive %) for the green tensors. There's one tensor with negative performance, but that's within error margin.

co-authored by: @amd-hhashemi
https://github.com/pytorch/FBGEMM/issues/4072

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156746
Approved by: https://github.com/jeffdaily

Co-authored-by: Hashem Hashemi <hashem.hashemi@amd.com>
2025-07-01 00:37:30 +00:00
f860992db5 Add a custom profiler configuration option (#151656)
We aim to pass some configuration options to our custom Kineto backend via ExperimentalConfig,, so we added a `custom_profiler_config` parameter.

Requires https://github.com/pytorch/kineto/pull/1077 ,
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151656
Approved by: https://github.com/sraikund16
2025-07-01 00:36:09 +00:00
b60569ed94 HF - consolidate shards of safetensors files to full tensors in finish step (#156705)
Title - we can consolidate the shards to a full tensors, optionally behind a flag, in the finish step of DCP.save
also adds the thread count argument which is configurable for users, before we were just using the default of 1.
Re-creating https://github.com/pytorch/pytorch/pull/155940 bc it got into a bad detached state

Differential Revision: [D77231774](https://our.internmc.facebook.com/intern/diff/D77231774/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156705
Approved by: https://github.com/saumishr
ghstack dependencies: #154743
2025-07-01 00:30:48 +00:00
4ebd269065 [Testing] Remove duplicate MPSInductor tests (#157328)
They were added there before test_torchinductor were running in CI, but
now the same are covered by `GPUTests.test_pointwise_*_mps`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157328
Approved by: https://github.com/huydhn
2025-07-01 00:21:22 +00:00
7709ff5512 [remove untyped defs] batch 1 (#157011)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157011
Approved by: https://github.com/Skylion007
2025-06-30 23:54:40 +00:00
fee2377f9e Reapply D77381084 / #156964: Rename torch::standalone to headeronly (#157251)
Was reverted due to internal failure which should be fixed now. I believe Jane wants this reapplied and picked to release, and she's out this week.

Original summary:

headeronly is more clear, let's change the name before anyone depends on standalone

Differential Revision: [D77520173](https://our.internmc.facebook.com/intern/diff/D77520173/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157251
Approved by: https://github.com/janeyx99, https://github.com/Skylion007, https://github.com/desertfire
2025-06-30 23:25:30 +00:00
3dda80e990 Overload mul_overflows for size_t (#155736)
Partially fixes https://github.com/pytorch/executorch/pull/11537.

We want to extend `mul_overflows` to support `size_t` in ExecuTorch. The current workflow in ET checks that the `c10` mirrors exactly as in PT, so the tests are failing.

See comment: https://github.com/pytorch/executorch/pull/11537#issuecomment-2963821312
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155736
Approved by: https://github.com/swolchok
2025-06-30 22:57:28 +00:00
42b48ee672 [dynamo][fsdp] Consistent behavior of int attributes (#157262)
Reimpl of https://github.com/pytorch/pytorch/pull/150954

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157262
Approved by: https://github.com/bdhirsh
2025-06-30 22:32:52 +00:00
a9352bd25e Script for consolidation of sharded safetensor files (#154743)
Script to consolidate sharded safetensors files with DCP into full tensors. This relies on file system operations to read and copy bytes directly instead of the traditional approach of loading and re-sharding and then saving again, because users will have models that are larger than allotted memory.

Differential Revision: [D75536985](https://our.internmc.facebook.com/intern/diff/D75536985/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154743
Approved by: https://github.com/saumishr
2025-06-30 22:25:58 +00:00
f096820d0f [precompile] Detect source code changes for save/load. (#156432)
Go through all dynamo traced functions and compute checksum for them. While loading a precompilation back to memory, we will always check the checksum and refuse to load when
source code changes are detected.

Differential Revision: [D76987123](https://our.internmc.facebook.com/intern/diff/D76987123/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156432
Approved by: https://github.com/jansel, https://github.com/jamesjwu
2025-06-30 21:16:15 +00:00
d3efd73234 Revert "[cutlass backend][BE][ez] Make matmul layouts be row x column (#156656)"
This reverts commit 84c588e5eada9e7921608065edc444a15c22cb1c.

Reverted https://github.com/pytorch/pytorch/pull/156656 on behalf of https://github.com/henrylhtsang due to breaking fbcode A100 tests ([comment](https://github.com/pytorch/pytorch/pull/156656#issuecomment-3020769914))
2025-06-30 21:16:04 +00:00
3684be056d [dynamo] Fix source for lru_cache method (#157292)
Fixes - https://github.com/pytorch/pytorch/issues/157273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157292
Approved by: https://github.com/zou3519, https://github.com/malfet, https://github.com/jansel
2025-06-30 20:53:57 +00:00
23491519d2 Fixes for CPython int/float tests (#155978)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155978
Approved by: https://github.com/zou3519
2025-06-30 19:42:11 +00:00
f16053f0c9 Switch to standard pep517 sdist generation (#152098)
Generate source tarball with PEP 517 conform build tools instead of the custom routine in place right now.

Closes #150461.

The current procedure for generating the source tarball consists in creation of a source tree by manual copying and pruning of source files.

This PR replaces that with a call to the standard [build tool](https://build.pypa.io/en/stable/), which works with the build backend to produce an sdist. For that to work correctly, the build backend also needs to be configured. In the case of Pytorch, the backend currently is (the legacy version of) the setuptools backend, the source dist part of which is mostly configured via the `MANIFEST.in` file.

The resulting source distribution can be used to install directly from source with `pip install ./torch-{version}.tar.gz` or to build wheels directly from source with `pip wheel ./torch-{version}.tar.gz`; both should be considered experimental for now.

## Issues

### sdist name
According to PEP 517, the name of the source distribution file must coincide with the project name, or [more precisely](https://peps.python.org/pep-0517/#source-distributions), the source distribution of a project that generates `{NAME}-{...}.whl` wheels are required to be named `{NAME}-{...}.tar.gz`. Currently, the source tarball is called `pytorch-{...}.tar.gz`, but the generated wheels and python package are called `torch-{...}`.

### Symbolic Links
The source tree at the moment contains a small number of symbolic links. This [has been seen as problematic](https://github.com/pypa/pip/issues/5919) largely because of lack of support on Windows, but also because of [a problem in setuptools](https://github.com/pypa/setuptools/issues/4937). Particularly unfortunate is a circular symlink in the third party `ittapi` module, which can not be resolved by replacing it with a copy.

PEP 721 (now integrated in the [Source Distribution Format Specification](https://packaging.python.org/en/latest/specifications/source-distribution-format/#source-distribution-archive-features)) allows for symbolic links, but only if they don't point outside the destination directory and if they don't contain `../` in their target.

The list of symbolic links currently is as follows:

<details>

|source|target|problem|solution|
|-|-|-|-|
| `.dockerignore` | `.gitignore` |  ok (individual file) ||
| `docs/requirements.txt` | `../.ci/docker/requirements-docs.txt` |`..` in target|swap source and target[^1]|
| `functorch/docs/source/notebooks` | `../../notebooks/` |`..` in target|swap source and target[^1]|
| `.github/ci_commit_pins/triton.txt` | `../../.ci/docker/ci_commit_pins/triton.txt` |  ok (omitted from sdist)||
| `third_party/flatbuffers/docs/source/CONTRIBUTING.md` | `../../CONTRIBUTING.md` |`..` in target|omit from sdist[^2]|
| `third_party/flatbuffers/java/src/test/java/DictionaryLookup` | `../../../../tests/DictionaryLookup` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/java/src/test/java/MyGame` | `../../../../tests/MyGame` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/java/src/test/java/NamespaceA` | `../../../../tests/namespace_test/NamespaceA` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/java/src/test/java/NamespaceC` | `../../../../tests/namespace_test/NamespaceC` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/java/src/test/java/optional_scalars` | `../../../../tests/optional_scalars` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/java/src/test/java/union_vector` | `../../../../tests/union_vector` |`..` in target|omit from sdist[^3]|
| `third_party/flatbuffers/kotlin/benchmark/src/jvmMain/java` | `../../../../java/src/main/java` |`..` in target|omit from sdist[^3]|
| `third_party/ittapi/rust/ittapi-sys/c-library` | `../../` |`..` in target|omit from sdist[^4]|
| `third_party/ittapi/rust/ittapi-sys/LICENSES` | `../../LICENSES` |`..` in target|omit from sdist[^4]|
| `third_party/opentelemetry-cpp/buildscripts/pre-merge-commit` | `./pre-commit` | ok (individual file)||
| `third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-cmake/sample_client.cc` | `../../push/tests/integration/sample_client.cc` |`..` in target|omit from sdist[^5]|
| `third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-cmake/sample_server.cc` | `../../pull/tests/integration/sample_server.cc` |`..` in target|omit from sdist[^5]|
| `third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-pkgconfig/sample_client.cc` | `../../push/tests/integration/sample_client.cc` |`..` in target|omit from sdist[^5]|
| `third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-pkgconfig/sample_server.cc` | `../../pull/tests/integration/sample_server.cc` |`..` in target|omit from sdist[^5]|
| `third_party/XNNPACK/tools/xngen` | `xngen.py` |  ok (individual file)||

</details>

The introduction of symbolic links inside the `.ci/docker` folder creates a new problem, however, because Docker's `COPY` command does not allow symlinks in this way. We work around that by using `tar ch` to dereference the symlinks before handing them over to `docker build`.

[^1]: These resources can be naturally considered to be part of the docs, so moving the actual files into the place of the current symlinks and replacing them with (unproblematic) symlinks can be said to improve semantics as well.

[^2]: The flatbuffers docs already actually use the original file, not the symlink and in the most recent releases, starting from flatbuffers-25.1.21 the symlink is replaced by the actual file thanks to a documentation overhaul.

[^3]: These resources are flatbuffers tests for java and kotlin and can be omitted from our sdist.

[^4]: We don't need to ship the rust bindings for ittapi.

[^5]: These are demonstration examples for how to link to prometheus-cpp using cmake and can be omitted.

### Nccl
Nccl used to be included as a submodule. However, with #146073 (first released in v2.7.0-rc1), the submodule was removed and replaced with a build time checkout procedure in `tools/build_pytorch_libs.py`, which checks out the required version of nccl from the upstream repository based on a commit pin recorded in `.ci/docker/ci_commit_pins/nccl-cu{11,12}.txt`.
This means that a crucial third party dependency is missing from the source distribution and as the `.ci` folder is omitted from the source distribution, it is not possible to use the build time download.
However, it *is* possible to use a system provided Nccl using the `USE_SYSTEM_NCCL` environment variable, which now also is the default for the official Pytorch wheels.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152098
Approved by: https://github.com/atalman
2025-06-30 19:07:34 +00:00
c7b6c98d10 [tp] improve parallelize_module API to support more cases (#157182)
This PR improves the parallelize_module API to support more corner cases:
1. if the plan entry specified as "", it should apply the style to the current module
2. if the plan entry does not have a corresponding submodule to apply, raise a warning and ignore this plan entry

As working on this PR, I also found that the while-loop inside is actually not necessary and could produce some nasty on the fly modifying while iterating behavior.. So I removed the while loop

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157182
Approved by: https://github.com/tianyu-l
2025-06-30 18:10:44 +00:00
d5e6f42094 Revert "Use std::string_view in torchgen (#157050)"
This reverts commit 064288cbab94c9931ca2296a2b9723e864f9050a.

Reverted https://github.com/pytorch/pytorch/pull/157050 on behalf of https://github.com/jeanschmidt due to Seems to have broken internal builds, more details on D77449943. @ezyang may I count on your help to get those changes merged? ([comment](https://github.com/pytorch/pytorch/pull/157050#issuecomment-3020222668))
2025-06-30 18:08:54 +00:00
efbf07e7ea Revert "[dynamo] Fix issue with tensors passed as view() shapes (#156928)"
This reverts commit 75f3e5a88df60caef27fd9c9df3fd51161378fcc.

Reverted https://github.com/pytorch/pytorch/pull/156928 on behalf of https://github.com/jeanschmidt due to Breaks a internal test, more details can be found on D77449971 ([comment](https://github.com/pytorch/pytorch/pull/156928#issuecomment-3020186268))
2025-06-30 17:56:01 +00:00
5e18bc3331 [PowerPC] Fixed build issue for vsx vec256 complexfloat and scaled_mm_out_cpu (#155255)
Pytorch build is failing on power system from this commit ec24f8f58a74502c5a2488f5d9e85a817616dda0

***Build Failure Logs***

**Error related to mkldnn**
```
pytorch/aten/src/ATen/native/Blas.cpp:302:26: error: ‘cpuinfo_has_x86_amx_int8’ was not declared in this scope
  302 |     if ((!mixed_dtype && cpuinfo_has_x86_amx_int8()) ||
      |                          ^~~~~~~~~~~~~~~~~~~~~~~~
pytorch/aten/src/ATen/native/Blas.cpp:303:25: error: ‘cpuinfo_has_x86_amx_fp16’ was not declared in this scope
  303 |         (mixed_dtype && cpuinfo_has_x86_amx_fp16())) {
      |                         ^~~~~~~~~~~~~~~~~~~~~~~~

```

**Error related to vec256 complex float redefinition**
```
aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:19:7: error: specialization of ‘at::vec::DEFAULT::Vectorized<c10::complex<float> >’ after instantiation
   19 | class Vectorized<ComplexFlt> {
      |       ^~~~~~~~~~~~~~~~~~~~~~
aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:19:7: error: redefinition of ‘class at::vec::DEFAULT::Vectorized<c10::complex<float> >’

aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:633:18: error: ‘const class at::vec::DEFAULT::Vectorized<c10::complex<float> >’ has no member named ‘abs_2_’
  633 |   auto abs_a = a.abs_2_();
      |                  ^~~~~~
aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:634:18: error: ‘const class at::vec::DEFAULT::Vectorized<c10::complex<float> >’ has no member named ‘abs_2_’
  634 |   auto abs_b = b.abs_2_();
      |                  ^~~~~~

/aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:666:17: error: ‘const class at::vec::DEFAULT::Vectorized<c10::complex<float> >’ has no member named ‘vec0’
  666 |       vec_add(a.vec0(), b.vec0()), vec_add(a.vec1(), b.vec1())};
aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:673:17: error: ‘const class at::vec::DEFAULT::Vectorized<c10::complex<float> >’ has no member named ‘vec0’
  673 |       vec_sub(a.vec0(), b.vec0()), vec_sub(a.vec1(), b.vec1())};
      |                 ^~~~
aten/src/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h:680:27: error: ‘const class at::vec::DEFAULT::Vectorized<c10::complex<float> >’ has no member named ‘vec0’
  680 |       vec_and(a.vec0(), b.vec0()), vec_and(a.vec1(), b.vec1())};
```

***With  this changes build logs***
```
Building wheel torch-2.8.0a0+gita3098a7
-- Building version 2.8.0a0+gita3098a7
-- Checkout nccl release tag: v2.26.5-1
cmake -GNinja -DBLAS=OpenBLAS -DBUILD_PYTHON=True -DBUILD_TEST=True -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/home/avanish/OfficeWork2025/JuneWork/pytorch_5Jun/pack/torch_night_5Jun/pytorch/torch -DCMAKE_PREFIX_PATH=/home/avanish/OfficeWork2025/JuneWork/pyenv/pytorch_5Jun/lib/python3.12/site-packages -DPython_EXECUTABLE=/home/avanish/OfficeWork2025/JuneWork/pyenv/pytorch_5Jun/bin/python -DTORCH_BUILD_VERSION=2.8.0a0+gita3098a7 -DUSE_MKLDNN=ON -DUSE_MKLDNN_CBLAS=ON -DUSE_NUMPY=True -DUSE_OPENMP=ON /home/avanish/OfficeWork2025/JuneWork/pytorch_5Jun/pack/torch_night_5Jun/pytorch
cmake --build . --target install --config Release
running build_ext
-- Building with NumPy bindings
-- Not using cuDNN
-- Not using CUDA
-- Not using XPU
-- Using MKLDNN
-- Not using Compute Library for the Arm architecture with MKLDNN
-- Using CBLAS in MKLDNN
-- Not using NCCL
-- Building with distributed package:
  -- USE_TENSORPIPE=True
  -- USE_GLOO=True
  -- USE_MPI=False
-- Building Executorch
-- Not using ITT
Copying functorch._C from functorch/functorch.so to /home/avanish/OfficeWork2025/JuneWork/pytorch_5Jun/pack/torch_night_5Jun/pytorch/build/lib.linux-ppc64le-cpython-312/functorch/_C.cpython-312-powerpc64le-linux-gnu.so
copying functorch/functorch.so -> /home/avanish/OfficeWork2025/JuneWork/pytorch_5Jun/pack/torch_night_5Jun/pytorch/build/lib.linux-ppc64le-cpython-312/functorch/_C.cpython-312-powerpc64le-linux-gnu.so
building 'torch._C' extension
creating build/temp.linux-ppc64le-cpython-312/torch/csrc

```

This patch will fix the pytorch build issue on power, and i am able to build successfully.

Hi @malfet  @albanD

Please review this PR for pytorch build issue that we are observing on power.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155255
Approved by: https://github.com/albanD, https://github.com/malfet
2025-06-30 17:54:37 +00:00
2815eea0d0 [dtensor] relax device_mesh argument constraint in local_map (#157049)
This PR relaxes the device_mesh argument constraint in the local_map API. The current restriction is too strict, i.e. all the input arguments must have the same device mesh if they are DTensors. But many times user might want to pass in DTensors to this function that lives on different device mesh, i.e. weight and activation could live in different device mesh.

When using the local_map, we are extracting the local tensors from DTensors, and as long as the placements user specified match with the actual DTensor placements, user knows clearly that the inputs are intended to live in different mesh. So this PR removes the same mesh check and update doc to clearly document the behavior.

The `device_mesh` argument now serves for a main purpose, allow user to specify the device_mesh for the output DTensor reconstruction

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157049
Approved by: https://github.com/Chillee, https://github.com/zpcore
2025-06-30 17:51:48 +00:00
f8cc4c0af8 [inductor] Update triton_key import to support latest Triton (#157242)
With Triton main things were failing with:
```py
  File "/home/jansel/pytorch/torch/_inductor/codecache.py", line 205, in get_system
    from triton.compiler.compiler import triton_key
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
ImportError: cannot import name 'triton_key' from 'triton.compiler.compiler' (/home/jansel/pytorch/triton/compiler/compiler.py)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157242
Approved by: https://github.com/aorenste
2025-06-30 17:51:43 +00:00
117db5601d HF loads dcp - don't do a full deserialize on every file (#155942)
Differential Revision: [D76442012](https://our.internmc.facebook.com/intern/diff/D76442012/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155942
Approved by: https://github.com/saumishr
ghstack dependencies: #155707
2025-06-30 17:45:10 +00:00
ed5d6d2a20 python definitely_contiguous-> is_contiguous_or_false (#156515)
We probably can avoid having those in python as well and  just depend on c++ impl after we land https://github.com/pytorch/pytorch/pull/155590 but that is for a different PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156515
Approved by: https://github.com/bobrenjc93
2025-06-30 17:31:51 +00:00
c038719731 Revert "Inductor logging + analysis of torch.profile (#149697)"
This reverts commit 347ace4c7ac2dbb14799089c30bd01a9ac312791.

Reverted https://github.com/pytorch/pytorch/pull/149697 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to fail on ROCm ([comment](https://github.com/pytorch/pytorch/pull/149697#issuecomment-3020006655))
2025-06-30 16:58:54 +00:00
b54eac2a5e Upgrade to DLPack 1.0. (#145000)
This PR makes the necessary changes in order to upgrade PyTorch DLPack
support to version 1.0. In summary, we add support for the following:

- Support both `DLManagedTensor` and `DLManagedTensorVersioned` when
  producing and consuming DLPack capsules
- New parameter for `__dlpack__` method: `max_version`
- Version checks:
    - Fallback to old implementation if no `max_version` or if version
      lower than 1.0
    - Check that the to-be-consumed capsule is of version up to 1.X

In order to accommodate these new specifications, this PR adds the
following main changes:

- `torch._C._to_dlpack_versioned` Python API (Module.cpp): new Python
API for creating a versioned DLPack capsule (called by `__dlpack__`
method)
- `DLPackTraits<T>` class (DLConvertor.h): select the correct
traits (e.g. capsule name, conversion functions) depending on which
DLPack tensor class is being used
- `toDLPackImpl<T>` function (DLConvertor.cpp): populates the
common fields of both classes
- `fromDLPackImpl<T>` function (DLConvertor.cpp): constructs a tensor
from a DLPAck capsule
- `fillVersion<T>` function (DLConvertor.cpp): populates the version
field for `DLManagedTensorVersioned` (no-op for `DLManagedTensor`)
- `tensor_fromDLPackImpl<T>` function (tensor_new.cpp): outer function
for constructing a tensor out of a DLPack capsule that also marks the
capsule as used

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145000
Approved by: https://github.com/albanD
2025-06-30 16:58:06 +00:00
39b71d11fc [Inductor] add pedantic to limit inductor code follow standard. (#156914)
### Background:

During my development work, I found Windows msvc don't support to compile zero size array, please reference: https://github.com/pytorch/pytorch/issues/153180

As discussed with MSFT engineer, we found zero size array don't align to c++ standard, though gcc/clang can support it. When we add `-pedantic` option to gcc, it should check and raise c++ standard strictly. Reference: https://github.com/pytorch/pytorch/issues/153180#issuecomment-2986676878

So this PR add `-pedantic` to torch inductor build option list to constraint codegen generate c++ standard well code.
Additional, It also fixed a halide zero size array code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156914
Approved by: https://github.com/jansel
2025-06-30 16:29:08 +00:00
e3afbb0362 [inductor] Add typing to _inductor/ir.py (#149958)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149958
Approved by: https://github.com/Skylion007
2025-06-30 15:56:35 +00:00
eqy
3b4b5f8d47 [SDPA] Fix alloc_with_matching_layout stride sorting (#157145)
Otherwise dims with "zero" stride get moved before contiguous dims (stride 1).

Need to move the fix from #149282 to here as #154340 moved the original definition from `MHA.cpp`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157145
Approved by: https://github.com/Skylion007
2025-06-30 15:43:29 +00:00
da1f337bc4 Revert "Fixes for CPython int/float tests (#155978)"
This reverts commit fab53dfdf1d89cecd5e82b12cced9b6dd217e87c.

Reverted https://github.com/pytorch/pytorch/pull/155978 on behalf of https://github.com/guilhermeleobas due to failing in trunk ([comment](https://github.com/pytorch/pytorch/pull/155978#issuecomment-3019457531))
2025-06-30 14:49:44 +00:00
fab53dfdf1 Fixes for CPython int/float tests (#155978)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155978
Approved by: https://github.com/zou3519
2025-06-30 14:15:47 +00:00
ffaed8c569 Update slow tests (#155448)
This PR is auto-generated weekly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/weekly.yml).
Update the list of slow tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155448
Approved by: https://github.com/pytorchbot
2025-06-30 12:08:52 +00:00
b1a54fab9b [xla hash update] update the pinned xla hash (#156584)
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/nightly.yml).
Update the pinned xla hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156584
Approved by: https://github.com/pytorchbot
2025-06-30 11:23:06 +00:00
ccb67f39b4 Enable the AMP precision with freezing for CPU nightly test (#152298)
Hi, @desertfire. Since we recommend users to use AMP precision and run with `--freezing` for CPU x86 Inductor inference, we suggest adding the AMP freezing test to the CPU nightly tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152298
Approved by: https://github.com/desertfire, https://github.com/huydhn

Co-authored-by: zengxian <xiangdong.zeng@intel.com>
2025-06-30 09:17:17 +00:00
f79689bd3d updated matplotlib version in docs requirements (#155931)
Fixes #155199

The issue on main is due an outdated version of matplotlib. I have bumped the version so that it is compatible with Numpy 2.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155931
Approved by: https://github.com/malfet
2025-06-30 02:05:53 +00:00
a1282b1823 [MPS] Add boilerplate sparse code support (#157238)
This PR makes minimal changes to support sparse tensors on MPS. In the followup PRs I'll start adding different operations slowly so we can fix the issue of
https://github.com/pytorch/pytorch/issues/129842
which is highly requested(I assume because of whisper using sparse tensors)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157238
Approved by: https://github.com/malfet
2025-06-30 01:53:45 +00:00
771be85704 [AOTI] Print out error msg when nvcc compiler fails (#157203)
Summary: To debug https://github.com/pytorch/pytorch/issues/156930. Not able to reproduce the problem locally.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157203
Approved by: https://github.com/jansel

Co-authored-by: Jason Ansel <jansel@meta.com>
2025-06-30 01:30:55 +00:00
86ced14453 increment pending_callbacks_counter before initation the pt2 compile callbacks (#157185)
Summary: Since we increment the counter after performing the callback, it leads to the assertion error when callback raises an error and increment never happens. Let's increment first to avoid it.

Test Plan:
tba

Rollback Plan:

Differential Revision: D77475650

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157185
Approved by: https://github.com/xmfan
2025-06-30 01:23:59 +00:00
12cb06e574 [inductor] Increase tolerance for test_comprehensive_nn_functional_linear_cuda_float16 (#156962)
Fixes #156514

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156962
Approved by: https://github.com/jamesjwu
2025-06-30 00:54:20 +00:00
cyy
c27f83dd91 Remove old ASAN Docker images (#157197)
The old ASAN jobs have been replaced.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157197
Approved by: https://github.com/Skylion007
2025-06-30 00:30:56 +00:00
11f7e2f145 [caffe][executorch] rename to avoid shadow in irange (#157107)
Summary:
D76832520 switched Executorch to use the caffe c10 headers. This copy contains a shadow, which is treated as an error for certain embedded compile flows.

Simple rename to avoid.

Test Plan:
CI

Rollback Plan:

Differential Revision: D77446104

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157107
Approved by: https://github.com/Skylion007
2025-06-30 00:17:09 +00:00
018e9826a2 [nativert] hook up memory planning to execution frame (#157053)
Summary: pretty simple. if planner exists, which implies that planning is enabled, create a manager for each frame. the associated serial executor will use the withMemoryPlannner fn to ensure the deallocation is done after execution completes.

Test Plan: CI

Differential Revision: D73635809

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157053
Approved by: https://github.com/henryoier, https://github.com/georgiaphillips
2025-06-30 00:06:37 +00:00
41f6acef83 Update pr_time_benchmarks expected results (#157214)
The job has been unstable

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157214
Approved by: https://github.com/laithsakka
2025-06-29 19:12:13 +00:00
29f76ec0f3 Revert "[BE] use pathlib.Path instead of os.path.* in setup.py (#156742)"
This reverts commit 2380115f9738f97cf706affefd647d2cb6dfbb3f.

Reverted https://github.com/pytorch/pytorch/pull/156742 on behalf of https://github.com/malfet due to Looks like it broke all ROCM tests, see 721d2580db/1 ([comment](https://github.com/pytorch/pytorch/pull/156742#issuecomment-3016937704))
2025-06-29 18:10:03 +00:00
721d2580db [dynamo][callbacks] temporarily disable TRITON_AUTOTUNING (#157186)
Differential Revision: D77476551

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157186
Approved by: https://github.com/burak-turk
2025-06-29 17:20:55 +00:00
aec569da23 [Triton] [Inductor[ Add tt.descriptor_store to get_tma_stores (#157212)
Summary: Fixes a gap in the Triton update where the traverse would break because `get_tma_stores` didn't handle both TMA APIs.

Test Plan:
`buck test -m ovr_config//triton:beta  'fbcode//mode/dev-nosan' fbcode//ads_mkl/ops/tests:gdpa_dcpp_test -- --exact 'ads_mkl/ops/tests:gdpa_dcpp_test - test_gdpa_dcpp (ads_mkl.ops.tests.gdpa_dcpp_test.GdpaDCPPTest)'`

Rollback Plan:

Differential Revision: D77501582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157212
Approved by: https://github.com/davidberard98
2025-06-29 16:44:52 +00:00
b147b6c0e3 Increase tolerance for test_corrcoef_cuda_int32 (#157206)
Fixes #156988
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157206
Approved by: https://github.com/Skylion007
2025-06-29 16:30:54 +00:00
e959dd017d [TSAN][live speech translation] Fix A data race in caffe2 (#156378)
Summary: noticed that context quantized_engine is accessed and written from multiple threads

Test Plan:
➜  fbsource buck test --flagfile fbcode/mode/dev-tsan //xplat/assistant/integration_test/tests/supernova/speechtranslation:live_speech_translation_en_fr_tests -- --exact 'fbsource//xplat/assistant/integration_test/tests/supernova/speechtranslation:live_speech_translation_en_fr_tests - Translate/LiveSpeechTranslationTests.LiveSpeechTranslationEnFr/silence___fr_en'

Rollback Plan:

Differential Revision: D76921416

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156378
Approved by: https://github.com/jerryzh168, https://github.com/cyyever
2025-06-29 07:23:20 +00:00
9d677389cb [async compile] make it more obvious that we support backwards (#157204)
current failing with

```
(/home/bobren/local/a/pytorch-env) [13:02] devgpu009:/home/bobren/local/a/pytorch python test/inductor/test_compile_subprocess.py -k GPUTests.test_async
/home/bobren/local/a/pytorch/torch/backends/cudnn/__init__.py:115: UserWarning: PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild PyTorch making sure the library is visible to the build system.
  warnings.warn(
/home/bobren/local/a/pytorch/torch/_inductor/ops_handler.py:741: UserWarning: undefined OpHandler.__getstate__, please add missing op schema
  warnings.warn(f"undefined OpHandler.{name}, please add missing op schema")
/home/bobren/local/a/pytorch/torch/_inductor/ops_handler.py:741: UserWarning: undefined OpHandler.__getstate__, please add missing op schema
  warnings.warn(f"undefined OpHandler.{name}, please add missing op schema")
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0] Unable to pickle input graph or example inputs
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0] Traceback (most recent call last):
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]   File "/home/bobren/local/a/pytorch/torch/_inductor/compile_fx_ext.py", line 484, in serialize_compile
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]     ).serialize()
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]   File "/home/bobren/local/a/pytorch/torch/_inductor/compile_fx_ext.py", line 210, in serialize
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]     return _WireProtocolPickledInput(GraphPickler.dumps(self))
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]   File "/home/bobren/local/a/pytorch/torch/fx/_graph_pickler.py", line 124, in dumps
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0]     pickler.dump(obj)
W0628 13:02:30.666000 3610483 torch/_inductor/compile_fx_ext.py:491] [0/0] AttributeError: Can't pickle local object 'make_opaque_bitwise_fn.<locals>.BitwiseFn'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157204
Approved by: https://github.com/aorenste
2025-06-29 05:38:54 +00:00
347ace4c7a Inductor logging + analysis of torch.profile (#149697)
Prereqs:
 - https://github.com/pytorch/pytorch/pull/152708

Features:
1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses.
1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`.
1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`.
1. Extends Triton `torch.profiler` logging to `DebugAutotuner`.
1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side:
```python
Device(NVIDIA H100, 0):
 Kernel Name                              | resnet Kernel Count | resnet FLOPS       | resnet bw gbps        | resnet Dur (ms)    | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS    | newresnet bw gbps     | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth %
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 triton_poi_fused__native_batch_norm_legi | 24                  | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                       | 0.003401572611382541        | 24                     | 0                  | 0.11395268248131513   | 2.5919166666666666 | 0                          | 0.003401572611382541
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142                 | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583     | 0.007716441266265022        | 142                    | 16932673552.422373 | 0.2585007824198784    | 12.441619718309857 | 0.08683422334575583        | 0.007716441266265022
 triton_red_fused__native_batch_norm_legi | 39                  | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                       | 0.004176126863316074        | 39                     | 0                  | 0.13990024992108846   | 5.752589743589743  | 0                          | 0.004176126863316074
 triton_poi_fused__native_batch_norm_legi | 25                  | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                       | 0.009499718184339253        | 25                     | 0                  | 0.31824055917536503   | 2.5291999999999994 | 0                          | 0.009499718184339253
 void cutlass::Kernel2<cutlass_80_tensoro | 98                  | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874     | 0.012827592254037562        | 98                     | 16211056473.596165 | 0.42972434051025826   | 7.130408163265306  | 0.08313362294151874        | 0.012827592254037562
 triton_red_fused__native_batch_norm_legi | 73                  | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                       | 0.009628003963020014        | 73                     | 0                  | 0.3225381327611705    | 9.987068493150682  | 0                          | 0.009628003963020014
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                       | 0.043257347302946926        | 15                     | 0                  | 1.4491211346487216    | 4.439333333333333  | 0                          | 0.043257347302946926
 void cutlass::Kernel2<cutlass_80_tensoro | 186                 | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027     | 0.007961586274361157        | 186                    | 14501701145.337954 | 0.2667131401910989    | 7.873865591397849  | 0.07436769818122027        | 0.007961586274361157
 triton_poi_fused__native_batch_norm_legi | 33                  | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                       | 0.044550915039384846        | 33                     | 0                  | 1.4924556538193923    | 4.3101515151515155 | 0                          | 0.044550915039384846
 triton_red_fused__native_batch_norm_legi | 29                  | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                       | 0.007630624036606301        | 29                     | 0                  | 0.25562590522631107   | 6.296275862068965  | 0                          | 0.007630624036606301
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                       | 0.01752406619162008         | 13                     | 0                  | 0.5870562174192726    | 2.7397692307692307 | 0                          | 0.01752406619162008
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 0.41409928846284      | 2.853588235294117  | 0                       | 0.012361172789935523        | 34                     | 0                  | 0.41409928846284      | 2.853588235294117  | 0                          | 0.012361172789935523
 triton_per_fused__native_batch_norm_legi | 34                  | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                       | 0.0034941238826919864       | 34                     | 0                  | 0.11705315007018151   | 3.460647058823529  | 0                          | 0.0034941238826919864
 triton_poi_fused__native_batch_norm_legi | 16                  | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                       | 0.005136672596156592        | 16                     | 0                  | 0.17207853197124584   | 2.3459375000000002 | 0                          | 0.005136672596156592
 triton_per_fused__native_batch_norm_legi | 30                  | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                       | 0.007879744244842555        | 30                     | 0                  | 0.2639714322022256    | 6.131199999999999  | 0                          | 0.007879744244842555
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100                 | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531     | 0.005819245035648175        | 100                    | 11875430356.891787 | 0.19494470869421385   | 16.36534           | 0.06089964285585531        | 0.005819245035648175
 triton_poi_fused__native_batch_norm_legi | 8                   | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                       | 0.029415213809625928        | 8                      | 0                  | 0.9854096626224687    | 3.2757500000000004 | 0                          | 0.029415213809625928
 void cublasLt::splitKreduce_kernel<32, 1 | 56                  | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628     | 0.024806865808245714        | 56                     | 34377923395.147064 | 0.8310300045762317    | 3.4199999999999986 | 0.17629704305203628        | 0.024806865808245714
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                       | 0.02968359094286896         | 23                     | 0                  | 0.9944002965861103    | 3.2431304347826084 | 0                          | 0.02968359094286896
 triton_per_fused__native_batch_norm_legi | 10                  | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                       | 0.00545313748934644         | 10                     | 0                  | 0.1826801058931057    | 4.428800000000001  | 0                          | 0.00545313748934644
 triton_poi_fused__native_batch_norm_legi | 10                  | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                       | 0.009459622642884923        | 10                     | 0                  | 0.3168973585366449    | 2.5471999999999997 | 0                          | 0.009459622642884923
 triton_poi_fused__native_batch_norm_legi | 34                  | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                       | 0.03421974596124114         | 34                     | 0                  | 1.1463614897015777    | 4.124323529411764  | 0                          | 0.03421974596124114
 void cask_plugin_cudnn::xmma_cudnn::init | 44                  | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194     | 0.06167532194133924         | 44                     | 44045510816.64277  | 2.0661232850348643    | 3.6887499999999993 | 0.22587441444432194        | 0.06167532194133924
 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95                  | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802     | 0.014014750913273854        | 95                     | 7876855400.165316  | 0.4694941555946739    | 18.224315789473682 | 0.04039413025725802        | 0.014014750913273854
 triton_per_fused__native_batch_norm_legi | 41                  | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                       | 0.002037513395819492        | 41                     | 0                  | 0.06825669875995298   | 3.0384146341463416 | 0                          | 0.002037513395819492
 triton_poi_fused__native_batch_norm_legi | 23                  | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                       | 0.0026292999141582997       | 23                     | 0                  | 0.08808154712430301   | 2.3275652173913044 | 0                          | 0.0026292999141582997
 triton_per_fused__native_batch_norm_legi | 40                  | 0                  | 0.18179321034952417   | 4.556825           | 0                       | 0.005426662995508183        | 40                     | 0                  | 0.18179321034952417   | 4.556825           | 0                          | 0.005426662995508183
 triton_poi_fused__native_batch_norm_legi | 15                  | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                       | 0.017574373598370836        | 15                     | 0                  | 0.5887415155454232    | 2.783866666666667  | 0                          | 0.017574373598370836
 void cutlass::Kernel2<cutlass_80_tensoro | 38                  | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546      | 0.007659474756834           | 38                     | 14242013806.264643 | 0.256592404353939     | 7.217631578947369  | 0.0730359682372546         | 0.007659474756834
 triton_poi_fused__native_batch_norm_legi | 21                  | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                       | 0.017441376040091088        | 21                     | 0                  | 0.5842860973430516    | 2.7779047619047623 | 0                          | 0.017441376040091088
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                       | 0.0034356313950705724       | 16                     | 0                  | 0.11509365173486417   | 3.5959375000000002 | 0                          | 0.0034356313950705724
 triton_poi_fused__native_batch_norm_legi | 14                  | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                       | 0.00508857313505646         | 14                     | 0                  | 0.1704672000243914    | 2.4044285714285714 | 0                          | 0.00508857313505646
 triton_poi_fused__native_batch_norm_legi | 58                  | 0                  | 2.307520779930795     | 8.190706896551722  | 0                       | 0.06888121731136704         | 58                     | 0                  | 2.307520779930795     | 8.190706896551722  | 0                          | 0.06888121731136704
 triton_per_fused__native_batch_norm_legi | 29                  | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                       | 0.001111738775280038        | 29                     | 0                  | 0.037243248971881276  | 3.0277586206896556 | 0                          | 0.001111738775280038
 triton_poi_fused__native_batch_norm_legi | 20                  | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                       | 0.0014154327747549007       | 20                     | 0                  | 0.04741699795428918   | 2.2911500000000005 | 0                          | 0.0014154327747549007
 triton_per_fused__native_batch_norm_legi | 25                  | 0                  | 0.13357016893727824   | 3.37536            | 0                       | 0.003987169222008305        | 25                     | 0                  | 0.13357016893727824   | 3.37536            | 0                          | 0.003987169222008305
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                       | 0.009223469457612694        | 13                     | 0                  | 0.3089862268300253    | 2.8111538461538457 | 0                          | 0.009223469457612694
 triton_poi_fused__native_batch_norm_legi | 17                  | 0                  | 0.3129385387909844    | 2.673              | 0                       | 0.009341448919133863        | 17                     | 0                  | 0.3129385387909844    | 2.673              | 0                          | 0.009341448919133863
 triton_per_fused__native_batch_norm_legi | 19                  | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                       | 0.0066136363060691275       | 19                     | 0                  | 0.2215568162533158    | 3.8837368421052636 | 0                          | 0.0066136363060691275
 std::enable_if<!(false), void>::type int | 23                  | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447   | 0.030203868944223014        | 23                     | 504916805.19297093 | 1.0118296096314707    | 8.113913043478261  | 0.0025893169497075447      | 0.030203868944223014
 triton_poi_fused_add_copy__38            | 56                  | 0                  | 0                     | 2.132482142857143  | 0                       | 0                           | 56                     | 0                  | 0                     | 2.132482142857143  | 0                          | 0
 triton_poi_fused_convolution_0           | 18                  | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                       | 0.012972719640279667        | 18                     | 0                  | 0.43458610794936897   | 2.773333333333334  | 0                          | 0.012972719640279667
 triton_poi_fused_convolution_1           | 17                  | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                       | 0.0008601884319153051       | 17                     | 0                  | 0.028816312469162712  | 2.6145882352941174 | 0                          | 0.0008601884319153051
 void convolve_common_engine_float_NHWC<f | 44                  | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169     | 0.0007382250748795709       | 44                     | 8641868995.31118   | 0.024730540008465626  | 25.87327272727273  | 0.04431727689903169        | 0.0007382250748795709
 triton_per_fused__native_batch_norm_legi | 12                  | 0                  | 0.6809930918986744    | 4.82675            | 0                       | 0.020328151996975356        | 12                     | 0                  | 0.6809930918986744    | 4.82675            | 0                          | 0.020328151996975356
 triton_per_fused__native_batch_norm_legi | 14                  | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                       | 0.0008606061486377935       | 14                     | 0                  | 0.02883030597936608   | 2.6651428571428575 | 0                          | 0.0008606061486377935
 triton_per_fused__native_batch_norm_legi | 16                  | 0                  | 0.0014658988233201874 | 2.098              | 0                       | 4.375817383045335e-05       | 16                     | 0                  | 0.0014658988233201874 | 2.098              | 0                          | 4.375817383045335e-05
 triton_poi_fused__native_batch_norm_legi | 13                  | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                       | 0.02963073785159611         | 13                     | 0                  | 0.9926297180284697    | 3.2367692307692306 | 0                          | 0.02963073785159611
 triton_poi_fused__native_batch_norm_legi | 9                   | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                       | 0.03883228983781048         | 9                      | 0                  | 1.3008817095666507    | 3.0863333333333336 | 0                          | 0.03883228983781048
 void at::native::(anonymous namespace):: | 98                  | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                       | 0.0027386076458833994       | 98                     | 0                  | 0.09174335613709389   | 4.408520408163265  | 0                          | 0.0027386076458833994
 void at::native::vectorized_elementwise_ | 7                   | 0                  | 0                     | 1.7278571428571428 | 0                       | 0                           | 7                      | 0                  | 0                     | 1.7278571428571428 | 0                          | 0
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697
Approved by: https://github.com/eellison, https://github.com/shunting314
2025-06-29 05:00:47 +00:00
f8293116f5 [BE][13/16] fix typos in torch/ (torch/ao/) (#156603)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156603
Approved by: https://github.com/msaroufim
2025-06-29 04:34:04 +00:00
1913c915e0 Fixes issue #156414: Fixes bug in implementation of _combine_histograms. (#156457)
Fixes #156414

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156457
Approved by: https://github.com/jerryzh168
2025-06-29 04:30:28 +00:00
2796f31b5e [DCP] OSS Zero Overhead Checkpointing Implementation (#156207)
Summary: This diff updates DCP driver code/APIs to support Zero Overhead Checkpointing

Test Plan: Test with TorchTitan on this PR: https://github.com/pytorch/torchtitan/pull/1287

Differential Revision: D72391401

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156207
Approved by: https://github.com/teja-rao
2025-06-29 03:19:48 +00:00
bccb8473fe [ROCm] Allow use of rocSOLVER for Cholesky inversion. (#157154)
Fixes https://github.com/pytorch/pytorch/issues/155046

This change allows Cholesky inversion to use rocSOLVER. This is now also the default on ROCm for Cholesky inversion which aligns with the behavior on NVIDIA (which defaults to cuSOLVER for this linear algebra operation). This fix also gets around a memory access fault encountered in MAGMA for large matrices.

MAGMA can still be forced on ROCm by doing:
```
torch.backends.cuda.preferred_linalg_library(backend='magma')
```

Ran all Cholesky UT on ROCm and there were no regressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157154
Approved by: https://github.com/jeffdaily
2025-06-29 01:53:02 +00:00
6cc490d40b simplify max(1,x) to x when x known >=1 (#157189)
Creating contiguous strides creates an expression max(1, x). Often we know that x >= 1, in
 which case we should simplify max(1, x) to x.

This appeared in two situations:
1) An internal user complained about statically_known_true(x == max(1, x)) failing (internal link: https://fb.workplace.com/groups/1028545332188949/permalink/1232958568414290).
This https://github.com/pytorch/pytorch/pull/155938 won't be needed with this.

3) Not simplifying the above could result in wrong ConstraintViolationErrors.
Because we assume non-trival single arg guards shall evaporate see the logic in the function
issue_guard in symbolic_shapes.py

with this change we longer throw ConstraintViolationErrors with the program bellow
this is blocking landing this [PR](https://github.com/pytorch/pytorch/pull/155590) from landing
internally. Due to internal export tests throwing ConstraintViolationErrors.
like
```
Constraints violated (width)!
  - Not all values of width = L['x'].size()[3] in the specified range 224 <= width <= 455 satisfy the generated guard max(1, 1 + (((-1) + L['x'].size()[3]) // 2)) == (1 + (((-1) + L['x'].size()[3]) // 2)).
````

```
x = torch.rand(10)
torch._dynamo.mark_dynamic(x, 0, max=20, min=5)

@torch.compile(fullgraph=True, dynamic=True)
def func(x):
    if max(1, (-1 + x.size()[0]//2)) == (-1+x.size()[0]//2):
        return x*400
    else:
        return (x*10)*100

func(x)

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157189
Approved by: https://github.com/pianpwk
2025-06-29 01:16:30 +00:00
836bb1941b [hop] support torch.func.functional_call in hop subgraph (#155886)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155886
Approved by: https://github.com/zou3519
2025-06-28 23:47:46 +00:00
2380115f97 [BE] use pathlib.Path instead of os.path.* in setup.py (#156742)
Resolves:

- https://github.com/pytorch/pytorch/pull/155998#discussion_r2164376634

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156742
Approved by: https://github.com/malfet
2025-06-28 23:31:15 +00:00
90b973a2e2 [BE] parse CMake version from cmake -E capabilities instead of cmake --version (#157073)
`cmake -E capabilities` produces a JSON format that is more machine-friendly.

```console
$ cmake --version
cmake version 4.0.3

CMake suite maintained and supported by Kitware (kitware.com/cmake).
$ cmake -E capabilities | jq '.version.string'
"4.0.3"
$ cmake -E capabilities | jq
{
  "debugger": true,
  "fileApi": {
    "requests": [
      {
        "kind": "codemodel",
        "version": [
          {
            "major": 2,
            "minor": 8
          }
        ]
      },
      {
        "kind": "configureLog",
        "version": [
          {
            "major": 1,
            "minor": 0
          }
        ]
      },
      {
        "kind": "cache",
        "version": [
          {
            "major": 2,
            "minor": 0
          }
        ]
      },
      {
        "kind": "cmakeFiles",
        "version": [
          {
            "major": 1,
            "minor": 1
          }
        ]
      },
      {
        "kind": "toolchains",
        "version": [
          {
            "major": 1,
            "minor": 0
          }
        ]
      }
    ]
  },
  "generators": [
    {
      "extraGenerators": [],
      "name": "Watcom WMake",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [
        "Kate"
      ],
      "name": "Ninja Multi-Config",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [
        "CodeBlocks",
        "CodeLite",
        "Eclipse CDT4",
        "Kate",
        "Sublime Text 2"
      ],
      "name": "Ninja",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [],
      "name": "Xcode",
      "platformSupport": false,
      "toolsetSupport": true
    },
    {
      "extraGenerators": [
        "CodeBlocks",
        "CodeLite",
        "Eclipse CDT4",
        "Kate",
        "Sublime Text 2"
      ],
      "name": "Unix Makefiles",
      "platformSupport": false,
      "toolsetSupport": false
    }
  ],
  "serverMode": false,
  "tls": true,
  "version": {
    "isDirty": false,
    "major": 4,
    "minor": 0,
    "patch": 3,
    "string": "4.0.3",
    "suffix": ""
  }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157073
Approved by: https://github.com/Skylion007
2025-06-28 23:20:10 +00:00
772d590415 [CUTLASS] [CUDA] SM100 GroupMM (#156203)
Closes https://github.com/pytorch/pytorch/issues/156202

PR adds blackwell support for GroupMM

Most of the code that is used for SM90 can be reused, kernel schedule has to be changed in accordance with https://docs.nvidia.com/cutlass/media/docs/cpp/blackwell_functionality.html

Did some preliminary benchmarking of H200 vs B200

Script
```py
import torch
print(torch.__file__)
device = torch.device("cuda")
dtype = torch.bfloat16

shapes = [
    (16, 128000, 7168, 7168),
    (128, 1, 2048, 7168)
]

for batch, M, N, K in shapes:
    a = torch.randn(batch, M, K, device=device, dtype=dtype)
    b = torch.randn(batch, N, K, device=device, dtype=dtype)

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    for i in range(5): c = torch._grouped_mm(a, b)

    num_iter = 50
    start_event.record()

    for i in range(num_iter): c = torch._grouped_mm(a, b)
    end_event.record()

    torch.cuda.synchronize()
    elapsed_time_ms = start_event.elapsed_time(end_event)
    avg_time_ms = elapsed_time_ms / num_iter
    print(f"batch: {batch}\tM: {M}\tN: {N}\tK: {K}")
    print(f"Time per Iteration:\t {avg_time_ms:.4f} ms")
```

On H200
```
batch: 16	M: 128000	N: 7168	K: 7168
Time per Iteration:	 298.6668 ms
batch: 128	M: 1	N: 2048	K: 7168
Time per Iteration:	 4.1462 ms
```

B200
```
batch: 16       M: 128000       N: 7168 K: 7168
Time per Iteration:      190.7458 ms
batch: 128      M: 1    N: 2048 K: 7168
Time per Iteration:      3.0680 ms
```
nsys nvprof
```
root@16930b42ffc6:/workspace/pytorch# nsys nvprof python gemm_test.py
WARNING: python and any of its children processes will be profiled.

Collecting data...
batch: 16	M: 128000	N: 7168	K: 7168
Time per Iteration:	 192.6420 ms
batch: 128	M: 1	N: 2048	K: 7168
Time per Iteration:	 1.2255 ms
Generating '/tmp/nsys-report-6a53.qdstrm'
[1/7] [========================100%] report1.nsys-rep
[2/7] [========================100%] report1.sqlite
[3/7] Executing 'nvtx_sum' stats report
SKIPPED: /workspace/pytorch/report1.sqlite does not contain NV Tools Extension (NVTX) data.
[4/7] Executing 'cuda_api_sum' stats report

 Time (%)  Total Time (ns)  Num Calls    Avg (ns)      Med (ns)    Min (ns)   Max (ns)    StdDev (ns)                 Name
 --------  ---------------  ---------  ------------  ------------  --------  -----------  ------------  ---------------------------------
     98.9      10586895744          2  5293447872.0  5293447872.0  73786464  10513109280  7381715954.2  cudaDeviceSynchronize
      1.0        104084608          5    20816921.6    33552480.0    100800     34786208    18048125.3  cudaMalloc
      0.1          5694304          4     1423576.0     1416656.0   1258560      1602432      181668.1  cudaGetDeviceProperties_v2_v12000
      0.1          5430496        130       41773.0        4560.0      2496      3854368      345761.8  cudaLaunchKernel
      0.0           587584        110        5341.7        4992.0      4224        16992        1482.0  cudaLaunchKernelExC_v11060
      0.0           119200        660         180.6         128.0        96         4128         206.7  cudaGetDriverEntryPoint_v11030
      0.0            68352        660         103.6          64.0        32         4928         224.6  cuTensorMapEncodeTiled
      0.0            34976         49         713.8         224.0       160         6720        1343.4  cudaStreamIsCapturing_v10000
      0.0            32992          4        8248.0        7456.0      4128        13952        4804.4  cudaEventRecord
      0.0            16928          4        4232.0        3600.0      1728         8000        2764.7  cudaEventQuery
      0.0            16288          4        4072.0        3568.0      1952         7200        2396.1  cudaEventCreateWithFlags
      0.0            13632          4        3408.0        2672.0       544         7744        3408.7  cudaEventDestroy
      0.0             1056          1        1056.0        1056.0      1056         1056           0.0  cuModuleGetLoadingMode

[5/7] Executing 'cuda_gpu_kern_sum' stats report

 Time (%)  Total Time (ns)  Instances   Avg (ns)     Med (ns)    Min (ns)   Max (ns)   StdDev (ns)                                                  Name
 --------  ---------------  ---------  -----------  -----------  ---------  ---------  -----------  ----------------------------------------------------------------------------------------------------
     99.0      10549232845         55  191804233.5  192944479.0  165746368  203645313    5353204.3  void cutlass::device_kernel<at::cuda::detail::enable_3x_kernel_for_sm10<cutlass::gemm::kernel::Gemm…
      0.6         67327135         55    1224129.7    1330656.0     924320    1364928     182180.4  void cutlass::device_kernel<at::cuda::detail::enable_3x_kernel_for_sm10<cutlass::gemm::kernel::Gemm…
      0.3         34854783         20    1742739.1    1597856.0      10080    3899616     818421.2  void at::native::<unnamed>::distribution_elementwise_grid_stride_kernel<float, (int)4, void at::nat…
      0.0           354880        110       3226.2       3296.0       1920       4160        554.4  void at::cuda::detail::prepare_grouped_gemm_data<cutlass::bfloat16_t, cutlass::bfloat16_t, cutlass:…
```

The kernel names are too long to be shown via nvprof, I pasted this from nsight systems
```
small kernel 1SM
100.0%	1.286 ms	1	1.286 ms	1.286 ms	1.286 ms	1.286 ms	0 ns	void cutlass::device_kernel<at::cuda::detail::enable_3x_kernel_for_sm10<cutlass::gemm::kernel::GemmUniversal<cutlass::gemm::GroupProblemShape<cute::tuple<int, int, int>>, cutlass::gemm::collective::CollectiveMma<cutlass::gemm::MainloopSm100ArrayTmaUmmaWarpSpecialized<(int)3, (int)8, (int)2, cute::tuple<cute::C<(int)2>, cute::C<(int)1>, cute::C<(int)1>>>, cute::tuple<cute::C<(int)128>, cute::C<(int)256>, cute::C<(int)64>>, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::bfloat16_t, cute::tuple<cute::C<(int)1>, long, cute::C<(int)0>> *, cute::TiledMMA<cute::MMA_Atom<cute::SM100_MMA_F16BF16_SS<cutlass::bfloat16_t, cutlass::bfloat16_t, float, (int)128, (int)256, (cute::UMMA::Major)0, (cute::UMMA::Major)1, (cute::UMMA::ScaleIn)0, (cute::UMMA::ScaleIn)0>>, cute::Layout<cute::tuple<cute::C<(int)1>, cute::C<(int)1>, cute::C<(int)1>>, cute::tuple<cute::C<(int)0>, cute::C<(int)0>, cute::C<(int)0>>>, cute::tuple<cute::Underscore, cute::Underscore, cute::Underscore>>, cute::SM90_TMA_LOAD, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, void, cute::identity, cute::SM90_TMA_LOAD_MULTICAST, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)64>, cute::C<(int)8>>, cute::tuple<cute::C<(int)1>, cute::C<(int)64>>>>, void, cute::identity>, cutlass::epilogue::collective::CollectiveEpilogue<cutlass::epilogue::Sm100PtrArrayTmaWarpSpecialized<(int)4, (int)2, (int)64, (bool)1, (bool)0>, cute::tuple<cute::C<(int)128>, cute::C<(int)256>, cute::C<(int)64>>, cute::tuple<cute::Layout<cute::C<(int)128>, cute::C<(int)1>>, cute::Layout<cute::C<(int)64>, cute::C<(int)1>>>, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::epilogue::fusion::FusionCallbacks<cutlass::epilogue::Sm100PtrArrayTmaWarpSpecialized<(int)4, (int)2, (int)64, (bool)1, (bool)0>, cutlass::epilogue::fusion::LinearCombination<cutlass::bfloat16_t, float, cutlass::bfloat16_t, float, (cutlass::FloatRoundStyle)2>, cute::tuple<cute::C<(int)128>, cute::C<(int)256>, cute::C<(int)64>>, cute::tuple<cute::Layout<cute::C<(int)128>, cute::C<(int)1>>, cute::Layout<cute::C<(int)64>, cute::C<(int)1>>>, >, cute::SM100::TMEM::LOAD::SM100_TMEM_LOAD_32dp32b64x, cute::SM90_TMA_LOAD, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>, cute::SM90_TMA_STORE, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>>, void, void>>>(T1::Params)

large kernel 2SM
100.0%	194.178 ms	1	194.178 ms	194.178 ms	194.178 ms	194.178 ms	0 ns	void cutlass::device_kernel<at::cuda::detail::enable_3x_kernel_for_sm10<cutlass::gemm::kernel::GemmUniversal<cutlass::gemm::GroupProblemShape<cute::tuple<int, int, int>>, cutlass::gemm::collective::CollectiveMma<cutlass::gemm::MainloopSm100ArrayTmaUmmaWarpSpecialized<(int)5, (int)8, (int)2, cute::tuple<cute::C<(int)2>, cute::C<(int)1>, cute::C<(int)1>>>, cute::tuple<cute::C<(int)256>, cute::C<(int)256>, cute::C<(int)64>>, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::bfloat16_t, cute::tuple<cute::C<(int)1>, long, cute::C<(int)0>> *, cute::TiledMMA<cute::MMA_Atom<cute::SM100_MMA_F16BF16_2x1SM_SS<cutlass::bfloat16_t, cutlass::bfloat16_t, float, (int)256, (int)256, (cute::UMMA::Major)0, (cute::UMMA::Major)1, (cute::UMMA::ScaleIn)0, (cute::UMMA::ScaleIn)0>>, cute::Layout<cute::tuple<cute::C<(int)1>, cute::C<(int)1>, cute::C<(int)1>>, cute::tuple<cute::C<(int)0>, cute::C<(int)0>, cute::C<(int)0>>>, cute::tuple<cute::Underscore, cute::Underscore, cute::Underscore>>, cute::SM100_TMA_2SM_LOAD, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, void, cute::identity, cute::SM100_TMA_2SM_LOAD, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)64>, cute::C<(int)8>>, cute::tuple<cute::C<(int)1>, cute::C<(int)64>>>>, void, cute::identity>, cutlass::epilogue::collective::CollectiveEpilogue<cutlass::epilogue::Sm100PtrArrayTmaWarpSpecialized<(int)4, (int)2, (int)64, (bool)1, (bool)0>, cute::tuple<cute::C<(int)128>, cute::C<(int)256>, cute::C<(int)64>>, cute::tuple<cute::Layout<cute::C<(int)128>, cute::C<(int)1>>, cute::Layout<cute::C<(int)64>, cute::C<(int)1>>>, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::bfloat16_t, cute::tuple<long, cute::C<(int)1>, cute::C<(int)0>> *, cutlass::epilogue::fusion::FusionCallbacks<cutlass::epilogue::Sm100PtrArrayTmaWarpSpecialized<(int)4, (int)2, (int)64, (bool)1, (bool)0>, cutlass::epilogue::fusion::LinearCombination<cutlass::bfloat16_t, float, cutlass::bfloat16_t, float, (cutlass::FloatRoundStyle)2>, cute::tuple<cute::C<(int)128>, cute::C<(int)256>, cute::C<(int)64>>, cute::tuple<cute::Layout<cute::C<(int)128>, cute::C<(int)1>>, cute::Layout<cute::C<(int)64>, cute::C<(int)1>>>, >, cute::SM100::TMEM::LOAD::SM100_TMEM_LOAD_32dp32b64x, cute::SM90_TMA_LOAD, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>, cute::SM90_TMA_STORE, cute::ComposedLayout<cute::Swizzle<(int)3, (int)4, (int)3>, cute::smem_ptr_flag_bits<(int)16>, cute::Layout<cute::tuple<cute::C<(int)8>, cute::C<(int)64>>, cute::tuple<cute::C<(int)64>, cute::C<(int)1>>>>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>, cute::AutoVectorizingCopyWithAssumedAlignment<(int)128>>, void, void>>>(T1::Params)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156203
Approved by: https://github.com/syed-ahmed, https://github.com/drisspg
2025-06-28 23:02:00 +00:00
996206e66f cublaslt/hipblaslt persistent workspace (#156495)
Similar to cublas/hipblas, LT now allocates one workspace per handle+stream combo.

- fixes hipblaslt issue where memory use increased during graph capture
- preserves CUDA env var TORCH_CUBLASLT_UNIFIED_WORKSPACE
- moves LT workspace and size from CUDABlas.cpp into CublasHandlePool.cpp, new APIs
  - size_t getCUDABlasLtWorkspaceSize()
  - void* getCUDABlasLtWorkspace()

Fixes https://github.com/ROCm/pytorch/issues/2286.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156495
Approved by: https://github.com/eqy
2025-06-28 22:38:43 +00:00
0629dfb860 Fix FSDP offload pin_memory bug (#157147)
Fixes #157146

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157147
Approved by: https://github.com/weifengpy
2025-06-28 21:09:11 +00:00
67f8270516 [ROCm] test_hip_device_count safely runs on 1 GPU systems (#156398)
Fixes test_cuda.py::TestCuda::test_hip_device_count on single gpu scenario

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156398
Approved by: https://github.com/jeffdaily
2025-06-28 20:17:26 +00:00
aeffb68d34 [schema_upgrader] add C++ upgrader for json based upgrading (#156761)
Differential Revision: [D77459912](https://our.internmc.facebook.com/intern/diff/D77459912)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156761
Approved by: https://github.com/angelayi
2025-06-28 18:15:06 +00:00
064a7db7fc [invoke_subgraph] turn on supports_input_mutation by default (#157177)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157177
Approved by: https://github.com/anijain2305
2025-06-28 18:14:47 +00:00
2eb744c08d Revert "[BE] parse CMake version from cmake -E capabilities instead of cmake --version (#157073)"
This reverts commit 0c58bdd8fb5f269aef100af8e2c43cfcf5f1f9dd.

Reverted https://github.com/pytorch/pytorch/pull/157073 on behalf of https://github.com/XuehaiPan due to break libtorch build on Windows ([comment](https://github.com/pytorch/pytorch/pull/157073#issuecomment-3015273679))
2025-06-28 13:40:19 +00:00
0c58bdd8fb [BE] parse CMake version from cmake -E capabilities instead of cmake --version (#157073)
`cmake -E capabilities` produces a JSON format that is more machine-friendly.

```console
$ cmake --version
cmake version 4.0.3

CMake suite maintained and supported by Kitware (kitware.com/cmake).
$ cmake -E capabilities | jq '.version.string'
"4.0.3"
$ cmake -E capabilities | jq
{
  "debugger": true,
  "fileApi": {
    "requests": [
      {
        "kind": "codemodel",
        "version": [
          {
            "major": 2,
            "minor": 8
          }
        ]
      },
      {
        "kind": "configureLog",
        "version": [
          {
            "major": 1,
            "minor": 0
          }
        ]
      },
      {
        "kind": "cache",
        "version": [
          {
            "major": 2,
            "minor": 0
          }
        ]
      },
      {
        "kind": "cmakeFiles",
        "version": [
          {
            "major": 1,
            "minor": 1
          }
        ]
      },
      {
        "kind": "toolchains",
        "version": [
          {
            "major": 1,
            "minor": 0
          }
        ]
      }
    ]
  },
  "generators": [
    {
      "extraGenerators": [],
      "name": "Watcom WMake",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [
        "Kate"
      ],
      "name": "Ninja Multi-Config",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [
        "CodeBlocks",
        "CodeLite",
        "Eclipse CDT4",
        "Kate",
        "Sublime Text 2"
      ],
      "name": "Ninja",
      "platformSupport": false,
      "toolsetSupport": false
    },
    {
      "extraGenerators": [],
      "name": "Xcode",
      "platformSupport": false,
      "toolsetSupport": true
    },
    {
      "extraGenerators": [
        "CodeBlocks",
        "CodeLite",
        "Eclipse CDT4",
        "Kate",
        "Sublime Text 2"
      ],
      "name": "Unix Makefiles",
      "platformSupport": false,
      "toolsetSupport": false
    }
  ],
  "serverMode": false,
  "tls": true,
  "version": {
    "isDirty": false,
    "major": 4,
    "minor": 0,
    "patch": 3,
    "string": "4.0.3",
    "suffix": ""
  }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157073
Approved by: https://github.com/Skylion007
2025-06-28 13:35:30 +00:00
cdb144fcf0 Display a warning when overwriting CMAKE_CUDA_ARCHITECTURES (#156123)
Really, pytorch shoudn't be messing with basic _global_ cmake configuration like this, but without a careful analysis what all depends on this behaviour, I'm not confident to propose a change.
But at least notifying the user that something wonky is going on seems like a good idea.
@drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156123
Approved by: https://github.com/drisspg, https://github.com/msaroufim

Co-authored-by: Mark Saroufim <marksaroufim@meta.com>
2025-06-28 11:22:09 +00:00
8147c4a904 [symm_mem] Create a dedicated ci flow for symmetric memory and only use 4 GPUs (#157181)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157181
Approved by: https://github.com/kwen2501, https://github.com/huydhn
2025-06-28 08:33:50 +00:00
88c6199db0 [nativert] Move KernelFactory to PyTorch core (#156913)
Summary: Kernel factory handles the kernel nodes initializations and different type of kernels executions.

Test Plan:
CI

Rollback Plan:

Differential Revision: D77346836

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156913
Approved by: https://github.com/zhxchen17
2025-06-28 06:34:24 +00:00
51eb8e8f84 [ATen][CUDA][CUB] Implement changes to CCCL (CUB/Thrust/LibCUDACXX) usage in ATen (#153373)
A major release of CCCL 3.0.0 will introduce some bc-breaking changes. Namely iterators like TransformInputIterator and ConstantInputIterator were moved from CUB to Thrust, some operators like Max and Sum were moved to LibCUDACXX.

For the more info on changes please visit: https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html

This is a follow up to PR #147493. A description from the original PR:
> Several cub iterators have been deprecated and removed in the latest CCCL (cub) development https://github.com/NVIDIA/cccl/pull/3831. This PR replaced the usage of those cub iterators with thrust iterators.
>
> Some cub thread operators were also deprecated and removed in https://github.com/NVIDIA/cccl/pull/3918. This PR replaced those operators with libcudacxx ops.
>
> This might also affect ROCM usability a bit.
>
> This patch is tested to work with CCCL commit at 82befb0894
>
> Tracking of CCCL/CUB deprecations in the most recent development https://github.com/NVIDIA/cccl/issues/101

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153373
Approved by: https://github.com/cyyever, https://github.com/atalman
2025-06-28 05:44:52 +00:00
a92b24cd83 Prevent cudaStreamSync when indexing GPU tensors with boolean CPU mask (#156384)
`index_put` with a boolean mask (`target[mask] = src`) causes a `cudaStreamSynchronize`. When both `mask` and `target` tensors are on GPU this is expected.

However, the sync can be prevented if the `mask` is a CPU tensor.
Internally a new index tensor is created with `mask.nonzero()` so we can use a non-blocking copy to transfer it to the GPU since it cannot be accidentally mutated by the user between its creation and the device copy. @ngimel Let me know if I'm missing something.

I think this is useful since users can't prevent a sync simply by making sure all tensors are on the same device as with other ops. Instead one would need to do something like this which is much less readable
```python
indices = mask.nonzero().squeeze(1).to("cuda", non_blocking=True)
target[indices] = src
```
Fixes #12461

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156384
Approved by: https://github.com/ngimel
2025-06-28 05:41:16 +00:00
5692cbb818 [ONNX] Delete symbolic caffe2 (#157102)
Caffe2 is removed from pytorch. This is a clean up.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157102
Approved by: https://github.com/titaiwangms, https://github.com/cyyever
2025-06-28 05:22:02 +00:00
cyy
30d2648a4a Install nvperf_host together with cupti (#156668)
Because cupti depends on nvperf_host, as discussed in https://github.com/pytorch/pytorch/pull/154595

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156668
Approved by: https://github.com/Skylion007
2025-06-28 04:26:36 +00:00
adf6dd1e44 Fix aten::index_put args Dtensor type mismatch and add a propagation strategy (#156240)
We notice model code contains indexing syntax like [nanogpt model code](f144fe9095/torchbenchmark/models/nanogpt/model.py (L240)), which causes training fail in the backward pass when using DTensor.

In the code, `x = x[:, [-1], :]` calls the index op and in the backward pass, it will trigger `aten.index_put.default` with the second argument to be of type `torch::List<std::optional<Tensor>>`, e.g., `[None, tensor([-1], device='cuda:0')]`. We are unable to unwarp the op info into Dtensor based on the current logic [here](2625c70aec/torch/distributed/tensor/_dispatch.py (L339-L358)). We need to set runtime_schema_info for the op and enable needs_pytree to support the conversion of tensor list arg.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156240
Approved by: https://github.com/wanchaol
2025-06-28 04:09:41 +00:00
f810480dbe Revert "[schema_upgrader] add C++ upgrader for json based upgrading (#156761)"
This reverts commit 61712e6f2ba58cce354a742d918934ec7293ee43.

Reverted https://github.com/pytorch/pytorch/pull/156761 on behalf of https://github.com/ydwu4 due to break linter test, which doesn't show up in the pr ([comment](https://github.com/pytorch/pytorch/pull/156761#issuecomment-3014918800))
2025-06-28 03:58:25 +00:00
0e47312ae5 ci: Add ability to test images for build-triton-wheel (#156894)
This wasn't available prior making it difficult to test if manywheel
image changes would affect triton wheel builds.

Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156894
Approved by: https://github.com/atalman, https://github.com/clee2000, https://github.com/malfet
ghstack dependencies: #156893
2025-06-28 03:41:18 +00:00
ef6dfa06a9 Create a base Checkpointer and SyncCheckpointer and add dist barrier impl and (#156926)
In preparation to adding async checkpointing, this diff adds
1.  Change Checkpointer to an Abstract base class and adds a sync checkpointer implementation.
2. torch.distributed.barrier() as one of the barrier choices.

Differential Revision: [D77341314](https://our.internmc.facebook.com/intern/diff/D77341314/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156926
Approved by: https://github.com/pradeepfn
2025-06-28 02:48:29 +00:00
e8217ad8be [inductor][static launcher] Skip correctness test for test_floats (#157023)
https://github.com/triton-lang/triton/issues/6176 causes kernels that take fp64 scalar inputs to generate wrong results. Until we get around to fixing this, just skip the accuracy check (it'll fail on Triton's launcher anyway).

Differential Revision: [D77407307](https://our.internmc.facebook.com/intern/diff/D77407307)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157023
Approved by: https://github.com/jamesjwu
2025-06-28 02:19:10 +00:00
e3320965b4 [sym_mem] Further Fix NCCL symm mem unit test (#157156)
We still see CI failures because of error "RuntimeError: CUDA driver error: invalid device ordinal". So upon discussion, we might also need a GPU number skip macro for the test itself:

Fixes #156569

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157156
Approved by: https://github.com/kwen2501, https://github.com/fegin
2025-06-28 02:17:13 +00:00
a1e4f1f98a [MPS] Reimplement tri[ul] as Metal shaders (#157179)
And add in-place flavor, as it is currently broken for non-contig tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157179
Approved by: https://github.com/dcci
2025-06-28 01:33:18 +00:00
c14110056f [caffe2] Allow the elimination of implicit calls to strlen when using the RECORD_FUNCTION macros (#153567)
Summary:
With the way these were written, any string literals that were being passed in, like `__func__`, were only ever passed down as a `const char*`, so this switches it over to take a `std::string_view` at the deepest part.

This also has the side effect of allowing `std::string_view` to be passed to the `RECORD_FUNCTION` macros as well.

Test Plan:
contbuilds

Rollback Plan:

Differential Revision: D74681042

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153567
Approved by: https://github.com/Skylion007, https://github.com/swolchok
2025-06-28 01:11:00 +00:00
1e4c5b666a Revert "[dynamo] fix _torchdynamo_orig_callable naming issues (#156901)"
This reverts commit eb9efb37c8f315f1d30e86d5797490c6a8666889.

Reverted https://github.com/pytorch/pytorch/pull/156901 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to break some internal tests D77411594 ([comment](https://github.com/pytorch/pytorch/pull/156901#issuecomment-3014734151))
2025-06-28 00:37:01 +00:00
61712e6f2b [schema_upgrader] add C++ upgrader for json based upgrading (#156761)
Differential Revision: [D77459912](https://our.internmc.facebook.com/intern/diff/D77459912)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156761
Approved by: https://github.com/angelayi
2025-06-27 23:50:19 +00:00
2815ade9a8 updated adafactor doc #154862 (#155248)
updated adafactor doc to reflect difference in implementation vs original paper

Fixes #154862

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155248
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-06-27 23:23:19 +00:00
feea575082 [MTIA ATen Backend] Add dispatch keys for add.out (#156952)
Migrate add.out

Differential Revision: [D77352482](https://our.internmc.facebook.com/intern/diff/D77352482/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156952
Approved by: https://github.com/malfet, https://github.com/huydhn
ghstack dependencies: #156944, #156945, #156946, #156947, #156948, #156949, #156950, #156951
2025-06-27 22:49:00 +00:00
253cbadade [MTIA ATen Backend] Add dispatch keys for rsub.Tensor / rsub.Scalar / sub.out (#156951)
Migrate rsub.Tensor / rsub.Scalar / sub.out

Differential Revision: [D77015033](https://our.internmc.facebook.com/intern/diff/D77015033/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156951
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945, #156946, #156947, #156948, #156949, #156950
2025-06-27 22:49:00 +00:00
b6b2871555 [MTIA ATen Backend] Add dispatch keys for fmod / abs.out / logical_not.out (#156950)
Migrate fmod / abs.out / logical_not.out

Differential Revision: [D77220217](https://our.internmc.facebook.com/intern/diff/D77220217/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156950
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945, #156946, #156947, #156948, #156949
2025-06-27 22:48:48 +00:00
a95bee9ed6 [MTIA ATen Backend] Add dispatch key for div.out (#156949)
Migrate div.out

Differential Revision: [D77063371](https://our.internmc.facebook.com/intern/diff/D77063371/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156949
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945, #156946, #156947, #156948
2025-06-27 22:48:39 +00:00
f30e072cb4 [MTIA ATen Backend] Add dispatch keys for mul.Scalar_out / mul.out (#156948)
Migrate mul.Scalar_out / mul.out

Differential Revision: [D77011801](https://our.internmc.facebook.com/intern/diff/D77011801/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156948
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945, #156946, #156947
2025-06-27 22:48:32 +00:00
66ad843583 [MTIA ATen Backend] Add dispatch keys for gt.Tensor_out / gt.Scalar_out (#156947)
Migrate gt.Tensor_out / gt.Scalar_out

Differential Revision: [D77009468](https://our.internmc.facebook.com/intern/diff/D77009468/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156947
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945, #156946
2025-06-27 22:48:25 +00:00
f0a5a3b453 [MTIA ATen Backend] Add dispatch keys for ne.Tensor_out / ne.Scalar_out (#156946)
Migrate ne.Tensor_out / ne.Scalar_out

Differential Revision: [D77008139](https://our.internmc.facebook.com/intern/diff/D77008139/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156946
Approved by: https://github.com/malfet
ghstack dependencies: #156944, #156945
2025-06-27 22:48:18 +00:00
cd1a924dba [nativert] get rid of sigmoid naming (#157134)
Summary: att

Test Plan:
ci

Rollback Plan:

Differential Revision: D77451215

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157134
Approved by: https://github.com/zhxchen17, https://github.com/jingsh
2025-06-27 22:41:52 +00:00
d283fc79b1 chunk_size should always be int64_t for Foreach functors (#156872)
See https://github.com/pytorch/pytorch/issues/156261#issuecomment-3002394773

Testing is a valid q--it is pretty expensive to test such large tensors for all these ops.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156872
Approved by: https://github.com/Skylion007, https://github.com/eqy
ghstack dependencies: #156876, #156871
2025-06-27 22:35:34 +00:00
5a0926a26e Stop skipping entire foreach tests, just skip the profiler portion (#156871)
Instead of skipping the whole test as the CUPTI team figures out what is wrong, let's temporarily skip the profiler check portion. It is high pri to add it back to ensure foreach ops are actually performant.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156871
Approved by: https://github.com/albanD
ghstack dependencies: #156876
2025-06-27 22:35:34 +00:00
20e40492b0 [dynamo] Add fx_graph_runnable test coverage (#157021)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157021
Approved by: https://github.com/StrongerXi, https://github.com/xmfan
2025-06-27 21:35:56 +00:00
130d4973bd Documentation update torch.clone #156644 (#157007)
updated torch clone docs to reflect implemented memory behavior

Fixes #156644

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157007
Approved by: https://github.com/malfet, https://github.com/svekars

Co-authored-by: Svetlana Karslioglu <svekars@meta.com>
2025-06-27 21:10:09 +00:00
3ee75b7eac [MTIA ATen Backend] Add dispatch keys for le.Tensor_out / le.Scalar_out (#156945)
Migrate le.Tensor_out / le.Scalar_out

Differential Revision: [D77002317](https://our.internmc.facebook.com/intern/diff/D77002317/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156945
Approved by: https://github.com/malfet
ghstack dependencies: #156944
2025-06-27 21:03:19 +00:00
6b7767fc8d [MTIA ATen Backend] Add dispatch keys for ge.Tensor_out / ge.Scalar_out (#156944)
Migrate ge.Tensor_out / ge.Scalar_out

Differential Revision: [D77002145](https://our.internmc.facebook.com/intern/diff/D77002145/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156944
Approved by: https://github.com/malfet
2025-06-27 21:02:27 +00:00
0decd966af Revert "Fixes for CPython int/float tests (#155978)"
This reverts commit 216bd6091ec52865052282eced7e6d5d2a4b4fb4.

Reverted https://github.com/pytorch/pytorch/pull/155978 on behalf of https://github.com/huydhn due to Some tests are still failing in trunk ([comment](https://github.com/pytorch/pytorch/pull/155978#issuecomment-3014185210))
2025-06-27 19:39:41 +00:00
7c51619e7f Fix Float16 CooperativeReduction Test Failure (#154516)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154516
Approved by: https://github.com/jansel, https://github.com/jeffdaily
2025-06-27 19:31:49 +00:00
4048a144ab Address richard's comments on libtorch_stable_abi note (#156324)
Followups from #155984

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156324
Approved by: https://github.com/zou3519
2025-06-27 19:19:12 +00:00
dcb97cd519 Remove unneccesary code to check autograd state (#156855)
Summary: Title

Test Plan:
CI

Rollback Plan:

Differential Revision: D77317627

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156855
Approved by: https://github.com/zhxchen17

Co-authored-by: Camyll Harajli <camyllh@meta.com>
2025-06-27 19:18:06 +00:00
8a88c6e85a [nit] fix xavier init doc (#157100)
Remove part of the documentation that is irrelevant and confusing at best, probably a copy-paste mistake:

<img src="https://github.com/user-attachments/assets/77fa5734-5a5a-4f8d-80a5-bc3269668e07" width="500">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157100
Approved by: https://github.com/mikaylagawarecki
2025-06-27 19:13:40 +00:00
75a7d9e868 Revert "python definitely_contiguous-> is_contiguous_or_false (#156515)"
This reverts commit 4c0091fda65b714fa73671a15e379f814af153e0.

Reverted https://github.com/pytorch/pytorch/pull/156515 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to cause some torch.export failures internally ([comment](https://github.com/pytorch/pytorch/pull/156515#issuecomment-3014104570))
2025-06-27 19:07:06 +00:00
2860f5c4f5 Remove mentioning of TorchScript in Export doc (#156969)
Remove mentioning of TorchScript

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156969
Approved by: https://github.com/angelayi

Co-authored-by: Angela Yi <yiangela7@gmail.com>
2025-06-27 17:59:15 +00:00
456b7451c7 Minor error message fix in device_mesh.py (#157096)
Fixed error message:
On main:
```
KeyError: ("Invalid mesh_dim_names ('dp_shard', 'dp_shard') specified. ", 'Found mesh dim indices to slice: [(1,), (1,)]. ', 'Mesh dim indices should be in ascending order.')
```
On PR:
```
KeyError: Invalid mesh_dim_names ('dp_shard', 'dp_shard') specified. Found mesh dim indices to slice: [(1,), (1,)]. Mesh dim indices should be in ascending order.'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157096
Approved by: https://github.com/Skylion007
2025-06-27 17:42:29 +00:00
36fd1ac932 [ONNX] Bump onnxscript api for torch 2.8 (#157017)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157017
Approved by: https://github.com/titaiwangms, https://github.com/malfet
2025-06-27 17:39:17 +00:00
84c588e5ea [cutlass backend][BE][ez] Make matmul layouts be row x column (#156656)
Differential Revision: [D77184232](https://our.internmc.facebook.com/intern/diff/D77184232/)

Motivation:
* This is the case we care the most.
* We are caching the kernels for this row x column layout. So testing on them can potentially make ci run faster.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156656
Approved by: https://github.com/ColinPeppler
2025-06-27 17:15:45 +00:00
b22b93a6ba [2/n] rewrite load balancing and sharding in context parallel (#155442)
This PR rewrite how load balancing and sharding works in the current
context parallel implementation.

Why the changes? We should NOT expose another layer of "sharding"
concept as it would confuse the user about its difference with DTensor
sharding. The current CP perform sharding weirdly simply because it
mixed the concept of load balancing and sharding.

I think load balancing and sharding need to be decoupled to separate
layers:

* The load balancing layer is responsible to reorder the input sequence
so that the attention computation are evenly balanced across rows/ranks.
* Sharding is a separate layer after it, it simply take the input reordered by
the load balancer and shard it exactly as how DTensor shard tensor sequentially

In this PR:
* I removed the "Sharder" and "LoadBalancer" mixed usage, and
simply generate a roundrobin indices when the mask is a casual mask
* use `distribute_tensor` to perform the sharding. We still keep the local
shard instead of the DTensor objects to allow maximum compatibility with
arbitrary model architecture given DTensor op coverage is not high
enough.

One alternative design is to still keep the LoadBalancer and add the indices
generation and restore to be the protocol of the LoadBalancer. I thought through
it and think we might want to directly expose the load_balancing indices as
an argument instead of a dedicated class interface, so I removed it here. More
discussion on this is welcomed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155442
Approved by: https://github.com/XilunWu
ghstack dependencies: #155441
2025-06-27 17:06:42 +00:00
f7c730107e [1/n] refactor the ring attention implementation (#155441)
as titled, I'm working on a series of changes to make ring attention
impl and DTensor works better together, this PR specifically refactor the
current implemtnation to:

* remove dead/unused code
* restructure the functions to make them stay organized
* refactor to remove/make error message better

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155441
Approved by: https://github.com/fegin
2025-06-27 17:06:42 +00:00
eeaefa1336 Fix UnbackedSymint rebinding - check unbacked before renaming (#156911)
Differential Revision: D77249427

Due to memoization and graph order update, it can happen that a backed symbol is passed into compute_unbacked_bindings and lead to failure. An example as follow:

- There are 2 boolean indexing operators (e.g. op1 and op2) with the same mask.
- A unbacked symint is generated from op1, and then op2 reuses the unbacked symint due to a nonzero_memo in nonzero's fake implementation and no rebinding is needed for op2.
- Since op1 generated the unbacked symint, its meta has "unbacked_bindings" field filled and op2's meta doesn't have it.
- Output from op1 and op2 are later concated with others with backed symint, so that the unbacked symint can be replaced by a backed symint.
- In Inductor, during fake tensor prop, there is no memoi because new fake tensor is always generated (for the same node). op1 generates an unbacked symint and the unbacked can be rebound successfully to the backed symint. Since there is no memoi, op2 also generates a new unbacked symint, but no rebinding can happen because op2's meta doesn't have "unbacked_bindings". And "compute_unbacked_bindings/_rename_unbacked_to" fails to assert op2's old symbol to be unbacked.

From discussion with [@ezyang](https://www.internalfb.com/intern/profile/?id=503862770), there is no easy way to fix this issue.

- We can try to enable memoization for fake tensor prop in Inductor, however, we need to ensure that op1 is visited before op2 during Inductor fake tensor prop for this to work (op2's meta doesn't have "unbacked_bindings" so no rebinding can happen and we need to do rebinding from op1. But there are passes such as reorder_for_locality that can change the graph order so this doesn't work.
- A simple hack is to just replace the unbacked symbol in op2 by the backed symbol.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156911
Approved by: https://github.com/ezyang
2025-06-27 16:57:04 +00:00
216bd6091e Fixes for CPython int/float tests (#155978)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155978
Approved by: https://github.com/zou3519
2025-06-27 16:41:00 +00:00
d0cfa3e5bf [c10d] Move the include of header file of TraceUtils.h into NCCLUtil.cpp instead of keeping in hpp (#156909)
We have seen complaint about compilation failure of `NCCLSymmetricMemory.cu` and the reason is because we include <torch/csrc/distributed/c10d/TraceUtils.h> inside NCCLUtil.hpp this is not necessary so we want to move the include to cpp.

Differential Revision: [D77346675](https://our.internmc.facebook.com/intern/diff/D77346675)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156909
Approved by: https://github.com/kwen2501
2025-06-27 16:30:49 +00:00
21b5dc7a6a [CD] Add python-3.14.0b3 to docker image (#156889)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156889
Approved by: https://github.com/albanD, https://github.com/atalman
ghstack dependencies: #157033
2025-06-27 16:24:39 +00:00
d158e9ea82 Update nightly PyTorch version to 2.8.0->2.9.0 (#156965)
Same as https://github.com/pytorch/pytorch/pull/149038

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156965
Approved by: https://github.com/Camyll, https://github.com/malfet
2025-06-27 16:22:08 +00:00
60abb0d327 [dynamo] Better error for invalid @contextlib.contextmanager usage (#156924)
Fixes #156716

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156924
Approved by: https://github.com/williamwen42
2025-06-27 15:50:36 +00:00
ff8b53c056 [Kineto] Add MTIA_INSIGHT to kineto_shim (#156853)
Summary:
Add MTIA_INSIGHT to kMtiaTypes in kineto_shim.cpp

For insight, user can use MTIA_INSIGHT_VERBOSE_TRACES=0 to disable the profiler. So, we can enable it by default

Test Plan:
{F1979756361}
When the environment var isn't set, it uses 0.

Rollback Plan:

Differential Revision: D77315882

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156853
Approved by: https://github.com/sraikund16
2025-06-27 15:30:14 +00:00
5118a8f8a5 Rename mm_scaled_grouped.py to mm_grouped.py (#156849)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156849
Approved by: https://github.com/amjames, https://github.com/Skylion007
2025-06-27 15:02:22 +00:00
aa2d54148d Add AOTDispatcher config to set backward autocast behavior (#156356)
This PR adds a new config `backward_pass_autocast`, to set the backward autocast
behavior. It does not change the existing behavior.

The reason why we need this is that torch.compile acquires a forward and
backward graph at the time of the forward pass. This means that
implemented naively, if there are any context managers active outside
the call to torch.compile, the backward graph will also get the
behaviors from those context managers. This PR gives users a way to
tweak the autocast behavior of the backward pass.

Please see torch._functorch.config for the options to the
`backward_pass_autocast` config.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156356
Approved by: https://github.com/bdhirsh
ghstack dependencies: #155354
2025-06-27 14:58:58 +00:00
adf9644440 Add pg transport and tests (#154653)
Add PG transport and tests under `torch/distributed/checkpoint/`

### API:
```python
def send_checkpoint(self, dst_ranks: list[int], state_dict: object) -> None:
def recv_checkpoint(self, src_rank: int) -> object:
```

### Tests:
```
python test/distributed/checkpoint/test_pg_transport.py
```

### Example:
Under `_pg_transport_example.py` (in https://github.com/pytorch/pytorch/pull/155810)
```
torchrun --nproc_per_node=2 -m torch.distributed.checkpoint._pg_transport_example -- --device cuda
```

Differential Revision: [D76044919](https://our.internmc.facebook.com/intern/diff/D76044919)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154653
Approved by: https://github.com/meetv18
2025-06-27 14:53:34 +00:00
414ad47045 revamp dtype documentation for 2025 (#156087)
The dtype documentation has not been updated in awhile, let's do a revamp.

1. combine the duplicated docs for dtypes from `tensors.rst` and `tensor_attributes.rst` to live in `tensor_attributes.rst`, and link to that page from `tensors.rst`
2. split the dtype table into floating point and integer dtypes
3. add the definition of shell dtype
4. add the float8 and MX dtypes as shell dtypes to the dtype table
5. remove legacy quantized dtypes from the table
6. add the definition of various dtype suffixes ("fn", etc)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156087
Approved by: https://github.com/albanD
2025-06-27 13:10:23 +00:00
43523bf168 Fix silent incorrectness arising from incorrect alias information (#152011)
Fixes #136662

There are two problems:
1) canonicalize_view_scatter_ops adds some new nodes into the graph.
   These new nodes cause the alias info on the graph to be wrong. To fix
   this, we try to run FakeTensorUpdater on the graph again.
2) FakeTensorUpdater's alias information is wrong. It tries to skip
   nodes that it thinks have "equivalent" FakeTensor metadata.
   It should not be allowed to do this if any users of the node can
   alias the node. The example
   is if we have `x = foo(...); y = x.view(...)`. If the user replaces
   `foo` with a new `bar` node and sets bar.meta["val"] correctly, then
   FakeTensorUpdater still needs to update y's meta["val"] to be a view
   of the new bar node.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152011
Approved by: https://github.com/yf225
2025-06-27 12:45:03 +00:00
75f3e5a88d [dynamo] Fix issue with tensors passed as view() shapes (#156928)
Fixes #156720

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156928
Approved by: https://github.com/ezyang
2025-06-27 08:52:31 +00:00
588b5fb94b Optimize TorchHigherOrderOperatorVariable.make() with lookup table (#157022)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157022
Approved by: https://github.com/zou3519
2025-06-27 07:36:12 +00:00
968f90ce73 [ROCm][Windows] Fixing undefined symbol linker error after exposing MIOpen symbols (#156479)
Fixing undefined symbol linker error after [exposing MIOpen symbols](https://github.com/pytorch/pytorch/pull/154545).
This fix:

- Hipifies `aten/src/ATen/miopen` and `aten/src/ATen/native/miopen` files
- Adds `aten/src/ATen/miopen` and `aten/src/ATen/native/miopen` hipified source files to `all_hip_cpp` list

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156479
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-06-27 07:23:32 +00:00
4a80ddfbe7 Revert "Fix reinplace pass handling of view input + mutable custom op (#156729)"
This reverts commit b754b1fa43d20f5b31e17c396487ab56991912da.

Reverted https://github.com/pytorch/pytorch/pull/156729 on behalf of https://github.com/davidberard98 due to breaks lint: [GH job link](https://github.com/pytorch/pytorch/actions/runs/15918483073/job/44900430950) [HUD commit link](b754b1fa43) ([comment](https://github.com/pytorch/pytorch/pull/156729#issuecomment-3011867746))
2025-06-27 06:38:58 +00:00
cyy
064288cbab Use std::string_view in torchgen (#157050)
Let the generated code use std::sv

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157050
Approved by: https://github.com/ezyang
2025-06-27 06:36:10 +00:00
cc3ea2d840 remove gso from Linear.cpp (#156899)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156899
Approved by: https://github.com/ColinPeppler
2025-06-27 06:30:50 +00:00
cf0749c92f Use expecttest in test_compiled_optimizers.py (#155308)
Fixes #141262

## Test Result

```bash
pytest test/inductor/test_compiled_optimizers.py -vv
```

![image](https://github.com/user-attachments/assets/1886fb71-ff05-46e7-988c-82d36358a834)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155308
Approved by: https://github.com/mlazos, https://github.com/msaroufim

Co-authored-by: Mark Saroufim <marksaroufim@gmail.com>
2025-06-27 06:29:51 +00:00
cbcffce48a address remaining straight forward gso in meta_registrations (#156902)
Those are all straight forward generalization of existing checks,
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156902
Approved by: https://github.com/ColinPeppler
2025-06-27 06:19:54 +00:00
640703d95f add torch.concat to normalization pass (#156574)
Summary: In the normalization pass, we also add torch.concat to it to normalize it as torch.cat

Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:split_cat_fx_passes -- test_cat_normalization
```

Buck UI: https://www.internalfb.com/buck2/597fd4f1-0aa7-4372-8a66-5a690d9b63a4
Test UI: https://www.internalfb.com/intern/testinfra/testrun/1688850152284203
Network: Up: 84KiB  Down: 34KiB  (reSessionID-3916e009-7117-41ce-b6f9-089873aa50dd)
Executing actions. Remaining     0/3                                                                                              1.1s exec time total
Command: test.     Finished 2 local
Time elapsed: 3:47.1s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0

Rollback Plan:

Differential Revision: D77125331

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156574
Approved by: https://github.com/Mingming-Ding
2025-06-27 06:07:26 +00:00
1155c53e7d Port three dynamo test to Intel GPU (#156575)
For https://github.com/pytorch/pytorch/issues/114850, we will port test cases to Intel GPU. Two dynamo test files were ported in PR [#156056](https://github.com/pytorch/pytorch/pull/156056). In this PR we will port 3 more dynamo test files.
We could enable Intel GPU with following methods and try the best to keep the original code styles:

- instantiate_device_type_tests()
- use "torch.accelerator.current_accelerator()" to determine the accelerator backend
- added XPU support in decorators like @requires_gpu
- enabled XPU for some test path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156575
Approved by: https://github.com/guangyey, https://github.com/jansel

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
2025-06-27 05:56:22 +00:00
51853b358e [dynamo] Improve error message for cond aliasing (#156963)
See #156724

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156963
Approved by: https://github.com/zou3519, https://github.com/williamwen42
2025-06-27 05:31:46 +00:00
6b05842e47 [test][inductor] fix test_conv_cat failure (#155852)
This test is currently failing because triton_poi_fused_cat_2 has changed to triton_poi_fused_cat_3. I have not investigated why the extra kernel is generated, but this test has been failing on trunk for a while (and I verified locally that it is failing).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155852
Approved by: https://github.com/FindHao, https://github.com/Skylion007
2025-06-27 05:11:11 +00:00
2c76f31221 Compute contiguity symbolically to avoid dde, and introduce c++ sym_is_contiguous (#155590)
When we compute contiguity for a tensor with dynamic shapes we first:
1) Try to compute it without guarding.
2) If all shapes hinted, compute it with potentially adding guards.
3) if any input is not hinted, compute it symbolically.

sym_is_contiguous return a SymBool that is then either evaluated or guard_or_false can be called
on it to avoid data dependent errors.

ex:
 bool is_contiguous = input.sym_is_contiguous().guard_or_false(__FILE__, __LINE__);
is_contiguous_or_false is a helper function that does that.

In this PR I only handle default contiguity, will follow up with changes for other formats like  channel_last .
We use this patter in this PR for several locations to avoid DDEs.
Differential Revision: [D77183032](https://our.internmc.facebook.com/intern/diff/D77183032)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155590
Approved by: https://github.com/ezyang
2025-06-27 04:59:52 +00:00
b754b1fa43 Fix reinplace pass handling of view input + mutable custom op (#156729)
Fixes #153389.

Using approach https://github.com/pytorch/pytorch/issues/153389#issuecomment-3006049928 suggested by Richard.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156729
Approved by: https://github.com/zou3519
2025-06-27 04:54:17 +00:00
e6d8ed02cb PyTorch Data Sampler benchmark (#156974)
## Motivation
Many PRs optimizing samplers (for eg https://github.com/pytorch/pytorch/pull/147706, https://github.com/pytorch/pytorch/pull/137423) are leveraging an adhoc script for benchmarking samplers. The script and outputs are often copied over in PRs. We want to begin centralizing benchmarks for torch.utils.data components.

## What ?
* This PR adds a new sub-folder in `benchmarks`  for `data`. This is aimed to cover benchmarking scripts for torch.utils.data components like dataloader and sampler.
* Specifically, this PR includes a simple script to time samplers. This is often "copy-pasted" in PRs optimizing samplers. Having it in a centralized location should prevent that, and allow a common standard.

## Output
```
Benchmark Results:
+--------------+-------------+----------------+-----------+-----------+
|   Batch Size | Drop Last   |   Original (s) |   New (s) | Speedup   |
+==============+=============+================+===========+===========+
|            4 | True        |         0.004  |    0.0088 | -119.62%  |
+--------------+-------------+----------------+-----------+-----------+
|            4 | False       |         0.0083 |    0.009  | -9.23%    |
+--------------+-------------+----------------+-----------+-----------+
|            8 | True        |         0.003  |    0.0074 | -147.64%  |
+--------------+-------------+----------------+-----------+-----------+
|            8 | False       |         0.0054 |    0.0075 | -38.72%   |
+--------------+-------------+----------------+-----------+-----------+
|           64 | True        |         0.0021 |    0.0056 | -161.92%  |
+--------------+-------------+----------------+-----------+-----------+
|           64 | False       |         0.0029 |    0.0055 | -92.50%   |
+--------------+-------------+----------------+-----------+-----------+
|          640 | True        |         0.002  |    0.0055 | -168.75%  |
+--------------+-------------+----------------+-----------+-----------+
|          640 | False       |         0.0024 |    0.0062 | -161.35%  |
+--------------+-------------+----------------+-----------+-----------+
|         6400 | True        |         0.0021 |    0.0055 | -160.13%  |
+--------------+-------------+----------------+-----------+-----------+
|         6400 | False       |         0.0021 |    0.0068 | -215.46%  |
+--------------+-------------+----------------+-----------+-----------+
|        64000 | True        |         0.0042 |    0.0065 | -55.29%   |
+--------------+-------------+----------------+-----------+-----------+
|        64000 | False       |         0.0029 |    0.0077 | -169.56%  |
+--------------+-------------+----------------+-----------+-----------+
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156974
Approved by: https://github.com/ramanishsingh
2025-06-27 04:49:43 +00:00
195ef1bce8 [SymmMem] Refactor NVSHMEM tests: separate Triton tests into dedicated file (#156685)
## Summary

Moved the Triton-specific NVSHMEM tests in `test_nvshmem.py` into a dedicated `test_nvshmem_triton.py` file. Also put the shared Triton JIT kernels at the top-level of new file for reusability.

## Testing

```bash
TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py
TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem_triton.py
```

All 16 original tests pass with no functionality changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156685
Approved by: https://github.com/mandroid6, https://github.com/kwen2501
ghstack dependencies: #156684
2025-06-27 04:38:37 +00:00
b6c00dfe24 [user triton] AOT inductor support for device-side TMA (#155896)
Tests: `python test/inductor/test_aot_inductor.py -vvv -k device_tma`

Device-side TMA in Triton allows the kernel author to construct the TMA descriptor on the device (which composes with things like autotuning much better). However, it also requires a scratch space to be provided into which the TMA descriptor will be constructed. In the new TMA API (tl.make_tensor_descriptor), this is implemented using a "global scratch space" - a tensor which is allocated beforehand and then passed in as an argument for the kernel.

To support this in AOTI, this PR:
* records the global scratch space needed (triton_heuristics.py), so that it can be used during AOTI codegen
* allocates global scratch, if needed (cuda/device_op_overrides.py)
* plumbs `device_idx_` into the triton caller function, so that global scratch can be allocated on the right device)
* updates tests to verify this works for dynamically shaped inputs

This PR should support both inductor-generated device-side TMA (e.g. persistent TMA mm) and user-defined triton kernels that contain device-side TMA (which is the test I ran to verify this works)

Note: this overrides any user-provided allocator function (typically with eager triton code, the user must provide their own custom allocator function that is used to allocate scratch space).

For Meta reviewers, here is a tlparse from running `python test/inductor/test_aot_inductor.py -vvv -k test_triton_kernel_on_device_tma_dynamic_True_tma_version_new_cuda` https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/.tmpFg13g1/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000

Differential Revision: [D77352139](https://our.internmc.facebook.com/intern/diff/D77352139)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155896
Approved by: https://github.com/desertfire
2025-06-27 04:28:04 +00:00
710b92cf3b [BE][BugFix] Install Python-3.13 correctly (#157033)
Fixes temporary workaround introduced by https://github.com/pytorch/builder/pull/1827

I.e. it's  been downloading latest 3.13 branch rather than 3.13.0 release

Simplify nogil version handling
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157033
Approved by: https://github.com/wdvr, https://github.com/huydhn
2025-06-27 04:19:59 +00:00
1eea2c4fe3 [Inductor][CPP] Fix perf regression of functorch_maml_omniglot (#156526)
**Summary**
Fix the performance regression of `functorch_maml_omniglot` in TorchBench. The issue reported in [#151523](https://github.com/pytorch/pytorch/issues/151523) occurs only when a parallel reduction is performed under the vectorized loop and a scalar kernel is used for the tail loop. Previously, we addressed this regression in [#151887](https://github.com/pytorch/pytorch/pull/151887) by disabling all cases where a parallel reduction occurs under the vectorized  loop. However, for `functorch_maml_omniglot`, we found that a masked vector kernel is used in the tail loop instead of the scalar kernel in the job of `inductor_torchbench_cpu_smoketest_perf`. In this PR, we refine the fix by excluding the cases where a masked vector kernel is used in the tail loop, rather than disabling all such scenarios.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156526
Approved by: https://github.com/CaoE
2025-06-27 03:09:24 +00:00
7392470da4 [nativert] alias analyzer + layout planner/manager to pytorch core (#156897)
Summary: att

Test Plan:
ci - unit tests still have some unresolved deps but will move them later.

Rollback Plan:

Differential Revision: D77320950

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156897
Approved by: https://github.com/zhxchen17
2025-06-27 03:01:22 +00:00
382c6190c1 complex.pow(2) on GPU by replacing with complex * complex to avoid numerical instability (#152373)
Fixes #150951
Summary:
For complex.pow(2) on GPU:

Uses complex * complex directly.
Produces results consistent with CPU implementation.
Eliminates spurious imaginary components for real inputs.

🧪 Tests
Added unit tests to verify correctness of the new kernel path.
Verified numerical consistency with CPU results.

This change is backward-compatible and only affects the specific case of pow(2) on complex tensors on GPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152373
Approved by: https://github.com/ezyang
2025-06-27 02:21:59 +00:00
e290a4c645 Revert "Rename torch::standalone to headeronly (#156964)"
This reverts commit 7e54c02a35b905e758497b856a1953eb009ba836.

Reverted https://github.com/pytorch/pytorch/pull/156964 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/156964#issuecomment-3011136947))
2025-06-27 02:20:33 +00:00
4ab4d29cbe [BE] Remove SymmMem allocator destruct log (#157020)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157020
Approved by: https://github.com/fduwjj
2025-06-27 02:10:54 +00:00
56c69bedcc Revert "[dynamo] Better error for invalid @contextlib.contextmanager usage (#156924)"
This reverts commit 863327ae496471654344e1e04ccaa713a44a135d.

Reverted https://github.com/pytorch/pytorch/pull/156924 on behalf of https://github.com/jansel due to Likely same issue as #156963 ([comment](https://github.com/pytorch/pytorch/pull/156924#issuecomment-3011087802))
2025-06-27 01:57:05 +00:00
8e8bbfc803 Remove ts to export retracer (#156857)
Summary: This is probably not used anymore

Test Plan:
CI

Rollback Plan:

Reviewed By: SherlockNoMad

Differential Revision: D77318582

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156857
Approved by: https://github.com/SherlockNoMad
2025-06-27 01:54:24 +00:00
a4b59498c5 Fix fake kernel for the out=... variant of unbind_copy (#156643)
`unbind_copy(..., out=...)` returns None rather than the `out` argument
(see https://github.com/pytorch/pytorch/issues/130829#issuecomment-2283936222),
but the old fake kernel didn't account for that and caused an assertion
failure in `pushPyOutToStack`. This patch fixes that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156643
Approved by: https://github.com/zou3519, https://github.com/jansel, https://github.com/bdhirsh
ghstack dependencies: #156642
2025-06-27 01:34:07 +00:00
89aa708b39 [core] Dispatch to at::nansum_out rather than at::native::nansum_out (#156642)
Calling `at::native::nansum_out` causes the fake kernel to dispatch to a
`make_reduction` call and then segfaults later due to the
`mutable_data_ptr` call in `TensorIteratorBase::build`. It also causes
fake tensor propagation issue in Dynamo. The added tests demonstrate the
aforementioned 2 issues.

This patch fixes it by dispatching to `at::nansum_out` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156642
Approved by: https://github.com/zou3519
2025-06-27 01:34:07 +00:00
863327ae49 [dynamo] Better error for invalid @contextlib.contextmanager usage (#156924)
Fixes #156716

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156924
Approved by: https://github.com/williamwen42
2025-06-27 01:02:01 +00:00
7e54c02a35 Rename torch::standalone to headeronly (#156964)
Summary: headeronly is more clear, let's change the name before anyone depends on standalone

Test Plan:
CI should pass!

Rollback Plan:

Differential Revision: D77381084

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156964
Approved by: https://github.com/swolchok, https://github.com/albanD, https://github.com/desertfire
2025-06-27 01:00:14 +00:00
3bdd5ae334 [PT2] deprecate force_same_precision, guarded by JK (#156789)
Summary:
cuBLAS used to have strict alignment requirements for TF32 usage, even if TF32 was enabled by users; this caused a numeric SEV in the past, when Triton would use TF32 even if cuBLAS could not due to failing the alignment checks

we believe that cuBLAS no longer has alignment requirements for TF32 usage, based on some testing in D77265581; we'd like to deprecate `force_same_precision` since it no longer functions as expected

changing the default to False in fbcode, guarded by a jk so that we can quickly revert to the original behavior if needed

Test Plan:
CI

Rollback Plan:

Differential Revision: D77265930

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156789
Approved by: https://github.com/jhadidjojo, https://github.com/masnesral
2025-06-27 00:43:06 +00:00
6215e90b7b Revert "[dynamo] Improve error message for cond aliasing (#156963)"
This reverts commit 9c39bc24807a5843f8affdf56bd71836760dc554.

Reverted https://github.com/pytorch/pytorch/pull/156963 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but the failures are legit ([comment](https://github.com/pytorch/pytorch/pull/156963#issuecomment-3010870664))
2025-06-27 00:31:00 +00:00
e3977e843d Revert "Fix silent incorrectness arising from incorrect alias information (#152011)"
This reverts commit 2d39a48d524021995269411bd49fe792e59d9f94.

Reverted https://github.com/pytorch/pytorch/pull/152011 on behalf of https://github.com/Camyll due to cannot land internally. owner will update and reland to fix ([comment](https://github.com/pytorch/pytorch/pull/152011#issuecomment-3010723960))
2025-06-26 23:54:13 +00:00
eb9efb37c8 [dynamo] fix _torchdynamo_orig_callable naming issues (#156901)
`_torchdynamo_orig_callable` was being used in two distinct places:
- to get the original user function from nested eval_frame.py decorators
- to get the original backend from nested convert_frame.py callbacks

We rename the first usage to `_torchdynamo_orig_fn` and the second to `_torchdynamo_orig_backend` in order to distinguish these cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156901
Approved by: https://github.com/StrongerXi, https://github.com/jansel
ghstack dependencies: #156527
2025-06-26 23:51:08 +00:00
6089ebcf6d [dynamo] fix segfault due to dangling CacheEntry backend pointer (#156527)
Fixes https://github.com/pytorch/pytorch/issues/155057

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156527
Approved by: https://github.com/anijain2305, https://github.com/jansel
2025-06-26 23:51:08 +00:00
e0447bb5f8 Add max_pool3d for MPS (#156467)
Fixes #100674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156467
Approved by: https://github.com/malfet
2025-06-26 23:33:50 +00:00
1fff6356d9 [MPS] Optimize cummin/cummax metal kernels (#156794)
Performance improvement (M4 Max 64GB, macOS 15.5):
```
                                              | Current | Previous
      cummin-dim0-32x32 (torch.float16)       |  103.4  |   102.5
      cummin-dim0-128x128 (torch.float16)     |  112.2  |   133.6
      cummin-dim0-512x512 (torch.float16)     |  146.9  |   233.1
      cummin-dim0-1024x1024 (torch.float16)   |  193.6  |   364.2
      cummin-dim1-32x32 (torch.float16)       |  102.0  |    94.4
      cummin-dim1-128x128 (torch.float16)     |  103.0  |   109.9
      cummin-dim1-512x512 (torch.float16)     |  109.1  |   227.0
      cummin-dim1-1024x1024 (torch.float16)   |  140.5  |   985.1
      cummin-1d-100 (torch.float16)           |  101.8  |   100.7
      cummin-1d-10000 (torch.float16)         |  112.8  |   805.0
      cummin-1d-1000000 (torch.float16)       | 1343.8  | 70545.6
      cummin-dim0-32x32 (torch.float32)       |  104.6  |   102.7
      cummin-dim0-128x128 (torch.float32)     |  112.3  |   137.2
      cummin-dim0-512x512 (torch.float32)     |  146.6  |   209.7
      cummin-dim0-1024x1024 (torch.float32)   |  194.0  |   340.1
      cummin-dim1-32x32 (torch.float32)       |  100.1  |    99.2
      cummin-dim1-128x128 (torch.float32)     |  101.4  |   111.9
      cummin-dim1-512x512 (torch.float32)     |  110.3  |   250.7
      cummin-dim1-1024x1024 (torch.float32)   |  141.4  |   987.9
      cummin-1d-100 (torch.float32)           |  101.0  |   100.6
      cummin-1d-10000 (torch.float32)         |  112.9  |   794.7
      cummin-1d-1000000 (torch.float32)       | 1311.7  | 71995.3
      cummin-dim0-32x32 (torch.bfloat16)      |  105.8  |   105.9
      cummin-dim0-128x128 (torch.bfloat16)    |  111.9  |   135.7
      cummin-dim0-512x512 (torch.bfloat16)    |  147.1  |   231.9
      cummin-dim0-1024x1024 (torch.bfloat16)  |  191.2  |   327.7
      cummin-dim1-32x32 (torch.bfloat16)      |  101.8  |    91.3
      cummin-dim1-128x128 (torch.bfloat16)    |  100.2  |   108.5
      cummin-dim1-512x512 (torch.bfloat16)    |  108.9  |   222.0
      cummin-dim1-1024x1024 (torch.bfloat16)  |  140.1  |   936.9
      cummin-1d-100 (torch.bfloat16)          |  103.0  |   106.6
      cummin-1d-10000 (torch.bfloat16)        |  113.1  |   795.8
      cummin-1d-1000000 (torch.bfloat16)      | 1296.8  | 68667.4
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156794
Approved by: https://github.com/malfet
ghstack dependencies: #156860
2025-06-26 23:30:20 +00:00
9c39bc2480 [dynamo] Improve error message for cond aliasing (#156963)
See #156724

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156963
Approved by: https://github.com/zou3519, https://github.com/williamwen42
2025-06-26 23:12:00 +00:00
e6ed4074e8 update expected results (#157010)
<img width="1490" alt="Screenshot 2025-06-26 at 12 30 46 PM" src="https://github.com/user-attachments/assets/4df626d4-3010-4362-974c-fb96fa68b29f" />

<img width="904" alt="Screenshot 2025-06-26 at 12 28 29 PM" src="https://github.com/user-attachments/assets/42626892-27e1-4e69-9efc-c9baf80c5384" />

<img width="752" alt="Screenshot 2025-06-26 at 12 29 05 PM" src="https://github.com/user-attachments/assets/0b1afb30-5868-4ba6-9985-2cc7994a4227" />
PR https://github.com/pytorch/pytorch/pull/152011
added slight regression

<br class="Apple-interchange-newline">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157010
Approved by: https://github.com/zou3519
2025-06-26 21:56:57 +00:00
80d89974c1 [dynamo] raise hard error if error is encountered while tracing resume function prologue (#154564)
This should prevent bad resume function prologues from slipping by. In particular, graph breaks in resume function prologues will now hard error.

Implementation details:
- The resume function prologue is surrounded by `LOAD_CONST arg, STORE_FAST __is_tracing_resume_prologue` instructions. The first sequence has `arg=True` and the second sequence has `arg=False`.
- InstructionTranslator will know when it is tracing a resume function prologue when it detects `STORE_FAST __is_tracing_resume_prologue`. The top of stack will be True to mark the start of the prologue, False to mark the end.
- When `convert_frame.py` detects that an error occurred while the InstructionTranslator was tracing a resume function prologue, we will wrap the exception and hard error

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154564
Approved by: https://github.com/jansel
ghstack dependencies: #154283, #154289, #154782, #156762, #155166
2025-06-26 21:40:38 +00:00
6df6eacce8 [dynamo] handle fullgraph toggle using nested torch.compile (#155166)
See added test for the case that this PR handles. In particular, the semantics for nested torch.compile with toggled fullgraph settings was strange before - `@torch.compile(fullgraph=True)` overrides the existing fullgraph setting, while `@torch.compile(fullgraph=False)` does not.

Note that this change will add an extra frame to any inlined torch.compile'd function (which I don't expect to happen frequently).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155166
Approved by: https://github.com/jansel
ghstack dependencies: #154283, #154289, #154782, #156762
2025-06-26 21:40:38 +00:00
dcb8982969 [dynamo] move error_on_graph_break out of config (#156762)
error_on_graph_break doesn't need to be in config, so we move it out. It should make the functorch_maml_omniglot regression less severe.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156762
Approved by: https://github.com/jansel
ghstack dependencies: #154283, #154289, #154782
2025-06-26 21:40:38 +00:00
36666033ab [dynamo] fix set_fullgraph for nested calls (#154782)
- Make the fullgraph argument of set_fullgraph a positional argument
- Fix behavior on nested calls by updating `tracer.error_on_graph_break` in more places. In particular, a tracer's error_on_graph_break is set to the inlined tracer's error_on_graph_break upon the latter's exit. We also track error_on_graph_break in the speculation log now, since if we encounter a nested graph break, we will restart analysis and we need to somehow remember the error_on_graph_break setting after attempting to run the nested function (but we don't actually trace into it in the restart analysis).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154782
Approved by: https://github.com/jansel
ghstack dependencies: #154283, #154289
2025-06-26 21:40:38 +00:00
7b7eafe7ba [dynamo] add set_fullgraph decorator/context manager (#154289)
Implements https://github.com/pytorch/pytorch/issues/144908.

Implementation notes:
- `set_fullgraph` is implemented using `patch_config`, which changes config correctly during runtime and tracing.
- Moved setting `config.error_on_graph_break` from convert_frame.py to eval_frame.py. This is because this should only be done at the top-level decorated function. If we kept this in convert_frame.py, we would be changing `config.error_on_graph_break` on every top-level frame, which causes confusing behavior (see added test for example).
- InstructionTranslator reads from `config.error_on_graph_break` every `step()`. This is to determine the value of `config.error_on_graph_break` at the time of the graph break, because tracer cleanup will restore the value of `config.error_on_graph_break` .
- `convert_frame.py` determines whether we should abort tracing (fullgraph=True) or continue (fullgraph=False) by reading the value of the tracer's `error_on_graph_break`. If there is no tracer (failed to initialize), then default to reading `config.error_on_graph_break`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154289
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #154283
2025-06-26 21:40:38 +00:00
1c3f5e902d [dynamo] control one_graph behavior additionally through config (#154283)
`torch.compile` now always goes through `torch._dynamo._optimize`. fullgraph is now implemented in `torch.compile` by looking at `config.error_on_graph_break`. Export still goes through `torch._dynamo._optimize_assert`, which uses `tx.one_graph` instead of `config.error_on_graph_break`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154283
Approved by: https://github.com/jansel, https://github.com/anijain2305
2025-06-26 21:40:38 +00:00
fc10d4b1d6 [SymmMem] Allow selection of allocation backend (#156661)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):

Today the only way to choose allocation backend is via env `TORCH_SYMMMEM=...`.
This is a bit hard to set in CI on test file basis. (The env has to be set before program is loaded).

This PR added a programmatic way -- a `set_backend` API.

Implementation:
Since this API is slightly more dynamic than static registration, at static time each backend registers its availability rather than filling itself as **the** allocator directly. Later when `set_backend` is called, the allocator would actually fill in the device-to-allocation `map_`.

Though added, `set_backend` is **not** a necessary API for user to call -- one backend is still registered as the default at static time.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156661
Approved by: https://github.com/ngimel, https://github.com/fduwjj
2025-06-26 21:37:44 +00:00
262654ee51 [nativert] move constantfolder to libtorch (#156918)
Summary: att -- unit tests will be migrated later, since they still have unresolved deps.

Test Plan:
ci

Rollback Plan:

Differential Revision: D77159278

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156918
Approved by: https://github.com/henryoier, https://github.com/zhxchen17
2025-06-26 21:26:37 +00:00
7f6e7103a3 Convert to markdown: jit_python_reference.rst, jit_unsupported.rst, jit_utils.rst, library.rst (#155404)
Fixes #155024

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155404
Approved by: https://github.com/svekars
2025-06-26 21:09:46 +00:00
aff9c1eec5 [aoti][mps] Add fused_rms and sdpa_mps fallback ops (#156844)
Needed for llama3.1

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156844
Approved by: https://github.com/desertfire
ghstack dependencies: #156843
2025-06-26 21:03:05 +00:00
17dab018e3 [aoti][mps] Fix deduplication of kernels (#156843)
Previously I was not correctly deduplicating kernels generated by mps, so it would generate multiple of the same kernel.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156843
Approved by: https://github.com/desertfire
2025-06-26 21:03:05 +00:00
977abe786d fix 'register_foward_pre_hook not supported on ScriptModule' error (#156904)
Summary:
Encountered 'register_foward_pre_hook not supported on ScriptModule' error when trying to publish CFR MTML with placing remote_ro module in remote. Issue may come from the fact that the local net from torchArrow is already scriptModule before gen_app_graph pass.
{F1979770267}

Test Plan:
hg checkout 1ff14dfaade4ac1f3cbbf38fbd72f7fdd5cdcd16
bash hstu_blocker.sh

Rollback Plan:

Reviewed By: RenfeiChen-FB

Differential Revision: D77341370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156904
Approved by: https://github.com/jingsh
2025-06-26 20:59:24 +00:00
81759afed4 [nativert] clean up some migration side-effects (#156919)
Summary: explicit torch::nativert namespace usage + // manual declarations

Test Plan:
ci

Rollback Plan:

Differential Revision: D77328855

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156919
Approved by: https://github.com/zhxchen17
2025-06-26 20:28:32 +00:00
b6e625e34f [SymmMem] Remove redundant dist.barrier in Triton NVSHMEM tests & add device‐side signal_op support (#156684)
## Summary

This PR removes unnecessary `dist.barrier` calls up in our Triton NVSHMEM test suite and adds signal_op support, which is a lightweight device-side signaling mechanism. Added test for this in our `wait_until` kernel and corresponding `core.extern` wrapper.

**Why did we drop the `dist.barrier()` calls?**
We dropped the host‐side dist.barrier() in all Triton NVSHMEM tests (except the raw put/get cases) because every other test already uses NVSHMEM collectives or device‐side sync primitives (fence/quiet/signal/wait), making the extra barrier redundant. This keeps synchronization entirely on the GPU and leverages NVSHMEM’s native ordering guarantees for clearer, more efficient tests.

**`test_triton_wait_until` update**
- **Rank 1**: after `put_kernel` writes the data, launches `signal_op_kernel` to atomically set Rank 0's flag via `nvshmemx_signal_op`
- **Rank 0**: drops its old `dist.barrier()` and simply calls `wait_until_kernel` to spin-wait on the device flag, then asserts data correctness
- Changes made per [this comment](https://github.com/pytorch/pytorch/pull/156472#discussion_r2159734046)

## Testing

```bash
TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156684
Approved by: https://github.com/kwen2501, https://github.com/mandroid6
2025-06-26 20:16:06 +00:00
43a09189c6 [MPS] Add benchmark for scan with indices (#156860)
Baseline performance on M4 Max 64GB (macOS 15.5):
```
[--------------------------------  --------------------------------]
                                              |   eager   |  compile
1 threads: ---------------------------------------------------------
      cummin-dim0-32x32 (torch.float16)       |    102.5  |    115.0
      cummin-dim0-128x128 (torch.float16)     |    133.6  |    147.8
      cummin-dim0-512x512 (torch.float16)     |    233.1  |    243.1
      cummin-dim0-1024x1024 (torch.float16)   |    364.2  |    385.2
      cummin-dim1-32x32 (torch.float16)       |     94.4  |    109.8
      cummin-dim1-128x128 (torch.float16)     |    109.9  |    122.5
      cummin-dim1-512x512 (torch.float16)     |    227.0  |    233.8
      cummin-dim1-1024x1024 (torch.float16)   |    985.1  |   1010.5
      cummin-1d-100 (torch.float16)           |    100.7  |    114.3
      cummin-1d-10000 (torch.float16)         |    805.0  |    879.1
      cummin-1d-1000000 (torch.float16)       |  70545.6  |  71310.3
      cummin-dim0-32x32 (torch.float32)       |    102.7  |    115.5
      cummin-dim0-128x128 (torch.float32)     |    137.2  |    143.8
      cummin-dim0-512x512 (torch.float32)     |    209.7  |    222.0
      cummin-dim0-1024x1024 (torch.float32)   |    340.1  |    389.9
      cummin-dim1-32x32 (torch.float32)       |     99.2  |    107.8
      cummin-dim1-128x128 (torch.float32)     |    111.9  |    119.3
      cummin-dim1-512x512 (torch.float32)     |    250.7  |    255.1
      cummin-dim1-1024x1024 (torch.float32)   |    987.9  |   1013.2
      cummin-1d-100 (torch.float32)           |    100.6  |    114.6
      cummin-1d-10000 (torch.float32)         |    794.7  |    862.2
      cummin-1d-1000000 (torch.float32)       |  71995.3  |  71963.5
      cummin-dim0-32x32 (torch.bfloat16)      |    105.9  |    113.9
      cummin-dim0-128x128 (torch.bfloat16)    |    135.7  |    147.9
      cummin-dim0-512x512 (torch.bfloat16)    |    231.9  |    240.7
      cummin-dim0-1024x1024 (torch.bfloat16)  |    327.7  |    366.9
      cummin-dim1-32x32 (torch.bfloat16)      |     91.3  |    103.3
      cummin-dim1-128x128 (torch.bfloat16)    |    108.5  |    117.4
      cummin-dim1-512x512 (torch.bfloat16)    |    222.0  |    233.6
      cummin-dim1-1024x1024 (torch.bfloat16)  |    936.9  |    982.5
      cummin-1d-100 (torch.bfloat16)          |    106.6  |    112.4
      cummin-1d-10000 (torch.bfloat16)        |    795.8  |    819.6
      cummin-1d-1000000 (torch.bfloat16)      |  68667.4  |  68557.9

Times are in microseconds (us).
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156860
Approved by: https://github.com/malfet
2025-06-26 18:44:16 +00:00
9fe2d156a9 Revert "[dynamo] fix segfault due to dangling CacheEntry backend pointer (#156527)"
This reverts commit 5ad2bee2c8a7defd2580bb138145a49c37146fcc.

Reverted https://github.com/pytorch/pytorch/pull/156527 on behalf of https://github.com/Camyll due to failing test assertions ([comment](https://github.com/pytorch/pytorch/pull/156527#issuecomment-3009231797))
2025-06-26 17:32:34 +00:00
13efb2c858 [BE] Deprecate search_autotune_cache (#155302)
We haven't had the offline cache populated in > 1 year, this *should* be safe; if this passes, we can finally go through and rip out the offline cache logic

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155302
Approved by: https://github.com/masnesral
2025-06-26 17:30:08 +00:00
039a1ce0eb [BE] Remove CXX11_ABI references from cpp_builder.py (#156896)
As all Linux builds are CXX11_ABI compatible at this point

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156896
Approved by: https://github.com/desertfire, https://github.com/jansel
2025-06-26 17:28:01 +00:00
e15ea965a1 remove guard_size_oblivious from unbind. (#148815)
unbind will always specialize on dim, because it determine the number of output tensors.
guard_size_oblivious is not useful there and more confusing probably for code readers
added a comment and a test that verifies the specialization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148815
Approved by: https://github.com/pianpwk
2025-06-26 17:16:32 +00:00
61eaaa21a4 Better error message when no .so/cpp files are found (#156863)
Summary:
Sample error message:

```
RuntimeError: Failed to find a generated cpp file or so file for model 'forward' in the zip archive.

Available models in the archive:
model

To load a specific model, please provide its name using the `model_name` parameter when calling AOTIModelPackageLoader()  or torch._inductor.package.load_package.

The following files were loaded from the archive:
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/cqdxv6zki2oiiytjeqrg774uxlxgqdemhdxn5dycn4nnc3rmcd7w.cubin
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper.cpp
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/ctmp7adn3spwyscdotllyj4yx3vrqcnxk3thkpgdcax7zvqmyyp3.kernel.cpp
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper_metadata.json
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/ctmp7adn3spwyscdotllyj4yx3vrqcnxk3thkpgdcax7zvqmyyp3.kernel_metadata.json
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/data/aotinductor/model/c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper.so
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/archive_format
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/archive_version
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/.data/version
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/byteorder
c7l7jkswdq7ud6gpvpmunx76hi3c357l7epyc7oofeemzeoy7euo.wrapper/.data/serialization_id

```

Test Plan:
```
buck2 run @//mode/dev-nosan //caffe2/test/inductor:aot_inductor_package -- -r "test_loading_wrong_model"
```

Rollback Plan:

Differential Revision: D77320485

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156863
Approved by: https://github.com/tugsbayasgalan
2025-06-26 17:13:29 +00:00
21990fbad9 Revert "[cond] support gen_schema for cond (#154193)"
This reverts commit 6de41ce0f899604c3f8b33e1f8d37eb89b3a963e.

Reverted https://github.com/pytorch/pytorch/pull/154193 on behalf of https://github.com/Camyll due to issue landing internally, discussed with Yidi offline ([comment](https://github.com/pytorch/pytorch/pull/154193#issuecomment-3009160081))
2025-06-26 17:10:00 +00:00
c808af514d Support deterministic upsample trilinear backward (#154239)
Fixes https://github.com/pytorch/pytorch/issues/154183
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154239
Approved by: https://github.com/eellison, https://github.com/albanD
2025-06-26 15:02:27 +00:00
2f94f69b7c [aotd] Support mutations of the same input in fw and bw (#155354)
Original issue: https://github.com/pytorch/pytorch/issues/154820

The issue happens when there is a mutation for the same input in forward AND in backward.

AOTD emited copy_ after joint_function tracing. This made this fx-node to correspond to the side effects of both mutations (in forward and in backward).
After that partitioner can put it either in forward or in backward.

The fix:

1/ Introduce joint_function.handle that allows to set "post_forward" callback, to be able to check inputs state after forward

We do not want to apply the mutation after joint, if we already applied it in forward. For that we need "mutation_counter" and memorize the version of mutation that we applied for  forward mutation.

2/ Exposing mutation_counter to python

We want to keep invariant that copy_ exist only in the end of joint graph.

3/ We memorize mutation_counter and state of the inputs after forward, using the handle post_forward.
Emit post_forward mutations after joint graph fully traced.

add for post_forward mutations "must_be_in_forward" tag (similar to existing "must_be_in_backward") to keep them in forward.

4/ Ban recompute of the source of mutation. Recompute can apply the same op (e.g. add) in forward and backward.
For this set MUST_SAVE for the source of mutation in forward.

proxy_tensor changes:

By default proxy tensor updates tensor_tracker. In this case applied mutations will be chained.
But we want that this copy_ will be independent and applied just to primals.
For this introducing a contextmanager to be able to disable update of tensor_tracker for adding forward mutations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155354
Approved by: https://github.com/bdhirsh
2025-06-26 14:05:54 +00:00
197c1869f5 [Inductor][CLN] Remove unused default configs in flex_attention.py (#156700)
They probably became unusable after 03023f178c

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156700
Approved by: https://github.com/jataylo, https://github.com/drisspg
2025-06-26 13:24:09 +00:00
2d39a48d52 Fix silent incorrectness arising from incorrect alias information (#152011)
Fixes #136662

There are two problems:
1) canonicalize_view_scatter_ops adds some new nodes into the graph.
   These new nodes cause the alias info on the graph to be wrong. To fix
   this, we try to run FakeTensorUpdater on the graph again.
2) FakeTensorUpdater's alias information is wrong. It tries to skip
   nodes that it thinks have "equivalent" FakeTensor metadata.
   It should not be allowed to do this if any users of the node can
   alias the node. The example
   is if we have `x = foo(...); y = x.view(...)`. If the user replaces
   `foo` with a new `bar` node and sets bar.meta["val"] correctly, then
   FakeTensorUpdater still needs to update y's meta["val"] to be a view
   of the new bar node.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152011
Approved by: https://github.com/yf225
2025-06-26 13:05:08 +00:00
53e0b9c393 refine fp32 precision api (#125888)
Based on the [conversation](https://github.com/pytorch/pytorch/issues/121791), we plan to drop the "highest, high, medium" to represent fp32  internal computation data types . Instead, we will directly use the algorithm to represent it.

### Design Choice: Directly use algorithms name like "TF32", "BF16".
#### Pros
 - The names are more informative. 'tf32' is more informative than a simple "high".
 - Easier to extend new algorithm like `tf32x3`
#### Cons
 - "HIGHEST, HIGH, MEDIUM" indicated the relative precision between different algorithms. However, we can have more documents to discuss them.

### We provide a layered structure for backends/operators.
('f32' is short for 'fp32_precision')
![image](https://github.com/user-attachments/assets/f89143e5-d6a1-4865-9351-9a50439f5067)

### We provide 3 fp32 compute precision can be set:
 - **"ieee"**: Not allowed to use any other internal computation data types .
 - **"tf32"**: Allowed to use tf32 as internal computation data types.
 - **"bf16"**: Allowed to use bf16 as internal computation data types.
 - **"none"**:  Precision's are not set. Can be override by its father node.

### Overriding Precision Settings
Child node can be override by its father node if it is set to default.
For current default settings:
```
backend = generic, op = all, precision setting = none
    backend = cuda, op = all, precision setting = none
        backend = cuda, op = conv, precision setting = tf32
        backend = cuda, op = rnn, precision setting = tf32
        backend = cuda, op = matmul, precision setting = none
    backend = matmul, op = all, precision setting = none
        backend = matmul, op = conv, precision setting = none
        backend = matmul, op = rnn, precision setting = none
        backend = matmul, op = matmul, precision setting = none
```
 - If the user set `torch.backends.mkldnn.fp32_precision="bf16"`, his child nodes `torch.backends.mkldnn.matmul.fp32_precision` / `torch.backends.mkldnn.conv.fp32_precision` / `torch.backends.mkldnn.rnn.fp32_precision` will also be override to "bf16".
 - If the user set `torch.backends.fp32_precision="bf16"`,  `torch.backends.mkldnn.fp32_precision` and his child nodes will also we override to "bf16".

### Backward Compatible
Since new API allow user to have more fine-grained control. There will be some conflict. For example, previous `torch.backends.cudnn.allow_tf32` are not enough to represent the status for `torch.backends.cudnn.rnn.fp32_precision="ieee"` and `torch.backends.cudnn.conv.fp32_precision="tf32"`. Therefore, our goal for backward compatible is
 - If the user only uses previous APIs, it will work as previous expectations.
 - If the user use **new** API to change the status to an **un-representable** status for old API, and try to access the status by **old** API. We will raise Runtime Error and point the document for user.

### Test Plan
```
python test/test_cuda.py -k test_fp32_precision_with_tf32
python test/test_cuda.py -k test_fp32_precision_with_float32_matmul_precision
python test/test_cuda.py -k test_invalid_status_for_legacy_api
python test/test_mkldnn.py -k test_mlkdnn_get_set
python test/test_mkldnn.py -k test_generic_precision
python test/test_mkldnn.py -k test_invalid
python test/test_mkldnn.py -k test_default_use_parent
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125888
Approved by: https://github.com/jgong5, https://github.com/albanD

Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
2025-06-26 10:32:20 +00:00
de45c5f673 [aarch64] Add back NCCL lib to cuda arm wheel (#156888)
We discovered that when importing latest 12.9 arm nightly wheel, it is missing the NCCL lib. With the use of USE_SYSTEM_NCCL=1, we need to copy the libnccl.so lib into our big wheel environment, so that it can be dynamically linked at runtime.

https://github.com/pytorch/pytorch/pull/152835 enabled USE_SYSTEM_NCCL=1, which would use the system NCCL by default, and it would no longer use the one built from libtorch_cuda.so. With this PR, we add back the libnccl.so to be used at runtime. In this way, we also provide the flexibility to use different versions of NCCL from what came with the original pytorch build.

related - https://github.com/pytorch/pytorch/issues/144768

```
Python 3.12.3 (main, Jun 18 2025, 17:59:45) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.12/dist-packages/torch/__init__.py", line 417, in <module>
    from torch._C import *  # noqa: F403
    ^^^^^^^^^^^^^^^^^^^^^^
ImportError: libnccl.so.2: cannot open shared object file: No such file or directory
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156888
Approved by: https://github.com/atalman
2025-06-26 10:24:18 +00:00
18b01afa9e load inline user overridable gencode (#156850)
Fixes https://github.com/pytorch/pytorch/issues/156815

As far as testing goes
* I tried to use cuobjdump but that was kinda goofy bccd9393a5 the problem was that the name of the cubin will have a single gencode always
* Another idea was to read stderr and check that the right amount of gencodes is there 0beadc01b3 this helped a lot to convince me locally that this test works, the test passed on my dev gpu but was failing in CI and I suspect it's because of a bad interaction with subprocesses
* Last approach was to have a simpler unit test to check which flags get added by default, this is not as comprehensive as the previous ideas but it works and is fast so will opt for this since I'm convinced testing is working per my own experiments and customers

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156850
Approved by: https://github.com/malfet
2025-06-26 10:15:08 +00:00
bbf1a6feac Add dist_info to non-building setup.py commands (#156709)
This adds the `dist_info` command to the list of non-building commands of `setup.py`, which avoids the current situation where simple metadata generation with any packaging tool already triggers a build.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156709
Approved by: https://github.com/Skylion007
2025-06-26 08:38:39 +00:00
455dfd2589 Fix macOS build with USE_MPS=OFF (#156847)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156847
Approved by: https://github.com/angelayi
2025-06-26 07:15:41 +00:00
50b2069b61 Move out super large one off foreach_copy test (#156876)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156876
Approved by: https://github.com/albanD, https://github.com/jeffdaily
2025-06-26 06:02:38 +00:00
dfc31b3345 [BE] comments + try to get rid of secondary make_autotune_fn (#156358)
Not sure this will work, but let's try it on the unit tests. The only thing I am worried about is the counters drifting off from their true values, so let the unit tests check that

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156358
Approved by: https://github.com/masnesral
2025-06-26 05:54:01 +00:00
0d01bafc34 remove gso from set_storage_meta__symint (#156525)
We already check that inputs are hinted? i dont see value here for it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156525
Approved by: https://github.com/pianpwk
2025-06-26 05:42:05 +00:00
127695eb5c ci: Add ciflow trigger for build-triton-wheel (#156893)
Signed-off-by: Eli Uriegas <eliuriegas@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156893
Approved by: https://github.com/malfet
2025-06-26 04:38:38 +00:00
0a16818d5b [OpenReg] Remove the unit.skip for test_serialization (#156804)
This bugs was fixed by this [PR](https://github.com/pytorch/pytorch/pull/147095)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156804
Approved by: https://github.com/albanD
ghstack dependencies: #156588, #156589
2025-06-26 03:59:50 +00:00
98e594b565 [OpenReg][2/N] Migrate cpp_extensions_open_device_registration to OpenReg (#156589)
----

- serialization
- dlpack

**Next Steps**:

- The rest of `test/test_cpp_extensions_open_device_registration.py` is about the fallback mechanism. In order to keep it consistent with other accelerator usage (C++ registration), the implementation of OpenReg needs to be refactored:

    * Simulate multiple device memory in a single process (a brief RFC will be submitted this week)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156589
Approved by: https://github.com/albanD
ghstack dependencies: #156588
2025-06-26 03:59:50 +00:00
a730c65fe3 [OpenReg][1/N] Migrate cpp_extensions_open_device_registration to OpenReg (#156588)
----

- fake tensor
- named tensor
- custom autograd function
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156588
Approved by: https://github.com/albanD
2025-06-26 03:59:50 +00:00
4585c33e74 [symm_mem] Fix nccl test for symm mem (#156752)
Try not to call set_device to Fixes #156569

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156752
Approved by: https://github.com/kwen2501
2025-06-26 02:59:38 +00:00
7521cd9111 [BE] Typo fix (#156836)
Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156836
Approved by: https://github.com/albanD, https://github.com/jingsh, https://github.com/Skylion007
ghstack dependencies: #156830, #156831
2025-06-26 02:48:55 +00:00
68e023cbbb [BE] Add missing type for storage dict (#156831)
For some reason, this one always bleats when I run mypy on OSX, so shut it up.

Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156831
Approved by: https://github.com/mikaylagawarecki, https://github.com/atalman, https://github.com/malfet
ghstack dependencies: #156830
2025-06-26 02:48:55 +00:00
df9e5a276b [BE] Add type and docs for _process_export_inputs (#156830)
Done using claude code and manual review.

Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156830
Approved by: https://github.com/tugsbayasgalan, https://github.com/malfet
2025-06-26 02:48:55 +00:00
81bf278537 [cutlass] rename cutlass python lib to python-cutlass (#156655)
Differential Revision: [D77173366](https://our.internmc.facebook.com/intern/diff/D77173366/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156655
Approved by: https://github.com/Skylion007
2025-06-26 02:47:14 +00:00
8da774d81f [ez] Add docblock for SchedulerNode.codegen (#156718)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156718
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #156466, #156445, #156625, #156717
2025-06-26 02:43:50 +00:00
78ee2ee90e Fix environment and push env var for docker image builds for binary builds (#156910)
Changes WITH_PUSH and the environment check to be ok with giving credentials to push to docker io if its on the main branch, a tag starting with v, or the release branch

Credentials for pushing to docker io are in the environment, so without the environment, you can't push to docker io.  You also don't do the push unless WITH_PUSH is true

binary builds on release branch were failing because they pull from docker io, but the docker build wasn't pushing to docker io because it was either on the release branch (didn't have credentials https://github.com/pytorch/pytorch/actions/runs/15888166271/job/44813180986) or it was on the tag (doesn't have WITH_PUSH)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156910
Approved by: https://github.com/atalman
2025-06-26 02:06:57 +00:00
5db9a2b54a [BE] Install Helion without dependencies (#156706)
After: https://github.com/pytorch/pytorch/pull/155513
Please see comment: https://github.com/pytorch/pytorch/pull/155513#issuecomment-2998085740

Here are the logs: https://github.com/pytorch/pytorch/actions/runs/15838529400/job/44646874281?pr=156664#step:6:16372

Looks like current workflow is :
Build triton - triton-3.4.0+git5389ed79-cp310-cp310-linux_x86_64.whl
Install Helion - Overwrite triton with production 3.3.1 and install production torch
Reinstall triton as final docker build step - triton-3.4.0+git5389ed79-cp310-cp310-linux_x86_64.whl

This makes it somewhat messy since we install both torch and triton from prod. This is something we want to avoid when building underlining docker images for CI

Log:
```
#55 311.4 + pip_install helion
#55 311.4 + as_jenkins conda run -n py_3.10 pip install --progress-bar off helion
#55 311.4 + sudo -E -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH= conda run -n py_3.10 pip install --progress-bar off helion
#55 393.6 Collecting helion
#55 393.6   Downloading helion-0.0.7-py3-none-any.whl.metadata (14 kB)
#55 393.6 Collecting filecheck (from helion)
#55 393.6   Downloading filecheck-1.0.2-py3-none-any.whl.metadata (5.8 kB)
#55 393.6 Collecting torch>=2.7.0 (from helion)
#55 393.6   Downloading torch-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (29 kB)
#55 393.6 Requirement already satisfied: typing-extensions>=4.0.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from helion) (4.14.0)
#55 393.6 Requirement already satisfied: filelock in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=2.7.0->helion) (3.18.0)
#55 393.6 Requirement already satisfied: sympy>=1.13.3 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=2.7.0->helion) (1.13.3)
#55 393.6 Requirement already satisfied: networkx in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=2.7.0->helion) (2.8.8)
#55 393.6 Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=2.7.0->helion) (3.1.6)
#55 393.6 Requirement already satisfied: fsspec in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from torch>=2.7.0->helion) (2025.5.1)
#55 393.6 Collecting nvidia-cuda-nvrtc-cu12==12.6.77 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-cuda-runtime-cu12==12.6.77 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-cuda-cupti-cu12==12.6.80 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB)
#55 393.6 Collecting nvidia-cudnn-cu12==9.5.1.17 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl.metadata (1.6 kB)
#55 393.6 Collecting nvidia-cublas-cu12==12.6.4.1 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-cufft-cu12==11.3.0.4 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-curand-cu12==10.3.7.77 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-cusolver-cu12==11.7.1.2 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB)
#55 393.6 Collecting nvidia-cusparse-cu12==12.5.4.2 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB)
#55 393.6 Collecting nvidia-cusparselt-cu12==0.6.3 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl.metadata (6.8 kB)
#55 393.6 Collecting nvidia-nccl-cu12==2.26.2 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.0 kB)
#55 393.6 Collecting nvidia-nvtx-cu12==12.6.77 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.6 kB)
#55 393.6 Collecting nvidia-nvjitlink-cu12==12.6.85 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting nvidia-cufile-cu12==1.11.1.6 (from torch>=2.7.0->helion)
#55 393.6   Downloading nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.5 kB)
#55 393.6 Collecting triton==3.3.1 (from torch>=2.7.0->helion)
#55 393.6   Downloading triton-3.3.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (1.5 kB)
#55 393.6 Requirement already satisfied: setuptools>=40.8.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from triton==3.3.1->torch>=2.7.0->helion) (80.9.0)
#55 393.6 Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from sympy>=1.13.3->torch>=2.7.0->helion) (1.3.0)
#55 393.6 Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from jinja2->torch>=2.7.0->helion) (3.0.2)
#55 393.6 Downloading helion-0.0.7-py3-none-any.whl (149 kB)
#55 393.6 Downloading torch-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl (821.2 MB)
#55 393.6 Downloading nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (393.1 MB)
#55 393.6 Downloading nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB)
#55 393.6 Downloading nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (23.7 MB)
#55 393.6 Downloading nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (897 kB)
#55 393.6 Downloading nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl (571.0 MB)
#55 393.6 Downloading nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.2 MB)
#55 393.6 Downloading nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.1 MB)
#55 393.6 Downloading nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (56.3 MB)
#55 393.6 Downloading nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (158.2 MB)
#55 393.6 Downloading nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (216.6 MB)
#55 393.6 Downloading nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl (156.8 MB)
#55 393.6 Downloading nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (201.3 MB)
#55 393.6 Downloading nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (19.7 MB)
#55 393.6 Downloading nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89 kB)
#55 393.6 Downloading triton-3.3.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (155.6 MB)
#55 393.6 Downloading filecheck-1.0.2-py3-none-any.whl (23 kB)
#55 393.6 Installing collected packages: nvidia-cusparselt-cu12, triton, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufile-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, filecheck, nvidia-cusparse-cu12, nvidia-cufft-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torch, helion
#55 393.6   Attempting uninstall: triton
#55 393.6     Found existing installation: triton 3.4.0+git5389ed79
#55 393.6     Uninstalling triton-3.4.0+git5389ed79:
#55 393.6       Successfully uninstalled triton-3.4.0+git5389ed79
#55 393.6 Successfully installed filecheck-1.0.2 helion-0.0.7 nvidia-cublas-cu12-12.6.4.1 nvidia-cuda-cupti-cu12-12.6.80 nvidia-cuda-nvrtc-cu12-12.6.77 nvidia-cuda-runtime-cu12-12.6.77 nvidia-cudnn-cu12-9.5.1.17 nvidia-cufft-cu12-11.3.0.4 nvidia-cufile-cu12-1.11.1.6 nvidia-curand-cu12-10.3.7.77 nvidia-cusolver-cu12-11.7.1.2 nvidia-cusparse-cu12-12.5.4.2 nvidia-cusparselt-cu12-0.6.3 nvidia-nccl-cu12-2.26.2 nvidia-nvjitlink-cu12-12.6.85 nvidia-nvtx-cu12-12.6.77 torch-2.7.1 triton-3.3.1
#55 393.6
#55 DONE 428.8s

#56 [final  1/30] COPY --from=triton-builder /opt/triton /opt/triton
#56 DONE 0.0s

#57 [final  2/30] RUN if [ -n "yes" ] || [ -n "" ]; then pip install /opt/triton/*.whl; chown -R jenkins:jenkins /opt/conda; fi
#57 0.823 Processing /opt/triton/triton-3.4.0+git5389ed79-cp310-cp310-linux_x86_64.whl
#57 2.263 Requirement already satisfied: setuptools>=40.8.0 in /opt/conda/envs/py_3.10/lib/python3.10/site-packages (from triton==3.4.0+git5389ed79) (80.9.0)
#57 2.589 Installing collected packages: triton
#57 6.405 Successfully installed triton-3.4.0+git5389ed79
#57 6.405 WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager, possibly rendering your system unusable. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv. Use the --root-user-action option if you know what you are doing and want to suppress this warning.
#57 DONE 86.5s
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156706
Approved by: https://github.com/oulgen, https://github.com/malfet
2025-06-26 02:05:47 +00:00
b50075343a [distributed] Enable H100 test for all distributed related changes (#156721)
We want to run H100 CI for distributed related changes. We already have a labeling of oncall:distributed when touching distributed related code: 4491326fb0/.github/labeler.yml (L94). So we want to leverage that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156721
Approved by: https://github.com/huydhn
2025-06-26 01:51:41 +00:00
e581f015ee Bump STATIC_CUDA_LAUNCHER_VERSION to 2 (#156726)
Differential Revision: [D77241813](https://our.internmc.facebook.com/intern/diff/D77241813)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156726
Approved by: https://github.com/oulgen
2025-06-26 01:50:51 +00:00
b5bfbba184 [Quant][CPU] fix fake_quantize_per_tensor_affine of inf values (#155109)
Fixes #154328

**Summary**
Fail reason:
The input value is infinity in float and it has undefined behavior to convert it to int64_t. On X86, it will be converted to the min value of int64_t, which is not expected.

Fix:
Clamping `(input * inv_scale + zero_point)` to `[quant_min, quant_max]` before converting it to int64_t.

**Test plan**
```
pytest test/quantization/core/test_workflow_ops.py -k test_fake_quantize_per_tensor_affine_inf
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155109
Approved by: https://github.com/leslie-fang-intel, https://github.com/jerryzh168
2025-06-26 01:24:36 +00:00
214e2959dc Cleanup leftover miniconda brew installation (#156898)
That results in torch.compile being unable to produce working artifacts

Should fix https://github.com/pytorch/pytorch/issues/156833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156898
Approved by: https://github.com/seemethere, https://github.com/atalman
2025-06-26 01:02:04 +00:00
4c0091fda6 python definitely_contiguous-> is_contiguous_or_false (#156515)
We probably can avoid having those in python as well and  just depend on c++ impl after we land https://github.com/pytorch/pytorch/pull/155590 but that is for a different PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156515
Approved by: https://github.com/bobrenjc93
2025-06-26 00:47:14 +00:00
85df746892 refresh expected numbers (#156877)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156877
Approved by: https://github.com/huydhn
2025-06-26 00:03:09 +00:00
2c6324a1eb Delete sections referencing torchscript in serialization docs (#156648)
Address [T228333890](https://www.internalfb.com/intern/tasks/?t=228333890)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156648
Approved by: https://github.com/svekars
2025-06-25 23:41:24 +00:00
a25d1443fa Mark TorchServe as all emeritus (#156865)
As per title and to follow the broader tutorial cleanup work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156865
Approved by: https://github.com/svekars, https://github.com/malfet, https://github.com/seemethere
2025-06-25 23:34:57 +00:00
451b525bf0 [ez] add docblock and comments to simd.split_and_set_ranges (#156717)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156717
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #156445
2025-06-25 23:07:28 +00:00
204db27a0c Consolidate stack trace in Tracer (#156257)
Summary:
- Consolidate the stack trace recording code in TracerBase and PythonKeyTracer
- Change `make_fx`'s arg name to be consistent with TracerBase member name `record_stack_traces`

We move the stack trace logic from `create_proxy` to `create_node` so all inherited classes of TracerBase and re-use the same stack trace logic.

Test Plan:
```
buck run caffe2/test:test_export -- -r  test_stack_trace
```

Rollback Plan:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156257
Approved by: https://github.com/angelayi, https://github.com/zou3519
2025-06-25 23:07:10 +00:00
653c52fe52 [MPS] Fix batch norm incorrect gradient (#156867)
Fixes #156555

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156867
Approved by: https://github.com/malfet
2025-06-25 23:05:49 +00:00
acaf6ba3c6 Organize BUCK for torch/standalone (#156503)
Summary: Undo highlevel BUCKification in favor of something more organized by moving it to the dir itself

Test Plan:
CI

Rollback Plan:

Reviewed By: swolchok

Differential Revision: D76920013

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156503
Approved by: https://github.com/swolchok
2025-06-25 22:56:15 +00:00
d98fa4a103 implement SR's storage group planning algorithm (#156715)
Summary: att

Test Plan:
tested on a localnet. it's ~15% worse performance than greedy-by-size, but more performant.

local:
gbs: 110656b
dsg: 131584b

local_ro:
gbs: 38208
dsg: 44544

Differential Revision: D75653840

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156715
Approved by: https://github.com/zhxchen17
2025-06-25 22:43:40 +00:00
1e7e21ec5d unify dynamic shapes API namings 3 (guard_int, guard_int_seq) (#155973)
evaluate_static_shape -> guard_int
evaluate_static_shapes -> guard_int_seq

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155973
Approved by: https://github.com/bobrenjc93
2025-06-25 22:40:28 +00:00
61f6aa36b9 [resubmit][export] add _union_dataclass to support comparing dataclasses that inherits from union. (#156765)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156765
Approved by: https://github.com/zhxchen17
2025-06-25 22:32:12 +00:00
53057fc16a [dynamo] update base variable call_method hint with note on comprehensions (#156769)
Internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/1696822194289318/

List/dict comprehensions in Python <= 3.11 result in potentially weird graph breaking behavior because comprehensions result in implicit function calls, which Dynamo may end up tracing as top-level frames, resulting in iterators being passed as arguments to the compiled region.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156769
Approved by: https://github.com/StrongerXi
2025-06-25 21:55:55 +00:00
95a7d1912a [sigmoid] add layout planner to executor (#156852)
Summary: if memory planning is enabled in the runtime config, we will create a copy in the executor here.

Test Plan: ci

Differential Revision: D73635622

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156852
Approved by: https://github.com/zhxchen17
2025-06-25 21:41:09 +00:00
6de41ce0f8 [cond] support gen_schema for cond (#154193)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154193
Approved by: https://github.com/zou3519
ghstack dependencies: #155644
2025-06-25 21:19:58 +00:00
3257c8f74c [cond] preserve merged phs meta for subgraph (#155644)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155644
Approved by: https://github.com/zou3519
2025-06-25 21:19:58 +00:00
e7a66166ce [precompile] When using BundledAOTAutogradCache, disable FXGraphCache (#156611)
The goal of this PR is to fix a specific bug when turning precompile on/off between caching runs.

If you try to turn on BundledAOTAutogradCacheEntry today in between local runs, the FXGraphCache may randomly hit *between* the two runs, because FXGraphCache knows nothing about AOTAutogradCache's config. When FXGraphCache hits, it immediately will call make_launchers() immediately on the triton code it launches, which then causes an assertion failure because pickle should not be called after make_launchers.

One way to resolve the bug is just to add whether precompile is enabled to teh FxGraph cache key. But the better fix for this, however, is higher level/philosophical:

When using BundledAOTAutogradCacheEntry, the entire CompiledFxGraph is saved directly to the cache entry, and we expect the two caches to work in sync, i.e. as one cache. So to simplify the programming model, we disable FxGraphCache when BundledAOTAUtogradCache is turned on.

BundledAOTAutogradCacheEntry is only used for precompile use cases now; if we wanted to use BundledAOTAutogradCache for traditional caching use cases, there's a bunch of further work, one of which would be to re-enable FxGraphCache in the event that BundledAOTAutogradCache has to bypass. However, for precompile, this is not a scenario that should happen: we should always expect the entire callable to be saveable, and we should expect to never bypass. So we don't do that change for now.

Added a unit test demonstrating this behavior. Also updated existing unit tests to show that all fx graph cache operations are now 0 (but all tests still pass).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156611
Approved by: https://github.com/zhxchen17
2025-06-25 21:01:42 +00:00
fe1f1a38df add test_batchnorn_2D and 3D tests (#156498)
New set of batchnorm tests to verify NCHW 2D/3D BatchNorm
This test also allows to add and configure different BatchNorm tests (dtypes, NCHW/NHWC, Mixed) in the future
based on:
- Train [test_batchnorm_cudnn_nhwc](1051b93192/test/test_nn.py (L4985))
- Inference [test_batchnorm_nhwc_cuda](1051b93192/test/test_nn.py (L5130))

```
test_batchnorm_3D_inference_NCHW_vs_cpu_float32 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_cpu_float32) ... ok (0.113s)
test_batchnorm_3D_inference_NCHW_vs_cpu_mixed_bfloat16 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_cpu_mixed_bfloat16) ... ok (0.057s)
test_batchnorm_3D_inference_NCHW_vs_cpu_mixed_float16 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_cpu_mixed_float16) ... ok (0.063s)
test_batchnorm_3D_inference_NCHW_vs_native_float32 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_native_float32) ... ok (0.059s)
test_batchnorm_3D_inference_NCHW_vs_native_mixed_bfloat16 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_native_mixed_bfloat16) ... ok (0.006s)
test_batchnorm_3D_inference_NCHW_vs_native_mixed_float16 (__main__.TestNN.test_batchnorm_3D_inference_NCHW_vs_native_mixed_float16) ... ok (0.006s)
test_batchnorm_3D_train_NCHW_vs_cpu_float32 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_cpu_float32) ... ok (0.007s)
test_batchnorm_3D_train_NCHW_vs_cpu_mixed_bfloat16 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_cpu_mixed_bfloat16) ... ok (0.005s)
test_batchnorm_3D_train_NCHW_vs_cpu_mixed_float16 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_cpu_mixed_float16) ... ok (0.005s)
test_batchnorm_3D_train_NCHW_vs_native_float32 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_native_float32) ... ok (0.003s)
test_batchnorm_3D_train_NCHW_vs_native_mixed_bfloat16 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_native_mixed_bfloat16) ... skip: bfloat16 NCHW train failed due to native tolerance issue (0.001s)
test_batchnorm_3D_train_NCHW_vs_native_mixed_float16 (__main__.TestNN.test_batchnorm_3D_train_NCHW_vs_native_mixed_float16) ... skip: 3D float16 NCHW train failed on ROCm<7.0 (0.001s)

test_batchnorm_2D_inference_NCHW_vs_cpu_float32 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_cpu_float32) ... ok (0.016s)
test_batchnorm_2D_inference_NCHW_vs_cpu_mixed_bfloat16 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_cpu_mixed_bfloat16) ... ok (0.003s)
test_batchnorm_2D_inference_NCHW_vs_cpu_mixed_float16 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_cpu_mixed_float16) ... ok (0.003s)
test_batchnorm_2D_inference_NCHW_vs_native_float32 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_native_float32) ... ok (0.054s)
test_batchnorm_2D_inference_NCHW_vs_native_mixed_bfloat16 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_native_mixed_bfloat16) ... ok (0.002s)
test_batchnorm_2D_inference_NCHW_vs_native_mixed_float16 (__main__.TestNN.test_batchnorm_2D_inference_NCHW_vs_native_mixed_float16) ... ok (0.001s)
test_batchnorm_2D_train_NCHW_vs_cpu_float32 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_cpu_float32) ... ok (0.007s)
test_batchnorm_2D_train_NCHW_vs_cpu_mixed_bfloat16 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_cpu_mixed_bfloat16) ... ok (0.004s)
test_batchnorm_2D_train_NCHW_vs_cpu_mixed_float16 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_cpu_mixed_float16) ... ok (0.004s)
test_batchnorm_2D_train_NCHW_vs_native_float32 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_native_float32) ... ok (0.003s)
test_batchnorm_2D_train_NCHW_vs_native_mixed_bfloat16 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_native_mixed_bfloat16) ... skip: bfloat16 NCHW train failed due to native tolerance issue (0.001s)
test_batchnorm_2D_train_NCHW_vs_native_mixed_float16 (__main__.TestNN.test_batchnorm_2D_train_NCHW_vs_native_mixed_float16) ... ok (0.002s)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156498
Approved by: https://github.com/jeffdaily
2025-06-25 20:38:02 +00:00
48e7b62d3a [dynamo] Add immutable pytree to trace_rules (#156772)
Fixes https://github.com/pytorch/pytorch/issues/155426

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156772
Approved by: https://github.com/williamwen42
2025-06-25 20:08:47 +00:00
e99a2a2dba [PG/nccl] Simplify uniqueHash management (#156790)
Summary:

ncclUniqueID is only relevant when a comm is created using ncclCommCreate or ncclCommCreateConfig.  If a comm is created with ncclCommSplit, this field is unset, causing its usage to create unexpected behavior.

This patch creates a unique hash key for each comm, irrespective of how the comm is created.

Test Plan:

CI

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156790
Approved by: https://github.com/fduwjj, https://github.com/kwen2501
2025-06-25 20:06:08 +00:00
070aa59e49 Refactor DynamoStore into disk and in memory implementations (#155818)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155818
Approved by: https://github.com/zhxchen17
2025-06-25 18:24:28 +00:00
6c24c6633a [torch][test] skip test_transformer_backend_inductor_fullgraph_True (#156763)
Summary: "Traceable FSDP2" is not being maintained anymore.

Test Plan:
```
buck test @//mode/opt caffe2/test/distributed/_composable:fully_shard_compile -- test_transformer_backend_inductor_fullgraph_True
```
https://www.internalfb.com/intern/testinfra/testconsole/testrun/16044073764394232/

Rollback Plan:

Differential Revision: D77264408

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156763
Approved by: https://github.com/xunnanxu, https://github.com/yf225
2025-06-25 18:15:23 +00:00
09ffba3cf7 [docs] Decorator to create a deprecation warning (#155127)
This PR adds the `@deprecate` decorator for internal functions which we are prepping for deprecation.  Add it on top of an internal function to emit a deprecation warning + allow bc with the non internal version of the function.

Tested with `python test/test_utils.py TestDeprecate.test_deprecated `

Furthermore, testing with a modified version of the tes in the pr gives something like this which is what we want

```
/home/sahanp/repos/pytorch/test/test_utils.py:1239: UserWarning: deprecated_api is DEPRECATED, please consider using an alternative API(s).
  deprecated_api(1, 2)
  ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155127
Approved by: https://github.com/albanD

Co-authored-by: albanD <desmaison.alban@gmail.com>
2025-06-25 18:09:04 +00:00
4bc3e4b497 [cutlass backend] Move cutlass key to cutlass_library (#156654)
Differential Revision: [D77188311](https://our.internmc.facebook.com/intern/diff/D77188311/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156654
Approved by: https://github.com/ColinPeppler, https://github.com/jingsh
ghstack dependencies: #156651
2025-06-25 17:55:57 +00:00
c1a629f76d Update device for perf dashboard on AMD runners (#156809)
Uses arch_device naming convention for storing perf dashboard logs on AMD runners based on the following PR
https://github.com/pytorch/test-infra/pull/6793

Updated from zen_cpu_x86 to cpu_x86_zen

Fixes https://github.com/pytorch/test-infra/issues/6823

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156809
Approved by: https://github.com/desertfire, https://github.com/malfet
2025-06-25 17:34:49 +00:00
e071837594 [cutlass backend] compile and link for .so files (#155876)
Differential Revision: [D76482736](https://our.internmc.facebook.com/intern/diff/D76482736/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155876
Approved by: https://github.com/coconutruben, https://github.com/ColinPeppler
2025-06-25 17:01:56 +00:00
1051b93192 [export] Implement _compile_and_package for ExportPackage. (#156638)
add a method to implement weight sharing.

Differential Revision: [D76132005](https://our.internmc.facebook.com/intern/diff/D76132005/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156638
Approved by: https://github.com/tugsbayasgalan
2025-06-25 16:00:40 +00:00
8eb3c5b7a1 [release] delete tag-docker-images.sh as not required anymore (#156737)
Thanks to @clee2000  This is no longer required since the docker images use hash as tag: https://github.com/pytorch/pytorch/actions/runs/15844298044/job/44662813176#step:15:92

```
Login Succeeded
++ docker manifest inspect docker.io/pytorch/manylinux2_28-builder:cuda12.9-5011468da53e13424002bd211cc919a0ec0e8b09
++ jq '[.layers[].size, .config.size] | add / 1024 / 1024'
+ IMAGE_SIZE=9322.26076889038
+ echo 'Compressed size of image in MB: 9322.26076889038'
+ set -e
+ docker inspect --type=image docker.io/pytorch/manylinux2_28-builder:cuda12.9-5011468da53e13424002bd211cc919a0ec0e8b09
Compressed size of image in MB: 9322.26076[88](https://github.com/pytorch/pytorch/actions/runs/15844298044/job/44662813176#step:15:90)9038
+ retry docker pull docker.io/pytorch/manylinux2_28-builder:cuda12.9-5011468da53e13424002bd211cc919a0ec0e8b09
+ docker pull docker.io/pytorch/manylinux2_28-builder:cuda12.9-5011468da53e13424002bd211cc919a0ec0e8b09
cuda12.9-5011468da53e13424002bd211cc919a0ec0e8b09: Pulling from pytorch/manylinux2_28-builder
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156737
Approved by: https://github.com/clee2000
2025-06-25 15:17:06 +00:00
029e2b05c2 Revert "[Quant][CPU] fix fake_quantize_per_tensor_affine of inf values (#155109)"
This reverts commit 19ffb5e6f7606436249742b0f3efc0bab244dc55.

Reverted https://github.com/pytorch/pytorch/pull/155109 on behalf of https://github.com/albanD due to The corresponding test still breaks on rocm ([comment](https://github.com/pytorch/pytorch/pull/155109#issuecomment-3004698438))
2025-06-25 13:05:40 +00:00
c2185dc4a5 [Quant][CPU] Enable fp8 qlinear (#155678)
**Summary**
Enable fp8 qlinear on CPU. It's part of the plan to enable fp8 static quantization on CPU. This PR only adds FP8 support of the existing int8 qlinear op. It does not add a new op nor does it affect frontend or quantization flow. The schema of the qlinear op is not changed either.

So, the FP8 qlinear shares the same op as INT8 qlinear and the difference is that src/wei dtype is fp8 instead of int8. The output dtype can be fp8/float32/bfloat16. The implementation uses the oneDNN library.

The differences of qlinear from `_scaled_mm` are that
- Qlinear supports post op fusion while `_scaled_mm` does not
- Weights are prepacked for qlinear

**Test plan**
```
pytest test/quantization/core/test_quantized_op.py -k "qlinear and fp8"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155678
Approved by: https://github.com/leslie-fang-intel, https://github.com/jerryzh168
2025-06-25 10:01:08 +00:00
19ffb5e6f7 [Quant][CPU] fix fake_quantize_per_tensor_affine of inf values (#155109)
Fixes #154328

**Summary**
Fail reason:
The input value is infinity in float and it has undefined behavior to convert it to int64_t. On X86, it will be converted to the min value of int64_t, which is not expected.

Fix:
Clamping `(input * inv_scale + zero_point)` to `[quant_min, quant_max]` before converting it to int64_t.

**Test plan**
```
pytest test/quantization/core/test_workflow_ops.py -k test_fake_quantize_per_tensor_affine_inf
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155109
Approved by: https://github.com/leslie-fang-intel, https://github.com/jerryzh168
2025-06-25 09:28:54 +00:00
0ab075a69e Fix docker image build for s390x (#156687)
Add upstream patch for onnxruntime
updating eigen dependency URL and hash.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156687
Approved by: https://github.com/seemethere
2025-06-25 09:09:22 +00:00
4918502d2e bug fix for losing shape on wrapper tensor for DTensor (#156774)
Summary: Wrapper tensor for DTensor is losing shape in offload_tensor. This PR fixes this bug.

Test Plan:
updated the test. Test fails with old code and passes with the fix.

Rollback Plan:

Differential Revision: D77269733

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156774
Approved by: https://github.com/mikaylagawarecki
2025-06-25 08:14:16 +00:00
d9577df312 [ROCm] Bump AOTriton to 0.10b (#156499)
Notable new features/optimizations for SDPA operators on AMD systems from AOTriton 0.10b:

* Official support of gfx950/gfx1201
* Experimental support of gfx1101/gfx1151/gfx1150/gfx1200
* Reduce libaotriton.so binary size by over 80%.
  + Without this optimization the binary size of `libaotriton.so` could be
    over 100MiB due to 2x more supported architectures compared with 0.9b.
    Now it is only about 11MiB.
* Support sliding window attention (SWA) in
  `_flash_attention_forward/backward`. Should fix #154582

See https://github.com/ROCm/aotriton/releases/tag/0.10b for full details,
including Known Problems.

Notable changes to SDPA backend:

* `std::optional<int64_t>` `window_size_left/right` are directly passed to
  ROCM's SDPA backend, because the default value `-1` is meaningful to
  AOTriton's backend and bottom-right aligned causal mask is implemented with
  negative `window_size_left/right`
* Some code clean up around `USE_CK_FLASH_ATTENTION`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156499
Approved by: https://github.com/jeffdaily, https://github.com/jithunnair-amd
2025-06-25 07:09:03 +00:00
62272d5b24 [BE][Easy][setup] wrap over long error messages and redirect them to stderr in setup.py (#156043)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156043
Approved by: https://github.com/jingsh
2025-06-25 06:57:59 +00:00
6c008e2fb5 [nativert] Move ParallelGraphExecutor to PyTorch core (#156751)
Summary: `ParallelGraphExecutor` inherits from `GraphExecutorBase` and executes all nodes in the graph in a parallel manner

Test Plan:
CI

Rollback Plan:

Differential Revision: D77088996

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156751
Approved by: https://github.com/zhxchen17, https://github.com/dolpm
2025-06-25 06:54:45 +00:00
44a5f93462 [dynamo] allow symints in list.__setitem__ (#156197)
Fixes https://github.com/pytorch/pytorch/issues/155174

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156197
Approved by: https://github.com/StrongerXi
2025-06-25 06:20:35 +00:00
162ca185ff [BE][PYFMT] migrate PYFMT for torch/_[a-h]*/ to ruff format (#144551)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144551
Approved by: https://github.com/ezyang
ghstack dependencies: #148186
2025-06-25 06:16:06 +00:00
9642c75689 added stubs for jit tree views (#156504)
Fixes #156488

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156504
Approved by: https://github.com/ezyang
2025-06-25 06:15:17 +00:00
c60327ba74 avoid to declare an unknown bound array without any element (#156543)
Fixes #153180

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156543
Approved by: https://github.com/jansel

Co-authored-by: Xu Han <xu.han@outlook.com>
2025-06-25 06:14:57 +00:00
4237ee3c33 [XPU] Add periodic run for xpu worklfow (#156698)
Enable XPU periodic testing in xpu.yml workflow directly. It works for https://github.com/pytorch/pytorch/issues/114850.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156698
Approved by: https://github.com/atalman, https://github.com/huydhn
2025-06-25 05:57:52 +00:00
194c221e0a Update the UT of test_decompose_mm_cpu (#154100)
**Summary**
Fixes #153616
Based on the latest decomposed heuristic in daca611465/torch/_inductor/fx_passes/decompose_mem_bound_mm.py (L79-L82), for the shape in this test case `[m=1, k=64, n=32]`, the result should be decomposed. The previous CI didn't capture this failure due to the UT skip described in https://github.com/pytorch/pytorch/pull/153245. So this PR should be verified in CI after https://github.com/pytorch/pytorch/pull/153245 landed.

**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_decompose_mem_bound_mm.py -k test_decompose_mm_cpu
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154100
Approved by: https://github.com/jansel
2025-06-25 05:45:58 +00:00
f5f4beaf56 [invoke_subgraph] make collect_meta_analysis fake prop cachable (#156347)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156347
Approved by: https://github.com/anijain2305, https://github.com/zou3519
ghstack dependencies: #156260
2025-06-25 04:29:22 +00:00
558d7f7db0 [invoke_subgraph] make same subgraph share get_attr target (#156260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156260
Approved by: https://github.com/anijain2305, https://github.com/zou3519
2025-06-25 04:29:22 +00:00
568ca89bac Add a crash handler to async compile subprocesses (#155068)
When the async compile subprocesses crash in C++ they tend to just silently die instead of leaving any kind of trace.  This installs a crash handler so that if they SEGV, ILL, or ABRT they'll attempt to output a backtrace instead.

While in there I also cleaned up the CLANGTIDY warnings coming from Module.cpp.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155068
Approved by: https://github.com/masnesral
2025-06-25 03:27:28 +00:00
beb52f5c0a use more efficient implementation for broadcasted indexing in determi… (#156744)
…nistic scatter_add

per title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156744
Approved by: https://github.com/suo
2025-06-25 02:59:50 +00:00
9b498d3bb2 Update docs for torch.device (#156686)
# Motivation
Update the doc, to make `torch.device`'s constructor officially support the following methods:
- A device string, which is a string representation of the device type and optionally the device ordinal.
- A device type and a device ordinal.
- A device ordinal, which is treated as the current accelerator type.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156686
Approved by: https://github.com/albanD
2025-06-25 02:12:36 +00:00
3608737347 [ez] fix typo in comment (#156402)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156402
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #156397
2025-06-25 02:07:36 +00:00
d06a406656 [dynamo] Graph break on torch.Tensor.data assignment with mismatched dtype (#156623)
Fixes #152162. Discussed with @bdhirsh and decided this is the easiest
workaround for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156623
Approved by: https://github.com/bdhirsh
2025-06-25 02:03:04 +00:00
e8cf5ff564 Fix the Problems About Defining Static Variable in Inline Function (#147095)
Refer to https://github.com/pytorch/pytorch/issues/125465 for more informations

- Remove unused header files
- Move common functionality to separate files to reduce dependencies between picklers and unpicklers
- Move the inline function that defines the static variable to .cc

Differential Revision: [D76266755](https://our.internmc.facebook.com/intern/diff/D76266755)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147095
Approved by: https://github.com/cyyever, https://github.com/albanD

Co-authored-by: Edward Yang <ezyang@meta.com>
2025-06-25 01:59:10 +00:00
cyy
41910d7a94 Move use of c10::string_view to std::string_view (#152509)
Eliminate use of c10::string_view in OSS.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152509
Approved by: https://github.com/ezyang
2025-06-25 01:57:49 +00:00
02c7ab2f9b [cpp wrapper] add AOTI shim for collective ops (#154492)
Implementations:
1. Move collective ops to c10d namespace, so that we can call them externally.
2. Add AOTI shims for collective ops.

Testing
1. Add c10d functional UT for cpu.
2. Include the above one in cpp wrapper UT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154492
Approved by: https://github.com/desertfire
2025-06-25 01:20:05 +00:00
d797038ea9 [dcp_poc] Introduce a new simple rank local checkpointer (#156142)
Summary:
Adds an experimental implementation for a rank local checkpointer with save and load with partial load, blind load and in-place load.

This uses an new API and simpler format.

Plan to add async checkpointing, IO layer, pluggable storage backend, layout customization,  Resharding, deduplication etc are not implemented.

Test Plan: unit tests

Reviewed By: saumishr

Differential Revision: D75426560

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156142
Approved by: https://github.com/saumishr
2025-06-25 01:19:40 +00:00
0d8e4e2327 [PG/nccl] improvements to eager init (#156748)
Summary:

Cleanup eager init management, to detect and throw a warning when multiple p2p are issued on the same PG in eager init mode.

Test Plan: CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156748
Approved by: https://github.com/wconstab, https://github.com/kwen2501, https://github.com/Skylion007
2025-06-25 01:04:37 +00:00
06930706a1 Improve documentation for torch.lobpcg (#156139)
The changes are documentation changes to the function lobpcg. There are three changes to the doc.
1. Match doc arg description to be in the same order as the parameters to the function.
2. Update documentation for arg `n` to indicate that when arg `x` is specified value of `n` is ignored if set.
3. Add warning that `m` must be bigger than 3 x the number of requested eigenpairs.

Fixes #152107

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156139
Approved by: https://github.com/soulitzer
2025-06-25 00:39:34 +00:00
3dd872e6d5 Revert "Add DeviceAllocator as the base device allocator (#138222)"
This reverts commit 92409b6c89fbfbd3caa79c81b1e3d9e7917d3bc7.

Reverted https://github.com/pytorch/pytorch/pull/138222 on behalf of https://github.com/Camyll due to internal build failures ([comment](https://github.com/pytorch/pytorch/pull/138222#issuecomment-3002206756))
2025-06-25 00:11:35 +00:00
6459a5c7a9 Revert "Add unified memory APIs for torch.accelerator (#152932)"
This reverts commit 35e44067c4d9cc9be2652c0b9098885c5a321029.

Reverted https://github.com/pytorch/pytorch/pull/152932 on behalf of https://github.com/Camyll due to internal build failures ([comment](https://github.com/pytorch/pytorch/pull/138222#issuecomment-3002206756))
2025-06-25 00:11:35 +00:00
fd4bb29410 Revert "[logging] dynamo_timed for CachingAutotuner.coordinate_descent_tuning (#156517)"
This reverts commit fb75dea2c1b93c78dccf08d5fd5e20b362ecd405.

Reverted https://github.com/pytorch/pytorch/pull/156517 on behalf of https://github.com/Camyll due to internal reverted ([comment](https://github.com/pytorch/pytorch/pull/156517#issuecomment-3002172049))
2025-06-24 23:45:13 +00:00
313a6a8ef9 [pt2][pr_time_benchmarks] Refresh instructions count after disabled test (#156738)
https://github.com/pytorch/pytorch/issues/153987

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156738
Approved by: https://github.com/laithsakka
2025-06-24 23:45:02 +00:00
4bd18e31e5 Revert "Add fx_graph_runnable tests boilerplate (#156552)"
This reverts commit 0a2ec7681d2af973d8daaf7905431a088739dc90.

Reverted https://github.com/pytorch/pytorch/pull/156552 on behalf of https://github.com/Camyll due to breaking internal ([comment](https://github.com/pytorch/pytorch/pull/156552#issuecomment-3002159473))
2025-06-24 23:34:21 +00:00
2ff3280c77 [ez] Disable some failing periodic tests (#156731)
test_torch.py::TestTorchDeviceTypeCUDA::test_storage_use_count_cuda:
Added in https://github.com/pytorch/pytorch/pull/150059
Fails in debug mode [GH job link](https://github.com/pytorch/pytorch/actions/runs/15856606665/job/44706020831) [HUD commit link](4491326fb0)

inductor/test_inductor_freezing.py::FreezingGpuTests::test_cpp_wrapper_cuda:
[GH job link](https://github.com/pytorch/pytorch/actions/runs/15856606665/job/44707119967) [HUD commit link](4491326fb0)
started failing after moving to new cuda version https://github.com/pytorch/pytorch/pull/155234

I'll ping people if this gets merged

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156731
Approved by: https://github.com/huydhn
2025-06-24 23:02:21 +00:00
d8bb5ac260 [ez] fix typo in select_algorithm.py (#156625)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156625
Approved by: https://github.com/Skylion007, https://github.com/BoyuanFeng
ghstack dependencies: #156445
2025-06-24 23:01:58 +00:00
ce97a5dcfa [Inductor] Restrict block analysis to only match integer dims and strides (#149615)
Restrict block analysis to only match dimension sizes and strides that are integers. E.g. `sympy` can match index expressions like  `ModularIndexing(xindex, 4, 4)) + 4*(ModularIndexing(xindex, 32, 2))` with the candidate below that is invalid.
  ```python
match_expr = stride_mod0_*((xindex//(dim_mod1_*dim_mod2_*dim_mod3_*dim_mod4_))) + stride_mod1_*(ModularIndexing(xindex, dim_mod2_*dim_mod3_*dim_mod4_, dim_mod1_)) + stride_mod2_*(ModularIndexing(xindex, dim_mod3_*dim_mod4_, dim_mod2_)) + stride_mod3_*(ModularIndexing(xindex, dim_mod4_, dim_mod3_)) + stride_mod4_*(ModularIndexing(xindex, 1, dim_mod4_))
match={
      dim_mod4_: 32, dim_mod3_: 2, stride_mod3_: 4, dim_mod2_: 1/16,
       dim_mod1_: 4, stride_mod1_: 1, stride_mod4_: 0, stride_mod2_: 0, stride_mod0_: 0
     }
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149615
Approved by: https://github.com/blaine-rister
2025-06-24 22:43:12 +00:00
c48d0f4643 [Inductor] Fix epilogue fusion decision with 1 Triton caller as choice (#156500)
Differential Revision: D76904773

In the current scheduler logic, if a template buffer is only a Triton template, which can result from only 1 Triton choice in the autotuning, the fusion won't be benchmarked.

This can lead to an edge case in which a Triton GEMM template from the autotune lookup table can have a problematic fusion, leading to shared memory requirements above the hardware limit. `(256, 128, 64, 4, 8, 8)` is such a config, where we have seen fusion with a `.to(torch.float32)` can lead to this issue, `out of resource: shared memory, Required: 264224, Hardware limit: 232448`. We benchmark the fusion for this case to ensure it's safe.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156500
Approved by: https://github.com/jansel
2025-06-24 22:33:47 +00:00
e96f530af5 Remove unnecessary use of c10::SmallVector from moments_utils (#156714)
It's just making arrays of a particular size. (If it was resizing the vectors, we'd see compile errors.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156714
Approved by: https://github.com/Skylion007
2025-06-24 22:30:10 +00:00
4ee4863232 Fix #156261 _foreach_copy indexing (#156719)
Fixes #156261

Thanks to @ngimel's fast eyes

For testing, I had experimented with a broader test case change but found that creating a tensor of 2**31+1 size was too expensive to do more than just a few times. Note that while the test case does not run in CI, I did run it locally to ensure it passes with new changes and fails without.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156719
Approved by: https://github.com/albanD
2025-06-24 21:58:44 +00:00
310e8361c5 [nativert] Move PrimKernelRegistry to PyTorch core (#156506)
Summary:
Torch Native Runtime RFC: pytorch/rfcs#72
PrimKernelRegistry manages a small subset of kernel registry in NativeRT.
Including ListPack, ListUnpack, Input, Output, VarConcat, VarStack

Test Plan: Internal unittests

Differential Revision: D77034945

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156506
Approved by: https://github.com/zhxchen17
2025-06-24 21:42:41 +00:00
fa0ea57f5e [ROCm][CD] upgrade to 6.4.1 patch release (#156636)
During https://github.com/pytorch/pytorch/pull/156112, we missed upgrading the manylinux and libtorch docker images.

Fixes #155292

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156636
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-06-24 21:41:42 +00:00
3efb22e091 Enable C++ dynamic shape guards by default (#140756)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140756
Approved by: https://github.com/anijain2305, https://github.com/laithsakka
2025-06-24 21:10:17 +00:00
26f7ca3972 Unify dynamic shapes APIs naming 2 (expect_true and check) attempt2 (#156518)
Summary:
The functions guard_lt, guard_equals, and guard_leq work similarly to torch.check and expect_true, but they operate on SymPy expressions. Notably, guard_equals applies local replacements before comparison, which might be better extracted into a separate function.

This pull request standardizes naming conventions to match symbolic_shapes.py. Specifically,
-  it introduces size_vars.expect_true and size_vars.check.
- guard_lt becomes check_lt
- guard_leq becomes check_leq
- guard_equals becomes check_equals

I am also seeing a couple of wrong usages !! that i will fix  in the next PR

Test Plan:
OSS and cont

Rollback Plan:

Differential Revision: D77054177

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156518
Approved by: https://github.com/bobrenjc93
2025-06-24 21:01:38 +00:00
dfef1e4408 Optimize dim description in torch.max (#156153)
Fixes #156071

## Test Result

### Before

![image](https://github.com/user-attachments/assets/8dd0d952-277a-4197-b323-d68ae1438171)

### After

![image](https://github.com/user-attachments/assets/4af5388e-ca9e-4268-a7c4-cf16b09b899f)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156153
Approved by: https://github.com/albanD
2025-06-24 20:50:40 +00:00
1dc1eedd43 Revert "[dynamo] Graph break on torch.Tensor.data assignment with mismatched dtype (#156623)"
This reverts commit c1ad4b8e7a16f54c35a3908b56ed7d9f95eef586.

Reverted https://github.com/pytorch/pytorch/pull/156623 on behalf of https://github.com/albanD due to Breaks Dynamo tests in trunk ([comment](https://github.com/pytorch/pytorch/pull/156623#issuecomment-3001806841))
2025-06-24 20:44:42 +00:00
aa280ea19f Revert "Remove remaining CUDA 12.4 CI code (#155412)"
This reverts commit 9fed2addedb42da86b657165fe14eadc911232cf.

Reverted https://github.com/pytorch/pytorch/pull/155412 on behalf of https://github.com/Camyll due to cuda 12.4 still needed ([comment](https://github.com/pytorch/pytorch/pull/155412#issuecomment-3001711830))
2025-06-24 20:05:39 +00:00
19f851ce10 Revert "Simplify nvtx3 CMake handling, always use nvtx3 (#153784)"
This reverts commit 099d0d6121125062ebc05771c8330cb7cd8d053a.

Reverted https://github.com/pytorch/pytorch/pull/153784 on behalf of https://github.com/Camyll due to breaking internal tests and cuda 12.4 builds still used in CI ([comment](https://github.com/pytorch/pytorch/pull/153784#issuecomment-3001702310))
2025-06-24 20:02:07 +00:00
376c16703c Document each of the private member variables on ExportedProgram (#156704)
Authored with claude code and then reviewed by hand. If you don't like it, tell me.

Signed-off-by: Edward Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156704
Approved by: https://github.com/albanD, https://github.com/zhxchen17, https://github.com/jingsh
2025-06-24 19:56:40 +00:00
c1ad4b8e7a [dynamo] Graph break on torch.Tensor.data assignment with mismatched dtype (#156623)
Fixes #152162. Discussed with @bdhirsh and decided this is the easiest
workaround for now.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156623
Approved by: https://github.com/bdhirsh
2025-06-24 19:33:11 +00:00
f97f03c7ef [cutlass backend] delete pip cutlass path since nvidia stops supporting nvidia-cutlass (#156651)
Differential Revision: [D77186982](https://our.internmc.facebook.com/intern/diff/D77186982/)

source: https://pypi.org/project/nvidia-cutlass/

If users want to use it, they can install pytorch through wheel, git clone cutlass, and specify cutlass path via TORCHINDUCTOR_CUTLASS_DIR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156651
Approved by: https://github.com/mlazos
2025-06-24 18:32:15 +00:00
a00a697c17 [dynamo] updated version of detecting any differences between PRs unimplemented_v2() callsites and graph_break_registry json file (#156237)
This PR runs an automatic check as part of dynamo_wrapped to make sure that all unimplemented_v2() callsites are mapped to the JSON file. It also fixes the issue of the CI not able to expand the hints, which was the root cause of the previous workflow failure. If not, the dev gets a message giving them instructions on how to update the JSON file. I also updated a dynamic gb_type to static and updated its test_error_message to include the GBID link for the graph break (before the link would not be produced).

Testing:
I ran the file with the argument to ensure all cases were covered, and also tested the test in CI.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156237
Approved by: https://github.com/williamwen42
2025-06-24 18:12:23 +00:00
2d7e6c6241 [MPS] Revert cumsum/cumprod to MPSGraph implementation (#156708)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156708
Approved by: https://github.com/malfet
2025-06-24 18:12:18 +00:00
af284b45d5 [sigmoid] layout planner alias analyzer (#156676)
Summary: we need a mechanism that provided the functionschemas  for each kernel will be able to trace aliasing behaviour s.t., we have correct value lifetimes when we plan.

Test Plan: ci + unit tests

Reviewed By: SherlockNoMad

Differential Revision: D73635213

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156676
Approved by: https://github.com/zhxchen17
2025-06-24 18:11:03 +00:00
644cc58dff Add CPython exception tests (#150789)
----

* test_baseexception.py
* test_exceptions.py
* test_exception_variations.py
* test_raise.py
* test_sys.py

Minor changes were made to each test to run them inside Dynamo

One can reproduce the changes by downloading the tests from CPython and applying the diff:
```bash
for f in "test_raise" "test_sys" "test_exceptions" "test_baseexception" "test_exception_variations"; do
	wget -O "test/dynamo/cpython/3_13/${f}.py" "https://raw.githubusercontent.com/python/cpython/refs/heads/3.13/Lib/test/${f}.py"
	git apply "test/dynamo/cpython/3_13/${f}.diff"
done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150789
Approved by: https://github.com/zou3519
2025-06-24 18:06:42 +00:00
5ad2bee2c8 [dynamo] fix segfault due to dangling CacheEntry backend pointer (#156527)
Fixes https://github.com/pytorch/pytorch/issues/155057

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156527
Approved by: https://github.com/anijain2305, https://github.com/jansel
2025-06-24 17:57:14 +00:00
4491326fb0 [inductor] select_algorithm: add preprocessing fns (#156464)
Summary:
# Why

- keep code cleaner
- modular way to hook up preprocessing steps
- expand testability of flows that change which choices are provided e.g. to test performance models and lookup tables by running torch.compile

# What

- similar to feedback_saver_fns, now there are preprocessing_fns
- the existing regex logic is exported into those as a proof of concept

Test Plan:
```
buck2 run mode/opt scripts/coconutruben/torchmm:experiment 2>&1 | tee /tmp/epx038
```

This does not exercise the logic, it just shows that it's safe right now

Rollback Plan:

Differential Revision: D76946993

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156464
Approved by: https://github.com/masnesral
2025-06-24 16:44:40 +00:00
6e17315cd3 Skip FSDP tests if device count is less then requested world_size value (#155836)
Usually `world_size=torch.cuda.device_count()` for FSDPTest-based tests
But distributed test class `TestFullyShardAllGatherExtensionsMultiProcess` [forces to use `world_size=2`](0a6e1d6b9b/test/distributed/_composable/fsdp/test_fully_shard_extensions.py (L170)) even for 1 GPU.

Then NCCL fails with errors:
```
HIP_VISIBLE_DEVICES=0 python distributed/_composable/fsdp/test_fully_shard_extensions.py -v -k test_all_gather_extensions_train_parity
...
ncclInvalidUsage: This usually reflects invalid usage of NCCL library.
Duplicate GPU detected : rank 1 and rank 0 both on CUDA device c000
Duplicate GPU detected : rank 0 and rank 1 both on CUDA device c000
```
The test method [has `@skip_if_lt_x_gpu(2)` decorator](0a6e1d6b9b/test/distributed/_composable/fsdp/test_fully_shard_extensions.py (L209)), but test fails during test class initialization before decorator activation

This PR will skip FSDPtest-based tests if `world_size > torch.cuda.device_count()`
```
HIP_VISIBLE_DEVICES=0 python distributed/_composable/fsdp/test_fully_shard_extensions.py -v -k test_all_gather_extensions_train_parity
...
dist init r=0, world=2
dist init r=1, world=2
SKIPPED [15.5507s] (Need at least 2 CUDA devices)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155836
Approved by: https://github.com/jeffdaily
2025-06-24 16:38:23 +00:00
e2c9d8d641 Fix non-bitwise type annotations for Tensor operators (see #145838) (#146845)
Fix https://github.com/pytorch/pytorch/issues/145838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146845
Approved by: https://github.com/Skylion007
2025-06-24 15:41:34 +00:00
cb853945a7 [ez][CI] Update viable strict: change concurrency group to cancel in progress (#156619)
Should help with https://github.com/pytorch/pytorch/issues/156425

The one I saw today was because the job was waiting for an environment deployment approval for mergebot environment, which I think comes from something like a temporary github outage or a dropped webhook since it should have permissions as it was on the main branch, and other runs are fine
The run is https://github.com/pytorch/pytorch/actions/runs/15820977440 but you can't see anything about waiting for deployment anymore

My solution is to change the concurrency group so that it will cancel in progress jobs if there is one.  My hope is that if one gets stuck, the next one will cancel and re do the environment check.  I don't know how to replicate this because apparently you're just supposed to fail if you don't match the protection rules https://github.com/pytorch/pytorch/actions/runs/15830920815

The job runs every 30 minutes so there might be an issue if this job needs to run for >30 minutes to find a green sha, but takes <5 minutes to run usually so I think its ok

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156619
Approved by: https://github.com/atalman
2025-06-24 15:37:43 +00:00
4c59edf0c5 [nativert] Move call_torchbind_kernel (#156571)
Summary: Move call_torchbind_kernel target from internal sigmoid to pytorch

Test Plan:
Test Internally:

buck2 test mode/dev-nosan caffe2/test/cpp/nativert:op_kernel_test
buck build //sigmoid/core/kernels:kernel_factory
and all  sandcastle tests

Rollback Plan:

Differential Revision: D77118592

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156571
Approved by: https://github.com/zhxchen17
2025-06-24 15:24:06 +00:00
795a6a0aff Update github first merge rule (#156583)
**Summary**
Update the merge rules for `CPU Frontend` and `Autocast`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156583
Approved by: https://github.com/atalman
2025-06-24 14:04:22 +00:00
dd78d6e7ea Add CPython generator/contextlib tests (#150796)
Tests:
* test_generator.py
* test_generator_stop.py
* test_contextlib.py

Minor changes were made to each test to run them inside Dynamo. We
intentionally didn't copy the binary files stored in
`python/Lib/test/archivetestdata` for security reasons. There's a single
test that requires a binary file and it is skipped because of that.

The tests were downloaded from CPython 3.13 and the diff was generated
using `git diff` to apply the changes:

```bash
for f in "test_contextlib" "test_generators" "test_generator_stop"; do
	wget -O "test/dynamo/cpython/3_13/${f}.py" "https://raw.githubusercontent.com/python/cpython/refs/heads/3.13/Lib/test/${f}.py"
	git apply "test/dynamo/cpython/3_13/${f}.diff"
done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150796
Approved by: https://github.com/williamwen42
2025-06-24 13:15:04 +00:00
3a7ff829c5 Fix MacOS MP hang in Python-3.12+ (#155698)
By leaking resource_tracker destructor (introduced by https://github.com/python/cpython/issues/88887 )  at exit, as at this point handle to child process might no longer be valid

Also, switch CI from using `setup-miniconda` to `setup-python` as an integration test for the fix as all data loader tests will hang otherwise
- Remove `CONDA_RUN` macro...
- Hack the search path in `macos-test.sh` to put both python and python3 aliases first in the path (not sure what other action are messing with path environment variable)

Fixes https://github.com/pytorch/pytorch/issues/153050

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155698
Approved by: https://github.com/atalman
2025-06-24 12:13:35 +00:00
f5e6e52f25 [BE][PYFMT] migrate PYFMT for test/inductor/ to ruff format (#148186)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148186
Approved by: https://github.com/jansel
2025-06-24 11:12:11 +00:00
4e8dd11be1 simplify nvrtc discovery login in compile_kernel (#156674)
Followup from https://github.com/pytorch/pytorch/pull/156332

Tested a bunch while I was working on https://github.com/pytorch/pytorch/pull/156380

Works just fine on dev gpus
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156674
Approved by: https://github.com/malfet
2025-06-24 08:55:40 +00:00
ce73b0c53f Validate custom op support for compile_kernel (#156332)
Follow-up work from #151484 - just makes sure that compile_kernel composes nicely with custom ops by writing some new tests, no new code functionality is added

benchmark failure in CI is unrelated to this change, CI is green
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156332
Approved by: https://github.com/zou3519, https://github.com/malfet
2025-06-24 08:21:21 +00:00
35e44067c4 Add unified memory APIs for torch.accelerator (#152932)
# Motivation
The following API will be put under torch.accelerator
- empty_cache
- max_memory_allocated
- max_memory_reserved
- memory_allocated
- memory_reserved
- memory_stats
- reset_accumulated_memory_stats
- reset_peak_memory_stats

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152932
Approved by: https://github.com/albanD
ghstack dependencies: #138222
2025-06-24 07:57:48 +00:00
cyy
ce1a07570d Fix TORCH_CUDA_ARCH_LIST (#156667)
Before the fix, `TORCH_CUDA_ARCH_LIST` variable contains string `TORCH_CUDA_ARCH_LIST`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156667
Approved by: https://github.com/ngimel
2025-06-24 07:27:53 +00:00
04178d347c [Reland] [Intel GPU] Make SDPA output has the same stride as Query. (#154340)
Fixes [#153903](https://github.com/pytorch/pytorch/issues/153903).

Currently the output tensor of SDPA XPU is always defined as contiguous stride, while CPU/CUDA flash_attention and cudnn_attention allocate output tensor with stride the same as Query.

This PR aligns XPU's behavior with CUDA/CPU to make XPU compatible to CPU/CUDA's modeling code.

The function `alloc_with_matching_layout` is copied from cudnn 8c16d0e404/aten/src/ATen/native/cudnn/MHA.cpp (L874)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154340
Approved by: https://github.com/guangyey, https://github.com/drisspg
2025-06-24 06:09:59 +00:00
a7b29c88b1 [ONNX] Preserve all legacy exporter params in fallback (#156659)
Fixes #151693

Previous to this PR, the fallback does not take care of all user parameters. This pr preserves them to ensure a smooth transition for users.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156659
Approved by: https://github.com/justinchuby
2025-06-24 05:28:55 +00:00
a6a8641c8a Fix UT failure on non-cuda backend (#156577)
# Motivation
`HAS_TRITON` is a generic API that could return `True` on xpu backend. It will result in these cases failing on xpu. So we should use `HAS_CUDA` (equivalently `torch.cuda.is_available() && HAS_TRITON`) to avoid these failures.

Please refer to https://github.com/pytorch/pytorch/actions/runs/15813693789/job/44569593370#step:15:2129

# Additional Context
This PR aims to fix the CI failure soon. We will have a dedicated PR to generalize these UT to be generic. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames @daisyden
Fix https://github.com/pytorch/pytorch/issues/156576

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156577
Approved by: https://github.com/jansel
2025-06-24 05:24:24 +00:00
495c317005 Replace deprecated is_compiling method (#154476)
Replace depreacted `is_compiling` in `torch._dynamo` with `torch.compiler`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154476
Approved by: https://github.com/eellison
2025-06-24 05:16:40 +00:00
1044934878 [CUDAGraph] add config cudagraph_capture_sizes (#156551)
Users may want CUDAGraph for certain sizes and fallback for other sizes.

As discussed in Issue #121968, we would like to use cudagraph for [batch size [1,2,3,...,16]](https://github.com/pytorch/pytorch/issues/121968#issuecomment-2259942345) and fallback for others.

Another use case is [vllm](https://github.com/vllm-project/vllm/blob/main/vllm/compilation/cuda_piecewise_backend.py#L114-L119), where 67 batch sizes (i.e., [1,2,4,8,16,24,32,...,512]) are captured and all other sizes fallback.

This PR implements the feature with `torch._inductor.config.triton.cudagraph_capture_sizes`. When it is specified, we only capture cudagraph for these shapes. When it is None (by default), we capture cudagraph for all shapes.

Example:
```python
import torch

torch._inductor.config.triton.cudagraph_capture_sizes = [(2,3), (4,5), (6, 2), (7,3)]

def f(x):
    return x + 1

f = torch.compile(f, mode="reduce-overhead", dynamic=False)

def run(batch_size, seq_len, d):
    x = torch.randn((batch_size, seq_len, d), device="cuda")
    # Need to mark the dimension as dynamic. Automated-dynamic
    # may have some ux issues on matching `cudagraph_capture_sizes`
    # with the actual dynamic shapes, since there are specialization and
    # multiple dynamo graphs.
    torch._dynamo.mark_dynamic(x, 0)
    torch._dynamo.mark_dynamic(x, 1)
    for _ in range(3):
        f(x)

for i in range(2, 10):
    for j in range(2, 10):
        run(i, j, 8)

num_cudagraph = torch._inductor.cudagraph_trees.get_container(0).tree_manager.new_graph_id()
assert num_cudagraph.id == 4
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156551
Approved by: https://github.com/bobrenjc93
2025-06-24 05:14:49 +00:00
899d3d3e9e Don't call sum() on a tensor that is not summable in layer_norm (#156600)
Don't call `sum()` on a tensor that is default constructed.

Previously we could call `sum()` on a tensor that was default-contructed. That would lead to an error like this:

```
Traceback (most recent call last):
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 58, in testPartExecutor
    yield
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 634, in run
    self._callTestMethod(testMethod)
  File "/home/ahmads/.conda/envs/pt3/lib/python3.12/unittest/case.py", line 589, in _callTestMethod
    if method() is not None:
       ^^^^^^^^
  File "/home/ahmads/personal/pytorch/torch/testing/_internal/common_utils.py", line 3191, in wrapper
    method(*args, **kwargs)
  File "/home/ahmads/personal/pytorch/test/test_nn.py", line 7235, in test_layer_norm_backwards_eps
    ln_out_cuda.backward(grad_output_cuda)
  File "/home/ahmads/personal/pytorch/torch/_tensor.py", line 647, in backward
    torch.autograd.backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/__init__.py", line 354, in backward
    _engine_run_backward(
  File "/home/ahmads/personal/pytorch/torch/autograd/graph.py", line 829, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: tensor does not have a device
Exception raised from device_default at /home/ahmads/personal/pytorch/c10/core/TensorImpl.h:1265 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::detail::torchCheckFail(char const*, char const*, unsigned int, char const*) from ??:0
#7 at::TensorBase::options() const from :0
#8 at::meta::resize_reduction(at::impl::MetaBase&, at::Tensor const&, c10::OptionalArrayRef<long>, bool, c10::ScalarType, bool) from :0
#9 at::meta::structured_sum_dim_IntList::meta(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#10 at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#11 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>), &at::(anonymous namespace)::wrapper_CompositeExplicitAutogradNonFunctional_sum_dim_IntList>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType> > >, at::Tensor (at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from RegisterCompositeExplicitAutogradNonFunctional_0.cpp:0
#12 at::_ops::sum_dim_IntList::call(at::Tensor const&, c10::OptionalArrayRef<long>, bool, std::optional<c10::ScalarType>) from ??:0
#13 void at::native::(anonymous namespace)::LaunchGammaBetaBackwardCUDAKernel<float, float>(float const*, float const*, float const*, float const*, long, long, at::Tensor*, at::Tensor*, CUstream_st*) from ??:0
#14 void at::native::(anonymous namespace)::LayerNormBackwardKernelImplInternal<float>(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#15 at::native::(anonymous namespace)::LayerNormBackwardKernelImpl(at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, at::Tensor const&, long, long, at::Tensor*, at::Tensor*, at::Tensor*) from ??:0
#16 at::native::layer_norm_backward_cuda(at::Tensor const&, at::Tensor const&, c10::ArrayRef<long>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from ??:0
#17 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA__native_layer_norm_backward(at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, at::Tensor const&, at::Tensor const&, std::optional<at::Tensor> const&, std::optional<at::Tensor> const&, std::array<bool, 3ul>) from RegisterCUDA_0.cpp:0

```

Now we only call `sum(0)` on tensors that are defined and properly guard the `sum(0)` and assignment.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156600
Approved by: https://github.com/eqy, https://github.com/ngimel
2025-06-24 05:00:42 +00:00
17eb649d55 Implement guard collectives (optimized version) (#156562)
This is a remix of https://github.com/pytorch/pytorch/pull/155558

Instead of mediating guard collective via a config option, in this one it's done via a `set_stance` like API. The motivation is that checking for the config value on entry on torch.compile is apparently quite expensive, according to functorch_maml_omniglot. So this makes it a bit cheaper.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156562
Approved by: https://github.com/Microve
2025-06-24 04:59:49 +00:00
73772919d2 remove deprecated numpy.typing.mypy_plugin in mypy.ini (#156601)
Fixes #156489
removed deprecated numpy plugin in mypy.ini
 @ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156601
Approved by: https://github.com/ezyang
2025-06-24 04:56:08 +00:00
6d5c789ad5 [BE][PYFMT] migrate PYFMT for test/[a-h]*/ to ruff format (#144555)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144555
Approved by: https://github.com/ezyang
ghstack dependencies: #144551, #144554
2025-06-24 04:53:54 +00:00
e600e044a7 Revert "[aotd] Support mutations of the same input in fw and bw (#155354)"
This reverts commit 3f920f3d8f5bd15d2222758f21f9a5d36e4dad1f.

Reverted https://github.com/pytorch/pytorch/pull/155354 on behalf of https://github.com/malfet due to Not sure why CI was green, but it breaks tons of tests, see 930b575389/1 ([comment](https://github.com/pytorch/pytorch/pull/155354#issuecomment-2998780884))
2025-06-24 04:42:14 +00:00
930b575389 [symm_mem] Add sym mem test into ptd h100 ci (#156634)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156634
Approved by: https://github.com/ngimel, https://github.com/mori360
2025-06-24 03:43:22 +00:00
b2d473c8f8 [ROCm][Windows] Fix rocsolver undefined symbol error (#156591)
Fix undefined symbol error while using `rocsolver_ssyevd_strided_batched` call in `aten/src/ATen/native/cuda/linalg/BatchLinearAlgebraLib.cpp`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156591
Approved by: https://github.com/jeffdaily
2025-06-24 03:28:45 +00:00
87d615efab [fr] Use a vector to temporarily keep the reference to future object to avoid block (#156653)
At the end of the scope when std::async is launched, a wait will be called which could makes the code blocking, this is not expected for monitoring thread. Instead, let's use a vector to contain the reference to it. So no blocking will happen. And at the end of loop, wait will still be called but it is ok since all the checks or dump has already been finished.

Differential Revision: [D77190380](https://our.internmc.facebook.com/intern/diff/D77190380)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156653
Approved by: https://github.com/kwen2501
2025-06-24 03:25:04 +00:00
cyy
b09bd414a6 Deprecate c10::string (#155084)
Now there is no mention of c10::string in OSS.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155084
Approved by: https://github.com/ezyang
2025-06-24 03:03:06 +00:00
0a2ec7681d Add fx_graph_runnable tests boilerplate (#156552)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156552
Approved by: https://github.com/StrongerXi
2025-06-24 02:41:38 +00:00
9665702c64 [nativert] reland D76832891 remove designated initializer cpp20 (#156565)
Summary: fix windows build broke in https://github.com/pytorch/pytorch/pull/156508

Test Plan:
ci

Rollback Plan:

Differential Revision: D77080420

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156565
Approved by: https://github.com/zhxchen17
2025-06-24 02:38:08 +00:00
6a3d00aa3b Add Windows cuda 12.9.1 build (#156630)
Without Support for SegmentReduce.cu
Test PR confirmed by Removing SegmentReduce.cu windows build for CUDA 12.9 can succeed

Related to: https://github.com/pytorch/pytorch/issues/156181
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156630
Approved by: https://github.com/malfet

Co-authored-by: Ting Lu <tingl@nvidia.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-06-24 02:15:49 +00:00
a9ef7c4d04 [dynamo] update to lru_cache message and updated user stack trace in debug mode (#156639)
I had to create a new PR for this because of @atalman request of temporary reverting the previous PR to restore diff train sync. Nothing has changed from this PR and the original one.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156639
Approved by: https://github.com/atalman
2025-06-24 01:52:13 +00:00
86996c15dc [Inductor] Allow exhaustive autotuning across all GEMM options (#156610)
Differential Revision: D76843916

Exhaustive autotuning is meant to autotune GEMM configs across the entire search space of possible configs. Some of these configs can cause extremely long compilation times and OOMs, especially with configs of the following nature:
Excessive register spillage
Using much larger amounts of shared memory than available on the hardware
This diff prunes out those configs to make exhaustive autotuning more viable, along with supporting exhaustive autotuning for persistent+tma template and decompose_k. Previously, exhaustive autotuning would hang, now we are able to tune shapes in ~5 minutes. Below is a sample log for autotuning with exhaustive:

```
  AUTOTUNE mm(1152x21504, 21504x1024)
  strides: [21504, 1], [1, 21504]
  dtypes: torch.bfloat16, torch.bfloat16
  mm 0.1167 ms 100.0%
  triton_mm_6270 0.1172 ms 99.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_6522 0.1183 ms 98.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_persistent_tma_7482 0.1190 ms 98.1% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_persistent_tma_7483 0.1195 ms 97.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=5, num_warps=8, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_6523 0.1274 ms 91.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=8, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_6267 0.1285 ms 90.8% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_6519 0.1287 ms 90.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_persistent_tma_7480 0.1298 ms 89.9% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  triton_mm_persistent_tma_7312 0.1302 ms 89.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0
  SingleProcess AUTOTUNE benchmarking takes 298.7185 seconds and 21.2569 seconds precompiling for 2210 choices
  INFO:tritonbench.utils.triton_op:Took 333894.46ms to get benchmark function for pt2_matmul_maxautotune
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156610
Approved by: https://github.com/jansel
2025-06-24 01:42:05 +00:00
40a785103c [dynamo] fix debugging code_parts for relational guards (#154753)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154753
Approved by: https://github.com/anijain2305
ghstack dependencies: #154772
2025-06-24 01:38:29 +00:00
849468034d [dynamo] fix selecting shape guards (#154772)
Not all LAMBDA_GUARDs are shape guards. Only the epilogue guards
are lambda guards

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154772
Approved by: https://github.com/anijain2305
2025-06-24 01:38:29 +00:00
5dd9652389 Clean up HF components (#155707)
Differential Revision: [D76427358](https://our.internmc.facebook.com/intern/diff/D76427358/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155707
Approved by: https://github.com/saumishr
2025-06-24 00:07:37 +00:00
ca5a40395d [partitioner] Fix _broadcast_on_rank0 to use deterministic hash function (#153734)
Summary:
I was using python's hash, which is not deterministic across different interpreter runs.

Use hashlib instead.

Test Plan:
Run using it

https://www.internalfb.com/mlhub/pipelines/runs/mast/aps-rebase_sanity_128bs_8t_cc-8e17be61ce?job_attempt=1&version=0&tab=summary&env=prod

Differential Revision: D74882405

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153734
Approved by: https://github.com/Microve
2025-06-24 00:06:23 +00:00
24063ad109 Fix native static dispatch kernels (#156331)
Summary: Fix for native static dispatch kernels not taking effect

Test Plan:
```
buck2 test //sigmoid/backend/test:static_kernels_ops_test

buck2 run mode/opt caffe2/torch/fb/model_transform/fx2trt/packaging:load_net_predictor -- --loadMode=BenchmarkByOp --inputNetFile=/data/users/$USER/models/${MODEL_ENTITY_ID}/${SNAPSHOT_ID}/${MODEL_ENTITY_ID}_${SNAPSHOT_ID}${SUFFIX} --moduleName=${MODULE} --submodToDevice "" --pytorch_predictor_sigmoid_static_dispatch_enable=true --pytorch_predictor_sigmoid_graph_passes_enable=true --benchmarkEnableProfiling=true --load_lowered_merge=3 --using_aoti_lowering_allowlist=false --requestFilePath=/data/users/georgiaphillips/replayer/inputs/742055223/0/mix/742055223_0_mix.inputs.recordio --benchmarkNumIterations=2
```

Rollback Plan:

Reviewed By: dolpm

Differential Revision: D76559764

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156331
Approved by: https://github.com/Skylion007, https://github.com/jingsh
2025-06-24 00:05:49 +00:00
380e30a723 [EZ/Profiler] Change 'b' to 'B' in FunctionEvent Frontend (#156250)
Summary: Fixes https://github.com/pytorch/pytorch/issues/149311

Test Plan:
Just changes string output

```
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg       CPU Mem  Self CPU Mem    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
void at::native::vectorized_elementwise_kernel<4, at...         0.00%       0.000us         0.00%       0.000us       0.000us      60.993us         0.97%      60.993us       1.848us           0 B           0 B            33
...
```

Rollback Plan:

Differential Revision: D76857251

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156250
Approved by: https://github.com/sanrise
2025-06-23 23:25:04 +00:00
07bb097698 Fix clang-tidy bugprone* warnings (#148529)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148529
Approved by: https://github.com/ezyang
2025-06-23 23:09:56 +00:00
3f920f3d8f [aotd] Support mutations of the same input in fw and bw (#155354)
Original issue: https://github.com/pytorch/pytorch/issues/154820

The issue happens when there is a mutation for the same input in forward AND in backward.

AOTD emited copy_ after joint_function tracing. This made this fx-node to correspond to the side effects of both mutations (in forward and in backward).
After that partitioner can put it either in forward or in backward.

The fix:

1/ Introduce joint_function.handle that allows to set "post_forward" callback, to be able to check inputs state after forward

We do not want to apply the mutation after joint, if we already applied it in forward. For that we need "mutation_counter" and memorize the version of mutation that we applied for  forward mutation.

2/ Exposing mutation_counter to python

We want to keep invariant that copy_ exist only in the end of joint graph.

3/ We memorize mutation_counter and state of the inputs after forward, using the handle post_forward.
Emit post_forward mutations after joint graph fully traced.

add for post_forward mutations "must_be_in_forward" tag (similar to existing "must_be_in_backward") to keep them in forward.

4/ Ban recompute of the source of mutation. Recompute can apply the same op (e.g. add) in forward and backward.
For this set MUST_SAVE for the source of mutation in forward.

proxy_tensor changes:

By default proxy tensor updates tensor_tracker. In this case applied mutations will be chained.
But we want that this copy_ will be independent and applied just to primals.
For this introducing a contextmanager to be able to disable update of tensor_tracker for adding forward mutations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155354
Approved by: https://github.com/bdhirsh
2025-06-23 22:25:45 +00:00
c82a174cea Extract CPU log_softmax kernels to header (#156243)
This allows sharing them with ExecuTorch.

Differential Revision: [D76830114](https://our.internmc.facebook.com/intern/diff/D76830114/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156243
Approved by: https://github.com/janeyx99
2025-06-23 21:31:16 +00:00
96e4c95cd8 [Inductor] Subgraph as a choice symbolic expression as input (#156185)
Differential Revision: D76514984

Fix subgraph as a choice for when a symbolic shape is inputted as an expression, i.e. 256 * s0, which typically happens in the backwards pass. The current logic assumes that all symbolic shapes are single inputs, i.e. standalone s0

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156185
Approved by: https://github.com/masnesral
2025-06-23 21:29:17 +00:00
b1d62febd0 Revert "Use official CUDAToolkit module in CMake (#154595)"
This reverts commit 08dae945ae380d80efbaf140a95abfc5d96e5100.

Reverted https://github.com/pytorch/pytorch/pull/154595 on behalf of https://github.com/malfet due to It breaks on some local setup with no clear diagnostic, but looks like it fails to find cuFile ([comment](https://github.com/pytorch/pytorch/pull/154595#issuecomment-2997959344))
2025-06-23 21:15:31 +00:00
31e1274597 [MTIA Aten Backend] Migrate max.dim_max / min.dim_min (#156568)
# Context

See the first PR https://github.com/pytorch/pytorch/pull/153670

# This diff

 Migrate max.dim_max / min.dim_min to in-tree.

Differential Revision: [D77095185](https://our.internmc.facebook.com/intern/diff/D77095185/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156568
Approved by: https://github.com/malfet
ghstack dependencies: #156502, #156539, #156554
2025-06-23 20:43:39 +00:00
dfdd636cfa [aoti] Check longlong upperbound for codegening input size check (#156522)
Summary:
Fixes
```
error: integer literal is too large to be represented in any integer type
 38979 |     if (arg410_1_size[0] > 1171368248680556527362) {
```

Test Plan: ci

Differential Revision: D77057898

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156522
Approved by: https://github.com/jingsh, https://github.com/desertfire
2025-06-23 20:38:34 +00:00
edd9c09e73 [MTIA Aten Backend] Migrate isnan (#156554)
# Context

See the first PR https://github.com/pytorch/pytorch/pull/153670

# This diff

 Migrate isnan to in-tree.

Differential Revision: [D77094811](https://our.internmc.facebook.com/intern/diff/D77094811/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156554
Approved by: https://github.com/malfet
ghstack dependencies: #156502, #156539
2025-06-23 20:22:32 +00:00
070e580d30 [MTIA Aten Backend] Migrate _log_softmax.out / _log_softmax_backward_data.out (#156539)
# Context

See the first PR https://github.com/pytorch/pytorch/pull/153670

# This diff

 Migrate _log_softmax.out / _log_softmax_backward_data.out to in-tree.

Differential Revision: [D77044380](https://our.internmc.facebook.com/intern/diff/D77044380/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156539
Approved by: https://github.com/malfet
ghstack dependencies: #156502
2025-06-23 19:56:01 +00:00
93cd16512f [MTIA Aten Backend] Migrate maximum.out / minimum.out / cos.out / erf.out / exp.out (#156502)
# Context

See the first PR https://github.com/pytorch/pytorch/pull/153670

# This diff

 Migrate maximum.out / minimum.out / cos.out / erf.out / exp.out to in-tree.

Differential Revision: [D76917384](https://our.internmc.facebook.com/intern/diff/D76917384/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156502
Approved by: https://github.com/malfet
2025-06-23 19:56:01 +00:00
ee4d343499 Revert "[dynamo] handle fullgraph toggle using nested torch.compile (#155166)" (#156624)
This reverts changes to [test/dynamo/test_repros.py](https://github.com/pytorch/pytorch/compare/main...atalman:revert_only_portion_of_file?expand=1#diff-4c82a5798a61d4cceb176b2700ba6fdd7c3e72d575b8e7e22458589139459caa)

Missed by: ee3d9969cc (diff-036cb21341ff8e390cc250e74fe9e3f0f15f259ea4bec4abcce49d95febf1553)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156624
Approved by: https://github.com/Camyll
2025-06-23 19:30:08 +00:00
56b3bf0c74 [nativert] Move HigherOrderKernel (#156507)
Summary:
Torch Native Runtime RFC: https://github.com/pytorch/rfcs/pull/72
As part of the effort to open source TorchNativeRuntime (or what we call Sigmoid), we are moving the implementation to torch/:
fbcode/sigmoid/kernels -> fbcode/caffe2/torch/nativert/kernels

Test Plan: CI

Differential Revision: D77032074

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156507
Approved by: https://github.com/zhxchen17
2025-06-23 19:29:27 +00:00
d061a02e6e Revert "[invoke_subgraph] make same subgraph share get_attr target (#156260)"
This reverts commit 39dd2f4d7defc63164a7969bfac0d0c62ffac900.

Reverted https://github.com/pytorch/pytorch/pull/156260 on behalf of https://github.com/ydwu4 due to no signal, it breaks linter tests. ([comment](https://github.com/pytorch/pytorch/pull/156260#issuecomment-2997478798))
2025-06-23 18:24:10 +00:00
35d03398e5 Revert "[invoke_subgraph] make collect_meta_analysis fake prop cachable (#156347)"
This reverts commit f179b7198522e6d93bd103efba1a1ebd5a2cf891.

Reverted https://github.com/pytorch/pytorch/pull/156347 on behalf of https://github.com/ydwu4 due to no signal, it breaks linter tests. ([comment](https://github.com/pytorch/pytorch/pull/156347#issuecomment-2997453729))
2025-06-23 18:19:29 +00:00
98a34e8d4b Move code out of individual token linters (#152256)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152256
Approved by: https://github.com/Skylion007
2025-06-23 18:16:33 +00:00
da910e603a [ROCm] update state check for test_trace_while_active* (#153545)
When timing is enabled, ROCR runtime used to sleep for a small amount which ensured that the application saw the correct state. However, for perf reasons this sleep was removed and now the state is not guaranteed to be "started". That's why I updated the test state check to be either "started" or "scheduled"

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153545
Approved by: https://github.com/jeffdaily, https://github.com/pruthvistony

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-06-23 17:58:14 +00:00
55ef7b15e0 Revert "[dynamo] fixes to lru_cache message and adding user stack trace in debug mode (#156463)"
This reverts commit afbf5420b8745099bf7d871f5a4fb6dec338f825.

Reverted https://github.com/pytorch/pytorch/pull/156463 on behalf of https://github.com/atalman due to This is temoprary revert, to restore diff train sync. We should be good to reland this change ([comment](https://github.com/pytorch/pytorch/pull/156463#issuecomment-2997335541))
2025-06-23 17:44:36 +00:00
a95504b10f [torchbench] update environment setup script (#156465)
Existing torchbench `Makefile` installs all models from torchbench, which could easily take 30 minutes, even if a developer only want to run 1 model.

This PR adds a config to only install torchbench models we want to run.

Example usage:
```
# Install 1 torchbench model
make build-deps TORCHBENCH_MODELS="alexnet"

# Install 3 torchbench models
make build-deps TORCHBENCH_MODELS="alexnet basic_gnn_gcn BERT_pytorch"

# Install all models
make build-deps

# Install all models
make build-deps TORCHBENCH_MODELS=""
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156465
Approved by: https://github.com/ezyang
2025-06-23 17:41:29 +00:00
e583b88819 Revert "[Draft][CUDA] Use runtime driver API for cuStreamWriteValue32 (#156097)"
This reverts commit ac86ec0e60370c037e018137f2048cafd47c5c28.

Reverted https://github.com/pytorch/pytorch/pull/156097 on behalf of https://github.com/atalman due to internal breakage ([comment](https://github.com/pytorch/pytorch/pull/156097#issuecomment-2997314638))
2025-06-23 17:36:44 +00:00
f179b71985 [invoke_subgraph] make collect_meta_analysis fake prop cachable (#156347)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156347
Approved by: https://github.com/anijain2305, https://github.com/zou3519
ghstack dependencies: #156260
2025-06-23 17:10:07 +00:00
39dd2f4d7d [invoke_subgraph] make same subgraph share get_attr target (#156260)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156260
Approved by: https://github.com/anijain2305, https://github.com/zou3519
2025-06-23 17:10:07 +00:00
276c790010 [ROCm][SymmetricMemory] Avoid bf16 to float conversion during reduce (#155587)
This PR helps improve the performance of one-shot and two-shot allreduce as reported here: https://github.com/pytorch/FBGEMM/issues/4072

One-Shot:
![image](https://github.com/user-attachments/assets/69fe0d53-6636-42e1-90e0-e5efb989f59f)
As shown in the numbers presented above, symmetric memory performance prior to the PR (baseline) was on average about 26% less than fbgemm's number reported in the issue above. After this PR, we are seeing 16% improvement on average as compared to fbgemm and 59% as compared to our baseline numbers.

Two-Shot:
![image](https://github.com/user-attachments/assets/e5c8a288-303e-4d50-814b-4348e589e1fc)
Similarly, in two-shot, we were originally underperforming by 12%. We have improved by 22% after this PR as compared to symmetric memory performance prior to this PR. However, two-shot performance is still about 23% lower than fbgemm. This work is still in progress and will be pushing those changes through a separate PR.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155587
Approved by: https://github.com/jeffdaily
2025-06-23 16:14:01 +00:00
5a533f74a1 Checkout optional submodules when publishing a release tarball (#156615)
This includes Eigen and nccl for now

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156615
Approved by: https://github.com/huydhn
2025-06-23 16:08:22 +00:00
6835ba1b34 Register hpu device to fake backend (#156076)
## MOTIVATION

This PR intends to add hpu ( Intel Gaudi) also to the list of devices that will be supported by the "fake" distributed backend and the process group that will be created.

## CHANGES
- Add "hpu" to the list of devices

@ankurneog, @EikanWang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156076
Approved by: https://github.com/d4l3k, https://github.com/EikanWang, https://github.com/albanD
2025-06-23 16:08:08 +00:00
cc410d3761 [SymmMem] Rename all_to_all_vdev ops (#156582)
`all_to_all_vdev` are not binding of NVSHMEM APIs. Removing the `nvshmem_` prefix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156582
Approved by: https://github.com/fduwjj
ghstack dependencies: #155134
2025-06-23 15:57:36 +00:00
640f5a7090 [dynamo] Support builtin bool on non-constant VTs (#155863)
In practice `bool(...)` is either constant folded by Dynamo or used for
branching (so most of its emulation logic lived in
`InstructionTranslator.generic_jump`.

This patch adds a dedicated `bool` hanlder (only for symbolic
bool/int/float for now), and fixes #136075.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155863
Approved by: https://github.com/williamwen42
2025-06-23 15:53:15 +00:00
6b45af38a5 [easy] better copy_misaligned_inputs assertion failure message (#154472)
internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/688540560729579/

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154472
Approved by: https://github.com/williamwen42
2025-06-23 15:39:15 +00:00
2e9bd03f60 Implemented Size.__radd__ (#152554)
Fixes #144334
Builds on top of #146834 by @khushi-411

The needed trick was to add `PyNumberMethods` because these Number Protocol appears to be responsible for `__radd__` (see https://stackoverflow.com/q/18794169)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152554
Approved by: https://github.com/albanD

Co-authored-by: Khushi Agrawal <khushiagrawal411@gmail.com>
Co-authored-by: albanD <desmaison.alban@gmail.com>
2025-06-23 15:38:37 +00:00
3cbae6dde8 [MPSInductor][BE] Fix multistage reduction check (#156567)
From less than max threadgroup size to less or equal to that, which eliminates redundant trivial loops.

I.e. it changes shader code generated for
```python
import torch

def f(x):
    var, mean = torch.var_mean(x, dim=2, keepdim = True)
    return x / var, var

torch.compile(f)(torch.rand(1, 16, 1024, dtype=torch.float32, device='mps'))

```

from
```metal
[[max_total_threads_per_threadgroup(1024)]]
kernel void generated_kernel(
    device float* out_ptr1,
    device float* out_ptr2,
    constant float* in_ptr0,
    uint2 thread_pos [[thread_position_in_grid]],
    uint2 group_pos [[thread_position_in_threadgroup]]
) {
    auto xindex = thread_pos.x;
    auto r0_index = thread_pos.y;
    int x0 = xindex;
    threadgroup float3 tmp_acc_0[1024];
    tmp_acc_0[r0_index * 1] = 0.0;
    for(auto r0_1_cnt = 0; r0_1_cnt < 1; ++r0_1_cnt) {
        int r0_1 = 1 * r0_index + r0_1_cnt;
        auto tmp0 = in_ptr0[r0_1 + 1024*x0];
        tmp_acc_0[r0_index * 1] = ::c10:🤘:welford_combine(tmp_acc_0[r0_index * 1], float3(tmp0, 0.0, 1.0));
    }
    auto tmp1 = c10:🤘:threadgroup_welford_combine(tmp_acc_0, 1024);
    auto tmp2 = 1023.0;
    auto tmp3 = tmp1.y / tmp2;
    out_ptr1[x0] = static_cast<float>(tmp3);
    for(auto r0_1_cnt = 0; r0_1_cnt < 1; ++r0_1_cnt) {
        int r0_1 = 1 * r0_index + r0_1_cnt;
        auto tmp4 = in_ptr0[r0_1 + 1024*x0];
        auto tmp5 = tmp4 / tmp3;
        out_ptr2[r0_1 + 1024*x0] = static_cast<float>(tmp5);
    }
}
```
to
```metal
[[max_total_threads_per_threadgroup(1024)]]
kernel void generated_kernel(
    device float* out_ptr1,
    device float* out_ptr2,
    constant float* in_ptr0,
    uint2 thread_pos [[thread_position_in_grid]],
    uint2 group_pos [[thread_position_in_threadgroup]]
) {
    auto xindex = thread_pos.x;
    auto r0_index = thread_pos.y;
    int r0_1 = r0_index;
    int x0 = xindex;
    threadgroup float tmp_acc_0[1024];
    auto tmp0 = in_ptr0[r0_1 + 1024*x0];
    tmp_acc_0[r0_index * 1] = tmp0;
    auto tmp1 = c10:🤘:threadgroup_welford_reduce(tmp_acc_0, 1024);
    auto tmp2 = 1023.0;
    auto tmp3 = tmp1.y / tmp2;
    out_ptr1[x0] = static_cast<float>(tmp3);
    auto tmp4 = tmp0 / tmp3;
    out_ptr2[r0_1 + 1024*x0] = static_cast<float>(tmp4);
}

``

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156567
Approved by: https://github.com/dcci
ghstack dependencies: #156566
2025-06-23 14:49:26 +00:00
e28925aa75 [MPS] Activation kernels: do compute at float precision (#155735)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155735
Approved by: https://github.com/malfet
ghstack dependencies: #155304, #155316, #155462, #155479, #155571, #155586
2025-06-23 14:48:57 +00:00
f5e1b24945 Revert "Enable Leak Sanitizer (#154584)"
This reverts commit c79c7bbe615265b6b3d7df39d6d5a68afd7d6b2a.

Reverted https://github.com/pytorch/pytorch/pull/154584 on behalf of https://github.com/cyyever due to Need to suppress more output ([comment](https://github.com/pytorch/pytorch/pull/154584#issuecomment-2995792265))
2025-06-23 10:08:40 +00:00
4f70fbbd16 Revert "Use CMake wholearchive group (#156393)"
This reverts commit d1b4e0fa9a5feb22fc6de1d36dc4c9dac685caed.

Reverted https://github.com/pytorch/pytorch/pull/156393 on behalf of https://github.com/etaf due to This PR is breaking XPU windows build. ([comment](https://github.com/pytorch/pytorch/pull/156393#issuecomment-2995576362))
2025-06-23 09:03:19 +00:00
92409b6c89 Add DeviceAllocator as the base device allocator (#138222)
# Motivation
In line with [RFC] [A device-agnostic Python device memory related API design for stream-based accelerators](https://github.com/pytorch/pytorch/issues/134978), some memory-related APIs are widely used in popular repositories, such as HuggingFace [so many if-else conditional code](https://github.com/search?q=repo%3Ahuggingface%2Faccelerate%20torch.cuda.empty_cache&type=code). We would like to introduce a generic API set under torch.accelerator namespace to generalize these user cases.

<div align="center">
<table>
<tr>
<td> Device-specific memory APIs torch.xxx.foo</td> <td> Device-agnostic memory APIs torch.accelerator.foo</td>
</tr>
<tr>
<td>

```python
torch.xxx.empty_cache
```

</td>
<td>

```python
torch.accelerator.empty_cache
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.reset_peak_memory_stats
```

</td>
<td>

```python
torch.accelerator.reset_peak_memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.reset_accumulated_memory_stats
```

</td>
<td>

```python
torch.accelerator.reset_accumulated_memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_stats
```

</td>
<td>

```python
torch.accelerator.memory_stats
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_allocated
```

</td>
<td>

```python
torch.accelerator.memory_allocated
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.max_memory_allocated
```

</td>
<td>

```python
torch.accelerator.max_memory_allocated
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.memory_reserved
```

</td>
<td>

```python
torch.accelerator.memory_reserved
```

</td>
</tr>

<tr>
<td>

```python
torch.xxx.max_memory_reserved
```

</td>
<td>

```python
torch.accelerator.max_memory_reserved
```

</td>
</tr>

</table>
</div>

# Solution
This design follows a similar pattern to `HostAllocator`. We're introducing a base class `DeviceAllocator`, from which `CUDAAllocator` and `XPUAllocator` will inherit. This allows us to provide a unified call path like: `torch.accelerator.empty_cache()` -> `GetDeviceAllocator(allocator)->empty_cache()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138222
Approved by: https://github.com/albanD
2025-06-23 08:49:30 +00:00
d5781c8d21 remove allow-untyped-defs from torch/fx/passes/utils/fuser_utils.py (#156538)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156538
Approved by: https://github.com/ezyang
2025-06-23 08:18:16 +00:00
e0ae4ecca8 Refactor cpp codegen to support overridable class attributes. (#155553)
- Refactored CppKernelProxy and CppScheduling to use class-level attributes (kernel_cls, kernel_proxy_cls) for backend-specific kernel customization.
 - Avoids method duplication (e.g., codegen_functions, codegen_node) for backend-specific overrides thus reduces downstream maintenance when upgrading Torch.
 - Ensures type safety with annotations while keeping core logic centralized and extensible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155553
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5
2025-06-23 07:36:30 +00:00
cyy
67ee0c6725 Remove outdated Android workarounds of nearbyintf (#151292)
This PR uses std::nearbyint on all supported platforms.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151292
Approved by: https://github.com/ezyang
2025-06-23 06:28:15 +00:00
cyy
d1b4e0fa9a Use CMake wholearchive group (#156393)
Use CMake wholearchive group to simplify code. It may also support more OSes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156393
Approved by: https://github.com/ezyang
2025-06-23 06:22:34 +00:00
cyy
099d0d6121 Simplify nvtx3 CMake handling, always use nvtx3 (#153784)
Fall back to third-party NVTX3 if system NVTX3 doesn't exist. We also reuse the `CUDA::nvtx3` target for better interoperability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153784
Approved by: https://github.com/ezyang
2025-06-23 06:12:46 +00:00
31659964a5 [Cutlass] Fix buffer missing issues (#155897)
Handles constants and constant folding with aoti.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155897
Approved by: https://github.com/henrylhtsang
2025-06-23 05:58:39 +00:00
cyy
c79c7bbe61 Enable Leak Sanitizer (#154584)
It enables Leak Sanitizer and also provides a suppression file.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154584
Approved by: https://github.com/ezyang
2025-06-23 05:20:27 +00:00
9fed2added Remove remaining CUDA 12.4 CI code (#155412)
Because no 12.4 job.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155412
Approved by: https://github.com/ezyang
2025-06-23 05:16:38 +00:00
4cd6e96bf0 [MPSInductor] Fix nested loop var elimination (#156566)
As reduction resuts must be kept around
Add regression test that is specific for this issue

Fixes https://github.com/pytorch/pytorch/issues/156426

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156566
Approved by: https://github.com/dcci
2025-06-23 04:35:16 +00:00
d55dc00f84 [BE][11/16] fix typos in torch/ (torch/csrc/distributed/) (#156321)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156321
Approved by: https://github.com/jingsh
ghstack dependencies: #156313, #156314, #156315, #156316, #156317, #156319
2025-06-23 02:57:50 +00:00
5b210bb3a6 [BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156319
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316, #156317
2025-06-23 02:57:50 +00:00
ced90016c1 [BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156317
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316
2025-06-23 02:57:41 +00:00
cec2977ed2 [BE][6/16] fix typos in torch/ (#156316)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156316
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315
2025-06-23 02:57:34 +00:00
4ccc0381de [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-23 02:57:28 +00:00
1b2146fc6d [BE][4/16] fix typos in torch/ (torch/_dynamo/) (#156314)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156314
Approved by: https://github.com/jingsh
ghstack dependencies: #156313
2025-06-23 02:57:19 +00:00
6ff6630375 [BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313
Approved by: https://github.com/jingsh
2025-06-23 02:57:12 +00:00
c55eef79f8 [Inductor][CPP] Enable a config to use a small dequant buffer for woq int4 (#156395)
**Summary**
Add a configuration option to enable a smaller dequantization buffer for WOQ INT4 CPP GEMM template. This can improve the performance of the WOQ INT4 GEMM template in cases where M is small. In such scenarios, matrix B cannot be effectively reused across matrix A, and we found that reducing the Kc block size can lead to better performance.

**Test Plan**
```
python test/inductor/test_cpu_select_algorithm.py -k test_int4_woq_mm_with_small_buffer_config
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156395
Approved by: https://github.com/jansel
ghstack dependencies: #156407, #156387
2025-06-23 02:00:42 +00:00
3c7079959c [Inductor][CPP] Enable WOQ int4 concat linear (#156387)
**Summary**
Enable the concat linear optimization pass in Inductor for woq int4 linear.

**Test Plan**
```
 python test/inductor/test_cpu_select_algorithm.py -k test_int4_concat_woq_mm
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156387
Approved by: https://github.com/CaoE, https://github.com/jansel
ghstack dependencies: #156407
2025-06-23 01:52:00 +00:00
03023f178c FlexAttn config refactor + ROCm optimisations (#156307)
This PR primarily unifies the flex attention config logic with the GEMM/Conv config approach https://github.com/pytorch/pytorch/pull/147452 this will make it much easier to handle optimisation pathways for particular triton backends.

This PR also introduces:
1. Introduces an exhaustive tuning mode for flex attention via TORCHINDUCTOR_MAX_AUTOTUNE_FLEX_SEARCH_SPACE="EXHAUSTIVE" to allow for wide scale benchmarking for perf investigation use cases.
3. Updates configs for ROCm flex autotune path providing perf optimisations

AMD perf numbers on score mod benchmark (default inputs)
flex_attn | mode | Speedup (Avg) | Speedup (Max)
-- | -- | -- | --
fwd | autotune before PR | 2.608 | 20.56
fwd | autotune after PR | 2.862 | 22
fwd | exhaustive_autotune | 2.943 | 22.471
bwd | autotune before PR | 2.196 | 9.831
bwd | autotune after PR | 2.423 | 11.331
bwd | exhaustive_autotune | 2.566 | 13.87

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156307
Approved by: https://github.com/drisspg, https://github.com/jansel
2025-06-22 22:27:38 +00:00
a5cbb2bcb3 Improve All to All Perf for inter-node use-case (#156376) (#156389)
Summary:

For 16 GPU use-case. NVSHMEM can drive only upto 49GB/s with 8 thread blocks per peer for all to all V use-case. Increasing that to 16 threads per block is able to max out the perf.

Test Plan:
Verify on two hosts
Host1:
TORCH_SYMMMEM=NVSHMEM torchrun --nnodes=2 --nproc_per_node=8 --master_addr ${master_ip}  --node_rank=0  comms.py --	master-ip ${master_ip} --b 4 --e 256M --n 500 --f 2 --z 1 --collective all_to_allv --backend nccl --device cuda
Host2:
TORCH_SYMMMEM=NVSHMEM torchrun --nnodes=2 --nproc_per_node=8 --master_addr ${master_ip}  --node_rank=1  comms.py --	master-ip ${master_ip} --b 4 --e 256M --n 100 --f 2 --z 1 --collective all_to_allv --backend nccl --device cuda

Rollback Plan:

Differential Revision: D76937048

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156389
Approved by: https://github.com/kwen2501
2025-06-22 20:45:46 +00:00
a28e6ae38f [OpenReg][2/N] Migrate cpp_extensions_open_device_registration to OpenReg (#156401)
As the title stated.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156401
Approved by: https://github.com/albanD
ghstack dependencies: #156400
2025-06-22 18:40:38 +00:00
1d522325b4 [OpenReg][1/N] Migrate cpp_extensions_open_device_registration to OpenReg (#156400)
As the title stated.

**Changes:**

- add resize_ for OpenReg
- migrate related tests into test_openreg.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156400
Approved by: https://github.com/albanD
2025-06-22 18:40:38 +00:00
54b8087f63 Improve torch.ops typing (#154555)
Summary:
Cloned https://github.com/pytorch/pytorch/pull/153558 from benjaminglass1 and fixed internal typing errors.

Fixes longstanding issue where direct references to aten operations are seen as untyped by type checkers. This is accomplished by setting attributes on several classes more consistently, so that `__getattr__` can return a single type in all other cases.

Decisions made along the way:

1. `torch.ops.higher_order` is now implemented by a single-purpose class. This was effectively true before, but the class implementing it attempted to be generalized unnecessarily. Fixing this simplified typing for the `_Ops` class.
2. `__getattr__` is only called when all other lookup methods have failed, so several constant special-cases in the function could be implemented as class variables.

The remainder of this PR is fixing up all the bugs exposed by the updated typing, as well as all the nitpicky typing issues.

Test Plan: CI

Differential Revision: D75497142

Co-authored-by: Benjamin Glass <bglass@quansight.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154555
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/zou3519, https://github.com/benjaminglass1
2025-06-22 15:52:27 +00:00
10fb98a004 [Precompile] Hook up backend="inductor" (#155387)
This PR adds the necessary things to register and record backend ids from BundledAOTAutogradCacheEntry.

One TODO to point out; in this diff, if there are multiple backends that would have the same AOTAutogradCache key (traditional cache key, not backend_id), we just end up serializing the same BundledAOTAutogradCache entry multiple times. This is not ideal obviously, so we'll want to deduplicate these and just track the different keys that one BundledAOTAutogradCacheEntry is associated with instead. This shouldn't be super hard to do, though, as we just need to run a deduplication step on call to `serialize()`, I think.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155387
Approved by: https://github.com/oulgen
2025-06-22 15:05:08 +00:00
b5c8b8d09f Revert "[dynamo] control one_graph behavior additionally through config (#154283)"
This reverts commit b46eb1ccaff944cdcd43e9ce3958819226d2952f.

Reverted https://github.com/pytorch/pytorch/pull/154283 on behalf of https://github.com/ezyang due to All of this is responsible for regression, see https://github.com/pytorch/pytorch/pull/156561 ([comment](https://github.com/pytorch/pytorch/pull/154283#issuecomment-2994242583))
2025-06-22 14:22:07 +00:00
5e56db59d4 Revert "[dynamo] add set_fullgraph decorator/context manager (#154289)"
This reverts commit 2c372a0502578e0136a84423c3f49c19c26d6bb7.

Reverted https://github.com/pytorch/pytorch/pull/154289 on behalf of https://github.com/ezyang due to All of this is responsible for regression, see https://github.com/pytorch/pytorch/pull/156561 ([comment](https://github.com/pytorch/pytorch/pull/154283#issuecomment-2994242583))
2025-06-22 14:22:07 +00:00
c10eeb5bad Revert "[dynamo] fix set_fullgraph for nested calls (#154782)"
This reverts commit 537b0877a87948bc221301a518fdbc1cf772bc7e.

Reverted https://github.com/pytorch/pytorch/pull/154782 on behalf of https://github.com/ezyang due to All of this is responsible for regression, see https://github.com/pytorch/pytorch/pull/156561 ([comment](https://github.com/pytorch/pytorch/pull/154283#issuecomment-2994242583))
2025-06-22 14:22:07 +00:00
ee3d9969cc Revert "[dynamo] handle fullgraph toggle using nested torch.compile (#155166)"
This reverts commit 24dc33b37b50ec92da08fc693dd83e7c87b74f8b.

Reverted https://github.com/pytorch/pytorch/pull/155166 on behalf of https://github.com/ezyang due to All of this is responsible for regression, see https://github.com/pytorch/pytorch/pull/156561 ([comment](https://github.com/pytorch/pytorch/pull/154283#issuecomment-2994242583))
2025-06-22 14:22:07 +00:00
f1331f3f1b Revert "[BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)"
This reverts commit 3627270bdf17b0fb6f528ca1cb87d6f2ec32680a.

Reverted https://github.com/pytorch/pytorch/pull/156313 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
5b427c92a8 Revert "[BE][4/16] fix typos in torch/ (torch/_dynamo/) (#156314)"
This reverts commit ead741c5fb0036e0fc95b79d4fe1af3a426e1306.

Reverted https://github.com/pytorch/pytorch/pull/156314 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
145d4cdc11 Revert "[BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)"
This reverts commit c2f0292bd5b4b3206f5b295e96f81cd6c178eb18.

Reverted https://github.com/pytorch/pytorch/pull/156315 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
3f44fdc03d Revert "[BE][6/16] fix typos in torch/ (#156316)"
This reverts commit b210cf1ea56bcd9f937a2805d9e70d8684d25ee4.

Reverted https://github.com/pytorch/pytorch/pull/156316 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:57 +00:00
035a68d25a Revert "[BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)"
This reverts commit ee72815f1180fe2d8bcdb23493999256169ac2fa.

Reverted https://github.com/pytorch/pytorch/pull/156317 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:56 +00:00
1d3bca40ed Revert "[BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)"
This reverts commit a23ccaa8479e038e79532759a64e9947c0fac43d.

Reverted https://github.com/pytorch/pytorch/pull/156319 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:56 +00:00
4b55871e06 Revert "[BE][11/16] fix typos in torch/ (torch/csrc/distributed/) (#156321)"
This reverts commit c95f7fa874a3116f1067f9092456ee7281003614.

Reverted https://github.com/pytorch/pytorch/pull/156321 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156321#issuecomment-2994163667))
2025-06-22 12:27:36 +00:00
afbf5420b8 [dynamo] fixes to lru_cache message and adding user stack trace in debug mode (#156463)
This PR refers to the issue: https://github.com/pytorch/pytorch/issues/155352

This PR uses torch._dynamo.utils.warn_once so that this warning only emits once, clarifies in the warning that silent incorrectness is potential, not observed, Doesn't warn for functions that come from torch.*

As of right now with this code change the terminal outputs:

if the code came from torch.* :
Nothing, as we shouldn't warn for functions that come from torch.*

else:
/data/users/ssubbarao8/pytorch/torch/_dynamo/variables/functions.py:1565: UserWarning: Dynamo detected a call to a `functools.lru_cache`-wrapped function. Dynamo ignores the cache wrapper and directly traces the wrapped function. Silent incorrectness is only a *potential* risk, not something we have observed. Enable TORCH_LOGS="+dynamo" for a DEBUG stack trace.
  torch._dynamo.utils.warn_once(msg)

If the user runs the command 'TORCH_LOGS="+dynamo" python foo4.py', in the debug logs it shows(this log below is based on chillee's repro:
/data/users/ssubbarao8/pytorch/torch/_dynamo/variables/functions.py:1565: UserWarning: Dynamo detected a call to a `functools.lru_cache`-wrapped function. Dynamo ignores the cache wrapper and directly traces the wrapped function. Silent incorrectness is only a *potential* risk, not something we have observed. Enable TORCH_LOGS="+dynamo" for a DEBUG stack trace.
  torch._dynamo.utils.warn_once(msg)
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0] call to a lru_cache` wrapped function from user code at: /data/users/ssubbarao8/pytorch/foo4.py:9
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0]   File "/data/users/ssubbarao8/pytorch/foo4.py", line 9, in <module>
V0619 21:00:16.504000 956424 torch/_dynamo/variables/functions.py:1575] [0/0]     torch.compile(foo, backend="eager")(torch.randn(4))

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156463
Approved by: https://github.com/williamwen42
2025-06-22 11:40:28 +00:00
aeaf6b59e2 [dynamo] Weblink generation when unimplemented_v2() is called (#156033)
This PR includes the GBID weblink whenever a user encounters a graph break. I also had to include the JSON file in setup.py, so it can be part of the files that are packaged in during CI. It also fixes the issue of the hardcoded error messages stripping away one of the '/' in 'https'.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156033
Approved by: https://github.com/williamwen42
2025-06-22 11:39:31 +00:00
c95f7fa874 [BE][11/16] fix typos in torch/ (torch/csrc/distributed/) (#156321)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156321
Approved by: https://github.com/jingsh
ghstack dependencies: #156313, #156314, #156315, #156316, #156317, #156319
2025-06-22 08:43:49 +00:00
a23ccaa847 [BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156319
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316, #156317
2025-06-22 08:43:49 +00:00
ee72815f11 [BE][7/16] fix typos in torch/ (torch/csrc/) (#156317)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156317
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316
2025-06-22 08:43:41 +00:00
b210cf1ea5 [BE][6/16] fix typos in torch/ (#156316)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156316
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315
2025-06-22 08:43:33 +00:00
c2f0292bd5 [BE][5/16] fix typos in torch/ (torch/distributed/) (#156315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156315
Approved by: https://github.com/Skylion007, https://github.com/albanD
ghstack dependencies: #156313, #156314
2025-06-22 08:43:26 +00:00
ead741c5fb [BE][4/16] fix typos in torch/ (torch/_dynamo/) (#156314)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156314
Approved by: https://github.com/jingsh
ghstack dependencies: #156313
2025-06-22 08:43:18 +00:00
3627270bdf [BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313
Approved by: https://github.com/jingsh
2025-06-22 08:43:09 +00:00
cyy
08dae945ae Use official CUDAToolkit module in CMake (#154595)
Use CUDA language in CMake and remove forked FindCUDAToolkit.cmake.
Some CUDA targets are also renamed with `torch::` prefix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154595
Approved by: https://github.com/albanD
2025-06-22 05:44:29 +00:00
1d993fa309 Don't change set_skip_guard_eval_unsafe for DisableContext, since compiler won't run (#156490)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156490
Approved by: https://github.com/anijain2305
2025-06-22 00:51:32 +00:00
333e0e6147 Make build-deps drop builds into current venv again (#156200)
Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156200
Approved by: https://github.com/malfet
2025-06-22 00:45:02 +00:00
74ebd8d14e use guard_or_false for expand utils reduction (#155868)
This is classic broadcast like pattern.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155868
Approved by: https://github.com/bobrenjc93
2025-06-21 23:42:19 +00:00
f70c80105e Enables NCCL symmetric memory kernels through mempool registration (#155134)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155134
Approved by: https://github.com/kwen2501

Co-authored-by: Ke Wen <kw2501@meta.com>
2025-06-21 23:24:04 +00:00
9e132b770e [CUDA] Skip test on low vram machines (#156548)
I noticed some jobs error out after merging #155397 due to the test requiring >15GB GPU memory to execute and some of the machines it's running on has 8GB GPUs. This PR adds the skip option on those machines.

CC: @eqy @ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156548
Approved by: https://github.com/eqy, https://github.com/malfet
2025-06-21 22:32:57 +00:00
e4ae60a413 [SymmMem] Add NVSHMEM Quiet support to Triton (#156475)
This PR introduces device-side NVSHMEM completion guarantees via the quiet API in Triton, enabling GPU kernels to ensure all pending remote memory operations are fully complete before proceeding with subsequent operations.

Changes:
- Added a new `core.extern` wrapper for `nvshmem_quiet` in `nvshmem_triton.py`
- Implemented `test_triton_quiet` in `test/distributed/test_nvshmem.py`, including:
  - A Triton kernel that performs `putmem_block` followed by `quiet()` to ensure completion
  - Flag-based signaling only after `quiet()` completes, guaranteeing data delivery
  - Consumer validation that when the completion flag arrives, all data transfers are guaranteed complete

Tests:
`$ TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py -k test_triton_quiet`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156475
Approved by: https://github.com/kwen2501
ghstack dependencies: #156472, #156473, #156474
2025-06-21 22:19:58 +00:00
c2d1b225e6 [PT2][partitioners] raise getitems in partitioners to allow earlier release of buffers (#155809)
**Problem & Solution:**
Assume we have something like:
```
x = some_op(...)
x0 = x[0]
do_something_with_and_is_last_use_of(x0)
do_a_bunch_of_other_things()
x1 = x[1]
```
In this case, the memory associated with `x0` cannot be released until `x1 = x[1]`. Since `x1 = x[1]` does not use additional memory, it would be beneficial to move and `x1 = x[1]` and all such `getitem` operations to be immediately after `x = some_op(...)` such as
```
x = some_op(...)
x0 = x[0]
x1 = x[1]
do_something_with_and_is_last_use_of(x0)
do_a_bunch_of_other_things()
```

**Results:**
For instance, for the `res2net101_26w_4s` model in pytorch benchmark, when running with `aot_eager` backend and with `activation_memory_budget=0.4`, the peak memory are
* baseline: 7.73GiB
* with the chage: 6.45GiB

As a sanity check, for the same setting with `inductor` backend, the peak memory is not regressed.

cc and credit to @ShatianWang for noticing this issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155809
Approved by: https://github.com/fmassa, https://github.com/bdhirsh
2025-06-21 19:57:21 +00:00
04b91a9e43 [SymmMem] Add NVSHMEM Fence support to Triton (#156474)
This PR introduces device-side NVSHMEM memory ordering via the fence API in Triton, enabling GPU kernels to enforce completion and ordering of remote memory operations before subsequent operations proceed.

 Changes:
- Added a new `core.extern` wrapper for `nvshmem_fence` in `nvshmem_triton.py`
- Implemented `test_triton_fence` in `test/distributed/test_nvshmem.py`, including:
  - A Triton kernel that performs two ordered `putmem_block` operations separated by `fence()` calls
  - Final fence before flag update to ensure all data transfers complete before signaling
  - Consumer validation that both buffers contain expected values when flag arrives, proving ordering guarantees

 Tests:
`$ TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py -k test_triton_fence`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156474
Approved by: https://github.com/mandroid6, https://github.com/kwen2501
ghstack dependencies: #156472, #156473
2025-06-21 18:57:05 +00:00
c06c2569ee [ca] Support TorchDispatchMode via pass through (#156516)
The CA initial trace just proxies nodes without dispatching any ops, we should hide it from ambient TorchDispatchModes

In terms of differences with eager autograd engine:
- For function mode, CA additionally disables/re-enables `_set_multithreading_enabled`
- For dispatch mode:
  - accumulate grad doesn't go down the stealing path (inaccurate compile-time refcount) so the grad `detach` ops are `copy_` instead
  - Since we always initial trace with dynamic shapes, and we filter out sizes, there's 1 aten.empty.memory_format for each mark_dynamic'd scalar

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156516
Approved by: https://github.com/jansel
ghstack dependencies: #156374, #156509
2025-06-21 18:33:47 +00:00
5f2f343e1e [ca] suggest to disable compiled autograd for trace-time NotImplementedErrors (#156509)
Example:

```python
  File "/home/xmfan/core/a/pytorch/torch/autograd/graph.py", line 829, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
NotImplementedError: TorchDispatchMode not yet implemented for compiled autograd.
  You can disable compiled autograd for this operation by:
  1.  Relocating the unsupported autograd call outside the compiled region.
  2.  Wrapping the unsupported autograd call within a scope that disables compiled autograd.
  3.  Configuring the specific compilation unit to disable compiled autograd.
  4.  Globally disabling compiled autograd at the application's initialization.
```

No duplicate error messages for python side trace-time errors
```python
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/xmfan/core/a/pytorch/torch/_dynamo/compiled_autograd.py", line 344, in begin_capture
    raise NotImplementedError(
NotImplementedError: Found tensor of type <class 'torch.nn.utils._expanded_weights.expanded_weights_impl.ExpandedWeight'>, which is not supported by FakeTensorMode. You can turn off compiled autograd by either:
1. Moving the unsupported autograd call outside of the torch.compile'd region.
2. Wrapping the unsupported autograd call in the torch._dynamo.compiled_autograd._disable() context manager.
3. Setting torch._dynamo.config.compiled_autograd=False for the torch.compile call containing the unsupported autograd call.
4. Setting torch._dynamo.config.compiled_autograd=False at the start of the program.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156509
Approved by: https://github.com/jansel
ghstack dependencies: #156374
2025-06-21 18:33:46 +00:00
f1968a5e76 [ca] skip on some PYTORCH_TEST_WITH_DYNAMO=1 autograd tests (#156374)
These aren't supported. Not sure how they passed CI

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156374
Approved by: https://github.com/jansel
2025-06-21 18:33:38 +00:00
fab85fc5f9 [compile][hierarchical compilation] Release nested_compile_region API (#156449)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156449
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-06-21 15:14:59 +00:00
fb75dea2c1 [logging] dynamo_timed for CachingAutotuner.coordinate_descent_tuning (#156517)
Summary: Discussed internally at https://fburl.com/workplace/v3hllrs9. With coordinate descent tuning enabled, we're missing the dynamo_timed logging.

Test Plan:
`TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 buck run mode/opt caffe2/benchmarks/dynamo:torchbench -- --training --backend=inductor --only nanogpt --repeat 1 --performance --cold-start-latency`
* tlparse: https://fburl.com/bh2hxw4z
* dynamo_compile: https://fburl.com/scuba/dynamo_compile/sandbox/u88ogw39
* pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/yqljow6c

Rollback Plan:

Differential Revision: D77053918

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156517
Approved by: https://github.com/mengluy0125
2025-06-21 14:17:19 +00:00
a47ca4fc74 Revert "[dynamo] Weblink generation when unimplemented_v2() is called (#156033)" (#156546)
Broke multiple CI jobs: dynamo/test_reorder_logs.py::ReorderLogsTests::test_constant_mutation [GH job link](https://github.com/pytorch/pytorch/actions/runs/15792695433/job/44521220864) [HUD commit link](9de23d0c29)

This reverts commit 9de23d0c29dfac8dc0f6f234bdbcd85a6375fa81.

PyTorch bot revert failed: https://github.com/pytorch/pytorch/pull/156033

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156546
Approved by: https://github.com/jansel
2025-06-21 14:10:12 +00:00
d846e21355 Revert "[nativert] move layout planner algorithms to libtorch (#156508)"
This reverts commit eab45643f22e58ee12d95d8b0162d51ca0a50801.

Reverted https://github.com/pytorch/pytorch/pull/156508 on behalf of https://github.com/atalman due to [GH job link](https://github.com/pytorch/pytorch/actions/runs/15793524714/job/44524067679) [HUD commit link](eab45643f2) ([comment](https://github.com/pytorch/pytorch/pull/156508#issuecomment-2993589983))
2025-06-21 13:42:40 +00:00
1cfdcb975a [CUDA] fix illegal memory access in attention (#155397)
Fixes https://github.com/pytorch/pytorch/issues/150054

CI seemed to be messed up in the old one, old PR:
https://github.com/pytorch/pytorch/pull/155145

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155397
Approved by: https://github.com/ngimel
2025-06-21 12:32:00 +00:00
cd75cf3cab [symm_mem] Add one side put API for nvshvem (#156443)
`nvshmem_put(Tensor tensor, int peer)`, where `tensor` must be a symmetric tensor, i.e. rendezvoused before this call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156443
Approved by: https://github.com/kwen2501

Co-authored-by: Ke Wen <kw2501@meta.com>
2025-06-21 12:16:36 +00:00
4ff0e033c1 [SymmMem] Add NVSHMEM signal_wait_until support to Triton (#156473)
This PR introduces device-side NVSHMEM signal synchronization via the signal_wait_until API in Triton, enabling GPU kernels to block until a signal variable meets a specified condition. This replaces previous barrier-based synchronization patterns with more efficient signal-based coordination between PEs.

Changes:
- Added a new `core.extern` wrapper for `nvshmem_signal_wait_until` in `nvshmem_triton.py`
- Updated existing `test_triton_put_signal` and `test_triton_put_signal_add` tests to use `signal_wait_until` instead of `dist.barrier()` for proper device-side synchronization ([per feedback](https://github.com/pytorch/pytorch/pull/156211#discussion_r2153035675))
- Implemented `test_triton_signal_wait_until` with:
  - Producer-consumer pattern where Rank 0 puts data and signals completion via `putmem_signal_block`
  - Consumer (Rank 1) uses `signal_wait_until` to block until the signal variable reaches the expected value
  - End-to-end validation of both data transfer and signal synchronization

Tests:
`$ TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py -k test_triton_signal_wait_until`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156473
Approved by: https://github.com/kwen2501, https://github.com/mandroid6
ghstack dependencies: #156472
2025-06-21 10:55:40 +00:00
8485f19507 remove gso from vector_norm (#156530)
guard_or_false here does same thing that guard_size_oblivuous do, note that
size is >=0 and this is size like by definition since its a tensor size
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156530
Approved by: https://github.com/bobrenjc93
2025-06-21 08:42:36 +00:00
6ffa03ef9e [Inductor-CPU] int8 WoQ concat linear (#153004)
### Summary

int8 WoQ GEMM concat linear optimization pertaining to the same activation applied to 3 sets of weights of the same shape.

### Perf data

GPT-J 128 input tokens, 128 output tokens.
32 physical cores of one socket of Intel(R) Xeon(R) 6972P (Xeon Gen 5). tcmalloc & Intel OpenMP were preloaded.

| May 8 nightly first token latency | First token latency with this implementation | Rest token latency with May 8 nightly | Rest token latency with this implementation combined with #149373  |
|---|---|---|---|
|202 ms | 190 ms | 33 ms | 30 ms|

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153004
Approved by: https://github.com/leslie-fang-intel, https://github.com/chunyuan-w, https://github.com/jansel

Co-authored-by: Anthony Shoumikhin <anthony@shoumikh.in>
2025-06-21 08:40:09 +00:00
35321b2ad6 remove make_fast_binary_impl from make_fast_binary_impl (#156528)
This was added in https://github.com/pytorch/pytorch/pull/133584.
Take slow path when we cant determine fast path is valid.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156528
Approved by: https://github.com/bobrenjc93
2025-06-21 08:27:54 +00:00
eab45643f2 [nativert] move layout planner algorithms to libtorch (#156508)
Summary: tt

Test Plan:
ci

Rollback Plan:

Differential Revision: D76832891

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156508
Approved by: https://github.com/zhxchen17
2025-06-21 07:35:40 +00:00
bf50d71553 Add missing inline namespace CPU_CAPABILITY to Gelu/Elu.h (#156512)
As I recently learned the hard way (#156243), it is necessary to put kernel code that uses Vectorized in headers in this namespace.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156512
Approved by: https://github.com/malfet
2025-06-21 06:26:23 +00:00
e3b44edfd8 [SymmMem] Add NVSHMEM wait_until support to Triton (#156472)
This PR introduces device-side NVSHMEM synchronization via the wait_until API in Triton, enabling GPU kernels to block until a remote flag reaches a specified value. It also adds a corresponding end-to-end test to validate correct behavior across PEs.

 Changes:
- Added a new `core.extern` wrapper for `nvshmem_longlong_wait_until` in `nvshmem_triton.py`.
- Implemented `test_triton_wait_until` in `test/distributed/test_nvshmem.py`, including:
  - A simple Triton kernel that calls `nvshmem.wait_until` on a symmetric memory flag.
  - Coordination logic where Rank 0 blocks until Rank 1 atomically sets the flag and transfers data.

Tests:
`$ TORCH_SYMMMEM=NVSHMEM python test/distributed/test_nvshmem.py -k test_triton_wait_until`

```python
@triton.jit
def put_kernel(dst_ptr, src_ptr, numel: tl.constexpr, peer: tl.constexpr):
    nvshmem.putmem_block(dst_ptr, src_ptr, numel, peer)

@triton.jit
def wait_until_kernel(ivar_ptr, cmp_op: tl.constexpr, cmp_val: tl.constexpr):
    nvshmem.wait_until(ivar_ptr, cmp_op, cmp_val)

...

if rank == 0:
    print(f"[RANK 0] About to call wait_until_kernel - this will BLOCK until rank 1 sets flag to 21")
    wait_until_kernel[(1, 1, 1)](ivar_ptr, cmp_op=NVSHMEM_CMP_EQ, cmp_val=flag_val, extern_libs=nvshmem_lib)
    print(f"[RANK 0] WAIT IS OVER! Flag was set, checking data now...")
    print(f"[RANK 0] Current out buffer contents: {out.tolist()}")
    torch.testing.assert_close(out, val * torch.ones(numel, dtype=dtype, device=self.device))
    print(f"[RANK 0] ✓ DATA VERIFICATION PASSED! Got expected values.")

if rank == 1:
    print(f"[RANK 1] About to PUT 8 elements of value 13 to rank 0")
    put_kernel[(1, 1, 1)](dst_ptr, src_ptr, numel=numel, peer=peer, extern_libs=nvshmem_lib)
    print(f"[RANK 1] About to PUT flag value 21 to wake up rank 0")
    put_kernel[(1, 1, 1)](dst_ptr, src_ptr, numel=1, peer=peer, extern_libs=nvshmem_lib)
    print(f"[RANK 1] FLAG PUT complete! Rank 0 should wake up now.")

...
```
Output:
```
[RANK 0] About to call wait_until_kernel - this will BLOCK until rank 1 sets flag to 21
[RANK 1] About to PUT 8 elements of value 13 to rank 0
[RANK 1] About to PUT flag value 21 to wake up rank 0
[RANK 1] FLAG PUT complete! Rank 0 should wake up now.
[RANK 0] WAIT IS OVER! Flag was set, checking data now...
[RANK 0] Current out buffer contents: [13, 13, 13, 13, 13, 13, 13, 13]
[RANK 0] ✓ DATA VERIFICATION PASSED! Got expected values.
[RANK 0] Test completed successfully! 🎉
[RANK 1] Test completed successfully! 🎉

...

----------------------------------------------------------------------
Ran 1 test in 18.773s
OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156472
Approved by: https://github.com/kwen2501
2025-06-21 06:18:31 +00:00
92c79f36db [PGO] frame-specific whitelist logging (#155959)
Summary:
In D75617963, we started logging dynamic whitelist suggestions to PT2 Compile Events. The whitelists were aggregated across all frames, intending to avoid manual work for the user (e.g. if frame 0/1 saw L['x'] turn dynamic, and later 1/1 saw L['y'], we'd log "L['x'],L['y']" on frame 1/1).

This switches to frame-specific whitelists, as attributing dynamism changes to certain frames was difficult, and suggestions are sometimes polluted by problematic frames (e.g. optimizer states).

The globally aggregated whitelist is still available in tlparse, by looking at the final `put_local_code_state_*` entry.

Test Plan:
loggercli codegen GeneratedPt2CompileEventsLoggerConfig

Rollback Plan:

Differential Revision: D76628834

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155959
Approved by: https://github.com/bobrenjc93
2025-06-21 06:15:51 +00:00
9de23d0c29 [dynamo] Weblink generation when unimplemented_v2() is called (#156033)
This PR includes the GBID weblink whenever a user encounters a graph break. I also had to include the JSON file in setup.py, so it can be part of the files that are packaged in during CI. It also fixes the issue of the hardcoded error messages stripping away one of the '/' in 'https'.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156033
Approved by: https://github.com/williamwen42
2025-06-21 05:47:54 +00:00
b8ace6f951 Make dtensor tests device agnostic (#155687)
## MOTIVATION
This PR is a continuation of https://github.com/pytorch/pytorch/pull/154840 and we are trying to make the tests more device agnostic by removing hard coded references to any particular device.
Please refer to this RFC as well: https://github.com/pytorch/rfcs/pull/66

## CHANGES
1. test_convolution_ops.py:
    - Replace "cuda" with self.device_type
2. test_random_ops.py:
    - Remove setting and using TYPE_DEVICE variable since device_type is set as per the environment (device) in DTensorTestBase class.
    - Replace "cuda" with self.device_type

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155687
Approved by: https://github.com/EikanWang, https://github.com/d4l3k
2025-06-21 04:51:59 +00:00
f3ec16c26a [MTIA Aten Backend][3/n] Migrate mm.out from out-of-tree to in-tree (#154393)
# Context

See the first PR https://github.com/pytorch/pytorch/pull/153670

# This diff

Migrate mm.out from out-of-tree to in-tree.

We dispatch mm.out to MTIA separately from CPU/CUDA. So this diff adds the file `MTIAOps.cpp` under `ATen/native/mtia` to hold the dispatched functions. In future we can split `MTIAOps.cpp` to categorized ops files.

Differential Revision: [D74743849](https://our.internmc.facebook.com/intern/diff/D74743849/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154393
Approved by: https://github.com/albanD, https://github.com/egienvalue, https://github.com/nautsimon
2025-06-21 04:31:04 +00:00
88b9c285e0 Workaround for e4m2 dtype (#156461)
Found in: https://github.com/pytorch/ao/pull/2408

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156461
Approved by: https://github.com/vkuzo
2025-06-21 04:01:44 +00:00
554b568040 Add internal use only utility to allow externally visible side effects within HOPs (#155715)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155715
Approved by: https://github.com/zou3519
2025-06-21 03:55:28 +00:00
c09b054878 Add runtime profiler info for AOTDispatcher prologue (#155785)
Fixes #155721

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155785
Approved by: https://github.com/bdhirsh
2025-06-21 03:34:07 +00:00
fd8ea3c8a3 [symm_mem] Add nccl as a backend for symmetric memory (#155740)
Running unit test:

 TORCH_SYMMMEM=NCCL TORCH_DISTRIBUTED_DEBUG=INFO TORCH_CPP_LOG_LEVEL=INFO pytest test/distributed/test_nccl.py -k test_nccl_symmem_alloc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155740
Approved by: https://github.com/kwen2501
2025-06-21 03:22:23 +00:00
ee56e9f8a8 [BE] Make Eigen an optional dependency (#155955)
Whose version is controlled by `eigen_pin.txt`, but which will be installed only if BLAS providers could not be found.
Why this is good for CI: we don't really build with Eigen ever and gitlab can be down when github is up, which causes spurious CI failures in the past, for example.

Remove eigen submodule and replace it with eigen_pin.txt

Fixes https://github.com/pytorch/pytorch/issues/108773
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155955
Approved by: https://github.com/atalman
2025-06-21 03:02:02 +00:00
b4228a94d1 Split the exclude pattern for CODESPELL linter (#156229)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156229
Approved by: https://github.com/albanD
ghstack dependencies: #156080, #156081
2025-06-21 02:47:40 +00:00
e3507c3777 [BE] fix typos in functorch/ and scripts/ (#156081)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156081
Approved by: https://github.com/albanD
ghstack dependencies: #156080
2025-06-21 02:47:40 +00:00
2ccfd14e23 [BE] fix typos in docs/ (#156080)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156080
Approved by: https://github.com/cyyever, https://github.com/albanD
2025-06-21 02:47:32 +00:00
clr
9aaa184105 dynamo: Don't crash when someone tries to access a non existent list member (#156335)
dynamo: Don't crash when someone tries to access a non existent list member

Test added which reproduces the failure. Note that I'm using the new
unimplemented_v2 API. Let me know if people have a strong preference that I use
something else.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156335
Approved by: https://github.com/jansel
2025-06-21 02:26:31 +00:00
ac86ec0e60 [Draft][CUDA] Use runtime driver API for cuStreamWriteValue32 (#156097)
Fixes  #154073

Reference: https://github.com/NVIDIA/Fuser/pull/4197

See PR #154097

@nWEIdia is currently out of the office, so I’ve temporarily taken over his work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156097
Approved by: https://github.com/ngimel

Co-authored-by: Wei Wang <weiwan@nvidia.com>
2025-06-21 01:34:41 +00:00
2848 changed files with 106915 additions and 45848 deletions

View File

@ -2,7 +2,7 @@ build --cxxopt=--std=c++17
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# (e.g. torch/headeronly/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin

View File

@ -4,7 +4,7 @@ set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="9.0;10.0;12.0"
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"

View File

@ -79,6 +79,7 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
os.system(f"unzip {wheel_path} -d {folder}/tmp")
libs_to_copy = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
@ -88,6 +89,7 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",

View File

@ -5,7 +5,7 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
pip -q install "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
@ -147,8 +147,8 @@ export DNNL_MAX_CPU_ISA=AVX2
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
# TODO(sdym@meta.com) remove this when the linked issue resolved.
# py is temporary until https://github.com/Teemu/pytest-sugar/issues/241 is fixed
pip install --user py==1.11.0
pip install --user pytest-sugar
pip install py==1.11.0
pip install pytest-sugar
# NB: Warnings are disabled because they make it harder to see what
# the actual erroring test is
"$PYTHON" \

View File

@ -52,6 +52,8 @@ fi
if [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *-noble* ]]; then
UBUNTU_VERSION=24.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
fi
@ -76,311 +78,45 @@ elif [[ "$image" == *linter* ]]; then
DOCKERFILE="linter/Dockerfile"
fi
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
_UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
if [[ "$image" == *rocm* ]]; then
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
fi
PY_HARDCODED_CONFIG_SCRIPT=$(python3 get_config.py --image "$image")
tag=$(echo $image | awk -F':' '{print $2}')
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$tag" in
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-onnx)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
ONNX=yes
;;
pytorch-linux-jammy-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.11-clang12)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc9)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=9
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.3
if [[ $? -eq 0 ]]; then
eval "$PY_HARDCODED_CONFIG_SCRIPT"
else
echo "[Fallback] Python script failed or no match — fallback to hardcoded shell case"
# Catch-all for builds that are not hardcoded.
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-rocm-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.0
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-2025.1-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.1
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
KATEX=yes
TRITON=yes
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-asan)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang15-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=15
VISION=yes
;;
pytorch-linux-jammy-py3-clang18-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=18
VISION=yes
;;
pytorch-linux-jammy-py3.9-gcc11)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
KATEX=yes
TRITON=yes
DOCS=yes
UNINSTALL_DILL=yes
;;
pytorch-linux-jammy-py3-clang12-executorch)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=12
EXECUTORCH=yes
;;
pytorch-linux-jammy-py3.12-halide)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
HALIDE=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.12-triton-cpu)
CUDA_VERSION=12.6
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
TRITON_CPU=yes
;;
pytorch-linux-jammy-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
PYTHON_VERSION=3.9
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
VISION=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
VISION=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
INDUCTOR_BENCHMARKS=yes
;;
*)
# Catch-all for builds that are not hardcoded.
VISION=yes
echo "image '$image' did not match an existing build configuration"
if [[ "$image" == *py* ]]; then
extract_version_from_image_name py ANACONDA_PYTHON_VERSION
# To ensure that any ROCm config will build using conda cmake
# and thus have LAPACK/MKL enabled
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
NINJA_VERSION=1.9.0
TRITON=yes
# To ensure that any ROCm config will build using conda cmake
# and thus have LAPACK/MKL enabled
fi
if [[ "$image" == *centos7* ]]; then
NINJA_VERSION=1.10.2
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
;;
if [[ "$image" == *centos7* ]]; then
NINJA_VERSION=1.10.2
fi
if [[ "$image" == *gcc* ]]; then
extract_version_from_image_name gcc GCC_VERSION
fi
if [[ "$image" == *clang* ]]; then
extract_version_from_image_name clang CLANG_VERSION
fi
if [[ "$image" == *devtoolset* ]]; then
extract_version_from_image_name devtoolset DEVTOOLSET_VERSION
fi
if [[ "$image" == *glibc* ]]; then
extract_version_from_image_name glibc GLIBC_VERSION
fi
;;
esac
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
@ -428,6 +164,7 @@ docker build \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "OPENBLAS=${OPENBLAS:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \

View File

@ -1 +1 @@
v2.27.3-1
v2.27.5-1

View File

@ -1 +1 @@
c8757738a7418249896224430ce84888e8ecdd79
11ec6354315768a85da41032535e3b7b99c5f706

View File

@ -23,6 +23,10 @@ conda_install() {
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_install_through_forge() {
as_jenkins conda install -c conda-forge -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_run() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION --no-capture-output $*
}

View File

@ -15,6 +15,9 @@ install_ubuntu() {
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "24.04"* ]]; then
cmake3="cmake=3.28*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"

View File

@ -4,12 +4,8 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]] || [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
@ -21,7 +17,6 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
@ -70,10 +65,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
fi
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
if [[ $(uname -m) == "aarch64" ]]; then
conda_install "openblas==0.3.29=*openmp*"
else
conda_install "mkl=2021.4.0 mkl-include=2021.4.0"
if [[ $(uname -m) != "aarch64" ]]; then
pip_install mkl==2024.2.0
pip_install mkl-static==2024.2.0
pip_install mkl-include==2024.2.0
fi
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
@ -87,6 +82,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
conda_run ${SCRIPT_FOLDER}/install_magma_conda.sh $(cut -f1-2 -d'.' <<< ${CUDA_VERSION})
fi
if [[ "$UBUNTU_VERSION" == "24.04"* ]] ; then
conda_install_through_forge libstdcxx-ng=14
fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt

View File

@ -3,11 +3,10 @@
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads # @lint-ignore
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t"}
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t 3.14.0 3.14.0t"}
function check_var {
if [ -z "$1" ]; then
@ -24,9 +23,8 @@ function do_cpython_build {
tar -xzf Python-$py_ver.tgz
local additional_flags=""
if [ "$py_ver" == "3.13.0t" ]; then
if [[ "$py_ver" == *"t" ]]; then
additional_flags=" --disable-gil"
mv cpython-3.13/ cpython-3.13t/
fi
pushd $py_folder
@ -68,7 +66,7 @@ function do_cpython_build {
ln -s pip3 ${prefix}/bin/pip
fi
# install setuptools since python 3.12 is required to use distutils
${prefix}/bin/pip install wheel==0.34.2 setuptools==68.2.2
${prefix}/bin/pip install wheel==0.45.1 setuptools==80.9.0
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -sf ${prefix} /opt/python/${abi_tag}
}
@ -76,24 +74,20 @@ function do_cpython_build {
function build_cpython {
local py_ver=$1
check_var $py_ver
check_var $PYTHON_DOWNLOAD_URL
local py_ver_folder=$py_ver
local py_suffix=$py_ver
local py_folder=$py_ver
if [ "$py_ver" = "3.13.0t" ]; then
PY_VER_SHORT="3.13"
PYT_VER_SHORT="3.13t"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PYT_VER_SHORT
elif [ "$py_ver" = "3.13.0" ]; then
PY_VER_SHORT="3.13"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PY_VER_SHORT
else
wget -q $PYTHON_DOWNLOAD_URL/$py_ver_folder/Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_ver
# Special handling for nogil
if [[ "${py_ver}" == *"t" ]]; then
py_suffix=${py_ver::-1}
py_folder=$py_suffix
fi
# Only b3 is available now
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0b3"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix
rm -f Python-$py_ver.tgz
}

View File

@ -10,6 +10,8 @@ else
arch_path='sbsa'
fi
NVSHMEM_VERSION=3.3.9
function install_cuda {
version=$1
runfile=$2
@ -40,13 +42,65 @@ function install_cudnn {
rm -rf tmp_cudnn
}
function install_nvshmem {
cuda_major_version=$1 # e.g. "12"
nvshmem_version=$2 # e.g. "3.3.9"
case "${arch_path}" in
sbsa)
dl_arch="aarch64"
;;
x86_64)
dl_arch="x64"
;;
*)
dl_arch="${arch}"
;;
esac
tmpdir="tmp_nvshmem"
mkdir -p "${tmpdir}" && cd "${tmpdir}"
# nvSHMEM license: https://docs.nvidia.com/nvshmem/api/sla.html
filename="libnvshmem_cuda${cuda_major_version}-linux-${arch_path}-${nvshmem_version}"
url="https://developer.download.nvidia.com/compute/redist/nvshmem/${nvshmem_version}/builds/cuda${cuda_major_version}/txz/agnostic/${dl_arch}/${filename}.tar.gz"
# download, unpack, install
wget -q "${url}"
tar xf "${filename}.tar.gz"
cp -a "libnvshmem/include/"* /usr/local/include/
cp -a "libnvshmem/lib/"* /usr/local/lib/
# cleanup
cd ..
rm -rf "${tmpdir}"
echo "nvSHMEM ${nvshmem_version} for CUDA ${cuda_major_version} (${arch_path}) installed."
}
function install_124 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 12.4.1 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.6.2"
install_cuda 12.4.1 cuda_12.4.1_550.54.15_linux
install_cudnn 12 $CUDNN_VERSION
CUDA_VERSION=12.4 bash install_nccl.sh
CUDA_VERSION=12.4 bash install_cusparselt.sh
ldconfig
}
function install_126 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.7.1"
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
install_cuda 12.6.3 cuda_12.6.3_560.35.05_linux
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.6 bash install_nccl.sh
CUDA_VERSION=12.6 bash install_cusparselt.sh
@ -56,13 +110,15 @@ function install_126 {
function install_129 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.9.1 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.7.1"
echo "Installing CUDA 12.9.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.9.1 in the same container
install_cuda 12.9.1 cuda_12.9.1_575.57.08_linux
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.9 bash install_nccl.sh
CUDA_VERSION=12.9 bash install_cusparselt.sh
@ -70,6 +126,40 @@ function install_129 {
ldconfig
}
function prune_124 {
echo "Pruning CUDA 12.4"
#####################################################################################
# CUDA 12.4 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-12.4/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-12.4/lib64"
export GENCODE="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
if [[ -n "$OVERRIDE_GENCODE_CUDNN" ]]; then
export GENCODE_CUDNN=$OVERRIDE_GENCODE_CUDNN
fi
# all CUDA libs except CuDNN and CuBLAS
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
#####################################################################################
# CUDA 12.4 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-12.4/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2024.1.0 $CUDA_BASE/nsight-systems-2023.4.4/
}
function prune_126 {
echo "Pruning CUDA 12.6"
#####################################################################################
@ -106,13 +196,15 @@ function prune_126 {
function install_128 {
CUDNN_VERSION=9.8.0.87
echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.7.1"
echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.8.1 in the same container
install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.8 bash install_nccl.sh
CUDA_VERSION=12.8 bash install_cusparselt.sh
@ -124,6 +216,8 @@ function install_128 {
while test $# -gt 0
do
case "$1" in
12.4) install_124; prune_124
;;
12.6|12.6.*) install_126; prune_126
;;
12.8|12.8.*) install_128;

View File

@ -8,6 +8,8 @@ if [[ -n "${CUDNN_VERSION}" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
else

View File

@ -13,6 +13,14 @@ if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-9]$ ]]; then
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.7.1.0-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.2.3-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
else
echo "Not sure which libcusparselt version to install for this ${CUDA_VERSION}"
fi

View File

@ -15,11 +15,35 @@ function install_timm() {
commit=$(get_pinned_commit timm)
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
# Clean up
conda_run pip uninstall -y torch torchvision triton
}
function install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
python install.py --continue_on_fail
# TODO (huydhn): transformers-4.44.2 added by https://github.com/pytorch/benchmark/pull/2488
# is regressing speedup metric. This needs to be investigated further
pip install transformers==4.38.1
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
# Pango is needed for weasyprint which is needed for doctr
conda_install pango
# Stable packages are ok here, just to satisfy TorchBench check
pip_install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
install_torchbench
install_huggingface
install_timm
# Clean up
conda_run pip uninstall -y torch torchvision torchaudio triton

View File

@ -20,7 +20,7 @@ pip_install \
pip_install coloredlogs packaging
pip_install onnxruntime==1.18.1
pip_install onnxscript==0.3.0
pip_install onnxscript==0.3.1
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -4,8 +4,9 @@
set -ex
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.29}" --depth 1 --shallow-submodules
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.30}" --depth 1 --shallow-submodules
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
OPENBLAS_BUILD_FLAGS="
NUM_THREADS=128
USE_OPENMP=1
@ -13,9 +14,8 @@ NO_SHARED=0
DYNAMIC_ARCH=1
TARGET=ARMV8
CFLAGS=-O3
BUILD_BFLOAT16=1
"
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -8,9 +8,11 @@ ver() {
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
# gpg-agent is not available by default
apt-get install -y --no-install-recommends gpg-agent
if [[ $(ver $UBUNTU_VERSION) -ge $(ver 22.04) ]]; then
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
fi
apt-get install -y kmod
apt-get install -y wget
@ -31,13 +33,22 @@ EOF
ROCM_VERSION="${ROCM_VERSION}.1"
fi
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
@ -71,29 +82,30 @@ EOF
done
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
# CI no longer builds for ROCm 6.3, but
# ROCm 6.4 did not yet fix the regression, also HIP branch names are different
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.3) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.4) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.1) ]]; then
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
VER_PATCH=.1
CLR_HASH=606bc820b4b1f315d135da02a1f0b176ca50a92c # branch release/rocm-rel-6.4.1-statco-hotfix
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
HIP_BRANCH=rocm-6.3.x
VER_STR=6.3
CLR_HASH=600f5b0d2baed94d5121e2174a9de0851b040b0c # branch release/rocm-rel-6.4-statco-hotfix
fi
# clr build needs CppHeaderParser but can only find it using conda's python
/opt/conda/bin/python -m pip install CppHeaderParser
python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_BRANCH
HIP_COMMON_DIR=$(readlink -f HIP)
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-${VER_STR}${VER_PATCH}-statco-hotfix
git clone https://github.com/jeffdaily/clr
pushd clr
git checkout $CLR_HASH
popd
mkdir -p clr/build
pushd clr/build
cmake .. -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
# Need to point CMake to the correct python installation to find CppHeaderParser
cmake .. -DPython3_EXECUTABLE=/opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}/bin/python3 -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
make -j
cp hipamd/lib/libamdhip64.so.${VER_STR}.* /opt/rocm/lib/libamdhip64.so.${VER_STR}.*
cp hipamd/lib/libamdhip64.so.6.4.* /opt/rocm/lib/libamdhip64.so.6.4.*
popd
rm -rf HIP clr
fi

View File

@ -5,7 +5,12 @@ set -eou pipefail
function do_install() {
rocm_version=$1
rocm_version_nodot=${1//./}
if [[ ${rocm_version} =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
# chop off any patch version
rocm_version="${rocm_version%.*}"
fi
rocm_version_nodot=${rocm_version//./}
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6

View File

@ -98,6 +98,10 @@ fi
if [ -n "${NUMPY_VERSION}" ]; then
pip_install "numpy==${NUMPY_VERSION}"
fi
# IMPORTANT: helion needs to be installed without dependencies.
# It depends on torch and triton. We don't want to install
# triton and torch from production on Docker CI images
if [[ "$ANACONDA_PYTHON_VERSION" != 3.9* ]]; then
pip_install helion
pip_install helion --no-deps
fi

View File

@ -56,14 +56,10 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
dnf install -y 'dnf-command(config-manager)'

350
.ci/docker/get_config.py Normal file
View File

@ -0,0 +1,350 @@
import argparse
import sys
from enum import Enum
import shlex
class HardwareType(Enum):
DEFAULT = "default"
ROCM = "rocm"
@staticmethod
def from_image_name(image_name: str) -> "HardwareType":
if "rocm" in image_name:
return HardwareType.ROCM
return HardwareType.DEFAULT
class HardcodedBaseConfig:
_UCX_UCC_CONFIGS: dict[HardwareType, dict[str, str]] = {
HardwareType.DEFAULT: {
"UCX_COMMIT": "7bb2722ff2187a0cad557ae4a6afa090569f83fb",
"UCC_COMMIT": "20eae37090a4ce1b32bcce6144ccad0b49943e0b",
},
HardwareType.ROCM: {
"UCX_COMMIT": "cc312eaa4655c0cc5c2bcd796db938f90563bcf6",
"UCC_COMMIT": "0c0fc21559835044ab107199e334f7157d6a0d3d",
},
}
def __init__(self, hardwareType: HardwareType) -> None:
commits = self.get_ucx_ucc_commits(hardwareType)
self.ucx_commit = commits["UCX_COMMIT"]
self.ucc_commit = commits["UCC_COMMIT"]
def _get_tag(self, image: str):
if ":" not in image:
print(f"echo 'Invalid image format (missing :): {image}'", file=sys.stderr)
return
tag = image.split(":")[1]
return tag
def get_all_configs(self):
_TAG_CONFIGS = {
"pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11": {
"CUDA_VERSION": "12.4",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "11",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11": {
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "11",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.13",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9": {
"CUDA_VERSION": "12.6.3",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
},
"pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.6",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.6",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks": {
"CUDA_VERSION": "12.6",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.13",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9": {
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "9",
"VISION": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"TRITON": "yes",
},
"pytorch-linux-jammy-py3-clang12-onnx": {
"ANACONDA_PYTHON_VERSION": "3.9",
"CLANG_VERSION": "12",
"VISION": "yes",
"ONNX": "yes",
},
"pytorch-linux-jammy-py3.9-clang12": {
"ANACONDA_PYTHON_VERSION": "3.9",
"CLANG_VERSION": "12",
"VISION": "yes",
"TRITON": "yes",
},
"pytorch-linux-jammy-py3.11-clang12": {
"ANACONDA_PYTHON_VERSION": "3.11",
"CLANG_VERSION": "12",
"VISION": "yes",
"TRITON": "yes",
},
"pytorch-linux-jammy-py3.9-gcc9": {
"ANACONDA_PYTHON_VERSION": "3.9",
"GCC_VERSION": "9",
"VISION": "yes",
"TRITON": "yes",
},
"pytorch-linux-jammy-rocm-n-py3": {
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "11",
"VISION": "yes",
"ROCM_VERSION": "6.4",
"NINJA_VERSION": "1.9.0",
"TRITON": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-noble-rocm-n-py3": {
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "11",
"VISION": "yes",
"ROCM_VERSION": "6.4",
"NINJA_VERSION": "1.9.0",
"TRITON": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-noble-rocm-alpha-py3": {
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "11",
"VISION": "yes",
"ROCM_VERSION": "7.0",
"NINJA_VERSION": "1.9.0",
"TRITON": "yes",
"KATEX": "yes",
"UCX_COMMIT": self.ucx_commit,
"UCC_COMMIT": self.ucc_commit,
"INDUCTOR_BENCHMARKS": "yes",
"PYTORCH_ROCM_ARCH": "gfx90a;gfx942;gfx950",
},
"pytorch-linux-jammy-xpu-2025.0-py3": {
"ANACONDA_PYTHON_VERSION": "3.9",
"GCC_VERSION": "11",
"VISION": "yes",
"XPU_VERSION": "2025.0",
"NINJA_VERSION": "1.9.0",
"TRITON": "yes",
},
"pytorch-linux-jammy-xpu-2025.1-py3": {
"ANACONDA_PYTHON_VERSION": "3.9",
"GCC_VERSION": "11",
"VISION": "yes",
"XPU_VERSION": "2025.1",
"NINJA_VERSION": "1.9.0",
"TRITON": "yes",
},
"pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks": {
"ANACONDA_PYTHON_VERSION": "3.9",
"GCC_VERSION": "11",
"VISION": "yes",
"KATEX": "yes",
"TRITON": "yes",
"DOCS": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12": {
"ANACONDA_PYTHON_VERSION": "3.9",
"CUDA_VERSION": "12.8.1",
"CUDNN_VERSION": "9",
"CLANG_VERSION": "12",
"VISION": "yes",
"TRITON": "yes",
},
"pytorch-linux-jammy-py3-clang18-asan": {
"ANACONDA_PYTHON_VERSION": "3.10",
"CLANG_VERSION": "18",
"VISION": "yes",
},
"pytorch-linux-jammy-py3.9-gcc11": {
"ANACONDA_PYTHON_VERSION": "3.9",
"GCC_VERSION": "11",
"VISION": "yes",
"KATEX": "yes",
"TRITON": "yes",
"DOCS": "yes",
"UNINSTALL_DILL": "yes",
},
"pytorch-linux-jammy-py3-clang12-executorch": {
"ANACONDA_PYTHON_VERSION": "3.10",
"CLANG_VERSION": "12",
"EXECUTORCH": "yes",
},
"pytorch-linux-jammy-py3.12-halide": {
"CUDA_VERSION": "12.6",
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "11",
"HALIDE": "yes",
"TRITON": "yes",
},
"pytorch-linux-jammy-py3.12-triton-cpu": {
"CUDA_VERSION": "12.6",
"ANACONDA_PYTHON_VERSION": "3.12",
"GCC_VERSION": "11",
"TRITON_CPU": "yes",
},
"pytorch-linux-jammy-linter": {
"PYTHON_VERSION": "3.9",
},
"pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter": {
"PYTHON_VERSION": "3.9",
"CUDA_VERSION": "12.8.1",
},
"pytorch-linux-jammy-aarch64-py3.10-gcc11": {
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "11",
"ACL": "yes",
"VISION": "yes",
"CONDA_CMAKE": "yes",
"OPENBLAS": "yes",
"SKIP_LLVM_SRC_BUILD_INSTALL": "yes",
},
"pytorch-linux-jammy-aarch64-py3.10-gcc11-inductor-benchmarks": {
"ANACONDA_PYTHON_VERSION": "3.10",
"GCC_VERSION": "11",
"ACL": "yes",
"VISION": "yes",
"CONDA_CMAKE": "yes",
"OPENBLAS": "yes",
"SKIP_LLVM_SRC_BUILD_INSTALL": "yes",
"INDUCTOR_BENCHMARKS": "yes",
},
}
return _TAG_CONFIGS
def get_config(self, image_name:str) -> dict:
tag = self._get_tag(image_name)
config_dict = self.get_all_configs()
if tag not in config_dict:
raise ValueError(f"Unknown tag: {tag}")
return config_dict[tag]
def get_ucx_ucc_commits(self, hw_type: HardwareType) -> dict[str, str]:
if hw_type not in self._UCX_UCC_CONFIGS:
raise ValueError(f"Unsupported hardware type: {hw_type}")
return self._UCX_UCC_CONFIGS[hw_type]
def main():
parser = argparse.ArgumentParser(
description="Return for a given image tag."
)
parser.add_argument(
"--image", required=True, help="Full image string (e.g., repo/name:tag)"
)
args = parser.parse_args()
try:
image_name = args.image
hw_type = HardwareType.from_image_name(image_name)
config_runner = HardcodedBaseConfig(hw_type)
config = config_runner.get_config(args.image)
for key, val in config.items():
print(f'export {key}={shlex.quote(val)}')
except Exception as e:
# Any error will signal fallback
print(f"# Fallback due to error: {e}", file=sys.stderr)
sys.exit(42)
if __name__ == "__main__":
main()

View File

@ -39,6 +39,10 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.1"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"

View File

@ -27,5 +27,7 @@ COPY ./common/install_linter.sh install_linter.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh
RUN chown -R jenkins:jenkins /var/lib/jenkins/ci_env
USER jenkins
CMD ["bash"]

View File

@ -131,6 +131,8 @@ RUN pip3 install flatbuffers && \
git clone https://github.com/microsoft/onnxruntime && \
cd onnxruntime && git checkout v1.21.0 && \
git submodule update --init --recursive && \
wget https://github.com/microsoft/onnxruntime/commit/f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
patch -p1 < f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
./build.sh --config Release --parallel 0 --enable_pybind \
--build_wheel --enable_training --enable_training_apis \
--enable_training_ops --skip_tests --allow_running_as_root \

View File

@ -41,7 +41,7 @@ case ${image} in
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13 --build-arg NINJA_VERSION=1.12.1"
MANY_LINUX_VERSION="2_28_aarch64"
OPENBLAS_VERSION="v0.3.29"
OPENBLAS_VERSION="v0.3.30"
;;
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
TARGET=final
@ -75,6 +75,10 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.1"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"

View File

@ -16,6 +16,7 @@ click
#test that import:
coremltools==5.0b5 ; python_version < "3.12"
coremltools==8.3 ; python_version == "3.12"
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
@ -63,6 +64,7 @@ lark==0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11"
librosa==0.10.2 ; python_version == "3.12"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
@ -111,6 +113,7 @@ ninja==1.11.1.3
numba==0.49.0 ; python_version < "3.9"
numba==0.55.2 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
numba==0.60.0 ; python_version == "3.12"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
@ -339,7 +342,7 @@ onnx==1.18.0
#Pinned versions:
#test that import:
onnxscript==0.2.6
onnxscript==0.3.1
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -358,12 +361,11 @@ pwlf==2.2.1
#Pinned versions: 2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
astunparse
PyYAML
pyyaml
pyzstd
setuptools
setuptools>=70.1.0
six
scons==4.5.2 ; platform_machine == "aarch64"
@ -383,6 +385,12 @@ cmake==4.0.0
tlparse==0.3.30
#Description: required for log parsing
cuda-bindings>=12.0,<13.0
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
#test that import: test_cuda.py
setuptools-git-versioning==2.1.0
scikit-build==0.18.1
pyre-extensions==0.0.32
tabulate==0.9.0
#Description: These package are needed to build FBGEMM and torchrec on PyTorch CI

View File

@ -4,8 +4,8 @@ sphinx==5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought is probably
# something related to Docker setup. We can investigate this later
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.
sphinxcontrib.katex==0.8.6
#Description: This is used to generate PyTorch docs
@ -19,9 +19,10 @@ sphinx_sitemap==2.6.0
#Description: This is used to generate sitemap for PyTorch docs
#Pinned versions: 2.6.0
matplotlib==3.5.3
matplotlib==3.5.3 ; python_version < "3.13"
matplotlib==3.6.3 ; python_version >= "3.13"
#Description: This is used to generate PyTorch docs
#Pinned versions: 3.5.3
#Pinned versions: 3.6.3 if python > 3.12. Otherwise 3.5.3.
tensorboard==2.13.0 ; python_version < "3.13"
tensorboard==2.18.0 ; python_version >= "3.13"
@ -58,3 +59,4 @@ sphinx-copybutton==0.5.0
sphinx-design==0.4.0
sphinxcontrib-mermaid==1.0.0
myst-parser==0.18.1
myst-nb

View File

@ -1 +1 @@
3.3.1
3.4.0

View File

@ -98,8 +98,9 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
# (optional) Install non-default Ninja version
ARG NINJA_VERSION

View File

@ -98,8 +98,9 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
ARG TRITON
ARG TRITON_CPU
@ -147,6 +148,12 @@ RUN if [ -n "${ACL}" ]; then bash ./install_acl.sh; fi
RUN rm install_acl.sh
ENV INSTALLED_ACL ${ACL}
ARG OPENBLAS
COPY ./common/install_openblas.sh install_openblas.sh
RUN if [ -n "${OPENBLAS}" ]; then bash ./install_openblas.sh; fi
RUN rm install_openblas.sh
ENV INSTALLED_OPENBLAS ${OPENBLAS}
# Install ccache/sccache (do this last, so we get priority in PATH)
ARG SKIP_SCCACHE_INSTALL
COPY ./common/install_cache.sh install_cache.sh

View File

@ -97,7 +97,7 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -q cmake
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
case ${DESIRED_PYTHON} in

View File

@ -51,20 +51,23 @@ else
fi
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6"
case ${CUDA_VERSION} in
12.8|12.9)
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX" #removing sm_50-sm_70 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
12.8)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
;;
12.9)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
# WAR to resolve the ld error in libtorch build with CUDA 12.9
if [[ "$DESIRED_CUDA" == "cu129" && "$PACKAGE_TYPE" == "libtorch" ]]; then
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
fi
;;
12.6)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
;;
*)
echo "unknown cuda version $CUDA_VERSION"
@ -131,6 +134,8 @@ if [[ $CUDA_VERSION == 12* ]]; then
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
@ -149,6 +154,8 @@ if [[ $CUDA_VERSION == 12* ]]; then
"libnvrtc-builtins.so"
"libcufile.so.0"
"libcufile_rdma.so.1"
"libcupti.so.12"
"libnvperf_host.so"
)
# Add libnvToolsExt only if CUDA version is not 12.9
if [[ $CUDA_VERSION != 12.9* ]]; then

View File

@ -92,7 +92,7 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -q cmake
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
retry pip install -q numpy==2.0.1
@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling setup.py install at $(date)"
echo "Calling 'python -m pip install .' at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
@ -120,7 +120,7 @@ fi
# TODO: Remove this flag once https://github.com/pytorch/pytorch/issues/55952 is closed
CFLAGS='-Wno-deprecated-declarations' \
BUILD_LIBTORCH_CPU_WITH_DEBUG=1 \
python setup.py install
python -m pip install --no-build-isolation -v .
mkdir -p libtorch/{lib,bin,include,share}

View File

@ -19,7 +19,7 @@ git config --global --add safe.directory /var/lib/jenkins/workspace
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# TODO: This can be removed later once vision is also part of the Docker image
pip install -q --user --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
pip install -q --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
# JIT C++ extensions require ninja, so put it into PATH.
export PATH="/var/lib/jenkins/.local/bin:$PATH"
# NB: ONNX test is fast (~15m) so it's ok to retry it few more times to avoid any flaky issue, we

View File

@ -198,10 +198,8 @@ fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]] && [ -z "$MAX_JOBS_OVERRIDE" ]; then
echo "WARNING: FlashAttention files require large amounts of memory to build and will OOM"
echo "Setting MAX_JOBS=(nproc-2)/3 to reduce memory usage"
export MAX_JOBS="$(( $(nproc --ignore=2) / 3 ))"
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]]; then
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
@ -257,6 +255,7 @@ if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
set -e -o pipefail
get_bazel
python3 tools/optional_submodules.py checkout_eigen
# Leave 1 CPU free and use only up to 80% of memory to reduce the change of crashing
# the runner
@ -307,6 +306,22 @@ else
fi
pip_install_whl "$(echo dist/*.whl)"
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *vision* ]]; then
install_torchvision
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *audio* ]]; then
install_torchaudio
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchrec* || "${BUILD_ADDITIONAL_PACKAGES:-}" == *fbgemm* ]]; then
install_torchrec_and_fbgemm
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchao* ]]; then
install_torchao
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
echo "Checking that xpu is compiled"
pushd dist/
@ -394,10 +409,8 @@ else
# This is an attempt to mitigate flaky libtorch build OOM error. By default, the build parallelization
# is set to be the number of CPU minus 2. So, let's try a more conservative value here. A 4xlarge has
# 16 CPUs
if [ -z "$MAX_JOBS_OVERRIDE" ]; then
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
fi
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
# NB: Install outside of source directory (at the same level as the root
# pytorch folder) so that it doesn't get cleaned away prior to docker push.

View File

@ -13,6 +13,13 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
fi
if which sccache > /dev/null; then
# Clear SCCACHE_BUCKET and SCCACHE_REGION if they are empty, otherwise
# sccache will complain about invalid bucket configuration
if [[ -z "${SCCACHE_BUCKET:-}" ]]; then
unset SCCACHE_BUCKET
unset SCCACHE_REGION
fi
# Save sccache logs to file
sccache --stop-server > /dev/null 2>&1 || true
rm -f ~/sccache_error.log || true

View File

@ -78,6 +78,34 @@ function pip_install_whl() {
fi
}
function pip_build_and_install() {
local build_target=$1
local wheel_dir=$2
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
python3 -m pip wheel \
--no-build-isolation \
--no-deps \
--no-use-pep517 \
-w "${wheel_dir}" \
"${build_target}"
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
}
function pip_install() {
# retry 3 times
@ -124,14 +152,7 @@ function get_pinned_commit() {
function install_torchaudio() {
local commit
commit=$(get_pinned_commit audio)
if [[ "$1" == "cuda" ]]; then
# TODO: This is better to be passed as a parameter from _linux-test workflow
# so that it can be consistent with what is set in build
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
else
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
fi
pip_build_and_install "git+https://github.com/pytorch/audio.git@${commit}" dist/audio
}
function install_torchtext() {
@ -139,8 +160,8 @@ function install_torchtext() {
local text_commit
data_commit=$(get_pinned_commit data)
text_commit=$(get_pinned_commit text)
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/data.git@${data_commit}"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/text.git@${text_commit}"
pip_build_and_install "git+https://github.com/pytorch/data.git@${data_commit}" dist/data
pip_build_and_install "git+https://github.com/pytorch/text.git@${text_commit}" dist/text
}
function install_torchvision() {
@ -153,7 +174,14 @@ function install_torchvision() {
echo 'char* dlerror(void) { return "";}'|gcc -fpic -shared -o "${HOME}/dlerror.so" -x c -
LD_PRELOAD=${orig_preload}:${HOME}/dlerror.so
fi
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/vision.git@${commit}"
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
# Not sure if both are needed, but why not
export FORCE_CUDA=1
export WITH_CUDA=1
fi
pip_build_and_install "git+https://github.com/pytorch/vision.git@${commit}" dist/vision
if [ -n "${LD_PRELOAD}" ]; then
LD_PRELOAD=${orig_preload}
fi
@ -173,25 +201,48 @@ function install_torchrec_and_fbgemm() {
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]] ; then
# install torchrec first because it installs fbgemm nightly on top of rocm fbgemm
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_uninstall fbgemm-gpu-nightly
pip_install tabulate # needed for newer fbgemm
pip_install patchelf # needed for rocm fbgemm
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py install \
--package_variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
local wheel_dir=dist/fbgemm_gpu
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py bdist_wheel \
--package_variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
# Save the wheel before cleaning up
mkdir -p dist/fbgemm_gpu
cp fbgemm/fbgemm_gpu/dist/*.whl dist/fbgemm_gpu
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
rm -rf fbgemm
else
# See https://github.com/pytorch/pytorch/issues/106971
CUDA_PATH=/usr/local/cuda-12.1 pip_install --no-use-pep517 --user "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#egg=fbgemm-gpu&subdirectory=fbgemm_gpu"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_build_and_install "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#subdirectory=fbgemm_gpu" dist/fbgemm_gpu
fi
}
@ -207,34 +258,10 @@ function clone_pytorch_xla() {
fi
}
function checkout_install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
# TODO (huydhn): transformers-4.44.2 added by https://github.com/pytorch/benchmark/pull/2488
# is regressing speedup metric. This needs to be investigated further
pip install transformers==4.38.1
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
function install_torchao() {
local commit
commit=$(get_pinned_commit torchao)
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/ao.git@${commit}"
pip_build_and_install "git+https://github.com/pytorch/ao.git@${commit}" dist/ao
}
function print_sccache_stats() {

View File

@ -5,11 +5,6 @@ set -x
# shellcheck source=./macos-common.sh
source "$(dirname "${BASH_SOURCE[0]}")/macos-common.sh"
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# Test that OpenMP is enabled
pushd test
if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available()))") == "1" ]]; then
@ -190,7 +185,7 @@ torchbench_setup_macos() {
}
pip_benchmark_deps() {
python -mpip install --no-input astunparse requests cython scikit-learn
python -mpip install --no-input requests cython scikit-learn six
}

View File

@ -74,12 +74,13 @@ else
fi
# Environment initialization
retry pip install -qUr requirements-build.txt
if [[ "$(uname)" == Darwin ]]; then
# Install the testing dependencies
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest setuptools six typing_extensions pyyaml
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest
else
retry pip install -qr requirements.txt || true
retry pip install -q hypothesis protobuf pytest setuptools || true
retry pip install -q hypothesis protobuf pytest || true
numpy_ver=1.15
case "$(python --version 2>&1)" in
*2* | *3.5* | *3.6*)

View File

@ -11,6 +11,8 @@ export TERM=vt100
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Do not change workspace permissions for ROCm and s390x CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
@ -163,8 +165,6 @@ elif [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
export PYTORCH_TESTING_DEVICE_ONLY_FOR="xpu"
# setting PYTHON_TEST_EXTRA_OPTION
export PYTHON_TEST_EXTRA_OPTION="--xpu"
# Disable sccache for xpu test due to flaky issue https://github.com/pytorch/pytorch/issues/143585
sudo rm -rf /opt/cache
fi
if [[ "$TEST_CONFIG" == *crossref* ]]; then
@ -201,7 +201,7 @@ fi
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]] ; then
# JIT C++ extensions require ninja.
pip_install --user "ninja==1.10.2"
pip_install "ninja==1.10.2"
# ninja is installed in $HOME/.local/bin, e.g., /var/lib/jenkins/.local/bin for CI user jenkins
# but this script should be runnable by any user, including root
export PATH="$HOME/.local/bin:$PATH"
@ -289,6 +289,12 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
if [[ "${TEST_CONFIG}" == "legacy_nvidia_driver" ]]; then
# Make sure that CUDA can be initialized
(cd test && python -c "import torch; torch.rand(2, 2, device='cuda')")
export USE_LEGACY_DRIVER=1
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -330,6 +336,15 @@ test_h100_distributed() {
assert_git_not_dirty
}
test_h100_symm_mem() {
# symmetric memory test
time python test/run_test.py --include distributed/test_symmetric_memory.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem_triton.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nccl.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_lazy_tensor_meta_reference_disabled() {
export TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE=1
echo "Testing lazy tensor operations without meta reference"
@ -344,6 +359,7 @@ test_dynamo_wrapped_shard() {
exit 1
fi
python tools/dynamo/verify_dynamo.py
python tools/dynamo/gb_id_mapping.py verify
# PLEASE DO NOT ADD ADDITIONAL EXCLUDES HERE.
# Instead, use @skipIfTorchDynamo on your tests.
time python test/run_test.py --dynamo \
@ -358,12 +374,24 @@ test_dynamo_wrapped_shard() {
assert_git_not_dirty
}
test_einops() {
pip install einops==0.6.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.7.0
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.8.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
assert_git_not_dirty
}
test_inductor_distributed() {
# Smuggle a few multi-gpu tests here so that we don't have to request another large node
echo "Testing multi_gpu tests in test_torchinductor"
python test/run_test.py -i inductor/test_torchinductor.py -k test_multi_gpu --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_cuda_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_replicate_on_devices --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_on_gpu_device1 --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_gpu_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_load_package_multiple_gpus --verbose
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
python test/run_test.py -i distributed/tensor/test_dtensor_compile.py --verbose
python test/run_test.py -i distributed/tensor/parallel/test_micro_pipeline_tp.py --verbose
@ -415,14 +443,21 @@ test_inductor_aoti() {
python3 tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *sm86* ]]; then
BUILD_AOT_INDUCTOR_TEST=1 TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python setup.py develop
BUILD_COMMAND=(TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python -m pip install --no-build-isolation -v -e .)
# TODO: Replace me completely, as one should not use conda libstdc++, nor need special path to TORCH_LIB
LD_LIBRARY_PATH=/opt/conda/envs/py_3.10/lib/:${TORCH_LIB_DIR}:$LD_LIBRARY_PATH
CPP_TESTS_DIR="${BUILD_BIN_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="/opt/conda/envs/py_3.10/lib:${TORCH_LIB_DIR}:${LD_LIBRARY_PATH}")
else
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
BUILD_COMMAND=(python -m pip install --no-build-isolation -v -e .)
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}")
fi
# aoti cmake custom command requires `torch` to be installed
# initialize the cmake build cache and install torch
/usr/bin/env "${BUILD_COMMAND[@]}"
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
}
test_inductor_cpp_wrapper_shard() {
@ -435,47 +470,26 @@ test_inductor_cpp_wrapper_shard() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
if [[ "$1" -eq "2" ]]; then
# For now, manually put the opinfo tests in shard 2, and all other tests in
# shard 1. Run all CPU tests, as well as specific GPU tests triggering past
# bugs, for now.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--verbose
exit
fi
# Run certain inductor unit tests with cpp wrapper. In the end state, we
# should be able to run all the inductor unit tests with cpp_wrapper.
#
# TODO: I'm pretty sure that "TestInductorOpInfoCPU" is not a valid filter,
# but change that in another PR to more accurately monitor the increased CI
# usage.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py \
--include inductor/test_torchinductor inductor/test_max_autotune inductor/test_cpu_repro \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor \
--include test_torch \
-k 'take' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor --include test_torch -k 'take' --verbose
# Run inductor benchmark tests with cpp wrapper.
# Skip benchmark tests if it's in rerun-disabled-mode.
if [[ "${PYTORCH_TEST_RERUN_DISABLED_TESTS}" == "1" ]]; then
echo "skip dynamo benchmark tests for rerun-disabled-test"
else
echo "run dynamo benchmark tests with cpp wrapper"
python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
--training --inductor --disable-cudagraphs --only vit_base_patch16_224 \
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_timm_training.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_torchbench_inference.csv"
fi
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -488,7 +502,7 @@ DYNAMO_BENCHMARK_FLAGS=()
pr_time_benchmarks() {
pip_install --user "fbscribelogger"
pip_install "fbscribelogger"
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
@ -596,8 +610,8 @@ test_perf_for_dashboard() {
local device=cuda
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *zen_cpu_x86* ]]; then
device=zen_cpu_x86
if [[ "${TEST_CONFIG}" == *cpu_x86_zen* ]]; then
device=cpu_x86_zen
elif [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
device=cpu_x86
elif [[ "${TEST_CONFIG}" == *cpu_aarch64* ]]; then
@ -614,7 +628,11 @@ test_perf_for_dashboard() {
for mode in "${modes[@]}"; do
if [[ "$mode" == "inference" ]]; then
dtype=bfloat16
if [[ "$device" == "cpu_x86" ]]; then
dtype=amp
else
dtype=bfloat16
fi
elif [[ "$mode" == "training" ]]; then
dtype=amp
fi
@ -626,6 +644,10 @@ test_perf_for_dashboard() {
target_flag+=( --no-translation-validation)
fi
if [[ "$DASHBOARD_TAG" == *freezing-true* ]]; then
target_flag+=( --freezing)
fi
if [[ "$DASHBOARD_TAG" == *default-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
@ -1455,8 +1477,8 @@ test_bazel() {
test_benchmarks() {
if [[ "$BUILD_ENVIRONMENT" == *cuda* && $TEST_CONFIG != *nogpu* ]]; then
pip_install --user "pytest-benchmark==3.2.3"
pip_install --user "requests"
pip_install "pytest-benchmark==3.2.3"
pip_install "requests"
BENCHMARK_DATA="benchmarks/.data"
mkdir -p ${BENCHMARK_DATA}
pytest benchmarks/fastrnns/test_bench.py --benchmark-sort=Name --benchmark-json=${BENCHMARK_DATA}/fastrnns_default.json --fuser=default --executor=default
@ -1564,7 +1586,7 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python setup.py install
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
@ -1584,7 +1606,13 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
fi
if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
# Install numpy-2.0.2 and compatible scipy & numba versions
python -mpip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
# Force re-install of pandas to avoid error where pandas checks numpy version from initial install and fails upon import
TMP_PANDAS_VERSION=$(python -c "import pandas; print(pandas.__version__)" 2>/dev/null)
if [ -n "$TMP_PANDAS_VERSION" ]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0 pandas=="$TMP_PANDAS_VERSION" --force-reinstall
else
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
test_linux_aarch64
@ -1638,52 +1666,40 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == cachebench ]]; then
install_torchaudio cuda
install_torchaudio
install_torchvision
checkout_install_torchbench nanogpt BERT_pytorch resnet50 hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_cachebench
PYTHONPATH=/torchbench test_cachebench
elif [[ "${TEST_CONFIG}" == verify_cachebench ]]; then
install_torchaudio cpu
install_torchaudio
install_torchvision
checkout_install_torchbench nanogpt
PYTHONPATH=$(pwd)/torchbench test_verify_cachebench
PYTHONPATH=/torchbench test_verify_cachebench
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchaudio
install_torchvision
TORCH_CUDA_ARCH_LIST="8.0;8.6" install_torchao
install_torchao
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
if [[ "${TEST_CONFIG}" == *inductor_torchbench_smoketest_perf* ]]; then
checkout_install_torchbench hf_Bert hf_Albert timm_vision_transformer
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_smoketest_perf
PYTHONPATH=/torchbench test_inductor_torchbench_smoketest_perf
elif [[ "${TEST_CONFIG}" == *inductor_torchbench_cpu_smoketest_perf* ]]; then
checkout_install_torchbench timm_vision_transformer phlippe_densenet basic_gnn_edgecnn \
llama_v2_7b_16h resnet50 timm_efficientnet mobilenet_v3_large timm_resnest \
functorch_maml_omniglot yolov3 mobilenet_v2 resnext50_32x4d densenet121 mnasnet1_0
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_cpu_smoketest_perf
PYTHONPATH=/torchbench test_inductor_torchbench_cpu_smoketest_perf
elif [[ "${TEST_CONFIG}" == *torchbench_gcp_smoketest* ]]; then
checkout_install_torchbench
TORCHBENCHPATH=$(pwd)/torchbench test_torchbench_gcp_smoketest
TORCHBENCHPATH=/torchbench test_torchbench_gcp_smoketest
else
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"
fi
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchaudio cuda
install_torchvision
checkout_install_torchbench hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
test_inductor_aoti
PYTHONPATH=/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti
fi
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
@ -1692,6 +1708,8 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
test_inductor_distributed
fi
fi
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
test_einops
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
install_torchvision
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
@ -1741,6 +1759,8 @@ elif [[ "${TEST_CONFIG}" == smoke ]]; then
test_python_smoke
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
else
install_torchvision
install_monkeytype

View File

@ -42,7 +42,7 @@ call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=Syste
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
call pip install mkl-include==2021.4.0 mkl-devel==2021.4.0
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
if errorlevel 1 goto fail
if not errorlevel 0 goto fail

View File

@ -52,6 +52,9 @@ python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
python -m pip install expecttest==0.3.0
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do

View File

@ -29,7 +29,7 @@ IF "%NVTOOLSEXT_PATH%"=="" (
IF "%CUDA_PATH_V129%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.9\bin\nvcc.exe" (
set "CUDA_PATH_V128=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.9"
set "CUDA_PATH_V129=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.9"
) ELSE (
echo CUDA 12.9 not found, failing
exit /b 1
@ -37,10 +37,10 @@ IF "%CUDA_PATH_V129%"=="" (
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_CUDA_ARCH_LIST=7.0;7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
)
set "CUDA_PATH=%CUDA_PATH_V129%"

View File

@ -8,6 +8,7 @@ copy "%CUDA_PATH%\bin\cusolver*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudnn*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\cupti64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\nvperf_host*.dll*" pytorch\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" pytorch\torch\lib
copy "%PYTHON_LIB_PATH%\libiomp*5md.dll" pytorch\torch\lib

View File

@ -18,3 +18,5 @@ start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_t
if errorlevel 1 exit /b 1
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel
if errorlevel 1 exit /b 1

View File

@ -148,14 +148,7 @@ if "%NVIDIA_GPU_EXISTS%" == "0" (
goto end
)
set BUILD_SPLIT_CUDA=
if exist "%install_root%\lib\torch_cuda_cu.lib" if exist "%install_root%\lib\torch_cuda_cpp.lib" set BUILD_SPLIT_CUDA=ON
if "%BUILD_SPLIT_CUDA%" == "ON" (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda_cu.lib torch_cuda_cpp.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ /INCLUDE:?_torch_cuda_cu_linker_symbol_op_cuda@native@at@@YA?AVTensor@2@AEBV32@@Z
) else (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
)
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
.\check-torch-cuda.exe
if ERRORLEVEL 1 exit /b 1

View File

@ -127,7 +127,7 @@ export INSTALL_TEST=0 # dont install test binaries into site-packages
export MACOSX_DEPLOYMENT_TARGET=10.15
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
SETUPTOOLS_PINNED_VERSION="=46.0.0"
SETUPTOOLS_PINNED_VERSION="==70.1.0"
PYYAML_PINNED_VERSION="=5.3"
EXTRA_CONDA_INSTALL_FLAGS=""
CONDA_ENV_CREATE_FLAGS=""
@ -135,7 +135,7 @@ RENAME_WHEEL=true
case $desired_python in
3.13t)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
@ -145,31 +145,31 @@ case $desired_python in
;;
3.13)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
;;
3.12)
echo "Using 3.12 deps"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.11)
echo "Using 3.11 deps"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.10)
echo "Using 3.10 deps"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.9)
echo "Using 3.9 deps"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
@ -184,7 +184,8 @@ tmp_env_name="wheel_py$python_nodot"
conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_python" ${CONDA_ENV_CREATE_FLAGS}
source activate "$tmp_env_name"
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing_extensions
retry pip install -r "${pytorch_rootdir}/requirements-build.txt"
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing-extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp

View File

@ -75,8 +75,8 @@ TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
# CUDA 12.8 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == cu128 ]]; then
# CUDA 12.9 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]]; then
TRITON_CONSTRAINT="platform_system == 'Linux'"
fi

View File

@ -120,6 +120,7 @@ UseTab: Never
Language: ObjC
ColumnLimit: 120
AlignAfterOpenBracket: Align
IndentWidth: 2
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: false

View File

@ -61,8 +61,8 @@ You are now all set to start developing with PyTorch in a DevContainer environme
## Step 8: Build PyTorch
To build pytorch from source, simply run:
```
python setup.py develop
```bash
python -m pip install --no-build-isolation -v -e .
```
The process involves compiling thousands of files, and would take a long time. Fortunately, the compiled objects can be useful for your next build. When you modify some files, you only need to compile the changed files the next time.

View File

@ -1,14 +1,36 @@
root = true
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
# Python
[*.py]
[*.{py,pyi,py.in,pyi.in}]
indent_style = space
indent_size = 4
# C/C++/CUDA
[*.{cpp,hpp,cxx,cc,c,h,cu,cuh}]
indent_style = space
indent_size = 2
# Objective-C
[*.{mm,m,M}]
indent_style = space
indent_size = 2
# Clang tools
[.clang-{format,tidy}]
indent_style = space
indent_size = 2
# Make
[Makefile]
indent_style = tab
# Batch file
[*.bat]
indent_style = space
indent_size = 2
end_of_line = crlf

View File

@ -125,7 +125,7 @@ runs:
TAG: ${{ steps.parse-ref.outputs.tag }}
EVENT_NAME: ${{ github.event_name }}
SCHEDULE: ${{ github.event.schedule }}
HEAD_BRANCH: ${{ github.event.workflow_run.head_branch }}
HEAD_BRANCH: ${{ steps.parse-ref.outputs.branch }}
id: filter
run: |
echo "Workflow: ${GITHUB_WORKFLOW}"

View File

@ -126,7 +126,7 @@ runs:
shell: bash
continue-on-error: true
run: |
python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.8 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -304,8 +304,7 @@ def unzip_artifact_and_replace_files() -> None:
def set_output() -> None:
# Disable for now so we can monitor first
# pass
print("Setting output reuse=true")
if os.getenv("GITHUB_OUTPUT"):
with open(str(os.getenv("GITHUB_OUTPUT")), "a") as env:
print("reuse=true", file=env)

View File

@ -1 +1 @@
4e94321c54617dd738a05bfedfc28bc0fa635b5c
00b0c91db92c51a11356249262577b9fa26c18c5

1
.github/ci_commit_pins/vllm.txt vendored Normal file
View File

@ -0,0 +1 @@
29d1ffc5b4c763ef76aff9e3f617fa60dd292418

View File

@ -1 +1 @@
55a75404c9b75cd5fd62ab5d4deafc8c506b3af2
1c00dea2c9adb2137903c86b4191e8c247f8fda9

View File

@ -48,3 +48,12 @@
- "module: dynamic shapes"
then:
- "oncall: pt2"
- any:
- "release notes: distributed (c10d)"
- "release notes: distributed (symm_mem)"
- "release notes: distributed (pipeline)"
- "release notes: distributed (fsdp)"
- "release notes: distributed (dtensor)"
- "oncall: distributed"
then:
- "ciflow/h100-distributed"

View File

@ -76,6 +76,7 @@
- .github/ci_commit_pins/audio.txt
- .github/ci_commit_pins/vision.txt
- .github/ci_commit_pins/torchdynamo.txt
- .github/ci_commit_pins/vllm.txt
- .ci/docker/ci_commit_pins/triton.txt
approved_by:
- pytorchbot
@ -384,6 +385,7 @@
- leslie-fang-intel
- jgong5
- EikanWang
- CaoE
mandatory_checks_name:
- EasyCLA
- Lint
@ -435,6 +437,7 @@
approved_by:
- leslie-fang-intel
- jgong5
- CaoE
mandatory_checks_name:
- EasyCLA
- Lint

View File

@ -4,6 +4,7 @@ ciflow_push_tags:
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
- ciflow/triton_binaries
- ciflow/inductor
- ciflow/inductor-periodic
- ciflow/inductor-rocm
@ -30,6 +31,7 @@ ciflow_push_tags:
- ciflow/pull
- ciflow/h100
- ciflow/h100-distributed
- ciflow/h100-symm-mem
retryable_workflows:
- pull
- trunk

View File

@ -1,5 +1,6 @@
# This file is to cache other dependencies not specified elsewhere in:
# requirement.txt
# requirements.txt
# requirements-build.txt
# docs/requirements.txt
# docs/cpp/requirements.txt
# functorch/docs/requirements.txt

View File

@ -16,7 +16,7 @@ packaging==23.1
parameterized==0.8.1
pillow==10.3.0
protobuf==5.29.4
psutil==5.9.1
psutil==5.9.8
pygments==2.15.0
pytest-cpp==2.3.0
pytest-flakefinder==1.1.0

View File

@ -275,7 +275,7 @@ def delete_branches() -> None:
delete_branch(git_repo, branch)
def delete_old_ciflow_tags() -> None:
def delete_old_tags() -> None:
# Deletes ciflow tags if they are associated with a closed PR or a specific
# commit. Lightweight tags don't have information about the date they were
# created, so we can't check how old they are. The script just assumes that
@ -288,23 +288,29 @@ def delete_old_ciflow_tags() -> None:
delete_branch(git_repo, f"refs/tags/{tag}")
tags = git_repo._run_git("tag").splitlines()
open_pr_numbers = [x["number"] for x in get_open_prs()]
CIFLOW_TAG_REGEX = re.compile(r"^ciflow\/.*\/(\d{5,6}|[0-9a-f]{40})$")
AUTO_REVERT_TAG_REGEX = re.compile(r"^trunk\/[0-9a-f]{40}$")
for tag in tags:
try:
if ESTIMATED_TOKENS[0] > 400:
print("Estimated tokens exceeded, exiting")
break
if not tag.startswith("ciflow/"):
if not CIFLOW_TAG_REGEX.match(tag) and not AUTO_REVERT_TAG_REGEX.match(tag):
continue
re_match_pr = re.match(r"^ciflow\/.*\/(\d{5,6})$", tag)
re_match_sha = re.match(r"^ciflow\/.*\/([0-9a-f]{40})$", tag)
if re_match_pr:
pr_number = int(re_match_pr.group(1))
if pr_number in open_pr_numbers:
continue
delete_tag(tag)
elif re_match_sha:
# This checks the date of the commit associated with the tag instead
# of the tag itself since lightweight tags don't have this
# information. I think it should be ok since this only runs once a
# day
tag_info = git_repo._run_git("show", "-s", "--format=%ct", tag)
tag_timestamp = int(tag_info.strip())
# Maybe some timezone issues, but a few hours shouldn't matter
tag_age_days = (datetime.now().timestamp() - tag_timestamp) / SEC_IN_DAY
if tag_age_days > 7:
print(f"[{tag}] Tag is older than 7 days, deleting")
delete_tag(tag)
except Exception as e:
print(f"Failed to check tag {tag}: {e}")
@ -312,4 +318,4 @@ def delete_old_ciflow_tags() -> None:
if __name__ == "__main__":
delete_branches()
delete_old_ciflow_tags()
delete_old_tags()

View File

@ -18,6 +18,7 @@ import yaml
REENABLE_TEST_REGEX = "(?i)(Close(d|s)?|Resolve(d|s)?|Fix(ed|es)?) (#|https://github.com/pytorch/pytorch/issues/)([0-9]+)"
MAIN_BRANCH = "main"
PREFIX = "test-config/"
@ -97,7 +98,7 @@ def parse_args() -> Any:
parser.add_argument(
"--branch",
type=str,
default="main",
default=MAIN_BRANCH,
help="the branch name",
)
return parser.parse_args()
@ -456,6 +457,7 @@ def download_json(url: str, headers: dict[str, str], num_retries: int = 3) -> An
def set_output(name: str, val: Any) -> None:
print(f"Setting output {name}={val}")
if os.getenv("GITHUB_OUTPUT"):
with open(str(os.getenv("GITHUB_OUTPUT")), "a") as env:
print(f"{name}={val}", file=env)
@ -495,13 +497,20 @@ def check_for_setting(labels: set[str], body: str, setting: str) -> bool:
def perform_misc_tasks(
labels: set[str], test_matrix: dict[str, list[Any]], job_name: str, pr_body: str
labels: set[str],
test_matrix: dict[str, list[Any]],
job_name: str,
pr_body: str,
branch: Optional[str] = None,
) -> None:
"""
In addition to apply the filter logic, the script also does the following
misc tasks to set keep-going and is-unstable variables
"""
set_output("keep-going", check_for_setting(labels, pr_body, "keep-going"))
set_output(
"keep-going",
branch == MAIN_BRANCH or check_for_setting(labels, pr_body, "keep-going"),
)
set_output(
"ci-verbose-test-logs",
check_for_setting(labels, pr_body, "ci-verbose-test-logs"),
@ -624,6 +633,7 @@ def main() -> None:
test_matrix=filtered_test_matrix,
job_name=args.job_name,
pr_body=pr_body if pr_body else "",
branch=args.branch,
)
# Set the filtered test matrix as the output

View File

@ -17,7 +17,7 @@ from typing import Optional
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
CUDA_ARCHES = ["12.6", "12.8", "12.9"]
CUDA_STABLE = "12.6"
CUDA_STABLE = "12.8"
CUDA_ARCHES_FULL_VERSION = {
"12.6": "12.6.3",
"12.8": "12.8.1",
@ -53,8 +53,8 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'"
@ -70,8 +70,8 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'"
@ -87,7 +87,8 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
@ -224,8 +225,6 @@ def generate_libtorch_matrix(
arches += ROCM_ARCHES
elif os == "windows":
arches += CUDA_ARCHES
if "12.9" in arches:
arches.remove("12.9")
if libtorch_variants is None:
libtorch_variants = [
"shared-with-deps",
@ -291,9 +290,6 @@ def generate_wheels_matrix(
arches += CUDA_ARCHES + ROCM_ARCHES + XPU_ARCHES
elif os == "windows":
arches += CUDA_ARCHES + XPU_ARCHES
# skip CUDA 12.9 builds on Windows
if "12.9" in arches:
arches.remove("12.9")
elif os == "linux-aarch64":
# Separate new if as the CPU type is different and
# uses different build/test scripts

View File

@ -22,6 +22,7 @@ LABEL_CIFLOW_BINARIES = "ciflow/binaries"
LABEL_CIFLOW_PERIODIC = "ciflow/periodic"
LABEL_CIFLOW_BINARIES_LIBTORCH = "ciflow/binaries_libtorch"
LABEL_CIFLOW_BINARIES_WHEEL = "ciflow/binaries_wheel"
LABEL_CIFLOW_ROCM = "ciflow/rocm"
@dataclass
@ -146,13 +147,35 @@ LINUX_BINARY_BUILD_WORFKLOWS = [
),
]
ROCM_SMOKE_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="manywheel",
build_variant="rocm",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["6.4"],
python_versions=["3.9"],
),
ciflow_config=CIFlowConfig(
labels={
LABEL_CIFLOW_BINARIES,
LABEL_CIFLOW_BINARIES_WHEEL,
LABEL_CIFLOW_ROCM,
},
isolated_workflow=True,
),
branches="main",
),
]
LINUX_BINARY_SMOKE_WORKFLOWS = [
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="manywheel",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["12.6", "12.8", "12.9", "6.4"],
arches=["12.6", "12.8", "12.9"],
python_versions=["3.9"],
),
branches="main",
@ -387,6 +410,11 @@ def main() -> None:
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
S390X_BINARY_BUILD_WORKFLOWS,
),
(
# Give rocm it's own workflow file
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
ROCM_SMOKE_WORKFLOWS,
),
(
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
LINUX_BINARY_SMOKE_WORKFLOWS,

View File

@ -136,10 +136,10 @@ def find_job_id_name(args: Any) -> tuple[str, str]:
def set_output(name: str, val: Any) -> None:
print(f"Setting output {name}={val}")
if os.getenv("GITHUB_OUTPUT"):
with open(str(os.getenv("GITHUB_OUTPUT")), "a") as env:
print(f"{name}={val}", file=env)
print(f"setting {name}={val}")
else:
print(f"::set-output name={name}::{val}")

View File

@ -5,6 +5,7 @@ import re
def set_output(name: str, val: str) -> None:
print(f"Setting output {name}={val}")
if os.getenv("GITHUB_OUTPUT"):
with open(str(os.getenv("GITHUB_OUTPUT")), "a") as env:
print(f"{name}={val}", file=env)

View File

@ -1,64 +0,0 @@
import argparse
import subprocess
import generate_binary_build_matrix
def tag_image(
image: str,
default_tag: str,
release_version: str,
dry_run: str,
tagged_images: dict[str, bool],
) -> None:
if image in tagged_images:
return
release_image = image.replace(f"-{default_tag}", f"-{release_version}")
print(f"Tagging {image} to {release_image} , dry_run: {dry_run}")
if dry_run == "disabled":
subprocess.check_call(["docker", "pull", image])
subprocess.check_call(["docker", "tag", image, release_image])
subprocess.check_call(["docker", "push", release_image])
tagged_images[image] = True
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument(
"--version",
help="Version to tag",
type=str,
default="2.2",
)
parser.add_argument(
"--dry-run",
help="No Runtime Error check",
type=str,
choices=["enabled", "disabled"],
default="enabled",
)
options = parser.parse_args()
tagged_images: dict[str, bool] = {}
platform_images = [
generate_binary_build_matrix.WHEEL_CONTAINER_IMAGES,
generate_binary_build_matrix.LIBTORCH_CONTAINER_IMAGES,
]
default_tag = generate_binary_build_matrix.DEFAULT_TAG
for platform_image in platform_images: # type: ignore[attr-defined]
for arch in platform_image.keys(): # type: ignore[attr-defined]
if arch == "cpu-s390x":
continue
tag_image(
platform_image[arch], # type: ignore[index]
default_tag,
options.version,
options.dry_run,
tagged_images,
)
if __name__ == "__main__":
main()

View File

@ -6,7 +6,7 @@ set -euxo pipefail
cd llm-target-determinator
pip install -q -r requirements.txt
cd ../codellama
pip install -e .
pip install --no-build-isolation -v -e .
pip install numpy==1.26.0
# Run indexer

View File

@ -0,0 +1,56 @@
import os
import unittest
from datetime import datetime
from unittest.mock import MagicMock, patch
os.environ["GITHUB_TOKEN"] = "test_token"
from delete_old_branches import delete_old_tags
@patch("delete_old_branches.delete_branch")
@patch("gitutils.GitRepo._run_git")
class TestDeleteTag(unittest.TestCase):
def test_delete_tag(
self, mock_run_git: "MagicMock", mock_delete_tag: "MagicMock"
) -> None:
for tag in [
"ciflow/branch/12345",
"ciflow/commitsha/1234567890abcdef1234567890abcdef12345678",
"trunk/1234567890abcdef1234567890abcdef12345678",
]:
mock_run_git.side_effect = [
tag,
str(int(datetime.now().timestamp() - 8 * 24 * 60 * 60)), # 8 days ago
]
delete_old_tags()
mock_delete_tag.assert_called_once()
mock_delete_tag.reset_mock()
# Don't delete if the tag is not old enough
mock_run_git.side_effect = [
tag,
str(int(datetime.now().timestamp() - 6 * 24 * 60 * 60)), # 6 days ago
]
delete_old_tags()
mock_delete_tag.assert_not_called()
def test_do_not_delete_tag(
self, mock_run_git: "MagicMock", mock_delete_tag: "MagicMock"
) -> None:
for tag in [
"ciflow/doesntseemtomatch",
"trunk/doesntseemtomatch",
"doesntseemtomatch",
]:
mock_run_git.side_effect = [
tag,
str(int(datetime.now().timestamp() - 8 * 24 * 60 * 60)), # 8 days ago
]
delete_old_tags()
mock_delete_tag.assert_not_called()
if __name__ == "__main__":
unittest.main()

View File

@ -70,7 +70,7 @@ jobs:
runner: ${{ inputs.runner_prefix }}linux.12xlarge
# TODO: Nightly cpp docs take longer and longer to finish (more than 3h now)
# Let's try to figure out how this can be improved
timeout-minutes: 240
timeout-minutes: 360
- docs_type: python
runner: ${{ inputs.runner_prefix }}linux.2xlarge
# It takes less than 30m to finish python docs unless there are issues

View File

@ -0,0 +1,43 @@
name: Get Changed Files
on:
workflow_call:
outputs:
changed-files:
description: "List of changed files (space-separated) or '*' if not in a PR"
value: ${{ jobs.get-changed-files.outputs.changed-files }}
jobs:
get-changed-files:
runs-on: ubuntu-latest
outputs:
changed-files: ${{ steps.get-files.outputs.changed-files }}
steps:
- name: Get changed files
id: get-files
env:
GH_TOKEN: ${{ github.token }}
run: |
# Check if we're in a pull request context
if [ "${{ github.event_name }}" = "pull_request" ] || [ "${{ github.event_name }}" = "pull_request_target" ]; then
echo "Running in PR context"
# Get the PR number from the github context
PR_NUMBER="${{ github.event.number }}"
# Use gh CLI to get changed files in the PR with explicit repo
CHANGED_FILES=$(gh pr view "$PR_NUMBER" --repo "${{ github.repository }}" --json files --jq '.files[].path' | tr '\n' ' ' | sed 's/ $//')
if [ -z "$CHANGED_FILES" ]; then
echo "No changed files found, setting to '*'"
CHANGED_FILES="*"
fi
echo "Changed files: $CHANGED_FILES"
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
else
echo "Not in PR context, setting changed files to '*'"
echo "changed-files=*" >> "$GITHUB_OUTPUT"
fi

View File

@ -16,11 +16,6 @@ on:
type: boolean
default: true
description: If set, upload generated build artifacts.
build-with-debug:
required: false
type: boolean
default: false
description: If set, build in debug mode.
sync-tag:
required: false
type: string
@ -69,11 +64,6 @@ on:
required: false
type: string
default: ""
max-jobs:
description: |
Overwrite the number of jobs to use for the build
required: false
type: string
disable-monitor:
description: |
Disable utilization monitoring for build job
@ -92,7 +82,6 @@ on:
required: false
type: number
default: 1
allow-reuse-old-whl:
description: |
If set, the build try to pull an old wheel from s3 that was built on a
@ -100,6 +89,13 @@ on:
required: false
type: boolean
default: true
build-additional-packages:
description: |
If set, the build job will also builds these packages and saves their
wheels as artifacts
required: false
type: string
default: ""
secrets:
HUGGING_FACE_HUB_TOKEN:
@ -111,7 +107,6 @@ on:
description: |
FB app token to write to scribe endpoint
outputs:
docker-image:
value: ${{ jobs.build.outputs.docker-image }}
@ -136,6 +131,9 @@ jobs:
if: inputs.build-environment != 'linux-s390x-binary-manywheel'
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
instructions: |
Build is done inside the container, to start an interactive session run:
docker exec -it $(docker container ps --format '{{.ID}}') bash
# [pytorch repo ref]
# Use a pytorch/pytorch reference instead of a reference to the local
@ -227,7 +225,7 @@ jobs:
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
mkdir -p ../../usage_logs
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7
python3 -m tools.stats.monitor \
--log-interval "$MONITOR_LOG_INTERVAL" \
--data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" \
@ -249,8 +247,6 @@ jobs:
env:
BUILD_ENVIRONMENT: ${{ inputs.build-environment }}
BRANCH: ${{ steps.parse-ref.outputs.branch }}
# TODO duplicated
AWS_DEFAULT_REGION: us-east-1
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
# Do not set SCCACHE_S3_KEY_PREFIX to share the cache between all build jobs
@ -262,11 +258,10 @@ jobs:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
DOCKER_IMAGE_S390X: ${{ inputs.docker-image-name }}
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
DEBUG: ${{ inputs.build-with-debug && '1' || '0' }}
OUR_GITHUB_JOB_ID: ${{ steps.get-job-id.outputs.job-id }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
MAX_JOBS_OVERRIDE: ${{ inputs.max-jobs }}
BUILD_ADDITIONAL_PACKAGES: ${{ inputs.build-additional-packages }}
run: |
START_TIME=$(date +%s)
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then
@ -286,12 +281,6 @@ jobs:
DOCKER_SHELL_CMD=
fi
if [[ ${MAX_JOBS_OVERRIDE} == "" ]]; then
MAX_JOBS="$(nproc --ignore=2)"
else
MAX_JOBS="${MAX_JOBS_OVERRIDE}"
fi
# Leaving 1GB for the runner and other things
TOTAL_AVAILABLE_MEMORY_IN_GB=$(awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo)
# https://docs.docker.com/engine/containers/resource_constraints/#--memory-swap-details, the 3GB swap
@ -303,9 +292,7 @@ jobs:
# shellcheck disable=SC2086
container_name=$(docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS=${MAX_JOBS} \
-e MAX_JOBS_OVERRIDE \
-e AWS_DEFAULT_REGION \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
@ -320,6 +307,7 @@ jobs:
-e HUGGING_FACE_HUB_TOKEN \
-e SCRIBE_GRAPHQL_ACCESS_TOKEN \
-e USE_SPLIT_BUILD \
-e BUILD_ADDITIONAL_PACKAGES \
--memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \
--memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
@ -333,6 +321,11 @@ jobs:
"${USED_IMAGE}" \
${DOCKER_SHELL_CMD}
)
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then
docker exec -t "${container_name}" sh -c "python3 -m pip install -r requirements.txt"
fi
docker exec -t "${container_name}" sh -c '.ci/pytorch/build.sh'
END_TIME=$(date +%s)

View File

@ -90,10 +90,13 @@ jobs:
environment: ${{ github.ref == 'refs/heads/main' && 'scribe-protected' || startsWith(github.ref, 'refs/heads/release/') && 'scribe-protected' || contains(github.event.pull_request.labels.*.name, 'ci-scribe') && 'scribe-pr' || '' }}
runs-on: ${{ matrix.runner }}
timeout-minutes: ${{ matrix.mem_leak_check == 'mem_leak_check' && 600 || inputs.timeout-minutes }}
permissions:
id-token: write
contents: read
steps:
- name: Setup SSH (Click me for login details)
uses: pytorch/test-infra/.github/actions/setup-ssh@main
if: ${{ !contains(matrix.runner, 'gcp.a100') && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
if: ${{ matrix.runner != 'B200' && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
instructions: |
@ -105,18 +108,31 @@ jobs:
with:
no-sudo: true
- name: Setup Python
if: matrix.runner == 'B200'
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.12'
cache: pip
- name: Setup Linux
uses: ./.github/actions/setup-linux
if: inputs.build-environment != 'linux-s390x-binary-manywheel'
if: inputs.build-environment != 'linux-s390x-binary-manywheel' && matrix.runner != 'B200'
- name: configure aws credentials
if : ${{ inputs.aws-role-to-assume != '' && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
if: ${{ inputs.aws-role-to-assume != '' && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: ${{ inputs.aws-role-to-assume }}
role-session-name: gha-linux-test
aws-region: us-east-1
- name: Login to Amazon ECR
if: ${{ inputs.aws-role-to-assume != '' && matrix.runner == 'B200' }}
id: login-ecr
continue-on-error: true
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
@ -148,17 +164,19 @@ jobs:
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
id: install-nvidia-driver
uses: pytorch/test-infra/.github/actions/setup-nvidia@main
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' }}
with:
driver-version: ${{ matrix.config == 'legacy_nvidia_driver' && '525.105.17' || '570.133.07' }}
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' && matrix.runner != 'B200' }}
- name: Setup GPU_FLAG for docker run
id: setup-gpu-flag
run: echo "GPU_FLAG=--gpus all -e NVIDIA_DRIVER_CAPABILITIES=all" >> "${GITHUB_ENV}"
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' }}
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && (steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' || matrix.runner == 'B200') }}
- name: Setup SCCACHE_SERVER_PORT environment for docker run when on container
id: setup-sscache-port-flag
run: echo "SCCACHE_SERVER_PORT_DOCKER_FLAG=-e SCCACHE_SERVER_PORT=$((RUNNER_UID + 4226))" >> "${GITHUB_ENV}"
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' }}
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' && matrix.runner != 'B200' }}
- name: Lock NVIDIA A100 40GB Frequency
run: |
@ -187,7 +205,7 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
@ -225,6 +243,12 @@ jobs:
run: |
echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}"
- name: Preserve github env variables for use in docker
shell: bash
run: |
env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}"
env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}"
- name: Test
id: test
timeout-minutes: ${{ fromJson(steps.test-timeout.outputs.timeout) }}
@ -253,8 +277,8 @@ jobs:
NO_TD: ${{ steps.keep-going.outputs.ci-no-td }}
TD_DISTRIBUTED: ${{ steps.keep-going.outputs.ci-td-distributed }}
# Do not set SCCACHE_S3_KEY_PREFIX to share the cache between all build jobs
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_REGION: us-east-1
SCCACHE_BUCKET: ${{ matrix.runner != 'B200' && 'ossci-compiler-cache-circleci-v2' || '' }}
SCCACHE_REGION: ${{ matrix.runner != 'B200' && 'us-east-1' || '' }}
SHM_SIZE: ${{ contains(inputs.build-environment, 'cuda') && '2g' || '1g' }}
DOCKER_IMAGE: ${{ inputs.docker-image }}
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
@ -264,7 +288,6 @@ jobs:
DASHBOARD_TAG: ${{ inputs.dashboard-tag }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
IS_A100_RUNNER: ${{ contains(matrix.runner, 'a100') && '1' || '0' }}
ARTIFACTS_FILE_SUFFIX: ${{ github.job }}-${{ matrix.config }}-${{ matrix.shard }}-${{ matrix.num_shards }}-${{ matrix.runner }}_${{ steps.get-job-id.outputs.job-id }}
run: |
set -x
@ -290,10 +313,6 @@ jobs:
# if for some reason cleanup action doesn't stop container
# when job is cancelled
DOCKER_SHELL_CMD="sleep 12h"
# since some steps are skipped on s390x, if they are necessary, run them here
env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}"
env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}"
else
SHM_OPTS="--shm-size=${SHM_SIZE}"
JENKINS_USER="--user jenkins"
@ -345,7 +364,6 @@ jobs:
-e HUGGING_FACE_HUB_TOKEN \
-e SCRIBE_GRAPHQL_ACCESS_TOKEN \
-e DASHBOARD_TAG \
-e IS_A100_RUNNER \
-e ARTIFACTS_FILE_SUFFIX \
--memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \
--memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \
@ -384,6 +402,15 @@ jobs:
test_config: ${{ matrix.config }}
job_identifier: ${{ github.workflow }}_${{ inputs.build-environment }}
- name: Authenticate with AWS
if: ${{ matrix.runner == 'B200' }}
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_upload-benchmark-results
# The max duration enforced by the server side
role-duration-seconds: 18000
aws-region: us-east-1
- name: Upload the benchmark results
uses: pytorch/test-infra/.github/actions/upload-benchmark-results@main
if: inputs.build-environment != 'linux-s390x-binary-manywheel'

View File

@ -123,7 +123,7 @@ jobs:
else
# The runner has access to the S3 bucket via IAM profile without the need
# for any credential
echo "SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> "${GITHUB_ENV}"0
echo "SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2" >> "${GITHUB_ENV}"
echo "SCCACHE_S3_KEY_PREFIX=${GITHUB_WORKFLOW}" >> "${GITHUB_ENV}"
fi
@ -152,17 +152,14 @@ jobs:
env:
OUR_GITHUB_JOB_ID: ${{ steps.get-job-id.outputs.job-id }}
run: |
echo "CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname "$(which conda)")/../"}" >> "${GITHUB_ENV}"
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# TODO: Remove me later, and properly activate venv
PATH="$VENV_PATH/bin:$PATH"
export PATH
# NB: Same trick as Linux, there is no need to initialize sccache with the risk of getting
# it hangs or timeout at initialization. The cache will be started automatically
export SKIP_SCCACHE_INITIALIZATION=1
${CONDA_RUN} .ci/pytorch/macos-build.sh
.ci/pytorch/macos-build.sh
- name: Archive artifacts into zip
if: inputs.build-generates-artifacts && steps.build.outcome != 'skipped'

View File

@ -60,8 +60,6 @@ jobs:
test:
# Don't run on forked repos or empty test matrix
if: github.repository_owner == 'pytorch' && toJSON(fromJSON(inputs.test-matrix).include) != '[]'
# For setup-miniconda, see https://github.com/conda-incubator/setup-miniconda/issues/179
# Also ensure that we always run with the right architecture
defaults:
run:
shell: bash -e -l {0}
@ -90,6 +88,14 @@ jobs:
pkill "${PROCESS}" || true
done
- name: Clean up brew miniconda, if installed
continue-on-error: true
run: |
if brew list miniconda; then
brew uninstall miniconda
echo "REINSTALL_BREW_MINICONDA=1" >> "${GITHUB_ENV}"
fi
- name: Clean up leftover local python3 site-packages on MacOS pet runner
continue-on-error: true
run: |
@ -112,6 +118,12 @@ jobs:
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Setup Python
uses: pytorch/test-infra/.github/actions/setup-python@main
with:
python-version: ${{ inputs.python-version }}
pip-requirements-file: .github/requirements/pip-requirements-macOS.txt
- name: Start monitoring script
id: monitor-script
if: ${{ !inputs.disable-monitor }}
@ -124,8 +136,8 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
${CONDA_RUN} python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7
${CONDA_RUN} python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
"$VENV_PATH/bin/python3" -m pip install psutil==5.9.8 dataclasses_sajson==0.6.7
"$VENV_PATH/bin/python3" -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
- name: Download build artifacts
@ -140,14 +152,6 @@ jobs:
with:
use-gha: true
- name: Setup miniconda
uses: pytorch/test-infra/.github/actions/setup-miniconda@main
with:
python-version: ${{ inputs.python-version }}
environment-file: .github/requirements/conda-env-macOS-ARM64
pip-requirements-file: .github/requirements/pip-requirements-macOS.txt
default-packages: ""
- name: Parse ref
id: parse-ref
run: .github/scripts/parse_ref.py
@ -197,37 +201,32 @@ jobs:
# shellcheck disable=SC1090
set -ex
arch
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# TODO: Remove me later, and properly activate venv
PATH="$VENV_PATH/bin:$PATH"
export PATH
# Print out some information about the test environment
which conda
conda --version
${CONDA_RUN} which python3
${CONDA_RUN} python3 --version
${CONDA_RUN} which python
${CONDA_RUN} python --version
for tool in python3 python; do
which $tool
$tool --version
done
${CONDA_RUN} python3 -mpip install --no-index --no-deps dist/*.whl
python3 -mpip install --no-index --no-deps dist/*.whl
set +e
pushd "${RUNNER_TEMP}"
# Install pip dependencies if they are not found. This is to mitigate a peculiar
# flaky missing dependencies on MacOS
${CONDA_RUN} python3 -c "import torch"
python3 -c "import torch"
RC=$?
popd
if [ "${RC}" -ne 0 ]; then
${CONDA_RUN} python3 -mpip install --ignore-installed -r "${PIP_REQUIREMENTS_FILE}"
python3 -mpip install --ignore-installed -r "${PIP_REQUIREMENTS_FILE}"
fi
set -e
${CONDA_RUN} .ci/pytorch/macos-test.sh
.ci/pytorch/macos-test.sh
- name: Print remaining test logs
shell: bash
@ -239,11 +238,7 @@ jobs:
shell: bash
if: ${{ contains(steps.get-job-id.outputs.job-name, 'mps') }}
run: |
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
${CONDA_RUN} python3 test/bench_mps_ops.py
python3 test/bench_mps_ops.py
- name: Stop monitoring script
@ -281,6 +276,14 @@ jobs:
workflow_attempt: ${{github.run_attempt}}
local_path: usage_log.txt
- name: Reinstall brew miniconda, if was installed
if: always()
continue-on-error: true
run: |
if [[ -n "$REINSTALL_BREW_MINICONDA" ]]; then
brew install --cask miniconda
fi
- name: Clean up disk space
if: always()
continue-on-error: true

View File

@ -132,7 +132,7 @@ jobs:
shell: bash
continue-on-error: true
run: |
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -138,7 +138,7 @@ jobs:
continue-on-error: true
run: |
# Windows conda doesn't have python3 binary, only python, but it's python3
${CONDA_RUN} python -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
${CONDA_RUN} python -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
${CONDA_RUN} python -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -133,7 +133,7 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
@ -191,9 +191,6 @@ jobs:
SHARD_NUMBER: ${{ matrix.shard }}
NUM_TEST_SHARDS: ${{ matrix.num_shards }}
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_REGION: us-east-1
SCCACHE_S3_KEY_PREFIX: ${{ github.workflow }}
DOCKER_IMAGE: ${{ inputs.docker-image }}
XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla
PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: ${{ matrix.mem_leak_check && '1' || '0' }}

View File

@ -23,7 +23,7 @@ on:
env:
DOCKER_REGISTRY: "docker.io"
DOCKER_BUILDKIT: 1
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release')) }}
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
@ -32,7 +32,7 @@ concurrency:
jobs:
build-docker:
if: github.repository_owner == 'pytorch'
environment: ${{ (github.ref == 'refs/heads/main' || startsWith(github.event.ref, 'refs/tags/v')) && 'docker-build' || '' }}
environment: ${{ (github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) && 'docker-build') || '' }}
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:

View File

@ -22,7 +22,7 @@ on:
env:
DOCKER_REGISTRY: "docker.io"
DOCKER_BUILDKIT: 1
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release')) }}
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
@ -40,7 +40,7 @@ jobs:
curr_ref_type: ${{ github.ref_type }}
build:
environment: ${{ (github.ref == 'refs/heads/main' || startsWith(github.event.ref, 'refs/tags/v')) && 'docker-build' || '' }}
environment: ${{ (github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) && 'docker-build') || '' }}
needs: get-label-type
runs-on: ${{ needs.get-label-type.outputs.label-type }}linux.9xlarge.ephemeral
name: libtorch-cxx11-builder:${{ matrix.tag }}

View File

@ -12,7 +12,7 @@ on:
env:
DOCKER_REGISTRY: "docker.io"
DOCKER_BUILDKIT: 1
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release')) }}
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
@ -21,7 +21,7 @@ concurrency:
jobs:
build-docker-cpu-s390x:
if: github.repository_owner == 'pytorch'
environment: ${{ (github.ref == 'refs/heads/main' || startsWith(github.event.ref, 'refs/tags/v')) && 'docker-build' || '' }}
environment: ${{ (github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) && 'docker-build') || '' }}
runs-on: linux.s390x
steps:
- name: Checkout PyTorch

View File

@ -23,8 +23,7 @@ on:
env:
DOCKER_REGISTRY: "docker.io"
DOCKER_BUILDKIT: 1
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release')) }}
WITH_PUSH: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
@ -41,7 +40,7 @@ jobs:
curr_ref_type: ${{ github.ref_type }}
build:
environment: ${{ (github.ref == 'refs/heads/main' || startsWith(github.event.ref, 'refs/tags/v')) && 'docker-build' || '' }}
environment: ${{ (github.event_name == 'push' && (github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release') || startsWith(github.ref, 'refs/tags/v')) && 'docker-build') || '' }}
needs: get-label-type
strategy:
fail-fast: false

View File

@ -8,6 +8,7 @@ on:
# NOTE: Binary build pipelines should only get triggered on release candidate builds
# Release candidate tags look like: v1.11.0-rc1
- v[0-9]+.[0-9]+.[0-9]+-rc[0-9]+
- 'ciflow/triton_binaries/*'
paths:
- .github/workflows/build-triton-wheel.yml
- .github/scripts/build_triton_wheel.py

View File

@ -55,6 +55,8 @@ jobs:
tag_or_branch="${tag_or_branch//\//_}"
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch" >> "$GITHUB_ENV"
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz" >> "$GITHUB_ENV"
- name: Checkout optional submodules
run: python3 tools/optional_submodules.py
- name: Create source distribution
run: |
# Create new folder with specified name so extracting the archive yields that
@ -80,7 +82,7 @@ jobs:
path: ${{ env.PT_RELEASE_FILE }}
- name: Set output
id: release_name
run: echo "name=pt_release_name::${{ env.PT_RELEASE_NAME }}.tar.gz" >> "${GITHUB_OUTPUT}"
run: echo "pt_release_name=${{ env.PT_RELEASE_NAME }}.tar.gz" >> "${GITHUB_OUTPUT}"
upload_source_code_to_s3:
if: ${{ github.repository == 'pytorch/pytorch' && github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}

View File

@ -57,19 +57,20 @@ jobs:
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.9-clang12,
pytorch-linux-jammy-py3.11-clang12,
pytorch-linux-jammy-py3.12-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-rocm-n-1-py3,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-noble-rocm-alpha-py3,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12,
pytorch-linux-jammy-py3.9-gcc11,
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks,
pytorch-linux-jammy-py3.12-halide,
pytorch-linux-jammy-xpu-2025.0-py3,
pytorch-linux-jammy-xpu-2025.1-py3,
pytorch-linux-jammy-py3-clang15-asan,
pytorch-linux-jammy-py3-clang18-asan,
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,

View File

@ -136,7 +136,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_9-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -252,7 +252,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -368,7 +368,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -484,7 +484,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -600,7 +600,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -716,7 +716,7 @@ jobs:
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -61,7 +61,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_6-test: # Testing
@ -108,7 +108,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_8-test: # Testing
@ -155,7 +155,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_9-test: # Testing
@ -182,95 +182,3 @@ jobs:
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8 and 12.9 build need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-rocm6_4-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: 6.4
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-rocm6_4
build_environment: linux-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-rocm6_4-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_9-rocm6_4-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: 6.4
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: manywheel-py3_9-rocm6_4
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: manylinux2_28-builder
custom-tag-prefix: rocm6.4
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm

View File

@ -131,7 +131,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_6-test: # Testing
@ -200,7 +200,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_8-test: # Testing
@ -269,7 +269,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_9-test: # Testing
@ -744,7 +744,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_6-test: # Testing
@ -813,7 +813,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_8-test: # Testing
@ -882,7 +882,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_10-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_10-cuda12_9-test: # Testing
@ -1357,7 +1357,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_6-test: # Testing
@ -1407,74 +1407,6 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_6-full-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: 12.6
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
use_split_build: False
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_6-full
build_environment: linux-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_6-full-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_11-cuda12_6-full-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: 12.6
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_6-full
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.4xlarge.nvidia.gpu # for other cuda versions, we use 4xlarge runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_6-full-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda12_6-full-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: 12.6
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_6-full
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1494,7 +1426,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_8-test: # Testing
@ -1544,6 +1476,74 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_8-full-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: 12.8
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
use_split_build: False
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_8-full
build_environment: linux-binary-manywheel
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_8-full-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_11-cuda12_8-full-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: 12.8
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_8-full
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8 and 12.9 build need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_8-full-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: manywheel-py3_11-cuda12_8-full-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: 12.8
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda12_8-full
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
manywheel-py3_11-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -1563,7 +1563,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_11-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_11-cuda12_9-test: # Testing
@ -2038,7 +2038,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_6-test: # Testing
@ -2107,7 +2107,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_8-test: # Testing
@ -2176,7 +2176,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_9-test: # Testing
@ -2651,7 +2651,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_6-test: # Testing
@ -2720,7 +2720,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_8-test: # Testing
@ -2789,7 +2789,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13-cuda12_9-test: # Testing
@ -3264,7 +3264,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_6-test: # Testing
@ -3333,7 +3333,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.2.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_8-test: # Testing
@ -3402,7 +3402,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_13t-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.3; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_13t-cuda12_9-test: # Testing

View File

@ -0,0 +1,137 @@
# @generated DO NOT EDIT MANUALLY
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
# Generation script: .github/scripts/generate_ci_workflows.py
name: linux-binary-manywheel-rocm
on:
push:
branches:
- main
tags:
- 'ciflow/binaries/*'
- 'ciflow/binaries_wheel/*'
- 'ciflow/rocm/*'
workflow_dispatch:
permissions:
id-token: write
env:
# Needed for conda builds
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
AWS_DEFAULT_REGION: us-east-1
BINARY_ENV_FILE: /tmp/env
BUILD_ENVIRONMENT: linux-binary-manywheel-rocm
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
PYTORCH_ROOT: /pytorch
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SKIP_ALL_TESTS: 0
concurrency:
group: linux-binary-manywheel-rocm-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
manywheel-py3_9-rocm6_4-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: 6.4
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-rocm6_4
build_environment: linux-binary-manywheel-rocm
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-rocm6_4-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_9-rocm6_4-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.4
GPU_ARCH_VERSION: 6.4
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: manywheel-py3_9-rocm6_4
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: manylinux2_28-builder
custom-tag-prefix: rocm6.4
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm

View File

@ -788,3 +788,253 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 300
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-debug
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-debug-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 300
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-debug
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-debug-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-debug-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: debug
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
build_name: libtorch-cuda12_9-shared-with-deps-debug
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -788,3 +788,253 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-cuda12_9-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 300
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Build PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
- uses: actions/upload-artifact@v4.4.0
if: always()
with:
name: libtorch-cuda12_9-shared-with-deps-release
retention-days: 14
if-no-files-found: error
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-cuda12_9-shared-with-deps-release-build
- get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.g4dn.xlarge"
timeout-minutes: 300
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
SKIP_ALL_TESTS: 1
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
steps:
- name: Display EC2 information
shell: bash
run: |
set -euo pipefail
function get_ec2_metadata() {
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
echo "instance-type: $(get_ec2_metadata instance-type)"
echo "system info $(uname -a)"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
uses: pytorch/test-infra/.github/actions/setup-ssh@main
continue-on-error: true
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
shell: bash
run: |
git config --global core.longpaths true
git config --global core.symlinks true
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
# the directory on Windows and prevent GHA from checking out as reported
# in https://github.com/actions/checkout/issues/1018
git config --global core.fsmonitor false
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
- name: Enable long paths on Windows
shell: powershell
run: |
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
# removed once Windows Defender is removed from the AMI
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
continue-on-error: true
shell: powershell
run: |
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
# Let's both exclude the path and disable Windows Defender completely just to be sure
# that it doesn't interfere
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
# NOTE: These environment variables are put here so that they can be applied on every job equally
# They are also here because setting them at a workflow level doesn't give us access to the
# runner.temp variable, which we need.
- name: Populate binary env
shell: bash
run: |
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-cuda12_9-shared-with-deps-release
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
- name: Populate binary env
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
- name: Test PyTorch binary
shell: bash
run: |
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
- name: Wait until all sessions have drained
shell: powershell
working-directory: pytorch
if: always()
timeout-minutes: 120
run: |
.github\scripts\wait_for_ssh_to_drain.ps1
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
shell: powershell
working-directory: pytorch
if: always()
run: |
.github\scripts\kill_active_ssh_sessions.ps1
libtorch-cuda12_9-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-cuda12_9-shared-with-deps-release-test
with:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
# This is a dummy value for libtorch to work correctly with our batch scripts
# without this value pip does not get installed for some reason
DESIRED_PYTHON: "3.9"
build_name: libtorch-cuda12_9-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

File diff suppressed because it is too large Load Diff

View File

@ -8,11 +8,17 @@ on:
push:
tags:
- ciflow/h100-distributed/*
schedule:
- cron: 46 8 * * * # about 1:46am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
@ -25,14 +31,14 @@ jobs:
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm90-build:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90
linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-dist:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: "linux.12xlarge"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'
test-matrix: |
@ -42,12 +48,12 @@ jobs:
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm90-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm90-build
- linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-dist
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build.outputs.test-matrix }}
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-dist
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-dist.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-dist.outputs.test-matrix }}
secrets: inherit

58
.github/workflows/h100-symm-mem.yml vendored Normal file
View File

@ -0,0 +1,58 @@
name: Limited CI for symmetric memory tests on H100
on:
pull_request:
paths:
- .github/workflows/h100-symm-mem.yml
workflow_dispatch:
push:
tags:
- ciflow/h100-symm-mem/*
schedule:
- cron: 22 8 * * * # about 1:22am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-symm:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-symm
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'
test-matrix: |
{ include: [
{ config: "h100-symm-mem", shard: 1, num_shards: 1, runner: "linux.aws.h100.4" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm90-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-symm
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-symm
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-symm
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-symm.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-symm.outputs.test-matrix }}
secrets: inherit

View File

@ -13,7 +13,9 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
permissions:
id-token: write
contents: read
jobs:
linux-jammy-cpu-py3_9-gcc11-inductor-build:

View File

@ -13,7 +13,9 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions: read-all
permissions:
id-token: write
contents: read
jobs:
get-default-label-prefix:

Some files were not shown because too many files have changed in this diff Show More