Compare commits

..

1 Commits

6297 changed files with 103118 additions and 259020 deletions

View File

@ -2,7 +2,7 @@ build --cxxopt=--std=c++17
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. torch/headeronly/macros/cmake_macros.h) by making the generated directory a
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin

View File

@ -3,8 +3,10 @@ set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
export TORCH_CUDA_ARCH_LIST="9.0;10.0;12.0"
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
@ -25,7 +27,6 @@ if [ "$DESIRED_CUDA" = "cpu" ]; then
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
export USE_SYSTEM_NCCL=1
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -31,47 +31,33 @@ def build_ArmComputeLibrary() -> None:
"build=native",
]
acl_install_dir = "/acl"
acl_checkout_dir = os.getenv("ACL_SOURCE_DIR", "ComputeLibrary")
if os.path.isdir(acl_install_dir):
shutil.rmtree(acl_install_dir)
if not os.path.isdir(acl_checkout_dir) or not len(os.listdir(acl_checkout_dir)):
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v25.02",
"--depth",
"1",
"--shallow-submodules",
]
)
acl_checkout_dir = "ComputeLibrary"
os.makedirs(acl_install_dir)
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v25.02",
"--depth",
"1",
"--shallow-submodules",
]
)
check_call(
["scons", "Werror=1", f"-j{os.cpu_count()}"] + acl_build_flags,
["scons", "Werror=1", "-j8", f"build_dir=/{acl_install_dir}/build"]
+ acl_build_flags,
cwd=acl_checkout_dir,
)
for d in ["arm_compute", "include", "utils", "support", "src", "build"]:
for d in ["arm_compute", "include", "utils", "support", "src"]:
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
def replace_tag(filename) -> None:
with open(filename) as f:
lines = f.readlines()
for i, line in enumerate(lines):
if line.startswith("Tag:"):
lines[i] = line.replace("-linux_", "-manylinux_2_28_")
print(f"Updated tag from {line} to {lines[i]}")
break
with open(filename, "w") as f:
f.writelines(lines)
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
def update_wheel(wheel_path, desired_cuda) -> None:
"""
Package the cuda wheel libraries
Update the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
wheelname = os.path.basename(wheel_path)
@ -79,7 +65,6 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
os.system(f"unzip {wheel_path} -d {folder}/tmp")
libs_to_copy = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
@ -89,7 +74,7 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvToolsExt.so.1",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
@ -103,19 +88,30 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
if "129" in desired_cuda:
if enable_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
if "126" in desired_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.6",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
]
elif "128" in desired_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.8",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
]
else:
libs_to_copy += [
"/opt/OpenBLAS/lib/libopenblas.so.0",
]
# Copy libraries to unzipped_folder/a/lib
for lib_path in libs_to_copy:
lib_name = os.path.basename(lib_path)
@ -124,13 +120,6 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
)
# Make sure the wheel is tagged with manylinux_2_28
for f in os.scandir(f"{folder}/tmp/"):
if f.is_dir() and f.name.endswith(".dist-info"):
replace_tag(f"{f.path}/WHEEL")
break
os.mkdir(f"{folder}/cuda_wheel")
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
shutil.move(
@ -205,10 +194,8 @@ if __name__ == "__main__":
).decode()
print("Building PyTorch wheel")
build_vars = "CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
if enable_cuda:
build_vars = "MAX_JOBS=5 " + build_vars
build_vars = "MAX_JOBS=5 CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
os.system("cd /pytorch; python setup.py clean")
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
desired_cuda = os.getenv("DESIRED_CUDA")
@ -255,6 +242,6 @@ if __name__ == "__main__":
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")
wheel_path = f"/pytorch/dist/{filename[0]}"
package_cuda_wheel(wheel_path, desired_cuda)
update_wheel(wheel_path, desired_cuda)
pytorch_wheel_name = complete_wheel("/pytorch/")
print(f"Build Complete. Created {pytorch_wheel_name}..")

View File

@ -5,7 +5,7 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
if [[ ${BUILD_ENVIRONMENT} == *onnx* ]]; then
pip install click mock tabulate networkx==2.0
pip -q install "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
pip -q install --user "file:///var/lib/jenkins/workspace/third_party/onnx#egg=onnx"
fi
# Skip tests in environments where they are not built/applicable
@ -147,8 +147,8 @@ export DNNL_MAX_CPU_ISA=AVX2
if [[ "${SHARD_NUMBER:-1}" == "1" ]]; then
# TODO(sdym@meta.com) remove this when the linked issue resolved.
# py is temporary until https://github.com/Teemu/pytest-sugar/issues/241 is fixed
pip install py==1.11.0
pip install pytest-sugar
pip install --user py==1.11.0
pip install --user pytest-sugar
# NB: Warnings are disabled because they make it harder to see what
# the actual erroring test is
"$PYTHON" \

View File

@ -36,104 +36,3 @@ See `build.sh` for valid build environments (it's the giant switch).
# Set flags (see build.sh) and build image
sudo bash -c 'TRITON=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```
## [Guidance] Adding a New Base Docker Image
### Background
The base Docker images in directory `.ci/docker/` are built by the `docker-builds.yml` workflow. Those images are used throughout the PyTorch CI/CD pipeline. You should only create or modify a base Docker image if you need specific environment changes or dependencies before building PyTorch on CI.
1. **Automatic Rebuilding**:
- The Docker image building process is triggered automatically when changes are made to files in the `.ci/docker/*` directory
- This ensures all images stay up-to-date with the latest dependencies and configurations
2. **Image Reuse in PyTorch Build Workflows** (example: linux-build):
- The images generated by `docker-builds.yml` are reused in `_linux-build.yml` through the `calculate-docker-image` step
- The `_linux-build.yml` workflow:
- Pulls the Docker image determined by the `calculate-docker-image` step
- Runs a Docker container with that image
- Executes `.ci/pytorch/build.sh` inside the container to build PyTorch
3. **Usage in Test Workflows** (example: linux-test):
- The same Docker images are also used in `_linux-test.yml` for running tests
- The `_linux-test.yml` workflow follows a similar pattern:
- It uses the `calculate-docker-image` step to determine which Docker image to use
- It pulls the Docker image and runs a container with that image
- It installs the wheels from the artifacts generated by PyTorch build jobs
- It executes test scripts (like `.ci/pytorch/test.sh` or `.ci/pytorch/multigpu-test.sh`) inside the container
### Understanding File Purposes
#### `.ci/docker/build.sh` vs `.ci/pytorch/build.sh`
- **`.ci/docker/build.sh`**:
- Used for building base Docker images
- Executed by the `docker-builds.yml` workflow to pre-build Docker images for CI
- Contains configurations for different Docker build environments
- **`.ci/pytorch/build.sh`**:
- Used for building PyTorch inside a Docker container
- Called by workflows like `_linux-build.yml` after the Docker container is started
- Builds PyTorch wheels and other artifacts
#### `.ci/docker/ci_commit_pins/` vs `.github/ci_commit_pins`
- **`.ci/docker/ci_commit_pins/`**:
- Used for pinning dependency versions during base Docker image building
- Ensures consistent environments for building PyTorch
- Changes here trigger base Docker image rebuilds
- **`.github/ci_commit_pins`**:
- Used for pinning dependency versions during PyTorch building and tests
- Ensures consistent dependencies for PyTorch across different builds
- Used by build scripts running inside Docker containers
### Step-by-Step Guide for Adding a New Base Docker Image
#### 1. Add Pinned Commits (If Applicable)
We use pinned commits for build stability. The `nightly.yml` workflow checks and updates pinned commits for certain repository dependencies daily.
If your new Docker image needs a library installed from a specific pinned commit or built from source:
1. Add the repository you want to track in `nightly.yml` and `merge-rules.yml`
2. Add the initial pinned commit in `.ci/docker/ci_commit_pins/`. The text filename should match the one defined in step 1
#### 2. Configure the Base Docker Image
1. **Add new Base Docker image configuration** (if applicable):
Add the configuration in `.ci/docker/build.sh`. For example:
```bash
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-new1)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
NEW_ARG_1=yes
;;
```
2. **Add build arguments to Docker build command**:
If you're introducing a new argument to the Docker build, make sure to add it in the Docker build step in `.ci/docker/build.sh`:
```bash
docker build \
....
--build-arg "NEW_ARG_1=${NEW_ARG_1}"
```
3. **Update Dockerfile logic**:
Update the Dockerfile to use the new argument. For example, in `ubuntu/Dockerfile`:
```dockerfile
ARG NEW_ARG_1
# Set up environment for NEW_ARG_1
RUN if [ -n "${NEW_ARG_1}" ]; then bash ./do_something.sh; fi
```
4. **Add the Docker configuration** in `.github/workflows/docker-builds.yml`:
The `docker-builds.yml` workflow pre-builds the Docker images whenever changes occur in the `.ci/docker/` directory. This includes the
pinned commit updates.

View File

@ -1,7 +1,7 @@
ARG CUDA_VERSION=12.6
ARG CUDA_VERSION=12.4
ARG BASE_TARGET=cuda${CUDA_VERSION}
ARG ROCM_IMAGE=rocm/dev-almalinux-8:6.3-complete
FROM amd64/almalinux:8.10-20250519 as base
FROM amd64/almalinux:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
@ -11,8 +11,6 @@ ARG DEVTOOLSET_VERSION=11
RUN yum -y update
RUN yum -y install epel-release
# install glibc-langpack-en make sure en_US.UTF-8 locale is available
RUN yum -y install glibc-langpack-en
RUN yum install -y sudo wget curl perl util-linux xz bzip2 git patch which perl zlib-devel openssl-devel yum-utils autoconf automake make gcc-toolset-${DEVTOOLSET_VERSION}-toolchain
# Just add everything as a safe.directory for git since these will be used in multiple places with git
RUN git config --global --add safe.directory '*'
@ -52,6 +50,10 @@ ENV CUDA_VERSION=${CUDA_VERSION}
# Make things in our path by default
ENV PATH=/usr/local/cuda-${CUDA_VERSION}/bin:$PATH
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
ENV DESIRED_CUDA=11.8
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
ENV DESIRED_CUDA=12.6
@ -60,10 +62,6 @@ FROM cuda as cuda12.8
RUN bash ./install_cuda.sh 12.8
ENV DESIRED_CUDA=12.8
FROM cuda as cuda12.9
RUN bash ./install_cuda.sh 12.9
ENV DESIRED_CUDA=12.9
FROM ${ROCM_IMAGE} as rocm
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
ADD ./common/install_mkl.sh install_mkl.sh
@ -78,8 +76,7 @@ RUN bash ./install_mnist.sh
FROM base as all_cuda
COPY --from=cuda11.8 /usr/local/cuda-11.8 /usr/local/cuda-11.8
COPY --from=cuda12.6 /usr/local/cuda-12.6 /usr/local/cuda-12.6
COPY --from=cuda12.8 /usr/local/cuda-12.8 /usr/local/cuda-12.8
COPY --from=cuda12.9 /usr/local/cuda-12.9 /usr/local/cuda-12.9
COPY --from=cuda12.4 /usr/local/cuda-12.8 /usr/local/cuda-12.8
# Final step
FROM ${BASE_TARGET} as final

View File

@ -50,23 +50,30 @@ if [[ "$image" == *xla* ]]; then
exit 0
fi
if [[ "$image" == *-jammy* ]]; then
if [[ "$image" == *-focal* ]]; then
UBUNTU_VERSION=20.04
elif [[ "$image" == *-jammy* ]]; then
UBUNTU_VERSION=22.04
elif [[ "$image" == *-noble* ]]; then
UBUNTU_VERSION=24.04
elif [[ "$image" == *ubuntu* ]]; then
extract_version_from_image_name ubuntu UBUNTU_VERSION
elif [[ "$image" == *centos* ]]; then
extract_version_from_image_name centos CENTOS_VERSION
fi
if [ -n "${UBUNTU_VERSION}" ]; then
OS="ubuntu"
elif [ -n "${CENTOS_VERSION}" ]; then
OS="centos"
else
echo "Unable to derive operating system base..."
exit 1
fi
DOCKERFILE="${OS}/Dockerfile"
if [[ "$image" == *rocm* ]]; then
# When using ubuntu - 22.04, start from Ubuntu docker image, instead of nvidia/cuda docker image.
if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
elif [[ "$image" == *xpu* ]]; then
DOCKERFILE="${OS}-xpu/Dockerfile"
@ -91,72 +98,10 @@ tag=$(echo $image | awk -F':' '{print $2}')
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$tag" in
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11)
CUDA_VERSION=12.4
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9)
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc11)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
KATEX=yes
@ -164,8 +109,9 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -175,8 +121,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
pytorch-linux-focal-cuda12.4-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
@ -186,8 +133,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
pytorch-linux-focal-cuda12.4-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
@ -197,8 +145,9 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9)
CUDA_VERSION=12.8.1
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc9)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -207,36 +156,91 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-onnx)
pytorch-linux-focal-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
CUDA_VERSION=11.8.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-focal-py3-clang10-onnx)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
CLANG_VERSION=10
VISION=yes
ONNX=yes
;;
pytorch-linux-jammy-py3.9-clang12)
pytorch-linux-focal-py3.9-clang10)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
CLANG_VERSION=10
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.11-clang12)
pytorch-linux-focal-py3.11-clang10)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
CLANG_VERSION=10
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc9)
pytorch-linux-focal-py3.9-gcc9)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=9
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
else
ANACONDA_PYTHON_VERSION=3.12
fi
pytorch-linux-jammy-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.3
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-rocm-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
@ -247,19 +251,6 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
;;
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
@ -276,7 +267,7 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
@ -285,13 +276,25 @@ case "$tag" in
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDA_VERSION=11.8
CUDNN_VERSION=9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang12-asan)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang15-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=15
VISION=yes
;;
pytorch-linux-jammy-py3-clang18-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=18
@ -324,23 +327,21 @@ case "$tag" in
GCC_VERSION=11
TRITON_CPU=yes
;;
pytorch-linux-jammy-linter)
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
PYTHON_VERSION=3.9
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter)
PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDA_VERSION=11.8
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
VISION=yes
CONDA_CMAKE=yes
OPENBLAS=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
@ -350,8 +351,6 @@ case "$tag" in
GCC_VERSION=11
ACL=yes
VISION=yes
CONDA_CMAKE=yes
OPENBLAS=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
@ -366,6 +365,7 @@ case "$tag" in
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
@ -394,6 +394,14 @@ esac
tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 9 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
no_cache_flag=""
progress_flag=""
# Do not use cache and progress=plain when in CI
@ -410,6 +418,7 @@ docker build \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "VISION=${VISION:-}" \
--build-arg "UBUNTU_VERSION=${UBUNTU_VERSION}" \
--build-arg "CENTOS_VERSION=${CENTOS_VERSION}" \
--build-arg "DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}" \
--build-arg "GLIBC_VERSION=${GLIBC_VERSION}" \
--build-arg "CLANG_VERSION=${CLANG_VERSION}" \
@ -417,6 +426,9 @@ docker build \
--build-arg "PYTHON_VERSION=${PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \
@ -434,7 +446,6 @@ docker build \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "UNINSTALL_DILL=${UNINSTALL_DILL}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "OPENBLAS=${OPENBLAS:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \

View File

@ -39,7 +39,6 @@ RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG BUILD_ENVIRONMENT
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt

View File

@ -1 +1 @@
56392aa978594cc155fa8af48cd949f5b5f1823a
b173722085b3f555d6ba4533d6bbaddfd7c71144

View File

@ -1 +1 @@
v2.27.5-1
v2.26.5-1

View File

@ -1 +1 @@
ae324eeac8e102a2b40370e341460f3791353398
0bcc8265e677e5321606a3311bf71470f14456a8

View File

@ -1 +1 @@
11ec6354315768a85da41032535e3b7b99c5f706
96316ce50fade7e209553aba4898cd9b82aab83b

View File

@ -23,10 +23,6 @@ conda_install() {
as_jenkins conda install -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_install_through_forge() {
as_jenkins conda install -c conda-forge -q -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION" $*
}
conda_run() {
as_jenkins conda run -n py_$ANACONDA_PYTHON_VERSION --no-capture-output $*
}

View File

@ -15,9 +15,6 @@ install_ubuntu() {
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
cmake3="cmake=3.22*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "24.04"* ]]; then
cmake3="cmake=3.28*"
maybe_libiomp_dev=""
else
cmake3="cmake=3.5*"
maybe_libiomp_dev="libiomp-dev"
@ -33,6 +30,18 @@ install_ubuntu() {
maybe_libomp_dev=""
fi
# HACK: UCC testing relies on libnccl library from NVIDIA repo, and version 2.16 crashes
# See https://github.com/pytorch/pytorch/pull/105260#issuecomment-1673399729
# TODO: Eliminate this hack, we should not relay on apt-get installation
# See https://github.com/pytorch/pytorch/issues/144768
if [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "11.8"* ]]; then
maybe_libnccl_dev="libnccl2=2.15.5-1+cuda11.8 libnccl-dev=2.15.5-1+cuda11.8 --allow-downgrades --allow-change-held-packages"
elif [[ "$UBUNTU_VERSION" == "20.04"* && "$CUDA_VERSION" == "12.4"* ]]; then
maybe_libnccl_dev="libnccl2=2.26.2-1+cuda12.4 libnccl-dev=2.26.2-1+cuda12.4 --allow-downgrades --allow-change-held-packages"
else
maybe_libnccl_dev=""
fi
# Install common dependencies
apt-get update
# TODO: Some of these may not be necessary
@ -61,6 +70,7 @@ install_ubuntu() {
libasound2-dev \
libsndfile-dev \
${maybe_libomp_dev} \
${maybe_libnccl_dev} \
software-properties-common \
wget \
sudo \

View File

@ -4,8 +4,12 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
@ -17,6 +21,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
@ -59,16 +64,11 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 --update-deps -c conda-forge
# Miniforge installer doesn't install sqlite by default
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
conda_install sqlite
fi
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
if [[ $(uname -m) != "aarch64" ]]; then
pip_install mkl==2024.2.0
pip_install mkl-static==2024.2.0
pip_install mkl-include==2024.2.0
if [[ $(uname -m) == "aarch64" ]]; then
conda_install "openblas==0.3.29=*openmp*"
else
conda_install "mkl=2021.4.0 mkl-include=2021.4.0"
fi
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
@ -82,10 +82,6 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
conda_run ${SCRIPT_FOLDER}/install_magma_conda.sh $(cut -f1-2 -d'.' <<< ${CUDA_VERSION})
fi
if [[ "$UBUNTU_VERSION" == "24.04"* ]] ; then
conda_install_through_forge libstdcxx-ng=14
fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt

View File

@ -3,10 +3,11 @@
set -uex -o pipefail
PYTHON_DOWNLOAD_URL=https://www.python.org/ftp/python
PYTHON_DOWNLOAD_GITHUB_BRANCH=https://github.com/python/cpython/archive/refs/heads # @lint-ignore
GET_PIP_URL=https://bootstrap.pypa.io/get-pip.py
# Python versions to be installed in /opt/$VERSION_NO
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t 3.14.0 3.14.0t"}
CPYTHON_VERSIONS=${CPYTHON_VERSIONS:-"3.9.0 3.10.1 3.11.0 3.12.0 3.13.0 3.13.0t"}
function check_var {
if [ -z "$1" ]; then
@ -23,8 +24,9 @@ function do_cpython_build {
tar -xzf Python-$py_ver.tgz
local additional_flags=""
if [[ "$py_ver" == *"t" ]]; then
if [ "$py_ver" == "3.13.0t" ]; then
additional_flags=" --disable-gil"
mv cpython-3.13/ cpython-3.13t/
fi
pushd $py_folder
@ -66,7 +68,7 @@ function do_cpython_build {
ln -s pip3 ${prefix}/bin/pip
fi
# install setuptools since python 3.12 is required to use distutils
${prefix}/bin/pip install wheel==0.45.1 setuptools==80.9.0
${prefix}/bin/pip install wheel==0.34.2 setuptools==68.2.2
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -sf ${prefix} /opt/python/${abi_tag}
}
@ -74,20 +76,24 @@ function do_cpython_build {
function build_cpython {
local py_ver=$1
check_var $py_ver
local py_suffix=$py_ver
local py_folder=$py_ver
check_var $PYTHON_DOWNLOAD_URL
local py_ver_folder=$py_ver
# Special handling for nogil
if [[ "${py_ver}" == *"t" ]]; then
py_suffix=${py_ver::-1}
py_folder=$py_suffix
if [ "$py_ver" = "3.13.0t" ]; then
PY_VER_SHORT="3.13"
PYT_VER_SHORT="3.13t"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PYT_VER_SHORT
elif [ "$py_ver" = "3.13.0" ]; then
PY_VER_SHORT="3.13"
check_var $PYTHON_DOWNLOAD_GITHUB_BRANCH
wget $PYTHON_DOWNLOAD_GITHUB_BRANCH/$PY_VER_SHORT.tar.gz -O Python-$py_ver.tgz
do_cpython_build $py_ver cpython-$PY_VER_SHORT
else
wget -q $PYTHON_DOWNLOAD_URL/$py_ver_folder/Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_ver
fi
# Only b3 is available now
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0b3"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix
rm -f Python-$py_ver.tgz
}

View File

@ -10,8 +10,6 @@ else
arch_path='sbsa'
fi
NVSHMEM_VERSION=3.3.9
function install_cuda {
version=$1
runfile=$2
@ -42,40 +40,18 @@ function install_cudnn {
rm -rf tmp_cudnn
}
function install_nvshmem {
cuda_major_version=$1 # e.g. "12"
nvshmem_version=$2 # e.g. "3.3.9"
function install_118 {
CUDNN_VERSION=9.1.0.70
echo "Installing CUDA 11.8 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.4.0"
install_cuda 11.8.0 cuda_11.8.0_520.61.05_linux
case "${arch_path}" in
sbsa)
dl_arch="aarch64"
;;
x86_64)
dl_arch="x64"
;;
*)
dl_arch="${arch}"
;;
esac
install_cudnn 11 $CUDNN_VERSION
tmpdir="tmp_nvshmem"
mkdir -p "${tmpdir}" && cd "${tmpdir}"
CUDA_VERSION=11.8 bash install_nccl.sh
# nvSHMEM license: https://docs.nvidia.com/nvshmem/api/sla.html
filename="libnvshmem_cuda${cuda_major_version}-linux-${arch_path}-${nvshmem_version}"
url="https://developer.download.nvidia.com/compute/redist/nvshmem/${nvshmem_version}/builds/cuda${cuda_major_version}/txz/agnostic/${dl_arch}/${filename}.tar.gz"
CUDA_VERSION=11.8 bash install_cusparselt.sh
# download, unpack, install
wget -q "${url}"
tar xf "${filename}.tar.gz"
cp -a "libnvshmem/include/"* /usr/local/include/
cp -a "libnvshmem/lib/"* /usr/local/lib/
# cleanup
cd ..
rm -rf "${tmpdir}"
echo "nvSHMEM ${nvshmem_version} for CUDA ${cuda_major_version} (${arch_path}) installed."
ldconfig
}
function install_124 {
@ -93,14 +69,12 @@ function install_124 {
}
function install_126 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
CUDNN_VERSION=9.5.1.17
echo "Installing CUDA 12.6.3 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.6.3"
install_cuda 12.6.3 cuda_12.6.3_560.35.05_linux
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.6 bash install_nccl.sh
CUDA_VERSION=12.6 bash install_cusparselt.sh
@ -108,22 +82,35 @@ function install_126 {
ldconfig
}
function install_129 {
CUDNN_VERSION=9.10.2.21
echo "Installing CUDA 12.9.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.9.1 in the same container
install_cuda 12.9.1 cuda_12.9.1_575.57.08_linux
function prune_118 {
echo "Pruning CUDA 11.8 and cuDNN"
#####################################################################################
# CUDA 11.8 prune static libs
#####################################################################################
export NVPRUNE="/usr/local/cuda-11.8/bin/nvprune"
export CUDA_LIB_DIR="/usr/local/cuda-11.8/lib64"
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
export GENCODE="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
export GENCODE_CUDNN="-gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90"
install_nvshmem 12 $NVSHMEM_VERSION
if [[ -n "$OVERRIDE_GENCODE" ]]; then
export GENCODE=$OVERRIDE_GENCODE
fi
CUDA_VERSION=12.9 bash install_nccl.sh
# all CUDA libs except CuDNN and CuBLAS (cudnn and cublas need arch 3.7 included)
ls $CUDA_LIB_DIR/ | grep "\.a" | grep -v "culibos" | grep -v "cudart" | grep -v "cudnn" | grep -v "cublas" | grep -v "metis" \
| xargs -I {} bash -c \
"echo {} && $NVPRUNE $GENCODE $CUDA_LIB_DIR/{} -o $CUDA_LIB_DIR/{}"
CUDA_VERSION=12.9 bash install_cusparselt.sh
# prune CuDNN and CuBLAS
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublas_static.a -o $CUDA_LIB_DIR/libcublas_static.a
$NVPRUNE $GENCODE_CUDNN $CUDA_LIB_DIR/libcublasLt_static.a -o $CUDA_LIB_DIR/libcublasLt_static.a
ldconfig
#####################################################################################
# CUDA 11.8 prune visual tools
#####################################################################################
export CUDA_BASE="/usr/local/cuda-11.8/"
rm -rf $CUDA_BASE/libnvvp $CUDA_BASE/nsightee_plugins $CUDA_BASE/nsight-compute-2022.3.0 $CUDA_BASE/nsight-systems-2022.4.2/
}
function prune_124 {
@ -196,15 +183,13 @@ function prune_126 {
function install_128 {
CUDNN_VERSION=9.8.0.87
echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 12.8.1 in the same container
install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux
echo "Installing CUDA 12.8.0 and cuDNN ${CUDNN_VERSION} and NCCL and cuSparseLt-0.6.3"
# install CUDA 12.8.0 in the same container
install_cuda 12.8.0 cuda_12.8.0_570.86.10_linux
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
install_cudnn 12 $CUDNN_VERSION
install_nvshmem 12 $NVSHMEM_VERSION
CUDA_VERSION=12.8 bash install_nccl.sh
CUDA_VERSION=12.8 bash install_cusparselt.sh
@ -216,13 +201,13 @@ function install_128 {
while test $# -gt 0
do
case "$1" in
11.8) install_118; prune_118
;;
12.4) install_124; prune_124
;;
12.6|12.6.*) install_126; prune_126
12.6) install_126; prune_126
;;
12.8|12.8.*) install_128;
;;
12.9|12.9.*) install_129;
12.8) install_128;
;;
*) echo "bad argument $1"; exit 1
;;

View File

@ -0,0 +1,26 @@
#!/bin/bash
if [[ -n "${CUDNN_VERSION}" ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn
pushd tmp_cudnn
if [[ ${CUDA_VERSION:0:4} == "12.8" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.8.0.87_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.5.1.17_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "12" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
else
print "Unsupported CUDA version ${CUDA_VERSION}"
exit 1
fi
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -5,13 +5,13 @@ set -ex
# cuSPARSELt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && cd tmp_cusparselt
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-9]$ ]]; then
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[5-8]$ ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.7.1.0-archive"
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.3.2-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
arch_path='sbsa'
@ -21,6 +21,9 @@ elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.6.2.3-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUSPARSELT_NAME="libcusparse_lt-linux-x86_64-0.4.0.7-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/${CUSPARSELT_NAME}.tar.xz
else
echo "Not sure which libcusparselt version to install for this ${CUDA_VERSION}"
fi

View File

@ -8,6 +8,16 @@ retry () {
"$@" || (sleep 10 && "$@") || (sleep 20 && "$@") || (sleep 40 && "$@")
}
# A bunch of custom pip dependencies for ONNX
pip_install \
beartype==0.15.0 \
filelock==3.9.0 \
flatbuffers==2.0 \
mock==5.0.1 \
ninja==1.10.2 \
networkx==2.5 \
numpy==1.24.2
# ONNXRuntime should be installed before installing
# onnx-weekly. Otherwise, onnx-weekly could be
# overwritten by onnx.
@ -19,8 +29,12 @@ pip_install \
transformers==4.36.2
pip_install coloredlogs packaging
pip_install onnxruntime==1.18.1
pip_install onnxscript==0.3.1
pip_install onnx==1.17.0
pip_install onnxscript==0.2.2 --no-deps
# required by onnxscript
pip_install ml_dtypes
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

View File

@ -4,9 +4,9 @@
set -ex
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.30}" --depth 1 --shallow-submodules
git clone https://github.com/OpenMathLib/OpenBLAS.git -b v0.3.29 --depth 1 --shallow-submodules
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
OPENBLAS_BUILD_FLAGS="
NUM_THREADS=128
USE_OPENMP=1
@ -14,8 +14,9 @@ NO_SHARED=0
DYNAMIC_ARCH=1
TARGET=ARMV8
CFLAGS=-O3
BUILD_BFLOAT16=1
"
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -8,11 +8,9 @@ ver() {
install_ubuntu() {
apt-get update
# gpg-agent is not available by default
apt-get install -y --no-install-recommends gpg-agent
if [[ $(ver $UBUNTU_VERSION) -ge $(ver 22.04) ]]; then
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
if [[ $UBUNTU_VERSION == 20.04 ]]; then
# gpg-agent is not available by default on 20.04
apt-get install -y --no-install-recommends gpg-agent
fi
apt-get install -y kmod
apt-get install -y wget
@ -28,27 +26,13 @@ Pin: release o=repo.radeon.com
Pin-Priority: 600
EOF
# we want the patch version of 6.4 instead
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
ROCM_VERSION="${ROCM_VERSION}.2"
fi
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
@ -82,33 +66,25 @@ EOF
done
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
# CI no longer builds for ROCm 6.3, but
# ROCm 6.4 did not yet fix the regression, also HIP branch names are different
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.4) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.2) ]]; then
HIP_TAG=rocm-6.4.2
CLR_HASH=74d78ba3ac4bac235d02bcb48511c30b5cfdd457 # branch release/rocm-rel-6.4.2-statco-hotfix
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.1) ]]; then
HIP_TAG=rocm-6.4.1
CLR_HASH=efe6c35790b9206923bfeed1209902feff37f386 # branch release/rocm-rel-6.4.1-statco-hotfix
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]] || [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
HIP_BRANCH=rocm-6.3.x
VER_STR=6.3
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
HIP_TAG=rocm-6.4.0
CLR_HASH=600f5b0d2baed94d5121e2174a9de0851b040b0c # branch release/rocm-rel-6.4-statco-hotfix
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
fi
# clr build needs CppHeaderParser but can only find it using conda's python
python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_TAG
/opt/conda/bin/python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_BRANCH
HIP_COMMON_DIR=$(readlink -f HIP)
git clone https://github.com/jeffdaily/clr
pushd clr
git checkout $CLR_HASH
popd
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-${VER_STR}-statco-hotfix
mkdir -p clr/build
pushd clr/build
# Need to point CMake to the correct python installation to find CppHeaderParser
cmake .. -DPython3_EXECUTABLE=/opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}/bin/python3 -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
cmake .. -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
make -j
cp hipamd/lib/libamdhip64.so.6.4.* /opt/rocm/lib/libamdhip64.so.6.4.*
cp hipamd/lib/libamdhip64.so.${VER_STR}.* /opt/rocm/lib/libamdhip64.so.${VER_STR}.*
popd
rm -rf HIP clr
fi

View File

@ -5,12 +5,7 @@ set -eou pipefail
function do_install() {
rocm_version=$1
if [[ ${rocm_version} =~ ^[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
# chop off any patch version
rocm_version="${rocm_version%.*}"
fi
rocm_version_nodot=${rocm_version//./}
rocm_version_nodot=${1//./}
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6

View File

@ -51,12 +51,7 @@ as_jenkins git clone --recursive ${TRITON_REPO} triton
cd triton
as_jenkins git checkout ${TRITON_PINNED_COMMIT}
as_jenkins git submodule update --init --recursive
# Old versions of python have setup.py in ./python; newer versions have it in ./
if [ ! -f setup.py ]; then
cd python
fi
cd python
pip_install pybind11==2.13.6
# TODO: remove patch setup.py once we have a proper fix for https://github.com/triton-lang/triton/issues/4527
@ -98,10 +93,3 @@ fi
if [ -n "${NUMPY_VERSION}" ]; then
pip_install "numpy==${NUMPY_VERSION}"
fi
# IMPORTANT: helion needs to be installed without dependencies.
# It depends on torch and triton. We don't want to install
# triton and torch from production on Docker CI images
if [[ "$ANACONDA_PYTHON_VERSION" != 3.9* ]]; then
pip_install helion==0.0.10 --no-deps
fi

View File

@ -56,10 +56,14 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
fi
dnf install -y 'dnf-command(config-manager)'

View File

@ -54,6 +54,16 @@ COPY ./ci_commit_pins/nccl-cu* /ci_commit_pins/
COPY ./common/install_cusparselt.sh install_cusparselt.sh
ENV CUDA_HOME /usr/local/cuda
FROM cuda as cuda11.8
RUN bash ./install_cuda.sh 11.8
RUN bash ./install_magma.sh 11.8
RUN ln -sf /usr/local/cuda-11.8 /usr/local/cuda
FROM cuda as cuda12.4
RUN bash ./install_cuda.sh 12.4
RUN bash ./install_magma.sh 12.4
RUN ln -sf /usr/local/cuda-12.4 /usr/local/cuda
FROM cuda as cuda12.6
RUN bash ./install_cuda.sh 12.6
RUN bash ./install_magma.sh 12.6
@ -64,11 +74,6 @@ RUN bash ./install_cuda.sh 12.8
RUN bash ./install_magma.sh 12.8
RUN ln -sf /usr/local/cuda-12.8 /usr/local/cuda
FROM cuda as cuda12.9
RUN bash ./install_cuda.sh 12.9
RUN bash ./install_magma.sh 12.9
RUN ln -sf /usr/local/cuda-12.9 /usr/local/cuda
FROM cpu as rocm
ARG ROCM_VERSION
ARG PYTORCH_ROCM_ARCH

View File

@ -39,10 +39,6 @@ case ${DOCKER_TAG_PREFIX} in
DOCKER_GPU_BUILD_ARG=""
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"

View File

@ -27,7 +27,5 @@ COPY ./common/install_linter.sh install_linter.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh
RUN chown -R jenkins:jenkins /var/lib/jenkins/ci_env
USER jenkins
CMD ["bash"]

View File

@ -26,7 +26,7 @@ ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
@ -103,7 +103,6 @@ ENV SSL_CERT_FILE=/opt/_internal/certs.pem
# Install LLVM version
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=base /opt/python /opt/python
COPY --from=base /usr/local/lib/ /usr/local/lib/
COPY --from=base /opt/_internal /opt/_internal
COPY --from=base /usr/local/bin/auditwheel /usr/local/bin/auditwheel
COPY --from=intel /opt/intel /opt/intel

View File

@ -2,7 +2,7 @@ FROM quay.io/pypa/manylinux_2_28_aarch64 as base
ARG GCCTOOLSET_VERSION=13
# Language variables
# Language variabes
ENV LC_ALL=en_US.UTF-8
ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US.UTF-8
@ -58,13 +58,12 @@ RUN git config --global --add safe.directory "*"
FROM base as openblas
# Install openblas
ARG OPENBLAS_VERSION
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
FROM base as final
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6

View File

@ -60,7 +60,7 @@ RUN bash ./install_openssl.sh && rm install_openssl.sh
ENV SSL_CERT_FILE=/opt/_internal/certs.pem
FROM openssl as final
# remove unnecessary python versions
# remove unncessary python versions
RUN rm -rf /opt/python/cp26-cp26m /opt/_internal/cpython-2.6.9-ucs2
RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6

View File

@ -5,9 +5,7 @@ ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8
ENV LANGUAGE=C.UTF-8
# there is a bugfix in gcc >= 14 for precompiled headers and s390x vectorization interaction.
# with earlier gcc versions test/inductor/test_cpu_cpp_wrapper.py will fail.
ARG DEVTOOLSET_VERSION=14
ARG DEVTOOLSET_VERSION=13
# Installed needed OS packages. This is to support all
# the binary builds (torch, vision, audio, text, data)
RUN yum -y install epel-release
@ -60,8 +58,7 @@ RUN yum install -y \
libxslt-devel \
libxml2-devel \
openssl-devel \
valgrind \
ninja-build
valgrind
ENV PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH=/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib64:/opt/rh/gcc-toolset-${DEVTOOLSET_VERSION}/root/usr/lib:$LD_LIBRARY_PATH
@ -106,6 +103,9 @@ CMD ["/bin/bash"]
# install test dependencies:
# - grpcio requires system openssl, bundled crypto fails to build
RUN dnf install -y \
protobuf-devel \
protobuf-c-devel \
protobuf-lite-devel \
hdf5-devel \
python3-h5py \
git
@ -120,22 +120,15 @@ RUN python3 -mpip install cmake==3.28.0
# so just build it from upstream repository.
# h5py is dependency of onnxruntime_training.
# h5py==3.11.0 builds with hdf5-devel 1.10.5 from repository.
# h5py 3.11.0 doesn't build with numpy >= 2.3.0.
# install newest flatbuffers version first:
# for some reason old version is getting pulled in otherwise.
# packaging package is required for onnxruntime wheel build.
RUN pip3 install flatbuffers && \
pip3 install cython 'pkgconfig>=1.5.5' 'setuptools>=77' 'numpy<2.3.0' && \
pip3 install --no-build-isolation h5py==3.11.0 && \
pip3 install h5py==3.11.0 && \
pip3 install packaging && \
git clone https://github.com/microsoft/onnxruntime && \
cd onnxruntime && git checkout v1.21.0 && \
git submodule update --init --recursive && \
wget https://github.com/microsoft/onnxruntime/commit/f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
patch -p1 < f57db79743c4d1a3553aa05cf95bcd10966030e6.patch && \
./build.sh --config Release --parallel 0 --enable_pybind \
--build_wheel --enable_training --enable_training_apis \
--enable_training_ops --skip_tests --allow_running_as_root \
--compile_no_warning_as_error && \
./build.sh --config Release --parallel 0 --enable_pybind --build_wheel --enable_training --enable_training_apis --enable_training_ops --skip_tests --allow_running_as_root && \
pip3 install ./build/Linux/Release/dist/onnxruntime_training-*.whl && \
cd .. && /bin/rm -rf ./onnxruntime

View File

@ -27,7 +27,6 @@ fi
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
OPENBLAS_VERSION=${OPENBLAS_VERSION:-}
case ${image} in
manylinux2_28-builder:cpu)
@ -41,7 +40,6 @@ case ${image} in
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13 --build-arg NINJA_VERSION=1.12.1"
MANY_LINUX_VERSION="2_28_aarch64"
OPENBLAS_VERSION="v0.3.30"
;;
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
TARGET=final
@ -75,10 +73,6 @@ case ${image} in
DOCKERFILE_SUFFIX="_cuda_aarch64"
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"
DEVTOOLSET_VERSION="11"
@ -115,7 +109,6 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
DOCKER_BUILDKIT=1 docker build \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION}" \
--target "${TARGET}" \
-t "${tmp_tag}" \
$@ \

View File

@ -16,7 +16,6 @@ click
#test that import:
coremltools==5.0b5 ; python_version < "3.12"
coremltools==8.3 ; python_version == "3.12"
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
@ -42,15 +41,18 @@ fbscribelogger==0.1.7
#Pinned versions: 0.1.6
#test that import:
flatbuffers==24.12.23
flatbuffers==2.0 ; platform_machine != "s390x"
#Description: cross platform serialization library
#Pinned versions: 24.12.23
#Pinned versions: 2.0
#test that import:
flatbuffers ; platform_machine == "s390x"
#Description: cross platform serialization library; Newer version is required on s390x for new python version
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 5.35.1
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
@ -64,7 +66,6 @@ lark==0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11"
librosa==0.10.2 ; python_version == "3.12"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
@ -92,10 +93,10 @@ librosa==0.10.2 ; python_version == "3.12"
#Pinned versions:
#test that import:
mypy==1.16.0
mypy==1.14.0
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 1.16.0
#Pinned versions: 1.14.0
#test that import: test_typing.py, test_type_hints.py
networkx==2.8.8
@ -113,7 +114,6 @@ ninja==1.11.1.3
numba==0.49.0 ; python_version < "3.9"
numba==0.55.2 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
numba==0.60.0 ; python_version == "3.12"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
@ -166,10 +166,10 @@ pillow==11.0.0
#Pinned versions: 10.3.0
#test that import:
protobuf==5.29.4
#Description: Google's data interchange format
#Pinned versions: 5.29.4
#test that import: test_tensorboard.py, test/onnx/*
protobuf==3.20.2
#Description: Googles data interchange format
#Pinned versions: 3.20.1
#test that import: test_tensorboard.py
psutil
#Description: information on running processes and system utilization
@ -221,9 +221,9 @@ pygments==2.15.0
#Pinned versions: 2.12.0
#test that import: the doctests
#pyyaml
#PyYAML
#Description: data serialization format
#Pinned versions: 6.0.2
#Pinned versions:
#test that import:
#requests
@ -233,7 +233,7 @@ pygments==2.15.0
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 14.1.0
#Pinned versions: 10.9.0
#test that import:
scikit-image==0.19.3 ; python_version < "3.10"
@ -307,7 +307,7 @@ pytest-cpp==2.3.0
#Pinned versions: 2.3.0
#test that import:
z3-solver==4.15.1.0
z3-solver==4.12.6.0
#Description: The Z3 Theorem Prover Project
#Pinned versions:
#test that import:
@ -337,12 +337,12 @@ sympy==1.13.3
#Pinned versions:
#test that import:
onnx==1.18.0
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
onnx==1.17.0
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
onnxscript==0.3.1
onnxscript==0.2.2
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -363,10 +363,10 @@ pwlf==2.2.1
# To build PyTorch itself
pyyaml
astunparse
PyYAML
pyzstd
setuptools>=70.1.0
six
setuptools
scons==4.5.2 ; platform_machine == "aarch64"
@ -382,16 +382,3 @@ dataclasses_json==0.6.7
cmake==4.0.0
#Description: required for building
tlparse==0.3.30
#Description: required for log parsing
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
#test that import: test_cuda.py
setuptools-git-versioning==2.1.0
scikit-build==0.18.1
pyre-extensions==0.0.32
tabulate==0.9.0
#Description: These package are needed to build FBGEMM and torchrec on PyTorch CI

View File

@ -1,11 +1,11 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@722b7e6f9ca512fcc526ad07d62b3d28c50bb6cd#egg=pytorch_sphinx_theme2
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.
# but it doesn't seem to work and hangs around idly. The initial thought is probably
# something related to Docker setup. We can investigate this later
sphinxcontrib.katex==0.8.6
#Description: This is used to generate PyTorch docs
@ -15,14 +15,9 @@ sphinxext-opengraph==0.9.1
#Description: This is used to generate PyTorch docs
#Pinned versions: 0.9.1
sphinx_sitemap==2.6.0
#Description: This is used to generate sitemap for PyTorch docs
#Pinned versions: 2.6.0
matplotlib==3.5.3 ; python_version < "3.13"
matplotlib==3.6.3 ; python_version >= "3.13"
matplotlib==3.5.3
#Description: This is used to generate PyTorch docs
#Pinned versions: 3.6.3 if python > 3.12. Otherwise 3.5.3.
#Pinned versions: 3.5.3
tensorboard==2.13.0 ; python_version < "3.13"
tensorboard==2.18.0 ; python_version >= "3.13"
@ -50,8 +45,8 @@ IPython==8.12.0
#Pinned versions: 8.12.0
myst-nb==0.17.2
#Description: This is used to generate PyTorch functorch and torch.compile docs.
#Pinned versions: 0.17.2
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 0.13.2
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
python-etcd==0.4.5

View File

@ -1 +1 @@
3.4.0
3.3.0

View File

@ -1 +0,0 @@
3.4.0

View File

@ -0,0 +1,170 @@
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ARG IMAGE_NAME
FROM ${IMAGE_NAME} as base
ARG UBUNTU_VERSION
ARG CUDA_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_magma_conda.sh install_magma_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh install_magma_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install clang
ARG CLANG_VERSION
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
ENV UCC_HOME /usr
ADD ./common/install_ucc.sh install_ucc.sh
RUN if [ -n "${UCX_COMMIT}" ] && [ -n "${UCC_COMMIT}" ]; then bash ./install_ucc.sh; fi
RUN rm install_ucc.sh
COPY ./common/install_openssl.sh install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
ARG INDUCTOR_BENCHMARKS
ARG ANACONDA_PYTHON_VERSION
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
ARG TRITON
FROM base as triton-builder
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton.txt triton.txt
COPY triton_version.txt triton_version.txt
RUN bash ./install_triton.sh
FROM base as final
COPY --from=triton-builder /opt/triton /opt/triton
RUN if [ -n "${TRITON}" ]; then pip install /opt/triton/*.whl; chown -R jenkins:jenkins /opt/conda; fi
RUN rm -rf /opt/triton
ARG HALIDE
# Build and install halide
COPY ./common/install_halide.sh install_halide.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/halide.txt halide.txt
RUN if [ -n "${HALIDE}" ]; then bash ./install_halide.sh; fi
RUN rm install_halide.sh common_utils.sh halide.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
# See https://github.com/pytorch/pytorch/issues/82174
# TODO(sdym@fb.com):
# check if this is needed after full off Xenial migration
ENV CARGO_NET_GIT_FETCH_WITH_CLI true
RUN bash ./install_cache.sh && rm install_cache.sh
ENV CMAKE_CUDA_COMPILER_LAUNCHER=/opt/cache/bin/sccache
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
COPY ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
# Install Open MPI for CUDA
COPY ./common/install_openmpi.sh install_openmpi.sh
RUN if [ -n "${CUDA_VERSION}" ]; then bash install_openmpi.sh; fi
RUN rm install_openmpi.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
# Install CUDNN
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ -n "${CUDNN_VERSION}" ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Install CUSPARSELT
ARG CUDA_VERSION
COPY ./common/install_cusparselt.sh install_cusparselt.sh
RUN bash install_cusparselt.sh
RUN rm install_cusparselt.sh
# Install NCCL
ARG CUDA_VERSION
COPY ./common/install_nccl.sh install_nccl.sh
COPY ./ci_commit_pins/nccl-cu* /ci_commit_pins/
RUN bash install_nccl.sh
RUN rm install_nccl.sh /ci_commit_pins/nccl-cu*
ENV USE_SYSTEM_NCCL=1
ENV NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
ENV NCCL_LIB_DIR="/usr/local/cuda/lib64/"
# Install CUDSS
ARG CUDA_VERSION
COPY ./common/install_cudss.sh install_cudss.sh
RUN bash install_cudss.sh
RUN rm install_cudss.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
RUN if [ -h /usr/local/cuda-12.1/cuda-12.1 ]; then rm /usr/local/cuda-12.1/cuda-12.1; fi
RUN if [ -h /usr/local/cuda-12.4/cuda-12.4 ]; then rm /usr/local/cuda-12.4/cuda-12.4; fi
USER jenkins
CMD ["bash"]

View File

@ -25,7 +25,6 @@ RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG BUILD_ENVIRONMENT
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt

View File

@ -72,7 +72,7 @@ ARG TRITON
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-xpu.txt triton-xpu.txt
COPY triton_xpu_version.txt triton_version.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-xpu.txt triton_version.txt

View File

@ -147,12 +147,6 @@ RUN if [ -n "${ACL}" ]; then bash ./install_acl.sh; fi
RUN rm install_acl.sh
ENV INSTALLED_ACL ${ACL}
ARG OPENBLAS
COPY ./common/install_openblas.sh install_openblas.sh
RUN if [ -n "${OPENBLAS}" ]; then bash ./install_openblas.sh; fi
RUN rm install_openblas.sh
ENV INSTALLED_OPENBLAS ${OPENBLAS}
# Install ccache/sccache (do this last, so we get priority in PATH)
ARG SKIP_SCCACHE_INSTALL
COPY ./common/install_cache.sh install_cache.sh

View File

@ -1,7 +1,7 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_CUDA ?= 12.8
DESIRED_CUDA ?= 11.8
DESIRED_CUDA_SHORT = $(subst .,,$(DESIRED_CUDA))
PACKAGE_NAME = magma-cuda
CUDA_ARCH_LIST ?= -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90
@ -16,21 +16,15 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma/build_magma.sh
.PHONY: all
all: magma-cuda129
all: magma-cuda128
all: magma-cuda126
all: magma-cuda118
.PHONY:
clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-cuda129
magma-cuda129: DESIRED_CUDA := 12.9
magma-cuda129: CUDA_ARCH_LIST += -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
magma-cuda129:
$(DOCKER_RUN)
.PHONY: magma-cuda128
magma-cuda128: DESIRED_CUDA := 12.8
magma-cuda128: CUDA_ARCH_LIST += -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
@ -41,3 +35,9 @@ magma-cuda128:
magma-cuda126: DESIRED_CUDA := 12.6
magma-cuda126:
$(DOCKER_RUN)
.PHONY: magma-cuda118
magma-cuda118: DESIRED_CUDA := 11.8
magma-cuda118: CUDA_ARCH_LIST += -gencode arch=compute_37,code=sm_37
magma-cuda118:
$(DOCKER_RUN)

View File

@ -18,10 +18,12 @@ retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
PLATFORM=""
PLATFORM="manylinux2014_x86_64"
# TODO move this into the Docker images
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
PLATFORM="manylinux_2_28_x86_64"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
@ -31,11 +33,9 @@ elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
# We use the package name to test the package by passing this to 'pip install'
@ -79,6 +79,8 @@ if [[ -e /opt/openssl ]]; then
export CMAKE_INCLUDE_PATH="/opt/openssl/include":$CMAKE_INCLUDE_PATH
fi
mkdir -p /tmp/$WHEELHOUSE_DIR
export PATCHELF_BIN=/usr/local/bin/patchelf
@ -97,7 +99,6 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
case ${DESIRED_PYTHON} in
@ -151,7 +152,7 @@ if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
CMAKE_FRESH=1 python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR --cmake
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
time CMAKE_ARGS=${CMAKE_ARGS[@]} \

View File

@ -15,9 +15,6 @@ export INSTALL_TEST=0 # dont install test binaries into site-packages
export USE_CUPTI_SO=0
export USE_CUSPARSELT=${USE_CUSPARSELT:-1} # Enable if not disabled by libtorch build
export USE_CUFILE=${USE_CUFILE:-1}
export USE_SYSTEM_NCCL=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
# Keep an array of cmake variables to add to
if [[ -z "$CMAKE_ARGS" ]]; then
@ -39,8 +36,10 @@ if [[ -n "$DESIRED_CUDA" ]]; then
if [[ ${DESIRED_CUDA} =~ ^[0-9]+\.[0-9]+$ ]]; then
CUDA_VERSION=${DESIRED_CUDA}
else
# cu126, cu128 etc...
if [[ ${#DESIRED_CUDA} -eq 5 ]]; then
# cu90, cu92, cu100, cu101
if [[ ${#DESIRED_CUDA} -eq 4 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3:1}"
elif [[ ${#DESIRED_CUDA} -eq 5 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4:1}"
fi
fi
@ -51,23 +50,24 @@ else
fi
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6"
case ${CUDA_VERSION} in
#removing sm_50-sm_60 as these architectures are deprecated in CUDA 12.8/9 and will be removed in future releases
#however we would like to keep sm_70 architecture see: https://github.com/pytorch/pytorch/issues/157517
12.8)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0"
;;
12.9)
TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;9.0;10.0;12.0+PTX"
# WAR to resolve the ld error in libtorch build with CUDA 12.9
if [[ "$PACKAGE_TYPE" == "libtorch" ]]; then
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
fi
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX" #removing sm_50-sm_70 as these architectures are deprecated in CUDA 12.8 and will be removed in future releases
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
12.6)
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
12.4)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
11.8)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7;9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
*)
echo "unknown cuda version $CUDA_VERSION"
@ -91,15 +91,14 @@ fi
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
DEPS_LIST=(
@ -109,12 +108,31 @@ DEPS_SONAME=(
"libgomp.so.1"
)
# CUDA 11.8 have to ship the libcusparseLt.so.0 with the binary
# since nvidia-cusparselt-cu11 is not available in PYPI
if [[ $USE_CUSPARSELT == "1" && $CUDA_VERSION == "11.8" ]]; then
DEPS_SONAME+=(
"libcusparseLt.so.0"
)
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcusparseLt.so.0"
)
fi
# CUDA_VERSION 12.6, 12.8, 12.9
# Turn USE_CUFILE off for CUDA 11.8, 12.4 since nvidia-cufile-cu11 and 1.9.0.20 are
# not available in PYPI
if [[ $CUDA_VERSION == "11.8" || $CUDA_VERSION == "12.4" ]]; then
export USE_CUFILE=0
fi
# CUDA_VERSION 12.4, 12.6, 12.8
if [[ $CUDA_VERSION == 12* ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
@ -130,12 +148,9 @@ if [[ $CUDA_VERSION == 12* ]]; then
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcusparseLt.so.0"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
@ -150,17 +165,19 @@ if [[ $CUDA_VERSION == 12* ]]; then
"libcublasLt.so.12"
"libcusparseLt.so.0"
"libcudart.so.12"
"libnvToolsExt.so.1"
"libnvrtc.so.12"
"libnvrtc-builtins.so"
"libcufile.so.0"
"libcufile_rdma.so.1"
"libcupti.so.12"
"libnvperf_host.so"
)
# Add libnvToolsExt only if CUDA version is not 12.9
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
if [[ $USE_CUFILE == 1 ]]; then
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
)
DEPS_SONAME+=(
"libcufile.so.0"
"libcufile_rdma.so.1"
)
fi
else
echo "Using nvidia libs from pypi."
@ -174,21 +191,94 @@ if [[ $CUDA_VERSION == 12* ]]; then
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/cusparselt/lib'
'$ORIGIN/../../cusparselt/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvshmem/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
'$ORIGIN/../../nvidia/cufile/lib'
)
if [[ $USE_CUFILE == 1 ]]; then
CUDA_RPATHS+=(
'$ORIGIN/../../nvidia/cufile/lib'
)
fi
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
elif [[ $CUDA_VERSION == "11.8" ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
# Bundle ptxas into the wheel, see https://github.com/pytorch/pytorch/pull/119750
export BUILD_BUNDLE_PTXAS=1
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
"/usr/local/cuda/lib64/libcudnn_graph.so.9"
"/usr/local/cuda/lib64/libcudnn_ops.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.11"
"/usr/local/cuda/lib64/libcublasLt.so.11"
"/usr/local/cuda/lib64/libcudart.so.11.0"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.11.2" # this is not a mistake, it links to more specific cuda version
"/usr/local/cuda/lib64/libnvrtc-builtins.so.11.8"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
"libcudnn_cnn.so.9"
"libcudnn_graph.so.9"
"libcudnn_ops.so.9"
"libcudnn_engines_runtime_compiled.so.9"
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.11"
"libcublasLt.so.11"
"libcudart.so.11.0"
"libnvToolsExt.so.1"
"libnvrtc.so.11.2"
"libnvrtc-builtins.so.11.8"
)
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
)
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
else
echo "Unknown cuda version $CUDA_VERSION"

View File

@ -22,7 +22,9 @@ retry () {
# TODO move this into the Docker images
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
retry dnf install -q -y zip openssl
@ -33,9 +35,6 @@ elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
else
echo "Unknown OS: '$OS_NAME'"
exit 1
fi
# Version: setup.py uses $PYTORCH_BUILD_VERSION.post$PYTORCH_BUILD_NUMBER if
@ -92,7 +91,6 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
python setup.py clean
retry pip install -qr requirements.txt
retry pip install -q numpy==2.0.1
@ -104,7 +102,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling 'python -m pip install .' at $(date)"
echo "Calling setup.py install at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
@ -120,7 +118,7 @@ fi
# TODO: Remove this flag once https://github.com/pytorch/pytorch/issues/55952 is closed
CFLAGS='-Wno-deprecated-declarations' \
BUILD_LIBTORCH_CPU_WITH_DEBUG=1 \
python -m pip install --no-build-isolation -v .
python setup.py install
mkdir -p libtorch/{lib,bin,include,share}

View File

@ -95,7 +95,6 @@ ROCM_SO_FILES=(
"libroctracer64.so"
"libroctx64.so"
"libhipblaslt.so"
"libhipsparselt.so"
"libhiprtc.so"
)
@ -187,28 +186,20 @@ do
OS_SO_FILES[${#OS_SO_FILES[@]}]=$file_name # Append lib to array
done
ARCH=$(echo $PYTORCH_ROCM_ARCH | sed 's/;/|/g') # Replace ; separated arch list to bar for grep
# rocBLAS library files
ROCBLAS_LIB_SRC=$ROCM_HOME/lib/rocblas/library
ROCBLAS_LIB_DST=lib/rocblas/library
ROCBLAS_ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
ROCBLAS_OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ROCBLAS_ARCH_SPECIFIC_FILES $OTHER_FILES)
ARCH=$(echo $PYTORCH_ROCM_ARCH | sed 's/;/|/g') # Replace ; seperated arch list to bar for grep
ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# hipblaslt library files
HIPBLASLT_LIB_SRC=$ROCM_HOME/lib/hipblaslt/library
HIPBLASLT_LIB_DST=lib/hipblaslt/library
HIPBLASLT_ARCH_SPECIFIC_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -E $ARCH)
HIPBLASLT_OTHER_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -v gfx)
HIPBLASLT_LIB_FILES=($HIPBLASLT_ARCH_SPECIFIC_FILES $HIPBLASLT_OTHER_FILES)
# hipsparselt library files
HIPSPARSELT_LIB_SRC=$ROCM_HOME/lib/hipsparselt/library
HIPSPARSELT_LIB_DST=lib/hipsparselt/library
HIPSPARSELT_ARCH_SPECIFIC_FILES=$(ls $HIPSPARSELT_LIB_SRC | grep -E $ARCH)
#HIPSPARSELT_OTHER_FILES=$(ls $HIPSPARSELT_LIB_SRC | grep -v gfx)
HIPSPARSELT_LIB_FILES=($HIPSPARSELT_ARCH_SPECIFIC_FILES $HIPSPARSELT_OTHER_FILES)
ARCH_SPECIFIC_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -v gfx)
HIPBLASLT_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# ROCm library files
ROCM_SO_PATHS=()
@ -243,14 +234,12 @@ DEPS_SONAME=(
DEPS_AUX_SRCLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_SRC/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_SRC/}"
"${HIPSPARSELT_LIB_FILES[@]/#/$HIPSPARSELT_LIB_SRC/}"
"/opt/amdgpu/share/libdrm/amdgpu.ids"
)
DEPS_AUX_DSTLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_DST/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_DST/}"
"${HIPSPARSELT_LIB_FILES[@]/#/$HIPSPARSELT_LIB_DST/}"
"share/libdrm/amdgpu.ids"
)

View File

@ -19,7 +19,7 @@ git config --global --add safe.directory /var/lib/jenkins/workspace
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# TODO: This can be removed later once vision is also part of the Docker image
pip install -q --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
pip install -q --user --no-use-pep517 "git+https://github.com/pytorch/vision.git@$(cat .github/ci_commit_pins/vision.txt)"
# JIT C++ extensions require ninja, so put it into PATH.
export PATH="/var/lib/jenkins/.local/bin:$PATH"
# NB: ONNX test is fast (~15m) so it's ok to retry it few more times to avoid any flaky issue, we

34
.ci/pytorch/build-mobile.sh Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env bash
# DO NOT ADD 'set -x' not to reveal CircleCI secret context environment variables
set -eu -o pipefail
# This script uses linux host toolchain + mobile build options in order to
# build & test mobile libtorch without having to setup Android/iOS
# toolchain/simulator.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Install torch & torchvision - used to download & trace test model.
# Ideally we should use the libtorch built on the PR so that backward
# incompatible changes won't break this script - but it will significantly slow
# down mobile CI jobs.
# Here we install nightly instead of stable so that we have an option to
# temporarily skip mobile CI jobs on BC-breaking PRs until they are in nightly.
retry pip install --pre torch torchvision \
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html \
--progress-bar off
# Run end-to-end process of building mobile library, linking into the predictor
# binary, and running forward pass with a real model.
if [[ "$BUILD_ENVIRONMENT" == *-mobile-custom-build-static* ]]; then
TEST_CUSTOM_BUILD_STATIC=1 test/mobile/custom_build/build.sh
elif [[ "$BUILD_ENVIRONMENT" == *-mobile-lightweight-dispatch* ]]; then
test/mobile/lightweight_dispatch/build.sh
else
TEST_DEFAULT_BUILD=1 test/mobile/custom_build/build.sh
fi
print_sccache_stats

View File

@ -11,6 +11,10 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
if [[ "$BUILD_ENVIRONMENT" == *-mobile-*build* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-mobile.sh" "$@"
fi
echo "Python version:"
python --version
@ -23,12 +27,6 @@ cmake --version
echo "Environment variables:"
env
# The sccache wrapped version of nvcc gets put in /opt/cache/lib in docker since
# there are some issues if it is always wrapped, so we need to add it to PATH
# during CI builds.
# https://github.com/pytorch/pytorch/blob/0b6c0898e6c352c8ea93daec854e704b41485375/.ci/docker/common/install_cache.sh#L97
export PATH="/opt/cache/lib:$PATH"
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
# Use jemalloc during compilation to mitigate https://github.com/pytorch/pytorch/issues/116289
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2
@ -54,6 +52,12 @@ fi
export USE_LLVM=/opt/llvm
export LLVM_DIR=/opt/llvm/lib/cmake/llvm
if [[ "$BUILD_ENVIRONMENT" == *executorch* ]]; then
# To build test_edge_op_registration
export BUILD_EXECUTORCH=ON
export USE_CUDA=0
fi
if ! which conda; then
# In ROCm CIs, we are doing cross compilation on build machines with
# intel cpu and later run tests on machines with amd cpu.
@ -120,8 +124,26 @@ if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
fi
# Use special scripts for Android builds
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
export ANDROID_NDK=/opt/ndk
build_args=()
if [[ "${BUILD_ENVIRONMENT}" == *-arm-v7a* ]]; then
build_args+=("-DANDROID_ABI=armeabi-v7a")
elif [[ "${BUILD_ENVIRONMENT}" == *-arm-v8a* ]]; then
build_args+=("-DANDROID_ABI=arm64-v8a")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_32* ]]; then
build_args+=("-DANDROID_ABI=x86")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_64* ]]; then
build_args+=("-DANDROID_ABI=x86_64")
fi
if [[ "${BUILD_ENVIRONMENT}" == *vulkan* ]]; then
build_args+=("-DUSE_VULKAN=ON")
fi
build_args+=("-DUSE_LITE_INTERPRETER_PROFILER=OFF")
exec ./scripts/build_android.sh "${build_args[@]}" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *android* && "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
export USE_VULKAN=1
# shellcheck disable=SC1091
source /var/lib/jenkins/vulkansdk/setup-env.sh
@ -176,8 +198,10 @@ fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]]; then
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]] && [ -z "$MAX_JOBS_OVERRIDE" ]; then
echo "WARNING: FlashAttention files require large amounts of memory to build and will OOM"
echo "Setting MAX_JOBS=(nproc-2)/3 to reduce memory usage"
export MAX_JOBS="$(( $(nproc --ignore=2) / 3 ))"
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
@ -203,7 +227,7 @@ if [[ "${BUILD_ENVIRONMENT}" == *-pch* ]]; then
export USE_PRECOMPILED_HEADERS=1
fi
if [[ "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
@ -233,7 +257,6 @@ if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
set -e -o pipefail
get_bazel
python3 tools/optional_submodules.py checkout_eigen
# Leave 1 CPU free and use only up to 80% of memory to reduce the change of crashing
# the runner
@ -284,22 +307,6 @@ else
fi
pip_install_whl "$(echo dist/*.whl)"
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *vision* ]]; then
install_torchvision
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *audio* ]]; then
install_torchaudio
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchrec* || "${BUILD_ADDITIONAL_PACKAGES:-}" == *fbgemm* ]]; then
install_torchrec_and_fbgemm
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchao* ]]; then
install_torchao
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
echo "Checking that xpu is compiled"
pushd dist/
@ -387,8 +394,10 @@ else
# This is an attempt to mitigate flaky libtorch build OOM error. By default, the build parallelization
# is set to be the number of CPU minus 2. So, let's try a more conservative value here. A 4xlarge has
# 16 CPUs
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
if [ -z "$MAX_JOBS_OVERRIDE" ]; then
MAX_JOBS=$(nproc --ignore=4)
export MAX_JOBS
fi
# NB: Install outside of source directory (at the same level as the root
# pytorch folder) so that it doesn't get cleaned away prior to docker push.

View File

@ -313,7 +313,7 @@ if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" == 'manywheel' ]]; then
# Please see issue for reference: https://github.com/pytorch/pytorch/issues/152426
if [[ "$(uname -m)" == "s390x" ]]; then
cxx_abi="19"
elif [[ "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
elif [[ "$DESIRED_CUDA" != 'cu118' && "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
cxx_abi="18"
else
cxx_abi="16"

View File

@ -13,13 +13,6 @@ if [[ "$BUILD_ENVIRONMENT" != *win-* ]]; then
fi
if which sccache > /dev/null; then
# Clear SCCACHE_BUCKET and SCCACHE_REGION if they are empty, otherwise
# sccache will complain about invalid bucket configuration
if [[ -z "${SCCACHE_BUCKET:-}" ]]; then
unset SCCACHE_BUCKET
unset SCCACHE_REGION
fi
# Save sccache logs to file
sccache --stop-server > /dev/null 2>&1 || true
rm -f ~/sccache_error.log || true

View File

@ -15,6 +15,6 @@ if [[ "${BUILD_ENVIRONMENT}" == *rocm* ]]; then
export PYTORCH_TEST_WITH_ROCM=1
fi
# TODO: Reenable libtorch testing for MacOS, see https://github.com/pytorch/pytorch/issues/62598
# TODO: Renable libtorch testing for MacOS, see https://github.com/pytorch/pytorch/issues/62598
# shellcheck disable=SC2034
BUILD_TEST_LIBTORCH=0

View File

@ -78,34 +78,6 @@ function pip_install_whl() {
fi
}
function pip_build_and_install() {
local build_target=$1
local wheel_dir=$2
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
python3 -m pip wheel \
--no-build-isolation \
--no-deps \
--no-use-pep517 \
-w "${wheel_dir}" \
"${build_target}"
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
}
function pip_install() {
# retry 3 times
@ -152,7 +124,14 @@ function get_pinned_commit() {
function install_torchaudio() {
local commit
commit=$(get_pinned_commit audio)
pip_build_and_install "git+https://github.com/pytorch/audio.git@${commit}" dist/audio
if [[ "$1" == "cuda" ]]; then
# TODO: This is better to be passed as a parameter from _linux-test workflow
# so that it can be consistent with what is set in build
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
else
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/audio.git@${commit}"
fi
}
function install_torchtext() {
@ -160,8 +139,8 @@ function install_torchtext() {
local text_commit
data_commit=$(get_pinned_commit data)
text_commit=$(get_pinned_commit text)
pip_build_and_install "git+https://github.com/pytorch/data.git@${data_commit}" dist/data
pip_build_and_install "git+https://github.com/pytorch/text.git@${text_commit}" dist/text
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/data.git@${data_commit}"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/text.git@${text_commit}"
}
function install_torchvision() {
@ -174,19 +153,17 @@ function install_torchvision() {
echo 'char* dlerror(void) { return "";}'|gcc -fpic -shared -o "${HOME}/dlerror.so" -x c -
LD_PRELOAD=${orig_preload}:${HOME}/dlerror.so
fi
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
# Not sure if both are needed, but why not
export FORCE_CUDA=1
export WITH_CUDA=1
fi
pip_build_and_install "git+https://github.com/pytorch/vision.git@${commit}" dist/vision
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/vision.git@${commit}"
if [ -n "${LD_PRELOAD}" ]; then
LD_PRELOAD=${orig_preload}
fi
}
function install_tlparse() {
pip_install --user "tlparse==0.3.30"
PATH="$(python -m site --user-base)/bin:$PATH"
}
function install_torchrec_and_fbgemm() {
local torchrec_commit
torchrec_commit=$(get_pinned_commit torchrec)
@ -201,73 +178,25 @@ function install_torchrec_and_fbgemm() {
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]] ; then
# install torchrec first because it installs fbgemm nightly on top of rocm fbgemm
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
pip_uninstall fbgemm-gpu-nightly
# Set ROCM_HOME isn't available, use ROCM_PATH if set or /opt/rocm
ROCM_HOME="${ROCM_HOME:-${ROCM_PATH:-/opt/rocm}}"
# Find rocm_version.h header file for ROCm version extract
rocm_version_h="${ROCM_HOME}/include/rocm-core/rocm_version.h"
if [ ! -f "$rocm_version_h" ]; then
rocm_version_h="${ROCM_HOME}/include/rocm_version.h"
fi
# Error out if rocm_version.h not found
if [ ! -f "$rocm_version_h" ]; then
echo "Error: rocm_version.h not found in expected locations." >&2
exit 1
fi
# Extract major, minor and patch ROCm version numbers
MAJOR_VERSION=$(grep 'ROCM_VERSION_MAJOR' "$rocm_version_h" | awk '{print $3}')
MINOR_VERSION=$(grep 'ROCM_VERSION_MINOR' "$rocm_version_h" | awk '{print $3}')
PATCH_VERSION=$(grep 'ROCM_VERSION_PATCH' "$rocm_version_h" | awk '{print $3}')
ROCM_INT=$((MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_VERSION))
echo "ROCm version: $ROCM_INT"
export BUILD_ROCM_VERSION="$MAJOR_VERSION.$MINOR_VERSION"
pip_install tabulate # needed for newer fbgemm
pip_install patchelf # needed for rocm fbgemm
pushd /tmp
local wheel_dir=dist/fbgemm_gpu
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py bdist_wheel \
--build-variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
# Save the wheel before cleaning up
mkdir -p dist/fbgemm_gpu
cp fbgemm/fbgemm_gpu/dist/*.whl dist/fbgemm_gpu
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
rm -rf fbgemm
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py install \
--package_variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
rm -rf fbgemm
else
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_build_and_install "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#subdirectory=fbgemm_gpu" dist/fbgemm_gpu
# See https://github.com/pytorch/pytorch/issues/106971
CUDA_PATH=/usr/local/cuda-12.1 pip_install --no-use-pep517 --user "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#egg=fbgemm-gpu&subdirectory=fbgemm_gpu"
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
fi
}
@ -310,7 +239,7 @@ function checkout_install_torchbench() {
function install_torchao() {
local commit
commit=$(get_pinned_commit torchao)
pip_build_and_install "git+https://github.com/pytorch/ao.git@${commit}" dist/ao
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/ao.git@${commit}"
}
function print_sccache_stats() {

View File

@ -0,0 +1,123 @@
from datetime import datetime, timedelta, timezone
from tempfile import mkdtemp
from cryptography import x509
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID
temp_dir = mkdtemp()
print(temp_dir)
def genrsa(path):
key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
)
with open(path, "wb") as f:
f.write(
key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption(),
)
)
return key
def create_cert(path, C, ST, L, O, key):
subject = issuer = x509.Name(
[
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
cert = (
x509.CertificateBuilder()
.subject_name(subject)
.issuer_name(issuer)
.public_key(key.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
)
.add_extension(
x509.BasicConstraints(ca=True, path_length=None),
critical=True,
)
.sign(key, hashes.SHA256())
)
# Write our certificate out to disk.
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
def create_req(path, C, ST, L, O, key):
csr = (
x509.CertificateSigningRequestBuilder()
.subject_name(
x509.Name(
[
# Provide various details about who we are.
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
)
.sign(key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(csr.public_bytes(serialization.Encoding.PEM))
return csr
def sign_certificate_request(path, csr_cert, ca_cert, private_ca_key):
cert = (
x509.CertificateBuilder()
.subject_name(csr_cert.subject)
.issuer_name(ca_cert.subject)
.public_key(csr_cert.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
# Sign our certificate with our private key
)
.sign(private_ca_key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
ca_key = genrsa(temp_dir + "/ca.key")
ca_cert = create_cert(
temp_dir + "/ca.pem",
"US",
"New York",
"New York",
"Gloo Certificate Authority",
ca_key,
)
pkey = genrsa(temp_dir + "/pkey.key")
csr = create_req(
temp_dir + "/csr.csr",
"US",
"California",
"San Francisco",
"Gloo Testing Company",
pkey,
)
cert = sign_certificate_request(temp_dir + "/cert.pem", csr, ca_cert, ca_key)

View File

@ -40,7 +40,7 @@ if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel
fi
if which sccache > /dev/null; then
print_sccache_stats

View File

@ -20,4 +20,14 @@ print_cmake_info() {
CONDA_INSTALLATION_DIR=$(dirname "$CMAKE_EXEC")
# Print all libraries under cmake rpath for debugging
ls -la "$CONDA_INSTALLATION_DIR/../lib"
export CMAKE_EXEC
# Explicitly add conda env lib folder to cmake rpath to address the flaky issue
# where cmake dependencies couldn't be found. This seems to point to how conda
# links $CMAKE_EXEC to its package cache when cloning a new environment
install_name_tool -add_rpath @executable_path/../lib "${CMAKE_EXEC}" || true
# Adding the rpath will invalidate cmake signature, so signing it again here
# to trust the executable. EXC_BAD_ACCESS (SIGKILL (Code Signature Invalid))
# with an exit code 137 otherwise
codesign -f -s - "${CMAKE_EXEC}" || true
}

View File

@ -5,6 +5,11 @@ set -x
# shellcheck source=./macos-common.sh
source "$(dirname "${BASH_SOURCE[0]}")/macos-common.sh"
if [[ -n "$CONDA_ENV" ]]; then
# Use binaries under conda environment
export PATH="$CONDA_ENV/bin":$PATH
fi
# Test that OpenMP is enabled
pushd test
if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available()))") == "1" ]]; then
@ -160,7 +165,6 @@ test_jit_hooks() {
torchbench_setup_macos() {
git clone --recursive https://github.com/pytorch/vision torchvision
git clone --recursive https://github.com/pytorch/audio torchaudio
brew install jpeg-turbo libpng
pushd torchvision
git fetch
@ -175,8 +179,7 @@ torchbench_setup_macos() {
git checkout "$(cat ../.github/ci_commit_pins/audio.txt)"
git submodule update --init --recursive
python setup.py clean
#TODO: Remove me, when figure out how to make TorchAudio find brew installed openmp
USE_OPENMP=0 python setup.py develop
python setup.py develop
popd
# Shellcheck doesn't like it when you pass no arguments to a function that can take args. See https://www.shellcheck.net/wiki/SC2120
@ -184,8 +187,9 @@ torchbench_setup_macos() {
checkout_install_torchbench
}
pip_benchmark_deps() {
python -mpip install --no-input requests cython scikit-learn six
conda_benchmark_deps() {
conda install -y astunparse numpy scipy ninja pyyaml setuptools cmake typing-extensions requests protobuf numba cython scikit-learn
conda install -y -c conda-forge librosa
}
@ -193,7 +197,7 @@ test_torchbench_perf() {
print_cmake_info
echo "Launching torchbench setup"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
TEST_REPORTS_DIR=$(pwd)/test/test-reports
@ -220,7 +224,7 @@ test_torchbench_smoketest() {
print_cmake_info
echo "Launching torchbench setup"
pip_benchmark_deps
conda_benchmark_deps
# shellcheck disable=SC2119,SC2120
torchbench_setup_macos
@ -228,52 +232,53 @@ test_torchbench_smoketest() {
mkdir -p "$TEST_REPORTS_DIR"
local device=mps
local dtypes=(undefined float16 bfloat16 notset)
local dtype=${dtypes[$1]}
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo)
local hf_models=(GoogleFnet YituTechConvBert)
for backend in eager inductor; do
echo "Launching torchbench inference performance run for backend ${backend} and dtype ${dtype}"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--performance --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_huggingface_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--accuracy --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_huggingface_${dtype}_inference_${device}_accuracy.csv" || true
fi
if [ "$dtype" == notset ]; then
for dtype_ in notset amp; do
echo "Launching torchbench training performance run for backend ${backend} and dtype ${dtype_}"
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype_}_training_${device}_performance.csv"
local dtype_arg="--${dtype_}"
if [ "$dtype_" == notset ]; then
for dtype in notset float16 bfloat16; do
echo "Launching torchbench inference performance run for backend ${backend} and dtype ${dtype}"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
for model in "${models[@]}"; do
fi
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv"
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --training --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype_}_training_${device}_performance.csv" || true
done
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
fi
for model in "${hf_models[@]}"; do
if [ "$backend" == "inductor" ]; then
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--performance --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--accuracy --only "$model" --backend "$backend" --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
fi
done
done
for dtype in notset amp; do
echo "Launching torchbench training performance run for backend ${backend} and dtype ${dtype}"
touch "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --backend "$backend" --training --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/inductor_${backend}_torchbench_${dtype}_training_${device}_performance.csv" || true
done
done
done
@ -284,7 +289,7 @@ test_hf_perf() {
print_cmake_info
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
echo "Launching HuggingFace training perf run"
@ -300,7 +305,7 @@ test_timm_perf() {
print_cmake_info
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
pip_benchmark_deps
conda_benchmark_deps
torchbench_setup_macos
echo "Launching timm training perf run"
@ -312,6 +317,8 @@ test_timm_perf() {
echo "timm benchmark on mps device completed"
}
install_tlparse
if [[ $TEST_CONFIG == *"perf_all"* ]]; then
test_torchbench_perf
test_hf_perf
@ -323,7 +330,7 @@ elif [[ $TEST_CONFIG == *"perf_hf"* ]]; then
elif [[ $TEST_CONFIG == *"perf_timm"* ]]; then
test_timm_perf
elif [[ $TEST_CONFIG == *"perf_smoketest"* ]]; then
test_torchbench_smoketest "${SHARD_NUMBER}"
test_torchbench_smoketest
elif [[ $TEST_CONFIG == *"mps"* ]]; then
test_python_mps
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then

18
.ci/pytorch/run_glootls_test.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
CREATE_TEST_CERT="$(dirname "${BASH_SOURCE[0]}")/create_test_cert.py"
TMP_CERT_DIR=$(python "$CREATE_TEST_CERT")
openssl verify -CAfile "${TMP_CERT_DIR}/ca.pem" "${TMP_CERT_DIR}/cert.pem"
export GLOO_DEVICE_TRANSPORT=TCP_TLS
export GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY=${TMP_CERT_DIR}/pkey.key
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT=${TMP_CERT_DIR}/cert.pem
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE=${TMP_CERT_DIR}/ca.pem
time python test/run_test.py --include distributed/test_c10d_gloo --verbose -- ProcessGroupGlooTest
unset GLOO_DEVICE_TRANSPORT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE

View File

@ -74,13 +74,12 @@ else
fi
# Environment initialization
retry pip install -qUr requirements-build.txt
if [[ "$(uname)" == Darwin ]]; then
# Install the testing dependencies
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest setuptools six typing_extensions pyyaml
else
retry pip install -qr requirements.txt || true
retry pip install -q hypothesis protobuf pytest || true
retry pip install -q hypothesis protobuf pytest setuptools || true
numpy_ver=1.15
case "$(python --version 2>&1)" in
*2* | *3.5* | *3.6*)

View File

@ -93,7 +93,7 @@ def check_lib_symbols_for_abi_correctness(lib: str) -> None:
f"Found pre-cxx11 symbols, but there shouldn't be any, see: {pre_cxx11_symbols[:100]}"
)
if num_cxx11_symbols < 100:
raise RuntimeError("Didn't find enough cxx11 symbols")
raise RuntimeError("Didn't find enought cxx11 symbols")
def main() -> None:

View File

@ -46,9 +46,6 @@ def get_gomp_thread():
# use the default gomp path of AlmaLinux OS
libgomp_path = "/usr/lib64/libgomp.so.1"
# if it does not exist, try Ubuntu path
if not os.path.exists(libgomp_path):
libgomp_path = f"/usr/lib/{os.uname().machine}-linux-gnu/libgomp.so.1"
os.environ["GOMP_CPU_AFFINITY"] = "0-3"

View File

@ -276,7 +276,7 @@ def smoke_test_cuda(
torch_nccl_version = ".".join(str(v) for v in torch.cuda.nccl.version())
print(f"Torch nccl; version: {torch_nccl_version}")
# Pypi dependencies are installed on linux only and nccl is available only on Linux.
# Pypi dependencies are installed on linux ony and nccl is availbale only on Linux.
if pypi_pkg_check == "enabled" and sys.platform in ["linux", "linux2"]:
compare_pypi_to_torch_versions(
"cudnn", find_pypi_package_version("nvidia-cudnn"), torch_cudnn_version
@ -385,29 +385,6 @@ def smoke_test_compile(device: str = "cpu") -> None:
x_pt2 = torch.compile(model, mode="max-autotune")(x)
def smoke_test_nvshmem() -> None:
if not torch.cuda.is_available():
print("CUDA is not available, skipping NVSHMEM test")
return
# Check if NVSHMEM is compiled in current build
try:
from torch._C._distributed_c10d import _is_nvshmem_available
except ImportError:
# Not built with NVSHMEM support.
# torch is not compiled with NVSHMEM prior to 2.9
if torch.__version__ < "2.9":
return
else:
# After 2.9: NVSHMEM is expected to be compiled in current build
raise RuntimeError("torch not compiled with NVSHMEM") from None
print("torch compiled with NVSHMEM")
# Check if NVSHMEM is available on current system.
print(f"NVSHMEM available at run time: {_is_nvshmem_available()}")
def smoke_test_modules():
cwd = os.getcwd()
for module in MODULES:
@ -502,8 +479,6 @@ def main() -> None:
options.pypi_pkg_check,
)
smoke_test_nvshmem()
if __name__ == "__main__":
main()

View File

@ -11,8 +11,6 @@ export TERM=vt100
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Do not change workspace permissions for ROCm and s390x CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
@ -165,6 +163,8 @@ elif [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
export PYTORCH_TESTING_DEVICE_ONLY_FOR="xpu"
# setting PYTHON_TEST_EXTRA_OPTION
export PYTHON_TEST_EXTRA_OPTION="--xpu"
# Disable sccache for xpu test due to flaky issue https://github.com/pytorch/pytorch/issues/143585
sudo rm -rf /opt/cache
fi
if [[ "$TEST_CONFIG" == *crossref* ]]; then
@ -196,12 +196,12 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/mpi/latest/env/vars.sh
# Check XPU status before testing
timeout 30 xpu-smi discovery || true
xpu-smi discovery
fi
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]] ; then
# JIT C++ extensions require ninja.
pip_install "ninja==1.10.2"
pip_install --user "ninja==1.10.2"
# ninja is installed in $HOME/.local/bin, e.g., /var/lib/jenkins/.local/bin for CI user jenkins
# but this script should be runnable by any user, including root
export PATH="$HOME/.local/bin:$PATH"
@ -212,6 +212,8 @@ if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export VALGRIND=OFF
fi
install_tlparse
# DANGER WILL ROBINSON. The LD_PRELOAD here could cause you problems
# if you're not careful. Check this if you made some changes and the
# ASAN test is not working
@ -224,7 +226,7 @@ if [[ "$BUILD_ENVIRONMENT" == *asan* ]]; then
export PYTORCH_TEST_WITH_ASAN=1
export PYTORCH_TEST_WITH_UBSAN=1
# TODO: Figure out how to avoid hard-coding these paths
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-18/bin/llvm-symbolizer
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-15/bin/llvm-symbolizer
export TORCH_USE_RTLD_GLOBAL=1
# NB: We load libtorch.so with RTLD_GLOBAL for UBSAN, unlike our
# default behavior.
@ -289,12 +291,6 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
if [[ "${TEST_CONFIG}" == "legacy_nvidia_driver" ]]; then
# Make sure that CUDA can be initialized
(cd test && python -c "import torch; torch.rand(2, 2, device='cuda')")
export USE_LEGACY_DRIVER=1
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -328,29 +324,6 @@ test_python_smoke() {
assert_git_not_dirty
}
test_h100_distributed() {
# Distributed tests at H100
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
# This test requires multicast support
time python test/run_test.py --include distributed/_composable/fsdp/test_fully_shard_comm.py -k TestFullyShardAllocFromPG $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_symm_mem() {
# symmetric memory test
time python test/run_test.py --include distributed/test_symmetric_memory.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nvshmem_triton.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --include distributed/test_nccl.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_cutlass_backend() {
# cutlass backend tests for H100
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_backend -k "not addmm" $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_evt $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
}
test_lazy_tensor_meta_reference_disabled() {
export TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE=1
echo "Testing lazy tensor operations without meta reference"
@ -379,24 +352,12 @@ test_dynamo_wrapped_shard() {
assert_git_not_dirty
}
test_einops() {
pip install einops==0.6.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.7.0
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
pip install einops==0.8.1
time python test/run_test.py --einops --verbose --upload-artifacts-while-running
assert_git_not_dirty
}
test_inductor_distributed() {
# Smuggle a few multi-gpu tests here so that we don't have to request another large node
echo "Testing multi_gpu tests in test_torchinductor"
python test/run_test.py -i inductor/test_torchinductor.py -k test_multi_gpu --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_cuda_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_replicate_on_devices --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_on_gpu_device1 --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_gpu_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_load_package_multiple_gpus --verbose
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
python test/run_test.py -i distributed/tensor/test_dtensor_compile.py --verbose
python test/run_test.py -i distributed/tensor/parallel/test_micro_pipeline_tp.py --verbose
@ -448,21 +409,14 @@ test_inductor_aoti() {
python3 tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *sm86* ]]; then
BUILD_COMMAND=(TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python -m pip install --no-build-isolation -v -e .)
BUILD_AOT_INDUCTOR_TEST=1 TORCH_CUDA_ARCH_LIST=8.6 USE_FLASH_ATTENTION=OFF python setup.py develop
# TODO: Replace me completely, as one should not use conda libstdc++, nor need special path to TORCH_LIB
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="/opt/conda/envs/py_3.10/lib:${TORCH_LIB_DIR}:${LD_LIBRARY_PATH}")
LD_LIBRARY_PATH=/opt/conda/envs/py_3.10/lib/:${TORCH_LIB_DIR}:$LD_LIBRARY_PATH
CPP_TESTS_DIR="${BUILD_BIN_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
else
BUILD_COMMAND=(python -m pip install --no-build-isolation -v -e .)
TEST_ENVS=(CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}")
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
fi
# aoti cmake custom command requires `torch` to be installed
# initialize the cmake build cache and install torch
/usr/bin/env "${BUILD_COMMAND[@]}"
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
}
test_inductor_cpp_wrapper_shard() {
@ -475,26 +429,47 @@ test_inductor_cpp_wrapper_shard() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
if [[ "$1" -eq "2" ]]; then
# For now, manually put the opinfo tests in shard 2, and all other tests in
# shard 1. Run all CPU tests, as well as specific GPU tests triggering past
# bugs, for now.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--verbose
exit
fi
# Run certain inductor unit tests with cpp wrapper. In the end state, we
# should be able to run all the inductor unit tests with cpp_wrapper.
#
# TODO: I'm pretty sure that "TestInductorOpInfoCPU" is not a valid filter,
# but change that in another PR to more accurately monitor the increased CI
# usage.
python test/run_test.py \
--include inductor/test_torchinductor_opinfo \
-k 'linalg or to_sparse or TestInductorOpInfoCPU' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py \
--include inductor/test_torchinductor inductor/test_max_autotune inductor/test_cpu_repro \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor \
--include test_torch \
-k 'take' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
python test/run_test.py --inductor --include test_torch -k 'take' --verbose
# Run inductor benchmark tests with cpp wrapper.
# Skip benchmark tests if it's in rerun-disabled-mode.
if [[ "${PYTORCH_TEST_RERUN_DISABLED_TESTS}" == "1" ]]; then
echo "skip dynamo benchmark tests for rerun-disabled-test"
else
echo "run dynamo benchmark tests with cpp wrapper"
python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
--training --inductor --disable-cudagraphs --only vit_base_patch16_224 \
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_timm_training.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${MAYBE_ROCM}inductor_torchbench_inference.csv"
fi
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -507,7 +482,7 @@ DYNAMO_BENCHMARK_FLAGS=()
pr_time_benchmarks() {
pip_install "fbscribelogger"
pip_install --user "fbscribelogger"
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
@ -615,9 +590,7 @@ test_perf_for_dashboard() {
local device=cuda
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_x86_zen* ]]; then
device=cpu_x86_zen
elif [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_x86* ]]; then
device=cpu_x86
elif [[ "${TEST_CONFIG}" == *cpu_aarch64* ]]; then
device=cpu_aarch64
@ -633,11 +606,7 @@ test_perf_for_dashboard() {
for mode in "${modes[@]}"; do
if [[ "$mode" == "inference" ]]; then
if [[ "$device" == "cpu_x86" ]]; then
dtype=amp
else
dtype=bfloat16
fi
dtype=bfloat16
elif [[ "$mode" == "training" ]]; then
dtype=amp
fi
@ -649,10 +618,6 @@ test_perf_for_dashboard() {
target_flag+=( --no-translation-validation)
fi
if [[ "$DASHBOARD_TAG" == *freezing-true* ]]; then
target_flag+=( --freezing)
fi
if [[ "$DASHBOARD_TAG" == *default-true* ]]; then
$TASKSET python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
@ -855,7 +820,16 @@ test_inductor_torchbench_smoketest_perf() {
done
}
test_inductor_get_core_number() {
if [[ "${TEST_CONFIG}" == *aarch64* ]]; then
echo "$(($(lscpu | grep 'Cluster(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per cluster:' | awk '{print $4}')))"
else
echo "$(($(lscpu | grep 'Socket(s):' | awk '{print $2}') * $(lscpu | grep 'Core(s) per socket:' | awk '{print $4}')))"
fi
}
test_inductor_set_cpu_affinity(){
#set jemalloc
JEMALLOC_LIB="$(find /usr/lib -name libjemalloc.so.2)"
export LD_PRELOAD="$JEMALLOC_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
@ -867,23 +841,14 @@ test_inductor_set_cpu_affinity(){
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
fi
# Use nproc here instead of lscpu because it takes into account cgroups slice
cpus=$(nproc)
thread_per_core=$(lscpu | grep 'Thread(s) per core:' | awk '{print $4}')
cores=$((cpus / thread_per_core))
# Set number of cores to 16 on aarch64 for performance runs
cores=$(test_inductor_get_core_number)
# Set number of cores to 16 on Aarch64 for performance runs.
if [[ "${TEST_CONFIG}" == *aarch64* && $cores -gt 16 ]]; then
cores=16
fi
export OMP_NUM_THREADS=$cores
# Handle cgroups slice start and end CPU
start_cpu=$(python -c 'import os; print(min(os.sched_getaffinity(0)))')
# Leaving one physical CPU for other tasks
end_cpu=$(($(python -c 'import os; print(max(os.sched_getaffinity(0)))') - thread_per_core))
export TASKSET="taskset -c $start_cpu-$end_cpu"
end_core=$((cores-1))
export TASKSET="taskset -c 0-$end_core"
}
test_inductor_torchbench_cpu_smoketest_perf(){
@ -928,6 +893,12 @@ test_torchbench_gcp_smoketest(){
popd
}
test_python_gloo_with_tls() {
source "$(dirname "${BASH_SOURCE[0]}")/run_glootls_test.sh"
assert_git_not_dirty
}
test_aten() {
# Test ATen
# The following test(s) of ATen have already been skipped by caffe2 in rocm environment:
@ -974,8 +945,6 @@ test_without_numpy() {
if [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;torch.compile(lambda x:print(x))('Hello World')"
fi
# Regression test for https://github.com/pytorch/pytorch/pull/157734 (torch.onnx should be importable without numpy)
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch; import torch.onnx"
popd
}
@ -1162,12 +1131,6 @@ test_custom_backend() {
test_custom_script_ops() {
echo "Testing custom script operators"
if [[ "$BUILD_ENVIRONMENT" == *s390x* ]]; then
echo "Skipping custom script operators until it's fixed"
return 0
fi
CUSTOM_OP_BUILD="${CUSTOM_TEST_ARTIFACT_BUILD_DIR}/custom-op-build"
pushd test/custom_operator
cp -a "$CUSTOM_OP_BUILD" build
@ -1320,13 +1283,10 @@ EOF
# Step 2. Make sure that the public API test "test_correct_module_names" fails when an existing
# file is modified to introduce an invalid public API function.
# The filepath here must not have __all__ defined in it, otherwise the test will pass.
# If your PR introduces __all__ to torch/cuda/streams.py please point this to another file
# that does not have __all__ defined.
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/cuda/streams.py"
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/nn/parameter.py"
cp -v "${EXISTING_FILEPATH}" "${EXISTING_FILEPATH}.orig"
echo "${BAD_PUBLIC_FUNC}" >> "${EXISTING_FILEPATH}"
invalid_api="torch.cuda.streams.new_public_func"
invalid_api="torch.nn.parameter.new_public_func"
echo "Appended an invalid public API function to existing file ${EXISTING_FILEPATH}..."
check_public_api_test_fails \
@ -1481,8 +1441,8 @@ test_bazel() {
test_benchmarks() {
if [[ "$BUILD_ENVIRONMENT" == *cuda* && $TEST_CONFIG != *nogpu* ]]; then
pip_install "pytest-benchmark==3.2.3"
pip_install "requests"
pip_install --user "pytest-benchmark==3.2.3"
pip_install --user "requests"
BENCHMARK_DATA="benchmarks/.data"
mkdir -p ${BENCHMARK_DATA}
pytest benchmarks/fastrnns/test_bench.py --benchmark-sort=Name --benchmark-json=${BENCHMARK_DATA}/fastrnns_default.json --fuser=default --executor=default
@ -1590,12 +1550,11 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
python setup.py install
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
--output-csv "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv" \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.json" \
--output-dir "${TEST_REPORTS_DIR}/operator_benchmark_eager_float32_cpu.csv"
pip_install pandas
python check_perf_csv.py \
@ -1610,13 +1569,7 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
fi
if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
# Install numpy-2.0.2 and compatible scipy & numba versions
# Force re-install of pandas to avoid error where pandas checks numpy version from initial install and fails upon import
TMP_PANDAS_VERSION=$(python -c "import pandas; print(pandas.__version__)" 2>/dev/null)
if [ -n "$TMP_PANDAS_VERSION" ]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0 pandas=="$TMP_PANDAS_VERSION" --force-reinstall
else
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python -mpip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
test_linux_aarch64
@ -1670,19 +1623,23 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == cachebench ]]; then
install_torchaudio
install_torchaudio cuda
install_torchvision
checkout_install_torchbench nanogpt BERT_pytorch resnet50 hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_cachebench
elif [[ "${TEST_CONFIG}" == verify_cachebench ]]; then
install_torchaudio
install_torchaudio cpu
install_torchvision
checkout_install_torchbench nanogpt
PYTHONPATH=$(pwd)/torchbench test_verify_cachebench
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
install_torchaudio
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchvision
install_torchao
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install git+https://github.com/pytorch/ao.git
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
@ -1707,11 +1664,11 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
fi
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchaudio cuda
install_torchvision
checkout_install_torchbench hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti
fi
test_inductor_aoti
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
@ -1720,8 +1677,6 @@ elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
test_inductor_distributed
fi
fi
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
test_einops
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
install_torchvision
test_dynamo_wrapped_shard "${SHARD_NUMBER}"
@ -1769,12 +1724,6 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
test_xpu_bin
elif [[ "${TEST_CONFIG}" == smoke ]]; then
test_python_smoke
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else
install_torchvision
install_monkeytype

View File

@ -1,34 +0,0 @@
# If you want to rebuild, run this with $env:REBUILD=1
# If you want to build with CUDA, run this with $env:USE_CUDA=1
# If you want to build without CUDA, run this with $env:USE_CUDA=0
# Check for setup.py in the current directory
if (-not (Test-Path "setup.py")) {
Write-Host "ERROR: Please run this build script from PyTorch root directory."
exit 1
}
# Get the script's parent directory
$ScriptParentDir = Split-Path -Parent $MyInvocation.MyCommand.Definition
# Set TMP_DIR and convert to Windows path
$env:TMP_DIR = Join-Path (Get-Location) "build\win_tmp"
$env:TMP_DIR_WIN = $env:TMP_DIR # Already in Windows format, no cygpath needed
# Set final package directory with default fallback
if (-not $env:PYTORCH_FINAL_PACKAGE_DIR) {
$env:PYTORCH_FINAL_PACKAGE_DIR = "C:\w\build-results"
}
# Create the final package directory if it doesn't exist
if (-not (Test-Path $env:PYTORCH_FINAL_PACKAGE_DIR)) {
New-Item -Path $env:PYTORCH_FINAL_PACKAGE_DIR -ItemType Directory -Force | Out-Null
}
# Set script helpers directory
$env:SCRIPT_HELPERS_DIR = Join-Path $ScriptParentDir "win-test-helpers\arm64"
# Run the main build script
& "$env:SCRIPT_HELPERS_DIR\build_pytorch.ps1"
Write-Host "BUILD PASSED"

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex -o pipefail
SCRIPT_PARENT_DIR=$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
# shellcheck source=./common.sh
source "$SCRIPT_PARENT_DIR/common.sh"
run_tests() {
echo Running smoke_test.py...
python ./.ci/pytorch/smoke_test/smoke_test.py --package torchonly
echo Running test_autograd.oy, test_nn.py, test_torch.py...
cd test
CORE_TEST_LIST=("test_autograd.py" "test_nn.py" "test_modules.py")
for t in "${CORE_TEST_LIST[@]}"; do
echo "Running test: $t"
python "$t" --verbose --save-xml --use-pytest -vvvv -rfEsxXP -p no:xdist
done
}
run_tests
echo "TEST PASSED"

View File

@ -31,7 +31,7 @@ PYLONG_API_CHECK=$?
if [[ $PYLONG_API_CHECK == 0 ]]; then
echo "Usage of PyLong_{From,As}{Unsigned}Long API may lead to overflow errors on Windows"
echo "because \`sizeof(long) == 4\` and \`sizeof(unsigned long) == 4\`."
echo "Please include \"torch/csrc/utils/python_numbers.h\" and use the corresponding APIs instead."
echo "Please include \"torch/csrc/utils/python_numbers.h\" and use the correspoding APIs instead."
echo "PyLong_FromLong -> THPUtils_packInt32 / THPUtils_packInt64"
echo "PyLong_AsLong -> THPUtils_unpackInt (32-bit) / THPUtils_unpackLong (64-bit)"
echo "PyLong_FromUnsignedLong -> THPUtils_packUInt32 / THPUtils_packUInt64"

View File

@ -1,98 +0,0 @@
# TODO: we may can use existing build_pytorch.bat for arm64
if ($env:DEBUG -eq "1") {
$env:BUILD_TYPE = "debug"
} else {
$env:BUILD_TYPE = "release"
}
# This inflates our log size slightly, but it is REALLY useful to be
# able to see what our cl.exe commands are. (since you can actually
# just copy-paste them into a local Windows setup to just rebuild a
# single file.)
# log sizes are too long, but leaving this here in case someone wants to use it locally
# $env:CMAKE_VERBOSE_MAKEFILE = "1"
$env:INSTALLER_DIR = Join-Path $env:SCRIPT_HELPERS_DIR "installation-helpers"
cd ..
# Environment variables
$env:SCCACHE_IDLE_TIMEOUT = "0"
$env:SCCACHE_IGNORE_SERVER_IO_ERROR = "1"
$env:CMAKE_BUILD_TYPE = $env:BUILD_TYPE
$env:CMAKE_C_COMPILER_LAUNCHER = "sccache"
$env:CMAKE_CXX_COMPILER_LAUNCHER = "sccache"
$env:libuv_ROOT = Join-Path $env:DEPENDENCIES_DIR "libuv\install"
$env:MSSdk = "1"
if ($env:PYTORCH_BUILD_VERSION) {
$env:PYTORCH_BUILD_VERSION = $env:PYTORCH_BUILD_VERSION
$env:PYTORCH_BUILD_NUMBER = "1"
}
$env:CMAKE_POLICY_VERSION_MINIMUM = "3.5"
# Set BLAS type
if ($env:ENABLE_APL -eq "1") {
$env:BLAS = "APL"
$env:USE_LAPACK = "1"
} elseif ($env:ENABLE_OPENBLAS -eq "1") {
$env:BLAS = "OpenBLAS"
$env:OpenBLAS_HOME = Join-Path $env:DEPENDENCIES_DIR "OpenBLAS\install"
}
# Change to source directory
Set-Location $env:PYTORCH_ROOT
# Copy libuv.dll
Copy-Item -Path (Join-Path $env:libuv_ROOT "lib\Release\uv.dll") -Destination "torch\lib\uv.dll" -Force
# Create virtual environment
python -m venv .venv
.\.venv\Scripts\Activate.ps1
where.exe python
# Python install dependencies
python -m pip install --upgrade pip
pip install setuptools pyyaml
pip install -r requirements.txt
# Set after installing psutil
$env:DISTUTILS_USE_SDK = "1"
# Print all environment variables
Get-ChildItem Env:
# Start and inspect sccache
sccache --start-server
sccache --zero-stats
sccache --show-stats
# Build the wheel
python setup.py bdist_wheel
if ($LASTEXITCODE -ne 0) { exit 1 }
# Install the wheel locally
$whl = Get-ChildItem -Path "dist\*.whl" | Select-Object -First 1
if ($whl) {
python -mpip install --no-index --no-deps $whl.FullName
}
# Copy final wheel
robocopy "dist" "$env:PYTORCH_FINAL_PACKAGE_DIR" *.whl
# Export test times
python tools/stats/export_test_times.py
# Copy additional CI files
robocopy ".additional_ci_files" "$env:PYTORCH_FINAL_PACKAGE_DIR\.additional_ci_files" /E
# Save ninja log
Copy-Item -Path "build\.ninja_log" -Destination $env:PYTORCH_FINAL_PACKAGE_DIR -Force
# Final sccache stats and stop
sccache --show-stats
sccache --stop-server
exit 0

View File

@ -10,7 +10,7 @@ set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocol
:: able to see what our cl.exe commands are (since you can actually
:: just copy-paste them into a local Windows setup to just rebuild a
:: single file.)
:: log sizes are too long, but leaving this here in case someone wants to use it locally
:: log sizes are too long, but leaving this here incase someone wants to use it locally
:: set CMAKE_VERBOSE_MAKEFILE=1
@ -42,7 +42,7 @@ call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=Syste
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
call pip install mkl-include==2021.4.0 mkl-devel==2021.4.0
if errorlevel 1 goto fail
if not errorlevel 0 goto fail

View File

@ -52,7 +52,7 @@ if __name__ == "__main__":
if os.path.exists(debugger):
command_args = [debugger, "-o", "-c", "~*g; q"] + command_args
command_string = " ".join(command_args)
print("Rerunning with traceback enabled")
print("Reruning with traceback enabled")
print("Command:", command_string)
subprocess.run(command_args, check=False)
sys.exit(e.returncode)

View File

@ -38,10 +38,10 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
fi
# TODO: Move both of them to Windows AMI
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 pytest-subtests==0.13.1
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.15.1.0
python -m pip install z3-solver==4.12.2.0
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
python -m pip install tlparse==0.3.30
@ -52,9 +52,6 @@ python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
python -m pip install expecttest==0.3.0
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do

View File

@ -7,7 +7,7 @@ if not exist "%DOWNLOADS_DIR%" mkdir %DOWNLOADS_DIR%
if not exist "%DEPENDENCIES_DIR%" mkdir %DEPENDENCIES_DIR%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
cd %DEPENDENCIES_DIR%

View File

@ -7,7 +7,7 @@ if not exist "%DOWNLOADS_DIR%" mkdir %DOWNLOADS_DIR%
if not exist "%DEPENDENCIES_DIR%" mkdir %DEPENDENCIES_DIR%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: Clone OpenBLAS

View File

@ -2,7 +2,7 @@
cd %PYTORCH_ROOT%
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: create virtual environment

View File

@ -21,7 +21,7 @@ if %ENABLE_APL% == 1 (
)
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: change to source directory

View File

@ -21,7 +21,7 @@ if %ENABLE_APL% == 1 (
)
:: activate visual studio
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
where cl.exe
:: change to source directory

View File

@ -33,7 +33,7 @@ pushd tmp
set VC_VERSION_LOWER=14
set VC_VERSION_UPPER=36
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" arm64
call "%DEPENDENCIES_DIR%\VSBuildTools\VC\Auxiliary\Build\vcvarsall.bat" arm64
set install_root=%CD%
set INCLUDE=%INCLUDE%;%install_root%\include;%install_root%\include\torch\csrc\api\include

View File

@ -0,0 +1,59 @@
@echo off
set MODULE_NAME=pytorch
IF NOT EXIST "setup.py" IF NOT EXIST "%MODULE_NAME%" (
call internal\clone.bat
cd %~dp0
) ELSE (
call internal\clean.bat
)
IF ERRORLEVEL 1 goto :eof
call internal\check_deps.bat
IF ERRORLEVEL 1 goto :eof
REM Check for optional components
set USE_CUDA=
set CMAKE_GENERATOR=Visual Studio 15 2017 Win64
IF "%NVTOOLSEXT_PATH%"=="" (
IF EXIST "C:\Program Files\NVIDIA Corporation\NvToolsExt\lib\x64\nvToolsExt64_1.lib" (
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
) ELSE (
echo NVTX ^(Visual Studio Extension ^for CUDA^) ^not installed, failing
exit /b 1
)
)
IF "%CUDA_PATH_V118%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin\nvcc.exe" (
set "CUDA_PATH_V118=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8"
) ELSE (
echo CUDA 11.8 not found, failing
exit /b 1
)
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=3.7+PTX;5.0;6.0;6.1;7.0;7.5;8.0;8.6;9.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90
)
set "CUDA_PATH=%CUDA_PATH_V118%"
set "PATH=%CUDA_PATH_V118%\bin;%PATH%"
:optcheck
call internal\check_opts.bat
IF ERRORLEVEL 1 goto :eof
if exist "%NIGHTLIES_PYTORCH_ROOT%" cd %NIGHTLIES_PYTORCH_ROOT%\..
call %~dp0\internal\copy.bat
IF ERRORLEVEL 1 goto :eof
call %~dp0\internal\setup.bat
IF ERRORLEVEL 1 goto :eof

View File

@ -27,24 +27,24 @@ IF "%NVTOOLSEXT_PATH%"=="" (
)
)
IF "%CUDA_PATH_V129%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.9\bin\nvcc.exe" (
set "CUDA_PATH_V129=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.9"
IF "%CUDA_PATH_V124%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\nvcc.exe" (
set "CUDA_PATH_V124=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
) ELSE (
echo CUDA 12.9 not found, failing
echo CUDA 12.4 not found, failing
exit /b 1
)
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=7.0;7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_CUDA_ARCH_LIST=6.1;7.0;7.5;8.0;8.6;9.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90
)
set "CUDA_PATH=%CUDA_PATH_V129%"
set "PATH=%CUDA_PATH_V129%\bin;%PATH%"
set "CUDA_PATH=%CUDA_PATH_V124%"
set "PATH=%CUDA_PATH_V124%\bin;%PATH%"
:optcheck

View File

@ -65,7 +65,7 @@ for /F "usebackq delims=" %%i in (`python -c "import sys; print('{0[0]}{0[1]}'.f
if %PYVER% LSS 35 (
echo Warning: PyTorch for Python 2 under Windows is experimental.
echo Python x64 3.5 or up is recommended to compile PyTorch on Windows
echo Maybe you can create a virtual environment if you have conda installed:
echo Maybe you can create a virual environment if you have conda installed:
echo ^> conda create -n test python=3.6 pyyaml numpy
echo ^> activate test
)

View File

@ -8,7 +8,6 @@ copy "%CUDA_PATH%\bin\cusolver*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudnn*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\cupti64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\nvperf_host*.dll*" pytorch\torch\lib
copy "C:\Program Files\NVIDIA Corporation\NvToolsExt\bin\x64\nvToolsExt64_1.dll*" pytorch\torch\lib
copy "%PYTHON_LIB_PATH%\libiomp*5md.dll" pytorch\torch\lib

View File

@ -23,13 +23,66 @@ set CUDNN_LIB_FOLDER="lib\x64"
:: Skip all of this if we already have cuda installed
if exist "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION_STR%\bin\nvcc.exe" goto set_cuda_env_vars
if %CUDA_VER% EQU 118 goto cuda118
if %CUDA_VER% EQU 124 goto cuda124
if %CUDA_VER% EQU 126 goto cuda126
if %CUDA_VER% EQU 128 goto cuda128
if %CUDA_VER% EQU 129 goto cuda129
echo CUDA %CUDA_VERSION_STR% is not supported
exit /b 1
:cuda118
set CUDA_INSTALL_EXE=cuda_11.8.0_522.06_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_11.8 thrust_11.8 nvcc_11.8 cuobjdump_11.8 nvprune_11.8 nvprof_11.8 cupti_11.8 cublas_11.8 cublas_dev_11.8 cudart_11.8 cufft_11.8 cufft_dev_11.8 curand_11.8 curand_dev_11.8 cusolver_11.8 cusolver_dev_11.8 cusparse_11.8 cusparse_dev_11.8 npp_11.8 npp_dev_11.8 nvrtc_11.8 nvrtc_dev_11.8 nvml_dev_11.8 nvtx_11.8"
)
set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda11-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@REM cuDNN 8.3+ required zlib to be installed on the path
echo Installing ZLIB dlls
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda124
set CUDA_INSTALL_EXE=cuda_12.4.0_551.61_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_12.4 thrust_12.4 nvcc_12.4 cuobjdump_12.4 nvprune_12.4 nvprof_12.4 cupti_12.4 cublas_12.4 cublas_dev_12.4 cudart_12.4 cufft_12.4 cufft_dev_12.4 curand_12.4 curand_dev_12.4 cusolver_12.4 cusolver_dev_12.4 cusparse_12.4 cusparse_dev_12.4 npp_12.4 npp_dev_12.4 nvrtc_12.4 nvrtc_dev_12.4 nvml_dev_12.4 nvjitlink_12.4 nvtx_12.4"
)
set CUDNN_FOLDER=cudnn-windows-x86_64-9.5.0.50_cuda12-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@REM cuDNN 8.3+ required zlib to be installed on the path
echo Installing ZLIB dlls
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda126
@ -86,33 +139,6 @@ xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda129
set CUDA_INSTALL_EXE=cuda_12.9.1_576.57_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS=cuda_profiler_api_12.9 thrust_12.9 nvcc_12.9 cuobjdump_12.9 nvprune_12.9 nvprof_12.9 cupti_12.9 cublas_12.9 cublas_dev_12.9 cudart_12.9 cufft_12.9 cufft_dev_12.9 curand_12.9 curand_dev_12.9 cusolver_12.9 cusolver_dev_12.9 cusparse_12.9 cusparse_dev_12.9 npp_12.9 npp_dev_12.9 nvrtc_12.9 nvrtc_dev_12.9 nvml_dev_12.9 nvjitlink_12.9 nvtx_12.9"
)
set CUDNN_FOLDER=cudnn-windows-x86_64-9.10.2.21_cuda12-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@REM cuDNN 8.3+ required zlib to be installed on the path
echo Installing ZLIB dlls
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda_common
:: NOTE: We only install CUDA if we don't have it installed already.
:: With GHA runners these should be pre-installed as part of our AMI process

View File

@ -18,5 +18,3 @@ start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_t
if errorlevel 1 exit /b 1
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel
if errorlevel 1 exit /b 1

View File

@ -99,6 +99,7 @@ goto end
:libtorch
echo "install and test libtorch"
if "%VC_YEAR%" == "2019" powershell internal\vs2019_install.ps1
if "%VC_YEAR%" == "2022" powershell internal\vs2022_install.ps1
if ERRORLEVEL 1 exit /b 1
@ -110,6 +111,10 @@ pushd tmp\libtorch
set VC_VERSION_LOWER=17
set VC_VERSION_UPPER=18
IF "%VC_YEAR%" == "2019" (
set VC_VERSION_LOWER=16
set VC_VERSION_UPPER=17
)
for /f "usebackq tokens=*" %%i in (`"%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -legacy -products * -version [%VC_VERSION_LOWER%^,%VC_VERSION_UPPER%^) -property installationPath`) do (
if exist "%%i" if exist "%%i\VC\Auxiliary\Build\vcvarsall.bat" (
@ -148,7 +153,14 @@ if "%NVIDIA_GPU_EXISTS%" == "0" (
goto end
)
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
set BUILD_SPLIT_CUDA=
if exist "%install_root%\lib\torch_cuda_cu.lib" if exist "%install_root%\lib\torch_cuda_cpp.lib" set BUILD_SPLIT_CUDA=ON
if "%BUILD_SPLIT_CUDA%" == "ON" (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda_cu.lib torch_cuda_cpp.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ /INCLUDE:?_torch_cuda_cu_linker_symbol_op_cuda@native@at@@YA?AVTensor@2@AEBV32@@Z
) else (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
)
.\check-torch-cuda.exe
if ERRORLEVEL 1 exit /b 1

View File

@ -1,7 +1,12 @@
if "%VC_YEAR%" == "2019" powershell windows/internal/vs2019_install.ps1
if "%VC_YEAR%" == "2022" powershell windows/internal/vs2022_install.ps1
set VC_VERSION_LOWER=17
set VC_VERSION_UPPER=18
if "%VC_YEAR%" == "2019" (
set VC_VERSION_LOWER=16
set VC_VERSION_UPPER=17
)
for /f "usebackq tokens=*" %%i in (`"%ProgramFiles(x86)%\Microsoft Visual Studio\Installer\vswhere.exe" -products Microsoft.VisualStudio.Product.BuildTools -version [%VC_VERSION_LOWER%^,%VC_VERSION_UPPER%^) -property installationPath`) do (
if exist "%%i" if exist "%%i\VC\Auxiliary\Build\vcvarsall.bat" (

View File

@ -0,0 +1,48 @@
# https://developercommunity.visualstudio.com/t/install-specific-version-of-vs-component/1142479
# https://docs.microsoft.com/en-us/visualstudio/releases/2019/history#release-dates-and-build-numbers
# 16.8.6 BuildTools
$VS_DOWNLOAD_LINK = "https://ossci-windows.s3.us-east-1.amazonaws.com/vs16.8.6_BuildTools.exe"
$COLLECT_DOWNLOAD_LINK = "https://aka.ms/vscollect.exe"
$VS_INSTALL_ARGS = @("--nocache","--quiet","--wait", "--add Microsoft.VisualStudio.Workload.VCTools",
"--add Microsoft.Component.MSBuild",
"--add Microsoft.VisualStudio.Component.Roslyn.Compiler",
"--add Microsoft.VisualStudio.Component.TextTemplating",
"--add Microsoft.VisualStudio.Component.VC.CoreIde",
"--add Microsoft.VisualStudio.Component.VC.Redist.14.Latest",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core",
"--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64",
"--add Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Win81")
curl.exe --retry 3 -kL $VS_DOWNLOAD_LINK --output vs_installer.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS 2019 Version 16.8.5 installer failed"
exit 1
}
if (Test-Path "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe") {
$existingPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -products "Microsoft.VisualStudio.Product.BuildTools" -version "[16, 17)" -property installationPath
if ($existingPath -ne $null) {
if (!${env:CIRCLECI}) {
echo "Found correctly versioned existing BuildTools installation in $existingPath"
exit 0
}
echo "Found existing BuildTools installation in $existingPath, keeping it"
}
}
$process = Start-Process "${PWD}\vs_installer.exe" -ArgumentList $VS_INSTALL_ARGS -NoNewWindow -Wait -PassThru
Remove-Item -Path vs_installer.exe -Force
$exitCode = $process.ExitCode
if (($exitCode -ne 0) -and ($exitCode -ne 3010)) {
echo "VS 2019 installer exited with code $exitCode, which should be one of [0, 3010]."
curl.exe --retry 3 -kL $COLLECT_DOWNLOAD_LINK --output Collect.exe
if ($LASTEXITCODE -ne 0) {
echo "Download of the VS Collect tool failed."
exit 1
}
Start-Process "${PWD}\Collect.exe" -NoNewWindow -Wait -PassThru
New-Item -Path "C:\w\build-results" -ItemType "directory" -Force
Copy-Item -Path "C:\Users\${env:USERNAME}\AppData\Local\Temp\vslogs.zip" -Destination "C:\w\build-results\"
exit 1
}

View File

@ -25,8 +25,8 @@ set XPU_EXTRA_INSTALLED=0
set XPU_EXTRA_UNINSTALL=0
if not [%XPU_VERSION%]==[] if [%XPU_VERSION%]==[2025.1] (
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/75d4eb97-914a-4a95-852c-7b9733d80f74/intel-deep-learning-essentials-2025.1.3.8_offline.exe
set XPU_BUNDLE_VERSION=2025.1.3+5
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/1a9fff3d-04c2-4d77-8861-3d86c774b66f/intel-deep-learning-essentials-2025.1.1.26_offline.exe
set XPU_BUNDLE_VERSION=2025.1.1+23
)
:: Check if XPU bundle is target version or already installed

View File

@ -127,7 +127,7 @@ export INSTALL_TEST=0 # dont install test binaries into site-packages
export MACOSX_DEPLOYMENT_TARGET=10.15
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
SETUPTOOLS_PINNED_VERSION="==70.1.0"
SETUPTOOLS_PINNED_VERSION="=46.0.0"
PYYAML_PINNED_VERSION="=5.3"
EXTRA_CONDA_INSTALL_FLAGS=""
CONDA_ENV_CREATE_FLAGS=""
@ -135,7 +135,7 @@ RENAME_WHEEL=true
case $desired_python in
3.13t)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
@ -145,31 +145,31 @@ case $desired_python in
;;
3.13)
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
;;
3.12)
echo "Using 3.12 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=68.0.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.11)
echo "Using 3.11 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.10)
echo "Using 3.10 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.9)
echo "Using 3.9 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
SETUPTOOLS_PINNED_VERSION=">=46.0.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
@ -184,8 +184,7 @@ tmp_env_name="wheel_py$python_nodot"
conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_python" ${CONDA_ENV_CREATE_FLAGS}
source activate "$tmp_env_name"
retry pip install -r "${pytorch_rootdir}/requirements-build.txt"
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing-extensions
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing_extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp
@ -207,7 +206,7 @@ if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 python setup.py bdist_wheel -d "$whl_tmp_dir"
echo "Finished setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
echo "Calling setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 CMAKE_FRESH=1 python setup.py bdist_wheel -d "$whl_tmp_dir"
BUILD_PYTHON_ONLY=1 BUILD_LIBTORCH_WHL=0 python setup.py bdist_wheel -d "$whl_tmp_dir" --cmake
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
python setup.py bdist_wheel -d "$whl_tmp_dir"

View File

@ -75,8 +75,8 @@ TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
# CUDA 12.9 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]]; then
# CUDA 12.8 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == cu128 ]]; then
TRITON_CONSTRAINT="platform_system == 'Linux'"
fi
@ -105,7 +105,6 @@ fi
# Set triton via PYTORCH_EXTRA_INSTALL_REQUIREMENTS for triton xpu package
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*xpu.* ]]; then
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_xpu_version.txt)
TRITON_REQUIREMENT="pytorch-triton-xpu==${TRITON_VERSION}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-8 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton-xpu.txt)

View File

@ -9,7 +9,7 @@ if [[ "$OS" != "windows-arm64" ]]; then
export USE_SCCACHE=1
export SCCACHE_BUCKET=ossci-compiler-cache
export SCCACHE_IGNORE_SERVER_IO_ERROR=1
export VC_YEAR=2022
export VC_YEAR=2019
fi
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then

View File

@ -4,7 +4,7 @@ set -eux -o pipefail
source "${BINARY_ENV_FILE:-/c/w/env}"
export CUDA_VERSION="${DESIRED_CUDA/cu/}"
export VC_YEAR=2022
export VC_YEAR=2019
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
export VC_YEAR=2022

View File

@ -0,0 +1,157 @@
# Documentation: https://docs.microsoft.com/en-us/rest/api/azure/devops/build/?view=azure-devops-rest-6.0
import json
import os
import re
import sys
import time
import requests
AZURE_PIPELINE_BASE_URL = "https://aiinfra.visualstudio.com/PyTorch/"
AZURE_DEVOPS_PAT_BASE64 = os.environ.get("AZURE_DEVOPS_PAT_BASE64_SECRET", "")
PIPELINE_ID = "911"
PROJECT_ID = "0628bce4-2d33-499e-bac5-530e12db160f"
TARGET_BRANCH = os.environ.get("CIRCLE_BRANCH", "main")
TARGET_COMMIT = os.environ.get("CIRCLE_SHA1", "")
build_base_url = AZURE_PIPELINE_BASE_URL + "_apis/build/builds?api-version=6.0"
s = requests.Session()
s.headers.update({"Authorization": "Basic " + AZURE_DEVOPS_PAT_BASE64})
def submit_build(pipeline_id, project_id, source_branch, source_version):
print("Submitting build for branch: " + source_branch)
print("Commit SHA1: ", source_version)
run_build_raw = s.post(
build_base_url,
json={
"definition": {"id": pipeline_id},
"project": {"id": project_id},
"sourceBranch": source_branch,
"sourceVersion": source_version,
},
)
try:
run_build_json = run_build_raw.json()
except json.decoder.JSONDecodeError as e:
print(e)
print(
"Failed to parse the response. Check if the Azure DevOps PAT is incorrect or expired."
)
sys.exit(-1)
build_id = run_build_json["id"]
print("Submitted bulid: " + str(build_id))
print("Bulid URL: " + run_build_json["url"])
return build_id
def get_build(_id):
get_build_url = (
AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}?api-version=6.0"
)
get_build_raw = s.get(get_build_url)
return get_build_raw.json()
def get_build_logs(_id):
get_build_logs_url = (
AZURE_PIPELINE_BASE_URL + f"/_apis/build/builds/{_id}/logs?api-version=6.0"
)
get_build_logs_raw = s.get(get_build_logs_url)
return get_build_logs_raw.json()
def get_log_content(url):
resp = s.get(url)
return resp.text
def wait_for_build(_id):
build_detail = get_build(_id)
build_status = build_detail["status"]
while build_status == "notStarted":
print("Waiting for run to start: " + str(_id))
sys.stdout.flush()
try:
build_detail = get_build(_id)
build_status = build_detail["status"]
except Exception as e:
print("Error getting build")
print(e)
time.sleep(30)
print("Bulid started: ", str(_id))
handled_logs = set()
while build_status == "inProgress":
try:
print("Waiting for log: " + str(_id))
logs = get_build_logs(_id)
except Exception as e:
print("Error fetching logs")
print(e)
time.sleep(30)
continue
for log in logs["value"]:
log_id = log["id"]
if log_id in handled_logs:
continue
handled_logs.add(log_id)
print("Fetching log: \n" + log["url"])
try:
log_content = get_log_content(log["url"])
print(log_content)
except Exception as e:
print("Error getting log content")
print(e)
sys.stdout.flush()
build_detail = get_build(_id)
build_status = build_detail["status"]
time.sleep(30)
build_result = build_detail["result"]
print("Bulid status: " + build_status)
print("Bulid result: " + build_result)
return build_status, build_result
if __name__ == "__main__":
# Convert the branch name for Azure DevOps
match = re.search(r"pull/(\d+)", TARGET_BRANCH)
if match is not None:
pr_num = match.group(1)
SOURCE_BRANCH = f"refs/pull/{pr_num}/head"
else:
SOURCE_BRANCH = f"refs/heads/{TARGET_BRANCH}"
MAX_RETRY = 2
retry = MAX_RETRY
while retry > 0:
build_id = submit_build(PIPELINE_ID, PROJECT_ID, SOURCE_BRANCH, TARGET_COMMIT)
build_status, build_result = wait_for_build(build_id)
if build_result != "succeeded":
retry = retry - 1
if retry > 0:
print("Retrying... remaining attempt: " + str(retry))
# Wait a bit before retrying
time.sleep((MAX_RETRY - retry) * 120)
continue
else:
print("No more chance to retry. Giving up.")
sys.exit(-1)
else:
break

View File

@ -120,7 +120,6 @@ UseTab: Never
Language: ObjC
ColumnLimit: 120
AlignAfterOpenBracket: Align
IndentWidth: 2
ObjCBlockIndentWidth: 2
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: false

View File

@ -61,8 +61,8 @@ You are now all set to start developing with PyTorch in a DevContainer environme
## Step 8: Build PyTorch
To build pytorch from source, simply run:
```bash
python -m pip install --no-build-isolation -v -e .
```
python setup.py develop
```
The process involves compiling thousands of files, and would take a long time. Fortunately, the compiled objects can be useful for your next build. When you modify some files, you only need to compile the changed files the next time.

View File

@ -1,36 +1,14 @@
root = true
[*]
charset = utf-8
end_of_line = lf
insert_final_newline = true
# Python
[*.{py,pyi,py.in,pyi.in}]
[*.py]
indent_style = space
indent_size = 4
# C/C++/CUDA
[*.{cpp,hpp,cxx,cc,c,h,cu,cuh}]
indent_style = space
indent_size = 2
# Objective-C
[*.{mm,m,M}]
indent_style = space
indent_size = 2
# Clang tools
[.clang-{format,tidy}]
indent_style = space
indent_size = 2
# Make
[Makefile]
indent_style = tab
# Batch file
[*.bat]
indent_style = space
indent_size = 2
end_of_line = crlf

View File

@ -7,12 +7,12 @@ max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
# to line this up with executable bit
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907,B908,B910
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!

View File

@ -12,9 +12,7 @@ body:
description: |
Please provide a clear and concise description of what the bug is.
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently.
Your example should be fully self-contained and not rely on any artifact that should be downloaded.
For example:
If relevant, add a minimal example so that we can reproduce the error by running the code. It is very important for the snippet to be as succinct (minimal) as possible, so please take time to trim down any irrelevant code to help us debug efficiently. We are going to copy-paste your code and we expect to get the same result as you did: avoid any external data, and include the relevant imports, etc. For example:
```python
# All necessary imports at the beginning
@ -28,7 +26,6 @@ body:
If the code is too long (hopefully, it isn't), feel free to put it in a public gist and link it in the issue: https://gist.github.com.
Please also paste or describe the results you observe instead of the expected results. If you observe an error, please paste the error message including the **full** traceback of the exception. It may be relevant to wrap error messages in ```` ```triple quotes blocks``` ````.
If your issue is related to numerical accuracy or reproducibility, please read the [numerical accuracy](https://docs.pytorch.org/docs/stable/notes/numerical_accuracy.html) and [reproducibility](https://docs.pytorch.org/docs/stable/notes/randomness.html) notes. If the difference is not expected as described in these documents, please provide appropriate justification on why one result is wrong and the other is correct.
placeholder: |
A clear and concise description of what the bug is.

View File

@ -5,7 +5,7 @@ title: "DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]"
labels: "module: ci"
---
> For example, DISABLED pull / win-vs2022-cpu-py3 / test (default). Once
> For example, DISABLED pull / win-vs2019-cpu-py3 / test (default). Once
> created, the job will be disabled within 15 minutes. You can check the
> list of disabled jobs at https://ossci-metrics.s3.amazonaws.com/disabled-jobs.json

View File

@ -1,111 +0,0 @@
name: 🚀 Release highlight for proposed Feature
description: Submit a Release highlight for proposed Feature
labels: ["release-feature-request"]
body:
- type: textarea
attributes:
label: Release highlight for proposed Feature
description: >
Example: “A torch.special module, analogous to SciPy's special module.”
- type: input
id: contact
attributes:
label: Point(s) of contact
description: How can we get in touch with you if we need more info?
placeholder: ex. github username
validations:
required: false
- type: dropdown
attributes:
label: Release Mode (pytorch/pytorch features only)
description: |
If "out-of-tree", please include the GH repo name
options:
- In-tree
- Out-of-tree
validations:
required: true
- type: textarea
attributes:
label: Out-Of-Tree Repo
description: >
please include the GH repo name
validations:
required: false
- type: textarea
attributes:
label: Description and value to the user
description: >
Please provide a brief description of the feature and how it will benefit the user.
validations:
required: false
- type: textarea
attributes:
label: Link to design doc, GitHub issues, past submissions, etc
validations:
required: false
- type: textarea
attributes:
label: What feedback adopters have provided
description: >
Please list users/teams that have tried the feature and provided feedback. If that feedback motivated material changes (API, doc, etc..), a quick overview of the changes and the status (planned, in progress, implemented) would be helpful as well.
validations:
required: false
- type: dropdown
attributes:
label: Plan for documentations / tutorials
description: |
Select One of the following options
options:
- Tutorial exists
- Will submit a PR to pytorch/tutorials
- Will submit a PR to a repo
- Tutorial is not needed
validations:
required: true
- type: textarea
attributes:
label: Additional context for tutorials
description: >
Please provide a link for existing tutorial or link to a repo or context for why tutorial is not needed.
validations:
required: false
- type: dropdown
attributes:
label: Marketing/Blog Coverage
description: |
Are you requesting feature Inclusion in the release blogs?
options:
- "Yes"
- "No"
validations:
required: true
- type: textarea
attributes:
label: Are you requesting other marketing assistance with this feature?
description: >
E.g. supplementary blogs, social media amplification, etc.
validations:
required: false
- type: textarea
attributes:
label: Release Version
description: >
Please include release version for marketing coverage.
validations:
required: false
- type: textarea
attributes:
label: OS / Platform / Compute Coverage
description: >
Please list the platforms supported by the proposed feature. If the feature supports all the platforms, write "all". Goal of this section is to clearly share if this feature works in all PyTorch configurations or is it limited to only certain platforms/configurations (e.g. CPU only, GPU only, Linux only, etc...)
validations:
required: false
- type: textarea
attributes:
label: Testing Support (CI, test cases, etc..)
description: >
Please provide an overview of test coverage. This includes unit testing and integration testing, but if E2E validation testing has been done to show that the feature works for a certain set of use cases or models please mention that as well.
validations:
required: false

View File

@ -14,7 +14,6 @@ self-hosted-runner:
- linux.12xlarge
- linux.24xlarge
- linux.24xlarge.ephemeral
- linux.24xlarge.amd
- linux.arm64.2xlarge
- linux.arm64.2xlarge.ephemeral
- linux.arm64.m7g.4xlarge
@ -46,19 +45,21 @@ self-hosted-runner:
- windows.g5.4xlarge.nvidia.gpu
# Windows ARM64 runners
- windows-11-arm64
- windows-11-arm64-preview
# Organization-wide AMD-hosted runners
# MI2xx runners
- linux.rocm.gpu
- linux.rocm.gpu.mi250
- linux.rocm.gpu.2
- linux.rocm.gpu.4
# gfx942 runners
- linux.rocm.gpu.gfx942.2
- linux.rocm.gpu.gfx942.4
# MI300 runners
- linux.rocm.gpu.mi300.2
- linux.rocm.gpu.mi300.4
- rocm-docker
# Repo-specific Apple hosted runners
- macos-m1-ultra
- macos-m2-14
# Org wise AWS `mac2.metal` runners (2020 Mac mini hardware powered by Apple silicon M1 processors)
- macos-m1-stable
- macos-m1-13
- macos-m1-14
# GitHub-hosted MacOS runners
- macos-latest-xlarge

View File

@ -0,0 +1,78 @@
name: build android
description: build android for a specific arch
inputs:
arch:
description: arch to build
required: true
arch-for-build-env:
description: |
arch to pass to build environment.
This is currently different than the arch name we use elswhere, which
should be fixed.
required: true
github-secret:
description: github token
required: true
build-environment:
required: true
description: Top-level label for what's being built/tested.
docker-image:
required: true
description: Name of the base docker image to build with.
branch:
required: true
description: What branch we are building on.
outputs:
container_id:
description: Docker container identifier used to build the artifacts
value: ${{ steps.build.outputs.container_id }}
runs:
using: composite
steps:
- name: Build-${{ inputs.arch }}
id: build
shell: bash
env:
BRANCH: ${{ inputs.branch }}
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-${{ inputs.arch-for-build-env }}-build"
AWS_DEFAULT_REGION: us-east-1
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_REGION: us-east-1
DOCKER_IMAGE: ${{ inputs.docker-image }}
MATRIX_ARCH: ${{ inputs.arch }}
run: |
# detached container should get cleaned up by teardown_ec2_linux
set -exo pipefail
export container_name
container_name=$(docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e AWS_DEFAULT_REGION \
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
-e SCCACHE_BUCKET \
-e SCCACHE_REGION \
-e SKIP_SCCACHE_INITIALIZATION=1 \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--detach \
--user jenkins \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}"
)
git submodule sync && git submodule update -q --init --recursive --depth 1
docker cp "${GITHUB_WORKSPACE}/." "${container_name}:/var/lib/jenkins/workspace"
(echo "sudo chown -R jenkins . && .ci/pytorch/build.sh && find ${BUILD_ROOT} -type f -name "*.a" -or -name "*.o" -delete" | docker exec -u jenkins -i "${container_name}" bash) 2>&1
# Copy install binaries back
mkdir -p "${GITHUB_WORKSPACE}/build_android_install_${MATRIX_ARCH}"
docker cp "${container_name}:/var/lib/jenkins/workspace/build_android/install" "${GITHUB_WORKSPACE}/build_android_install_${MATRIX_ARCH}"
echo "container_id=${container_name}" >> "${GITHUB_OUTPUT}"

Some files were not shown because too many files have changed in this diff Show More