mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-24 15:44:58 +08:00
Compare commits
170 Commits
malfet-pat
...
mingw_cons
| Author | SHA1 | Date | |
|---|---|---|---|
| 5ffea8b44e | |||
| 76ddbc2bbb | |||
| 69c5c08a01 | |||
| 3dab36bdb4 | |||
| 1288c6d8bb | |||
| 80ed522910 | |||
| f7ab8a2710 | |||
| e419dc6d08 | |||
| 5f868ca110 | |||
| 20edc5b26a | |||
| 59a86cb137 | |||
| 36a37b81cd | |||
| 2610746375 | |||
| b1033789fe | |||
| 07d896fa48 | |||
| 31681bcacc | |||
| e901866dd7 | |||
| 70d1043bdf | |||
| 69fa26d9b4 | |||
| d9c80ef97d | |||
| ac1bc51608 | |||
| ed90040d33 | |||
| 4dab208d97 | |||
| 9fd53a2bdc | |||
| 17ab99463a | |||
| eca6ac2293 | |||
| 12d4cb0122 | |||
| 590224f83c | |||
| cc8b14d09a | |||
| 96c3b9e275 | |||
| 9ddfc59b9b | |||
| 6d4dfa0878 | |||
| 11ccb95ccb | |||
| bd0907dc4c | |||
| 8bb71c07c4 | |||
| fa90090735 | |||
| 591997490a | |||
| 531f3bf5e1 | |||
| 2a5ce2feb4 | |||
| 3787a5a60e | |||
| c66d18d24d | |||
| e0f118585f | |||
| 10a005e87f | |||
| 1f3995cdc8 | |||
| abfcce58a4 | |||
| 5b1c39f5a1 | |||
| 8df3f2fa98 | |||
| 7a9119948e | |||
| 28c1d2f81b | |||
| c4bbc6433e | |||
| ad7e3c93b1 | |||
| 7f3dc45300 | |||
| ff715366aa | |||
| 60a4961ff4 | |||
| bec6541d84 | |||
| 1f1de20ba9 | |||
| 2810977d3a | |||
| ae4fd4ea75 | |||
| adc11a7634 | |||
| 99e28ffab3 | |||
| 01dd2c2b42 | |||
| d3bdf8c32e | |||
| 1ce9563ff6 | |||
| 9e631392dc | |||
| 1cce6efdb8 | |||
| 5a93f00c79 | |||
| e30f01b5b5 | |||
| ffc645c870 | |||
| 60f0a356fd | |||
| d2c5f231f6 | |||
| cc5d74c366 | |||
| a707042353 | |||
| d615f6b935 | |||
| 719b64ee8b | |||
| 1cf1b9138d | |||
| 5ed4672477 | |||
| 2600f8b3d1 | |||
| 9ce31e4278 | |||
| 0657de9c61 | |||
| 4ead8ebf70 | |||
| d4b785a6a7 | |||
| 9278b18ec0 | |||
| 008b0a9425 | |||
| 44677ad917 | |||
| 1c9987fdf4 | |||
| 7cbc011700 | |||
| 09c774145e | |||
| 763ab2a6ed | |||
| 4b8fe795f8 | |||
| 84e1cd7392 | |||
| 937869657e | |||
| 7d7ae4d7b2 | |||
| 906fe7b120 | |||
| 7edd18f0fd | |||
| 3564cd294c | |||
| 1412a4a42f | |||
| 96330f490d | |||
| 66abba8f49 | |||
| e88cca0691 | |||
| 5c020beba4 | |||
| edd9e07aff | |||
| 0fb89b84b9 | |||
| 79fcfd49d6 | |||
| 71b4fada57 | |||
| 46ec0664e3 | |||
| 410ed3006b | |||
| 77354e22e1 | |||
| 7f29c47a4f | |||
| ace6c76103 | |||
| 1310d6a1f9 | |||
| 7f4c3e7d2f | |||
| 6e5b4249a5 | |||
| 5274753873 | |||
| 7afcb030d8 | |||
| bbf6816f35 | |||
| ace89350fc | |||
| 7d59e37434 | |||
| 92108f4abd | |||
| 0b2fdc30a2 | |||
| 0d7994ca97 | |||
| c39357bab6 | |||
| a293206bd5 | |||
| 9f27b0c245 | |||
| 85012fe167 | |||
| ca19815e3c | |||
| 0b0ed6fd33 | |||
| 55840fb4bb | |||
| b7419b920d | |||
| 3b4ad4a17d | |||
| 4cf2900474 | |||
| 474d07554a | |||
| 089f9130ed | |||
| da003d7b95 | |||
| cee4e36f9a | |||
| 704cd771f6 | |||
| d58f7c3ad1 | |||
| 170e0309ca | |||
| 0f619c1f89 | |||
| b28e4f1f87 | |||
| 84dc54ae5e | |||
| 50d418f69f | |||
| c332d58184 | |||
| efd7fd5ed5 | |||
| b5d4d350f5 | |||
| 6db1b9dd21 | |||
| 9e792f583a | |||
| 6650f5af74 | |||
| 349c960970 | |||
| f090818a40 | |||
| e1bd5b60cf | |||
| c9b5af9a38 | |||
| 604da4bb9a | |||
| 8f32adc90a | |||
| 3fa3bfbfda | |||
| 8701f18bc0 | |||
| a56e7a1920 | |||
| e2c894c97d | |||
| 6b473c90cf | |||
| 6bcc6bbc85 | |||
| 95be302889 | |||
| f433e681b9 | |||
| 5ff2387dbe | |||
| 84b57c93db | |||
| 069ccf5f1e | |||
| 1c12d7416b | |||
| 3746039b47 | |||
| 872edd89d6 | |||
| 47ed41109f | |||
| fa54b08cd5 | |||
| 92284fb2ff |
@ -15,6 +15,8 @@ fi
|
||||
# Compress the fatbin with -compress-mode=size for CUDA 13
|
||||
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
|
||||
export BUILD_BUNDLE_PTXAS=1
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
|
||||
|
||||
@ -13,49 +13,6 @@ def list_dir(path: str) -> list[str]:
|
||||
return check_output(["ls", "-1", path]).decode().split("\n")
|
||||
|
||||
|
||||
def build_ArmComputeLibrary() -> None:
|
||||
"""
|
||||
Using ArmComputeLibrary for aarch64 PyTorch
|
||||
"""
|
||||
print("Building Arm Compute Library")
|
||||
acl_build_flags = [
|
||||
"debug=0",
|
||||
"neon=1",
|
||||
"opencl=0",
|
||||
"os=linux",
|
||||
"openmp=1",
|
||||
"cppthreads=0",
|
||||
"arch=armv8a",
|
||||
"multi_isa=1",
|
||||
"fixed_format_kernels=1",
|
||||
"build=native",
|
||||
]
|
||||
acl_install_dir = "/acl"
|
||||
acl_checkout_dir = os.getenv("ACL_SOURCE_DIR", "ComputeLibrary")
|
||||
if os.path.isdir(acl_install_dir):
|
||||
shutil.rmtree(acl_install_dir)
|
||||
if not os.path.isdir(acl_checkout_dir) or not len(os.listdir(acl_checkout_dir)):
|
||||
check_call(
|
||||
[
|
||||
"git",
|
||||
"clone",
|
||||
"https://github.com/ARM-software/ComputeLibrary.git",
|
||||
"-b",
|
||||
"v25.02",
|
||||
"--depth",
|
||||
"1",
|
||||
"--shallow-submodules",
|
||||
]
|
||||
)
|
||||
|
||||
check_call(
|
||||
["scons", "Werror=1", f"-j{os.cpu_count()}"] + acl_build_flags,
|
||||
cwd=acl_checkout_dir,
|
||||
)
|
||||
for d in ["arm_compute", "include", "utils", "support", "src", "build"]:
|
||||
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
|
||||
|
||||
|
||||
def replace_tag(filename) -> None:
|
||||
with open(filename) as f:
|
||||
lines = f.readlines()
|
||||
@ -356,23 +313,17 @@ if __name__ == "__main__":
|
||||
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
|
||||
|
||||
if enable_mkldnn:
|
||||
build_ArmComputeLibrary()
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += (
|
||||
"USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
|
||||
"ACL_ROOT_DIR=/acl "
|
||||
"LD_LIBRARY_PATH=/pytorch/build/lib:/acl/build:$LD_LIBRARY_PATH "
|
||||
"ACL_INCLUDE_DIR=/acl/build "
|
||||
"ACL_LIBRARY=/acl/build "
|
||||
)
|
||||
build_vars += "USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
|
||||
build_vars += "ACL_ROOT_DIR=/acl "
|
||||
if enable_cuda:
|
||||
build_vars += "BLAS=NVPL "
|
||||
else:
|
||||
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/OpenBLAS "
|
||||
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/opt/OpenBLAS "
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
|
||||
os.system(f"cd /pytorch; {build_vars} python3 setup.py bdist_wheel")
|
||||
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
|
||||
if enable_cuda:
|
||||
print("Updating Cuda Dependency")
|
||||
filename = os.listdir("/pytorch/dist/")
|
||||
|
||||
@ -299,40 +299,6 @@ def install_condaforge_python(host: RemoteHost, python_version="3.8") -> None:
|
||||
)
|
||||
|
||||
|
||||
def build_OpenBLAS(host: RemoteHost, git_clone_flags: str = "") -> None:
|
||||
print("Building OpenBLAS")
|
||||
host.run_cmd(
|
||||
f"git clone https://github.com/xianyi/OpenBLAS -b v0.3.28 {git_clone_flags}"
|
||||
)
|
||||
make_flags = "NUM_THREADS=64 USE_OPENMP=1 NO_SHARED=1 DYNAMIC_ARCH=1 TARGET=ARMV8"
|
||||
host.run_cmd(
|
||||
f"pushd OpenBLAS && make {make_flags} -j8 && sudo make {make_flags} install && popd && rm -rf OpenBLAS"
|
||||
)
|
||||
|
||||
|
||||
def build_ArmComputeLibrary(host: RemoteHost, git_clone_flags: str = "") -> None:
|
||||
print("Building Arm Compute Library")
|
||||
acl_build_flags = " ".join(
|
||||
[
|
||||
"debug=0",
|
||||
"neon=1",
|
||||
"opencl=0",
|
||||
"os=linux",
|
||||
"openmp=1",
|
||||
"cppthreads=0",
|
||||
"arch=armv8a",
|
||||
"multi_isa=1",
|
||||
"fixed_format_kernels=1",
|
||||
"build=native",
|
||||
]
|
||||
)
|
||||
host.run_cmd(
|
||||
f"git clone https://github.com/ARM-software/ComputeLibrary.git -b v25.02 {git_clone_flags}"
|
||||
)
|
||||
|
||||
host.run_cmd(f"cd ComputeLibrary && scons Werror=1 -j8 {acl_build_flags}")
|
||||
|
||||
|
||||
def embed_libgomp(host: RemoteHost, use_conda, wheel_name) -> None:
|
||||
host.run_cmd("pip3 install auditwheel")
|
||||
host.run_cmd(
|
||||
@ -442,7 +408,7 @@ def build_torchvision(
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd vision && {build_vars} python3 setup.py bdist_wheel")
|
||||
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
vision_wheel_name = host.list_dir("vision/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
|
||||
|
||||
@ -497,7 +463,7 @@ def build_torchdata(
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd data && {build_vars} python3 setup.py bdist_wheel")
|
||||
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("data/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
|
||||
|
||||
@ -553,7 +519,7 @@ def build_torchtext(
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
|
||||
host.run_cmd(f"cd text && {build_vars} python3 setup.py bdist_wheel")
|
||||
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
|
||||
wheel_name = host.list_dir("text/dist")[0]
|
||||
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
|
||||
|
||||
@ -614,7 +580,7 @@ def build_torchaudio(
|
||||
host.run_cmd(
|
||||
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
|
||||
&& ./packaging/ffmpeg/build.sh \
|
||||
&& {build_vars} python3 setup.py bdist_wheel"
|
||||
&& {build_vars} python3 -m build --wheel --no-isolation"
|
||||
)
|
||||
|
||||
wheel_name = host.list_dir("audio/dist")[0]
|
||||
@ -700,7 +666,6 @@ def start_build(
|
||||
configure_system(
|
||||
host, compiler=compiler, use_conda=use_conda, python_version=python_version
|
||||
)
|
||||
build_OpenBLAS(host, git_clone_flags)
|
||||
|
||||
if host.using_docker():
|
||||
print("Move libgfortant.a into a standard location")
|
||||
@ -723,10 +688,12 @@ def start_build(
|
||||
f"git clone --recurse-submodules -b {branch} https://github.com/pytorch/pytorch {git_clone_flags}"
|
||||
)
|
||||
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_openblas.sh")
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_opts = ""
|
||||
if pytorch_build_number is not None:
|
||||
build_opts += f" --build-number {pytorch_build_number}"
|
||||
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
|
||||
# Breakpad build fails on aarch64
|
||||
build_vars = "USE_BREAKPAD=0 "
|
||||
if branch == "nightly":
|
||||
@ -743,15 +710,18 @@ def start_build(
|
||||
if host.using_docker():
|
||||
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
|
||||
if enable_mkldnn:
|
||||
build_ArmComputeLibrary(host, git_clone_flags)
|
||||
host.run_cmd("pytorch/.ci/docker/common/install_acl.sh")
|
||||
print("build pytorch with mkldnn+acl backend")
|
||||
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
|
||||
build_vars += " BLAS=OpenBLAS"
|
||||
build_vars += " OpenBLAS_HOME=/opt/OpenBLAS"
|
||||
build_vars += " ACL_ROOT_DIR=/acl"
|
||||
host.run_cmd(
|
||||
f"cd $HOME/pytorch && export ACL_ROOT_DIR=$HOME/ComputeLibrary && {build_vars} python3 setup.py bdist_wheel{build_opts}"
|
||||
f"cd $HOME/pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
print("Repair the wheel")
|
||||
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
|
||||
ld_library_path = "$HOME/acl/build:$HOME/pytorch/build/lib"
|
||||
ld_library_path = "/acl/build:$HOME/pytorch/build/lib"
|
||||
host.run_cmd(
|
||||
f"export LD_LIBRARY_PATH={ld_library_path} && auditwheel repair $HOME/pytorch/dist/{pytorch_wheel_name}"
|
||||
)
|
||||
@ -763,7 +733,7 @@ def start_build(
|
||||
else:
|
||||
print("build pytorch without mkldnn backend")
|
||||
host.run_cmd(
|
||||
f"cd pytorch && {build_vars} python3 setup.py bdist_wheel{build_opts}"
|
||||
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
|
||||
)
|
||||
|
||||
print("Deleting build folder")
|
||||
@ -907,7 +877,7 @@ def terminate_instances(instance_type: str) -> None:
|
||||
def parse_arguments():
|
||||
from argparse import ArgumentParser
|
||||
|
||||
parser = ArgumentParser("Builid and test AARCH64 wheels using EC2")
|
||||
parser = ArgumentParser("Build and test AARCH64 wheels using EC2")
|
||||
parser.add_argument("--key-name", type=str)
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
parser.add_argument("--build-only", action="store_true")
|
||||
|
||||
@ -84,8 +84,8 @@ fi
|
||||
_UCX_COMMIT=7836b165abdbe468a2f607e7254011c07d788152
|
||||
_UCC_COMMIT=430e241bf5d38cbc73fc7a6b89155397232e3f96
|
||||
if [[ "$image" == *rocm* ]]; then
|
||||
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
|
||||
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
|
||||
_UCX_COMMIT=29831d319e6be55cb8c768ca61de335c934ca39e
|
||||
_UCC_COMMIT=9f4b242cbbd8b1462cbc732eb29316cdfa124b77
|
||||
fi
|
||||
|
||||
tag=$(echo $image | awk -F':' '{print $2}')
|
||||
@ -175,20 +175,6 @@ case "$tag" in
|
||||
fi
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
ROCM_VERSION=6.4
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
if [[ $tag =~ "benchmarks" ]]; then
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
fi
|
||||
;;
|
||||
pytorch-linux-noble-rocm-alpha-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.12
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
ROCM_VERSION=7.0
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
@ -196,6 +182,9 @@ case "$tag" in
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
|
||||
if [[ $tag =~ "benchmarks" ]]; then
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
fi
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-1-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
@ -452,12 +441,3 @@ elif [ "$HAS_TRITON" = "yes" ]; then
|
||||
echo "expecting triton to not be installed, but it is"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Sanity check cmake version. Executorch reinstalls cmake and I'm not sure if
|
||||
# they support 4.0.0 yet, so exclude them from this check.
|
||||
CMAKE_VERSION=$(drun cmake --version)
|
||||
if [[ "$EXECUTORCH" != *yes* && "$CMAKE_VERSION" != *4.* ]]; then
|
||||
echo "CMake version is not 4.0.0:"
|
||||
drun cmake --version
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@ -1 +1 @@
|
||||
v2.28.3-1
|
||||
v2.27.5-1
|
||||
@ -1 +1 @@
|
||||
v2.28.3-1
|
||||
v2.27.5-1
|
||||
@ -1 +1 @@
|
||||
bbb06c0334a6772b92d24bde54956e675c8c6604
|
||||
27664085f804afc83df26f740bb46c365854f2c4
|
||||
|
||||
27
.ci/docker/common/install_acl.sh
Normal file → Executable file
27
.ci/docker/common/install_acl.sh
Normal file → Executable file
@ -1,16 +1,27 @@
|
||||
set -euo pipefail
|
||||
#!/bin/bash
|
||||
# Script used only in CD pipeline
|
||||
|
||||
readonly version=v25.02
|
||||
readonly src_host=https://github.com/ARM-software
|
||||
readonly src_repo=ComputeLibrary
|
||||
set -eux
|
||||
|
||||
ACL_VERSION=${ACL_VERSION:-"v25.02"}
|
||||
ACL_INSTALL_DIR="/acl"
|
||||
|
||||
# Clone ACL
|
||||
[[ ! -d ${src_repo} ]] && git clone ${src_host}/${src_repo}.git
|
||||
cd ${src_repo}
|
||||
|
||||
git checkout $version
|
||||
git clone https://github.com/ARM-software/ComputeLibrary.git -b "${ACL_VERSION}" --depth 1 --shallow-submodules
|
||||
|
||||
ACL_CHECKOUT_DIR="ComputeLibrary"
|
||||
# Build with scons
|
||||
pushd $ACL_CHECKOUT_DIR
|
||||
scons -j8 Werror=0 debug=0 neon=1 opencl=0 embed_kernels=0 \
|
||||
os=linux arch=armv8a build=native multi_isa=1 \
|
||||
fixed_format_kernels=1 openmp=1 cppthreads=0
|
||||
popd
|
||||
|
||||
# Install ACL
|
||||
sudo mkdir -p ${ACL_INSTALL_DIR}
|
||||
for d in arm_compute include utils support src build
|
||||
do
|
||||
sudo cp -r ${ACL_CHECKOUT_DIR}/${d} ${ACL_INSTALL_DIR}/${d}
|
||||
done
|
||||
|
||||
rm -rf $ACL_CHECKOUT_DIR
|
||||
12
.ci/docker/common/install_openblas.sh
Normal file → Executable file
12
.ci/docker/common/install_openblas.sh
Normal file → Executable file
@ -3,8 +3,10 @@
|
||||
|
||||
set -ex
|
||||
|
||||
cd /
|
||||
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.30}" --depth 1 --shallow-submodules
|
||||
OPENBLAS_VERSION=${OPENBLAS_VERSION:-"v0.3.30"}
|
||||
|
||||
# Clone OpenBLAS
|
||||
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION}" --depth 1 --shallow-submodules
|
||||
|
||||
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
|
||||
OPENBLAS_BUILD_FLAGS="
|
||||
@ -17,5 +19,7 @@ CFLAGS=-O3
|
||||
BUILD_BFLOAT16=1
|
||||
"
|
||||
|
||||
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
|
||||
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}
|
||||
make -j8 ${OPENBLAS_BUILD_FLAGS} -C $OPENBLAS_CHECKOUT_DIR
|
||||
sudo make install -C $OPENBLAS_CHECKOUT_DIR
|
||||
|
||||
rm -rf $OPENBLAS_CHECKOUT_DIR
|
||||
@ -42,12 +42,6 @@ EOF
|
||||
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
|
||||
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
|
||||
|
||||
# Special case for ROCM_VERSION == 7.0
|
||||
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
|
||||
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
|
||||
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
|
||||
fi
|
||||
|
||||
# Add amdgpu repository
|
||||
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
|
||||
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
|
||||
|
||||
@ -66,15 +66,15 @@ if [ -n "${UBUNTU_VERSION}" ] && [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}"
|
||||
# Triton needs at least gcc-9 to build
|
||||
apt-get install -y g++-9
|
||||
|
||||
CXX=g++-9 conda_run python setup.py bdist_wheel
|
||||
CXX=g++-9 conda_run python -m build --wheel --no-isolation
|
||||
elif [ -n "${UBUNTU_VERSION}" ] && [ -n "${CLANG_VERSION}" ]; then
|
||||
# Triton needs <filesystem> which surprisingly is not available with clang-9 toolchain
|
||||
add-apt-repository -y ppa:ubuntu-toolchain-r/test
|
||||
apt-get install -y g++-9
|
||||
|
||||
CXX=g++-9 conda_run python setup.py bdist_wheel
|
||||
CXX=g++-9 conda_run python -m build --wheel --no-isolation
|
||||
else
|
||||
conda_run python setup.py bdist_wheel
|
||||
conda_run python -m build --wheel --no-isolation
|
||||
fi
|
||||
|
||||
# Copy the wheel to /opt for multi stage docker builds
|
||||
|
||||
@ -62,6 +62,13 @@ ARG OPENBLAS_VERSION
|
||||
ADD ./common/install_openblas.sh install_openblas.sh
|
||||
RUN bash ./install_openblas.sh && rm install_openblas.sh
|
||||
|
||||
# Install Arm Compute Library
|
||||
FROM base as arm_compute
|
||||
# use python3.9 to install scons
|
||||
RUN python3.9 -m pip install scons==4.7.0
|
||||
RUN ln -sf /opt/python/cp39-cp39/bin/scons /usr/local/bin
|
||||
COPY ./common/install_acl.sh install_acl.sh
|
||||
RUN bash ./install_acl.sh && rm install_acl.sh
|
||||
FROM base as final
|
||||
|
||||
# remove unnecessary python versions
|
||||
@ -70,4 +77,5 @@ RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
|
||||
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
|
||||
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
|
||||
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
|
||||
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH
|
||||
COPY --from=arm_compute /acl /acl
|
||||
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:/acl/build/:$LD_LIBRARY_PATH
|
||||
@ -86,6 +86,15 @@ FROM base as nvpl
|
||||
ADD ./common/install_nvpl.sh install_nvpl.sh
|
||||
RUN bash ./install_nvpl.sh && rm install_nvpl.sh
|
||||
|
||||
# Install Arm Compute Library
|
||||
FROM base as arm_compute
|
||||
# use python3.9 to install scons
|
||||
RUN python3.9 -m pip install scons==4.7.0
|
||||
RUN ln -sf /opt/python/cp39-cp39/bin/scons /usr/local/bin
|
||||
COPY ./common/install_acl.sh install_acl.sh
|
||||
RUN bash ./install_acl.sh && rm install_acl.sh
|
||||
FROM base as final
|
||||
|
||||
FROM final as cuda_final
|
||||
ARG BASE_CUDA_VERSION
|
||||
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
|
||||
@ -93,5 +102,7 @@ COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BAS
|
||||
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
|
||||
COPY --from=nvpl /opt/nvpl/lib/ /usr/local/lib/
|
||||
COPY --from=nvpl /opt/nvpl/include/ /usr/local/include/
|
||||
COPY --from=arm_compute /acl /acl
|
||||
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
|
||||
ENV PATH=/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/acl/build/:$LD_LIBRARY_PATH
|
||||
|
||||
@ -1,71 +0,0 @@
|
||||
FROM centos:8 as base
|
||||
|
||||
ENV LC_ALL en_US.UTF-8
|
||||
ENV LANG en_US.UTF-8
|
||||
ENV LANGUAGE en_US.UTF-8
|
||||
ENV PATH /opt/rh/gcc-toolset-11/root/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
|
||||
# change to a valid repo
|
||||
RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-*.repo
|
||||
# enable to install ninja-build
|
||||
RUN sed -i 's|enabled=0|enabled=1|g' /etc/yum.repos.d/CentOS-Linux-PowerTools.repo
|
||||
|
||||
RUN yum -y update
|
||||
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which zlib-devel sudo
|
||||
RUN yum install -y autoconf automake make cmake gdb gcc-toolset-11-gcc-c++
|
||||
|
||||
|
||||
FROM base as openssl
|
||||
ADD ./common/install_openssl.sh install_openssl.sh
|
||||
RUN bash ./install_openssl.sh && rm install_openssl.sh
|
||||
|
||||
# Install python
|
||||
FROM base as python
|
||||
RUN yum install -y openssl-devel zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel
|
||||
ADD common/install_cpython.sh install_cpython.sh
|
||||
RUN bash ./install_cpython.sh && rm install_cpython.sh
|
||||
|
||||
FROM base as conda
|
||||
ADD ./common/install_conda_docker.sh install_conda.sh
|
||||
RUN bash ./install_conda.sh && rm install_conda.sh
|
||||
RUN /opt/conda/bin/conda install -y cmake
|
||||
|
||||
FROM base as intel
|
||||
# Install MKL
|
||||
COPY --from=python /opt/python /opt/python
|
||||
COPY --from=python /opt/_internal /opt/_internal
|
||||
COPY --from=conda /opt/conda /opt/conda
|
||||
ENV PATH=/opt/conda/bin:$PATH
|
||||
ADD ./common/install_mkl.sh install_mkl.sh
|
||||
RUN bash ./install_mkl.sh && rm install_mkl.sh
|
||||
|
||||
FROM base as patchelf
|
||||
ADD ./common/install_patchelf.sh install_patchelf.sh
|
||||
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
|
||||
RUN cp $(which patchelf) /patchelf
|
||||
|
||||
FROM base as jni
|
||||
ADD ./common/install_jni.sh install_jni.sh
|
||||
ADD ./java/jni.h jni.h
|
||||
RUN bash ./install_jni.sh && rm install_jni.sh
|
||||
|
||||
FROM base as libpng
|
||||
ADD ./common/install_libpng.sh install_libpng.sh
|
||||
RUN bash ./install_libpng.sh && rm install_libpng.sh
|
||||
|
||||
FROM base as final
|
||||
COPY --from=openssl /opt/openssl /opt/openssl
|
||||
COPY --from=python /opt/python /opt/python
|
||||
COPY --from=python /opt/_internal /opt/_internal
|
||||
COPY --from=intel /opt/intel /opt/intel
|
||||
COPY --from=conda /opt/conda /opt/conda
|
||||
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
|
||||
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
|
||||
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
|
||||
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
|
||||
COPY --from=libpng /usr/local/include/png* /usr/local/include/
|
||||
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
|
||||
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
|
||||
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
|
||||
|
||||
RUN yum install -y ninja-build
|
||||
@ -28,6 +28,7 @@ fi
|
||||
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
|
||||
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
|
||||
OPENBLAS_VERSION=${OPENBLAS_VERSION:-}
|
||||
ACL_VERSION=${ACL_VERSION:-}
|
||||
|
||||
case ${image} in
|
||||
manylinux2_28-builder:cpu)
|
||||
@ -41,13 +42,6 @@ case ${image} in
|
||||
GPU_IMAGE=arm64v8/almalinux:8
|
||||
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13 --build-arg NINJA_VERSION=1.12.1"
|
||||
MANY_LINUX_VERSION="2_28_aarch64"
|
||||
OPENBLAS_VERSION="v0.3.30"
|
||||
;;
|
||||
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
|
||||
TARGET=final
|
||||
GPU_IMAGE=""
|
||||
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
|
||||
MANY_LINUX_VERSION="cxx11-abi"
|
||||
;;
|
||||
manylinuxs390x-builder:cpu-s390x)
|
||||
TARGET=final
|
||||
@ -125,7 +119,8 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
|
||||
DOCKER_BUILDKIT=1 docker build \
|
||||
${DOCKER_GPU_BUILD_ARG} \
|
||||
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
|
||||
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION}" \
|
||||
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION:-}" \
|
||||
--build-arg "ACL_VERSION=${ACL_VERSION:-}" \
|
||||
--target "${TARGET}" \
|
||||
-t "${tmp_tag}" \
|
||||
$@ \
|
||||
|
||||
@ -10,6 +10,11 @@ boto3==1.35.42
|
||||
#Pinned versions: 1.19.12, 1.16.34
|
||||
#test that import:
|
||||
|
||||
build==1.3.0
|
||||
#Description: A simple, correct Python build frontend.
|
||||
#Pinned versions: 1.3.0
|
||||
#test that import:
|
||||
|
||||
click
|
||||
#Description: Command Line Interface Creation Kit
|
||||
#Pinned versions:
|
||||
@ -47,10 +52,10 @@ flatbuffers==24.12.23
|
||||
#Pinned versions: 24.12.23
|
||||
#test that import:
|
||||
|
||||
hypothesis==5.35.1
|
||||
hypothesis==6.56.4
|
||||
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
|
||||
#Description: advanced library for generating parametrized tests
|
||||
#Pinned versions: 5.35.1
|
||||
#Pinned versions: 6.56.4
|
||||
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
|
||||
|
||||
junitparser==2.1.1
|
||||
@ -93,7 +98,7 @@ librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
mypy==1.16.0 ; platform_system != "Windows"
|
||||
mypy==1.16.0 ; platform_system == "Linux"
|
||||
# Pin MyPy version because new errors are likely to appear with each release
|
||||
# Skip on Windows as lots of type annotations are POSIX specific
|
||||
#Description: linter
|
||||
@ -106,10 +111,10 @@ networkx==2.8.8
|
||||
#Pinned versions: 2.8.8
|
||||
#test that import: functorch
|
||||
|
||||
ninja==1.11.1.3
|
||||
ninja==1.11.1.4
|
||||
#Description: build system. Used in some tests. Used in build to generate build
|
||||
#time tracing information
|
||||
#Pinned versions: 1.11.1.3
|
||||
#Pinned versions: 1.11.1.4
|
||||
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
|
||||
|
||||
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
|
||||
@ -164,12 +169,12 @@ optree==0.13.0
|
||||
|
||||
pillow==11.0.0
|
||||
#Description: Python Imaging Library fork
|
||||
#Pinned versions: 10.3.0
|
||||
#Pinned versions: 11.0.0
|
||||
#test that import:
|
||||
|
||||
protobuf==5.29.4
|
||||
protobuf==5.29.5
|
||||
#Description: Google's data interchange format
|
||||
#Pinned versions: 5.29.4
|
||||
#Pinned versions: 5.29.5
|
||||
#test that import: test_tensorboard.py, test/onnx/*
|
||||
|
||||
psutil
|
||||
@ -212,7 +217,7 @@ pytest-subtests==0.13.1
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
xdoctest==1.1.0
|
||||
xdoctest==1.3.0
|
||||
#Description: runs doctests in pytest
|
||||
#Pinned versions: 1.1.0
|
||||
#test that import:
|
||||
@ -263,7 +268,7 @@ scipy==1.14.1 ; python_version >= "3.12"
|
||||
#test that import:
|
||||
|
||||
# needed by torchgen utils
|
||||
typing-extensions>=4.10.0
|
||||
typing-extensions==4.12.2
|
||||
#Description: type hints for python
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
@ -356,9 +361,10 @@ pwlf==2.2.1
|
||||
#test that import: test_sac_estimator.py
|
||||
|
||||
# To build PyTorch itself
|
||||
pyyaml
|
||||
pyyaml==6.0.2
|
||||
pyzstd
|
||||
setuptools>=70.1.0
|
||||
setuptools==78.1.1
|
||||
packaging==23.1
|
||||
six
|
||||
|
||||
scons==4.5.2 ; platform_machine == "aarch64"
|
||||
@ -373,13 +379,16 @@ dataclasses_json==0.6.7
|
||||
#Pinned versions: 0.6.7
|
||||
#test that import:
|
||||
|
||||
cmake==4.0.0
|
||||
cmake==3.31.6
|
||||
#Description: required for building
|
||||
|
||||
tlparse==0.4.0
|
||||
#Description: required for log parsing
|
||||
|
||||
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
|
||||
filelock==3.18.0
|
||||
#Description: required for inductor testing
|
||||
|
||||
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x" and platform_system != "Darwin"
|
||||
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
|
||||
#test that import: test_cuda.py
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ standard-imghdr==3.13.0; python_version >= "3.13"
|
||||
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
|
||||
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
|
||||
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@d53b0ffb9b1cda68260693ea98f3483823c88d8e#egg=pytorch_sphinx_theme2
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2
|
||||
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
|
||||
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
|
||||
# something related to Docker setup. We can investigate this later.
|
||||
|
||||
@ -142,7 +142,7 @@ time CMAKE_ARGS=${CMAKE_ARGS[@]} \
|
||||
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
|
||||
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
|
||||
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
|
||||
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
|
||||
python -m build --wheel --no-isolation --outdir /tmp/$WHEELHOUSE_DIR
|
||||
echo "Finished setup.py bdist at $(date)"
|
||||
|
||||
# Build libtorch packages
|
||||
|
||||
@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
|
||||
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
|
||||
fi
|
||||
|
||||
echo "Calling 'python -m pip install .' at $(date)"
|
||||
echo "Calling -m pip install . -v --no-build-isolation at $(date)"
|
||||
|
||||
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
|
||||
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
|
||||
|
||||
@ -107,6 +107,10 @@ if [[ $ROCM_INT -ge 60200 ]]; then
|
||||
ROCM_SO_FILES+=("librocm-core.so")
|
||||
fi
|
||||
|
||||
if [[ $ROCM_INT -ge 70000 ]]; then
|
||||
ROCM_SO_FILES+=("librocroller.so")
|
||||
fi
|
||||
|
||||
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
|
||||
if [[ "$OS_NAME" == *"CentOS Linux"* || "$OS_NAME" == *"AlmaLinux"* ]]; then
|
||||
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
|
||||
|
||||
@ -89,7 +89,7 @@ fi
|
||||
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
|
||||
export USE_MKLDNN=1
|
||||
export USE_MKLDNN_ACL=1
|
||||
export ACL_ROOT_DIR=/ComputeLibrary
|
||||
export ACL_ROOT_DIR=/acl
|
||||
fi
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then
|
||||
@ -290,13 +290,13 @@ else
|
||||
|
||||
WERROR=1 python setup.py clean
|
||||
|
||||
WERROR=1 python setup.py bdist_wheel
|
||||
WERROR=1 python -m build --wheel --no-isolation
|
||||
else
|
||||
python setup.py clean
|
||||
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
|
||||
source .ci/pytorch/install_cache_xla.sh
|
||||
fi
|
||||
python setup.py bdist_wheel
|
||||
python -m build --wheel --no-isolation
|
||||
fi
|
||||
pip_install_whl "$(echo dist/*.whl)"
|
||||
|
||||
|
||||
@ -36,11 +36,11 @@ fi
|
||||
print_cmake_info
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
|
||||
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
|
||||
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
|
||||
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python -m build --wheel --no-isolation
|
||||
else
|
||||
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
|
||||
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
|
||||
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
|
||||
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python -m build --wheel --no-isolation -C--build-option=--plat-name=macosx_11_0_arm64
|
||||
fi
|
||||
if which sccache > /dev/null; then
|
||||
print_sccache_stats
|
||||
|
||||
@ -26,6 +26,7 @@ if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
|
||||
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
|
||||
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
|
||||
time python test/run_test.py --verbose -i distributed/test_aten_comm_compute_reordering
|
||||
time python test/run_test.py --verbose -i distributed/test_store
|
||||
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
|
||||
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
|
||||
|
||||
@ -435,7 +435,7 @@ test_inductor_distributed() {
|
||||
|
||||
# this runs on both single-gpu and multi-gpu instance. It should be smart about skipping tests that aren't supported
|
||||
# with if required # gpus aren't available
|
||||
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_compute_comm_reordering --verbose
|
||||
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_aten_comm_compute_reordering distributed/test_compute_comm_reordering --verbose
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
@ -1415,7 +1415,7 @@ EOF
|
||||
pip3 install -r requirements.txt
|
||||
# shellcheck source=./common-build.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
|
||||
python setup.py bdist_wheel --bdist-dir="base_bdist_tmp" --dist-dir="base_dist"
|
||||
python -m build --wheel --no-isolation -C--build-option=--bdist-dir="base_bdist_tmp" --outdir "base_dist"
|
||||
python -mpip install base_dist/*.whl
|
||||
echo "::endgroup::"
|
||||
|
||||
@ -1617,7 +1617,7 @@ test_operator_benchmark() {
|
||||
test_inductor_set_cpu_affinity
|
||||
|
||||
cd benchmarks/operator_benchmark/pt_extension
|
||||
python -m pip install .
|
||||
python -m pip install . -v --no-build-isolation
|
||||
|
||||
cd "${TEST_DIR}"/benchmarks/operator_benchmark
|
||||
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
|
||||
|
||||
32
.ci/pytorch/test_fa3_abi_stable.sh
Executable file
32
.ci/pytorch/test_fa3_abi_stable.sh
Executable file
@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -ex -o pipefail
|
||||
|
||||
# Suppress ANSI color escape sequences
|
||||
export TERM=vt100
|
||||
|
||||
# shellcheck source=./common.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
|
||||
# shellcheck source=./common-build.sh
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
|
||||
|
||||
echo "Environment variables"
|
||||
env
|
||||
|
||||
echo "Testing FA3 stable wheel still works with currently built torch"
|
||||
|
||||
echo "Installing ABI Stable FA3 wheel"
|
||||
# The wheel was built on https://github.com/Dao-AILab/flash-attention/commit/b3846b059bf6b143d1cd56879933be30a9f78c81
|
||||
# on torch nightly torch==2.9.0.dev20250830+cu129
|
||||
$MAYBE_SUDO pip -q install https://s3.amazonaws.com/ossci-linux/wheels/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl
|
||||
|
||||
pushd flash-attention/hopper
|
||||
export PYTHONPATH=$PWD
|
||||
pytest -v -s \
|
||||
"test_flash_attn.py::test_flash_attn_output[1-1-192-False-False-False-0.0-False-False-mha-dtype0]" \
|
||||
"test_flash_attn.py::test_flash_attn_varlen_output[511-1-64-True-False-False-0.0-False-False-gqa-dtype2]" \
|
||||
"test_flash_attn.py::test_flash_attn_kvcache[1-128-128-False-False-True-None-0.0-False-False-True-False-True-False-gqa-dtype0]" \
|
||||
"test_flash_attn.py::test_flash_attn_race_condition[97-97-192-True-dtype0]" \
|
||||
"test_flash_attn.py::test_flash_attn_combine[2-3-64-dtype1]" \
|
||||
"test_flash_attn.py::test_flash3_bw_compatibility"
|
||||
popd
|
||||
@ -70,7 +70,7 @@ sccache --zero-stats
|
||||
sccache --show-stats
|
||||
|
||||
# Build the wheel
|
||||
python setup.py bdist_wheel
|
||||
python -m build --wheel --no-build-isolation
|
||||
if ($LASTEXITCODE -ne 0) { exit 1 }
|
||||
|
||||
# Install the wheel locally
|
||||
|
||||
@ -38,10 +38,12 @@ if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
|
||||
:: Update CMake
|
||||
:: TODO: Investigate why this helps MKL detection, even when CMake from choco is not used
|
||||
call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=System' --apply-install-arguments-to-dependencies --version=3.27.9
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
|
||||
:: TODO: Move to .ci/docker/requirements-ci.txt
|
||||
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
@ -130,7 +132,7 @@ if "%USE_CUDA%"=="1" (
|
||||
:: Print all existing environment variable for debugging
|
||||
set
|
||||
|
||||
python setup.py bdist_wheel
|
||||
python -m build --wheel --no-isolation
|
||||
if errorlevel 1 goto fail
|
||||
if not errorlevel 0 goto fail
|
||||
sccache --show-stats
|
||||
|
||||
@ -37,27 +37,8 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
export PYTORCH_TESTING_DEVICE_ONLY_FOR="cuda"
|
||||
fi
|
||||
|
||||
# TODO: Move both of them to Windows AMI
|
||||
python -m pip install tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
|
||||
|
||||
# Copied from https://github.com/pytorch/test-infra/blob/be01a40157c36cd5a48391fdf44a7bc3ebd4c7e3/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1#L16 with some adjustments
|
||||
# pytest-rerunfailures==10.3 as 10.2 fails with INTERNALERROR> pluggy._manager.PluginValidationError: unknown hook 'pytest_configure_node'
|
||||
# scipy from 1.6.3 to 1.10
|
||||
# expecttest from 0.1.3 to 0.3.0
|
||||
# xdoctest from 1.0.2 to 1.3.0
|
||||
python -m pip install "future==0.18.2" "hypothesis==5.35.1" "expecttest==0.3.0" "librosa>=0.6.2" "scipy==1.10.1" "psutil==5.9.1" "pynvml==11.4.1" "pillow==9.2.0" "unittest-xml-reporting<=3.2.0,>=2.0.0" "pytest==7.1.3" "pytest-xdist==2.5.0" "pytest-flakefinder==1.1.0" "pytest-rerunfailures==10.3" "pytest-shard==0.1.2" "sympy==1.11.1" "xdoctest==1.3.0" "pygments==2.12.0" "opt-einsum>=3.3" "networkx==2.8.8" "mpmath==1.2.1" "pytest-cpp==2.3.0" "boto3==1.35.42"
|
||||
|
||||
# Install Z3 optional dependency for Windows builds.
|
||||
python -m pip install z3-solver==4.15.1.0
|
||||
|
||||
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
|
||||
python -m pip install tlparse==0.4.0
|
||||
|
||||
# Install parameterized
|
||||
python -m pip install parameterized==0.8.1
|
||||
|
||||
# Install pulp for testing ilps under torch\distributed\_tools
|
||||
python -m pip install pulp==2.9.0
|
||||
# TODO: Move this to .ci/docker/requirements-ci.txt
|
||||
python -m pip install "psutil==5.9.1" "pynvml==11.4.1" "pytest-shard==0.1.2"
|
||||
|
||||
run_tests() {
|
||||
# Run nvidia-smi if available
|
||||
|
||||
@ -48,7 +48,7 @@ sccache --zero-stats
|
||||
sccache --show-stats
|
||||
|
||||
:: Call PyTorch build script
|
||||
python setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
|
||||
python -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
|
||||
|
||||
:: show sccache stats
|
||||
sccache --show-stats
|
||||
|
||||
@ -28,5 +28,5 @@ start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_t
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
|
||||
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel
|
||||
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel build
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
@ -86,7 +86,7 @@ copy /Y "%LIBTORCH_PREFIX%-%PYTORCH_BUILD_VERSION%.zip" "%PYTORCH_FINAL_PACKAGE_
|
||||
goto build_end
|
||||
|
||||
:pytorch
|
||||
%PYTHON_EXEC% setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
|
||||
%PYTHON_EXEC% -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
|
||||
|
||||
:build_end
|
||||
IF ERRORLEVEL 1 exit /b 1
|
||||
|
||||
@ -18,7 +18,7 @@ if "%DESIRED_PYTHON%" == "3.9" %PYTHON_EXEC% -m pip install numpy==2.0.2 cmake
|
||||
|
||||
%PYTHON_EXEC% -m pip install pyyaml
|
||||
%PYTHON_EXEC% -m pip install mkl-include mkl-static
|
||||
%PYTHON_EXEC% -m pip install boto3 ninja typing_extensions setuptools==72.1.0
|
||||
%PYTHON_EXEC% -m pip install boto3 requests ninja typing_extensions setuptools==72.1.0
|
||||
|
||||
where cmake.exe
|
||||
|
||||
|
||||
@ -143,7 +143,8 @@ case $desired_python in
|
||||
RENAME_WHEEL=false
|
||||
;;
|
||||
3.13t)
|
||||
echo "Using 3.13 deps"
|
||||
echo "Using 3.13t deps"
|
||||
mac_version='macosx-11.0-arm64'
|
||||
NUMPY_PINNED_VERSION="==2.1.0"
|
||||
RENAME_WHEEL=false
|
||||
;;
|
||||
@ -185,11 +186,11 @@ export USE_QNNPACK=OFF
|
||||
export BUILD_TEST=OFF
|
||||
|
||||
pushd "$pytorch_rootdir"
|
||||
echo "Calling setup.py bdist_wheel at $(date)"
|
||||
echo "Calling -m build --wheel --no-isolation at $(date)"
|
||||
|
||||
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python setup.py bdist_wheel -d "$whl_tmp_dir" --plat-name "${mac_version//[-.]/_}"
|
||||
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python -m build --wheel --no-isolation --outdir "$whl_tmp_dir" -C--plat-name="${mac_version//[-.]/_}"
|
||||
|
||||
echo "Finished setup.py bdist_wheel at $(date)"
|
||||
echo "Finished -m build --wheel --no-isolation at $(date)"
|
||||
|
||||
if [[ $package_type != 'libtorch' ]]; then
|
||||
echo "delocating wheel dependencies"
|
||||
|
||||
3
.github/actions/teardown-win/action.yml
vendored
3
.github/actions/teardown-win/action.yml
vendored
@ -23,9 +23,6 @@ runs:
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
- name: Clean up leftover processes on non-ephemeral Windows runner
|
||||
uses: pytorch/test-infra/.github/actions/cleanup-runner@main
|
||||
|
||||
# Cleaning up Windows workspace sometimes fails flakily with device or resource busy
|
||||
# error, meaning one or more processes haven't stopped completely yet. So trying to
|
||||
# retry this step several time similar to how checkout-pytorch GHA does
|
||||
|
||||
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
0307428d65acf5cf1a73a70a7722e076bbb83f22
|
||||
78a47f87ce259a48f0391fa9ae15add05ea7432b
|
||||
|
||||
36
.github/requirements/pip-requirements-macOS.txt
vendored
36
.github/requirements/pip-requirements-macOS.txt
vendored
@ -1,36 +0,0 @@
|
||||
boto3==1.35.42
|
||||
cmake==3.27.*
|
||||
expecttest==0.3.0
|
||||
fbscribelogger==0.1.7
|
||||
filelock==3.18.0
|
||||
hypothesis==6.56.4
|
||||
librosa>=0.6.2
|
||||
mpmath==1.3.0
|
||||
networkx==2.8.7
|
||||
ninja==1.10.2.4
|
||||
numba==0.59.0
|
||||
numpy==1.26.4
|
||||
opt-einsum>=3.3
|
||||
optree==0.13.0
|
||||
packaging==23.1
|
||||
parameterized==0.8.1
|
||||
pillow==10.3.0
|
||||
protobuf==5.29.5
|
||||
psutil==5.9.8
|
||||
pygments==2.15.0
|
||||
pytest-cpp==2.3.0
|
||||
pytest-flakefinder==1.1.0
|
||||
pytest-rerunfailures==10.3
|
||||
pytest-subtests==0.13.1
|
||||
pytest-xdist==3.3.1
|
||||
pytest==7.3.2
|
||||
pyyaml==6.0.2
|
||||
scipy==1.12.0
|
||||
setuptools==78.1.1
|
||||
sympy==1.13.3
|
||||
tlparse==0.4.0
|
||||
tensorboard==2.13.0
|
||||
typing-extensions==4.12.2
|
||||
unittest-xml-reporting<=3.2.0,>=2.0.0
|
||||
xdoctest==1.1.0
|
||||
z3-solver==4.15.1.0
|
||||
6
.github/scripts/filter_test_configs.py
vendored
6
.github/scripts/filter_test_configs.py
vendored
@ -502,6 +502,7 @@ def perform_misc_tasks(
|
||||
job_name: str,
|
||||
pr_body: str,
|
||||
branch: Optional[str] = None,
|
||||
tag: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
In addition to apply the filter logic, the script also does the following
|
||||
@ -509,7 +510,9 @@ def perform_misc_tasks(
|
||||
"""
|
||||
set_output(
|
||||
"keep-going",
|
||||
branch == MAIN_BRANCH or check_for_setting(labels, pr_body, "keep-going"),
|
||||
branch == MAIN_BRANCH
|
||||
or bool(tag and re.match(r"^trunk/[a-f0-9]{40}$", tag))
|
||||
or check_for_setting(labels, pr_body, "keep-going"),
|
||||
)
|
||||
set_output(
|
||||
"ci-verbose-test-logs",
|
||||
@ -634,6 +637,7 @@ def main() -> None:
|
||||
job_name=args.job_name,
|
||||
pr_body=pr_body if pr_body else "",
|
||||
branch=args.branch,
|
||||
tag=tag,
|
||||
)
|
||||
|
||||
# Set the filtered test matrix as the output
|
||||
|
||||
@ -53,7 +53,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
|
||||
@ -70,7 +70,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
@ -87,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "
|
||||
|
||||
93
.github/scripts/generate_ci_workflows.py
vendored
93
.github/scripts/generate_ci_workflows.py
vendored
@ -127,53 +127,6 @@ LINUX_BINARY_BUILD_WORFKLOWS = [
|
||||
),
|
||||
]
|
||||
|
||||
ROCM_SMOKE_WORKFLOWS = [
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.LINUX,
|
||||
package_type="manywheel",
|
||||
build_variant="rocm",
|
||||
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
|
||||
OperatingSystem.LINUX,
|
||||
arches=["6.4"],
|
||||
python_versions=["3.10"],
|
||||
),
|
||||
ciflow_config=CIFlowConfig(
|
||||
labels={
|
||||
LABEL_CIFLOW_BINARIES,
|
||||
LABEL_CIFLOW_BINARIES_WHEEL,
|
||||
LABEL_CIFLOW_ROCM,
|
||||
},
|
||||
isolated_workflow=True,
|
||||
),
|
||||
branches="main",
|
||||
),
|
||||
]
|
||||
|
||||
LINUX_BINARY_SMOKE_WORKFLOWS = [
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.LINUX,
|
||||
package_type="manywheel",
|
||||
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
|
||||
OperatingSystem.LINUX,
|
||||
arches=["13.0"],
|
||||
python_versions=["3.12"],
|
||||
),
|
||||
branches="main",
|
||||
),
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.LINUX,
|
||||
package_type="libtorch",
|
||||
build_variant=generate_binary_build_matrix.RELEASE,
|
||||
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
|
||||
OperatingSystem.LINUX,
|
||||
generate_binary_build_matrix.RELEASE,
|
||||
arches=["cpu"],
|
||||
libtorch_variants=["shared-with-deps"],
|
||||
),
|
||||
branches="main",
|
||||
),
|
||||
]
|
||||
|
||||
WINDOWS_BINARY_BUILD_WORKFLOWS = [
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.WINDOWS,
|
||||
@ -259,39 +212,6 @@ WINDOWS_BINARY_BUILD_WORKFLOWS = [
|
||||
),
|
||||
]
|
||||
|
||||
WINDOWS_BINARY_SMOKE_WORKFLOWS = [
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.WINDOWS,
|
||||
package_type="libtorch",
|
||||
build_variant=generate_binary_build_matrix.RELEASE,
|
||||
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
|
||||
OperatingSystem.WINDOWS,
|
||||
generate_binary_build_matrix.RELEASE,
|
||||
arches=["cpu"],
|
||||
libtorch_variants=["shared-with-deps"],
|
||||
),
|
||||
branches="main",
|
||||
ciflow_config=CIFlowConfig(
|
||||
isolated_workflow=True,
|
||||
),
|
||||
),
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.WINDOWS,
|
||||
package_type="libtorch",
|
||||
build_variant=generate_binary_build_matrix.DEBUG,
|
||||
build_configs=generate_binary_build_matrix.generate_libtorch_matrix(
|
||||
OperatingSystem.WINDOWS,
|
||||
generate_binary_build_matrix.DEBUG,
|
||||
arches=["cpu"],
|
||||
libtorch_variants=["shared-with-deps"],
|
||||
),
|
||||
branches="main",
|
||||
ciflow_config=CIFlowConfig(
|
||||
isolated_workflow=True,
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
MACOS_BINARY_BUILD_WORKFLOWS = [
|
||||
BinaryBuildWorkflow(
|
||||
os=OperatingSystem.MACOS_ARM64,
|
||||
@ -372,23 +292,10 @@ def main() -> None:
|
||||
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
|
||||
S390X_BINARY_BUILD_WORKFLOWS,
|
||||
),
|
||||
(
|
||||
# Give rocm it's own workflow file
|
||||
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
|
||||
ROCM_SMOKE_WORKFLOWS,
|
||||
),
|
||||
(
|
||||
jinja_env.get_template("linux_binary_build_workflow.yml.j2"),
|
||||
LINUX_BINARY_SMOKE_WORKFLOWS,
|
||||
),
|
||||
(
|
||||
jinja_env.get_template("windows_binary_build_workflow.yml.j2"),
|
||||
WINDOWS_BINARY_BUILD_WORKFLOWS,
|
||||
),
|
||||
(
|
||||
jinja_env.get_template("windows_binary_build_workflow.yml.j2"),
|
||||
WINDOWS_BINARY_SMOKE_WORKFLOWS,
|
||||
),
|
||||
(
|
||||
jinja_env.get_template("macos_binary_build_workflow.yml.j2"),
|
||||
MACOS_BINARY_BUILD_WORKFLOWS,
|
||||
|
||||
255
.github/workflows/_linux-test-stable-fa3.yml
vendored
Normal file
255
.github/workflows/_linux-test-stable-fa3.yml
vendored
Normal file
@ -0,0 +1,255 @@
|
||||
# The point of this workflow is to test that a FA3 wheel that was built based off the
|
||||
# stable ABI as of torch nightly 20250830 can still run on the newer torch.
|
||||
#
|
||||
# This workflow is very similar to the _linux-test.yml workflow, with the following
|
||||
# differences:
|
||||
# 1. It is simpler (there is no test matrix)
|
||||
# 2. It pulls flash-attention as a secondary repository in order to access the tests.
|
||||
# Note that it does not BUILD anything from flash-attention, as we have a prebuilt
|
||||
# wheel. We pull flash-attention only to run a few tests.
|
||||
# 3. It runs only FA3 tests. No PyTorch tests are run.
|
||||
name: linux-test-stable-fa3
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
build-environment:
|
||||
required: true
|
||||
type: string
|
||||
description: Top-level label for what's being built/tested.
|
||||
docker-image:
|
||||
required: true
|
||||
type: string
|
||||
description: Docker image to run in.
|
||||
timeout-minutes:
|
||||
required: false
|
||||
type: number
|
||||
default: 30
|
||||
description: |
|
||||
Set the maximum (in minutes) how long the workflow should take to finish
|
||||
s3-bucket:
|
||||
description: S3 bucket to download artifact
|
||||
required: false
|
||||
type: string
|
||||
default: "gha-artifacts"
|
||||
secrets:
|
||||
HUGGING_FACE_HUB_TOKEN:
|
||||
required: false
|
||||
description: |
|
||||
HF Auth token to avoid rate limits when downloading models or datasets from hub
|
||||
VLLM_TEST_HUGGING_FACE_TOKEN:
|
||||
required: false
|
||||
description: |
|
||||
HF Auth token to test vllm
|
||||
SCRIBE_GRAPHQL_ACCESS_TOKEN:
|
||||
required: false
|
||||
description: |
|
||||
FB app token to write to scribe endpoint
|
||||
|
||||
env:
|
||||
GIT_DEFAULT_BRANCH: ${{ github.event.repository.default_branch }}
|
||||
|
||||
jobs:
|
||||
test:
|
||||
# Don't run on forked repos
|
||||
if: github.repository_owner == 'pytorch'
|
||||
runs-on: linux.aws.h100
|
||||
timeout-minutes: ${{ inputs.timeout-minutes || 30 }}
|
||||
permissions:
|
||||
id-token: write
|
||||
contents: read
|
||||
steps:
|
||||
- name: Checkout PyTorch
|
||||
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main
|
||||
with:
|
||||
no-sudo: true
|
||||
|
||||
- name: Checkout flash-attention as a secondary repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: Dao-AILab/flash-attention
|
||||
path: flash-attention
|
||||
|
||||
- name: Setup Linux
|
||||
uses: ./.github/actions/setup-linux
|
||||
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-image-name: ${{ inputs.docker-image }}
|
||||
|
||||
- name: Use following to pull public copy of the image
|
||||
id: print-ghcr-mirror
|
||||
env:
|
||||
ECR_DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
shell: bash
|
||||
run: |
|
||||
tag=${ECR_DOCKER_IMAGE##*:}
|
||||
echo "docker pull ghcr.io/pytorch/ci-image:${tag/:/-}"
|
||||
|
||||
- name: Pull docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
|
||||
- name: Check if in a container runner
|
||||
shell: bash
|
||||
id: check_container_runner
|
||||
run: echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT"
|
||||
|
||||
- name: Setup GPU_FLAG for docker run
|
||||
id: setup-gpu-flag
|
||||
run: echo "GPU_FLAG=--gpus all -e NVIDIA_DRIVER_CAPABILITIES=all" >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Setup SCCACHE_SERVER_PORT environment for docker run when on container
|
||||
id: setup-sscache-port-flag
|
||||
run: echo "SCCACHE_SERVER_PORT_DOCKER_FLAG=-e SCCACHE_SERVER_PORT=$((RUNNER_UID + 4226))" >> "${GITHUB_ENV}"
|
||||
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' }}
|
||||
|
||||
- name: Get workflow job id
|
||||
id: get-job-id
|
||||
uses: ./.github/actions/get-workflow-job-id
|
||||
if: always()
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Download build artifacts
|
||||
uses: ./.github/actions/download-build-artifacts
|
||||
with:
|
||||
name: ${{ inputs.build-environment }}
|
||||
s3-bucket: ${{ inputs.s3-bucket }}
|
||||
|
||||
- name: Parse ref
|
||||
id: parse-ref
|
||||
run: .github/scripts/parse_ref.py
|
||||
|
||||
- name: Set Test step time
|
||||
id: test-timeout
|
||||
shell: bash
|
||||
env:
|
||||
JOB_TIMEOUT: ${{ inputs.timeout-minutes }}
|
||||
run: |
|
||||
echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Preserve github env variables for use in docker
|
||||
shell: bash
|
||||
run: |
|
||||
env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}"
|
||||
|
||||
- name: Test
|
||||
id: test
|
||||
timeout-minutes: ${{ fromJson(steps.test-timeout.outputs.timeout) }}
|
||||
env:
|
||||
BUILD_ENVIRONMENT: ${{ inputs.build-environment }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
GITHUB_REPOSITORY: ${{ github.repository }}
|
||||
GITHUB_WORKFLOW: ${{ github.workflow }}
|
||||
GITHUB_JOB: ${{ github.job }}
|
||||
GITHUB_RUN_ID: ${{ github.run_id }}
|
||||
GITHUB_RUN_NUMBER: ${{ github.run_number }}
|
||||
GITHUB_RUN_ATTEMPT: ${{ github.run_attempt }}
|
||||
JOB_ID: ${{ steps.get-job-id.outputs.job-id }}
|
||||
JOB_NAME: ${{ steps.get-job-id.outputs.job-name }}
|
||||
BRANCH: ${{ steps.parse-ref.outputs.branch }}
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
BASE_SHA: ${{ github.event.pull_request.base.sha || github.sha }}
|
||||
SHM_SIZE: '2g'
|
||||
DOCKER_IMAGE: ${{ inputs.docker-image }}
|
||||
VLLM_TEST_HUGGING_FACE_TOKEN: ${{ secrets.VLLM_TEST_HUGGING_FACE_TOKEN }}
|
||||
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
|
||||
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
|
||||
ARTIFACTS_FILE_SUFFIX: ${{ github.job }}-${{ steps.get-job-id.outputs.job-id }}
|
||||
run: |
|
||||
set -x
|
||||
|
||||
TEST_COMMAND=.ci/pytorch/test_fa3_abi_stable.sh
|
||||
|
||||
# Leaving 1GB for the runner and other things
|
||||
TOTAL_AVAILABLE_MEMORY_IN_GB=$(awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo)
|
||||
# https://docs.docker.com/engine/containers/resource_constraints/#--memory-swap-details, the 3GB swap
|
||||
# comes from https://github.com/pytorch/test-infra/pull/6058
|
||||
TOTAL_MEMORY_WITH_SWAP=$(("${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}" + 3))
|
||||
|
||||
|
||||
SHM_OPTS="--shm-size=${SHM_SIZE}"
|
||||
JENKINS_USER="--user jenkins"
|
||||
DOCKER_SHELL_CMD=
|
||||
|
||||
# detached container should get cleaned up by teardown_ec2_linux
|
||||
# TODO: Stop building test binaries as part of the build phase
|
||||
# Used for GPU_FLAG, SHM_OPTS, JENKINS_USER and DOCKER_SHELL_CMD since that doesn't play nice
|
||||
# shellcheck disable=SC2086,SC2090
|
||||
container_name=$(docker run \
|
||||
${GPU_FLAG:-} \
|
||||
${SCCACHE_SERVER_PORT_DOCKER_FLAG:-} \
|
||||
-e BUILD_ENVIRONMENT \
|
||||
-e PR_NUMBER \
|
||||
-e GITHUB_ACTIONS \
|
||||
-e GITHUB_REPOSITORY \
|
||||
-e GITHUB_WORKFLOW \
|
||||
-e GITHUB_JOB \
|
||||
-e GITHUB_RUN_ID \
|
||||
-e GITHUB_RUN_NUMBER \
|
||||
-e GITHUB_RUN_ATTEMPT \
|
||||
-e JOB_ID \
|
||||
-e JOB_NAME \
|
||||
-e BASE_SHA \
|
||||
-e BRANCH \
|
||||
-e SHA1 \
|
||||
-e MAX_JOBS="$(nproc --ignore=2)" \
|
||||
-e HUGGING_FACE_HUB_TOKEN \
|
||||
-e VLLM_TEST_HUGGING_FACE_TOKEN \
|
||||
-e SCRIBE_GRAPHQL_ACCESS_TOKEN \
|
||||
-e ARTIFACTS_FILE_SUFFIX \
|
||||
--memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \
|
||||
--memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \
|
||||
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
|
||||
--security-opt seccomp=unconfined \
|
||||
--cap-add=SYS_PTRACE \
|
||||
--ipc=host \
|
||||
${SHM_OPTS} \
|
||||
--tty \
|
||||
--detach \
|
||||
--name="${container_name}" \
|
||||
${JENKINS_USER} \
|
||||
-v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \
|
||||
-w /var/lib/jenkins/workspace \
|
||||
"${DOCKER_IMAGE}" \
|
||||
${DOCKER_SHELL_CMD}
|
||||
)
|
||||
|
||||
echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}"
|
||||
|
||||
docker exec -t "${container_name}" sh -c "python3 -m pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}"
|
||||
|
||||
- name: Collect backtraces from coredumps (if any)
|
||||
if: always()
|
||||
run: |
|
||||
# shellcheck disable=SC2156
|
||||
find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \;
|
||||
|
||||
- name: Store Core dumps on S3
|
||||
uses: seemethere/upload-artifact-s3@baba72d0712b404f646cebe0730933554ebce96a # v5.1.0
|
||||
if: failure()
|
||||
with:
|
||||
name: coredumps-fa3-stable-abi-smoke-tests
|
||||
retention-days: 14
|
||||
if-no-files-found: ignore
|
||||
path: ./**/core.[1-9]*
|
||||
|
||||
- name: Upload utilization stats
|
||||
if: ${{ always() && steps.test.conclusion && steps.test.conclusion != 'skipped' }}
|
||||
continue-on-error: true
|
||||
uses: ./.github/actions/upload-utilization-stats
|
||||
with:
|
||||
job_id: ${{ steps.get-job-id.outputs.job-id }}
|
||||
job_name: ${{ steps.get-job-id.outputs.job-name }}
|
||||
workflow_name: ${{ github.workflow }}
|
||||
workflow_run_id: ${{github.run_id}}
|
||||
workflow_attempt: ${{github.run_attempt}}
|
||||
|
||||
- name: Teardown Linux
|
||||
uses: pytorch/test-infra/.github/actions/teardown-linux@main
|
||||
if: always() && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false'
|
||||
2
.github/workflows/_mac-build.yml
vendored
2
.github/workflows/_mac-build.yml
vendored
@ -85,7 +85,7 @@ jobs:
|
||||
uses: pytorch/test-infra/.github/actions/setup-python@main
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
pip-requirements-file: .github/requirements/pip-requirements-macOS.txt
|
||||
pip-requirements-file: .ci/docker/requirements-ci.txt
|
||||
|
||||
- name: Install sccache (only for non-forked PRs, and pushes to trunk)
|
||||
uses: nick-fields/retry@7152eba30c6575329ac0576536151aca5a72780e # v3.0.0
|
||||
|
||||
2
.github/workflows/_mac-test.yml
vendored
2
.github/workflows/_mac-test.yml
vendored
@ -122,7 +122,7 @@ jobs:
|
||||
uses: pytorch/test-infra/.github/actions/setup-python@main
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
pip-requirements-file: .github/requirements/pip-requirements-macOS.txt
|
||||
pip-requirements-file: .ci/docker/requirements-ci.txt
|
||||
|
||||
- name: Start monitoring script
|
||||
id: monitor-script
|
||||
|
||||
3
.github/workflows/_win-build.yml
vendored
3
.github/workflows/_win-build.yml
vendored
@ -84,9 +84,6 @@ jobs:
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
|
||||
- name: Clean up leftover processes on non-ephemeral Windows runner
|
||||
uses: pytorch/test-infra/.github/actions/cleanup-runner@main
|
||||
|
||||
- name: Setup SSH (Click me for login details)
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
with:
|
||||
|
||||
24
.github/workflows/_win-test.yml
vendored
24
.github/workflows/_win-test.yml
vendored
@ -77,9 +77,6 @@ jobs:
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
|
||||
- name: Clean up leftover processes on non-ephemeral Windows runner
|
||||
uses: pytorch/test-infra/.github/actions/cleanup-runner@main
|
||||
|
||||
- name: Setup SSH (Click me for login details)
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
with:
|
||||
@ -106,18 +103,6 @@ jobs:
|
||||
with:
|
||||
cuda-version: ${{ inputs.cuda-version }}
|
||||
|
||||
# TODO: Move to a requirements.txt file for windows
|
||||
- name: Install pip dependencies
|
||||
uses: nick-fields/retry@7152eba30c6575329ac0576536151aca5a72780e # v3.0.0
|
||||
with:
|
||||
shell: bash
|
||||
timeout_minutes: 5
|
||||
max_attempts: 5
|
||||
retry_wait_seconds: 30
|
||||
command: |
|
||||
set -eu
|
||||
python3 -m pip install 'xdoctest>=1.1.0'
|
||||
|
||||
- name: Get workflow job id
|
||||
id: get-job-id
|
||||
uses: ./.github/actions/get-workflow-job-id
|
||||
@ -272,15 +257,6 @@ jobs:
|
||||
shell: bash
|
||||
run: python3 .github/scripts/parse_ref.py
|
||||
|
||||
- name: Uninstall PyTorch
|
||||
if: always()
|
||||
continue-on-error: true
|
||||
shell: bash
|
||||
run: |
|
||||
# This step removes PyTorch installed by the test to give a clean slate
|
||||
# to the next job
|
||||
python3 -mpip uninstall -y torch
|
||||
|
||||
- name: Teardown Windows
|
||||
uses: ./.github/actions/teardown-win
|
||||
if: always()
|
||||
|
||||
2
.github/workflows/build-almalinux-images.yml
vendored
2
.github/workflows/build-almalinux-images.yml
vendored
@ -36,7 +36,7 @@ jobs:
|
||||
runs-on: linux.9xlarge.ephemeral
|
||||
strategy:
|
||||
matrix:
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "rocm7.0", "cpu"]
|
||||
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.4", "rocm7.0", "cpu"]
|
||||
steps:
|
||||
- name: Build docker image
|
||||
uses: pytorch/pytorch/.github/actions/binary-docker-build@main
|
||||
|
||||
1
.github/workflows/build-manywheel-images.yml
vendored
1
.github/workflows/build-manywheel-images.yml
vendored
@ -56,7 +56,6 @@ jobs:
|
||||
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
|
||||
{ name: "manylinuxcxx11-abi-builder", tag: "cpu-cxx11-abi", runner: "linux.9xlarge.ephemeral" },
|
||||
{ name: "manylinux2_28-builder", tag: "xpu", runner: "linux.9xlarge.ephemeral" },
|
||||
]
|
||||
runs-on: ${{ needs.get-label-type.outputs.label-type }}${{ matrix.runner }}
|
||||
|
||||
1
.github/workflows/docker-builds.yml
vendored
1
.github/workflows/docker-builds.yml
vendored
@ -59,7 +59,6 @@ jobs:
|
||||
pytorch-linux-jammy-py3.13-clang12,
|
||||
pytorch-linux-jammy-rocm-n-py3,
|
||||
pytorch-linux-noble-rocm-n-py3,
|
||||
pytorch-linux-noble-rocm-alpha-py3,
|
||||
pytorch-linux-jammy-rocm-n-py3-benchmarks,
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12,
|
||||
pytorch-linux-jammy-py3.10-gcc11,
|
||||
|
||||
42
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
42
.github/workflows/generated-linux-aarch64-binary-manywheel-nightly.yml
generated
vendored
@ -132,7 +132,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -178,7 +178,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -224,7 +224,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_10-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -335,7 +335,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -381,7 +381,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -427,7 +427,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_11-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -538,7 +538,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -584,7 +584,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -630,7 +630,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_12-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -741,7 +741,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -787,7 +787,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -833,7 +833,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -944,7 +944,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -990,7 +990,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1036,7 +1036,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_13t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1147,7 +1147,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1193,7 +1193,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1239,7 +1239,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1350,7 +1350,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_6
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1396,7 +1396,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-12_8
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
@ -1442,7 +1442,7 @@ jobs:
|
||||
ALPINE_IMAGE: "arm64v8/alpine"
|
||||
build_name: manywheel-py3_14t-cuda-aarch64-13_0
|
||||
build_environment: linux-aarch64-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
timeout-minutes: 420
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
87
.github/workflows/generated-linux-binary-libtorch-release-main.yml
generated
vendored
87
.github/workflows/generated-linux-binary-libtorch-release-main.yml
generated
vendored
@ -1,87 +0,0 @@
|
||||
# @generated DO NOT EDIT MANUALLY
|
||||
|
||||
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
|
||||
# Generation script: .github/scripts/generate_ci_workflows.py
|
||||
name: linux-binary-libtorch-release
|
||||
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
tags:
|
||||
- 'ciflow/trunk/*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
|
||||
env:
|
||||
# Needed for conda builds
|
||||
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
|
||||
AWS_DEFAULT_REGION: us-east-1
|
||||
BINARY_ENV_FILE: /tmp/env
|
||||
BUILD_ENVIRONMENT: linux-binary-libtorch-release
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
|
||||
PYTORCH_ROOT: /pytorch
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
SKIP_ALL_TESTS: 0
|
||||
concurrency:
|
||||
group: linux-binary-libtorch-release-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
libtorch-cpu-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: libtorch-cpu-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch-release
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
libtorch-cpu-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cpu-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
DOCKER_IMAGE: libtorch-cxx11-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cpu
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
build_name: libtorch-cpu-shared-with-deps-release
|
||||
build_environment: linux-binary-libtorch-release
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.4xlarge
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
88
.github/workflows/generated-linux-binary-manywheel-main.yml
generated
vendored
88
.github/workflows/generated-linux-binary-manywheel-main.yml
generated
vendored
@ -1,88 +0,0 @@
|
||||
# @generated DO NOT EDIT MANUALLY
|
||||
|
||||
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
|
||||
# Generation script: .github/scripts/generate_ci_workflows.py
|
||||
name: linux-binary-manywheel
|
||||
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
tags:
|
||||
- 'ciflow/trunk/*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
|
||||
env:
|
||||
# Needed for conda builds
|
||||
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
|
||||
AWS_DEFAULT_REGION: us-east-1
|
||||
BINARY_ENV_FILE: /tmp/env
|
||||
BUILD_ENVIRONMENT: linux-binary-manywheel
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
|
||||
PYTORCH_ROOT: /pytorch
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
SKIP_ALL_TESTS: 0
|
||||
concurrency:
|
||||
group: linux-binary-manywheel-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
manywheel-py3_12-cuda13_0-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu130
|
||||
GPU_ARCH_VERSION: "13.0"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.12"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda13_0-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_12-cuda13_0-build
|
||||
- get-label-type
|
||||
uses: ./.github/workflows/_binary-test-linux.yml
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cu130
|
||||
GPU_ARCH_VERSION: "13.0"
|
||||
GPU_ARCH_TYPE: cuda
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
|
||||
DESIRED_PYTHON: "3.12"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
42
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
42
.github/workflows/generated-linux-binary-manywheel-nightly.yml
generated
vendored
@ -127,7 +127,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_6-test: # Testing
|
||||
@ -193,7 +193,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda12_8-test: # Testing
|
||||
@ -259,7 +259,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_10-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-cuda13_0-test: # Testing
|
||||
@ -721,7 +721,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_6-test: # Testing
|
||||
@ -787,7 +787,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda12_8-test: # Testing
|
||||
@ -853,7 +853,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_11-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_11-cuda13_0-test: # Testing
|
||||
@ -1315,7 +1315,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_6-test: # Testing
|
||||
@ -1381,7 +1381,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda12_8-test: # Testing
|
||||
@ -1447,7 +1447,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_12-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_12-cuda13_0-test: # Testing
|
||||
@ -1909,7 +1909,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_6-test: # Testing
|
||||
@ -1975,7 +1975,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda12_8-test: # Testing
|
||||
@ -2041,7 +2041,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13-cuda13_0-test: # Testing
|
||||
@ -2503,7 +2503,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_6-test: # Testing
|
||||
@ -2569,7 +2569,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda12_8-test: # Testing
|
||||
@ -2635,7 +2635,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_13t-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_13t-cuda13_0-test: # Testing
|
||||
@ -3097,7 +3097,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_6-test: # Testing
|
||||
@ -3163,7 +3163,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda12_8-test: # Testing
|
||||
@ -3229,7 +3229,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14-cuda13_0-test: # Testing
|
||||
@ -3691,7 +3691,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_6
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_6-test: # Testing
|
||||
@ -3757,7 +3757,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda12_8
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda12_8-test: # Testing
|
||||
@ -3823,7 +3823,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build_name: manywheel-py3_14t-cuda13_0
|
||||
build_environment: linux-binary-manywheel
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_14t-cuda13_0-test: # Testing
|
||||
|
||||
136
.github/workflows/generated-linux-binary-manywheel-rocm-main.yml
generated
vendored
136
.github/workflows/generated-linux-binary-manywheel-rocm-main.yml
generated
vendored
@ -1,136 +0,0 @@
|
||||
# @generated DO NOT EDIT MANUALLY
|
||||
|
||||
# Template is at: .github/templates/linux_binary_build_workflow.yml.j2
|
||||
# Generation script: .github/scripts/generate_ci_workflows.py
|
||||
name: linux-binary-manywheel-rocm
|
||||
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
tags:
|
||||
- 'ciflow/binaries/*'
|
||||
- 'ciflow/binaries_wheel/*'
|
||||
- 'ciflow/rocm/*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
id-token: write
|
||||
|
||||
env:
|
||||
# Needed for conda builds
|
||||
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
|
||||
AWS_DEFAULT_REGION: us-east-1
|
||||
BINARY_ENV_FILE: /tmp/env
|
||||
BUILD_ENVIRONMENT: linux-binary-manywheel-rocm
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
|
||||
PYTORCH_ROOT: /pytorch
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
SKIP_ALL_TESTS: 0
|
||||
concurrency:
|
||||
group: linux-binary-manywheel-rocm-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
manywheel-py3_10-rocm6_4-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
uses: ./.github/workflows/_binary-build-linux.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.4
|
||||
GPU_ARCH_VERSION: "6.4"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.10"
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
timeout-minutes: 300
|
||||
build_name: manywheel-py3_10-rocm6_4
|
||||
build_environment: linux-binary-manywheel-rocm
|
||||
secrets:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
manywheel-py3_10-rocm6_4-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- manywheel-py3_10-rocm6_4-build
|
||||
- get-label-type
|
||||
runs-on: linux.rocm.gpu.mi250
|
||||
timeout-minutes: 240
|
||||
env:
|
||||
PYTORCH_ROOT: /pytorch
|
||||
PACKAGE_TYPE: manywheel
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: rocm6.4
|
||||
GPU_ARCH_VERSION: "6.4"
|
||||
GPU_ARCH_TYPE: rocm
|
||||
SKIP_ALL_TESTS: 1
|
||||
DOCKER_IMAGE: manylinux2_28-builder
|
||||
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Setup ROCm
|
||||
uses: ./.github/actions/setup-rocm
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: manywheel-py3_10-rocm6_4
|
||||
path: "${{ runner.temp }}/artifacts/"
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: ROCm set GPU_FLAG
|
||||
run: |
|
||||
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
|
||||
- name: configure aws credentials
|
||||
id: aws_creds
|
||||
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
|
||||
uses: aws-actions/configure-aws-credentials@v4
|
||||
with:
|
||||
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
|
||||
aws-region: us-east-1
|
||||
role-duration-seconds: 18000
|
||||
- name: Calculate docker image
|
||||
id: calculate-docker-image
|
||||
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
|
||||
with:
|
||||
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
|
||||
docker-image-name: manylinux2_28-builder
|
||||
custom-tag-prefix: rocm6.4
|
||||
docker-build-dir: .ci/docker
|
||||
working-directory: pytorch
|
||||
- name: Pull Docker image
|
||||
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
|
||||
with:
|
||||
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Test Pytorch binary
|
||||
uses: ./pytorch/.github/actions/test-pytorch-binary
|
||||
env:
|
||||
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
|
||||
- name: Teardown ROCm
|
||||
uses: ./.github/actions/teardown-rocm
|
||||
261
.github/workflows/generated-windows-binary-libtorch-debug-main.yml
generated
vendored
261
.github/workflows/generated-windows-binary-libtorch-debug-main.yml
generated
vendored
@ -1,261 +0,0 @@
|
||||
# @generated DO NOT EDIT MANUALLY
|
||||
|
||||
# Template is at: .github/templates/windows_binary_build_workflow.yml.j2
|
||||
# Generation script: .github/scripts/generate_ci_workflows.py
|
||||
name: windows-binary-libtorch-debug
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
# Needed for conda builds
|
||||
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
|
||||
AWS_DEFAULT_REGION: us-east-1
|
||||
BUILD_ENVIRONMENT: windows-binary-libtorch-debug
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
SKIP_ALL_TESTS: 1
|
||||
OS: windows
|
||||
concurrency:
|
||||
group: windows-binary-libtorch-debug-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
libtorch-cpu-shared-with-deps-debug-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cpu-shared-with-deps-debug
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cpu-shared-with-deps-debug-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cpu-shared-with-deps-debug-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: debug
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cpu-shared-with-deps-debug
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
261
.github/workflows/generated-windows-binary-libtorch-release-main.yml
generated
vendored
261
.github/workflows/generated-windows-binary-libtorch-release-main.yml
generated
vendored
@ -1,261 +0,0 @@
|
||||
# @generated DO NOT EDIT MANUALLY
|
||||
|
||||
# Template is at: .github/templates/windows_binary_build_workflow.yml.j2
|
||||
# Generation script: .github/scripts/generate_ci_workflows.py
|
||||
name: windows-binary-libtorch-release
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
# Needed for conda builds
|
||||
ALPINE_IMAGE: "308535385114.dkr.ecr.us-east-1.amazonaws.com/tool/alpine"
|
||||
AWS_DEFAULT_REGION: us-east-1
|
||||
BUILD_ENVIRONMENT: windows-binary-libtorch-release
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.pull_request.number }}
|
||||
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
|
||||
SKIP_ALL_TESTS: 1
|
||||
OS: windows
|
||||
concurrency:
|
||||
group: windows-binary-libtorch-release-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
get-label-type:
|
||||
if: github.repository_owner == 'pytorch'
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
libtorch-cpu-shared-with-deps-release-build:
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs: get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Build PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_build.sh"
|
||||
- uses: actions/upload-artifact@v4.4.0
|
||||
if: always()
|
||||
with:
|
||||
name: libtorch-cpu-shared-with-deps-release
|
||||
retention-days: 14
|
||||
if-no-files-found: error
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
|
||||
libtorch-cpu-shared-with-deps-release-test: # Testing
|
||||
if: ${{ github.repository_owner == 'pytorch' }}
|
||||
needs:
|
||||
- libtorch-cpu-shared-with-deps-release-build
|
||||
- get-label-type
|
||||
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
|
||||
timeout-minutes: 360
|
||||
env:
|
||||
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
|
||||
PACKAGE_TYPE: libtorch
|
||||
# TODO: This is a legacy variable that we eventually want to get rid of in
|
||||
# favor of GPU_ARCH_VERSION
|
||||
DESIRED_CUDA: cpu
|
||||
GPU_ARCH_TYPE: cpu
|
||||
SKIP_ALL_TESTS: 1
|
||||
LIBTORCH_CONFIG: release
|
||||
LIBTORCH_VARIANT: shared-with-deps
|
||||
# This is a dummy value for libtorch to work correctly with our batch scripts
|
||||
# without this value pip does not get installed for some reason
|
||||
DESIRED_PYTHON: "3.10"
|
||||
steps:
|
||||
- name: Display EC2 information
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
function get_ec2_metadata() {
|
||||
# Pulled from instance metadata endpoint for EC2
|
||||
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
|
||||
category=$1
|
||||
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
|
||||
}
|
||||
echo "ami-id: $(get_ec2_metadata ami-id)"
|
||||
echo "instance-id: $(get_ec2_metadata instance-id)"
|
||||
echo "instance-type: $(get_ec2_metadata instance-type)"
|
||||
echo "system info $(uname -a)"
|
||||
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"
|
||||
uses: pytorch/test-infra/.github/actions/setup-ssh@main
|
||||
continue-on-error: true
|
||||
with:
|
||||
github-secret: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable git long paths and symlinks on Windows and disable fsmonitor daemon
|
||||
shell: bash
|
||||
run: |
|
||||
git config --global core.longpaths true
|
||||
git config --global core.symlinks true
|
||||
|
||||
# https://git-scm.com/docs/git-fsmonitor--daemon. The daemon could lock
|
||||
# the directory on Windows and prevent GHA from checking out as reported
|
||||
# in https://github.com/actions/checkout/issues/1018
|
||||
git config --global core.fsmonitor false
|
||||
# Needed for binary builds, see: https://github.com/pytorch/pytorch/issues/73339#issuecomment-1058981560
|
||||
- name: Enable long paths on Windows
|
||||
shell: powershell
|
||||
run: |
|
||||
Set-ItemProperty -Path "HKLM:\\SYSTEM\CurrentControlSet\Control\FileSystem" -Name "LongPathsEnabled" -Value 1
|
||||
# Since it's just a defensive command, the workflow should continue even the command fails. This step can be
|
||||
# removed once Windows Defender is removed from the AMI
|
||||
- name: Disables Windows Defender scheduled and real-time scanning for files in directories used by PyTorch
|
||||
continue-on-error: true
|
||||
shell: powershell
|
||||
run: |
|
||||
Add-MpPreference -ExclusionPath $(Get-Location).tostring(),$Env:TEMP -ErrorAction Ignore
|
||||
# Let's both exclude the path and disable Windows Defender completely just to be sure
|
||||
# that it doesn't interfere
|
||||
Set-MpPreference -DisableRealtimeMonitoring $True -ErrorAction Ignore
|
||||
- name: Checkout PyTorch
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
|
||||
submodules: recursive
|
||||
path: pytorch
|
||||
show-progress: false
|
||||
- name: Clean PyTorch checkout
|
||||
run: |
|
||||
# Remove any artifacts from the previous checkouts
|
||||
git clean -fxd
|
||||
working-directory: pytorch
|
||||
# NOTE: These environment variables are put here so that they can be applied on every job equally
|
||||
# They are also here because setting them at a workflow level doesn't give us access to the
|
||||
# runner.temp variable, which we need.
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
echo "BINARY_ENV_FILE=${RUNNER_TEMP}/env" >> "${GITHUB_ENV}"
|
||||
echo "PYTORCH_FINAL_PACKAGE_DIR=${RUNNER_TEMP}/artifacts" >> "${GITHUB_ENV}"
|
||||
echo "WIN_PACKAGE_WORK_DIR=${RUNNER_TEMP}"
|
||||
- uses: actions/download-artifact@v4.1.7
|
||||
name: Download Build Artifacts
|
||||
with:
|
||||
name: libtorch-cpu-shared-with-deps-release
|
||||
path: "${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
|
||||
- name: Populate binary env
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_populate_env.sh"
|
||||
- name: Test PyTorch binary
|
||||
shell: bash
|
||||
run: |
|
||||
"${PYTORCH_ROOT}/.circleci/scripts/binary_windows_test.sh"
|
||||
- name: Wait until all sessions have drained
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
timeout-minutes: 120
|
||||
run: |
|
||||
.github\scripts\wait_for_ssh_to_drain.ps1
|
||||
- name: Kill active ssh sessions if still around (Useful if workflow was cancelled)
|
||||
shell: powershell
|
||||
working-directory: pytorch
|
||||
if: always()
|
||||
run: |
|
||||
.github\scripts\kill_active_ssh_sessions.ps1
|
||||
29
.github/workflows/periodic.yml
vendored
29
.github/workflows/periodic.yml
vendored
@ -59,13 +59,14 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.4-py3.10-gcc11
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11
|
||||
cuda-arch-list: 7.5
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 1, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 2, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 3, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 4, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
{ config: "legacy_nvidia_driver", shard: 5, num_shards: 5, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g4dn.4xlarge.nvidia.gpu" },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
@ -112,13 +113,13 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_9-gcc9-build:
|
||||
name: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-build:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.6
|
||||
test-matrix: |
|
||||
@ -128,14 +129,14 @@ jobs:
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_9-gcc9-test:
|
||||
name: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-test:
|
||||
name: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
uses: ./.github/workflows/_linux-test.yml
|
||||
needs: linux-jammy-cuda12_8-py3_9-gcc9-build
|
||||
needs: linux-jammy-cuda12_8-py3_10-gcc9-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.9-gcc9
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_9-gcc9-build.outputs.test-matrix }}
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc9-debug-build:
|
||||
|
||||
6
.github/workflows/pull.yml
vendored
6
.github/workflows/pull.yml
vendored
@ -343,14 +343,14 @@ jobs:
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc9-inductor-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-xpu-n-py3_9-build:
|
||||
name: linux-jammy-xpu-n-py3.9
|
||||
linux-jammy-xpu-n-py3_10-build:
|
||||
name: linux-jammy-xpu-n-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.9
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
|
||||
2
.github/workflows/rocm-mi355.yml
vendored
2
.github/workflows/rocm-mi355.yml
vendored
@ -38,7 +38,7 @@ jobs:
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi355
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-alpha-py3
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
|
||||
12
.github/workflows/test-h100.yml
vendored
12
.github/workflows/test-h100.yml
vendored
@ -61,3 +61,15 @@ jobs:
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build.outputs.docker-image }}
|
||||
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build.outputs.test-matrix }}
|
||||
secrets: inherit
|
||||
|
||||
linux-jammy-cuda12_8-py3_10-gcc11-sm90-FA3-ABI-stable-test:
|
||||
name: linux-jammy-cuda12_8-py3_10-gcc11-sm90-FA3-ABI-stable-test
|
||||
uses: ./.github/workflows/_linux-test-stable-fa3.yml
|
||||
needs:
|
||||
- linux-jammy-cuda12_8-py3_10-gcc11-sm90-build
|
||||
with:
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90
|
||||
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build.outputs.docker-image }}
|
||||
timeout-minutes: 30
|
||||
s3-bucket: gha-artifacts
|
||||
secrets: inherit
|
||||
|
||||
3
.github/workflows/update-viablestrict.yml
vendored
3
.github/workflows/update-viablestrict.yml
vendored
@ -48,4 +48,7 @@ jobs:
|
||||
echo "{\"sha\": \"${LATEST_SHA}\", \"repository\":\"pytorch/pytorch\", \"timestamp\": ${TIME}}" > "/tmp/${LATEST_SHA}.json"
|
||||
pip install awscli==1.29.40
|
||||
aws s3 cp "/tmp/${LATEST_SHA}.json" "s3://ossci-raw-job-status/stable_pushes/pytorch/pytorch/${LATEST_SHA}.json"
|
||||
# Push new viable/strict tag
|
||||
cd pytorch/pytorch
|
||||
git push origin "${LATEST_SHA}:refs/tags/viable/strict/${TIME}"
|
||||
fi
|
||||
|
||||
@ -1260,6 +1260,7 @@ exclude_patterns = [
|
||||
'test/test_masked.py',
|
||||
'test/test_maskedtensor.py',
|
||||
'test/test_matmul_cuda.py',
|
||||
'test/test_scaled_matmul_cuda.py',
|
||||
'test/test_meta.py',
|
||||
'test/test_metal.py',
|
||||
'test/test_mkl_verbose.py',
|
||||
|
||||
@ -888,23 +888,28 @@ cmake_dependent_option(
|
||||
"(USE_CUDA AND NOT MSVC) OR USE_ROCM"
|
||||
OFF)
|
||||
|
||||
|
||||
IF(USE_ROCM AND "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
message(WARNING "Setting USE_FBGEMM_GENAI for gfx942 to ON by default, doing ROCM build")
|
||||
set(USE_FBGEMM_GENAI_DEFAULT ON)
|
||||
elseif(USE_CUDA AND "$ENV{TORCH_CUDA_ARCH_LIST}" MATCHES "10.0" AND CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8 AND NOT WIN32)
|
||||
message(STATUS "Setting USE_FBGEMM_GENAI to ON by default , doing CUDA build for SM100a")
|
||||
set(USE_FBGEMM_GENAI_DEFAULT ON)
|
||||
else()
|
||||
set(USE_FBGEMM_GENAI_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
cmake_dependent_option(
|
||||
USE_FBGEMM_GENAI
|
||||
"Whether to build FBGEMM GenAI quantized GEMM kernels.\
|
||||
Will be disabled if not supported by the platform"
|
||||
ON
|
||||
"USE_ROCM"
|
||||
${USE_FBGEMM_GENAI_DEFAULT}
|
||||
"(USE_CUDA AND NOT MSVC) OR USE_ROCM"
|
||||
OFF)
|
||||
|
||||
IF(USE_FBGEMM_GENAI AND USE_ROCM AND NOT "gfx942" IN_LIST PYTORCH_ROCM_ARCH)
|
||||
message(WARNING "Unsupported ROCM arch for FBGEMM GenAI, will set USE_FBGEMM_GENAI to OFF")
|
||||
set(USE_FBGEMM_GENAI off)
|
||||
endif()
|
||||
|
||||
# Set USE_FBGEMM_GENAI to ON for CUDA build on SM100.
|
||||
if(USE_CUDA AND "$ENV{TORCH_CUDA_ARCH_LIST}" MATCHES "10.0" AND CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8 AND NOT WIN32)
|
||||
message(STATUS "Setting USE_FBGEMM_GENAI to ON, doing CUDA build for SM100a")
|
||||
set(USE_FBGEMM_GENAI ON)
|
||||
endif()
|
||||
|
||||
# CAVEAT: Again, Flash Attention2 will error while building for sm52 while Mem
|
||||
|
||||
@ -81,7 +81,7 @@ git remote add upstream git@github.com:pytorch/pytorch.git
|
||||
make setup-env
|
||||
# Or run `make setup-env-cuda` for pre-built CUDA binaries
|
||||
# Or run `make setup-env-rocm` for pre-built ROCm binaries
|
||||
source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
### Tips and Debugging
|
||||
@ -182,28 +182,36 @@ You can use this script to check out a new nightly branch with the following:
|
||||
|
||||
```bash
|
||||
./tools/nightly.py checkout -b my-nightly-branch
|
||||
source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
To install the nightly binaries built with CUDA, you can pass in the flag `--cuda`:
|
||||
|
||||
```bash
|
||||
./tools/nightly.py checkout -b my-nightly-branch --cuda
|
||||
source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
To install the nightly binaries built with ROCm, you can pass in the flag `--rocm`:
|
||||
|
||||
```bash
|
||||
./tools/nightly.py checkout -b my-nightly-branch --rocm
|
||||
source venv/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
You can also use this tool to pull the nightly commits into the current branch:
|
||||
|
||||
```bash
|
||||
./tools/nightly.py pull -p my-env
|
||||
source my-env/bin/activate # or `& .\venv\Scripts\Activate.ps1` on Windows
|
||||
./tools/nightly.py pull
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
To create the virtual environment with a specific Python interpreter, you can
|
||||
pass in the `--python` argument:
|
||||
|
||||
```bash
|
||||
./tools/nightly.py --python /path/to/python3.12
|
||||
source venv/bin/activate # or `. .\venv\Scripts\activate` on Windows
|
||||
```
|
||||
|
||||
Pulling will recreate a fresh virtual environment and reinstall the development
|
||||
|
||||
@ -103,7 +103,9 @@ std::string get_cpu_capability() {
|
||||
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
||||
case native::CPUCapability::ZVECTOR:
|
||||
return "Z VECTOR";
|
||||
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
case native::CPUCapability::SVE128:
|
||||
return "SVE128";
|
||||
case native::CPUCapability::SVE256:
|
||||
return "SVE256";
|
||||
#else
|
||||
|
||||
@ -6,6 +6,7 @@
|
||||
#include <c10/core/thread_pool.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/llvmMathExtras.h>
|
||||
#include <iostream>
|
||||
#include <optional>
|
||||
|
||||
#include <deque>
|
||||
@ -75,6 +76,9 @@ struct TORCH_API HostStats {
|
||||
|
||||
// COUNT: number of times cudaHostFree/cudaHostUnregister was called.
|
||||
int64_t num_host_free = 0; // This is derived from segment or timing
|
||||
|
||||
// Count of cudaHostFree/cudaHostUnregister per bucket
|
||||
std::vector<int64_t> bucket_allocation = std::vector<int64_t>(MAX_SIZE_INDEX);
|
||||
};
|
||||
|
||||
// Struct containing memory allocator summary statistics for host, as they
|
||||
@ -196,27 +200,7 @@ struct CachingHostAllocatorImpl {
|
||||
// background.
|
||||
if (!pinned_use_background_threads()) {
|
||||
process_events();
|
||||
}
|
||||
|
||||
// Round up the allocation to the nearest power of two to improve reuse.
|
||||
// These power of two sizes are also used to index into the free list.
|
||||
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
|
||||
|
||||
// First, try to allocate from the free list
|
||||
auto* block = get_free_block(roundSize);
|
||||
if (block) {
|
||||
return {block->ptr_, reinterpret_cast<void*>(block)};
|
||||
}
|
||||
|
||||
// Check in the recently freed blocks with pending events to see if we
|
||||
// can reuse them. Call get_free_block again after processing events
|
||||
if (pinned_use_background_threads()) {
|
||||
process_events_for_specific_size(roundSize);
|
||||
block = get_free_block(roundSize);
|
||||
if (block) {
|
||||
return {block->ptr_, reinterpret_cast<void*>(block)};
|
||||
}
|
||||
|
||||
} else {
|
||||
// Launch the background thread and process events in a loop.
|
||||
static bool background_thread_flag [[maybe_unused]] = [this] {
|
||||
getBackgroundThreadPool()->run([&]() {
|
||||
@ -229,6 +213,16 @@ struct CachingHostAllocatorImpl {
|
||||
}();
|
||||
}
|
||||
|
||||
// Round up the allocation to the nearest power of two to improve reuse.
|
||||
// These power of two sizes are also used to index into the free list.
|
||||
size_t roundSize = c10::llvm::PowerOf2Ceil(size);
|
||||
|
||||
// First, try to allocate from the free list
|
||||
auto* block = get_free_block(roundSize);
|
||||
if (block) {
|
||||
return {block->ptr_, reinterpret_cast<void*>(block)};
|
||||
}
|
||||
|
||||
// Slow path: if we can't allocate from the cached free list, we need
|
||||
// to create a new block.
|
||||
void* ptr = nullptr;
|
||||
@ -278,8 +272,6 @@ struct CachingHostAllocatorImpl {
|
||||
auto index = size_index(block->size_);
|
||||
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
|
||||
free_list_[index].list_.push_back(block);
|
||||
stats_.allocation_bucket_stats[index].decrease(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].decrease(block->size_);
|
||||
} else {
|
||||
// restore these events that record by used streams.
|
||||
std::lock_guard<std::mutex> g(events_mutex_);
|
||||
@ -339,9 +331,12 @@ struct CachingHostAllocatorImpl {
|
||||
for (auto* block : blocks_to_remove) {
|
||||
blocks_.erase(block);
|
||||
ptr_to_block_.erase(block->ptr_);
|
||||
auto index = size_index(block->size_);
|
||||
free_block(block);
|
||||
stats_.allocation.decrease(1);
|
||||
stats_.allocated_bytes.decrease(block->size_);
|
||||
free_block(block);
|
||||
stats_.allocation_bucket_stats[index].decrease(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].decrease(block->size_);
|
||||
delete block;
|
||||
}
|
||||
}
|
||||
@ -398,6 +393,7 @@ struct CachingHostAllocatorImpl {
|
||||
// a best effort manner, since we can't really replay the cached events per bucket.
|
||||
add_bucket_stats(stats.allocation, stats_.allocation_bucket_stats[i]);
|
||||
add_bucket_stats(stats.allocated_bytes, stats_.allocated_bytes_bucket_stats[i]);
|
||||
stats.bucket_allocation[i] = stats_.allocation_bucket_stats[i].allocated;
|
||||
}
|
||||
|
||||
// Get the timing stats
|
||||
@ -488,8 +484,6 @@ struct CachingHostAllocatorImpl {
|
||||
B* block = free_list_[index].list_.back();
|
||||
free_list_[index].list_.pop_back();
|
||||
block->allocated_ = true;
|
||||
stats_.allocation_bucket_stats[index].increase(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].increase(size);
|
||||
return block;
|
||||
}
|
||||
return nullptr;
|
||||
@ -583,8 +577,6 @@ struct CachingHostAllocatorImpl {
|
||||
auto index = size_index(block->size_);
|
||||
std::lock_guard<std::mutex> g(free_list_[index].mutex_);
|
||||
free_list_[index].list_.push_back(block);
|
||||
stats_.allocation_bucket_stats[index].decrease(1);
|
||||
stats_.allocated_bytes_bucket_stats[index].decrease(size);
|
||||
if (size != -1) {
|
||||
return;
|
||||
}
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
#include <c10/core/impl/PythonDispatcherTLS.h>
|
||||
#include <ATen/core/PythonFallbackKernel.h>
|
||||
#include <c10/core/SafePyObject.h>
|
||||
#include <ATen/record_function.h>
|
||||
|
||||
namespace {
|
||||
|
||||
@ -53,20 +54,24 @@ void pythonFallback(const c10::OperatorHandle& op, c10::DispatchKeySet dispatch_
|
||||
TORCH_INTERNAL_ASSERT(tls_on_entry.has_value());
|
||||
// c10::impl::ForceDispatchKeyGuard dispatcher_guard(tls_on_entry.value());
|
||||
// StashTLSOnEntryGuard stash_guard;
|
||||
c10::impl::ExcludeDispatchKeyGuard guard(after_Python_keyset);
|
||||
c10::impl::ExcludeDispatchKeyGuard exclude_guard(after_Python_keyset);
|
||||
|
||||
const auto& schema = op.schema();
|
||||
const auto num_arguments = schema.arguments().size();
|
||||
|
||||
// If Torch Dispatch Mode is active, use its PyInterpreter for dispatch
|
||||
const auto mode_stack_len = c10::impl::TorchDispatchModeTLS::stack_len();
|
||||
if (mode_stack_len > 0) {
|
||||
RECORD_FUNCTION("PythonDispatchMode", torch::jit::last(*stack, num_arguments));
|
||||
const auto& cur_torch_dispatch_mode_state = c10::impl::TorchDispatchModeTLS::get_stack_at(mode_stack_len - 1);
|
||||
cur_torch_dispatch_mode_state->pyinterpreter()->dispatch(op, stack);
|
||||
return;
|
||||
}
|
||||
|
||||
RECORD_FUNCTION("PythonSubclass", torch::jit::last(*stack, num_arguments));
|
||||
|
||||
// Otherwise, find a PyInterpreter on a Tensor
|
||||
const auto& schema = op.schema();
|
||||
const auto num_arguments = schema.arguments().size();
|
||||
|
||||
// It is safe to dispatch on the very first Tensor with a pyobj_interpreter
|
||||
// without checking the interpreters of any of the arguments, because when
|
||||
// we actually run dispatch(), we will take out PyObjects in the context
|
||||
|
||||
@ -1,22 +1,32 @@
|
||||
#include <ATen/core/PythonOpRegistrationTrampoline.h>
|
||||
#include <c10/core/impl/PyInterpreterHooks.h>
|
||||
|
||||
// TODO: delete this
|
||||
namespace at::impl {
|
||||
|
||||
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::interpreter_ = nullptr;
|
||||
// The strategy is that all python interpreters attempt to register themselves
|
||||
// as the main interpreter, but only one wins. Only that interpreter is
|
||||
// allowed to interact with the C++ dispatcher. Furthermore, when we execute
|
||||
// logic on that interpreter, we do so hermetically, never setting pyobj field
|
||||
// on Tensor.
|
||||
|
||||
std::atomic<c10::impl::PyInterpreter*>
|
||||
PythonOpRegistrationTrampoline::interpreter_{nullptr};
|
||||
|
||||
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::getInterpreter() {
|
||||
return c10::impl::getGlobalPyInterpreter();
|
||||
return PythonOpRegistrationTrampoline::interpreter_.load();
|
||||
}
|
||||
|
||||
bool PythonOpRegistrationTrampoline::registerInterpreter(
|
||||
c10::impl::PyInterpreter* interp) {
|
||||
if (interpreter_ != nullptr) {
|
||||
c10::impl::PyInterpreter* expected = nullptr;
|
||||
interpreter_.compare_exchange_strong(expected, interp);
|
||||
if (expected != nullptr) {
|
||||
// This is the second (or later) Python interpreter, which means we need
|
||||
// non-trivial hermetic PyObject TLS
|
||||
c10::impl::HermeticPyObjectTLS::init_state();
|
||||
return false;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
interpreter_ = interp;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace at::impl
|
||||
|
||||
@ -2,21 +2,19 @@
|
||||
|
||||
#include <ATen/core/dispatch/Dispatcher.h>
|
||||
|
||||
// TODO: We can get rid of this
|
||||
// TODO: this can probably live in c10
|
||||
|
||||
|
||||
namespace at::impl {
|
||||
|
||||
// Manages the single Python interpreter instance for PyTorch.
|
||||
class TORCH_API PythonOpRegistrationTrampoline final {
|
||||
static c10::impl::PyInterpreter* interpreter_;
|
||||
static std::atomic<c10::impl::PyInterpreter*> interpreter_;
|
||||
|
||||
public:
|
||||
// Register the Python interpreter. Returns true on first registration,
|
||||
// false if an interpreter was already registered.
|
||||
// Returns true if you successfully registered yourself (that means
|
||||
// you are in the hot seat for doing the operator registrations!)
|
||||
static bool registerInterpreter(c10::impl::PyInterpreter*);
|
||||
|
||||
// Returns the registered interpreter via the global PyInterpreter hooks.
|
||||
// Returns nullptr if no interpreter has been registered yet.
|
||||
static c10::impl::PyInterpreter* getInterpreter();
|
||||
};
|
||||
|
||||
@ -102,8 +102,31 @@ struct VecReduceAllSIMD<float, Op> {
|
||||
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) &&
|
||||
// !defined(C10_MOBILE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE)
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#else
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
@ -140,35 +163,8 @@ struct VecReduceAllSIMD<float, std::plus<Vectorized<float>>> {
|
||||
return vaddvq_f32(acc_vec);
|
||||
}
|
||||
};
|
||||
#endif // defined(CPU_CAPABILITY_SVE256)
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && !defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename Op>
|
||||
struct VecReduceAllSIMD<float, Op> {
|
||||
static inline float apply(
|
||||
const Op& vec_fun,
|
||||
const Vectorized<float>& acc_vec) {
|
||||
using Vec = Vectorized<float>;
|
||||
Vec v = acc_vec;
|
||||
// 128-bit shuffle
|
||||
svuint32_t ind = svdupq_n_u32(4, 5, 6, 7);
|
||||
Vec v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 64-bit shuffle
|
||||
ind = svdupq_n_u32(2, 3, 0, 1);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
// 32-bit shuffle
|
||||
ind = svdupq_n_u32(1, 0, 2, 3);
|
||||
v1 = svtbl_f32(v, ind);
|
||||
v = vec_fun(v, v1);
|
||||
return svlasta(svpfalse(), v);
|
||||
}
|
||||
};
|
||||
#endif // defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||||
// && defined(CPU_CAPABILITY_SVE256)
|
||||
|
||||
template <typename scalar_t, typename Op>
|
||||
inline scalar_t vec_reduce_all(
|
||||
|
||||
@ -1,9 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <cstdint>
|
||||
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(AT_BUILD_ARM_VEC256_WITH_SLEEF) || \
|
||||
defined(AT_BUILD_ARM_VECSVE_WITH_SLEEF))
|
||||
#define SLEEF_STATIC_LIBS
|
||||
#include <sleef.h>
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
// Define the data type of VLS(vector-length specific).
|
||||
|
||||
@ -2,7 +2,6 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/bit_cast.h>
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
#if defined(__aarch64__)
|
||||
#include <ATen/cpu/vec/vec_common_aarch64.h>
|
||||
#elif defined(CPU_CAPABILITY_AVX512)
|
||||
#include <ATen/cpu/vec/vec512/vec512.h>
|
||||
#else
|
||||
#include <ATen/cpu/vec/vec128/vec128.h>
|
||||
@ -11,6 +13,34 @@ namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
||||
__at_align__ bool buffer[x.size()];
|
||||
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
||||
|
||||
@ -2,6 +2,7 @@
|
||||
|
||||
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -262,6 +263,13 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
c10::bit_cast<at_bfloat16_t>(val6.x),
|
||||
c10::bit_cast<at_bfloat16_t>(val7.x)}) {}
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svbfloat16_t v) : Vectorized16(svget_neonq(v)) {}
|
||||
operator svbfloat16_t() const {
|
||||
return svset_neonq(svundef_bf16(), values);
|
||||
}
|
||||
#endif
|
||||
|
||||
static Vectorized<c10::BFloat16> blendv(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
@ -374,6 +382,23 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
Vectorized ge(const Vectorized& other) const;
|
||||
Vectorized lt(const Vectorized& other) const;
|
||||
Vectorized le(const Vectorized& other) const;
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
template <typename step_t>
|
||||
static Vectorized<BFloat16> arange(
|
||||
BFloat16 base = 0.f,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
__at_align__ BFloat16 buffer[size()];
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
buffer[i] = base + i * step;
|
||||
}
|
||||
return svget_neonq(
|
||||
svld1_bf16(ptrue, reinterpret_cast<bfloat16_t*>(buffer)));
|
||||
}
|
||||
|
||||
#endif // CPU_CAPABILITY_SVE128
|
||||
|
||||
}; // Vectorized<c10::BFloat16>
|
||||
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
|
||||
@ -397,6 +422,24 @@ inline Vectorized<c10::BFloat16> convert_float_bfloat16(
|
||||
return Vectorized<c10::BFloat16>(at_vcombine_bf16(x1, x2));
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(const BFloat16* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_bf16(
|
||||
const BFloat16* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<BFloat16> bf16_vec = Vectorized<BFloat16>::loadu(data);
|
||||
auto floats = convert_bfloat16_float(bf16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
Vectorized<c10::BFloat16> binary_operator_via_float(
|
||||
Op op,
|
||||
@ -579,6 +622,12 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
return -a * b - c;
|
||||
}
|
||||
|
||||
#else //
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
#if defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
@ -60,6 +60,7 @@ struct VecConvert<float, 1, BFloat16, 1> {
|
||||
}
|
||||
};
|
||||
|
||||
#endif // defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)
|
||||
#endif // defined(__aarch64__) && (!defined(CPU_CAPABILITY_SVE) ||
|
||||
// defined(CPU_CAPABILITY_SVE128))
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
||||
@ -4,13 +4,10 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#include <sleef.h>
|
||||
#endif
|
||||
|
||||
// Sleef offers vectorized versions of some transcedentals
|
||||
// such as sin, cos, tan etc..
|
||||
// However for now opting for STL, since we are not building
|
||||
@ -35,12 +32,6 @@ inline namespace CPU_CAPABILITY {
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
|
||||
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
||||
#else
|
||||
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
||||
#endif
|
||||
|
||||
template <int index, bool mask_val>
|
||||
struct BlendRegs {
|
||||
static float32x4_t impl(
|
||||
@ -94,6 +85,12 @@ class Vectorized<float> {
|
||||
operator float32x4_t() const {
|
||||
return values;
|
||||
}
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
Vectorized(svfloat32_t v) : values(svget_neonq(v)) {}
|
||||
operator svfloat32_t() const {
|
||||
return svset_neonq(svundef_f32(), values);
|
||||
}
|
||||
#endif
|
||||
template <int64_t mask>
|
||||
static Vectorized<float> blend(
|
||||
const Vectorized<float>& a,
|
||||
|
||||
@ -4,7 +4,6 @@
|
||||
// See Note [Do not compile initializers with AVX]
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_reduced_precision_common_neon.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
@ -25,7 +24,6 @@ inline namespace CPU_CAPABILITY {
|
||||
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
||||
// Most likely we will do aarch32 support with inline asm.
|
||||
#if !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
#ifdef __BIG_ENDIAN__
|
||||
#error "Big endian is not supported."
|
||||
#endif
|
||||
@ -421,6 +419,24 @@ Vectorized<c10::Half> inline operator+(
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
|
||||
__at_align__ float values[Vectorized<float>::size()];
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
||||
values[k] = data[k];
|
||||
}
|
||||
out = Vectorized<float>::loadu(values);
|
||||
}
|
||||
|
||||
inline void load_fp32_from_fp16(
|
||||
const c10::Half* data,
|
||||
Vectorized<float>& out1,
|
||||
Vectorized<float>& out2) {
|
||||
Vectorized<c10::Half> f16_vec = Vectorized<c10::Half>::loadu(data);
|
||||
auto floats = convert_half_float(f16_vec);
|
||||
out1 = std::get<0>(floats);
|
||||
out2 = std::get<1>(floats);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline operator-(
|
||||
const Vectorized<c10::Half>& a,
|
||||
@ -656,6 +672,53 @@ Vectorized<c10::Half> inline fnmsub(
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
||||
inline std::tuple<Vectorized<float>, Vectorized<float>> \
|
||||
convert_##name##_float(const Vectorized<type>& a) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr2); \
|
||||
convert(arr2, arr, K); \
|
||||
return std::make_tuple( \
|
||||
Vectorized<float>::loadu(arr), \
|
||||
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
||||
} \
|
||||
inline Vectorized<type> convert_float_##name( \
|
||||
const Vectorized<float>& a, const Vectorized<float>& b) { \
|
||||
constexpr int64_t K = Vectorized<type>::size(); \
|
||||
__at_align__ float arr[K]; \
|
||||
__at_align__ type arr2[K]; \
|
||||
a.store(arr); \
|
||||
b.store(arr + Vectorized<float>::size()); \
|
||||
convert(arr, arr2, K); \
|
||||
return Vectorized<type>::loadu(arr2); \
|
||||
}
|
||||
|
||||
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out) { \
|
||||
__at_align__ float values[Vectorized<float>::size()]; \
|
||||
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
||||
values[k] = data[k]; \
|
||||
} \
|
||||
out = Vectorized<float>::loadu(values); \
|
||||
} \
|
||||
\
|
||||
inline void load_fp32_from_##name( \
|
||||
const type* data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
||||
load_fp32_from_##name(data, out1); \
|
||||
data += Vectorized<float>::size(); \
|
||||
load_fp32_from_##name(data, out2); \
|
||||
}
|
||||
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
|
||||
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
|
||||
@ -9,21 +9,16 @@
|
||||
#if !( \
|
||||
defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || \
|
||||
defined(CPU_CAPABILITY_ZVECTOR))
|
||||
#if defined(CPU_CAPABILITY_SVE256)
|
||||
#include <ATen/cpu/vec/sve/vec_common_sve.h>
|
||||
#else
|
||||
// clang-format off
|
||||
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
#endif
|
||||
#if !defined(CPU_CAPABILITY_SVE256) || !defined(__ARM_FEATURE_BF16)
|
||||
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
||||
#endif
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
// clang-format on
|
||||
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
||||
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
||||
@ -56,34 +51,6 @@ namespace at::vec {
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
#if !(defined(__aarch64__))
|
||||
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16)
|
||||
#endif
|
||||
|
||||
|
||||
@ -268,9 +268,7 @@ LOAD_FP32_VECTORIZED_INIT(Half, fp16)
|
||||
|
||||
#else // defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if !( \
|
||||
defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__) && \
|
||||
!defined(CPU_CAPABILITY_SVE256))
|
||||
#if !defined(__aarch64__) || defined(CPU_CAPABILITY_SVE256)
|
||||
CONVERT_NON_VECTORIZED_INIT(Half, half)
|
||||
#endif
|
||||
|
||||
|
||||
@ -5,6 +5,13 @@
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#ifdef __aarch64__
|
||||
#if defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
||||
|
||||
#include <c10/util/irange.h>
|
||||
@ -915,7 +922,7 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#elif !defined(CPU_CAPABILITY_SVE256)
|
||||
#else
|
||||
|
||||
// NOTE: These are low-performance implementations that we fall back on
|
||||
// if we are not building with AVX2. This may not be an issue, because
|
||||
@ -1372,12 +1379,18 @@ Vectorized<c10::quint8> inline maximum(
|
||||
return a.maximum(b);
|
||||
}
|
||||
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
#if defined(__aarch64__) && \
|
||||
(defined(CPU_CAPABILITY_SVE128) || !defined(CPU_CAPABILITY_SVE))
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_hi = vmovl_s16(vget_high_s16(s16x8));
|
||||
@ -1402,7 +1415,14 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<int8_t> src) {
|
||||
|
||||
#ifdef CPU_CAPABILITY_SVE
|
||||
svint8_t x = src;
|
||||
auto s8x8 = vget_low_s8(svget_neonq(x));
|
||||
#else
|
||||
auto s8x8 = vld1_s8(src.operator const int8_t*());
|
||||
#endif
|
||||
|
||||
auto s16x8 = vmovl_s8(s8x8);
|
||||
|
||||
auto s32x4_lo = vmovl_s16(vget_low_s16(s16x8));
|
||||
@ -1420,5 +1440,8 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // if defined(CPU_CAPABILITY_AVX2)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
|
||||
@ -31,34 +31,6 @@ namespace vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
||||
stream << val.val_;
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
||||
stream << static_cast<int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
||||
stream << static_cast<unsigned int>(val.val_);
|
||||
return stream;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
||||
T buf[Vectorized<T>::size()];
|
||||
vec.store(buf);
|
||||
stream << "vec[";
|
||||
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
||||
if (i != 0) {
|
||||
stream << ", ";
|
||||
}
|
||||
stream << buf[i];
|
||||
}
|
||||
stream << "]";
|
||||
return stream;
|
||||
}
|
||||
|
||||
#if defined(CPU_CAPABILITY_AVX512)
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512)
|
||||
|
||||
@ -67,18 +67,7 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 64
|
||||
#define int_vector __m512i
|
||||
#elif defined(__aarch64__) && \
|
||||
!defined(CPU_CAPABILITY_SVE) // CPU_CAPABILITY_AVX512
|
||||
// SVE code expects 256-vectors; leave that set for SVE?
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else // CPU_CAPABILITY_AVX512
|
||||
#elif defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_SVE256)
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
@ -88,7 +77,27 @@ Windows llvm will not have this definition.
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#define int_vector __m256i
|
||||
#endif // CPU_CAPABILITY_AVX512
|
||||
#elif defined(__aarch64__)
|
||||
// Define alignment and vector width for SVE128/Default (e.g., NEON)
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(16)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(16))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 16
|
||||
#else
|
||||
// Fallback: define default alignment and vector width
|
||||
#if defined(__GNUC__)
|
||||
#define __at_align__ __attribute__((aligned(32)))
|
||||
#elif defined(_WIN32)
|
||||
#define __at_align__ __declspec(align(32))
|
||||
#else
|
||||
#define __at_align__
|
||||
#endif
|
||||
#define VECTOR_WIDTH 32
|
||||
#endif
|
||||
|
||||
namespace at::vec {
|
||||
// See Note [CPU_CAPABILITY namespace]
|
||||
|
||||
@ -8,13 +8,48 @@
|
||||
#include <ATen/cpu/vec/sve/sve_helper.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
|
||||
#if defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
|
||||
#include <ATen/cpu/vec/sve/vec_double.h>
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
#include <ATen/cpu/vec/sve/vec_int.h>
|
||||
#ifdef CPU_CAPABILITY_SVE128
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
#endif
|
||||
|
||||
#elif defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_float.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_bfloat16.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_double.h>
|
||||
#include <ATen/cpu/vec/sve/vec_int.h>
|
||||
|
||||
#include <ATen/cpu/vec/sve/vec_qint.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_half.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_convert.h>
|
||||
|
||||
#else // NEON
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE128)
|
||||
|
||||
#include <ATen/cpu/vec/functional.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
@ -48,12 +83,6 @@ DEFINE_SVE_CAST(int32_t, s32, float, f32)
|
||||
DEFINE_SVE_CAST(int16_t, s16, float, f32)
|
||||
DEFINE_SVE_CAST(float, f32, double, f64)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
DEFINE_SVE_CAST(int64_t, s64, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int32_t, s32, c10::BFloat16, bf16)
|
||||
DEFINE_SVE_CAST(int16_t, s16, c10::BFloat16, bf16)
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
template <int64_t scale = 1>
|
||||
@ -173,9 +202,11 @@ std::pair<
|
||||
// group cols crossing lanes:
|
||||
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
||||
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svzip1_bf16(a, b)),
|
||||
Vectorized<c10::BFloat16>(svzip2_bf16(a, b)));
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svzip1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svzip2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
@ -224,12 +255,27 @@ std::pair<
|
||||
// swap lanes:
|
||||
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
||||
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
||||
return std::make_pair(
|
||||
Vectorized<c10::BFloat16>(svuzp1_bf16((svbfloat16_t)a, (svbfloat16_t)b)),
|
||||
Vectorized<c10::BFloat16>(svuzp2_bf16((svbfloat16_t)a, (svbfloat16_t)b)));
|
||||
svbfloat16_t aReg = a;
|
||||
svbfloat16_t bReg = b;
|
||||
Vectorized<c10::BFloat16> c = svuzp1_bf16(aReg, bReg);
|
||||
Vectorized<c10::BFloat16> d = svuzp2_bf16(aReg, bReg);
|
||||
return std::make_pair(c, d);
|
||||
}
|
||||
#endif // __ARM_FEATURE_BF16
|
||||
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
#define DEFINE_FLIP_FUNC(type, sve_func) \
|
||||
inline Vectorized<type> flip(const Vectorized<type>& v) { \
|
||||
return Vectorized<type>(sve_func(v)); \
|
||||
}
|
||||
// Use the macro to define the flip functions
|
||||
DEFINE_FLIP_FUNC(float, svrev_f32)
|
||||
DEFINE_FLIP_FUNC(double, svrev_f64)
|
||||
DEFINE_FLIP_FUNC(int64_t, svrev_s64)
|
||||
DEFINE_FLIP_FUNC(int32_t, svrev_s32)
|
||||
DEFINE_FLIP_FUNC(int16_t, svrev_s16)
|
||||
DEFINE_FLIP_FUNC(int8_t, svrev_s8)
|
||||
|
||||
#endif // defined(CPU_CAPABILITY_SVE)
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
@ -90,6 +90,10 @@ public:
|
||||
allocator_->setMemoryFraction(fraction, device);
|
||||
}
|
||||
|
||||
std::vector<HIPCachingAllocator::StreamSegmentSize> getExpandableSegmentSizes(c10::DeviceIndex device) override {
|
||||
return allocator_->getExpandableSegmentSizes(device);
|
||||
}
|
||||
|
||||
void enable(bool value) override {
|
||||
allocator_->enable(value);
|
||||
}
|
||||
|
||||
@ -70,7 +70,10 @@ void MPSHooks::commitStream() const {
|
||||
}
|
||||
|
||||
void* MPSHooks::getCommandBuffer() const {
|
||||
return at::mps::getDefaultMPSStream()->commandBuffer();
|
||||
auto stream = at::mps::getDefaultMPSStream();
|
||||
// Release pending computeCommandEncoder, as extensions is likely to allocate new one
|
||||
stream->endKernelCoalescing();
|
||||
return stream->commandBuffer();
|
||||
}
|
||||
|
||||
void* MPSHooks::getDispatchQueue() const {
|
||||
|
||||
@ -158,7 +158,18 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
|
||||
endKernelCoalescing();
|
||||
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
|
||||
|
||||
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset, length) value:value];
|
||||
// For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26
|
||||
// See https://github.com/pytorch/pytorch/issues/163962
|
||||
// Workaround by batching copy commands into 4Gb chunks
|
||||
constexpr size_t max_copy_size = 0x100000000; // 4GB
|
||||
size_t bytes_filled = 0;
|
||||
size_t bytes_remains = length;
|
||||
while (bytes_remains > 0) {
|
||||
NSUInteger bytes_to_copy = std::min(max_copy_size, bytes_remains);
|
||||
[blitEncoder fillBuffer:buffer range:NSMakeRange(offset + bytes_filled, bytes_to_copy) value:value];
|
||||
bytes_filled += bytes_to_copy;
|
||||
bytes_remains -= bytes_to_copy;
|
||||
}
|
||||
[blitEncoder endEncoding];
|
||||
synchronize(syncType);
|
||||
}
|
||||
|
||||
@ -670,6 +670,8 @@ Tensor rrelu_with_noise_backward(
|
||||
}
|
||||
|
||||
Tensor rrelu(const Tensor & self, const Scalar& lower, const Scalar& upper, bool training, std::optional<Generator> generator) {
|
||||
TORCH_CHECK(std::isfinite(lower.to<double>()), "rrelu: lower bound must be finite, got ", lower.to<double>());
|
||||
TORCH_CHECK(std::isfinite(upper.to<double>()), "rrelu: upper bound must be finite, got ", upper.to<double>());
|
||||
TORCH_CHECK(lower.to<double>() <= upper.to<double>(), "Lower bound should be less than or equal to the upper bound")
|
||||
auto noise = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
||||
return at::rrelu_with_noise(self, noise, lower, upper, training, std::move(generator));
|
||||
|
||||
@ -1157,103 +1157,103 @@ REGISTER_AVX512_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_AVX2_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_VSX_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_SVE256_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
REGISTER_SVE_DISPATCH(cholesky_stub, &cholesky_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_AVX512_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_AVX2_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_VSX_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_ZVECTOR_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_SVE256_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
REGISTER_SVE_DISPATCH(cholesky_inverse_stub, &cholesky_inverse_kernel_impl)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(linalg_eig_stub, DEFAULT, &linalg_eig_kernel)
|
||||
REGISTER_AVX512_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_AVX2_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_VSX_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_SVE256_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
REGISTER_SVE_DISPATCH(linalg_eig_stub, &linalg_eig_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(linalg_eigh_stub, DEFAULT, &linalg_eigh_kernel)
|
||||
REGISTER_AVX512_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_AVX2_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_VSX_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_SVE256_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
REGISTER_SVE_DISPATCH(linalg_eigh_stub, &linalg_eigh_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(geqrf_stub, DEFAULT, &geqrf_kernel)
|
||||
REGISTER_AVX512_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_AVX2_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_VSX_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_SVE256_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
REGISTER_SVE_DISPATCH(geqrf_stub, &geqrf_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(orgqr_stub, DEFAULT, &orgqr_kernel_impl)
|
||||
REGISTER_AVX512_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_AVX2_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_VSX_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_ZVECTOR_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_SVE256_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
REGISTER_SVE_DISPATCH(orgqr_stub, &orgqr_kernel_impl)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ormqr_stub, DEFAULT, &ormqr_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_VSX_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
REGISTER_SVE_DISPATCH(ormqr_stub, &ormqr_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lstsq_stub, DEFAULT, &lstsq_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_VSX_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
REGISTER_SVE_DISPATCH(lstsq_stub, &lstsq_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(triangular_solve_stub, DEFAULT, &triangular_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(triangular_solve_stub, &triangular_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lu_factor_stub, DEFAULT, &lu_factor_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_VSX_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
REGISTER_SVE_DISPATCH(lu_factor_stub, &lu_factor_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ldl_factor_stub, DEFAULT, &ldl_factor_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_VSX_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
REGISTER_SVE_DISPATCH(ldl_factor_stub, &ldl_factor_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(ldl_solve_stub, DEFAULT, &ldl_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(ldl_solve_stub, &ldl_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(lu_solve_stub, DEFAULT, &lu_solve_kernel)
|
||||
REGISTER_AVX512_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_AVX2_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_VSX_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_SVE256_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
REGISTER_SVE_DISPATCH(lu_solve_stub, &lu_solve_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(svd_stub, DEFAULT, &svd_kernel)
|
||||
REGISTER_AVX512_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_AVX2_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_VSX_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_SVE256_DISPATCH(svd_stub, &svd_kernel)
|
||||
REGISTER_SVE_DISPATCH(svd_stub, &svd_kernel)
|
||||
|
||||
REGISTER_ARCH_DISPATCH(unpack_pivots_stub, DEFAULT, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_AVX512_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_AVX2_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(unpack_pivots_stub, &unpack_pivots_cpu_kernel)
|
||||
} // namespace at::native
|
||||
|
||||
@ -39,19 +39,21 @@ static CPUCapability compute_cpu_capability() {
|
||||
}
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION)
|
||||
int sve_vl = cpuinfo_get_max_arm_sve_length(); //Returns maximum SVE VL supported by your HW.
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
if (envar == "sve256") {
|
||||
if (envar == "sve") {
|
||||
// Select SVE capability based on the maximum SVE VL supported by the HW.
|
||||
if (sve_vl == 256) {
|
||||
#ifdef HAVE_ARM_BF16_CPU_DEFINITION
|
||||
if (cpuinfo_has_arm_bf16()) {
|
||||
return CPUCapability::SVE256;
|
||||
}
|
||||
#endif
|
||||
} else if (sve_vl == 128) {
|
||||
if (cpuinfo_has_arm_bf16()) {
|
||||
return CPUCapability::SVE128;
|
||||
}
|
||||
} else {
|
||||
TORCH_WARN("SVE capability not available on hardware. Falling back to DEFAULT");
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
TORCH_WARN("SVE256 capability not available on hardware. Falling back to DEFAULT");
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
#ifdef HAVE_AVX512_CPU_DEFINITION
|
||||
if (envar == "avx512") {
|
||||
@ -113,6 +115,11 @@ static CPUCapability compute_cpu_capability() {
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (sve_vl == 128) { // Check for SVE128
|
||||
return CPUCapability::SVE128;
|
||||
}
|
||||
#endif
|
||||
// Return the default CPU capability.
|
||||
return CPUCapability::DEFAULT;
|
||||
}
|
||||
@ -147,6 +154,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
constexpr auto supported_devices = c10::array_of<c10::DeviceType>(
|
||||
c10::DeviceType::CPU,
|
||||
@ -184,6 +194,9 @@ DispatchResult DispatchStubImpl::try_get_call_ptr(
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, SVE128
|
||||
#endif
|
||||
);
|
||||
if (!std::holds_alternative<ErrorType>(result)) {
|
||||
@ -242,6 +255,9 @@ void* DispatchStubImpl::get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
|
||||
auto result = try_get_call_ptr(
|
||||
@ -266,6 +282,10 @@ void* DispatchStubImpl::get_call_ptr(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
,
|
||||
SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
,
|
||||
SVE128
|
||||
#endif
|
||||
);
|
||||
if (std::holds_alternative<ErrorType>(result)) {
|
||||
@ -300,6 +320,9 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
){
|
||||
|
||||
@ -342,6 +365,16 @@ DispatchResult DispatchStubImpl::try_choose_cpu_impl(
|
||||
return DispatchResult(SVE256);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
|
||||
if (C10_UNLIKELY(!SVE128)) {
|
||||
// dispatch to DEFAULT, since the SVE kernel is missing
|
||||
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
|
||||
} else {
|
||||
return DispatchResult(SVE128);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return DEFAULT != nullptr ? DispatchResult(DEFAULT) : ErrorType::MissingDeviceKernel;
|
||||
}
|
||||
@ -363,6 +396,9 @@ void* DispatchStubImpl::choose_cpu_impl(
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
) {
|
||||
auto capability = static_cast<int>(get_cpu_capability());
|
||||
(void)capability;
|
||||
@ -408,6 +444,17 @@ void* DispatchStubImpl::choose_cpu_impl(
|
||||
return SVE256;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
if (capability >= static_cast<int>(CPUCapability::SVE128)) {
|
||||
if (C10_UNLIKELY(!SVE128)) {
|
||||
// dispatch to DEFAULT, since the SVE kernel is missing
|
||||
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
|
||||
return DEFAULT;
|
||||
} else {
|
||||
return SVE128;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
TORCH_INTERNAL_ASSERT(DEFAULT, "DispatchStub: missing default kernel");
|
||||
return DEFAULT;
|
||||
|
||||
@ -64,8 +64,9 @@ enum class CPUCapability {
|
||||
VSX = 1,
|
||||
#elif defined(HAVE_ZVECTOR_CPU_DEFINITION)
|
||||
ZVECTOR = 1,
|
||||
#elif defined(HAVE_SVE256_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
#elif defined(HAVE_SVE_CPU_DEFINITION) && defined(HAVE_ARM_BF16_CPU_DEFINITION)
|
||||
SVE256 = 1,
|
||||
SVE128 = 2,
|
||||
#else
|
||||
AVX2 = 1,
|
||||
AVX512 = 2,
|
||||
@ -117,6 +118,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -138,6 +142,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -159,6 +166,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -183,6 +193,9 @@ struct TORCH_API DispatchStubImpl {
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, void *SVE256
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, void *SVE128
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -240,6 +253,9 @@ private:
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE256)
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE128)
|
||||
#endif
|
||||
)
|
||||
);
|
||||
@ -301,6 +317,9 @@ public:
|
||||
#endif
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE256)
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
, reinterpret_cast<void*>(SVE128)
|
||||
#endif
|
||||
);
|
||||
if (std::holds_alternative<ErrorType>(result)){
|
||||
@ -325,6 +344,9 @@ public:
|
||||
#ifdef HAVE_SVE256_CPU_DEFINITION
|
||||
static TORCH_API FnPtr SVE256;
|
||||
#endif
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
static TORCH_API FnPtr SVE128;
|
||||
#endif
|
||||
private:
|
||||
DispatchStubImpl impl;
|
||||
};
|
||||
@ -432,6 +454,12 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
#define REGISTER_SVE256_DISPATCH(name, fn)
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_SVE128_CPU_DEFINITION
|
||||
#define REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, SVE128, fn)
|
||||
#else
|
||||
#define REGISTER_SVE128_DISPATCH(name, fn)
|
||||
#endif
|
||||
|
||||
// Macro to register the same kernel for all CPU arch types. This is useful
|
||||
// if a kernel does not benefit from being recompiled across different arch types.
|
||||
#define REGISTER_ALL_CPU_DISPATCH(name, fn) \
|
||||
@ -440,6 +468,11 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
REGISTER_AVX2_DISPATCH(name, fn) \
|
||||
REGISTER_VSX_DISPATCH(name, fn) \
|
||||
REGISTER_ZVECTOR_DISPATCH(name, fn) \
|
||||
REGISTER_SVE256_DISPATCH(name, fn) \
|
||||
REGISTER_SVE128_DISPATCH(name, fn)
|
||||
|
||||
#define REGISTER_SVE_DISPATCH(name, fn) \
|
||||
REGISTER_SVE128_DISPATCH(name, fn) \
|
||||
REGISTER_SVE256_DISPATCH(name, fn)
|
||||
|
||||
#define REGISTER_NO_CPU_DISPATCH(name) \
|
||||
@ -482,6 +515,7 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
// REGISTER_DISPATCH now dispatches an AVX512 kernel to nullptr but registers other dispatches.
|
||||
// ALSO_REGISTER_AVX512_DISPATCH should be used for ensuring AVX512 dispatch, among others.
|
||||
// ALSO_REGISTER_SVE256_DISPATCH should be used for ensuring SVE256 dispatch, among others.
|
||||
// ALSO_REGISTER_SVE128_DISPATCH should be used for ensuring SVE128 dispatch, among others.
|
||||
#ifdef CPU_CAPABILITY_AVX512
|
||||
#define REGISTER_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, ((void*)(fn) ? nullptr : nullptr))
|
||||
#else
|
||||
@ -489,6 +523,7 @@ struct RegisterPRIVATEUSE1Dispatch {
|
||||
#endif
|
||||
#define ALSO_REGISTER_AVX512_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#define ALSO_REGISTER_SVE256_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#define ALSO_REGISTER_SVE128_DISPATCH(name, fn) REGISTER_ARCH_DISPATCH(name, CPU_CAPABILITY, fn)
|
||||
#endif
|
||||
} // namespace at::native
|
||||
|
||||
|
||||
@ -2801,6 +2801,7 @@ Tensor matrix_exp(const Tensor& a) {
|
||||
// TODO This should be deprecated in favor of linalg_matrix_exp_differential
|
||||
// in FunctionsManual.cpp
|
||||
Tensor matrix_exp_backward(const Tensor& self, const Tensor& grad) {
|
||||
squareCheckInputs(self, "matrix_exp_backward");
|
||||
NoTF32Guard disable_tf32;
|
||||
return backward_analytic_function_of_a_matrix(
|
||||
self, grad,
|
||||
|
||||
@ -466,7 +466,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cp
|
||||
REGISTER_AVX512_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(_segment_reduce_lengths_stub, &_segment_reduce_lengths_cpu_kernel)
|
||||
|
||||
// offsets dispatches
|
||||
REGISTER_ARCH_DISPATCH(
|
||||
@ -477,7 +477,7 @@ REGISTER_AVX2_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cp
|
||||
REGISTER_AVX512_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_VSX_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_ZVECTOR_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_SVE256_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
REGISTER_SVE_DISPATCH(_segment_reduce_offsets_stub, &_segment_reduce_offsets_cpu_kernel)
|
||||
|
||||
// Currently some computation is being duplicated across forward and backward.
|
||||
// TODO: Cache indices in forward pass to reuse in backward
|
||||
@ -548,7 +548,7 @@ REGISTER_VSX_DISPATCH(
|
||||
REGISTER_ZVECTOR_DISPATCH(
|
||||
_segment_reduce_lengths_backward_stub,
|
||||
&_segment_reduce_cpu_lengths_backward_kernel)
|
||||
REGISTER_SVE256_DISPATCH(
|
||||
REGISTER_SVE_DISPATCH(
|
||||
_segment_reduce_lengths_backward_stub,
|
||||
&_segment_reduce_cpu_lengths_backward_kernel)
|
||||
|
||||
@ -568,7 +568,7 @@ REGISTER_VSX_DISPATCH(
|
||||
REGISTER_ZVECTOR_DISPATCH(
|
||||
_segment_reduce_offsets_backward_stub,
|
||||
&_segment_reduce_cpu_offsets_backward_kernel)
|
||||
REGISTER_SVE256_DISPATCH(
|
||||
REGISTER_SVE_DISPATCH(
|
||||
_segment_reduce_offsets_backward_stub,
|
||||
&_segment_reduce_cpu_offsets_backward_kernel)
|
||||
|
||||
|
||||
@ -1880,43 +1880,34 @@ Tensor repeat(const Tensor& self, IntArrayRef repeats) {
|
||||
|
||||
Tensor xtensor = self.expand(padded_size);
|
||||
|
||||
Tensor urtensor;
|
||||
if (self.is_quantized()) {
|
||||
urtensor = at::empty_quantized(target_size, self);
|
||||
} else {
|
||||
urtensor = at::empty(target_size, self.options());
|
||||
}
|
||||
|
||||
// return an empty tensor if one of the repeat dimensions is zero
|
||||
if (zero_tensor) {
|
||||
return urtensor;
|
||||
return self.is_quantized() ? at::empty_quantized(target_size, self)
|
||||
: at::empty(target_size, self.options());
|
||||
}
|
||||
|
||||
// Create view of shape [r0, s0, r1, s1, ...]
|
||||
// where ri is repeat[i], si is self.size(i).
|
||||
Tensor view = xtensor;
|
||||
auto expand_shape = std::vector<int64_t>();
|
||||
expand_shape.reserve(xtensor.dim() * 2);
|
||||
for (const auto i : c10::irange(xtensor.dim())) {
|
||||
// can't unfold with step 0, so make sure step is at least 1
|
||||
// (it doesn't matter what it is in that case, because the size is 0).
|
||||
auto size_i = xtensor.sizes()[i];
|
||||
urtensor = urtensor.unfold(i, size_i, std::max<int64_t>(size_i, 1));
|
||||
view = view.unsqueeze(2 * i);
|
||||
expand_shape.push_back(repeats[i]);
|
||||
expand_shape.push_back(xtensor.size(i));
|
||||
}
|
||||
// expanded_view is non-contiguous because .expand set stride to 0.
|
||||
auto expanded_view = view.expand(expand_shape);
|
||||
|
||||
urtensor.copy_(xtensor.expand_as(urtensor));
|
||||
// copy to contiguous tensor.
|
||||
auto contiguous_copy = at::empty(
|
||||
expanded_view.sizes(),
|
||||
expanded_view.options(),
|
||||
at::MemoryFormat::Contiguous);
|
||||
contiguous_copy.copy_(expanded_view);
|
||||
|
||||
// Combine the dimensions to produce the target_size.
|
||||
// xtensor dims: [a0, ..., ad-1]
|
||||
// urtensor dims: [a0, ..., ad-1, b0, ..., bd-1]
|
||||
// b dims are produced by unfold.
|
||||
// Transform urtensor to [a0 * b0, ..., ad-1 * bd-1]
|
||||
const int64_t n_dims = xtensor.dim();
|
||||
auto range_a = at::arange(xtensor.dim(), at::TensorOptions(at::kLong));
|
||||
auto range_b = range_a + n_dims;
|
||||
auto stacked = stack({std::move(range_a), std::move(range_b)}, 1).flatten();
|
||||
auto permutation = IntArrayRef(stacked.data_ptr<int64_t>(), n_dims * 2);
|
||||
// Permute from [a0, ..., ad-1, b0, ..., bd-1] to [a0, b0, ..., ad-1, bd-1]
|
||||
urtensor = urtensor.permute(permutation);
|
||||
// Reshape from [a0, b0, ..., ad-1, bd-1] to [a0 * b0, ..., ad-1 * bd-1]
|
||||
urtensor = urtensor.reshape(target_size);
|
||||
|
||||
return urtensor;
|
||||
// Reshape to [s0 * r0, s1 * r1, ...].
|
||||
// No extra copy of data during reshape for a contiguous tensor.
|
||||
return contiguous_copy.view(target_size);
|
||||
}
|
||||
|
||||
Tensor tile_symint(const Tensor& self, SymIntArrayRef reps) {
|
||||
|
||||
@ -212,7 +212,7 @@ std::pair<vec::Vectorized<float>, vec::Vectorized<float>> fmadd(
|
||||
const vec::Vectorized<c10::Half>& b,
|
||||
const vec::Vectorized<float>& acc_low,
|
||||
const vec::Vectorized<float>& acc_high) {
|
||||
#if defined(__ARM_FEATURE_FP16_FML) && !defined(CPU_CAPABILITY_SVE)
|
||||
#if defined(__aarch64__) && ((defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)) || (defined(CPU_CAPABILITY_SVE128)))
|
||||
return std::make_pair(vfmlalq_low_f16(acc_low, a, b), vfmlalq_high_f16(acc_high, a, b));
|
||||
#else
|
||||
const auto [a_float_low, a_float_high] = convert_half_float(a);
|
||||
@ -233,7 +233,7 @@ std::pair<vec::Vectorized<float>, vec::Vectorized<float>> fmadd(
|
||||
|
||||
// Return a + b_low * c_low + b_high * c_high
|
||||
vec::Vectorized<float> fmadd(vec::Vectorized<float> a, vec::Vectorized<Half> b, vec::Vectorized<Half> c) {
|
||||
#if defined(__aarch64__) && defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)
|
||||
#if defined(__aarch64__) && ((defined(__ARM_FEATURE_FP16_FML) && !defined(__ARM_FEATURE_SVE)) || (defined(CPU_CAPABILITY_SVE128)))
|
||||
// NOTE: this instruction is an optional instruction in ARM v8.2 and
|
||||
// v8.3, but mandatory in v8.4 per
|
||||
// https://developer.arm.com/documentation/ddi0596/2021-03/SIMD-FP-Instructions/FMLAL--FMLAL2--vector---Floating-point-fused-Multiply-Add-Long-to-accumulator--vector--?lang=en
|
||||
|
||||
@ -1124,6 +1124,17 @@ bool is_rowwise_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
&& scale.is_contiguous());
|
||||
}
|
||||
|
||||
bool check_size_stride(const at::Tensor& scale, int dim, int size, int stride) {
|
||||
// For Blockwise1x128 and Blockwise128x128,
|
||||
// when the scale tensor has a dimension of size 1, the stride is effectively
|
||||
// "meaningless", i.e. PyTorch decides to use a stride of 1. Thus, the regular
|
||||
// stride check fails. Here, we relax the stride check when the effective
|
||||
// stride is 1.
|
||||
|
||||
return (
|
||||
scale.size(dim) == size && (size <= 1 || scale.stride(dim) == stride));
|
||||
}
|
||||
|
||||
// 1x16 blocks for packed nvfp4 data and fp8_e4m3fn scales
|
||||
bool is_blockwise_1x16_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
// Multiply t.size(1) by 2 to adjust for fp4x2 packing
|
||||
@ -1149,15 +1160,24 @@ bool is_blockwise_1x32_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
}
|
||||
|
||||
bool is_blockwise_1x128_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return (isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat && scale.dim() == 2
|
||||
&& scale.size(0) == t.size(0) && scale.size(1) == ceil_div<int64_t>(t.size(1), 128)
|
||||
&& scale.stride(0) == 1 && scale.stride(1) == t.size(0));
|
||||
return (
|
||||
isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat &&
|
||||
scale.dim() == 2 && check_size_stride(scale, 0, t.size(0), 1) &&
|
||||
check_size_stride(
|
||||
scale, 1, ceil_div<int64_t>(t.size(1), 128), t.size(0)));
|
||||
}
|
||||
|
||||
bool is_blockwise_128x128_scaling(const at::Tensor& t, const at::Tensor& scale) {
|
||||
return (isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat && scale.dim() == 2
|
||||
&& scale.size(0) == ceil_div<int64_t>(t.size(0), 128) && scale.size(1) == ceil_div<int64_t>(t.size(1), 128)
|
||||
&& scale.stride(0) == round_up<int64_t>(ceil_div<int64_t>(t.size(1), 128), 4) && scale.stride(1) == 1);
|
||||
return (
|
||||
isFloat8Type(t.scalar_type()) && scale.scalar_type() == kFloat &&
|
||||
scale.dim() == 2 &&
|
||||
check_size_stride(
|
||||
scale,
|
||||
0,
|
||||
ceil_div<int64_t>(t.size(0), 128),
|
||||
round_up<int64_t>(ceil_div<int64_t>(t.size(1), 128), 4)) &&
|
||||
check_size_stride(
|
||||
scale, 1, ceil_div<int64_t>(t.size(1), 128), 1));
|
||||
}
|
||||
|
||||
bool is_desired_scaling(const at::Tensor& t, const at::Tensor& scale, ScalingType desired_scaling) {
|
||||
@ -1811,6 +1831,37 @@ std::optional<c10::ScalarType> out_dtype) {
|
||||
return out;
|
||||
}
|
||||
|
||||
static void baddbmm_bmm_out_dtype_checks(const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar& alpha, const at::ScalarType out_dtype, bool is_bmm, const std::optional<Tensor>& self_baddbmm = std::nullopt) {
|
||||
// ref ATen/native/LinearAlgebra.cpp common_checks_baddbmm_bmm
|
||||
TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor");
|
||||
TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor");
|
||||
|
||||
const auto batch1_sizes = batch1.sizes();
|
||||
const auto batch2_sizes = batch2.sizes();
|
||||
|
||||
int64_t bs = batch1_sizes[0];
|
||||
int64_t contraction_size = batch1_sizes[2];
|
||||
int64_t res_rows = batch1_sizes[1];
|
||||
int64_t res_cols = batch2_sizes[2];
|
||||
std::vector<int64_t> output_size {bs, res_rows, res_cols};
|
||||
|
||||
TORCH_CHECK(batch2_sizes[0] == bs && batch2_sizes[1] == contraction_size,
|
||||
"Expected size for first two dimensions of batch2 tensor to be: [",
|
||||
bs, ", ", contraction_size, "] but got: [", batch2_sizes[0], ", ", batch2_sizes[1], "].");
|
||||
|
||||
TORCH_CHECK(batch1.scalar_type() == batch2.scalar_type(), "batch1 and batch2 must have the same dtype");
|
||||
|
||||
TORCH_CHECK(out_dtype == batch1.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (batch1.scalar_type() == at::ScalarType::Half || batch1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
if (!is_bmm && self_baddbmm.has_value()) {
|
||||
const auto& self = self_baddbmm.value();
|
||||
TORCH_CHECK(self.dim() == 3, "self must be a 3D tensor");
|
||||
TORCH_CHECK(self.sizes() == output_size, "self must have the same shape as the output");
|
||||
}
|
||||
}
|
||||
|
||||
Tensor _bmm_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype) {
|
||||
IntArrayRef batch1_sizes = batch1.sizes();
|
||||
IntArrayRef batch2_sizes = batch2.sizes();
|
||||
@ -1820,12 +1871,7 @@ Tensor _bmm_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::Sca
|
||||
}
|
||||
|
||||
Tensor& _bmm_out_dtype_cuda(const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, Tensor &out) {
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
|
||||
TORCH_CHECK(out_dtype == batch1.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (batch1.scalar_type() == at::ScalarType::Half || batch1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, 0.0, 1.0, out_dtype, true);
|
||||
Scalar beta(0.0);
|
||||
Scalar alpha(1.0);
|
||||
{
|
||||
@ -1844,12 +1890,7 @@ Tensor _baddbmm_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tenso
|
||||
}
|
||||
|
||||
Tensor& _baddbmm_out_dtype_cuda(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
|
||||
TORCH_CHECK(out_dtype == batch1.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (batch1.scalar_type() == at::ScalarType::Half || batch1.scalar_type() == at::ScalarType::BFloat16)),
|
||||
"out_dtype must be the same as input dtype or fp32 for fp16/bf16 inputs");
|
||||
|
||||
baddbmm_bmm_out_dtype_checks(batch1, batch2, beta, alpha, out_dtype, false, self);
|
||||
{
|
||||
NoNamesGuard guard;
|
||||
baddbmm_out_cuda_impl(out, out, batch1, batch2, beta, alpha);
|
||||
@ -1864,6 +1905,12 @@ Tensor _mm_dtype_cuda(const Tensor& self, const Tensor& mat2, const at::ScalarTy
|
||||
}
|
||||
|
||||
Tensor& _mm_dtype_out_cuda(const Tensor& self, const Tensor& mat2, const at::ScalarType out_dtype, Tensor &out) {
|
||||
TORCH_CHECK(self.dim() == 2, "self must be a matrix, got ", self.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
TORCH_CHECK(
|
||||
self.sizes()[1] == mat2.sizes()[0], "mat1 and mat2 shapes cannot be multiplied (",
|
||||
self.sizes()[0], "x", self.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
|
||||
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(self.scalar_type() == mat2.scalar_type(), "input dtypes must be the same");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() ||
|
||||
@ -1883,6 +1930,14 @@ Tensor _addmm_dtype_cuda(const Tensor& self, const Tensor& mat1, const Tensor& m
|
||||
}
|
||||
|
||||
Tensor& _addmm_dtype_out_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const at::ScalarType out_dtype, const Scalar& beta, const Scalar& alpha, Tensor &out) {
|
||||
TORCH_CHECK(self.scalar_type() == mat2.scalar_type(), "self and mat2 must have the same dtype, but got ", self.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(mat1.scalar_type() == mat2.scalar_type(), "mat1 and mat2 must have the same dtype, but got ", mat1.scalar_type(), " and ", mat2.scalar_type());
|
||||
TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix, got ", mat1.dim(), "-D tensor");
|
||||
TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix, got ", mat2.dim(), "-D tensor");
|
||||
TORCH_CHECK(
|
||||
mat1.sizes()[1] == mat2.sizes()[0], "mat1 and mat2 shapes cannot be multiplied (",
|
||||
mat1.sizes()[0], "x", mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")");
|
||||
|
||||
TORCH_CHECK(out_dtype == out.scalar_type(), "out_dtype must be the same as the dtype of the provided out tensor");
|
||||
TORCH_CHECK(out_dtype == self.scalar_type() ||
|
||||
(out_dtype == at::ScalarType::Float && (self.scalar_type() == at::ScalarType::Half || self.scalar_type() == at::ScalarType::BFloat16)),
|
||||
|
||||
@ -165,7 +165,7 @@ REGISTER_AVX2_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_co
|
||||
REGISTER_AVX512_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
|
||||
REGISTER_ZVECTOR_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
|
||||
REGISTER_VSX_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
|
||||
REGISTER_SVE256_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
|
||||
REGISTER_SVE_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
|
||||
|
||||
// _out variants can be shared between PocketFFT and MKL
|
||||
Tensor& _fft_r2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
|
||||
|
||||
@ -14,8 +14,8 @@ template <typename T, int D, int V = D>
|
||||
device T* out [[buffer(3)]],
|
||||
const constant uint& gqa_factor [[buffer(4)]],
|
||||
const constant uint& N [[buffer(5)]],
|
||||
const constant uint2& k_head_seq_stride [[buffer(6)]],
|
||||
const constant uint2& v_head_seq_stride [[buffer(7)]],
|
||||
const constant uint3& qkv_head_strides [[buffer(6)]],
|
||||
const constant uint3& qkv_seq_strides [[buffer(7)]],
|
||||
const constant float& scale [[buffer(8)]],
|
||||
const device bool* mask [[buffer(9)]],
|
||||
const constant uint3& mask_strides [[buffer(10)]],
|
||||
@ -28,10 +28,12 @@ template <typename T, int D, int V = D>
|
||||
constexpr uint BD = 32;
|
||||
constexpr uint qk_per_thread = D / BD;
|
||||
constexpr uint v_per_thread = V / BD;
|
||||
const uint k_head_stride = k_head_seq_stride.x;
|
||||
const uint k_seq_stride = k_head_seq_stride.y;
|
||||
const uint v_head_stride = v_head_seq_stride.x;
|
||||
const uint v_seq_stride = v_head_seq_stride.y;
|
||||
const uint q_head_stride = qkv_head_strides.x;
|
||||
const uint q_seq_stride = qkv_seq_strides.x;
|
||||
const uint k_head_stride = qkv_head_strides.y;
|
||||
const uint k_seq_stride = qkv_seq_strides.y;
|
||||
const uint v_head_stride = qkv_head_strides.z;
|
||||
const uint v_seq_stride = qkv_seq_strides.z;
|
||||
const uint mask_head_stride = mask_strides.x;
|
||||
const uint mask_kv_seq_stride = mask_strides.y;
|
||||
const uint mask_q_seq_stride = mask_strides.z;
|
||||
@ -54,9 +56,9 @@ template <typename T, int D, int V = D>
|
||||
const int kv_head_idx = head_idx / gqa_factor;
|
||||
const int Q = tpg.y;
|
||||
const int group_offset = head_idx * Q + q_seq_idx;
|
||||
const int q_offset = group_offset;
|
||||
const int o_offset = group_offset;
|
||||
queries += q_offset * D + simd_lid * qk_per_thread;
|
||||
queries += head_idx * q_head_stride + q_seq_idx * q_seq_stride +
|
||||
simd_lid * qk_per_thread;
|
||||
keys += kv_head_idx * k_head_stride + simd_gid * k_seq_stride +
|
||||
simd_lid * qk_per_thread;
|
||||
values += kv_head_idx * v_head_stride + simd_gid * v_seq_stride +
|
||||
@ -156,8 +158,8 @@ template <typename T, int D, int V = D>
|
||||
device float* maxs [[buffer(5)]],
|
||||
const constant uint& gqa_factor [[buffer(6)]],
|
||||
const constant uint& N [[buffer(7)]],
|
||||
const constant uint2& k_head_seq_stride [[buffer(8)]],
|
||||
const constant uint2& v_head_seq_stride [[buffer(9)]],
|
||||
const constant uint3& qkv_head_strides [[buffer(8)]],
|
||||
const constant uint3& qkv_seq_strides [[buffer(9)]],
|
||||
const constant float& scale [[buffer(10)]],
|
||||
const device bool* mask [[buffer(11)]],
|
||||
const constant uint3& mask_strides [[buffer(12)]],
|
||||
@ -170,10 +172,12 @@ template <typename T, int D, int V = D>
|
||||
constexpr int BD = 32;
|
||||
constexpr int qk_per_thread = D / BD;
|
||||
constexpr int v_per_thread = V / BD;
|
||||
const int k_head_stride = k_head_seq_stride.x;
|
||||
const int k_seq_stride = k_head_seq_stride.y;
|
||||
const int v_head_stride = v_head_seq_stride.x;
|
||||
const int v_seq_stride = v_head_seq_stride.y;
|
||||
const int q_head_stride = qkv_head_strides.x;
|
||||
const int q_seq_stride = qkv_seq_strides.x;
|
||||
const int k_head_stride = qkv_head_strides.y;
|
||||
const int k_seq_stride = qkv_seq_strides.y;
|
||||
const int v_head_stride = qkv_head_strides.z;
|
||||
const int v_seq_stride = qkv_seq_strides.z;
|
||||
const int mask_kv_seq_stride = mask_strides.x;
|
||||
const int mask_q_seq_stride = mask_strides.y;
|
||||
const int mask_head_stride = mask_strides.z;
|
||||
@ -196,10 +200,10 @@ template <typename T, int D, int V = D>
|
||||
const int head_idx = tid.x;
|
||||
const int q_seq_idx = tid.y;
|
||||
const int o_offset = head_idx * tpg.y + q_seq_idx;
|
||||
const int q_offset = o_offset;
|
||||
const int kv_head_idx = head_idx / gqa_factor;
|
||||
|
||||
queries += q_offset * D + simd_lid * qk_per_thread;
|
||||
queries += head_idx * q_head_stride + q_seq_idx * q_seq_stride +
|
||||
simd_lid * qk_per_thread;
|
||||
keys += kv_head_idx * k_head_stride +
|
||||
(block_idx * BN + simd_gid) * k_seq_stride + simd_lid * qk_per_thread;
|
||||
values += kv_head_idx * v_head_stride +
|
||||
@ -520,25 +524,25 @@ kernel void attention(
|
||||
}
|
||||
}
|
||||
|
||||
#define INSTANTIATE_SDPA_VECTOR(DTYPE, QK_DIM, VALUE_DIM) \
|
||||
template [[host_name("sdpa_vector_" #DTYPE "_" #QK_DIM \
|
||||
"_" #VALUE_DIM)]] kernel void \
|
||||
sdpa_vector<DTYPE, QK_DIM, VALUE_DIM>( \
|
||||
const device DTYPE* queries [[buffer(0)]], \
|
||||
const device DTYPE* keys [[buffer(1)]], \
|
||||
const device DTYPE* values [[buffer(2)]], \
|
||||
device DTYPE* out [[buffer(3)]], \
|
||||
const constant uint& gqa_factor [[buffer(4)]], \
|
||||
const constant uint& N [[buffer(5)]], \
|
||||
const constant uint2& k_head_seq_stride [[buffer(6)]], \
|
||||
const constant uint2& v_head_seq_stride [[buffer(7)]], \
|
||||
const constant float& scale [[buffer(8)]], \
|
||||
const device bool* mask [[buffer(9)]], \
|
||||
const constant uint3& mask_strides [[buffer(10)]], \
|
||||
const constant bool& has_mask [[buffer(11)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 tpg [[threadgroups_per_grid]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
#define INSTANTIATE_SDPA_VECTOR(DTYPE, QK_DIM, VALUE_DIM) \
|
||||
template [[host_name("sdpa_vector_" #DTYPE "_" #QK_DIM \
|
||||
"_" #VALUE_DIM)]] kernel void \
|
||||
sdpa_vector<DTYPE, QK_DIM, VALUE_DIM>( \
|
||||
const device DTYPE* queries [[buffer(0)]], \
|
||||
const device DTYPE* keys [[buffer(1)]], \
|
||||
const device DTYPE* values [[buffer(2)]], \
|
||||
device DTYPE* out [[buffer(3)]], \
|
||||
const constant uint& gqa_factor [[buffer(4)]], \
|
||||
const constant uint& N [[buffer(5)]], \
|
||||
const constant uint3& qkv_head_strides [[buffer(6)]], \
|
||||
const constant uint3& qkv_seq_strides [[buffer(7)]], \
|
||||
const constant float& scale [[buffer(8)]], \
|
||||
const device bool* mask [[buffer(9)]], \
|
||||
const constant uint3& mask_strides [[buffer(10)]], \
|
||||
const constant bool& has_mask [[buffer(11)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 tpg [[threadgroups_per_grid]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
#define INSTANTIATE_SDPA_VECTOR_2PASS_1(DTYPE, QK_DIM, VALUE_DIM) \
|
||||
@ -553,8 +557,8 @@ kernel void attention(
|
||||
device float* maxs [[buffer(5)]], \
|
||||
const constant uint& gqa_factor [[buffer(6)]], \
|
||||
const constant uint& N [[buffer(7)]], \
|
||||
const constant uint2& k_head_seq_stride [[buffer(8)]], \
|
||||
const constant uint2& v_head_seq_stride [[buffer(9)]], \
|
||||
const constant uint3& qkv_head_strides [[buffer(8)]], \
|
||||
const constant uint3& qkv_seq_strides [[buffer(9)]], \
|
||||
const constant float& scale [[buffer(10)]], \
|
||||
const device bool* mask [[buffer(11)]], \
|
||||
const constant uint3& mask_strides [[buffer(12)]], \
|
||||
|
||||
@ -25,7 +25,7 @@ struct ReductionOp {
|
||||
inline opmath_t<T> operator()(
|
||||
opmath_t<T> weight_val,
|
||||
opmath_t<T> out_val,
|
||||
bool is_first) {
|
||||
bool /*is_first*/) {
|
||||
return weight_val + out_val;
|
||||
}
|
||||
};
|
||||
@ -44,9 +44,9 @@ template <EmbeddingBagMode M, typename T>
|
||||
struct MaybeApplyPerSampleWeight {
|
||||
inline opmath_t<T> operator()(
|
||||
opmath_t<T> weight_val,
|
||||
uint32_t per_sample_weights_index,
|
||||
constant T* per_sample_weights,
|
||||
uint32_t per_sample_weights_stride) {
|
||||
uint32_t /*per_sample_weights_index*/,
|
||||
constant T* /*per_sample_weights*/,
|
||||
uint32_t /*per_sample_weights_stride*/) {
|
||||
return weight_val;
|
||||
}
|
||||
};
|
||||
@ -71,12 +71,12 @@ struct MaybeApplyPerSampleWeight<EmbeddingBagMode::SUM, T> {
|
||||
template <EmbeddingBagMode M, typename T, typename I>
|
||||
struct MaybeCalcMaxIndex {
|
||||
inline void operator()(
|
||||
opmath_t<T> weight_val,
|
||||
opmath_t<T> out_val,
|
||||
bool is_first,
|
||||
thread I& max_idx,
|
||||
I weight_idx,
|
||||
bool pad) {}
|
||||
opmath_t<T> /*weight_val*/,
|
||||
opmath_t<T> /*out_val*/,
|
||||
bool /*is_first*/,
|
||||
thread I& /*max_idx*/,
|
||||
I /*weight_idx*/,
|
||||
bool /*pad*/) {}
|
||||
};
|
||||
|
||||
template <typename T, typename I>
|
||||
|
||||
@ -182,6 +182,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_fast_mps(const Tensor& q_,
|
||||
uint maxSeqLength = k_.size(2);
|
||||
uint N = k_.size(2);
|
||||
uint B = q_.size(0) * q_.size(1);
|
||||
uint q_head_stride = q_.stride(1);
|
||||
uint q_seq_stride = q_.stride(2);
|
||||
uint k_head_stride = k_.stride(1);
|
||||
uint k_seq_stride = k_.stride(2);
|
||||
uint v_head_stride = v_.stride(1);
|
||||
@ -209,8 +211,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_fast_mps(const Tensor& q_,
|
||||
out,
|
||||
1,
|
||||
N,
|
||||
std::array<uint32_t, 2>{k_head_stride, k_seq_stride},
|
||||
std::array<uint32_t, 2>{v_head_stride, v_seq_stride},
|
||||
std::array<uint32_t, 3>{q_head_stride, k_head_stride, v_head_stride},
|
||||
std::array<uint32_t, 3>{q_seq_stride, k_seq_stride, v_seq_stride},
|
||||
scale_factor);
|
||||
|
||||
if (has_mask) {
|
||||
@ -257,6 +259,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_2pass_mps(const Tensor& q_,
|
||||
uint B = batchSize * num_heads;
|
||||
uint gqa_factor = q_.size(1) / k_.size(1);
|
||||
|
||||
uint q_head_stride = q_.stride(1);
|
||||
uint q_seq_stride = q_.stride(2);
|
||||
uint k_head_stride = k_.stride(1);
|
||||
uint k_seq_stride = k_.stride(2);
|
||||
uint v_head_stride = v_.stride(1);
|
||||
@ -294,8 +298,8 @@ static std::tuple<Tensor, Tensor> sdpa_vector_2pass_mps(const Tensor& q_,
|
||||
maxs,
|
||||
gqa_factor,
|
||||
N,
|
||||
std::array<uint32_t, 2>{k_head_stride, k_seq_stride},
|
||||
std::array<uint32_t, 2>{v_head_stride, v_seq_stride},
|
||||
std::array<uint32_t, 3>{q_head_stride, k_head_stride, v_head_stride},
|
||||
std::array<uint32_t, 3>{q_seq_stride, k_seq_stride, v_seq_stride},
|
||||
scale_factor);
|
||||
|
||||
if (has_mask) {
|
||||
|
||||
@ -10256,6 +10256,7 @@
|
||||
structured: True
|
||||
dispatch:
|
||||
CPU, CUDA: all_all_out
|
||||
MTIA: all_all_out_mtia
|
||||
MPS: all_all_out_mps
|
||||
|
||||
- func: any(Tensor self) -> Tensor
|
||||
|
||||
@ -101,6 +101,9 @@ __device__ inline bool isinf_device(float v) {
|
||||
__device__ inline bool isinf_device(c10::BFloat16 v) {
|
||||
return ::isinf(static_cast<float>(v));
|
||||
}
|
||||
__device__ inline bool isinf_device(at::Half v) {
|
||||
return ::isinf(static_cast<float>(v));
|
||||
}
|
||||
|
||||
// CUDA kernel to compute Moving Average Min/Max of the tensor.
|
||||
// It uses the running_min and running_max along with averaging const, c.
|
||||
@ -160,8 +163,8 @@ void _calculate_moving_average(
|
||||
std::tie(x_min, x_max) = at::aminmax(x, 1);
|
||||
int num_threads = std::min(size, (int64_t)512);
|
||||
const uint64_t num_blocks = ceil_div<uint64_t>(size, num_threads);
|
||||
AT_DISPATCH_FLOATING_TYPES_AND(
|
||||
at::kBFloat16, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::kBFloat16, at::kHalf, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
scalar_t* x_min_data = x_min.data_ptr<scalar_t>();
|
||||
scalar_t* x_max_data = x_max.data_ptr<scalar_t>();
|
||||
|
||||
@ -181,8 +184,8 @@ void _calculate_moving_average(
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
} else {
|
||||
std::tie(x_min, x_max) = at::aminmax(x);
|
||||
AT_DISPATCH_FLOATING_TYPES_AND(
|
||||
at::kBFloat16, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::kBFloat16, at::kHalf, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
scalar_t* x_min_data = x_min.data_ptr<scalar_t>();
|
||||
scalar_t* x_max_data = x_max.data_ptr<scalar_t>();
|
||||
|
||||
@ -221,8 +224,8 @@ void _calc_moving_avg_qparams_helper(
|
||||
cudaStream_t cuda_stream = at::cuda::getCurrentCUDAStream();
|
||||
int64_t* fake_quant_on_data = fake_quant_on.data_ptr<int64_t>();
|
||||
if (per_row_fq) {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND(
|
||||
at::kBFloat16, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::kBFloat16, at::kHalf, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
scalar_t* running_min_data = running_min.data_ptr<scalar_t>();
|
||||
scalar_t* running_max_data = running_max.data_ptr<scalar_t>();
|
||||
int num_threads = std::min(size, (int64_t)512);
|
||||
@ -244,8 +247,8 @@ void _calc_moving_avg_qparams_helper(
|
||||
});
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
} else {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND(
|
||||
at::kBFloat16, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(
|
||||
at::kBFloat16, at::kHalf, x.scalar_type(), "aminmax_kernel", [&] {
|
||||
scalar_t* running_min_data = running_min.data_ptr<scalar_t>();
|
||||
scalar_t* running_max_data = running_max.data_ptr<scalar_t>();
|
||||
ChooseQuantizationParamsKernelImpl<<<1, 1, 0, cuda_stream>>>(
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user