This is a bit weird, but author_login is not a unique field, but author_url is.
Explicitly allow https://github.com/apps/pytorch-auto-revert to issue revert commands
Update mocks by running
```
sed -i -e s/8e262b0495bd934d39dda198d4c09144311c5ddd6cca6a227194bd48dbfe7201/47860a8f57a214a426d1150c29893cbc2aa49507f12b731483b1a1254bca3428/ gql_mocks.json
```
Test plan: Run
```python
from trymerge import GitHubPR
pr=GitHubPR("pytorch", "pytorch", 164660)
print(pr.get_last_comment().author_url, pr.get_comment_by_id(3375785595).author_url)
```
that should produce
```
https://github.com/pytorch-auto-reverthttps://github.com/apps/pytorch-auto-revert
```
Plus added a regression test that checks two particular comments for revert validity
`pytorch-auto-revert` user is my alter ego :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164911
Approved by: https://github.com/jeanschmidt
If there is a single autotuner choice, the wrong type of input node is used to instantiate `TritonTemplateBuffer` through `TritonTemplateCaller.output_node`. This PR distinguishes the input nodes used in `AlgorithmSelectorCache.__call__` between the actual inputs passed to the kernel at runtime, vs the possibly viewed inputs that influence scheduling behaviour (e.g. `MemoryDeps`) and codegen. See the added unit test for more detail.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163752
Approved by: https://github.com/eellison
Modified `multimem_one_shot_all_reduce_out` function to accept a `root` argument, making it a `multimem_reduce` op.
The original `multimem_one_shot_all_reduce` op becomes a caller of the `multimem_reduce`, with each rank providing its own rank id as root.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164517
Approved by: https://github.com/ngimel
Summary:
1\ Certain checkpoint load use cases are not aware of the properties of the data/tensors they want to load.
2\ These usecases include data loader checkpoints, reading data for post processing (when the original model definition is not available).
3\ There, we have to use saved checkpoint (metadata) as our source of truth.
4\ This RFC proposal exposes the checkpoint metadata using a public API.
In this proposal we expose the stored state-dict metadata (minus associated storage/chunk metadata).
Chunk/storage details should not be exposed to the users and is a impl detail of the storage writer/reader.
Test Plan:
UT.
Rollback Plan:
Differential Revision: D80231457
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160610
Approved by: https://github.com/saumishr
Summary: We have an internal request to help understand why the hash of `post_grad_custom_post_pass` is changing between attempts. We don't get useful info from the debug output, because we just print "<bytes>". Instead, attempt to print at least _some_ of the value in case it contains readable characters.
Test Plan:
Registered a dummy post_grad_custom_pass and printed codecache debug output
`TORCH_LOGS=+torch._inductor.codecache python ~/foo.py`
Yields something like:
```
V1007 16:41:19.024000 3546009 /data/users/slarsen/pytorch-3.10_4/torch/_inductor/codecache.py:989] [0/0] [law2ujt2wzjb5tyiu6jh64r2lxpvl62yvxcsmdouhg3qyelhhdv] post_grad_custom_post_pass: HelloWorld!����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������...
```
Differential Revision: [D84108770](https://our.internmc.facebook.com/intern/diff/D84108770)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164898
Approved by: https://github.com/oulgen
First fix for https://github.com/pytorch/pytorch/issues/164756
In the pipeline IR we call `UNSHARD` and `RESHARD`, but there is a bug because when we call `module.unshard()` these do not recursively call the FSDP modules, hence leading to sometime call allgather before the module forward.
Since we want the pipeline IR to explicitly handle this, we can call `group.unshard` instead which ensures that all the modules are unsharded.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164775
Approved by: https://github.com/weifengpy
**Summary**
This PR provides an interface for users to specify how to load-balance the attention
input. The load-balance is essentially a rearrangement of the input tensor(s) over the
seq_dim before sharding and can be specified via an index tensor `rearrange` such
that Q[rearrange] is the balanced Q users want (i.e. `rearrange[i] == j` where `i` is the new
index of `Q[j]` in the balanced Q). An example is the `_generate_round_robin_indices()` added
in https://github.com/pytorch/pytorch/pull/155442.
**New `_LoadBalancer` classes**
New `_LoadBalancer` class (defined in `torch/distributed/tensor/experimental/_load_balancer.py`)
provides one interface for defining load-balance behavior: `_generate_indices(self, restore: bool = False)`.
When `restore == False`, this method should output an index Tensor (namely `rearrange_idx`) such
that QKV will be transformed into Q' K' V' in a way that `Q'[i] == Q[rearrange_idx[i]]` (same applies
to K and V).
When `restore == True`, this method outputs an index Tensor (namely `restore_idx` such that
`Q'[restore_idx] == Q` (same applies to K and V).
**Impact**
2 public CP APIs and 1 private CP API is modified. This PR should be backward-compatible by:
- For uses w/ SDPA, existing users must be using the `context_parallel()` API which does not
take in the extra `load_balancer` argument and solely determines from the global var
`_cp_options.enable_load_balance`.
- For new users including who want to try `flex_attention()`, we require to use the new API
`_context_parallel_buffers` to explicitly shard the QKV input instead of using `context_parallel()`
because we no longer rely on TorchDispatchMode nor TorchFunctionMode for op replacement. And
we also require users to explicitly pass in a `load_balancer` argument if load-balancing is demanded.
**Load-Balance Behavior**
`context_parallel_unshard()`, and `create_cp_block_mask()` APIs now take an extra optional argument
`load_balancer`. This argument is optional because of backward compatibility but we require new users
to explicitly pass in a `load_balancer` if load-balancing is demanded:
- if `load_balancer == None` and `_cp_options.enable_load_balance == False`, CP performs
no load-balancing on input Tensors.
- if `load_balancer == None` and `_cp_options.enable_load_balance ==True`, CP performs
head-tail load-balancing (e.g. split a Tensor into 2*N chunks and first N are called head and
the rest are called tail. Place the first head chunk the last tail chunk on rank 0, and the second
head along with the second last tail chunk on rank 1, and so on).
`_context_parallel_buffers()` also takes the extra optional argument `load_balancer`, but the behavior
is slightly different from the other 2 APIs -- it doesn't branch on `_cp_options.enable_load_balance` :
- if `load_balancer == None`, no load-balancing will be performed
- otherwise, apply load-balancing using `load_balancer._generate_indices()` before sharding.
**Changes**
This PR moves the index Tensor generation logic into a set of LoadBalancer classes and
make LoadBalancer the common interface for Context Parallel APIs that leverages
load-balancing:
* _context_parallel_buffers
* context_parallel_unshard
* create_cp_block_mask
The `_LoadBalancer` classes added are:
- `_LoadBalancer`: the abstract base class that provides “_generate_indices” interface index Tensor generation.
- `_HeadTailLoadBalancer`: Implements head-tail balancing logic.
- `_PerDocumentHeadTailLoadBalancer`: Supports per-document head-tail balancing for batched sequences.
**Test**
`pytest test/distributed/tensor/test_attention.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161062
Approved by: https://github.com/fegin
BlockMask has batch dimension information. So PP has to split it as well just like all other tensors. All the tensors in BlockMask have the batch dimension, so we can just split it without too many issues. However, `mask_mod` requires the batch index as the input, which the value is going to be changed after the split. So we have to wrap it inside a closure to modify the batch index.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164111
Approved by: https://github.com/H-Huang
During 2.9 rc testing I am seeing an issue on Amazon Linux 2023 with CUDA 13.0 builds
This is related to:
https://github.com/pytorch/pytorch/issues/152756
Workflow: https://github.com/pytorch/test-infra/actions/runs/18324074610/job/52184079262
Error:
```
WARNING: There was an error checking the latest version of pip.
+ python3.11 .ci/pytorch/smoke_test/smoke_test.py --package torchonly
Traceback (most recent call last):
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 333, in _load_global_deps
ctypes.CDLL(global_deps_lib_path, mode=ctypes.RTLD_GLOBAL)
File "/usr/lib64/python3.11/ctypes/__init__.py", line 376, in __init__
self._handle = _dlopen(self._name, mode)
^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: libcudart.so.13: cannot open shared object file: No such file or directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/pytorch/pytorch/.ci/pytorch/smoke_test/smoke_test.py", line 12, in <module>
import torch
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 425, in <module>
_load_global_deps()
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 383, in _load_global_deps
_preload_cuda_deps(lib_folder, lib_name)
File "/usr/local/lib64/python3.11/site-packages/torch/__init__.py", line 317, in _preload_cuda_deps
raise ValueError(f"{lib_name} not found in the system path {sys.path}")
Traceback (most recent call last):
ValueError: libnvToolsExt.so.*[0-9] not found in the system path ['/pytorch/pytorch/.ci/pytorch/smoke_test', '/usr/lib64/python311.zip', '/usr/lib64/python3.11', '/usr/lib64/python3.11/lib-dynload', '/usr/local/lib64/python3.11/site-packages', '/usr/local/lib/python3.11/site-packages', '/usr/lib64/python3.11/site-packages', '/usr/lib/python3.11/site-packages']
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 102, in <module>
main()
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 98, in main
run_cmd_or_die(f"docker exec -t {container_name} /exec")
File "/home/ec2-user/actions-runner/_work/test-infra/test-infra/test-infra/.github/scripts/run_with_env_secrets.py", line 39, in run_cmd_or_die
raise RuntimeError(f"Command {cmd} failed with exit code {exit_code}")
RuntimeError: Command docker exec -t 7d9c5bd403cac9a9ee824d63a1d6f6057ecce89a7daa94a81617dbf8eff0ff2e /exec failed with exit code 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164870
Approved by: https://github.com/Camyll
Co-authored-by: Eli Uriegas <1700823+seemethere@users.noreply.github.com>
Adding source_get_cache also to AOT compile case. Since the guard manager loader code can be shared between AOT and caching, we added a new function load_guard_manager to avoid code duplication between two workflows, for loading guards.
Test Plan: test_guard_serialization.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164773
Approved by: https://github.com/yiming0416, https://github.com/dolpm
# TLDR
This PR removes the regression in torch.topk introduced from torch 2.7.0 and delivers much better performance for large inputs.
The table below reports execution times on H20 for various input sizes with float32 data, extracting the top-100 values. Results indicate that this PR restores and improves performance, especially on large inputs.
| Input Shape | torch2.6.0 (ms) | torch2.8.0 (ms) | 2.8.0+this PR (ms) |
| -------------- | --------------- | --------------- | ------------------ |
| (1, 1B) | 36.6 | 1564.1 | 25.6 |
| (1, 100M) | 3.56 | 17.4 | 2.54 |
| (1, 1000,000) | 0.135 | 0.145 | 0.098 |
| (512, 128000) | 1.33 | 1.33 | 1.32 |
| (8192, 128000) | 19.6 | 19.6 | 19.4 |
# Background
After upgrading PyTorch from 2.6.0 to 2.7.0, we observed a significant GPU performance regression in `torch.topk` on NVIDIA GPUs. For instance, extracting the top-1000 largest values from one billion floats on an NVIDIA H20 increased from **36 ms** to **1.6 s**.
Profiling with Nsight Compute indicates that the slowdown is caused by redundant memory accesses introduced in [PR #145536](https://github.com/pytorch/pytorch/pull/145536).
# Analysis
`torch.topk` relies on **RadixSelect** to find the target values. Each radix pass requires computing a histogram of the input values. For large inputs, histogram computation is split into two stages:
1. **Local histogram**: Each CUDA block processes a subset of the input and writes its local histogram to global memory.
2. **Global reduction**: A single CUDA block reads all local histograms from global memory and reduces them into the final global histogram.
Before [PR #145536](https://github.com/pytorch/pytorch/pull/145536), both stages ran inside a single kernel (`radixFindKthValues`), using a semaphore to ensure that all local histograms were completed before reduction.
In PR #145536, the global histogram computation was merged with subsequent top-k calculations into a single kernel (`computeBlockwiseKthCounts`) to avoid the semaphore. While this simplifies synchronization, it introduces **redundant memory reads**:
- `computeBlockwiseKthCounts` launches `numInputSlices * blocks_per_slice` blocks.
- For each row (slice), `blocks_per_slice` CUDA blocks redundantly reload the same local histograms from global memory.
# This PR
To address this inefficiency, we introduce the following optimizations:
1. **Dedicated kernel**: Refactor global histogram and cumsum computation into a separate GPU kernel, `computeDigitCumSum`.
2. **Loop unrolling**: Apply loop unrolling in `computeDigitCumSum` to speed up local histogram reads.
# Performance
We benchmarked torch.topk on NVIDIA H20 with float32 inputs, extracting the top-100 values across different input sizes. The results in the table below demonstrate that this PR effectively eliminates the performance regression introduced in 2.7.0 and delivers substantial improvements on large inputs.
| Input Shape | torch2.6.0 (ms) | torch2.8.0 (ms) | 2.8.0+this PR (ms) |
| -------------- | --------------- | --------------- | ------------------ |
| (1, 1B) | 36.6 | 1564.1 | 25.6 |
| (1, 100M) | 3.56 | 17.4 | 2.54 |
| (1, 1000,000) | 0.135 | 0.145 | 0.098 |
| (512, 128000) | 1.33 | 1.33 | 1.32 |
| (8192, 128000) | 19.6 | 19.6 | 19.4 |
Besides, I have verified the correctness of this PR with different inputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164459
Approved by: https://github.com/ngimel, https://github.com/Skylion007
Summary:
the context module provides configurable context selection + isolation key hashing;
context selection is broken into runtime and compile context. runtime context is decided at call time (inductor configs, precision configs, etc.) and compile context is decided at compile time (hardware type, software hashes).
callees will be given access to SelectedRuntimeContext and SelectedCompileContext, which they can use to determine and select what context is necessary with regards to the function which is being cached.
these selected contexts are wrapped in an IsolationSchema, which denotes what context should be taken into consideration when producing an isolation key. The isolation key is essentially a salt of the function signature key, which says that some function signature key result is valid under a given context (isolation schema)
Test Plan:
```
buck test fbcode//mode/opt caffe2/test/inductor:caching
```
Reviewed By: aorenste
D83714689
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164549
Approved by: https://github.com/aorenste
This PR is to temporarily unblock various experiments to re-use dynamo create fake mode. Note that this is still not what we want as the end state. The end state should look sth like:
```
out = fulllgraph_capture(mod, inputs)
fake_mode = out.backend_inputs.fake_mode
gm = out.module()
```
This doesn't work today because export requires we need to wrap the original module to setup a flat module to trace for easier handling of pytree. As a result, we would need to carry export specific flag in fullgraph_capture which seems not ideal.
Regardless, the end state is that we need to give downstream user a graph module and a fake mode in some form, so I think _dynamo_graph_capture_for_export returning a fake mode within graph module itself via gm.meta
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164730
Approved by: https://github.com/avikchaudhuri
Fixes#89034
Updated tensor_to_numpy() function in tensor_numpy.cpp to handle ZeroTensors by throwing an error if force=False and returning an array full of zeros if force=True.
@ngimel, I just saw that you mentioned PyTorch is not too concerned with this issue but I had already worked on it so I figured I would push it anyways and see what you thought. Feel free to close the PR if you think it is not worth merging.
@albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164487
Approved by: https://github.com/izaitsevfb
Fixes some tests that seemed to start flaking out as reported in #163202, due to cuBLASLt workspaces becoming persistent following that change.
It's relatively obvious why the workspaces/allocations corresponding to them should be cleaned up for `test_memory_snapshot_script` but less obvious for `test_memory_plots_free_segment_stack`? Why does not cleaning up workspace prevent `empty_cache` from showing up?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163299
Approved by: https://github.com/albanD
Fixes#163330
I tried to reproduce the bug with my 4-GPU setup (the original issue used 8 GPUs). I created several different test scenarios, trying to trigger the bug by:
- creating two different device meshes
- slicing them in various ways
- checking if get_root_mesh() would get confused
but the bug didn't show up! Everything worked correctly in `2.10`. I found that there was a massive refactoring of the `DeviceMesh` code (PR #163213) that landed on October 2nd. That PR completely rewrote how `DeviceMesh` tracks relationships between parent meshes and submeshes using. It seems like this refactoring fixed the bug! But I added a regression test to make sure it doesn't come back. The test (`test_get_root_mesh_multiple_independent_meshes`) does exactly what the bug report described:
- creates two independent meshes
- slices them both
- verifies that each submesh correctly points back to its real parent
- makes sure submeshes from mesh1 don't incorrectly claim mesh2 as their parent
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164731
Approved by: https://github.com/fduwjj
Python 3.13 added PyObject_GetOptionalAttrString. I'm not 100% certain that it is strictly better than the old approach in all cases, but based on documentation/comments it seems to be meant for this type of use, and it's faster when I profile torchtitan training (which gets to the "check for the `__torch_function__` attr on some object" part of maybe_has_torch_function frequently enough to notice, but wastes a bunch of time generating exceptions that we then suppressed here).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164624
Approved by: https://github.com/Skylion007
Summary:
Previously, weight deduplication was done by simply grouping tensors with their untyped storage and saving the first tensor in the group.
A more rigorous approach would be to find a complete tensor that covers the storage and store that tensor. This is particularly important for GPU weights because when saving to raw bytes, we move the weight to CPU first, and if the weight being saved is not a complete one, it will lose the storage information during the copy to CPU.
In this diff, we reuse code in `_package_weights.py` for better weights and constants deduplication in `torch.export.save`.
Test Plan: buck2 run mode/dev-nosan caffe2/test:test_export -- -r test_weight_sharing_gpu
Differential Revision: D83523690
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164196
Approved by: https://github.com/angelayi
Summary: Relax absolute tolerance from 1e-2 to 1e-1 for `test_non_contiguous_input_mm_plus_mm` in `test_max_autotune.py`.
Test Plan: `test_max_autotune.py`
Differential Revision: D83391942
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164022
Approved by: https://github.com/eellison
Summary:
Fix decompose_k test failure (`test_max_autotune_decompose_k `) in `test_max_autotune.py` on B200s by setting `torch._inductor.config` patches for variables `comprehensive_padding` and `shape_padding`. Initial failure was `AssertionError: False is not true : Could not find a split in {3, 9, 2187, 81, 243, 729, 27} in # AOT ID: ['6_forward']`.
Refactor decompose_k test to follow patch semantics when setting all environment variables within a test.
Test Plan:
`test_max_autotune.py`:
```
buck2 test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:max_autotune -c fbcode.nvcc_arch=b200a -c fbcode.enable_gpu_sections=true -c fbcode.platform010_cuda_version=12.8 -c fbcode.re_gpu_tests=False -- test_max_autotune_decompose_k
```
Differential Revision: D83390563
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164021
Approved by: https://github.com/njriasan, https://github.com/mlazos, https://github.com/eellison
Adds [control_deps](https://en.wikipedia.org/wiki/Control_dependency) higher-order operator to enforce explicit scheduling dependencies in FX graphs. This prevents unwanted operation reordering/fusion by giving nodes additional dependencies, which we also respect in inductor by adding weakdeps on the additional dependencies.
This can be generally useful (such as for ordering collectives) but in this case I am using it so that fusions do not interfere with aten planned comm-compute overlap.
There's definitely some similarity with the `with_effects` hop. Talked with @angelayi - when @zou3519 is back we will figure out how we want to consolidate.
The implementation needs to be a subgraph (as opposed to `with_effects`) because inductor relies on `V.graph.current_node`. Changing the signature of the node with `with_effects` breaks this, and additionally, also breaks striding constraints on the wrapped node - see this [TODO](aed66248a0/torch/fx/experimental/proxy_tensor.py (L1246-L1249)). By maintaining the node with its original calling structure in subgraph this all works.
Example transformation:
Before:
```
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {})
%mm : [num_users=1] = call_function[target=torch.ops.aten.mm.default](args = (%arg1_1, %arg1_1), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {})
```
After:
```
add: "f32[256, 256]" = torch.ops.aten.add.Tensor(arg0_1, 1)
mm: "f32[256, 256]" = torch.ops.higher_order.control_deps((add,), subgraph_mm, arg1_1, arg1_1)
mul: "f32[256, 256]" = torch.ops.higher_order.control_deps((mm,), subgraph_mul, add)
```
The mm operation now explicitly depends on add completing first, and mul depends on mm, with original operations preserved in subgraphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164568
Approved by: https://github.com/ezyang, https://github.com/IvanKobzarev
This PR applies clang-tidy readability checks to jit sources and all headers in the code base.
`readability-redundant-inline-specifier` is suppressed because it incurs too many changes. `readability-redundant-inline-specifier` is used to detect redundant inline specifiers on function and variable declarations. There are many in-class method definitions that are marked inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164652
Approved by: https://github.com/Skylion007
This PR applies clang-tidy readability checks to jit sources and all headers in the code base.
`readability-redundant-inline-specifier` is suppressed because it incurs too many changes. `readability-redundant-inline-specifier` is used to detect redundant inline specifiers on function and variable declarations. There are many in-class method definitions that are marked inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164652
Approved by: https://github.com/Skylion007
```bash
DEBUG /data/vllm-community-homes/vllm-user-6/pytorch/aten/src/ATen/cuda/CUDAGraph.h(59): warning #68-D: integer conversion resulted in a change of sign
DEBUG CaptureId_t capture_id_ = -1;
DEBUG ^
DEBUG
DEBUG Remark: The warnings can be suppressed with "-diag-suppress <warning-number>"
DEBUG
DEBUG /data/vllm-community-homes/vllm-user-6/pytorch/aten/src/ATen/cuda/CUDAGraph.h(59): warning #68-D: integer conversion resulted in a change of sign
DEBUG CaptureId_t capture_id_ = -1;
DEBUG ^
DEBUG
DEBUG Remark: The warnings can be suppressed with "-diag-suppress <warning-number>"
DEBUG
DEBUG /data/vllm-community-homes/vllm-user-6/pytorch/aten/src/ATen/cuda/CUDAGraph.h(59): warning #68-D: integer conversion resulted in a change of sign
DEBUG CaptureId_t capture_id_ = -1;
DEBUG ^
```
Cuda won't use 0 as a capture id, so it is safe to initialize with 0, which also matches the initialization in `pytorch/aten/src/ATen/native/cudnn/RNN.cpp:2362`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163898
Approved by: https://github.com/houseroad
2025-10-05 06:51:33 +00:00
723 changed files with 9589 additions and 4817 deletions
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.