mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-04 08:00:58 +08:00 
			
		
		
		
	Compare commits
	
		
			60 Commits
		
	
	
		
			lucaskabel
			...
			v1.5.0-rc2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| dacdbc22d1 | |||
| 2a789cd0e0 | |||
| f9b010f399 | |||
| 55614ff306 | |||
| b12579da53 | |||
| 920e3eb761 | |||
| bec01e755a | |||
| 6a880e1bc9 | |||
| fa86e32a4e | |||
| 5aabaf2b18 | |||
| 4a707e8f95 | |||
| db127b21eb | |||
| 45313cd9e1 | |||
| df531973e1 | |||
| 9e3c577caa | |||
| 5357b8e4d9 | |||
| 0f23d23db4 | |||
| 7c24280a3f | |||
| 7100f0be13 | |||
| f7f611c2ec | |||
| acb982d0b0 | |||
| aa8b7ad989 | |||
| 2d403ed8be | |||
| c25a664f77 | |||
| ab660ae394 | |||
| 3c476a8858 | |||
| 651fa88645 | |||
| 565c3400b4 | |||
| 3e332778b4 | |||
| f598738920 | |||
| 4c6bfa0187 | |||
| 6f25003682 | |||
| 752c129fa1 | |||
| fb59a9caca | |||
| 4d30dbdd35 | |||
| b7f4a1a397 | |||
| afda1dc943 | |||
| d506ae882b | |||
| 36e5abe531 | |||
| 6e6f62230e | |||
| 5d15577e6c | |||
| 6aa5298c5c | |||
| f3df13725b | |||
| 4eee3caa11 | |||
| 4d96463130 | |||
| 246b824644 | |||
| 5ca9014318 | |||
| 48590d6a9b | |||
| 75148df1f5 | |||
| b89eb7c654 | |||
| 8877885454 | |||
| e2184ba083 | |||
| 8ef47ad2f0 | |||
| 6725b6f503 | |||
| bcd3f6da1a | |||
| 0b3d2f7b7d | |||
| f522651a7e | |||
| 01c8ef2757 | |||
| 7cfe68ce3a | |||
| 6f3120c6b9 | 
@ -34,8 +34,6 @@ def get_processor_arch_name(cuda_version):
 | 
			
		||||
 | 
			
		||||
LINUX_PACKAGE_VARIANTS = OrderedDict(
 | 
			
		||||
    manywheel=[
 | 
			
		||||
        "2.7m",
 | 
			
		||||
        "2.7mu",
 | 
			
		||||
        "3.5m",
 | 
			
		||||
        "3.6m",
 | 
			
		||||
        "3.7m",
 | 
			
		||||
 | 
			
		||||
@ -351,16 +351,16 @@ jobs:
 | 
			
		||||
          export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE})
 | 
			
		||||
 | 
			
		||||
          # TODO We may want to move the rebase logic to a separate step after checkout
 | 
			
		||||
          # Rebase to master only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "master" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge master branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          # Rebase to release/1.5 only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "release/1.5" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge release/1.5 branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            set -x
 | 
			
		||||
            git config --global user.email "circleci.ossci@gmail.com"
 | 
			
		||||
            git config --global user.name "CircleCI"
 | 
			
		||||
            git config remote.origin.url https://github.com/pytorch/pytorch.git
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/master`
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/release/1.5:refs/remotes/origin/release/1.5
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.5:refs/remotes/origin/release/1.5 --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/release/1.5`
 | 
			
		||||
            echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}
 | 
			
		||||
            export GIT_COMMIT=${CIRCLE_SHA1}
 | 
			
		||||
            echo "GIT_COMMIT: " ${GIT_COMMIT}
 | 
			
		||||
@ -369,7 +369,7 @@ jobs:
 | 
			
		||||
            git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET}
 | 
			
		||||
            set +x
 | 
			
		||||
          else
 | 
			
		||||
            echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            echo "Do NOT merge release/1.5 branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          fi
 | 
			
		||||
 | 
			
		||||
          git submodule sync && git submodule update -q --init --recursive
 | 
			
		||||
@ -2544,28 +2544,6 @@ workflows:
 | 
			
		||||
          libtorch_variant: "shared-with-deps"
 | 
			
		||||
          docker_image: "pytorch/pytorch-binary-docker-image-ubuntu16.04:latest"
 | 
			
		||||
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7m_cpu_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7mu_cpu_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_3_5m_cpu_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 3.5m cpu devtoolset7"
 | 
			
		||||
@ -2610,32 +2588,6 @@ workflows:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7m_cu92_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7m cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7mu_cu92_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_3_5m_cu92_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 3.5m cu92 devtoolset7"
 | 
			
		||||
@ -2688,32 +2640,6 @@ workflows:
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7m_cu101_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7m cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7mu_cu101_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_3_5m_cu101_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 3.5m cu101 devtoolset7"
 | 
			
		||||
@ -2766,32 +2692,6 @@ workflows:
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7m_cu102_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7m cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_2_7mu_cu102_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - update_s3_htmls_for_nightlies
 | 
			
		||||
            - update_s3_htmls_for_nightlies_devtoolset7
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - smoke_linux_test:
 | 
			
		||||
          name: smoke_linux_manywheel_3_5m_cu102_devtoolset7_nightly
 | 
			
		||||
          build_environment: "manywheel 3.5m cu102 devtoolset7"
 | 
			
		||||
@ -3636,28 +3536,6 @@ workflows:
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: postnightly
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 3.5m cpu devtoolset7"
 | 
			
		||||
@ -3702,28 +3580,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7m cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 3.5m cu92 devtoolset7"
 | 
			
		||||
@ -3768,28 +3624,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7m cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 3.5m cu101 devtoolset7"
 | 
			
		||||
@ -3834,28 +3668,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7m cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_build:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_build
 | 
			
		||||
          build_environment: "manywheel 3.5m cu102 devtoolset7"
 | 
			
		||||
@ -4706,30 +4518,6 @@ workflows:
 | 
			
		||||
##############################################################################
 | 
			
		||||
# Nightly tests
 | 
			
		||||
##############################################################################
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 3.5m cpu devtoolset7"
 | 
			
		||||
@ -4778,34 +4566,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7m cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 3.5m cu92 devtoolset7"
 | 
			
		||||
@ -4862,34 +4622,6 @@ workflows:
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda92"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7m cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 3.5m cu101 devtoolset7"
 | 
			
		||||
@ -4946,34 +4678,6 @@ workflows:
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda101"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7m cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_build
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          docker_image: "pytorch/manylinux-cuda102"
 | 
			
		||||
          use_cuda_docker_runtime: "1"
 | 
			
		||||
          resource_class: gpu.medium
 | 
			
		||||
      - binary_linux_test:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_test
 | 
			
		||||
          build_environment: "manywheel 3.5m cu102 devtoolset7"
 | 
			
		||||
@ -5772,30 +5476,6 @@ workflows:
 | 
			
		||||
      #      - binary_linux_libtorch_2.7m_cu90_build
 | 
			
		||||
 | 
			
		||||
      # Nightly uploads
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7m cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cpu_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7mu cpu devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cpu_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cpu_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 3.5m cpu devtoolset7"
 | 
			
		||||
@ -5844,30 +5524,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7m cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu92_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu92 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu92_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu92_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 3.5m cu92 devtoolset7"
 | 
			
		||||
@ -5916,30 +5572,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7m cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu101_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu101 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu101_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu101_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 3.5m cu101 devtoolset7"
 | 
			
		||||
@ -5988,30 +5620,6 @@ workflows:
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7m cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7m_cu102_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 2.7mu cu102 devtoolset7"
 | 
			
		||||
          requires:
 | 
			
		||||
            - setup
 | 
			
		||||
            - binary_linux_manywheel_2_7mu_cu102_devtoolset7_nightly_test
 | 
			
		||||
          filters:
 | 
			
		||||
            branches:
 | 
			
		||||
              only: nightly
 | 
			
		||||
            tags:
 | 
			
		||||
              only: /v[0-9]+(\.[0-9]+)*-rc[0-9]+/
 | 
			
		||||
          context: org-member
 | 
			
		||||
      - binary_linux_upload:
 | 
			
		||||
          name: binary_linux_manywheel_3_5m_cu102_devtoolset7_nightly_upload
 | 
			
		||||
          build_environment: "manywheel 3.5m cu102 devtoolset7"
 | 
			
		||||
 | 
			
		||||
@ -2,6 +2,19 @@
 | 
			
		||||
set -eux -o pipefail
 | 
			
		||||
export TZ=UTC
 | 
			
		||||
 | 
			
		||||
tagged_version() {
 | 
			
		||||
  # Grabs version from either the env variable CIRCLE_TAG
 | 
			
		||||
  # or the pytorch git described version
 | 
			
		||||
  GIT_DESCRIBE="git --git-dir ${workdir}/pytorch/.git describe"
 | 
			
		||||
  if [[ -n "${CIRCLE_TAG:-}" ]]; then
 | 
			
		||||
    echo "${CIRCLE_TAG}"
 | 
			
		||||
  elif ${GIT_DESCRIBE} --exact --tags >/dev/null; then
 | 
			
		||||
    ${GIT_DESCRIBE} --tags
 | 
			
		||||
  else
 | 
			
		||||
    return 1
 | 
			
		||||
  fi
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
# We need to write an envfile to persist these variables to following
 | 
			
		||||
# steps, but the location of the envfile depends on the circleci executor
 | 
			
		||||
if [[ "$(uname)" == Darwin ]]; then
 | 
			
		||||
@ -47,15 +60,17 @@ export DATE="$(date -u +%Y%m%d)"
 | 
			
		||||
#TODO: We should be pulling semver version from the base version.txt
 | 
			
		||||
BASE_BUILD_VERSION="1.5.0.dev$DATE"
 | 
			
		||||
# Change BASE_BUILD_VERSION to git tag when on a git tag
 | 
			
		||||
if git describe --tags --exact >/dev/null 2>/dev/null; then
 | 
			
		||||
# Use 'git -C' to make doubly sure we're in the correct directory for checking
 | 
			
		||||
# the git tag
 | 
			
		||||
if tagged_version >/dev/null; then
 | 
			
		||||
  # Switch upload folder to 'test/' if we are on a tag
 | 
			
		||||
  PIP_UPLOAD_FOLDER='test/'
 | 
			
		||||
  # Grab git tag, remove prefixed v and remove everything after -
 | 
			
		||||
  # Used to clean up tags that are for release candidates like v1.5.0-rc1
 | 
			
		||||
  # Turns tag v1.5.0-rc1 -> v1.5.0
 | 
			
		||||
  BASE_BUILD_VERSION="$(git describe --tags | sed -e 's/^v//' -e 's/-.*$//')"
 | 
			
		||||
  BASE_BUILD_VERSION="$(tagged_version | sed -e 's/^v//' -e 's/-.*$//')"
 | 
			
		||||
fi
 | 
			
		||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu101" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
 | 
			
		||||
if [[ "$(uname)" == 'Darwin' ]] || [[ "$DESIRED_CUDA" == "cu102" ]] || [[ "$PACKAGE_TYPE" == conda ]]; then
 | 
			
		||||
  export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}"
 | 
			
		||||
else
 | 
			
		||||
  export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
 | 
			
		||||
 | 
			
		||||
@ -20,16 +20,16 @@ jobs:
 | 
			
		||||
          export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -t -d -w /var/lib/jenkins ${DOCKER_IMAGE})
 | 
			
		||||
 | 
			
		||||
          # TODO We may want to move the rebase logic to a separate step after checkout
 | 
			
		||||
          # Rebase to master only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "master" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge master branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          # Rebase to release/1.5 only if in xenial_py3_6_gcc5_4 case
 | 
			
		||||
          if [[ "${CIRCLE_BRANCH}" != "release/1.5" && "${BUILD_ENVIRONMENT}" == *"gcc5"* ]]; then
 | 
			
		||||
            echo "Merge release/1.5 branch into $CIRCLE_BRANCH before build in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            set -x
 | 
			
		||||
            git config --global user.email "circleci.ossci@gmail.com"
 | 
			
		||||
            git config --global user.name "CircleCI"
 | 
			
		||||
            git config remote.origin.url https://github.com/pytorch/pytorch.git
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/master:refs/remotes/origin/master
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/master:refs/remotes/origin/master --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/master`
 | 
			
		||||
            git config --add remote.origin.fetch +refs/heads/release/1.5:refs/remotes/origin/release/1.5
 | 
			
		||||
            git fetch --tags --progress https://github.com/pytorch/pytorch.git +refs/heads/release/1.5:refs/remotes/origin/release/1.5 --depth=100 --quiet
 | 
			
		||||
            export GIT_MERGE_TARGET=`git log -n 1 --pretty=format:"%H" origin/release/1.5`
 | 
			
		||||
            echo "GIT_MERGE_TARGET: " ${GIT_MERGE_TARGET}
 | 
			
		||||
            export GIT_COMMIT=${CIRCLE_SHA1}
 | 
			
		||||
            echo "GIT_COMMIT: " ${GIT_COMMIT}
 | 
			
		||||
@ -38,7 +38,7 @@ jobs:
 | 
			
		||||
            git merge --allow-unrelated-histories --no-edit --no-ff ${GIT_MERGE_TARGET}
 | 
			
		||||
            set +x
 | 
			
		||||
          else
 | 
			
		||||
            echo "Do NOT merge master branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
            echo "Do NOT merge release/1.5 branch into $CIRCLE_BRANCH in environment $BUILD_ENVIRONMENT"
 | 
			
		||||
          fi
 | 
			
		||||
 | 
			
		||||
          git submodule sync && git submodule update -q --init --recursive
 | 
			
		||||
 | 
			
		||||
@ -167,7 +167,7 @@ fi
 | 
			
		||||
 | 
			
		||||
# Patch required to build xla
 | 
			
		||||
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
 | 
			
		||||
  git clone --recursive https://github.com/pytorch/xla.git
 | 
			
		||||
  git clone --recursive -b r1.5 https://github.com/pytorch/xla.git
 | 
			
		||||
  ./xla/scripts/apply_patches.sh
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,7 @@ if [ ! -d "${WORKSPACE_DIR}/miniconda3" ]; then
 | 
			
		||||
fi
 | 
			
		||||
export PATH="${WORKSPACE_DIR}/miniconda3/bin:$PATH"
 | 
			
		||||
source ${WORKSPACE_DIR}/miniconda3/bin/activate
 | 
			
		||||
retry conda install -y mkl mkl-include numpy pyyaml setuptools cmake cffi ninja
 | 
			
		||||
retry conda install -y mkl mkl-include numpy pyyaml=5.3 setuptools=46.0.0 cmake cffi ninja
 | 
			
		||||
 | 
			
		||||
# The torch.hub tests make requests to GitHub.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
@ -16,14 +16,6 @@
 | 
			
		||||
#include <numeric>
 | 
			
		||||
#include <memory>
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
#define __ubsan_ignore_vptr__ __attribute__((no_sanitize("vptr")))
 | 
			
		||||
#else
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
#define __ubsan_ignore_vptr__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
 | 
			
		||||
  TypeName(const TypeName&) = delete; \
 | 
			
		||||
  void operator=(const TypeName&) = delete
 | 
			
		||||
 | 
			
		||||
@ -20,6 +20,10 @@ void registerCustomClass(at::ClassTypePtr class_type) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
at::ClassTypePtr getCustomClass(const std::string& name) {
 | 
			
		||||
  // BC hack so we can upgrade a binary internally
 | 
			
		||||
  if (name == "__torch__.torch.classes.SentencePiece") {
 | 
			
		||||
    return getCustomClass("__torch__.torch.classes.fb.SentencePiece");
 | 
			
		||||
  }
 | 
			
		||||
  return customClasses().count(name) ? customClasses()[name] : nullptr;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -15,6 +15,7 @@
 | 
			
		||||
#include <c10/util/math_compat.h>
 | 
			
		||||
#include <ATen/native/cpu/zmath.h>
 | 
			
		||||
#include <c10/util/TypeCast.h>
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
#if defined(__GNUC__)
 | 
			
		||||
#define __at_align32__ __attribute__((aligned(32)))
 | 
			
		||||
 | 
			
		||||
@ -145,7 +145,7 @@ private:
 | 
			
		||||
 | 
			
		||||
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
 | 
			
		||||
 | 
			
		||||
class FilterDescriptor
 | 
			
		||||
class TORCH_CUDA_API FilterDescriptor
 | 
			
		||||
  : public Descriptor<cudnnFilterStruct,
 | 
			
		||||
                      &cudnnCreateFilterDescriptor,
 | 
			
		||||
                      &cudnnDestroyFilterDescriptor>
 | 
			
		||||
 | 
			
		||||
@ -138,6 +138,10 @@ Tensor true_divide(const Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return iter.output();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_(Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return native::true_divide_out(self, self, divisor);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& floor_divide_out(Tensor& result, const Tensor& self, const Tensor& other) {
 | 
			
		||||
  auto iter = TensorIterator::binary_op(result, self, other,
 | 
			
		||||
    /*check_mem_overlap=*/true);
 | 
			
		||||
@ -731,7 +735,11 @@ Tensor& fmod_(Tensor& self, Scalar other) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor true_divide(const Tensor& self, Scalar divisor) {
 | 
			
		||||
  return at::true_divide(self, wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
  return self.true_divide(wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_(Tensor& self, Scalar divisor) {
 | 
			
		||||
  return self.true_divide_(wrapped_scalar_tensor(divisor)); // redispatch!
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -33,7 +33,7 @@ static inline Tensor to_impl(const Tensor& self, const TensorOptions& options, b
 | 
			
		||||
    if (self.is_non_overlapping_and_dense()) {
 | 
			
		||||
      // Copy all strides
 | 
			
		||||
      auto r = at::empty_strided(self.sizes(), self.strides(), options.memory_format(c10::nullopt));
 | 
			
		||||
      r.copy_(self);
 | 
			
		||||
      r.copy_(self, non_blocking);
 | 
			
		||||
      return r;
 | 
			
		||||
    } else {
 | 
			
		||||
      memory_format = self.suggest_memory_format();
 | 
			
		||||
 | 
			
		||||
@ -98,6 +98,15 @@ Tensor & _cat_out_cpu(Tensor& result, TensorList tensors, int64_t dim) {
 | 
			
		||||
        "output memory locations. Found overlap in input tensor ", i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Dtypes should be the same
 | 
			
		||||
  const auto first_in_cat = tensors[0];
 | 
			
		||||
  for (int64_t i = 1; i < tensors.size(); i++) {
 | 
			
		||||
    TORCH_CHECK(first_in_cat.dtype() == tensors[i].dtype(),
 | 
			
		||||
              "Expected object of scalar type ", first_in_cat.dtype(),
 | 
			
		||||
              " but got scalar type ", tensors[i].dtype(),
 | 
			
		||||
              " for sequence element ", i, ".");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto should_skip = [](const Tensor& t) { return t.numel() == 0 && t.dim() == 1; };
 | 
			
		||||
  for (auto const &tensor : tensors) {
 | 
			
		||||
    if (should_skip(tensor)) {
 | 
			
		||||
 | 
			
		||||
@ -7,6 +7,7 @@
 | 
			
		||||
#include <ATen/native/TensorIterator.h>
 | 
			
		||||
#include <ATen/native/BinaryOps.h>
 | 
			
		||||
#include <ATen/native/cpu/Loops.h>
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
namespace at { namespace native {
 | 
			
		||||
namespace {
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,7 @@
 | 
			
		||||
#include <ATen/native/cuda/zmath.cuh>
 | 
			
		||||
#include <ATen/native/TensorIterator.h>
 | 
			
		||||
#include <ATen/native/BinaryOps.h>
 | 
			
		||||
 | 
			
		||||
#include <c10/macros/Macros.h>
 | 
			
		||||
 | 
			
		||||
// NOTE: CUDA on Windows requires that the enclosing function
 | 
			
		||||
// of a __device__ lambda not have internal linkage.
 | 
			
		||||
 | 
			
		||||
@ -307,6 +307,15 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
                "tensor ", i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Dtypes should be the same
 | 
			
		||||
  const auto first_in_cat = inputs[0];
 | 
			
		||||
  for (int64_t i = 1; i < inputs.size(); i++) {
 | 
			
		||||
    TORCH_CHECK(first_in_cat.dtype() == inputs[i].dtype(),
 | 
			
		||||
              "Expected object of scalar type ", first_in_cat.dtype(),
 | 
			
		||||
              " but got scalar type ", inputs[i].dtype(),
 | 
			
		||||
              " for sequence element ", i, ".");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  for (int i = 0; i < inputs.size(); i++)
 | 
			
		||||
  {
 | 
			
		||||
    if (should_skip(inputs[i])) {
 | 
			
		||||
@ -325,6 +334,12 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
  TORCH_CHECK(inputs.size() > 0, "invalid number of inputs ", inputs.size());
 | 
			
		||||
  TORCH_CHECK(dimension >= 0, "invalid dimension ", dimension);
 | 
			
		||||
 | 
			
		||||
  for (const Tensor& t: inputs) {
 | 
			
		||||
    TORCH_CHECK(t.device() == notSkippedTensor->device(),
 | 
			
		||||
                "All input tensors must be on the same device. Received ",
 | 
			
		||||
                t.device(), " and ", notSkippedTensor->device());
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  c10::MemoryFormat memory_format = compute_output_memory_format(inputs);
 | 
			
		||||
 | 
			
		||||
  std::vector<int64_t> size(notSkippedTensor->sizes().vec());
 | 
			
		||||
@ -355,17 +370,11 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
  // 4. The number of dimensions is <= 4
 | 
			
		||||
  // 5. All input tensors are contiguous (output tensor may be non-contig)
 | 
			
		||||
  // 6. All input tensors can use 32-bit indexing
 | 
			
		||||
  // 7. All input tensors are on the same device
 | 
			
		||||
 | 
			
		||||
  const bool all32BitIndexable = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [] (const Tensor& t) {
 | 
			
		||||
      return at::cuda::detail::canUse32BitIndexMath(t);
 | 
			
		||||
    });
 | 
			
		||||
  Device firstDevice = notSkippedTensor->device();
 | 
			
		||||
  const bool allSameDevice = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [firstDevice](const Tensor& t) {
 | 
			
		||||
      return t.device() == firstDevice;
 | 
			
		||||
    });
 | 
			
		||||
  const bool allContiguous = std::all_of(inputs.begin(), inputs.end(),
 | 
			
		||||
    [=](const Tensor& t) {
 | 
			
		||||
      return !t.defined() || t.is_contiguous(memory_format);
 | 
			
		||||
@ -375,8 +384,7 @@ Tensor& cat_out_cuda(Tensor& out, TensorList inputs, int64_t dimension) {
 | 
			
		||||
      out.dim() <= CAT_ARRAY_MAX_INPUT_DIMS &&
 | 
			
		||||
      at::cuda::detail::canUse32BitIndexMath(out) &&
 | 
			
		||||
      allContiguous &&
 | 
			
		||||
      all32BitIndexable &&
 | 
			
		||||
      allSameDevice) {
 | 
			
		||||
      all32BitIndexable) {
 | 
			
		||||
 | 
			
		||||
    AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
 | 
			
		||||
        at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16,
 | 
			
		||||
 | 
			
		||||
@ -2872,7 +2872,7 @@
 | 
			
		||||
 | 
			
		||||
- func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide
 | 
			
		||||
    CUDA: true_divide
 | 
			
		||||
@ -2880,6 +2880,15 @@
 | 
			
		||||
    SparseCUDA: true_divide_sparse
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
 | 
			
		||||
  variants: method
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide_
 | 
			
		||||
    CUDA: true_divide_
 | 
			
		||||
    SparseCPU: true_divide_sparse_
 | 
			
		||||
    SparseCUDA: true_divide_sparse_
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
 | 
			
		||||
  dispatch:
 | 
			
		||||
    CPU: true_divide_out
 | 
			
		||||
@ -2890,7 +2899,11 @@
 | 
			
		||||
 | 
			
		||||
- func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor
 | 
			
		||||
  use_c10_dispatcher: full
 | 
			
		||||
  variants: function
 | 
			
		||||
  variants: function, method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
 | 
			
		||||
  variants: method
 | 
			
		||||
  supports_named_tensor: True
 | 
			
		||||
 | 
			
		||||
- func: trunc(Tensor self) -> Tensor
 | 
			
		||||
 | 
			
		||||
@ -272,6 +272,10 @@ SparseTensor& true_divide_out_sparse_scalar(
 | 
			
		||||
  return true_divide_out_sparse_zerodim(result, dividend, wrapped_scalar_tensor(divisor));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
Tensor& true_divide_sparse_(Tensor& self, const Tensor& divisor) {
 | 
			
		||||
  return true_divide_out_sparse_zerodim(self, self, divisor);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
// floor_divide(SparseTensor, Scalar)
 | 
			
		||||
// --------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
@ -14,7 +14,7 @@ namespace xnnpack {
 | 
			
		||||
namespace {
 | 
			
		||||
torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_class() {
 | 
			
		||||
  static auto register_linear_op_context_class =
 | 
			
		||||
      torch::jit::class_<XNNPackLinearOpContext>("XNNPackLinearOpContext")
 | 
			
		||||
      torch::jit::class_<XNNPackLinearOpContext>("xnnpack", "XNNPackLinearOpContext")
 | 
			
		||||
          .def_pickle(
 | 
			
		||||
              [](const c10::intrusive_ptr<XNNPackLinearOpContext>& op_context)
 | 
			
		||||
                  -> SerializationTypeLinearPrePack { // __getstate__
 | 
			
		||||
@ -38,7 +38,7 @@ torch::jit::class_<XNNPackLinearOpContext> register_xnnpack_linear_op_context_cl
 | 
			
		||||
 | 
			
		||||
torch::jit::class_<XNNPackConv2dOpContext> register_xnnpack_conv2d_op_context_class() {
 | 
			
		||||
  static auto register_conv2d_op_context_class =
 | 
			
		||||
      torch::jit::class_<XNNPackConv2dOpContext>("XNNPackConv2dOpContext")
 | 
			
		||||
      torch::jit::class_<XNNPackConv2dOpContext>("xnnpack", "XNNPackConv2dOpContext")
 | 
			
		||||
          .def_pickle(
 | 
			
		||||
              [](const c10::intrusive_ptr<XNNPackConv2dOpContext>& op_context)
 | 
			
		||||
                  -> SerializationTypeConv2dPrePack { // __getstate__
 | 
			
		||||
@ -74,25 +74,25 @@ static auto registry =
 | 
			
		||||
  // Registering under _xnnpack namespace for now. As we add more backend requiring similar functionality
 | 
			
		||||
  // We can refactor the code and use a better namespace.
 | 
			
		||||
    torch::RegisterOperators()
 | 
			
		||||
        .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.XNNPackLinearOpContext",
 | 
			
		||||
        .op("_xnnpack::linear_prepack(Tensor W, Tensor? B=None) -> __torch__.torch.classes.xnnpack.XNNPackLinearOpContext",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::linear::LinearPrePack>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.XNNPackLinearOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
        .op("_xnnpack::linear_packed(Tensor X, __torch__.torch.classes.xnnpack.XNNPackLinearOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::linear::LinearPacked>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::conv2d_prepack(Tensor W, Tensor? B, int[2] stride, "
 | 
			
		||||
            "int[2] padding, int[2] dilation, int groups) "
 | 
			
		||||
            "-> __torch__.torch.classes.XNNPackConv2dOpContext",
 | 
			
		||||
            "-> __torch__.torch.classes.xnnpack.XNNPackConv2dOpContext",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::convolution2d::Conv2dPrePack>(
 | 
			
		||||
                DispatchKey::CPUTensorId))
 | 
			
		||||
        .op("_xnnpack::conv2d_packed(Tensor X, "
 | 
			
		||||
            "__torch__.torch.classes.XNNPackConv2dOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            "__torch__.torch.classes.xnnpack.XNNPackConv2dOpContext W_prepack) -> Tensor Y",
 | 
			
		||||
            torch::RegisterOperators::options()
 | 
			
		||||
            .aliasAnalysis(at::AliasAnalysisKind::PURE_FUNCTION)
 | 
			
		||||
            .kernel<internal::convolution2d::Conv2dPacked>(
 | 
			
		||||
 | 
			
		||||
@ -69,12 +69,6 @@
 | 
			
		||||
# define TH_UNUSED
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
#else
 | 
			
		||||
#define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifndef M_PI
 | 
			
		||||
# define M_PI 3.14159265358979323846
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
@ -23,6 +23,14 @@
 | 
			
		||||
 | 
			
		||||
#include "c10/macros/Export.h"
 | 
			
		||||
 | 
			
		||||
#if defined(__clang__)
 | 
			
		||||
  #define __ubsan_ignore_float_divide_by_zero__ __attribute__((no_sanitize("float-divide-by-zero")))
 | 
			
		||||
  #define __ubsan_ignore_float_cast_overflow__ __attribute__((no_sanitize("float-cast-overflow")))
 | 
			
		||||
#else
 | 
			
		||||
  #define __ubsan_ignore_float_divide_by_zero__
 | 
			
		||||
  #define __ubsan_ignore_float_cast_overflow__
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Disable the copy and assignment operator for a class. Note that this will
 | 
			
		||||
// disable the usage of the class in std containers.
 | 
			
		||||
#define C10_DISABLE_COPY_AND_ASSIGN(classname) \
 | 
			
		||||
 | 
			
		||||
@ -66,24 +66,44 @@ void Error::AppendMessage(const std::string& new_msg) {
 | 
			
		||||
namespace Warning {
 | 
			
		||||
 | 
			
		||||
namespace {
 | 
			
		||||
  WarningHandler* getHandler() {
 | 
			
		||||
  WarningHandler* getBaseHandler() {
 | 
			
		||||
    static WarningHandler base_warning_handler_ = WarningHandler();
 | 
			
		||||
    return &base_warning_handler_;
 | 
			
		||||
  };
 | 
			
		||||
  static thread_local WarningHandler* warning_handler_ = getHandler();
 | 
			
		||||
 | 
			
		||||
  class ThreadWarningHandler {
 | 
			
		||||
    public:
 | 
			
		||||
      ThreadWarningHandler() = delete;
 | 
			
		||||
 | 
			
		||||
      static WarningHandler* get_handler() {
 | 
			
		||||
        if (!warning_handler_) {
 | 
			
		||||
          warning_handler_ = getBaseHandler();
 | 
			
		||||
        }
 | 
			
		||||
        return warning_handler_;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      static void set_handler(WarningHandler* handler) {
 | 
			
		||||
        warning_handler_ = handler;
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    private:
 | 
			
		||||
      static thread_local WarningHandler* warning_handler_;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  thread_local WarningHandler* ThreadWarningHandler::warning_handler_ = nullptr;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void warn(SourceLocation source_location, const std::string& msg) {
 | 
			
		||||
  warning_handler_->process(source_location, msg);
 | 
			
		||||
  ThreadWarningHandler::get_handler()->process(source_location, msg);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void set_warning_handler(WarningHandler* handler) noexcept(true) {
 | 
			
		||||
  warning_handler_ = handler;
 | 
			
		||||
  ThreadWarningHandler::set_handler(handler);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
WarningHandler* get_warning_handler() noexcept(true) {
 | 
			
		||||
  return warning_handler_;
 | 
			
		||||
  return ThreadWarningHandler::get_handler();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace Warning
 | 
			
		||||
 | 
			
		||||
@ -67,7 +67,7 @@ struct maybe_real<true, src_t> {
 | 
			
		||||
 | 
			
		||||
template <typename dest_t, typename src_t>
 | 
			
		||||
struct static_cast_with_inter_type {
 | 
			
		||||
  C10_HOST_DEVICE static inline dest_t apply(src_t src) {
 | 
			
		||||
  C10_HOST_DEVICE __ubsan_ignore_float_cast_overflow__ static inline dest_t apply(src_t src) {
 | 
			
		||||
    constexpr bool real = needs_real<dest_t, src_t>::value;
 | 
			
		||||
    return static_cast<dest_t>(
 | 
			
		||||
      static_cast<inter_copy_type_t<dest_t>>(maybe_real<real, src_t>::apply(src)));
 | 
			
		||||
 | 
			
		||||
@ -395,6 +395,8 @@ of 16
 | 
			
		||||
.. autofunction:: all_gather_multigpu
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
.. _distributed-launch:
 | 
			
		||||
 | 
			
		||||
Launch utility
 | 
			
		||||
--------------
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -306,20 +306,30 @@ to overlap data transfers with computation.
 | 
			
		||||
You can make the :class:`~torch.utils.data.DataLoader` return batches placed in
 | 
			
		||||
pinned memory by passing ``pin_memory=True`` to its constructor.
 | 
			
		||||
 | 
			
		||||
.. _cuda-nn-dataparallel-instead:
 | 
			
		||||
.. _cuda-nn-ddp-instead:
 | 
			
		||||
 | 
			
		||||
Use nn.DataParallel instead of multiprocessing
 | 
			
		||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | 
			
		||||
Use nn.parallel.DistributedDataParallel instead of multiprocessing or nn.DataParallel
 | 
			
		||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | 
			
		||||
 | 
			
		||||
Most use cases involving batched inputs and multiple GPUs should default to
 | 
			
		||||
using :class:`~torch.nn.DataParallel` to utilize more than one GPU. Even with
 | 
			
		||||
the GIL, a single Python process can saturate multiple GPUs.
 | 
			
		||||
 | 
			
		||||
As of version 0.1.9, large numbers of GPUs (8+) might not be fully utilized.
 | 
			
		||||
However, this is a known issue that is under active development. As always,
 | 
			
		||||
test your use case.
 | 
			
		||||
using :class:`~torch.nn.parallel.DistributedDataParallel` to utilize more
 | 
			
		||||
than one GPU.
 | 
			
		||||
 | 
			
		||||
There are significant caveats to using CUDA models with
 | 
			
		||||
:mod:`~torch.multiprocessing`; unless care is taken to meet the data handling
 | 
			
		||||
requirements exactly, it is likely that your program will have incorrect or
 | 
			
		||||
undefined behavior.
 | 
			
		||||
 | 
			
		||||
It is recommended to use :class:`~torch.nn.parallel.DistributedDataParallel`,
 | 
			
		||||
instead of :class:`~torch.nn.DataParallel` to do multi-GPU training, even if
 | 
			
		||||
there is only a single node.
 | 
			
		||||
 | 
			
		||||
The difference between :class:`~torch.nn.parallel.DistributedDataParallel` and
 | 
			
		||||
:class:`~torch.nn.DataParallel` is: :class:`~torch.nn.parallel.DistributedDataParallel`
 | 
			
		||||
uses multiprocessing where a process is created for each GPU, while
 | 
			
		||||
:class:`~torch.nn.DataParallel` uses multithreading. By using multiprocessing,
 | 
			
		||||
each GPU has its dedicated process, this avoids the performance overhead caused
 | 
			
		||||
by GIL of Python interpreter. 
 | 
			
		||||
 | 
			
		||||
If you use :class:`~torch.nn.parallel.DistributedDataParallel`, you could use 
 | 
			
		||||
`torch.distributed.launch` utility to launch your program, see :ref:`distributed-launch`.
 | 
			
		||||
 | 
			
		||||
@ -45,7 +45,7 @@ the consumer process has references to the tensor, and the refcounting can not
 | 
			
		||||
save you if the consumer process exits abnormally via a fatal signal. See
 | 
			
		||||
:ref:`this section <multiprocessing-cuda-sharing-details>`.
 | 
			
		||||
 | 
			
		||||
See also: :ref:`cuda-nn-dataparallel-instead`
 | 
			
		||||
See also: :ref:`cuda-nn-ddp-instead`
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Best practices and tips
 | 
			
		||||
 | 
			
		||||
@ -210,3 +210,25 @@ Example::
 | 
			
		||||
    (1, 5)
 | 
			
		||||
 | 
			
		||||
For more information on ``torch.sparse_coo`` tensors, see :ref:`sparse-docs`.
 | 
			
		||||
 | 
			
		||||
torch.memory_format
 | 
			
		||||
------------
 | 
			
		||||
 | 
			
		||||
.. class:: torch.memory_format
 | 
			
		||||
 | 
			
		||||
A :class:`torch.memory_format` is an object representing the memory format on which a :class:`torch.Tensor` is
 | 
			
		||||
or will be allocated.
 | 
			
		||||
 | 
			
		||||
Possible values are:
 | 
			
		||||
 | 
			
		||||
- ``torch.contiguous_format``:
 | 
			
		||||
  Tensor is or will be  allocated in dense non-overlapping memory. Strides represented by values in decreasing order.
 | 
			
		||||
 | 
			
		||||
- ``torch.channels_last``:
 | 
			
		||||
  Tensor is or will be  allocated in dense non-overlapping memory. Strides represented by values in 
 | 
			
		||||
  ``strides[0] > strides[2] > strides[3] > strides[1] == 1`` aka NHWC order. 
 | 
			
		||||
 | 
			
		||||
- ``torch.preserve_format``:
 | 
			
		||||
  Used in functions like `clone` to preserve the memory format of the input tensor. If input tensor is 
 | 
			
		||||
  allocated in dense non-overlapping memory, the output tensor strides will be copied from the input. 
 | 
			
		||||
  Otherwise output strides will follow ``torch.contiguous_format``
 | 
			
		||||
@ -49,8 +49,10 @@ For reference, here’s a full list of view ops in PyTorch:
 | 
			
		||||
 | 
			
		||||
- Basic slicing and indexing op, e.g. ``tensor[0, 2:, 1:7:2]`` returns a view of base ``tensor``, see note below.
 | 
			
		||||
- :meth:`~torch.Tensor.as_strided`
 | 
			
		||||
- :meth:`~torch.Tensor.detach`
 | 
			
		||||
- :meth:`~torch.Tensor.diagonal`
 | 
			
		||||
- :meth:`~torch.Tensor.expand`
 | 
			
		||||
- :meth:`~torch.Tensor.expand_as`
 | 
			
		||||
- :meth:`~torch.Tensor.narrow`
 | 
			
		||||
- :meth:`~torch.Tensor.permute`
 | 
			
		||||
- :meth:`~torch.Tensor.select`
 | 
			
		||||
 | 
			
		||||
@ -495,6 +495,8 @@ view of a storage and defines numeric operations on it.
 | 
			
		||||
   .. automethod:: tril_
 | 
			
		||||
   .. automethod:: triu
 | 
			
		||||
   .. automethod:: triu_
 | 
			
		||||
   .. automethod:: true_divide
 | 
			
		||||
   .. automethod:: true_divide_
 | 
			
		||||
   .. automethod:: trunc
 | 
			
		||||
   .. automethod:: trunc_
 | 
			
		||||
   .. automethod:: type
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										4
									
								
								setup.py
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								setup.py
									
									
									
									
									
								
							@ -352,10 +352,10 @@ def build_deps():
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
# the list of runtime dependencies required by this built package
 | 
			
		||||
install_requires = []
 | 
			
		||||
install_requires = ['future']
 | 
			
		||||
 | 
			
		||||
if sys.version_info <= (2, 7):
 | 
			
		||||
    install_requires += ['future', 'typing']
 | 
			
		||||
    install_requires += ['typing']
 | 
			
		||||
 | 
			
		||||
missing_pydep = '''
 | 
			
		||||
Missing build dependency: Unable to `import {importname}`.
 | 
			
		||||
 | 
			
		||||
@ -115,6 +115,10 @@ white_list = [
 | 
			
		||||
    ('aten::confirmed_by_owner', datetime.date(2020, 3, 17)),
 | 
			
		||||
    ('aten::owner', datetime.date(2020, 3, 27)),
 | 
			
		||||
    ('aten::owner_name', datetime.date(2020, 3, 27)),
 | 
			
		||||
    ('_xnnpack::conv2d_packed', datetime.date(2020, 4, 2)),
 | 
			
		||||
    ('_xnnpack::conv2d_prepack', datetime.date(2020, 4, 2)),
 | 
			
		||||
    ('_xnnpack::linear_packed', datetime.date(2020, 4, 2)),
 | 
			
		||||
    ('_xnnpack::linear_prepack', datetime.date(2020, 4, 2)),
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -176,6 +180,9 @@ if __name__ == '__main__':
 | 
			
		||||
            line = f.readline()
 | 
			
		||||
            if not line:
 | 
			
		||||
                break
 | 
			
		||||
            if "torch.classes" in line:
 | 
			
		||||
                # TODO Fix type __torch__.torch.classes.xxx
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            s = parse_schema(line.strip())
 | 
			
		||||
            slist = new_schema_dict.get(s.name, [])
 | 
			
		||||
 | 
			
		||||
@ -293,7 +293,7 @@ TEST_F(FunctionalTest, MultiLabelSoftMarginLossWeightedNoReduction) {
 | 
			
		||||
  auto input = torch::tensor({{0., 2., 2., 0.}, {2., 1., 0., 1.}}, torch::dtype(torch::kFloat).requires_grad(true));
 | 
			
		||||
  auto target = torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat);
 | 
			
		||||
  auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat);
 | 
			
		||||
  auto options = F::MultiLabelSoftMarginLossFuncOptions().reduction(torch::kNone).weight(weight);
 | 
			
		||||
  auto options = F::MultilabelSoftMarginLossFuncOptions().reduction(torch::kNone).weight(weight);
 | 
			
		||||
  auto output =
 | 
			
		||||
      F::multilabel_soft_margin_loss(input, target, options);
 | 
			
		||||
  auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat);
 | 
			
		||||
@ -1875,7 +1875,7 @@ TEST_F(FunctionalTest, Interpolate) {
 | 
			
		||||
    // 1D interpolation
 | 
			
		||||
    auto input = torch::ones({1, 1, 2});
 | 
			
		||||
    auto options = F::InterpolateFuncOptions()
 | 
			
		||||
                       .size({4})
 | 
			
		||||
                       .size(std::vector<int64_t>({4}))
 | 
			
		||||
                       .mode(torch::kNearest);
 | 
			
		||||
    auto output = F::interpolate(input, options);
 | 
			
		||||
    auto expected = torch::ones({1, 1, 4});
 | 
			
		||||
@ -1889,7 +1889,7 @@ TEST_F(FunctionalTest, Interpolate) {
 | 
			
		||||
      for (const auto scale_factor : {0.5, 1.5, 2.0}) {
 | 
			
		||||
        auto input = torch::ones({1, 1, 2, 2});
 | 
			
		||||
        auto options = F::InterpolateFuncOptions()
 | 
			
		||||
                           .scale_factor({scale_factor, scale_factor})
 | 
			
		||||
                           .scale_factor(std::vector<double>({scale_factor, scale_factor}))
 | 
			
		||||
                           .mode(torch::kBilinear)
 | 
			
		||||
                           .align_corners(align_corners);
 | 
			
		||||
        auto output = F::interpolate(input, options);
 | 
			
		||||
@ -1908,7 +1908,7 @@ TEST_F(FunctionalTest, Interpolate) {
 | 
			
		||||
        auto input = torch::ones({1, 1, 2, 2, 2});
 | 
			
		||||
        auto options =
 | 
			
		||||
            F::InterpolateFuncOptions()
 | 
			
		||||
                .scale_factor({scale_factor, scale_factor, scale_factor})
 | 
			
		||||
                .scale_factor(std::vector<double>({scale_factor, scale_factor, scale_factor}))
 | 
			
		||||
                .mode(torch::kTrilinear)
 | 
			
		||||
                .align_corners(align_corners);
 | 
			
		||||
        auto output = F::interpolate(input, options);
 | 
			
		||||
@ -1924,13 +1924,13 @@ TEST_F(FunctionalTest, Interpolate) {
 | 
			
		||||
  {
 | 
			
		||||
    auto input = torch::randn({3, 2, 2});
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
        F::interpolate(input[0], F::InterpolateFuncOptions().size({4, 4})),
 | 
			
		||||
        F::interpolate(input[0], F::InterpolateFuncOptions().size(std::vector<int64_t>({4, 4}))),
 | 
			
		||||
        "Input Error: Only 3D, 4D and 5D input Tensors supported (got 2D) "
 | 
			
		||||
        "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)");
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
        F::interpolate(
 | 
			
		||||
            torch::reshape(input, {1, 1, 1, 3, 2, 2}),
 | 
			
		||||
            F::InterpolateFuncOptions().size({1, 1, 1, 3, 4, 4})),
 | 
			
		||||
            F::InterpolateFuncOptions().size(std::vector<int64_t>({1, 1, 1, 3, 4, 4}))),
 | 
			
		||||
        "Input Error: Only 3D, 4D and 5D input Tensors supported (got 6D) "
 | 
			
		||||
        "for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)");
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
@ -1939,12 +1939,12 @@ TEST_F(FunctionalTest, Interpolate) {
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
        F::interpolate(
 | 
			
		||||
            input,
 | 
			
		||||
            F::InterpolateFuncOptions().size({3, 4, 4}).scale_factor({0.5})),
 | 
			
		||||
            F::InterpolateFuncOptions().size(std::vector<int64_t>({3, 4, 4})).scale_factor(std::vector<double>({0.5}))),
 | 
			
		||||
        "only one of size or scale_factor should be defined");
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
        F::interpolate(input, F::InterpolateFuncOptions().scale_factor({3, 2})),
 | 
			
		||||
        F::interpolate(input, F::InterpolateFuncOptions().scale_factor(std::vector<double>({3, 2}))),
 | 
			
		||||
        "scale_factor shape must match input shape. "
 | 
			
		||||
        "Input is 1D, scale_factor size is 2");
 | 
			
		||||
        "Input is 1D, scale_factor size is [3, 2]");
 | 
			
		||||
    ASSERT_THROWS_WITH(
 | 
			
		||||
        F::interpolate(
 | 
			
		||||
            input,
 | 
			
		||||
@ -2328,9 +2328,15 @@ TEST_F(FunctionalTest, AlphaDropout) {
 | 
			
		||||
  auto input_std = input.std();
 | 
			
		||||
 | 
			
		||||
  for (const auto rate : {0.2, 0.5, 0.8}) {
 | 
			
		||||
    auto output = F::alpha_dropout(input, F::AlphaDropoutFuncOptions().p(rate).training(false));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
 | 
			
		||||
    for (const auto inplace : {false, true}) {
 | 
			
		||||
      auto input_ = input.clone();
 | 
			
		||||
      auto output = F::alpha_dropout(input_, F::AlphaDropoutFuncOptions().p(rate).training(false).inplace(inplace));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
 | 
			
		||||
      if (inplace) {
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(input_, output));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  auto output = F::detail::alpha_dropout(input, 0.5, false, false);
 | 
			
		||||
  ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
@ -2343,9 +2349,15 @@ TEST_F(FunctionalTest, FeatureAlphaDropout) {
 | 
			
		||||
  auto input_std = input.std();
 | 
			
		||||
 | 
			
		||||
  for (const auto rate : {0.2, 0.5, 0.8}) {
 | 
			
		||||
    auto output = F::feature_alpha_dropout(input, F::FeatureAlphaDropoutFuncOptions().p(rate).training(false));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
 | 
			
		||||
    for (const auto inplace : {false, true}) {
 | 
			
		||||
      auto input_ = input.clone();
 | 
			
		||||
      auto output = F::feature_alpha_dropout(input_, F::FeatureAlphaDropoutFuncOptions().p(rate).training(false).inplace(inplace));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
 | 
			
		||||
      if (inplace) {
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(input_, output));
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  auto output = F::feature_alpha_dropout(input);
 | 
			
		||||
  ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
 | 
			
		||||
 | 
			
		||||
@ -1300,54 +1300,81 @@ TEST_F(ModulesTest, FeatureAlphaDropout) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, Dropout) {
 | 
			
		||||
  Dropout dropout(0.5);
 | 
			
		||||
  torch::Tensor x = torch::ones(100, torch::requires_grad());
 | 
			
		||||
  torch::Tensor y = dropout(x);
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    Dropout dropout(DropoutOptions(0.5).inplace(inplace));
 | 
			
		||||
    torch::Tensor x = torch::ones(100);
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      x.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    torch::Tensor y = dropout(x);
 | 
			
		||||
 | 
			
		||||
  y.backward(torch::ones_like(y));
 | 
			
		||||
  ASSERT_EQ(y.ndimension(), 1);
 | 
			
		||||
  ASSERT_EQ(y.size(0), 100);
 | 
			
		||||
  ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
  ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 1);
 | 
			
		||||
    ASSERT_EQ(y.size(0), 100);
 | 
			
		||||
    ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
    ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(y.allclose(x));
 | 
			
		||||
    } else {
 | 
			
		||||
      y.backward(torch::ones_like(y));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  dropout->eval();
 | 
			
		||||
  y = dropout(x);
 | 
			
		||||
  ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
    dropout->eval();
 | 
			
		||||
    y = dropout(torch::ones(100));
 | 
			
		||||
    ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, Dropout2d) {
 | 
			
		||||
  Dropout2d dropout(0.5);
 | 
			
		||||
  torch::Tensor x = torch::ones({10, 10}, torch::requires_grad());
 | 
			
		||||
  torch::Tensor y = dropout(x);
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    Dropout2d dropout(Dropout2dOptions(0.5).inplace(inplace));
 | 
			
		||||
    torch::Tensor x = torch::ones({10, 10});
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      x.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    torch::Tensor y = dropout(x);
 | 
			
		||||
 | 
			
		||||
  y.backward(torch::ones_like(y));
 | 
			
		||||
  ASSERT_EQ(y.ndimension(), 2);
 | 
			
		||||
  ASSERT_EQ(y.size(0), 10);
 | 
			
		||||
  ASSERT_EQ(y.size(1), 10);
 | 
			
		||||
  ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
  ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 2);
 | 
			
		||||
    ASSERT_EQ(y.size(0), 10);
 | 
			
		||||
    ASSERT_EQ(y.size(1), 10);
 | 
			
		||||
    ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
    ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(y.allclose(x));
 | 
			
		||||
    } else {
 | 
			
		||||
      y.backward(torch::ones_like(y));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  dropout->eval();
 | 
			
		||||
  y = dropout(x);
 | 
			
		||||
  ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
    dropout->eval();
 | 
			
		||||
    y = dropout(torch::ones({10, 10}));
 | 
			
		||||
    ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, Dropout3d) {
 | 
			
		||||
  Dropout3d dropout(0.5);
 | 
			
		||||
  torch::Tensor x = torch::ones({4, 5, 5}, torch::requires_grad());
 | 
			
		||||
  torch::Tensor y = dropout(x);
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    Dropout3d dropout(Dropout3dOptions(0.5).inplace(inplace));
 | 
			
		||||
    torch::Tensor x = torch::ones({4, 5, 5});
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      x.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    torch::Tensor y = dropout(x);
 | 
			
		||||
 | 
			
		||||
  y.backward(torch::ones_like(y));
 | 
			
		||||
  ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
  ASSERT_EQ(y.size(0), 4);
 | 
			
		||||
  ASSERT_EQ(y.size(1), 5);
 | 
			
		||||
  ASSERT_EQ(y.size(1), 5);
 | 
			
		||||
  ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
  ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.size(0), 4);
 | 
			
		||||
    ASSERT_EQ(y.size(1), 5);
 | 
			
		||||
    ASSERT_EQ(y.size(1), 5);
 | 
			
		||||
    ASSERT_LT(y.sum().item<float>(), 130); // Probably
 | 
			
		||||
    ASSERT_GT(y.sum().item<float>(), 70); // Probably
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(y.allclose(x));
 | 
			
		||||
    } else {
 | 
			
		||||
      y.backward(torch::ones_like(y));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  dropout->eval();
 | 
			
		||||
  y = dropout(x);
 | 
			
		||||
  ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
    dropout->eval();
 | 
			
		||||
    y = dropout(torch::ones({4, 5, 5}));
 | 
			
		||||
    ASSERT_EQ(y.sum().item<float>(), 100);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, Parameters) {
 | 
			
		||||
@ -2147,38 +2174,58 @@ TEST_F(ModulesTest, PairwiseDistance) {
 | 
			
		||||
TEST_F(ModulesTest, ELU) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) {
 | 
			
		||||
    ELU model {ELUOptions().alpha(alpha)};
 | 
			
		||||
    auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
    x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
    auto y = model(x);
 | 
			
		||||
    torch::Tensor s = y.sum();
 | 
			
		||||
    for (const auto inplace : {false, true}) {
 | 
			
		||||
      ELU model {ELUOptions().alpha(alpha).inplace(inplace)};
 | 
			
		||||
      auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
      x.resize_({size, size, size});
 | 
			
		||||
      if (!inplace) {
 | 
			
		||||
        x.requires_grad_(true);
 | 
			
		||||
      }
 | 
			
		||||
      auto x_orig = x.clone();
 | 
			
		||||
      auto y = model(x);
 | 
			
		||||
      torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
    s.backward();
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
      ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = torch::max(torch::zeros_like(x), x) +
 | 
			
		||||
                 torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
      ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
      auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) +
 | 
			
		||||
                   torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig) - 1.0));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      if (inplace) {
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
      } else {
 | 
			
		||||
        s.backward();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, SELU) {
 | 
			
		||||
  SELU model;
 | 
			
		||||
  auto input = torch::randn({5, 5}, torch::requires_grad());
 | 
			
		||||
  auto output = model->forward(input);
 | 
			
		||||
  const double scale = 1.0507009873554804934193349852946;
 | 
			
		||||
  const double alpha = 1.6732632423543772848170429916717;
 | 
			
		||||
  auto zero = torch::zeros_like(input);
 | 
			
		||||
  auto expected = scale *
 | 
			
		||||
      (torch::max(zero, input) +
 | 
			
		||||
       torch::min(zero, alpha * (torch::exp(input) - 1)));
 | 
			
		||||
  auto s = output.sum();
 | 
			
		||||
  s.backward();
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    SELU model(inplace);
 | 
			
		||||
    auto input = torch::randn({5, 5});
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      input.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    auto input_orig = input.clone();
 | 
			
		||||
    auto output = model->forward(input);
 | 
			
		||||
    const double scale = 1.0507009873554804934193349852946;
 | 
			
		||||
    const double alpha = 1.6732632423543772848170429916717;
 | 
			
		||||
    auto zero = torch::zeros_like(input);
 | 
			
		||||
    auto expected = scale *
 | 
			
		||||
        (torch::max(zero, input_orig) +
 | 
			
		||||
         torch::min(zero, alpha * (torch::exp(input_orig) - 1)));
 | 
			
		||||
    auto s = output.sum();
 | 
			
		||||
 | 
			
		||||
  ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
  ASSERT_TRUE(output.allclose(expected));
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
    ASSERT_TRUE(output.allclose(expected));
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(input.allclose(expected));
 | 
			
		||||
    } else {
 | 
			
		||||
      s.backward();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, Hardshrink) {
 | 
			
		||||
@ -2192,7 +2239,6 @@ TEST_F(ModulesTest, Hardshrink) {
 | 
			
		||||
 | 
			
		||||
    s.backward();
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = (x.abs() > lambda) * x;
 | 
			
		||||
@ -2204,21 +2250,30 @@ TEST_F(ModulesTest, Hardtanh) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) {
 | 
			
		||||
    for (const auto max_val : {0.42, 1.0, 4.2}) {
 | 
			
		||||
      Hardtanh model {HardtanhOptions().min_val(min_val).max_val(max_val)};
 | 
			
		||||
      auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
      x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
      auto y = model(x);
 | 
			
		||||
      torch::Tensor s = y.sum();
 | 
			
		||||
      for (const auto inplace : {false, true}) {
 | 
			
		||||
        Hardtanh model {HardtanhOptions().min_val(min_val).max_val(max_val).inplace(inplace)};
 | 
			
		||||
        auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
        x.resize_({size, size, size});
 | 
			
		||||
        if (!inplace) {
 | 
			
		||||
          x.requires_grad_(true);
 | 
			
		||||
        }
 | 
			
		||||
        auto x_orig = x.clone();
 | 
			
		||||
        auto y = model(x);
 | 
			
		||||
        torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
      s.backward();
 | 
			
		||||
      ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
      ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
      ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
      auto y_exp = (x < min_val) * min_val +
 | 
			
		||||
                   ((x >= min_val) * (x <= max_val)) * x +
 | 
			
		||||
                   (x > max_val) * max_val;
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
        ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
        ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
        ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
        auto y_exp = (x_orig < min_val) * min_val +
 | 
			
		||||
                     ((x_orig >= min_val) * (x_orig <= max_val)) * x_orig +
 | 
			
		||||
                     (x_orig > max_val) * max_val;
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
        if (inplace) {
 | 
			
		||||
          ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
        } else {
 | 
			
		||||
          s.backward();
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
@ -2238,20 +2293,29 @@ TEST_F(ModulesTest, HardtanhMinValGEMaxVal) {
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, LeakyReLU) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  for (const auto negative_slope : {0.0, 0.42, 1.0}) {
 | 
			
		||||
    LeakyReLU model {LeakyReLUOptions().negative_slope(negative_slope)};
 | 
			
		||||
    auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
    x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
    auto y = model(x);
 | 
			
		||||
    torch::Tensor s = y.sum();
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    for (const auto negative_slope : {0.0, 0.42, 1.0}) {
 | 
			
		||||
      LeakyReLU model {LeakyReLUOptions().negative_slope(negative_slope).inplace(inplace)};
 | 
			
		||||
      auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
      x.resize_({size, size, size});
 | 
			
		||||
      if (!inplace) {
 | 
			
		||||
        x.requires_grad_(true);
 | 
			
		||||
      }
 | 
			
		||||
      auto x_orig = x.clone();
 | 
			
		||||
      auto y = model(x);
 | 
			
		||||
      torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
    s.backward();
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x;
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
      ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
      ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
      auto y_exp = (x_orig < 0) * x_orig * negative_slope + (x_orig >= 0) * x_orig;
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      if (inplace) {
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
      } else {
 | 
			
		||||
        s.backward();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -2394,78 +2458,114 @@ TEST_F(ModulesTest, PReLU) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, ReLU) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  ReLU model;
 | 
			
		||||
  auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
  x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
  auto y = model(x);
 | 
			
		||||
  torch::Tensor s = y.sum();
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    const auto size = 3;
 | 
			
		||||
    ReLU model(inplace);
 | 
			
		||||
    auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
    x.resize_({size, size, size});
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      x.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    auto x_orig = x.clone();
 | 
			
		||||
    auto y = model(x);
 | 
			
		||||
    torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
  s.backward();
 | 
			
		||||
  ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
  ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
  ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
  auto y_exp = (x < 0) * 0 + (x >= 0) * x;
 | 
			
		||||
  ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = (x_orig < 0) * 0 + (x_orig >= 0) * x_orig;
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
    } else {
 | 
			
		||||
      s.backward();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, ReLU6) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  ReLU6 model;
 | 
			
		||||
  auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
  x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
  auto y = model(x);
 | 
			
		||||
  torch::Tensor s = y.sum();
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    const auto size = 3;
 | 
			
		||||
    ReLU6 model(inplace);
 | 
			
		||||
    auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
    x.resize_({size, size, size});
 | 
			
		||||
    if (!inplace) {
 | 
			
		||||
      x.requires_grad_(true);
 | 
			
		||||
    }
 | 
			
		||||
    auto x_orig = x.clone();
 | 
			
		||||
    auto y = model(x);
 | 
			
		||||
    torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
  s.backward();
 | 
			
		||||
  ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
  ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
  ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
  auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6;
 | 
			
		||||
  ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = (x_orig < 0) * 0 + ((x_orig >= 0) * (x_orig <= 6)) * x_orig + (x_orig > 6) * 6;
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
    if (inplace) {
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
    } else {
 | 
			
		||||
      s.backward();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, RReLU) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  for (const auto lower : {0.01, 0.1, 0.2}) {
 | 
			
		||||
    for (const auto upper : {0.3, 0.4, 0.5}) {
 | 
			
		||||
      RReLU model {RReLUOptions().lower(lower).upper(upper)};
 | 
			
		||||
      auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
      x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
      auto y = model(x);
 | 
			
		||||
      torch::Tensor s = y.sum();
 | 
			
		||||
      for (const auto inplace : {false, true}) {
 | 
			
		||||
        RReLU model {RReLUOptions().lower(lower).upper(upper).inplace(inplace)};
 | 
			
		||||
        auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
        x.resize_({size, size, size});
 | 
			
		||||
        if (!inplace) {
 | 
			
		||||
          x.requires_grad_(true);
 | 
			
		||||
        }
 | 
			
		||||
        auto x_orig = x.clone();
 | 
			
		||||
        auto y = model(x);
 | 
			
		||||
        torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
      s.backward();
 | 
			
		||||
      ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
      ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
      ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
      auto z = ((x >= 0) * (x == y) +
 | 
			
		||||
        (x < 0) * (y >= x * upper) * (y <= lower * x)) * 1.0;
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(z, torch::ones_like(z)));
 | 
			
		||||
        ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
        ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
        ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
        auto z = ((x_orig >= 0) * (x_orig == y) +
 | 
			
		||||
          (x_orig < 0) * (y >= x_orig * upper) * (y <= lower * x_orig)) * 1.0;
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(z, torch::ones_like(z)));
 | 
			
		||||
        if (inplace) {
 | 
			
		||||
          ASSERT_TRUE(torch::allclose(x, y));
 | 
			
		||||
        } else {
 | 
			
		||||
          s.backward();
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, CELU) {
 | 
			
		||||
  const auto size = 3;
 | 
			
		||||
  for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) {
 | 
			
		||||
    CELU model {CELUOptions().alpha(alpha)};
 | 
			
		||||
    auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
    x.resize_({size, size, size}).set_requires_grad(true);
 | 
			
		||||
    auto y = model(x);
 | 
			
		||||
    torch::Tensor s = y.sum();
 | 
			
		||||
  for (const auto inplace : {false, true}) {
 | 
			
		||||
    for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) {
 | 
			
		||||
      CELU model {CELUOptions().alpha(alpha).inplace(inplace)};
 | 
			
		||||
      auto x = torch::linspace(-10.0, 10.0, size * size * size);
 | 
			
		||||
      x.resize_({size, size, size});
 | 
			
		||||
      if (!inplace) {
 | 
			
		||||
        x.requires_grad_(true);
 | 
			
		||||
      }
 | 
			
		||||
      auto x_orig = x.clone();
 | 
			
		||||
      auto y = model(x);
 | 
			
		||||
      torch::Tensor s = y.sum();
 | 
			
		||||
 | 
			
		||||
    s.backward();
 | 
			
		||||
    ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
 | 
			
		||||
    ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
    ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
    auto y_exp = torch::max(torch::zeros_like(x), x) +
 | 
			
		||||
        torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0));
 | 
			
		||||
    ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      ASSERT_EQ(s.ndimension(), 0);
 | 
			
		||||
      ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
      ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
      auto y_exp = torch::max(torch::zeros_like(x_orig), x_orig) +
 | 
			
		||||
          torch::min(torch::zeros_like(x_orig), alpha * (torch::exp(x_orig / alpha) - 1.0));
 | 
			
		||||
      ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
      if (inplace) {
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
      } else {
 | 
			
		||||
        s.backward();
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -2597,12 +2697,16 @@ TEST_F(ModulesTest, Threshold) {
 | 
			
		||||
        Threshold model {ThresholdOptions(threshold, value).inplace(inplace)};
 | 
			
		||||
        auto x = torch::linspace(-3.0, 3.0, 61);
 | 
			
		||||
        x.resize_({size, size, size});
 | 
			
		||||
        auto y_exp = (x <= threshold) * value + (x > threshold) * x;
 | 
			
		||||
        auto x_orig = x.clone();
 | 
			
		||||
        auto y_exp = (x_orig <= threshold) * value + (x_orig > threshold) * x_orig;
 | 
			
		||||
        auto y = model(x);
 | 
			
		||||
 | 
			
		||||
        ASSERT_EQ(y.ndimension(), 3);
 | 
			
		||||
        ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
 | 
			
		||||
        ASSERT_TRUE(torch::allclose(y, y_exp));
 | 
			
		||||
        if (inplace) {
 | 
			
		||||
          ASSERT_TRUE(torch::allclose(x, y_exp));
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@ -2611,7 +2715,7 @@ TEST_F(ModulesTest, Threshold) {
 | 
			
		||||
TEST_F(ModulesTest, Upsampling1D) {
 | 
			
		||||
  {
 | 
			
		||||
    Upsample model(UpsampleOptions()
 | 
			
		||||
                       .size({4})
 | 
			
		||||
                       .size(std::vector<int64_t>({4}))
 | 
			
		||||
                       .mode(torch::kNearest));
 | 
			
		||||
    auto input = torch::ones({1, 1, 2}, torch::requires_grad());
 | 
			
		||||
    auto output = model->forward(input);
 | 
			
		||||
@ -2627,7 +2731,7 @@ TEST_F(ModulesTest, Upsampling1D) {
 | 
			
		||||
      // test float scale factor up & down sampling
 | 
			
		||||
      for (const auto scale_factor : {0.5, 1.5, 2.0}) {
 | 
			
		||||
        Upsample model(UpsampleOptions()
 | 
			
		||||
                           .scale_factor({scale_factor})
 | 
			
		||||
                           .scale_factor(std::vector<double>({scale_factor}))
 | 
			
		||||
                           .mode(torch::kLinear)
 | 
			
		||||
                           .align_corners(align_corners));
 | 
			
		||||
        auto input = torch::ones({1, 1, 2}, torch::requires_grad());
 | 
			
		||||
@ -2646,7 +2750,7 @@ TEST_F(ModulesTest, Upsampling1D) {
 | 
			
		||||
  {
 | 
			
		||||
    // linear (1D) upsampling spatial invariance
 | 
			
		||||
    Upsample model(UpsampleOptions()
 | 
			
		||||
                       .scale_factor({3})
 | 
			
		||||
                       .scale_factor(std::vector<double>({3}))
 | 
			
		||||
                       .mode(torch::kLinear)
 | 
			
		||||
                       .align_corners(false));
 | 
			
		||||
    auto input = torch::zeros({1, 1, 9});
 | 
			
		||||
@ -2661,7 +2765,7 @@ TEST_F(ModulesTest, Upsampling1D) {
 | 
			
		||||
TEST_F(ModulesTest, Upsampling2D) {
 | 
			
		||||
  {
 | 
			
		||||
    Upsample model(UpsampleOptions()
 | 
			
		||||
                       .size({4, 4})
 | 
			
		||||
                       .size(std::vector<int64_t>({4, 4}))
 | 
			
		||||
                       .mode(torch::kNearest));
 | 
			
		||||
    auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad());
 | 
			
		||||
    auto output = model->forward(input);
 | 
			
		||||
@ -2677,7 +2781,7 @@ TEST_F(ModulesTest, Upsampling2D) {
 | 
			
		||||
      // test float scale factor up & down sampling
 | 
			
		||||
      for (const auto scale_factor : {0.5, 1.5, 2.0}) {
 | 
			
		||||
        Upsample model(UpsampleOptions()
 | 
			
		||||
                           .scale_factor({scale_factor, scale_factor})
 | 
			
		||||
                           .scale_factor(std::vector<double>({scale_factor, scale_factor}))
 | 
			
		||||
                           .mode(torch::kBilinear)
 | 
			
		||||
                           .align_corners(align_corners));
 | 
			
		||||
        auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad());
 | 
			
		||||
@ -2698,7 +2802,7 @@ TEST_F(ModulesTest, Upsampling2D) {
 | 
			
		||||
      // test float scale factor up & down sampling
 | 
			
		||||
      for (const auto scale_factor : {0.5, 1.5, 2.0}) {
 | 
			
		||||
        Upsample model(UpsampleOptions()
 | 
			
		||||
                           .scale_factor({scale_factor, scale_factor})
 | 
			
		||||
                           .scale_factor(std::vector<double>({scale_factor, scale_factor}))
 | 
			
		||||
                           .mode(torch::kBicubic)
 | 
			
		||||
                           .align_corners(align_corners));
 | 
			
		||||
        auto input = torch::ones({1, 1, 2, 2}, torch::requires_grad());
 | 
			
		||||
@ -2719,7 +2823,7 @@ TEST_F(ModulesTest, Upsampling2D) {
 | 
			
		||||
TEST_F(ModulesTest, Upsampling3D) {
 | 
			
		||||
  {
 | 
			
		||||
    Upsample model(UpsampleOptions()
 | 
			
		||||
                       .size({4, 4, 4})
 | 
			
		||||
                       .size(std::vector<int64_t>({4, 4, 4}))
 | 
			
		||||
                       .mode(torch::kNearest));
 | 
			
		||||
    auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad());
 | 
			
		||||
    auto output = model->forward(input);
 | 
			
		||||
@ -2736,7 +2840,7 @@ TEST_F(ModulesTest, Upsampling3D) {
 | 
			
		||||
      for (const auto scale_factor : {0.5, 1.5, 2.0}) {
 | 
			
		||||
        Upsample model(
 | 
			
		||||
            UpsampleOptions()
 | 
			
		||||
                .scale_factor({scale_factor, scale_factor, scale_factor})
 | 
			
		||||
                .scale_factor(std::vector<double>({scale_factor, scale_factor, scale_factor}))
 | 
			
		||||
                .mode(torch::kTrilinear)
 | 
			
		||||
                .align_corners(align_corners));
 | 
			
		||||
        auto input = torch::ones({1, 1, 2, 2, 2}, torch::requires_grad());
 | 
			
		||||
@ -3876,10 +3980,10 @@ TEST_F(ModulesTest, PrettyPrintConvTranspose) {
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, PrettyPrintUpsample) {
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(Upsample(UpsampleOptions().size({2, 4, 4}))),
 | 
			
		||||
      c10::str(Upsample(UpsampleOptions().size(std::vector<int64_t>({2, 4, 4})))),
 | 
			
		||||
      "torch::nn::Upsample(size=[2, 4, 4], mode=kNearest)");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(Upsample(UpsampleOptions().scale_factor({0.5, 1.5}).mode(torch::kBilinear))),
 | 
			
		||||
      c10::str(Upsample(UpsampleOptions().scale_factor(std::vector<double>({0.5, 1.5})).mode(torch::kBilinear))),
 | 
			
		||||
      "torch::nn::Upsample(scale_factor=[0.5, 1.5], mode=kBilinear)");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -3987,15 +4091,27 @@ TEST_F(ModulesTest, PrettyPrintAdaptiveMaxPool) {
 | 
			
		||||
      c10::str(AdaptiveMaxPool2d(5)),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool2d(output_size=[5, 5])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool2d(std::vector<int64_t>{5, 6})),
 | 
			
		||||
      c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, 6}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool2d(output_size=[5, 6])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({5, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool2d(output_size=[5, None])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool2d(AdaptiveMaxPool2dOptions({c10::nullopt, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool2d(output_size=[None, None])");
 | 
			
		||||
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool3d(5)),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool3d(output_size=[5, 5, 5])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool3d(std::vector<int64_t>{5, 6, 7})),
 | 
			
		||||
      c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, 6, 7}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool3d(output_size=[5, 6, 7])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({5, c10::nullopt, 7}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool3d(output_size=[5, None, 7])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveMaxPool3d(AdaptiveMaxPool3dOptions({c10::nullopt, c10::nullopt, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveMaxPool3d(output_size=[None, None, None])");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) {
 | 
			
		||||
@ -4007,15 +4123,27 @@ TEST_F(ModulesTest, PrettyPrintAdaptiveAvgPool) {
 | 
			
		||||
      c10::str(AdaptiveAvgPool2d(5)),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool2d(output_size=[5, 5])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool2d(std::vector<int64_t>{5, 6})),
 | 
			
		||||
      c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, 6}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool2d(output_size=[5, 6])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({5, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool2d(output_size=[5, None])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool2d(AdaptiveAvgPool2dOptions({c10::nullopt, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool2d(output_size=[None, None])");
 | 
			
		||||
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool3d(5)),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool3d(output_size=[5, 5, 5])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool3d(std::vector<int64_t>{5, 6, 7})),
 | 
			
		||||
      c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, 6, 7}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool3d(output_size=[5, 6, 7])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({5, c10::nullopt, 7}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool3d(output_size=[5, None, 7])");
 | 
			
		||||
  ASSERT_EQ(
 | 
			
		||||
      c10::str(AdaptiveAvgPool3d(AdaptiveAvgPool3dOptions({c10::nullopt, c10::nullopt, c10::nullopt}))),
 | 
			
		||||
      "torch::nn::AdaptiveAvgPool3d(output_size=[None, None, None])");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST_F(ModulesTest, PrettyPrintMaxUnpool) {
 | 
			
		||||
 | 
			
		||||
@ -26,7 +26,7 @@ bool test_optimizer_xor(Options options) {
 | 
			
		||||
      Linear(8, 1),
 | 
			
		||||
      Functional(torch::sigmoid));
 | 
			
		||||
 | 
			
		||||
  const int64_t kBatchSize = 4;
 | 
			
		||||
  const int64_t kBatchSize = 50;
 | 
			
		||||
  const int64_t kMaximumNumberOfEpochs = 3000;
 | 
			
		||||
 | 
			
		||||
  OptimizerClass optimizer(model->parameters(), options);
 | 
			
		||||
@ -40,13 +40,21 @@ bool test_optimizer_xor(Options options) {
 | 
			
		||||
      inputs[i] = torch::randint(2, {2}, torch::kInt64);
 | 
			
		||||
      labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
 | 
			
		||||
    }
 | 
			
		||||
    inputs.set_requires_grad(true);
 | 
			
		||||
    optimizer.zero_grad();
 | 
			
		||||
    auto x = model->forward(inputs);
 | 
			
		||||
    torch::Tensor loss = torch::binary_cross_entropy(x, labels);
 | 
			
		||||
    loss.backward();
 | 
			
		||||
 | 
			
		||||
    optimizer.step();
 | 
			
		||||
    inputs.set_requires_grad(true);
 | 
			
		||||
 | 
			
		||||
    auto step = [&](OptimizerClass& optimizer, Sequential model, torch::Tensor inputs, torch::Tensor labels) {
 | 
			
		||||
      auto closure = [&]() {
 | 
			
		||||
        optimizer.zero_grad();
 | 
			
		||||
        auto x = model->forward(inputs);
 | 
			
		||||
        auto loss = torch::binary_cross_entropy(x, labels);
 | 
			
		||||
        loss.backward();
 | 
			
		||||
        return loss;
 | 
			
		||||
      };
 | 
			
		||||
      return optimizer.step(closure);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    torch::Tensor loss = step(optimizer, model, inputs, labels);
 | 
			
		||||
 | 
			
		||||
    running_loss = running_loss * 0.99 + loss.item<float>() * 0.01;
 | 
			
		||||
    if (epoch > kMaximumNumberOfEpochs) {
 | 
			
		||||
@ -166,30 +174,66 @@ TEST(OptimTest, OptimizerAccessors) {
 | 
			
		||||
  optimizer_.state();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(OptimTest, BasicInterface) {
 | 
			
		||||
#define OLD_INTERFACE_WARNING_CHECK(func) \
 | 
			
		||||
{ \
 | 
			
		||||
  std::stringstream buffer;\
 | 
			
		||||
  torch::test::CerrRedirect cerr_redirect(buffer.rdbuf());\
 | 
			
		||||
  func;\
 | 
			
		||||
  ASSERT_EQ(\
 | 
			
		||||
    torch::test::count_substr_occurrences(\
 | 
			
		||||
      buffer.str(),\
 | 
			
		||||
      "will be removed"\
 | 
			
		||||
    ),\
 | 
			
		||||
  1);\
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct MyOptimizerOptions : public OptimizerCloneableOptions<MyOptimizerOptions> {
 | 
			
		||||
  MyOptimizerOptions(double lr = 1.0) : lr_(lr) {};
 | 
			
		||||
  TORCH_ARG(double, lr) = 1.0;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST(OptimTest, OldInterface) {
 | 
			
		||||
  struct MyOptimizer : Optimizer {
 | 
			
		||||
    using Optimizer::Optimizer;
 | 
			
		||||
    torch::Tensor step(LossClosure closure = nullptr) override { return {};}
 | 
			
		||||
    explicit MyOptimizer(
 | 
			
		||||
        std::vector<at::Tensor> params, MyOptimizerOptions defaults = {}) :
 | 
			
		||||
          Optimizer({std::move(OptimizerParamGroup(params))}, std::make_unique<MyOptimizerOptions>(defaults)) {}
 | 
			
		||||
  };
 | 
			
		||||
  std::vector<torch::Tensor> parameters = {
 | 
			
		||||
      torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})};
 | 
			
		||||
  {
 | 
			
		||||
    MyOptimizer optimizer(parameters);
 | 
			
		||||
    ASSERT_EQ(optimizer.size(), parameters.size());
 | 
			
		||||
    size_t size;
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
 | 
			
		||||
    ASSERT_EQ(size, parameters.size());
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    MyOptimizer optimizer;
 | 
			
		||||
    ASSERT_EQ(optimizer.size(), 0);
 | 
			
		||||
    optimizer.add_parameters(parameters);
 | 
			
		||||
    ASSERT_EQ(optimizer.size(), parameters.size());
 | 
			
		||||
    for (size_t p = 0; p < parameters.size(); ++p) {
 | 
			
		||||
      ASSERT_TRUE(optimizer.parameters()[p].allclose(parameters[p]));
 | 
			
		||||
    std::vector<at::Tensor> params;
 | 
			
		||||
    MyOptimizer optimizer(params);
 | 
			
		||||
 | 
			
		||||
    size_t size;
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
 | 
			
		||||
    ASSERT_EQ(size, 0);
 | 
			
		||||
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
 | 
			
		||||
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
 | 
			
		||||
    ASSERT_EQ(size, parameters.size());
 | 
			
		||||
 | 
			
		||||
    std::vector<torch::Tensor> params_;
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(params_ = optimizer.parameters());
 | 
			
		||||
    for (size_t p = 0; p < size; ++p) {
 | 
			
		||||
      ASSERT_TRUE(params_[p].allclose(parameters[p]));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  {
 | 
			
		||||
    Linear linear(3, 4);
 | 
			
		||||
    MyOptimizer optimizer(linear->parameters());
 | 
			
		||||
    ASSERT_EQ(optimizer.size(), linear->parameters().size());
 | 
			
		||||
 | 
			
		||||
    size_t size;
 | 
			
		||||
    OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
 | 
			
		||||
    ASSERT_EQ(size, linear->parameters().size());
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -198,6 +242,11 @@ TEST(OptimTest, XORConvergence_SGD) {
 | 
			
		||||
      SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(OptimTest, XORConvergence_LBFGS) {
 | 
			
		||||
  ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0)));
 | 
			
		||||
  ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0).line_search_fn("strong_wolfe")));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(OptimTest, XORConvergence_Adagrad) {
 | 
			
		||||
  ASSERT_TRUE(test_optimizer_xor<Adagrad>(
 | 
			
		||||
      AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)));
 | 
			
		||||
@ -375,7 +424,7 @@ TEST(OptimTest, AddParameter_LBFGS) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0);
 | 
			
		||||
  optimizer.add_parameters(parameters);
 | 
			
		||||
  OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
 | 
			
		||||
 | 
			
		||||
  optimizer.step([]() { return torch::tensor(1); });
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -64,7 +64,7 @@ void is_optimizer_state_equal(
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename OptimizerClass, typename DerivedOptimizerOptions, typename DerivedOptimizerParamState>
 | 
			
		||||
void test_serialize_optimizer(DerivedOptimizerOptions options) {
 | 
			
		||||
void test_serialize_optimizer(DerivedOptimizerOptions options, bool only_has_global_state = false) {
 | 
			
		||||
  auto model1 = Linear(5, 2);
 | 
			
		||||
  auto model2 = Linear(5, 2);
 | 
			
		||||
  auto model3 = Linear(5, 2);
 | 
			
		||||
@ -125,9 +125,11 @@ void test_serialize_optimizer(DerivedOptimizerOptions options) {
 | 
			
		||||
  auto& optim3_2_state = optim3_2.state();
 | 
			
		||||
  auto& optim3_state = optim3.state();
 | 
			
		||||
 | 
			
		||||
  // optim3_2 and optim1 should have param_groups and state of size 1 and 2 respectively
 | 
			
		||||
  // optim3_2 and optim1 should have param_groups and state of size 1 and state_size respectively
 | 
			
		||||
  ASSERT_TRUE(optim3_2_param_groups.size() == 1);
 | 
			
		||||
  ASSERT_TRUE(optim3_2_state.size() == 2);
 | 
			
		||||
  // state_size = 2 for all optimizers except LBFGS as LBFGS only maintains one global state
 | 
			
		||||
  int state_size = only_has_global_state ? 1 : 2;
 | 
			
		||||
  ASSERT_TRUE(optim3_2_state.size() == state_size);
 | 
			
		||||
 | 
			
		||||
  // optim3_2 and optim1 should have param_groups and state of same size
 | 
			
		||||
  ASSERT_TRUE(optim3_2_param_groups.size() == optim3_param_groups.size());
 | 
			
		||||
@ -668,39 +670,16 @@ TEST(SerializeTest, Optim_RMSprop) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SerializeTest, Optim_LBFGS) {
 | 
			
		||||
  auto options = LBFGSOptions();
 | 
			
		||||
  test_serialize_optimizer<LBFGS, LBFGSOptions, LBFGSParamState>(LBFGSOptions(), true);
 | 
			
		||||
  // bc compatibility check
 | 
			
		||||
  auto model1 = Linear(5, 2);
 | 
			
		||||
  auto model2 = Linear(5, 2);
 | 
			
		||||
  auto model3 = Linear(5, 2);
 | 
			
		||||
 | 
			
		||||
  // Models 1, 2, 3 will have the same parameters.
 | 
			
		||||
  auto model_tempfile = c10::make_tempfile();
 | 
			
		||||
  torch::save(model1, model_tempfile.name);
 | 
			
		||||
  torch::load(model2, model_tempfile.name);
 | 
			
		||||
  torch::load(model3, model_tempfile.name);
 | 
			
		||||
 | 
			
		||||
  auto param1 = model1->named_parameters();
 | 
			
		||||
  auto param2 = model2->named_parameters();
 | 
			
		||||
  auto param3 = model3->named_parameters();
 | 
			
		||||
  for (const auto& p : param1) {
 | 
			
		||||
    ASSERT_TRUE(p->allclose(param2[p.key()]));
 | 
			
		||||
    ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
 | 
			
		||||
  }
 | 
			
		||||
  // Make some optimizers
 | 
			
		||||
  auto optim1 = LBFGS(
 | 
			
		||||
      {torch::optim::OptimizerParamGroup(model1->parameters())}, options);
 | 
			
		||||
  auto optim2 = LBFGS(
 | 
			
		||||
      model2->parameters(), options);
 | 
			
		||||
  auto optim2_2 = LBFGS(
 | 
			
		||||
      model2->parameters(), options);
 | 
			
		||||
  auto optim3 = LBFGS(
 | 
			
		||||
      model3->parameters(), options);
 | 
			
		||||
  auto optim3_2 = LBFGS(
 | 
			
		||||
      model3->parameters(), options);
 | 
			
		||||
  auto model1_params = model1->parameters();
 | 
			
		||||
  // added a tensor for lazy init check - when all params do not have entry in buffers
 | 
			
		||||
  model1_params.emplace_back(torch::randn({2,3}));
 | 
			
		||||
  auto optim1 = torch::optim::LBFGS(model1_params, torch::optim::LBFGSOptions());
 | 
			
		||||
 | 
			
		||||
  auto x = torch::ones({10, 5});
 | 
			
		||||
 | 
			
		||||
  auto step = [&x](torch::optim::LossClosureOptimizer& optimizer, Linear model) {
 | 
			
		||||
  auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
 | 
			
		||||
    optimizer.zero_grad();
 | 
			
		||||
    auto y = model->forward(x).sum();
 | 
			
		||||
    y.backward();
 | 
			
		||||
@ -708,56 +687,47 @@ TEST(SerializeTest, Optim_LBFGS) {
 | 
			
		||||
    optimizer.step(closure);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // Do 2 steps of model1
 | 
			
		||||
  step(optim1, model1);
 | 
			
		||||
  step(optim1, model1);
 | 
			
		||||
 | 
			
		||||
  // Do 2 steps of model 2 without saving the optimizer
 | 
			
		||||
  step(optim2, model2);
 | 
			
		||||
  step(optim2_2, model2);
 | 
			
		||||
  at::Tensor d, t, H_diag, prev_flat_grad, prev_loss;
 | 
			
		||||
  std::deque<at::Tensor> old_dirs, old_stps;
 | 
			
		||||
 | 
			
		||||
  // Do 1 step of model 3
 | 
			
		||||
  step(optim3, model3);
 | 
			
		||||
  const auto& params_ = optim1.param_groups()[0].params();
 | 
			
		||||
  auto key_ = c10::guts::to_string(params_[0].unsafeGetTensorImpl());
 | 
			
		||||
  const auto& optim1_state = static_cast<const LBFGSParamState&>(*(optim1.state().at(key_).get()));
 | 
			
		||||
  d = optim1_state.d();
 | 
			
		||||
  t = at::tensor(optim1_state.t());
 | 
			
		||||
  H_diag = optim1_state.H_diag();
 | 
			
		||||
  prev_flat_grad = optim1_state.prev_flat_grad();
 | 
			
		||||
  prev_loss = at::tensor(optim1_state.prev_loss());
 | 
			
		||||
  old_dirs = optim1_state.old_dirs();
 | 
			
		||||
 | 
			
		||||
  // save the optimizer
 | 
			
		||||
  auto optim_tempfile = c10::make_tempfile();
 | 
			
		||||
  torch::save(optim3, optim_tempfile.name);
 | 
			
		||||
  torch::load(optim3_2, optim_tempfile.name);
 | 
			
		||||
  // write buffers to the file
 | 
			
		||||
  auto optim_tempfile_old_format = c10::make_tempfile();
 | 
			
		||||
  torch::serialize::OutputArchive output_archive;
 | 
			
		||||
  output_archive.write("d", d, /*is_buffer=*/true);
 | 
			
		||||
  output_archive.write("t", t, /*is_buffer=*/true);
 | 
			
		||||
  output_archive.write("H_diag", H_diag, /*is_buffer=*/true);
 | 
			
		||||
  output_archive.write("prev_flat_grad", prev_flat_grad, /*is_buffer=*/true);
 | 
			
		||||
  output_archive.write("prev_loss", prev_loss, /*is_buffer=*/true);
 | 
			
		||||
  write_tensors_to_archive(output_archive, "old_dirs", old_dirs);
 | 
			
		||||
  write_tensors_to_archive(output_archive, "old_stps", old_stps);
 | 
			
		||||
  output_archive.save_to(optim_tempfile_old_format.name);
 | 
			
		||||
 | 
			
		||||
  auto& optim3_2_param_groups = optim3_2.param_groups();
 | 
			
		||||
  auto& optim3_param_groups = optim3.param_groups();
 | 
			
		||||
  auto& optim3_2_state = optim3_2.state();
 | 
			
		||||
  auto& optim3_state = optim3.state();
 | 
			
		||||
  auto optim1_2 = LBFGS(model1_params, torch::optim::LBFGSOptions());
 | 
			
		||||
  OLD_SERIALIZATION_LOGIC_WARNING_CHECK(torch::load, optim1_2, optim_tempfile_old_format.name);
 | 
			
		||||
 | 
			
		||||
  // LBFGS only supports 1 param_group
 | 
			
		||||
  // optim3_2 and optim1 should have param_groups of size 1
 | 
			
		||||
  ASSERT_TRUE(optim3_param_groups.size() == 1);
 | 
			
		||||
  ASSERT_TRUE(optim3_2_param_groups.size() == 1);
 | 
			
		||||
  // LBFGS only maintains one global state
 | 
			
		||||
  ASSERT_TRUE(optim3_2_state.size() == 1);
 | 
			
		||||
  ASSERT_TRUE(optim3_state.size() == 1);
 | 
			
		||||
  const auto& params1_2_ = optim1_2.param_groups()[0].params();
 | 
			
		||||
  auto param_key = c10::guts::to_string(params1_2_[0].unsafeGetTensorImpl());
 | 
			
		||||
  auto& optim1_2_state = static_cast<LBFGSParamState&>(*(optim1_2.state().at(param_key).get()));
 | 
			
		||||
 | 
			
		||||
  // checking correctness of serialization logic for optimizer.param_groups_ and optimizer.state_
 | 
			
		||||
  for (int i = 0; i < optim3_2_param_groups.size(); i++) {
 | 
			
		||||
    is_optimizer_param_group_equal<LBFGSOptions>(
 | 
			
		||||
      optim3_2_param_groups[i], optim3_param_groups[i]);
 | 
			
		||||
    is_optimizer_state_equal<LBFGSParamState>(optim3_2_state, optim3_state);
 | 
			
		||||
  }
 | 
			
		||||
  // old LBFGS didn't track func_evals, n_iter, ro, al values
 | 
			
		||||
  optim1_2_state.func_evals(optim1_state.func_evals());
 | 
			
		||||
  optim1_2_state.n_iter(optim1_state.n_iter());
 | 
			
		||||
  optim1_2_state.ro(optim1_state.ro());
 | 
			
		||||
  optim1_2_state.al(optim1_state.al());
 | 
			
		||||
 | 
			
		||||
  // Do step2 for model 3
 | 
			
		||||
  step(optim3_2, model3);
 | 
			
		||||
 | 
			
		||||
  param1 = model1->named_parameters();
 | 
			
		||||
  param2 = model2->named_parameters();
 | 
			
		||||
  param3 = model3->named_parameters();
 | 
			
		||||
  for (const auto& p : param1) {
 | 
			
		||||
    const auto& name = p.key();
 | 
			
		||||
    // Model 1 and 3 should be the same
 | 
			
		||||
    ASSERT_TRUE(
 | 
			
		||||
        param1[name].norm().item<float>() == param3[name].norm().item<float>());
 | 
			
		||||
    ASSERT_TRUE(
 | 
			
		||||
        param1[name].norm().item<float>() != param2[name].norm().item<float>());
 | 
			
		||||
  }
 | 
			
		||||
  is_optimizer_state_equal<LBFGSParamState>(optim1.state(), optim1_2.state());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TEST(SerializeTest, XOR_CUDA) {
 | 
			
		||||
 | 
			
		||||
@ -138,7 +138,7 @@ void testClassDerive() {
 | 
			
		||||
static const auto torchbindSrc = R"JIT(
 | 
			
		||||
class FooBar1234(Module):
 | 
			
		||||
  __parameters__ = []
 | 
			
		||||
  f : __torch__.torch.classes._TorchScriptTesting_StackString
 | 
			
		||||
  f : __torch__.torch.classes._TorchScriptTesting._StackString
 | 
			
		||||
  training : bool
 | 
			
		||||
  def forward(self: __torch__.FooBar1234) -> str:
 | 
			
		||||
    return (self.f).top()
 | 
			
		||||
 | 
			
		||||
@ -66,7 +66,7 @@ struct PickleTester : torch::CustomClassHolder {
 | 
			
		||||
  std::vector<int64_t> vals;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
static auto test = torch::class_<Foo>("_TorchScriptTesting_Foo")
 | 
			
		||||
static auto test = torch::class_<Foo>("_TorchScriptTesting", "_Foo")
 | 
			
		||||
                       .def(torch::init<int64_t, int64_t>())
 | 
			
		||||
                       // .def(torch::init<>())
 | 
			
		||||
                       .def("info", &Foo::info)
 | 
			
		||||
@ -75,7 +75,9 @@ static auto test = torch::class_<Foo>("_TorchScriptTesting_Foo")
 | 
			
		||||
                       .def("combine", &Foo::combine);
 | 
			
		||||
 | 
			
		||||
static auto testStack =
 | 
			
		||||
    torch::class_<MyStackClass<std::string>>("_TorchScriptTesting_StackString")
 | 
			
		||||
    torch::class_<MyStackClass<std::string>>(
 | 
			
		||||
        "_TorchScriptTesting",
 | 
			
		||||
        "_StackString")
 | 
			
		||||
        .def(torch::init<std::vector<std::string>>())
 | 
			
		||||
        .def("push", &MyStackClass<std::string>::push)
 | 
			
		||||
        .def("pop", &MyStackClass<std::string>::pop)
 | 
			
		||||
@ -101,7 +103,7 @@ static auto testStack =
 | 
			
		||||
// clang-format on
 | 
			
		||||
 | 
			
		||||
static auto testPickle =
 | 
			
		||||
    torch::class_<PickleTester>("_TorchScriptTesting_PickleTester")
 | 
			
		||||
    torch::class_<PickleTester>("_TorchScriptTesting", "_PickleTester")
 | 
			
		||||
        .def(torch::init<std::vector<int64_t>>())
 | 
			
		||||
        .def_pickle(
 | 
			
		||||
            [](c10::intrusive_ptr<PickleTester> self) { // __getstate__
 | 
			
		||||
@ -127,10 +129,10 @@ at::Tensor take_an_instance(const c10::intrusive_ptr<PickleTester>& instance) {
 | 
			
		||||
 | 
			
		||||
torch::RegisterOperators& register_take_instance() {
 | 
			
		||||
  static auto instance_registry = torch::RegisterOperators().op(
 | 
			
		||||
  torch::RegisterOperators::options()
 | 
			
		||||
      .schema(
 | 
			
		||||
          "_TorchScriptTesting::take_an_instance(__torch__.torch.classes._TorchScriptTesting_PickleTester x) -> Tensor Y")
 | 
			
		||||
      .catchAllKernel<decltype(take_an_instance), &take_an_instance>());
 | 
			
		||||
      torch::RegisterOperators::options()
 | 
			
		||||
          .schema(
 | 
			
		||||
              "_TorchScriptTesting::take_an_instance(__torch__.torch.classes._TorchScriptTesting._PickleTester x) -> Tensor Y")
 | 
			
		||||
          .catchAllKernel<decltype(take_an_instance), &take_an_instance>());
 | 
			
		||||
  return instance_registry;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -146,7 +148,7 @@ void testTorchbindIValueAPI() {
 | 
			
		||||
  auto custom_class_obj = make_custom_class<MyStackClass<std::string>>(
 | 
			
		||||
      std::vector<std::string>{"foo", "bar"});
 | 
			
		||||
  m.define(R"(
 | 
			
		||||
    def forward(self, s : __torch__.torch.classes._TorchScriptTesting_StackString):
 | 
			
		||||
    def forward(self, s : __torch__.torch.classes._TorchScriptTesting._StackString):
 | 
			
		||||
      return s.pop(), s
 | 
			
		||||
  )");
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -343,7 +343,8 @@ void testLiteInterpreterBuiltinFunction() {
 | 
			
		||||
namespace {
 | 
			
		||||
static auto reg =
 | 
			
		||||
    torch::jit::class_<TorchBindLiteInterpreterTestStruct>(
 | 
			
		||||
        "_TorchScriptTesting_LiteInterpreterTest")
 | 
			
		||||
        "_TorchScriptTesting",
 | 
			
		||||
        "_LiteInterpreterTest")
 | 
			
		||||
        .def("get", &TorchBindLiteInterpreterTestStruct::get)
 | 
			
		||||
        .def_pickle(
 | 
			
		||||
            // __getattr__
 | 
			
		||||
 | 
			
		||||
@ -35,19 +35,19 @@ class TestCustomOperators(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
    def test_no_return_class(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_Foo(5, 3)
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._Foo(5, 3)
 | 
			
		||||
            return val.info()
 | 
			
		||||
        self.assertEqual(*test_equality(f, lambda x: x))
 | 
			
		||||
 | 
			
		||||
    def test_constructor_with_args(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_Foo(5, 3)
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._Foo(5, 3)
 | 
			
		||||
            return val
 | 
			
		||||
        self.assertEqual(*test_equality(f, lambda x: x.info()))
 | 
			
		||||
 | 
			
		||||
    def test_function_call_with_args(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_Foo(5, 3)
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._Foo(5, 3)
 | 
			
		||||
            val.increment(1)
 | 
			
		||||
            return val
 | 
			
		||||
 | 
			
		||||
@ -55,7 +55,7 @@ class TestCustomOperators(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
    def test_function_method_wrong_type(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_Foo(5, 3)
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._Foo(5, 3)
 | 
			
		||||
            val.increment("asdf")
 | 
			
		||||
            return val
 | 
			
		||||
 | 
			
		||||
@ -65,8 +65,8 @@ class TestCustomOperators(unittest.TestCase):
 | 
			
		||||
    @unittest.skip("We currently don't support passing custom classes to custom methods.")
 | 
			
		||||
    def test_input_class_type(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_Foo(1, 2)
 | 
			
		||||
            val2 = torch.classes._TorchScriptTesting_Foo(2, 3)
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._Foo(1, 2)
 | 
			
		||||
            val2 = torch.classes._TorchScriptTesting._Foo(2, 3)
 | 
			
		||||
            val.combine(val2)
 | 
			
		||||
            return val
 | 
			
		||||
 | 
			
		||||
@ -74,14 +74,14 @@ class TestCustomOperators(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
    def test_stack_string(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_StackString(["asdf", "bruh"])
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
 | 
			
		||||
            return val.pop()
 | 
			
		||||
        self.assertEqual(*test_equality(f, lambda x: x))
 | 
			
		||||
 | 
			
		||||
    def test_stack_push_pop(self):
 | 
			
		||||
        def f():
 | 
			
		||||
            val = torch.classes._TorchScriptTesting_StackString(["asdf", "bruh"])
 | 
			
		||||
            val2 = torch.classes._TorchScriptTesting_StackString(["111", "222"])
 | 
			
		||||
            val = torch.classes._TorchScriptTesting._StackString(["asdf", "bruh"])
 | 
			
		||||
            val2 = torch.classes._TorchScriptTesting._StackString(["111", "222"])
 | 
			
		||||
            val.push(val2.pop())
 | 
			
		||||
            return val.pop() + val2.pop()
 | 
			
		||||
        self.assertEqual(*test_equality(f, lambda x: x))
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "4"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "4"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "weight"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "2"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "0"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "x"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    input: "input"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
ir_version: 6
 | 
			
		||||
producer_name: "pytorch"
 | 
			
		||||
producer_version: "1.4"
 | 
			
		||||
producer_version: "1.5"
 | 
			
		||||
graph {
 | 
			
		||||
  node {
 | 
			
		||||
    output: "1"
 | 
			
		||||
 | 
			
		||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user