Compare commits

..

1 Commits

Author SHA1 Message Date
e3d00beddd Fix triu_/tril_ overlap handling 2025-10-21 07:54:24 -07:00
1063 changed files with 8442 additions and 15265 deletions

View File

@ -19,7 +19,7 @@ pip_install \
transformers==4.36.2
pip_install coloredlogs packaging
pip_install onnxruntime==1.23.1
pip_install onnxruntime==1.23.0
pip_install onnxscript==0.5.4
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers

View File

@ -334,12 +334,12 @@ sympy==1.13.3
#Pinned versions:
#test that import:
onnx==1.19.1
onnx==1.18.0
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
onnxscript==0.5.4
onnxscript==0.5.3
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:

View File

@ -6,7 +6,7 @@ dependencies = [
"GitPython==3.1.45",
"docker==7.1.0",
"pytest==7.3.2",
"uv==0.9.5"
"uv==0.8.6"
]
[tool.setuptools]

View File

@ -163,13 +163,8 @@ if [[ "$(uname)" != Darwin ]]; then
MEMORY_LIMIT_MAX_JOBS=12
NUM_CPUS=$(( $(nproc) - 2 ))
if [[ "$(uname)" == Linux ]]; then
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
else
# For other builds
export MAX_JOBS=${NUM_CPUS}
fi
# Defaults here for **binary** linux builds so they can be changed in one place
export MAX_JOBS=${MAX_JOBS:-$(( ${NUM_CPUS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${NUM_CPUS} ))}
cat >>"$envfile" <<EOL
export MAX_JOBS="${MAX_JOBS}"

View File

@ -1,354 +0,0 @@
# PyTorch Docstring Writing Guide
This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`.
## General Principles
- Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes
- Follow **Sphinx/reStructuredText** (reST) format for documentation
- Be **concise but complete** - include all essential information
- Always include **examples** when possible
- Use **cross-references** to related functions/classes
## Docstring Structure
### 1. Function Signature (First Line)
Start with the function signature showing all parameters:
```python
r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType
```
**Notes:**
- Include the function name
- Show positional and keyword-only arguments (use `*` separator)
- Include default values
- Show return type annotation
- This line should NOT end with a period
### 2. Brief Description
Provide a one-line description of what the function does:
```python
r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 2D convolution over an input image composed of several input
planes.
```
### 3. Mathematical Formulas (if applicable)
Use Sphinx math directives for mathematical expressions:
```python
.. math::
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
```
Or inline math: `:math:\`x^2\``
### 4. Cross-References
Link to related classes and functions using Sphinx roles:
- `:class:\`~torch.nn.ModuleName\`` - Link to a class
- `:func:\`torch.function_name\`` - Link to a function
- `:meth:\`~Tensor.method_name\`` - Link to a method
- `:attr:\`attribute_name\`` - Reference an attribute
- The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`)
**Example:**
```python
See :class:`~torch.nn.Conv2d` for details and output shape.
```
### 5. Notes and Warnings
Use admonitions for important information:
```python
.. note::
This function doesn't work directly with NLLLoss,
which expects the Log to be computed between the Softmax and itself.
Use log_softmax instead (it's faster and has better numerical properties).
.. warning::
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
or :func:`torch.Tensor.detach`.
```
### 6. Args Section
Document all parameters with type annotations and descriptions:
```python
Args:
input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)`
bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
stride (int or tuple): the stride of the convolving kernel. Can be a single number or a
tuple `(sH, sW)`. Default: 1
```
**Formatting rules:**
- Parameter name in **lowercase**
- Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters
- Description follows the type
- For optional parameters, include "Default: ``value``" at the end
- Use double backticks for inline code: ``` ``None`` ```
- Indent continuation lines by 2 spaces
### 7. Keyword Args Section (if applicable)
Sometimes keyword arguments are documented separately:
```python
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
Default: if None, same :class:`torch.dtype` as this tensor.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if None, same :class:`torch.device` as this tensor.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
```
### 8. Returns Section (if needed)
Document the return value:
```python
Returns:
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
```
Or simply include it in the function signature line if obvious from context.
### 9. Examples Section
Always include examples when possible:
```python
Examples::
>>> inputs = torch.randn(33, 16, 30)
>>> filters = torch.randn(20, 16, 5)
>>> F.conv1d(inputs, filters)
>>> # With square kernels and equal stride
>>> filters = torch.randn(8, 4, 3, 3)
>>> inputs = torch.randn(1, 4, 5, 5)
>>> F.conv2d(inputs, filters, padding=1)
```
**Formatting rules:**
- Use `Examples::` with double colon
- Use `>>>` prompt for Python code
- Include comments with `#` when helpful
- Show actual output when it helps understanding (indent without `>>>`)
### 10. External References
Link to papers or external documentation:
```python
.. _Link Name:
https://arxiv.org/abs/1611.00712
```
Reference them in text: ```See `Link Name`_```
## Method Types
### Native Python Functions
For regular Python functions, use a standard docstring:
```python
def relu(input: Tensor, inplace: bool = False) -> Tensor:
r"""relu(input, inplace=False) -> Tensor
Applies the rectified linear unit function element-wise. See
:class:`~torch.nn.ReLU` for more details.
"""
# implementation
```
### C-Bound Functions (using add_docstr)
For C-bound functions, use `_add_docstr`:
```python
conv1d = _add_docstr(
torch.conv1d,
r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input
planes.
See :class:`~torch.nn.Conv1d` for details and output shape.
Args:
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
weight: filters of shape :math:`(\text{out\_channels} , kW)`
...
""",
)
```
### In-Place Variants
For in-place operations (ending with `_`), reference the original:
```python
add_docstr_all(
"abs_",
r"""
abs_() -> Tensor
In-place version of :meth:`~Tensor.abs`
""",
)
```
### Alias Functions
For aliases, simply reference the original:
```python
add_docstr_all(
"absolute",
r"""
absolute() -> Tensor
Alias for :func:`abs`
""",
)
```
## Common Patterns
### Shape Documentation
Use LaTeX math notation for tensor shapes:
```python
:math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
```
### Reusable Argument Definitions
For commonly used arguments, define them once and reuse:
```python
common_args = parse_kwargs(
"""
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
Default: if None, same as this tensor.
"""
)
# Then use with .format():
r"""
...
Keyword args:
{dtype}
{device}
""".format(**common_args)
```
### Template Insertion
Insert reproducibility notes or other common text:
```python
r"""
{tf32_note}
{cudnn_reproducibility_note}
""".format(**reproducibility_notes, **tf32_notes)
```
## Complete Example
Here's a complete example showing all elements:
```python
def gumbel_softmax(
logits: Tensor,
tau: float = 1,
hard: bool = False,
eps: float = 1e-10,
dim: int = -1,
) -> Tensor:
r"""
Sample from the Gumbel-Softmax distribution and optionally discretize.
Args:
logits (Tensor): `[..., num_features]` unnormalized log probabilities
tau (float): non-negative scalar temperature
hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors,
but will be differentiated as if it is the soft sample in autograd. Default: ``False``
dim (int): A dimension along which softmax will be computed. Default: -1
Returns:
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
.. note::
This function is here for legacy reasons, may be removed from nn.Functional in the future.
Examples::
>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
.. _Link 1:
https://arxiv.org/abs/1611.00712
"""
# implementation
```
## Quick Checklist
When writing a PyTorch docstring, ensure:
- [ ] Use raw string (`r"""`)
- [ ] Include function signature on first line
- [ ] Provide brief description
- [ ] Document all parameters in Args section with types
- [ ] Include default values for optional parameters
- [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`)
- [ ] Add mathematical formulas if applicable
- [ ] Include at least one example in Examples section
- [ ] Add warnings/notes for important caveats
- [ ] Link to related module class with `:class:`
- [ ] Use proper math notation for tensor shapes
- [ ] Follow consistent formatting and indentation
## Common Sphinx Roles Reference
- `:class:\`~torch.nn.Module\`` - Class reference
- `:func:\`torch.function\`` - Function reference
- `:meth:\`~Tensor.method\`` - Method reference
- `:attr:\`attribute\`` - Attribute reference
- `:math:\`equation\`` - Inline math
- `:ref:\`label\`` - Internal reference
- ``` ``code`` ``` - Inline code (use double backticks)
## Additional Notes
- **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions
- **Line length**: Try to keep lines under 100 characters when possible
- **Periods**: End sentences with periods, but not the signature line
- **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ```
- **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc.

View File

@ -124,10 +124,3 @@ runs:
id: login-ecr
continue-on-error: true
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
- name: Preserve github env variables for use in docker
shell: bash
run: |
env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"

View File

@ -1 +1 @@
1752fe6809b74921644866275ab80244b96e80bc
faffd5cf673615583da6517275e361cb3dbc77e6

View File

@ -1 +1 @@
df6798dfb931ce7c7fe5bed2447cd1092a5981af
0fa6e3129e61143224663e1ec67980d12b7ec4eb

View File

@ -283,9 +283,6 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
fi
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system --pre apache-tvm-ffi==0.1.0b15
# Install the vllm wheel from previous stage
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system /wheels/vllm/*.whl --verbose
@ -298,8 +295,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip
# see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
ARG FLASHINFER_GIT_REF="v0.2.14.post1"

View File

@ -15,11 +15,6 @@
- "module: reinplacing"
then:
- "module: pt2-dispatcher"
- any:
- "vllm-compile"
then:
- "module: vllm"
- "oncall: pt2"
- any:
- "module: vmap"
then:
@ -32,6 +27,10 @@
- "module: pt2 optimizer"
then:
- "module: dynamo"
- any:
- "module: flex attention"
then:
- "module: higher order operators"
- any:
- "module: aotinductor"
then:

View File

@ -79,9 +79,9 @@ jobs:
runs-on: "windows-11-arm64-preview"
{%- else %}
{%- if branches == "nightly" %}
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
{%- else %}
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge.nonephemeral"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge.nonephemeral"
{%- endif %}
{%- endif %}
timeout-minutes: !{{ common.timeout_minutes_windows_binary }}

View File

@ -44,7 +44,7 @@ jobs:
libtorch-cpu-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -291,7 +291,7 @@ jobs:
libtorch-cuda12_6-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -541,7 +541,7 @@ jobs:
libtorch-cuda12_8-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -791,7 +791,7 @@ jobs:
libtorch-cuda13_0-shared-with-deps-debug-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch

View File

@ -44,7 +44,7 @@ jobs:
libtorch-cpu-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -291,7 +291,7 @@ jobs:
libtorch-cuda12_6-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -541,7 +541,7 @@ jobs:
libtorch-cuda12_8-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -791,7 +791,7 @@ jobs:
libtorch-cuda13_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch

View File

@ -44,7 +44,7 @@ jobs:
wheel-py3_10-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -279,7 +279,7 @@ jobs:
wheel-py3_10-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -517,7 +517,7 @@ jobs:
wheel-py3_10-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -755,7 +755,7 @@ jobs:
wheel-py3_10-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -993,7 +993,7 @@ jobs:
wheel-py3_10-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -1229,7 +1229,7 @@ jobs:
wheel-py3_11-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -1464,7 +1464,7 @@ jobs:
wheel-py3_11-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -1702,7 +1702,7 @@ jobs:
wheel-py3_11-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -1940,7 +1940,7 @@ jobs:
wheel-py3_11-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -2178,7 +2178,7 @@ jobs:
wheel-py3_11-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -2414,7 +2414,7 @@ jobs:
wheel-py3_12-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -2649,7 +2649,7 @@ jobs:
wheel-py3_12-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -2887,7 +2887,7 @@ jobs:
wheel-py3_12-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -3125,7 +3125,7 @@ jobs:
wheel-py3_12-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -3363,7 +3363,7 @@ jobs:
wheel-py3_12-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -3599,7 +3599,7 @@ jobs:
wheel-py3_13-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -3834,7 +3834,7 @@ jobs:
wheel-py3_13-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -4072,7 +4072,7 @@ jobs:
wheel-py3_13-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -4310,7 +4310,7 @@ jobs:
wheel-py3_13-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -4548,7 +4548,7 @@ jobs:
wheel-py3_13-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -4784,7 +4784,7 @@ jobs:
wheel-py3_13t-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -5019,7 +5019,7 @@ jobs:
wheel-py3_13t-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -5257,7 +5257,7 @@ jobs:
wheel-py3_13t-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -5495,7 +5495,7 @@ jobs:
wheel-py3_13t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -5733,7 +5733,7 @@ jobs:
wheel-py3_13t-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -5969,7 +5969,7 @@ jobs:
wheel-py3_14-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -6204,7 +6204,7 @@ jobs:
wheel-py3_14-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -6442,7 +6442,7 @@ jobs:
wheel-py3_14-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -6680,7 +6680,7 @@ jobs:
wheel-py3_14-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -6918,7 +6918,7 @@ jobs:
wheel-py3_14-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -7154,7 +7154,7 @@ jobs:
wheel-py3_14t-cpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -7389,7 +7389,7 @@ jobs:
wheel-py3_14t-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -7627,7 +7627,7 @@ jobs:
wheel-py3_14t-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -7865,7 +7865,7 @@ jobs:
wheel-py3_14t-cuda13_0-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch
@ -8103,7 +8103,7 @@ jobs:
wheel-py3_14t-xpu-build:
if: ${{ github.repository_owner == 'pytorch' }}
needs: get-label-type
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.12xlarge"
runs-on: "${{ needs.get-label-type.outputs.label-type }}windows.4xlarge"
timeout-minutes: 360
env:
PYTORCH_ROOT: ${{ github.workspace }}/pytorch

View File

@ -88,6 +88,7 @@ jobs:
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },

View File

@ -147,16 +147,15 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
cuda-arch-list: 8.9
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
]}
secrets: inherit

View File

@ -347,8 +347,7 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# This should sync with the build in xpu.yml but xpu uses a larger runner
# sync-tag: linux-xpu-n-build
sync-tag: linux-xpu-n-build
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
build-environment: linux-jammy-xpu-n-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3

View File

@ -45,6 +45,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-rocm-py3.12-mi300
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" },

View File

@ -42,6 +42,7 @@ jobs:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-rocm-py3.12-mi355
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },

View File

@ -26,23 +26,11 @@ jobs:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build

View File

@ -26,23 +26,11 @@ jobs:
id-token: write
contents: read
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-rocm-py3_10-build:
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
name: linux-jammy-rocm-py3.10
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-rocm-py3.10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
sync-tag: rocm-build

View File

@ -58,10 +58,8 @@ jobs:
else
COMMIT_SHA="${{ github.sha }}"
fi
{
echo "sha=${COMMIT_SHA}"
echo "tag_name=trunk/${COMMIT_SHA}"
} >> "${GITHUB_OUTPUT}"
echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
- name: Validate commit SHA
run: |
@ -89,7 +87,7 @@ jobs:
echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)"
fi
- name: Create and push tag(s) with retry
- name: Create and push tag with retry
id: check_tag
env:
TAG_NAME: ${{ steps.commit.outputs.tag_name }}
@ -114,23 +112,14 @@ jobs:
return 1
}
# Counters for summary reporting
created_count=0
skipped_count=0
failed_count=0
# Exit early if tag already exists
if check_tag_exists; then
echo "✅ Tag already exists - no action needed"
echo "exists=true" >> "${GITHUB_OUTPUT}"
exit 0
fi
# Always write outputs once on exit
finish() {
set +e
if [ -n "${GITHUB_OUTPUT:-}" ]; then
{
echo "created_count=${created_count}"
echo "skipped_count=${skipped_count}"
echo "failed_count=${failed_count}"
} >> "${GITHUB_OUTPUT}"
fi
}
trap finish EXIT
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
# Retry configuration
MAX_RETRIES=5
@ -205,111 +194,31 @@ jobs:
}
}
# New behavior for push events: enumerate commits in the push and tag each one.
# For workflow_dispatch, retain existing single-SHA behavior.
# Always fetch tags once up front to improve idempotency in loops
git fetch origin --tags --quiet || true
if [ "${{ github.event_name }}" = "push" ]; then
BEFORE_SHA="${{ github.event.before }}"
AFTER_SHA="${{ github.sha }}" # same as event.after
# List commits introduced by this push (old..new), oldest first for stable ordering
commits_file="$(mktemp)"
git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}"
if [ ! -s "${commits_file}" ]; then
echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag."
rm -f "${commits_file}"
exit 0
fi
commit_count="$(wc -l < "${commits_file}" | tr -d ' ')"
echo "Found ${commit_count} commit(s) to tag for push:"
while IFS= read -r sha; do
printf ' %s\n' "${sha}"
done < "${commits_file}"
while IFS= read -r sha; do
TAG_NAME="trunk/${sha}"
COMMIT_SHA="${sha}"
# If tag already exists locally or remotely, skip (idempotent)
if check_tag_exists; then
echo "✅ Tag ${TAG_NAME} already exists - skipping"
skipped_count=$((skipped_count + 1))
continue
fi
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
created_count=$((created_count + 1))
else
echo "Tag creation failed after all retry attempts for ${TAG_NAME}"
failed_count=$((failed_count + 1))
fi
done < "${commits_file}"
rm -f "${commits_file}"
if [ "${failed_count}" -gt 0 ]; then
exit 1
fi
# Execute with retry
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
echo "exists=false" >> "${GITHUB_OUTPUT}"
exit 0
else
# workflow_dispatch path (single SHA tagging preserved)
# Exit early if tag already exists
if check_tag_exists; then
echo "✅ Tag already exists - no action needed"
skipped_count=1
exit 0
fi
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
created_count=1
exit 0
else
echo "Tag creation failed after all retry attempts"
failed_count=1
exit 1
fi
echo "Tag creation failed after all retry attempts"
exit 1
fi
- name: Tag creation summary
if: always()
run: |
if [ "${{ github.event_name }}" = "push" ]; then
echo "Trigger: push on main"
echo "Created: ${{ steps.check_tag.outputs.created_count }}"
echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}"
echo "Failed: ${{ steps.check_tag.outputs.failed_count }}"
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}"
else
echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}"
fi
if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
elif [ "${{ job.status }}" = "success" ]; then
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
else
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
else
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
fi
else
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
fi
echo ""
echo "Tag details:"
echo " Name: ${{ steps.commit.outputs.tag_name }}"
echo " Commit: ${{ steps.commit.outputs.sha }}"
echo " Trigger: ${{ github.event_name }}"
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
fi
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
fi
echo ""
echo "Tag details:"
echo " Name: ${{ steps.commit.outputs.tag_name }}"
echo " Commit: ${{ steps.commit.outputs.sha }}"
echo " Trigger: ${{ github.event_name }}"
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
fi

View File

@ -833,7 +833,8 @@ exclude_patterns = [
command = [
'python3',
'tools/linter/adapters/grep_linter.py',
'--pattern=(cudaSetDevice|cudaGetDevice)\\(',
'--pattern=cudaSetDevice(',
'--pattern=cudaGetDevice(',
'--linter-name=RAWCUDADEVICE',
'--error-name=raw CUDA API usage',
"""--error-description=\
@ -1137,8 +1138,11 @@ command = [
[[linter]]
code = 'WORKFLOWSYNC'
include_patterns = [
'.github/workflows/*.yml',
'.github/workflows/*.yaml',
'.github/workflows/pull.yml',
'.github/workflows/trunk.yml',
'.github/workflows/periodic.yml',
'.github/workflows/mac-mps.yml',
'.github/workflows/slow.yml',
]
command = [
'python3',

View File

@ -31,9 +31,9 @@ Be careful when running untrusted models. This classification includes models cr
**Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing).
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) with `weights_only=True` is also secure to our knowledge even though it offers significantly larger surface of attack. Loading un-trusted checkpoint with `weights_only=False` MUST never be done.
Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs.
Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.

View File

@ -38,7 +38,7 @@ set_bool(AT_HIPSPARSELT_ENABLED CAFFE2_USE_HIPSPARSELT)
configure_file(Config.h.in "${CMAKE_CURRENT_SOURCE_DIR}/Config.h")
# TODO: Do not generate CUDAConfig.h for ROCm BUILDS
# At the moment, `jit_macros.h` include CUDAConfig.h for both CUDA and HIP builds
# At the moment, `jit_macors.h` include CUDAConfig.h for both CUDA and HIP builds
if(USE_CUDA OR USE_ROCM)
configure_file(cuda/CUDAConfig.h.in "${CMAKE_CURRENT_SOURCE_DIR}/cuda/CUDAConfig.h")
endif()
@ -289,15 +289,14 @@ IF(USE_FBGEMM_GENAI)
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
set(fbgemm_genai_cuh
set(fbgemm_genai_mx8mx8bf16_grouped
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
"${FBGEMM_GENAI_SRCS}/"
)
target_include_directories(fbgemm_genai PRIVATE
${FBGEMM_THIRD_PARTY}/cutlass/include
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
${fbgemm_genai_cuh}
${fbgemm_genai_mx8mx8bf16_grouped}
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
)

View File

@ -19,7 +19,6 @@
#include <ATen/detail/MPSHooksInterface.h>
#include <ATen/detail/MTIAHooksInterface.h>
#include <ATen/detail/PrivateUse1HooksInterface.h>
#include <ATen/detail/XLAHooksInterface.h>
#include <ATen/detail/XPUHooksInterface.h>
#include <c10/core/QEngine.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
@ -89,8 +88,6 @@ class TORCH_API Context {
return at::detail::getHIPHooks();
} else if (opt_device_type == at::kHPU) {
return at::detail::getHPUHooks();
} else if (opt_device_type == at::kXLA) {
return at::detail::getXLAHooks();
} else {
TORCH_CHECK(
false,
@ -199,7 +196,7 @@ class TORCH_API Context {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
}
static bool hasXLA() {
return detail::getXLAHooks().hasXLA();
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
}
static bool hasXPU() {
return detail::getXPUHooks().hasXPU();

View File

@ -122,7 +122,7 @@ void FunctionalTensorWrapper::freeze_storage() const {
// | have their own storages, but backends like functorch |
// \/ are allowed to re-alias underneath the pass \/
// . - - - - - - - - - - - - - . . - - - - - - - - - - - - - - - .
// | underlying_storage | | underlying_storage |
// | underyling_storage | | underyling_storage |
// . - - - - - - - - - - - - - . . - - - - - - - - - - - - - - - .
//
// This constructor is only used by view ops.

View File

@ -1534,7 +1534,7 @@ void TensorIteratorBase::build(TensorIteratorConfig& config) {
// XLA and lazy tensors don't have storage, so they don't have an underlying data pointer.
// Nothing beyond this point is important for meta functions, so it's fine to exit early here.
// Extend the condition to MAIA tensors as MAIA tensors also don't have storage.
// Extend the condition to MAIA tesnors as MAIA tensors also don't have storage.
if (privateuse1_without_storage ||
common_device_.type() == DeviceType::XLA ||
common_device_.type() == DeviceType::IPU ||

View File

@ -39,7 +39,7 @@ struct HostBlock {
};
template <typename B>
struct alignas(hardware_destructive_interference_size) FreeBlockList {
struct alignas(64) FreeBlockList {
std::mutex mutex_;
std::deque<B*> list_;
};
@ -94,11 +94,11 @@ struct PinnedReserveSegment {
struct TORCH_API HostStats {
// COUNT: total allocations (active)
Stat active_requests;
// SUM: bytes allocated/reserved by this memory allocator. (active)
// SUM: bytes allocated/reserved by this memory alocator. (active)
Stat active_bytes;
// COUNT: total allocations (active + free)
Stat allocations;
// SUM: bytes allocated/reserved by this memory allocator. This accounts
// SUM: bytes allocated/reserved by this memory alocator. This accounts
// for both free and in-use blocks.
Stat allocated_bytes;
@ -122,12 +122,12 @@ struct TORCH_API HostStats {
// Struct containing memory allocator summary statistics for host, as they
// are staged for reporting. This is a temporary struct that is used to
// avoid locking the allocator while collecting stats.
struct alignas(hardware_destructive_interference_size) HostStatsStaged {
struct alignas(64) HostStatsStaged {
std::mutex timing_mutex_;
// COUNT: total allocations (active + free)
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
Stat allocations;
// SUM: bytes allocated/reserved by this memory allocator. This accounts
// SUM: bytes allocated/reserved by this memory alocator. This accounts
// for both free and in-use blocks.
Stat allocated_bytes;
// COUNT: number of allocations per bucket (active)
@ -455,7 +455,7 @@ struct CachingHostAllocatorImpl {
}
void resetAccumulatedStats() {
// Resetting accumulated memory stats requires concurrently holding both the
// Reseting accumulated memory stats requires concurrently holding both the
// free list mutexes and the blocks mutex. Previously, this was only done in
// empty_cache function.
for (size_t i = 0; i < free_list_.size(); ++i) {
@ -482,7 +482,7 @@ struct CachingHostAllocatorImpl {
}
void resetPeakStats() {
// Resetting peak memory stats requires concurrently holding both the
// Reseting peak memory stats requires concurrently holding both the
// free list mutexes and the blocks mutex. Previously, this was only done in
// empty_cache function.
for (size_t i = 0; i < free_list_.size(); ++i) {
@ -669,7 +669,7 @@ struct CachingHostAllocatorImpl {
TORCH_CHECK_NOT_IMPLEMENTED(false, "Not implemented for query_event");
}
alignas(hardware_destructive_interference_size) std::mutex blocks_mutex_;
alignas(64) std::mutex blocks_mutex_;
ska::flat_hash_set<B*> blocks_; // block list
ska::flat_hash_map<void*, B*> ptr_to_block_;
@ -677,17 +677,17 @@ struct CachingHostAllocatorImpl {
// size. This allows us to quickly find a free block of the right size.
// We use deque to store per size free list and guard the list with its own
// mutex.
alignas(hardware_destructive_interference_size) std::vector<FreeBlockList<B>> free_list_ =
alignas(64) std::vector<FreeBlockList<B>> free_list_ =
std::vector<FreeBlockList<B>>(MAX_SIZE_INDEX);
alignas(hardware_destructive_interference_size) std::mutex events_mutex_;
alignas(64) std::mutex events_mutex_;
std::deque<std::pair<E, B*>> events_; // event queue paired with block
// Indicates whether the object is active.
// Set to false in the destructor to signal background threads to stop.
std::atomic<bool> active_{true};
protected:
alignas(hardware_destructive_interference_size) HostStatsStaged stats_;
alignas(64) HostStatsStaged stats_;
};
struct TORCH_API HostAllocator : public at::Allocator {

View File

@ -59,7 +59,9 @@ struct TORCH_API Generator {
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
: impl_(std::move(gen_impl)) {
TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported");
if (impl_.get() == nullptr) {
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
}
}
bool operator==(const Generator& rhs) const {

View File

@ -111,7 +111,9 @@ class TORCH_API TensorBase {
explicit TensorBase(
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
: impl_(std::move(tensor_impl)) {
TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported");
if (impl_.get() == nullptr) {
throw std::runtime_error("TensorImpl with nullptr is not supported");
}
}
TensorBase(const TensorBase&) = default;
TensorBase(TensorBase&&) noexcept = default;

View File

@ -109,10 +109,6 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) {
m.fallback(AUTOGRAD_FALLBACK);
}
TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) {
m.fallback(AUTOGRAD_FALLBACK);
}
#undef AUTOGRAD_FALLBACK
} // namespace

View File

@ -148,7 +148,7 @@ struct TORCH_API ClassType : public NamedType {
void checkNotExist(const std::string& name, const std::string& what) const;
// Attributes are stored in a specific slot at runtime for efficiency.
// Attributes are stored in a specific slot at runtime for effiency.
// When emitting instructions we specify the slot so that attribute access is
// a constant lookup
std::optional<size_t> findAttributeSlot(const std::string& name) const {
@ -412,7 +412,7 @@ struct TORCH_API ClassType : public NamedType {
// Holds method attributes
std::weak_ptr<CompilationUnit> compilation_unit_;
// Holds all attributes, attribute details are found on ClassAttribute
// Holds all atrributes, attribute details are found on ClassAttribute
std::vector<ClassAttribute> attributes_;
// Construct mirroring attributes_, only around due to the fact that `containedTypes()` method returns an ArrayRef.
// Never fill this without using the appropriate provideNewClassAttribute method

View File

@ -442,17 +442,11 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker
auto idx = getDispatchTableIndexForDispatchKey(dispatchKey);
TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx);
// NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time,
// refer to https://github.com/pytorch/pytorch/issues/163979 for more informations.
TORCH_CHECK(
dispatchKey == DispatchKey::AutogradPrivateUse1 ||
!backendFallbackKernels_[idx].kernel.isValid(),
"Tried to register multiple backend fallbacks for the same dispatch key ",
dispatchKey,
"; previous registration ",
backendFallbackKernels_[idx].debug,
", new registration ",
debug);
!backendFallbackKernels_[idx].kernel.isValid(),
"Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ",
backendFallbackKernels_[idx].debug, ", new registration ", debug
);
// NB: inferred function schema is always nullptr for fallbacks, as fallbacks
// cannot be unboxed
backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug));
@ -537,7 +531,7 @@ int64_t Dispatcher::sequenceNumberForRunningRecordFunction(DispatchKey dispatchK
// Note: this records a sequence number for both Autograd keys, and for
// non-Autograd keys where the dispatchKeySet still contains an autograd key.
// This means that we might collect the same sequence number two different
// This means that we might collect the same sequence nubmer two different
// events if they all occurred above Autograd and still had the Autograd
// dispatch key in the dispatch key set.
// However, this usually doesn't happen: normally the first call will

View File

@ -585,7 +585,7 @@ class TORCH_API OperatorHandle {
// We need to store this iterator in order to make
// Dispatcher::cleanup() fast -- it runs a lot on program
// termination (and presumably library unloading).
// termination (and presuambly library unloading).
std::list<Dispatcher::OperatorDef>::iterator operatorIterator_;
};

View File

@ -365,7 +365,7 @@ std::pair<const AnnotatedKernel&, const char*> OperatorEntry::computeDispatchTab
// For autograd keys, we only use kernel from CompositeImplicitAutograd when there's no direct registration
// to its corresponding backend key or CompositeExplicitAutograd. See Note [CompositeExplicitAutograd and CompositeImplicitAutograd].
// For AutogradOther, we eagerly return ambiguousAutogradOtherKernel() if there's registration to any of
// its backends and ask backend extender to request a dedicated Autograd key for the backend.
// its backends and ask backend extender to request a decicated Autograd key for the backend.
// See Note [Ambiguity in AutogradOther kernel] for more details.
// A CompositeExplicitAutograd kernel prevents CompositeImplicitAutograd kernel being used for Autograd keys, but it doesn't
// cause confusion for AutogradOther. It's pretty straightforward to use Autograd (if available)

View File

@ -261,7 +261,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
//
// There are 2 cases
// 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'.
// without the extra parenthesis, the c++ scheme parser can not parse it.
// without the extra parenthesis, the c++ schem parser can not parse it.
// 2. something like '-> ((str, str))'. Need extra parenthesis so the return
// type is a single tuple rather than two strings.
// PR (https://github.com/pytorch/pytorch/pull/23204) has more context about

View File

@ -68,7 +68,11 @@ Symbol InternedStrings::_symbol(const std::string& s) {
return it->second;
auto pos = s.find("::");
TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s);
if (pos == std::string::npos) {
std::stringstream ss;
ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s;
throw std::runtime_error(ss.str());
}
Symbol ns = _symbol("namespaces::" + s.substr(0, pos));
Symbol sym(sym_to_info_.size());
@ -117,7 +121,12 @@ std::string Symbol::domainString() const {
}
Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) {
TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'");
if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) {
std::ostringstream ss;
ss << "Symbol: domain string is expected to be prefixed with '"
<< domain_prefix() << "', e.g. 'org.pytorch.aten'";
throw std::runtime_error(ss.str());
}
std::string qualString = d.substr(domain_prefix().size()) + "::" + s;
return fromQualString(qualString);
}

View File

@ -7,7 +7,6 @@
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <ATen/core/type_factory.h>
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
@ -413,7 +412,7 @@ size_t IValue::hash(const IValue& v) {
case Tag::Enum:
case Tag::Stream:
case Tag::Uninitialized:
TORCH_CHECK(false,
throw std::runtime_error(
"unhashable type: '" + v.type()->repr_str() + "'");
}
// the above switch should be exhaustive

View File

@ -1176,7 +1176,7 @@ struct TORCH_API IValue final {
using HashIdentityIValueMap =
std::unordered_map<IValue, IValue, HashIdentityIValue, CompIdentityIValues>;
// Checks if this and rhs has a subvalues in common.
// Chechs if this and rhs has a subvalues in common.
// [t1,t2] and [t2, t3] returns true.
bool overlaps(const IValue& rhs) const;

View File

@ -1501,7 +1501,7 @@ struct C10_EXPORT ivalue::Object final : c10::intrusive_ptr_target {
// However, the CompilationUnit holds ownership of the type's graphs, so
// inserting a constant object into a Graph would create a reference cycle if
// that constant object held a shared_ptr to its CU. For these objects we
// instantiate them with non-owning references to its CU
// instatiate them with non-owning references to its CU
Object(WeakOrStrongTypePtr type, size_t numSlots) : type_(std::move(type)) {
slots_.resize(numSlots);
}

View File

@ -8,7 +8,6 @@
#include <ATen/core/type_factory.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/TypeList.h>
#include <c10/util/Exception.h>
#include <optional>
#include <c10/core/SymFloat.h>
#include <c10/core/SymBool.h>
@ -117,8 +116,10 @@ struct SingleElementType : public SharedType {
protected:
SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) {
TORCH_CHECK(this->elem, c10::str(
if (!this->elem) {
throw std::runtime_error(c10::str(
"Can not create ", typeKindToString(Kind), " with None type"));
}
}
private:
@ -373,7 +374,7 @@ struct TORCH_API SymbolicShape {
// Unranked shape constructor.
SymbolicShape() : dims_(std::nullopt) {}
// Known rank but unknown dimensions.
// Known rank but unknown dimentions.
SymbolicShape(std::optional<size_t> rank) : dims_(std::nullopt) {
if(!rank) {
return;
@ -415,12 +416,16 @@ struct TORCH_API SymbolicShape {
}
ShapeSymbol operator[](size_t i) const {
TORCH_CHECK(dims_, "Rank isn't fixed");
if (!dims_) {
throw std::runtime_error("Rank isn't fixed");
}
return (*dims_).at(i);
}
ShapeSymbol at(size_t i) const {
TORCH_CHECK(dims_, "Rank isn't fixed");
if (!dims_) {
throw std::runtime_error("Rank isn't fixed");
}
return (*dims_).at(i);
}
@ -515,7 +520,9 @@ struct VaryingShape {
}
const std::optional<T> &operator[](size_t i) const {
TORCH_CHECK(dims_, "Rank isn't fixed");
if (!dims_) {
throw std::runtime_error("Rank isn't fixed");
}
return (*dims_).at(i);
}
@ -884,9 +891,9 @@ struct TORCH_API ListType
// global singleton
// Given an inner type T and an identifier,
// this function will return the global singleton type pointer
// this function wil return the global singleton type pointer
// the type List<T>.
// The extra "identifier" argument is needed because we have multiple container types
// The extra "identifier" argument is needed beccause we have multiple container types
// that all re-use this function (List<T>, array<T, N>, etc.)
static TypePtr get(const std::string& identifier, TypePtr inner);
@ -950,7 +957,9 @@ struct TORCH_API DictType : public SharedType {
TypePtr createWithContained(
std::vector<TypePtr> contained_types) const override {
TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types");
if (contained_types.size() != 2) {
throw std::runtime_error("Expected 2 contained types");
}
return create(std::move(contained_types.at(0)), std::move(contained_types.at(1)));
}

View File

@ -185,11 +185,11 @@ struct TORCH_API Type {
: repr_(nullptr) {}
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p)
: repr_(makeSingletonSharedPtr(p.get())) {}
: repr_(p) {}
template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true>
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p)
: repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {}
: repr_(SingletonTypePtr<T>(p.get())) {}
// We need to support construction from T* for pybind. The problem
@ -202,8 +202,8 @@ struct TORCH_API Type {
// Case 2: if T is exactly Type, we need to do a dynamic_cast to
// check if it's a SharedType and do the right thing.
//
// Case 3: Otherwise, T is not a SharedType. Use a singleton
// pointer.
// Case 3: Otherwise, T is not a SharedType. (debug-check this
// assumption!) Use a singleton pointer.
template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true>
/* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {}
@ -211,15 +211,15 @@ struct TORCH_API Type {
template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true>
/* implicit */ SingletonOrSharedTypePtr(T* p) {
if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) {
repr_ = shared_p->shared_from_this();
repr_ = Repr(shared_p->shared_from_this());
} else {
repr_ = makeSingletonSharedPtr(p);
repr_ = Repr(p);
}
}
template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true>
/* implicit */ SingletonOrSharedTypePtr(T* p)
: repr_(makeSingletonSharedPtr(p)) {
: repr_(p) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr);
}
@ -230,19 +230,19 @@ struct TORCH_API Type {
~SingletonOrSharedTypePtr() = default;
T* get() const {
return repr_.get();
return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first);
}
operator bool() const {
return repr_ != nullptr;
return repr_.isNonNull();
}
bool operator==(std::nullptr_t) const {
return repr_ == nullptr;
return !repr_.isNonNull();
}
bool operator!=(std::nullptr_t) const {
return repr_ != nullptr;
return repr_.isNonNull();
}
template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true>
@ -255,14 +255,138 @@ struct TORCH_API Type {
}
private:
// Use shared_ptr's aliasing constructor to create a non-owning pointer
// to a singleton. The lifetime is tied to the null shared_ptr, so there's
// no reference counting overhead for the singleton itself.
static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) {
return std::shared_ptr<T>(std::shared_ptr<T>(), ptr);
}
// NOTE: SharedPtrWrapper exists to work around a baffling bug in
// nvcc; see comment in destroy() below.
struct SharedPtrWrapper {
SharedPtrWrapper(std::shared_ptr<T> &&x)
: repr_(std::move(x)) {}
std::shared_ptr<T> repr_;
};
union Repr {
Repr() : Repr(nullptr) {}
std::shared_ptr<T> repr_;
explicit Repr(std::shared_ptr<T> x)
: shared_(std::move(x)) {}
explicit Repr(std::nullptr_t)
: singletonRepr_(nullptr) {}
explicit Repr(SingletonTypePtr<T> p)
: singletonRepr_(p.get()) {}
~Repr() {
destroy();
}
// NOTE: the only non-UB way to access our null state is through
// rawRepr(), because our copy operation doesn't preserve which
// union member is active for null pointers.
Repr(const Repr& rhs) {
if (rhs.isSharedAndNonNull()) {
new (&shared_) SharedPtrWrapper(rhs.shared_);
} else {
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
singletonRepr_.unused_ = nullptr;
}
}
Repr(Repr&& rhs) noexcept {
if (rhs.isSharedAndNonNull()) {
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
} else {
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
singletonRepr_.unused_ = nullptr;
}
}
Repr& operator=(const Repr& rhs) {
if (&rhs == this) {
return *this;
}
if (rhs.isSharedAndNonNull()) {
if (isSharedAndNonNull()) {
shared_ = rhs.shared_;
} else {
new (&shared_) SharedPtrWrapper(rhs.shared_);
}
} else {
if (isSharedAndNonNull()) {
destroy();
}
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
singletonRepr_.unused_ = nullptr;
}
return *this;
}
Repr& operator=(Repr&& rhs) noexcept {
if (&rhs == this) {
return *this;
}
if (rhs.isSharedAndNonNull()) {
if (isSharedAndNonNull()) {
shared_ = std::move(rhs.shared_);
} else {
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
}
} else {
if (isSharedAndNonNull()) {
destroy();
}
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
singletonRepr_.unused_ = nullptr;
}
return *this;
}
SharedPtrWrapper shared_;
struct SingletonRepr {
explicit SingletonRepr(T* s) : singleton_(s) {}
T* singleton_;
void* unused_ = nullptr;
} singletonRepr_;
struct RawRepr {
void* first;
void* nullIfSingleton_;
};
// It is UB to read the singleton part of Repr if it was
// constructed as a shared_ptr and vice versa, but memcpying out
// the representation is always OK, so here's an accessor to obey
// the letter of the law.
RawRepr rawRepr() const {
RawRepr repr{};
memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr));
return repr;
}
bool isNonNull() const {
auto repr = rawRepr();
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr);
return repr.first != nullptr;
}
bool isSharedAndNonNull() const {
return rawRepr().nullIfSingleton_ != nullptr;
}
private:
void destroy() {
if (isSharedAndNonNull()) {
// Without SharedPtrWrapper, this line would read
// `shared_.~shared_ptr()` and nvcc would complain with
// "error: expected primary-expression before '>' token"
// referring to the "t" in "shared_ptr". SharedPtrWrapper
// exists to work around this compiler bug.
shared_.~SharedPtrWrapper();
}
}
} repr_;
};
using TypePtr = SingletonOrSharedTypePtr<Type>;

View File

@ -21,7 +21,7 @@ namespace c10 {
namespace detail {
// The first argument of the schema might be of type DispatchKeySet, in which case we remove it.
// We do this because every argument in a function schema is expected to be convertible
// We do this because every argument in a function schema is expected to be convertable
// to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of.
// See Note [Plumbing Keys Through The Dispatcher]
template<class KernelFunctor>

View File

@ -251,7 +251,7 @@ TEST(OperatorRegistrationTest, whenRegisteringCPUTensorType_thenCanOnlyCallUnbox
callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CPU), dummyTensor(c10::DispatchKey::CUDA));
EXPECT_TRUE(called_kernel_cpu);
// Ensure that dispatch key from tensor is not used here.
// Ensure that disptach key from tensor is not used here.
called_kernel_cpu = false;
expectThrows<c10::Error>([&] {
callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CUDA), dummyTensor(c10::DispatchKey::CPU));

View File

@ -172,7 +172,7 @@ VaryingShape<Stride> TensorType::computeStrideProps(
// The logic below follows what TensorIterator uses in its logic:
// 1. Fast_set_up is the short-cut to identify a. channels_last and
// b. contiguous format, which is what we have in the below logic.
// 2. In more general cases, it does best effort to preserve permutatoin.
// 2. In more generla cases, it does best effort to preserve permutatoin.
if (is_channels_last_strides_2d(sizes, strides) || is_channels_last_strides_3d(sizes, strides)) {
// case 1.a. short cut channels last
std::iota(stride_indices.rbegin() + 1, stride_indices.rend() - 1, 2);

View File

@ -8,7 +8,6 @@
#include <ATen/core/jit_type.h>
#include <c10/macros/Macros.h>
#include <c10/util/env.h>
#include <c10/util/Exception.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <array>
@ -827,7 +826,9 @@ TupleType::TupleType(
: NamedType(TypeKind::TupleType, std::move(name)),
elements_(std::move(elements)),
has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) {
TORCH_CHECK(v, "Can not create tuple with None type");
if (!v) {
throw std::runtime_error("Can not create tuple with None type");
}
return v->hasFreeVariables();
})), schema_(std::move(schema)) {

View File

@ -104,6 +104,71 @@ class Vectorized<float> {
}
return b;
}
// Implementation is picked from
// https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const {
const auto c1 =
svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f
const auto c2 =
svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f
const auto c3 =
svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f
const auto c4 =
svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f
const auto c5 =
svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f
const auto shift = svreinterpret_f32_u32(
svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
const auto inv_ln2 = svreinterpret_f32_u32(
svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(
0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(
0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
const auto zero = svdup_n_f32(0.f);
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
// Range reduction:
// e^x = 2^n * e^r
// where:
// n = floor(x / ln(2))
// r = x - n * ln(2)
//
// By adding x / ln(2) with 2^23 + 127 (shift):
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
// forces decimal part
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e.
// n) + 127 will occupy the whole fraction part of z in FP32 format.
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
// of x / ln(2) (i.e. n) because the decimal part has been pushed out
// and lost.
// * The addition of 127 makes the FP32 fraction part of z ready to be
// used as the exponent
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
const auto n = svsub_f32_z(pg, z, shift);
const auto scale = svreinterpret_f32_u32(
svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in
// term of accuracy and performance.
const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
// Compute the truncated Taylor series of e^r.
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
const auto r2 = svmul_f32_z(pg, r, r);
const auto p1 = svmul_f32_z(pg, c1, r);
const auto p23 = svmla_f32_z(pg, c2, c3, r);
const auto p45 = svmla_f32_z(pg, c4, c5, r);
const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
auto poly = svmla_f32_z(pg, scale, p12345, scale);
// Handle underflow and overflow.
poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
return poly;
}
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
if (count == size())
return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr));
@ -248,41 +313,11 @@ class Vectorized<float> {
return USE_SLEEF(
Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1));
}
// Implementation copied from Arm Optimized Routines:
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c
Vectorized<float> exp_u20() const {
// special case to handle special inputs that are too large or too small
// i.e. where there's at least one element x, s.t. |x| >= 87.3...
svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f);
if (svptest_any(svptrue_b32(), is_special_case)) {
return exp();
}
const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f);
const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f);
const svfloat32_t c1 = svdup_n_f32(0.5f);
const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f);
const float shift = 0x1.803f8p17f;
/* n = round(x/(ln2/N)). */
svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift);
svfloat32_t n = svsub_x(svptrue_b32(), z, shift);
/* r = x - n*ln2/N. */
svfloat32_t r = values;
r = svmls_x(svptrue_b32(), r, n, ln2_hi);
r = svmls_x(svptrue_b32(), r, n, ln2_lo);
/* scale = 2^(n/N). */
svfloat32_t scale = svexpa(svreinterpret_u32(z));
/* poly(r) = exp(r) - 1 ~= r + 0.5 r^2. */
svfloat32_t r2 = svmul_x(svptrue_b32(), r, r);
svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1);
return svmla_x(svptrue_b32(), scale, scale, poly);
return exp();
}
Vectorized<float> fexp_u20() const {
return exp_u20();
return exp();
}
Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF(
{ return Vectorized<float>(Sleef_fmodfx_sve(values, q)); },
@ -418,11 +453,9 @@ class Vectorized<float> {
ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH);
// Step 2: Calculate exp(2 * x), where x is the clamped value.
// svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of
// the result (via Vectorized<float>, then auto-converts back to
// svfloat32_t).
svfloat32_t exp2x =
Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20();
// svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of
// the result.
svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x));
// Step 3: Calculate the numerator of the tanh function, which is exp(2x)
// - 1.

View File

@ -6,11 +6,9 @@
#ifdef __aarch64__
#if !defined(CPU_CAPABILITY_SVE)
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
#include <ATen/cpu/vec/vec128/vec128_double_neon.h>
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
#include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h>
#endif
#include <ATen/cpu/vec/vec128/vec128_convert.h>

View File

@ -354,47 +354,9 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
Vectorized frac() const;
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
#ifdef __ARM_FEATURE_BF16
Vectorized<c10::BFloat16> neg() const {
return -values;
}
Vectorized<c10::BFloat16> reciprocal() const {
return 1.0f / values;
}
Vectorized<c10::BFloat16> operator==(
const Vectorized<c10::BFloat16>& other) const {
return values == other.values;
}
Vectorized<c10::BFloat16> operator!=(
const Vectorized<c10::BFloat16>& other) const {
return values != other.values;
}
Vectorized<c10::BFloat16> operator<(
const Vectorized<c10::BFloat16>& other) const {
return values < other.values;
}
Vectorized<c10::BFloat16> operator<=(
const Vectorized<c10::BFloat16>& other) const {
return values <= other.values;
}
Vectorized<c10::BFloat16> operator>(
const Vectorized<c10::BFloat16>& other) const {
return values > other.values;
}
Vectorized<c10::BFloat16> operator>=(
const Vectorized<c10::BFloat16>& other) const {
return values >= other.values;
}
#else
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
@ -402,7 +364,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
#endif
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
@ -451,52 +412,28 @@ template <>
Vectorized<c10::BFloat16> inline operator+(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x + y;
#else
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
#endif
}
template <>
Vectorized<c10::BFloat16> inline operator-(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x - y;
#else
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
#endif
}
template <>
Vectorized<c10::BFloat16> inline operator*(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x * y;
#else
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
#endif
}
template <>
Vectorized<c10::BFloat16> inline operator/(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
return x / y;
#else
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
#endif
}
// frac. Implement this here so we can use subtraction
@ -607,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
return x * y + z;
#else
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
// elements, not the bottom and top half, so they don't seem
// particularly useful here. Ideally we would include dot product in
// the Vectorized interface...
return a * b + c;
#endif
}
template <>
@ -627,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
return (-x) * y + z;
#else
// See NOTE [BF16 FMA] above.
return -a * b + c;
#endif
}
template <>
@ -643,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
return x * y - z;
#else
// See NOTE [BF16 FMA] above.
return a * b - c;
#endif
}
template <>
@ -659,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub(
const Vectorized<c10::BFloat16>& a,
const Vectorized<c10::BFloat16>& b,
const Vectorized<c10::BFloat16>& c) {
#ifdef __ARM_FEATURE_BF16
bfloat16x8_t x = a;
bfloat16x8_t y = b;
bfloat16x8_t z = c;
return (-x) * y - z;
#else
// See NOTE [BF16 FMA] above.
return -a * b - c;
#endif
}
#endif // !defined(C10_MOBILE) && defined(__aarch64__)

View File

@ -5,129 +5,6 @@
namespace at::vec {
inline namespace CPU_CAPABILITY {
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
// Enable auto-vectorization for GCC-13+ and clang-17+
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
template <typename from_type, typename to_type>
inline void convertImpl(
const from_type* __restrict src,
to_type* __restrict dst,
int64_t n) {
uint64_t len = static_cast<uint64_t>(n);
for (uint64_t i = 0; i < len; i++) {
dst[i] = static_cast<to_type>(src[i]);
}
}
#define CONVERT_TEMPLATE(from_type, to_type) \
template <> \
inline void convert(const from_type* src, to_type* dst, int64_t n) { \
return convertImpl<from_type, to_type>(src, dst, n); \
}
CONVERT_TEMPLATE(uint8_t, uint8_t)
CONVERT_TEMPLATE(uint8_t, int8_t)
CONVERT_TEMPLATE(uint8_t, int16_t)
CONVERT_TEMPLATE(uint8_t, int32_t)
CONVERT_TEMPLATE(uint8_t, int64_t)
CONVERT_TEMPLATE(uint8_t, float)
CONVERT_TEMPLATE(uint8_t, double)
CONVERT_TEMPLATE(int8_t, uint8_t)
CONVERT_TEMPLATE(int8_t, int8_t)
CONVERT_TEMPLATE(int8_t, int16_t)
CONVERT_TEMPLATE(int8_t, int32_t)
CONVERT_TEMPLATE(int8_t, int64_t)
CONVERT_TEMPLATE(int8_t, float)
CONVERT_TEMPLATE(int8_t, double)
CONVERT_TEMPLATE(int16_t, uint8_t)
CONVERT_TEMPLATE(int16_t, int8_t)
CONVERT_TEMPLATE(int16_t, int16_t)
CONVERT_TEMPLATE(int16_t, int32_t)
CONVERT_TEMPLATE(int16_t, int64_t)
CONVERT_TEMPLATE(int16_t, float)
CONVERT_TEMPLATE(int16_t, double)
CONVERT_TEMPLATE(int32_t, uint8_t)
CONVERT_TEMPLATE(int32_t, int8_t)
CONVERT_TEMPLATE(int32_t, int16_t)
CONVERT_TEMPLATE(int32_t, int32_t)
CONVERT_TEMPLATE(int32_t, int64_t)
CONVERT_TEMPLATE(int32_t, float)
CONVERT_TEMPLATE(int32_t, double)
CONVERT_TEMPLATE(int64_t, uint8_t)
CONVERT_TEMPLATE(int64_t, int8_t)
CONVERT_TEMPLATE(int64_t, int16_t)
CONVERT_TEMPLATE(int64_t, int32_t)
CONVERT_TEMPLATE(int64_t, int64_t)
CONVERT_TEMPLATE(int64_t, float)
CONVERT_TEMPLATE(int64_t, double)
CONVERT_TEMPLATE(float, uint8_t)
CONVERT_TEMPLATE(float, int8_t)
CONVERT_TEMPLATE(float, int16_t)
CONVERT_TEMPLATE(float, int32_t)
CONVERT_TEMPLATE(float, int64_t)
CONVERT_TEMPLATE(float, float)
CONVERT_TEMPLATE(float, double)
CONVERT_TEMPLATE(double, uint8_t)
CONVERT_TEMPLATE(double, int8_t)
CONVERT_TEMPLATE(double, int16_t)
CONVERT_TEMPLATE(double, int32_t)
CONVERT_TEMPLATE(double, int64_t)
CONVERT_TEMPLATE(double, float)
CONVERT_TEMPLATE(double, double)
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#define CONVERT_FROM_FP16_TEMPLATE(to_type) \
template <> \
inline void convert(const at::Half* src, to_type* dst, int64_t n) { \
const float16_t* srcPtr = reinterpret_cast<const float16_t*>(src); \
return convertImpl<float16_t, to_type>(srcPtr, dst, n); \
}
#define CONVERT_TO_FP16_TEMPLATE(from_type) \
template <> \
inline void convert(const from_type* src, at::Half* dst, int64_t n) { \
float16_t* dstPtr = reinterpret_cast<float16_t*>(dst); \
return convertImpl<from_type, float16_t>(src, dstPtr, n); \
}
CONVERT_FROM_FP16_TEMPLATE(uint8_t)
CONVERT_FROM_FP16_TEMPLATE(int8_t)
CONVERT_FROM_FP16_TEMPLATE(int16_t)
CONVERT_FROM_FP16_TEMPLATE(int32_t)
CONVERT_FROM_FP16_TEMPLATE(int64_t)
CONVERT_FROM_FP16_TEMPLATE(float16_t)
CONVERT_FROM_FP16_TEMPLATE(float)
CONVERT_FROM_FP16_TEMPLATE(double)
CONVERT_TO_FP16_TEMPLATE(uint8_t)
CONVERT_TO_FP16_TEMPLATE(int8_t)
CONVERT_TO_FP16_TEMPLATE(int16_t)
CONVERT_TO_FP16_TEMPLATE(int32_t)
CONVERT_TO_FP16_TEMPLATE(int64_t)
CONVERT_TO_FP16_TEMPLATE(float)
CONVERT_TO_FP16_TEMPLATE(double)
#endif
#ifdef __ARM_FEATURE_BF16
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
CONVERT_TEMPLATE(bfloat16_t, int8_t)
CONVERT_TEMPLATE(bfloat16_t, int16_t)
CONVERT_TEMPLATE(bfloat16_t, int32_t)
CONVERT_TEMPLATE(bfloat16_t, int64_t)
CONVERT_TEMPLATE(bfloat16_t, bfloat16_t)
CONVERT_TEMPLATE(bfloat16_t, float)
CONVERT_TEMPLATE(bfloat16_t, double)
CONVERT_TEMPLATE(uint8_t, bfloat16_t)
CONVERT_TEMPLATE(int8_t, bfloat16_t)
CONVERT_TEMPLATE(int16_t, bfloat16_t)
CONVERT_TEMPLATE(int32_t, bfloat16_t)
CONVERT_TEMPLATE(int64_t, bfloat16_t)
CONVERT_TEMPLATE(float, bfloat16_t)
CONVERT_TEMPLATE(double, bfloat16_t)
#endif
#endif
template <typename src_t>
struct VecConvert<
float,

View File

@ -1,586 +0,0 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/macros/Macros.h>
#include <c10/util/irange.h>
#include <cmath>
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This header, and all of its subheaders, will be compiled with
// different architecture flags for each supported set of vector
// intrinsics. So we need to make sure they aren't inadvertently
// linked together. We do this by declaring objects in an `inline
// namespace` which changes the name mangling, but can still be
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
template <>
struct is_vec_specialized_for<double> : std::bool_constant<true> {};
template <>
class Vectorized<double> {
private:
float64x2_t values;
public:
using value_type = double;
using size_type = int;
static constexpr size_type size() {
return 2;
}
Vectorized() {
values = vdupq_n_f64(0.0);
}
Vectorized(float64x2_t v) : values(v) {}
Vectorized(double val) {
values = vdupq_n_f64(val);
}
template <
typename... Args,
typename = std::enable_if_t<(sizeof...(Args) == size())>>
Vectorized(Args... vals) {
__at_align__ double buffer[size()] = {vals...};
values = vld1q_f64(buffer);
}
operator float64x2_t() const {
return values;
}
template <int64_t mask>
static Vectorized<double> blend(
const Vectorized<double>& a,
const Vectorized<double>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint64x2_t maskArray = {
(mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0,
(mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_f64(maskArray, b.values, a.values);
}
static Vectorized<double> blendv(
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& mask_) {
return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values);
}
template <typename step_t>
static Vectorized<double> arange(
double base = 0.,
step_t step = static_cast<step_t>(1)) {
return {base, base + static_cast<double>(step)};
}
static inline Vectorized<double> set(
const Vectorized<double>& a,
const Vectorized<double>& b,
int64_t count = size()) {
if (count == 0) {
return a;
} else if (count >= 2) {
return b;
} else {
float64x2_t c = {b.values[0], a.values[1]};
return c;
}
}
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
if (count == size()) {
return vld1q_f64(reinterpret_cast<const double*>(ptr));
} else if (count == 1) {
float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr));
float64x1_t z = {0.0};
return vcombine_f64(x, z);
} else {
return vdupq_n_f64(0.0);
}
}
void store(void* ptr, int64_t count = size()) const {
if (count == size()) {
vst1q_f64(reinterpret_cast<double*>(ptr), values);
} else if (count == 1) {
vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values));
}
}
const double& operator[](int idx) const = delete;
double& operator[](int idx) = delete;
int64_t zero_mask() const {
// returns an integer mask where all zero elements are translated to 1-bit
// and others are translated to 0-bit
uint64x2_t cmpReg = vceqzq_f64(values);
uint64x2_t mask = {1, 2};
uint64x2_t res = vandq_u64(cmpReg, mask);
return res[0] | res[1];
}
Vectorized<double> isnan() const {
// NaN check
return vreinterpretq_f64_u32(
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values))));
}
bool has_inf_nan() const {
Vectorized<double> x = vsubq_f64(values, values);
float64x2_t r = x.isnan();
uint64x2_t u = vreinterpretq_u64_f64(r);
return u[0] | u[1];
}
Vectorized<double> map(double (*f)(double)) const {
float64x2_t result;
result[0] = f(values[0]);
result[1] = f(values[1]);
return result;
}
Vectorized<double> map2(
const Vectorized<double>& second,
double (*const f)(double, double)) const {
float64x2_t result;
result[0] = f(values[0], second.values[0]);
result[1] = f(values[1], second.values[1]);
return result;
}
Vectorized<double> abs() const {
return vabsq_f64(values);
}
Vectorized<double> angle() const {
auto zero = Vectorized<double>(0.0);
auto pi = Vectorized<double>(c10::pi<double>);
auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values)));
return blendv(tmp, *this, isnan());
}
Vectorized<double> real() const {
return *this;
}
Vectorized<double> imag() const {
return Vectorized<double>(0.0);
}
Vectorized<double> conj() const {
return *this;
}
Vectorized<double> acos() const {
return USE_SLEEF(
Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos));
}
Vectorized<double> acosh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh));
}
Vectorized<double> asin() const {
return USE_SLEEF(
Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin));
}
Vectorized<double> asinh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh));
}
Vectorized<double> atan() const {
return USE_SLEEF(
Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan));
}
Vectorized<double> atanh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh));
}
Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF(
{ return Vectorized<double>(Sleef_atan2d2_u10(values, b)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_b[size()];
store(tmp);
b.store(tmp_b);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = std::atan2(tmp[i], tmp_b[i]);
}
return loadu(tmp);
})} Vectorized<double> copysign(const Vectorized<double>& sign) const {
USE_SLEEF(
{ return Vectorized<double>(Sleef_copysignd2(values, sign)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_sign[size()];
store(tmp);
sign.store(tmp_sign);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
}
return loadu(tmp);
})} Vectorized<double> erf() const {
return USE_SLEEF(
Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf));
}
Vectorized<double> erfc() const {
return USE_SLEEF(
Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc));
}
Vectorized<double> exp() const {
return USE_SLEEF(
Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp));
}
Vectorized<double> exp2() const {
return USE_SLEEF(
Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2));
}
Vectorized<double> expm1() const {
return USE_SLEEF(
Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1));
}
Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF(
{ return Vectorized<double>(Sleef_fmodd2(values, q)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_q[size()];
store(tmp);
q.store(tmp_q);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
}
return loadu(tmp);
})} Vectorized<double> hypot(const Vectorized<double>& b) const {
USE_SLEEF(
{ return Vectorized<double>(Sleef_hypotd2_u05(values, b)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_b[size()];
store(tmp);
b.store(tmp_b);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
}
return loadu(tmp);
})} Vectorized<double> i0() const {
return map(calc_i0);
}
Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF(
{ return Vectorized<double>(Sleef_nextafterd2(values, b)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_b[size()];
store(tmp);
b.store(tmp_b);
for (int64_t i = 0; i < size(); ++i) {
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
}
return loadu(tmp);
})} Vectorized<double> log() const {
return USE_SLEEF(
Vectorized<double>(Sleef_logd2_u10(values)), map(std::log));
}
Vectorized<double> log2() const {
return USE_SLEEF(
Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2));
}
Vectorized<double> log10() const {
return USE_SLEEF(
Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10));
}
Vectorized<double> log1p() const {
return USE_SLEEF(
Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p));
}
Vectorized<double> frac() const;
Vectorized<double> sin() const {
return USE_SLEEF(
Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin));
}
Vectorized<double> sinh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh));
}
Vectorized<double> cos() const {
return USE_SLEEF(
Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos));
}
Vectorized<double> cosh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh));
}
Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF(
{ return Vectorized<double>(Sleef_powd2_u10(values, b)); },
{
__at_align__ double tmp[size()];
__at_align__ double tmp_b[size()];
store(tmp);
b.store(tmp_b);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = std::pow(tmp[i], tmp_b[i]);
}
return loadu(tmp);
})} // Comparison using the _CMP_**_OQ predicate.
// `O`: get false if an operand is NaN
// `Q`: do not raise if an operand is NaN
Vectorized<double> tan() const {
return USE_SLEEF(
Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan));
}
Vectorized<double> tanh() const {
return USE_SLEEF(
Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh));
}
Vectorized<double> lgamma() const {
return USE_SLEEF(
Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma));
}
Vectorized<double> erfinv() const {
return map(calc_erfinv);
}
Vectorized<double> exp_u20() const {
return exp();
}
Vectorized<double> fexp_u20() const {
return exp();
}
Vectorized<double> i0e() const {
return map(calc_i0e);
}
Vectorized<double> digamma() const {
return map(calc_digamma);
}
Vectorized<double> igamma(const Vectorized<double>& x) const {
__at_align__ double tmp[size()];
__at_align__ double tmp_x[size()];
store(tmp);
x.store(tmp_x);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
}
return loadu(tmp);
}
Vectorized<double> igammac(const Vectorized<double>& x) const {
__at_align__ double tmp[size()];
__at_align__ double tmp_x[size()];
store(tmp);
x.store(tmp_x);
for (int64_t i = 0; i < size(); i++) {
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
}
return loadu(tmp);
}
Vectorized<double> ceil() const {
return vrndpq_f64(values);
}
Vectorized<double> floor() const {
return vrndmq_f64(values);
}
Vectorized<double> neg() const {
return vnegq_f64(values);
}
Vectorized<double> round() const {
return vrndiq_f64(values);
}
Vectorized<double> trunc() const {
return vrndq_f64(values);
}
Vectorized<double> sqrt() const {
return vsqrtq_f64(values);
}
Vectorized<double> reciprocal() const {
return vdivq_f64(vdupq_n_f64(1.0), values);
}
Vectorized<double> rsqrt() const {
return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values));
}
double reduce_add() const {
return vaddvq_f64(values);
}
double reduce_max() const {
return vmaxvq_f64(values);
}
Vectorized<double> operator==(const Vectorized<double>& other) const {
return Vectorized<double>(
vreinterpretq_f64_u64(vceqq_f64(values, other.values)));
}
Vectorized<double> operator!=(const Vectorized<double>& other) const {
float64x2_t r0 = vreinterpretq_f64_u32(
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values))));
return Vectorized<double>(r0);
}
Vectorized<double> operator<(const Vectorized<double>& other) const {
return Vectorized<double>(
vreinterpretq_f64_u64(vcltq_f64(values, other.values)));
}
Vectorized<double> operator<=(const Vectorized<double>& other) const {
return Vectorized<double>(
vreinterpretq_f64_u64(vcleq_f64(values, other.values)));
}
Vectorized<double> operator>(const Vectorized<double>& other) const {
return Vectorized<double>(
vreinterpretq_f64_u64(vcgtq_f64(values, other.values)));
}
Vectorized<double> operator>=(const Vectorized<double>& other) const {
return Vectorized<double>(
vreinterpretq_f64_u64(vcgeq_f64(values, other.values)));
}
Vectorized<double> eq(const Vectorized<double>& other) const;
Vectorized<double> ne(const Vectorized<double>& other) const;
Vectorized<double> gt(const Vectorized<double>& other) const;
Vectorized<double> ge(const Vectorized<double>& other) const;
Vectorized<double> lt(const Vectorized<double>& other) const;
Vectorized<double> le(const Vectorized<double>& other) const;
};
template <>
Vectorized<double> inline operator+(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vaddq_f64(a, b);
}
template <>
Vectorized<double> inline operator-(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vsubq_f64(a, b);
}
template <>
Vectorized<double> inline operator*(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vmulq_f64(a, b);
}
template <>
Vectorized<double> inline operator/(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vdivq_f64(a, b);
}
// frac. Implement this here so we can use subtraction
Vectorized<double> inline Vectorized<double>::frac() const {
return *this - this->trunc();
}
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
// either input is a NaN.
template <>
Vectorized<double> inline maximum(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vmaxq_f64(a, b);
}
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
// either input is a NaN.
template <>
Vectorized<double> inline minimum(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vminq_f64(a, b);
}
template <>
Vectorized<double> inline clamp(
const Vectorized<double>& a,
const Vectorized<double>& min,
const Vectorized<double>& max) {
return vminq_f64(max, vmaxq_f64(min, a));
}
template <>
Vectorized<double> inline clamp_max(
const Vectorized<double>& a,
const Vectorized<double>& max) {
return vminq_f64(max, a);
}
template <>
Vectorized<double> inline clamp_min(
const Vectorized<double>& a,
const Vectorized<double>& min) {
return vmaxq_f64(min, a);
}
template <>
Vectorized<double> inline operator&(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vreinterpretq_f64_u64(
vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
}
template <>
Vectorized<double> inline operator|(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vreinterpretq_f64_u64(
vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
}
template <>
Vectorized<double> inline operator^(
const Vectorized<double>& a,
const Vectorized<double>& b) {
return vreinterpretq_f64_u64(
veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
}
inline Vectorized<double> Vectorized<double>::eq(
const Vectorized<double>& other) const {
return (*this == other) & Vectorized<double>(1.0);
}
inline Vectorized<double> Vectorized<double>::ne(
const Vectorized<double>& other) const {
return (*this != other) & Vectorized<double>(1.0);
}
inline Vectorized<double> Vectorized<double>::gt(
const Vectorized<double>& other) const {
return (*this > other) & Vectorized<double>(1.0);
}
inline Vectorized<double> Vectorized<double>::ge(
const Vectorized<double>& other) const {
return (*this >= other) & Vectorized<double>(1.0);
}
inline Vectorized<double> Vectorized<double>::lt(
const Vectorized<double>& other) const {
return (*this < other) & Vectorized<double>(1.0);
}
inline Vectorized<double> Vectorized<double>::le(
const Vectorized<double>& other) const {
return (*this <= other) & Vectorized<double>(1.0);
}
template <>
Vectorized<double> inline fmadd(
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& c) {
return vfmaq_f64(c, a, b);
}
template <>
Vectorized<double> inline fnmadd(
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& c) {
return vfmsq_f64(c, a, b);
}
template <>
Vectorized<double> inline fmsub(
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& c) {
return vfmaq_f64(vnegq_f64(c), a, b);
}
template <>
Vectorized<double> inline fnmsub(
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& c) {
return vfmsq_f64(vnegq_f64(c), a, b);
}
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -307,49 +307,11 @@ class Vectorized<float> {
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp)
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2)
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
// Implementation copied from Arm Optimized Routine
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
Vectorized<float> exp_u20() const {
// bail out to sleef if it's a special case:
// i.e. there's an input s.t. |input| > 87.3....
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
uint32x4_t cmp = vcagtq_f32(values, special_bound);
if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) {
return exp();
}
const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f);
const float ln2_hi = 0x1.62e4p-1f;
const float ln2_lo = 0x1.7f7d1cp-20f;
const float c0 = 0x1.0e4020p-7f;
const float c2 = 0x1.555e66p-3f;
const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2};
const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000);
const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f);
const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f);
const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f);
/* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)]
x = ln2*n + r, with r in [-ln2/2, ln2/2]. */
float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2));
float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0);
r = vfmsq_laneq_f32(r, n, ln2_c02, 1);
uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23);
float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias));
float32x4_t r2 = vmulq_f32(r, r);
float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2);
float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3);
q = vfmaq_f32(q, p, r2);
p = vmulq_f32(c4, r);
float32x4_t poly = vfmaq_f32(p, q, r2);
return vfmaq_f32(scale, poly, scale);
return exp();
}
Vectorized<float> fexp_u20() const {
return exp_u20();
return exp();
}
DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME(
fmod,
@ -578,6 +540,42 @@ inline Vectorized<float> Vectorized<float>::le(
return (*this <= other) & Vectorized<float>(1.0f);
}
template <>
inline void convert(const float* src, int32_t* dst, int64_t n) {
int64_t i;
#ifndef __msvc_cl__
#pragma unroll
#endif
for (i = 0; i <= (n - Vectorized<float>::size());
i += Vectorized<float>::size()) {
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
}
#ifndef __msvc_cl__
#pragma unroll
#endif
for (; i < n; i++) {
dst[i] = static_cast<int32_t>(src[i]);
}
}
template <>
inline void convert(const int32_t* src, float* dst, int64_t n) {
int64_t i;
#ifndef __msvc_cl__
#pragma unroll
#endif
for (i = 0; i <= (n - Vectorized<float>::size());
i += Vectorized<float>::size()) {
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
}
#ifndef __msvc_cl__
#pragma unroll
#endif
for (; i < n; i++) {
dst[i] = static_cast<float>(src[i]);
}
}
template <>
Vectorized<float> inline fmadd(
const Vectorized<float>& a,
@ -634,7 +632,8 @@ inline Vectorized<float> Vectorized<float>::erf() const {
// - exp(- x * x)
auto pow_2 = (*this) * (*this);
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
auto tmp4 = neg_pow_2.exp();
auto tmp4 = neg_pow_2.map(
std::exp); // This can be swapped for a faster implementation of exp.
auto tmp5 = tmp4 ^ neg_zero_vec;
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
auto tmp6 = t * tmp5;

View File

@ -234,7 +234,7 @@ class Vectorized<c10::Half> : public Vectorized16<
vshlq_u16(vandq_u16(is_zero_vec, vdupq_n_u16(1)), shift);
return vaddvq_u16(bits_vec);
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
// use known working implementation.
// use known working implmentation.
__at_align__ value_type tmp[size()];
store(tmp);
int mask = 0;
@ -569,6 +569,46 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le(
return (*this <= other) & Vectorized<c10::Half>(1);
}
// These are global functions, so the defaults in vec_base.h should
// work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available.
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline void convert(const float16_t* src, int16_t* dst, int64_t n) {
int64_t i;
#ifndef __msvc_cl__
#pragma unroll
#endif
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
i += Vectorized<c10::Half>::size()) {
vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i)));
}
#ifndef __msvc_cl__
#pragma unroll
#endif
for (; i < n; i++) {
dst[i] = static_cast<int16_t>(src[i]);
}
}
template <>
inline void convert(const int16_t* src, float16_t* dst, int64_t n) {
int64_t i;
#ifndef __msvc_cl__
#pragma unroll
#endif
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
i += Vectorized<c10::Half>::size()) {
vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i)));
}
#ifndef __msvc_cl__
#pragma unroll
#endif
for (; i < n; i++) {
dst[i] = static_cast<float16_t>(src[i]);
}
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
Vectorized<c10::Half> inline fmadd(
const Vectorized<c10::Half>& a,

View File

@ -1,378 +0,0 @@
#pragma once
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/macros/Macros.h>
#include <c10/util/irange.h>
namespace at::vec {
// Note [CPU_CAPABILITY namespace]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This header, and all of its subheaders, will be compiled with
// different architecture flags for each supported set of vector
// intrinsics. So we need to make sure they aren't inadvertently
// linked together. We do this by declaring objects in an `inline
// namespace` which changes the name mangling, but can still be
// accessed as `at::vec`.
inline namespace CPU_CAPABILITY {
#define VEC_UINT_NEON_TEMPLATE(vl, bit) \
template <> \
struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \
\
template <> \
class Vectorized<uint##bit##_t> { \
using neon_type = uint##bit##x##vl##_t; \
\
private: \
neon_type values; \
\
public: \
using value_type = uint##bit##_t; \
using size_type = int; \
static constexpr size_type size() { \
return vl; \
} \
Vectorized() { \
values = vdupq_n_u##bit(0); \
} \
Vectorized(neon_type v) : values(v) {} \
Vectorized(uint##bit##_t val); \
template < \
typename... Args, \
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
Vectorized(Args... vals) { \
__at_align__ uint##bit##_t buffer[size()] = {vals...}; \
values = vld1q_u##bit(buffer); \
} \
operator neon_type() const { \
return values; \
} \
static Vectorized<uint##bit##_t> loadu( \
const void* ptr, \
uint64_t count = size()); \
void store(void* ptr, uint64_t count = size()) const; \
template <uint64_t mask> \
static Vectorized<uint##bit##_t> blend( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b); \
static Vectorized<uint##bit##_t> blendv( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b, \
const Vectorized<uint##bit##_t>& mask_) { \
return vbslq_u##bit(mask_.values, b, a); \
} \
template <typename step_t> \
static Vectorized<uint##bit##_t> arange( \
value_type base = 0, \
step_t step = static_cast<step_t>(1)); \
static Vectorized<uint##bit##_t> set( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b, \
uint64_t count = size()); \
const uint##bit##_t& operator[](uint idx) const = delete; \
uint##bit##_t& operator[](uint idx) = delete; \
Vectorized<uint##bit##_t> abs() const { \
return values; \
} \
Vectorized<uint##bit##_t> real() const { \
return values; \
} \
Vectorized<uint##bit##_t> imag() const { \
return vdupq_n_u##bit(0); \
} \
Vectorized<uint##bit##_t> conj() const { \
return values; \
} \
Vectorized<uint##bit##_t> neg() const { \
return vreinterpretq_u##bit##_s##bit( \
vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values))); \
} \
uint##bit##_t reduce_add() const { \
return vaddvq_u##bit(values); \
} \
uint##bit##_t reduce_max() const; \
Vectorized<uint##bit##_t> operator==( \
const Vectorized<uint##bit##_t>& other) const { \
return Vectorized<value_type>(vceqq_u##bit(values, other.values)); \
} \
Vectorized<uint##bit##_t> operator!=( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> operator<( \
const Vectorized<uint##bit##_t>& other) const { \
return Vectorized<value_type>(vcltq_u##bit(values, other.values)); \
} \
Vectorized<uint##bit##_t> operator<=( \
const Vectorized<uint##bit##_t>& other) const { \
return Vectorized<value_type>(vcleq_u##bit(values, other.values)); \
} \
Vectorized<uint##bit##_t> operator>( \
const Vectorized<uint##bit##_t>& other) const { \
return Vectorized<value_type>(vcgtq_u##bit(values, other.values)); \
} \
Vectorized<uint##bit##_t> operator>=( \
const Vectorized<uint##bit##_t>& other) const { \
return Vectorized<value_type>(vcgeq_u##bit(values, other.values)); \
} \
Vectorized<uint##bit##_t> eq( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> ne( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> gt( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> ge( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> lt( \
const Vectorized<uint##bit##_t>& other) const; \
Vectorized<uint##bit##_t> le( \
const Vectorized<uint##bit##_t>& other) const; \
}; \
template <> \
Vectorized<uint##bit##_t> inline operator+( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b) { \
return vaddq_u##bit(a, b); \
} \
template <> \
Vectorized<uint##bit##_t> inline operator-( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b) { \
return vsubq_u##bit(a, b); \
} \
template <> \
Vectorized<uint##bit##_t> inline operator&( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b) { \
return vandq_u##bit(a, b); \
} \
template <> \
Vectorized<uint##bit##_t> inline operator|( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b) { \
return vorrq_u##bit(a, b); \
} \
template <> \
Vectorized<uint##bit##_t> inline operator^( \
const Vectorized<uint##bit##_t>& a, \
const Vectorized<uint##bit##_t>& b) { \
return veorq_u##bit(a, b); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this == other) & Vectorized<uint##bit##_t>(1); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this != other) & Vectorized<uint##bit##_t>(1); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this > other) & Vectorized<uint##bit##_t>(1); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this >= other) & Vectorized<uint##bit##_t>(1); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this < other) & Vectorized<uint##bit##_t>(1); \
} \
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le( \
const Vectorized<uint##bit##_t>& other) const { \
return (*this <= other) & Vectorized<uint##bit##_t>(1); \
}
VEC_UINT_NEON_TEMPLATE(16, 8)
inline uint8_t Vectorized<uint8_t>::reduce_max() const {
return vmaxvq_u8(values);
}
template <>
Vectorized<uint8_t> inline operator*(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
return vmulq_u8(a, b);
}
template <>
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
return vmvnq_u8(a);
}
inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=(
const Vectorized<uint8_t>& other) const {
return ~(*this == other);
}
template <>
Vectorized<uint8_t> inline minimum(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
return vminq_u8(a, b);
}
template <>
Vectorized<uint8_t> inline maximum(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
return vmaxq_u8(a, b);
}
template <uint64_t mask>
Vectorized<uint8_t> Vectorized<uint8_t>::blend(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
// Build an array of flags: each bit of element is 1 if the corresponding bit
// in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
(mask & 1LL) ? 0xFF : 0,
(mask & 2LL) ? 0xFF : 0,
(mask & 4LL) ? 0xFF : 0,
(mask & 8LL) ? 0xFF : 0,
(mask & 16LL) ? 0xFF : 0,
(mask & 32LL) ? 0xFF : 0,
(mask & 64LL) ? 0xFF : 0,
(mask & 128LL) ? 0xFF : 0,
(mask & 256LL) ? 0xFF : 0,
(mask & 512LL) ? 0xFF : 0,
(mask & 1024LL) ? 0xFF : 0,
(mask & 2048LL) ? 0xFF : 0,
(mask & 4096LL) ? 0xFF : 0,
(mask & 8192LL) ? 0xFF : 0,
(mask & 16384LL) ? 0xFF : 0,
(mask & 32768LL) ? 0xFF : 0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_u8(maskArray, b.values, a.values);
}
#define VEC_UINT_NEON_OPS(vl, bit) \
inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) { \
values = vdupq_n_u##bit(val); \
} \
inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu( \
const void* ptr, uint64_t count) { \
if (count == size()) { \
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr)); \
} else { \
__at_align__ uint##bit##_t tmp_values[size()]; \
for (const auto i : c10::irange(size())) { \
tmp_values[i] = 0; \
} \
std::memcpy( \
tmp_values, \
reinterpret_cast<const uint##bit##_t*>(ptr), \
count * sizeof(uint##bit##_t)); \
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \
} \
} \
inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count) \
const { \
if (count == size()) { \
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values); \
} else { \
uint##bit##_t tmp_values[size()]; \
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values); \
std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t)); \
} \
}
VEC_UINT_NEON_OPS(16, 8)
template <typename step_t>
inline Vectorized<uint8_t> Vectorized<uint8_t>::arange(
uint8_t base,
step_t step) {
const Vectorized<uint8_t> base_vec(base);
const Vectorized<uint8_t> step_vec(step);
const uint8x16_t step_sizes = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
return vmlaq_u8(base_vec, step_sizes, step_vec);
}
template <>
Vectorized<uint8_t> inline operator>>(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
uint8x16_t x = a;
uint8x16_t bound = vdupq_n_u8(8);
uint8x16_t z = vminq_u8(b, bound);
return x >> z;
}
template <>
Vectorized<uint8_t> inline operator<<(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
uint8x16_t bound = vdupq_n_u8(8);
uint8x16_t z = vminq_u8(b, bound);
return vshlq_u8(a, vreinterpretq_s8_u8(z));
}
inline Vectorized<uint8_t> Vectorized<uint8_t>::set(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b,
uint64_t count) {
if (count == 0) {
return a;
} else if (count >= 16) {
return b;
} else {
// Build an array of flags: each bit of element is 1 if the corresponding
// bit in 'mask' is set, 0 otherwise.
uint8x16_t maskArray = {
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
0};
// Use BSL to select elements from b where the mask is 1, else from a
return vbslq_u8(maskArray, b.values, a.values);
}
}
template <>
Vectorized<uint8_t> inline operator/(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& b) {
uint8x16_t x = a;
uint8x16_t y = b;
return x / y;
}
template <>
Vectorized<uint8_t> inline clamp(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& min,
const Vectorized<uint8_t>& max) {
return minimum(max, maximum(min, a));
}
template <>
Vectorized<uint8_t> inline clamp_max(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& max) {
return minimum(max, a);
}
template <>
Vectorized<uint8_t> inline clamp_min(
const Vectorized<uint8_t>& a,
const Vectorized<uint8_t>& min) {
return maximum(min, a);
}
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -1740,7 +1740,7 @@ Vectorized<int16_t> inline shift_256_16(
// Control masks for shuffle operation, treating 256 bits as an
// array of 16-bit elements, and considering pairs of neighboring
// elements. Specifically, a mask named "ctl_M_N" (M,N in [0,1], and
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
// M!=N) is set so that shuffle will move element with index M from
// input pair into element with index N in output pair, and element
// with index M in output pair will be set to all 0s.
@ -1875,7 +1875,7 @@ Vectorized<T> inline shift_256_8(
// Control masks for shuffle operation, treating 256 bits as an
// array of 8-bit elements, and considering quadruples of
// neighboring elements. Specifically, a mask named "ctl_M_N" (M,N
// neighboring elements. Specifially, a mask named "ctl_M_N" (M,N
// in [0,1,2,3], and M!=N) is set so that shuffle will move element
// with index M from input quadruple into element with index N in
// output quadruple, and other elements in output quadruple will be

View File

@ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
at::vec::Vectorized<uint8_t> src) {
auto u8x8 = vget_low_u8(src);
auto u8x8 = vld1_u8(src.operator const uint8_t*());
auto u16x8 = vmovl_u8(u8x8);
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
@ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float(
Vectorized<float> inline convert_int8_half_register_to_float(
at::vec::Vectorized<uint8_t> src) {
auto u8x8 = vget_low_u8(src);
auto u8x8 = vld1_u8(src.operator const uint8_t*());
auto u16x8 = vmovl_u8(u8x8);
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));

View File

@ -143,7 +143,7 @@ class Vectorized<double> {
const Vectorized<double>& a,
const Vectorized<double>& b,
const Vectorized<double>& mask) {
// the mask used here returned by comparison of vec256
// the mask used here returned by comparision of vec256
return {
vec_sel(a._vec0, b._vec0, mask._vecb0),

View File

@ -142,7 +142,7 @@ class Vectorized<float> {
const Vectorized<float>& a,
const Vectorized<float>& b,
const Vectorized<float>& mask) {
// the mask used here returned by comparison of vec256
// the mask used here returned by comparision of vec256
// assuming this we can use the same mask directly with vec_sel
return {
vec_sel(a._vec0, b._vec0, mask._vecb0),

View File

@ -202,7 +202,7 @@ class Vectorized<int16_t> {
const Vectorized<int16_t>& a,
const Vectorized<int16_t>& b,
const Vectorized<int16_t>& mask) {
// the mask used here returned by comparison of vec256
// the mask used here returned by comparision of vec256
// assuming this we can use the same mask directly with vec_sel
// warning intel style mask will not work properly
return {

View File

@ -155,7 +155,7 @@ class Vectorized<int32_t> {
const Vectorized<int32_t>& a,
const Vectorized<int32_t>& b,
const Vectorized<int32_t>& mask) {
// the mask used here returned by comparison of vec256
// the mask used here returned by comparision of vec256
// assuming this we can use the same mask directly with vec_sel
// warning intel style mask will not work properly
return {

View File

@ -119,7 +119,7 @@ class Vectorized<int64_t> {
const Vectorized<int64_t>& a,
const Vectorized<int64_t>& b,
const Vectorized<int64_t>& mask) {
// the mask used here returned by comparison of vec256
// the mask used here returned by comparision of vec256
return {
vec_sel(a._vec0, b._vec0, mask._vecb0),

View File

@ -397,7 +397,7 @@ inline Vectorized<bool> operator&&(
const __m512i* other_ = reinterpret_cast<const __m512i*>(other.as_bytes());
__m512i out = _mm512_and_si512(*self_, *other_);
Vectorized<bool> ret;
// We do not have a constructor that takes __m512i, so we need to memcpy
// We do not have a constructer that takes __m512i, so we need to memcpy
std::memcpy(ret, &out, ret.size() * sizeof(bool));
return ret;
}

View File

@ -1852,7 +1852,7 @@ Vectorized<T> inline shift_512_8(
// Control masks for shuffle operation, treating 512 bits as an
// array of 8-bit elements, and considering pairs of neighboring
// elements. Specifically, a mask named "ctl_M_N" (M,N in [0,1], and
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
// M!=N) is set so that shuffle will move element with index M from
// input pair into element with index N in output pair, and element
// with index M in output pair will be set to all 0s.

View File

@ -634,7 +634,7 @@ struct Vectorized {
}
Vectorized<T> neg() const {
// NB: the trailing return type is needed because we need to coerce the
// return value back to T in the case of unary operator- incurring a
// return value back to T in the case of unary operator- incuring a
// promotion
return map([](T x) -> T { return -x; });
}

View File

@ -1958,7 +1958,7 @@ void scaled_gemm(
ScalarType result_dtype,
bool use_fast_accum,
const std::optional<Tensor>& alpha) {
// Note: see `cublasCommonArgs` for various non-intuitive manipulations
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
// of input arguments to this function.
const auto computeType = CUBLAS_COMPUTE_32F;
const auto scaleType = CUDA_R_32F;

View File

@ -168,9 +168,11 @@ void CUDAGraph::instantiate() {
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597
// cudaGraphInstantiateWithFlags
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233
#if !defined(USE_ROCM) || ROCM_VERSION >= 60200
int version = 0;
AT_CUDA_CHECK(cudaDriverGetVersion(&version));
if (version < 11040) {
#endif
// Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people,
// who prefer not to report error message through these arguments moving forward
// (they prefer return value, or errors on api calls internal to the capture)
@ -181,11 +183,13 @@ void CUDAGraph::instantiate() {
#endif
//Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory.
//It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch.
#if !defined(USE_ROCM) || ROCM_VERSION >= 60200
} else {
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
graph_,
cudaGraphInstantiateFlagAutoFreeOnLaunch));
}
#endif
has_graph_exec_ = true;
}
@ -307,7 +311,7 @@ CUDAGraph::~CUDAGraph() {
// There are recent HIP changes where hipGraphExecDestroy doesn't immediately free memory.
// They wait for next sync point in order to free the memory, this is to ensure that all
// hipGraphLaunch are finished before we release any memory. This feature was enabled in rocm6.2.
// We need to ensure all async operations finish before deleting the object.
// We need to ensure all async opreations finish before deleting the object.
#if (defined(USE_ROCM) && ROCM_VERSION >= 60200)
if (capture_dev_ != UNDEFINED_DEVICE) // check if capture_dev_ contains the real device id
{

View File

@ -1,192 +0,0 @@
#include <ATen/cuda/CUDAGreenContext.h>
namespace at::cuda {
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
#if CUDA_HAS_GREEN_CONTEXT
int driver_version;
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
TORCH_CHECK(
driver_version >= 12080, "cuda driver too old to use green context!");
CUcontext pctx = nullptr;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
if (C10_UNLIKELY(!pctx)) {
TORCH_WARN(
"Attempted to create a green context but"
" there was no primary context! Creating a primary context...");
cudaFree(0);
}
CUdevice device;
device_id_ = device_id;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
// Get device resources
CUdevResource device_resource;
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
// Split resources
std::vector<CUdevResource> result(1);
auto result_data = result.data();
unsigned int nb_groups = 1;
CUdevResource remaining;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
result_data,
&nb_groups,
&device_resource,
&remaining,
0, // default flags
num_sms));
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
// Generate resource descriptor
CUdevResourceDesc desc;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
&desc, result_data, 1));
// Create green context
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
// Convert to regular context
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
std::unique_ptr<GreenContext> GreenContext::create(
uint32_t num_sms,
std::optional<uint32_t> device_id) {
#if CUDA_HAS_GREEN_CONTEXT
if (!device_id.has_value()) {
device_id = at::cuda::current_device();
}
return std::make_unique<GreenContext>(device_id.value(), num_sms);
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
// Implement move operations
GreenContext::GreenContext(GreenContext&& other) noexcept{
#if CUDA_HAS_GREEN_CONTEXT
device_id_ = std::exchange(other.device_id_, -1);
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
context_ = std::exchange(other.context_, nullptr);
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
#if CUDA_HAS_GREEN_CONTEXT
if (this != &other) {
// Clean up current resources
if (green_ctx_) {
CUcontext current = nullptr;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&current));
if (current == context_) {
TORCH_CHECK(
false,
"attempting to overwrite current green ctx "
"when it is active!");
}
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
}
// Take ownership of other's resources
device_id_ = std::exchange(other.device_id_, -1);
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
context_ = std::exchange(other.context_, nullptr);
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
}
return *this;
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
GreenContext::~GreenContext() noexcept{
#if CUDA_HAS_GREEN_CONTEXT
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
// Get the underlying CUDA context
CUcontext GreenContext::getContext() const {
#if CUDA_HAS_GREEN_CONTEXT
return context_;
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
// Get the underlying green context
#if CUDA_HAS_GREEN_CONTEXT
CUgreenCtx GreenContext::getGreenContext() const {
return green_ctx_;
}
#endif
// Make this context current
void GreenContext::setContext() {
#if CUDA_HAS_GREEN_CONTEXT
auto current_stream = c10::cuda::getCurrentCUDAStream();
parent_stream_ = current_stream.stream();
at::cuda::CUDAEvent ev;
ev.record(current_stream);
CUcontext current = nullptr;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&current));
if (!current) {
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_));
} else {
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_));
}
// currently hardcodes the new green context to use the default stream
// TODO(eqy): consider creating a new stream if e.g., it allows interop
// with CUDA Graph captures etc.
auto default_stream = c10::cuda::getDefaultCUDAStream();
ev.block(default_stream);
c10::cuda::setCurrentCUDAStream(default_stream);
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
void GreenContext::popContext() {
#if CUDA_HAS_GREEN_CONTEXT
// see above note about stream being hardcoded to the default stream
at::cuda::CUDAEvent ev;
ev.record(c10::cuda::getCurrentCUDAStream());
CUcontext popped;
C10_CUDA_DRIVER_CHECK(
c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped));
TORCH_INTERNAL_ASSERT(
popped == context_, "expected popped context to be the current ctx");
ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_));
#else
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
#endif
}
} // namespace at::cuda

View File

@ -1,53 +0,0 @@
#pragma once
#include <ATen/cuda/CUDAEvent.h>
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
#include <c10/cuda/driver_api.h>
#include <cuda.h>
#include <memory>
#include <stdexcept>
#include <vector>
#define CUDA_HAS_GREEN_CONTEXT 1
#else
#define CUDA_HAS_GREEN_CONTEXT 0
#endif
namespace at::cuda {
class TORCH_CUDA_CPP_API GreenContext {
public:
GreenContext(uint32_t device_id, uint32_t num_sms);
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
// Delete copy constructor and assignment
GreenContext(const GreenContext&) = delete;
GreenContext& operator=(const GreenContext&) = delete;
// Implement move operations
GreenContext(GreenContext&& other) noexcept;
GreenContext& operator=(GreenContext&& other) noexcept;
~GreenContext() noexcept;
// Get the underlying CUDA context
CUcontext getContext() const;
// Get the underlying green context
#if CUDA_HAS_GREEN_CONTEXT
CUgreenCtx getGreenContext() const;
#endif
// Make this context current
void setContext();
void popContext();
private:
#if CUDA_HAS_GREEN_CONTEXT
int32_t device_id_ = -1;
CUgreenCtx green_ctx_ = nullptr;
CUcontext context_ = nullptr;
cudaStream_t parent_stream_ = nullptr;
#endif
};
} // namespace at::cuda

View File

@ -1,270 +0,0 @@
#include <cstdint>
#include <c10/util/typeid.h>
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#include <c10/util/Exception.h>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/OpMathType.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <ATen/cuda/tunable/TunableGemm.h>
#include <ATen/native/Resize.h>
#include <c10/util/MaybeOwned.h>
#include <ATen/native/GroupedMMUtils.h>
#include <ATen/native/cuda/RowwiseScaledMM.h>
#include <ATen/native/cuda/ScaledGroupMM.h>
#include <ATen/native/cuda/GroupMM.h>
#include <ATen/ceil_div.h>
#ifdef USE_FBGEMM_GENAI
#include <fbgemm_gpu/torch_ops.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_addmm_activation_native.h>
#include <ATen/ops/_efficientzerotensor.h>
#include <ATen/ops/_scaled_mm_native.h>
#include <ATen/ops/_unsafe_view_native.h>
#include <ATen/ops/abs.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/addmv_native.h>
#include <ATen/ops/baddbmm_native.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/copy_native.h>
#include <ATen/ops/dot_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_strided.h>
#include <ATen/ops/gelu.h>
#include <ATen/ops/max.h>
#include <ATen/ops/mm_native.h>
#include <ATen/ops/mul.h>
#include <ATen/ops/relu.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/scalar_tensor_native.h>
#include <ATen/ops/vdot_native.h>
#endif
using at::blas::ScalingType;
using at::blas::SwizzleType;
namespace at::cuda::scaled {
/**
* Both inputs must be fp8,
* Each needs a single scale, {Tensorwise (float)}
*/
bool check_tensorwise_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp8
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
return false;
}
// 1 scale each, {Tensorwise, float}
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x32, e8m0} for A & B
if (recipe_a[0] != ScalingType::TensorWise) return false;
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
if (recipe_b[0] != ScalingType::TensorWise) return false;
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
return true;
}
/**
* Both inputs must be fp8,
* Each needs scales, {Rowwise (float)}
*/
bool check_rowwise_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp8
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
return false;
}
// 1 scale each, {Tensorwise, float}
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {RowWise, dp32} for A & B
if (recipe_a[0] != ScalingType::RowWise) return false;
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
if (recipe_b[0] != ScalingType::RowWise) return false;
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
return true;
}
/**
* Two-level scaling, canonical NVFP4
* Both inputs must be fp4
* A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)}
*/
bool check_nvfp4_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp4
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
return false;
}
// 2 scales, 2 recipes for each input
if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) {
return false;
}
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false;
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false;
if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false;
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false;
return true;
}
/**
* Single-level scaling, what PyT currently understands
* Both inputs must be fp4
* A, B need 1 scale, {Blockwise_1x16 (e4m3)}
*/
bool check_nvfp4_recipe_single_scale
(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp4
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
return false;
}
// 2 scales, 2 recipes for each input
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
if (recipe_a[0] != ScalingType::BlockWise1x16) return false;
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
if (recipe_b[0] != ScalingType::BlockWise1x16) return false;
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
return true;
}
/**
* Both inputs must be fp8
* A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float)
*/
bool check_deepseek_recipe(ScalingType expected_recipe_a,
ScalingType expected_recipe_b,
c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp8
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
return false;
}
// 1 scales, 1 recipes for each input
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B
if (recipe_a[0] != expected_recipe_a) return false;
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
if (recipe_b[0] != expected_recipe_b) return false;
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
return true;
}
/**
* Both inputs must be fp8
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
*/
bool check_mxfp8_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp8
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
return false;
}
// 1 scales, 1 recipes for each input
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x32, e8m0} for A & B
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
return true;
}
/**
* Both inputs must be fp4
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
*/
bool check_mxfp4_recipe(c10::ScalarType type_a,
std::vector<ScalingType>& recipe_a,
ArrayRef<Tensor>& scales_a,
c10::ScalarType type_b,
std::vector<ScalingType>& recipe_b,
ArrayRef<Tensor>& scales_b) {
// both types must be fp4
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
return false;
}
// 1 scales, 1 recipes for each input
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
return false;
}
// Need {Blockwise_1x32, e8m0} for A & B
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
return true;
}
} // namespace at::native::cuda::blas::scaled

View File

@ -1,174 +0,0 @@
#include <cstdint>
#include <c10/util/typeid.h>
#include <c10/util/Exception.h>
#include <c10/util/SmallVector.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#include <c10/util/Exception.h>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/OpMathType.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <ATen/cuda/tunable/TunableGemm.h>
#include <ATen/native/Resize.h>
#include <c10/util/MaybeOwned.h>
#include <ATen/native/GroupedMMUtils.h>
#include <ATen/native/cuda/RowwiseScaledMM.h>
#include <ATen/native/cuda/ScaledGroupMM.h>
#include <ATen/native/cuda/GroupMM.h>
#include <ATen/ceil_div.h>
#ifdef USE_FBGEMM_GENAI
#include <fbgemm_gpu/torch_ops.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_addmm_activation_native.h>
#include <ATen/ops/_efficientzerotensor.h>
#include <ATen/ops/_scaled_mm_native.h>
#include <ATen/ops/_unsafe_view_native.h>
#include <ATen/ops/abs.h>
#include <ATen/ops/addmm_native.h>
#include <ATen/ops/addmv_native.h>
#include <ATen/ops/baddbmm_native.h>
#include <ATen/ops/bmm_native.h>
#include <ATen/ops/copy_native.h>
#include <ATen/ops/dot_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_strided.h>
#include <ATen/ops/gelu.h>
#include <ATen/ops/max.h>
#include <ATen/ops/mm_native.h>
#include <ATen/ops/mul.h>
#include <ATen/ops/relu.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/scalar_tensor_native.h>
#include <ATen/ops/vdot_native.h>
#endif
using at::blas::ScalingType;
using at::blas::SwizzleType;
namespace at::cuda::scaled {
static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) {
#ifdef USE_ROCM
static const std::vector<std::string> archs = {
"gfx942",
#if ROCM_VERSION >= 60300
"gfx1200", "gfx1201",
#endif
#if ROCM_VERSION >= 60500
"gfx950"
#endif
};
return at::detail::getCUDAHooks().isGPUArch(archs);
#else
auto dprops = at::cuda::getCurrentDeviceProperties();
if (sm90_only || sm100_only) {
return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10);
} else {
return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9);
}
#endif
}
#ifdef USE_ROCM
static bool _scaled_mm_is_fnuz() {
return at::detail::getCUDAHooks().isGPUArch({"gfx942"});
}
#endif
/**
* Track concrete implementations available
*/
enum class ScaledGemmImplementation {
NONE = 0,
TENSORWISE_TENSORWISE = 1,
ROWWISE_ROWWISE = 2,
BLOCK_128x128_1x128 = 3,
BLOCK_1x128_128x128 = 4,
BLOCK_1x128_1x128 = 5,
MXFP8_MXFP8 = 6,
NVFP4_NVFP4 = 7,
NVFP4_NVFP4_SINGLE_SCALE = 8,
MXFP4_MXFP4 = 9,
};
/**
* Convert passed int (enum) from python back into a
* strictly-typed enum
*/
template <class EnumType, class ArrayType>
std::vector<EnumType> convert_int_to_enum(ArrayType& v) {
std::vector<EnumType> converted;
converted.reserve(v.size());
for (auto vi : v) {
converted.push_back(static_cast<EnumType>(vi));
}
return converted;
}
bool check_tensorwise_recipe(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_rowwise_recipe(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_nvfp4_recipe(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_nvfp4_recipe_single_scale
(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_deepseek_recipe(ScalingType,
ScalingType,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_mxfp8_recipe(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
bool check_mxfp4_recipe(c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&,
c10::ScalarType,
std::vector<ScalingType>&,
ArrayRef<Tensor>&);
} // namespace at::native::cuda::blas::scaled

View File

@ -137,7 +137,7 @@ struct CUDACachingHostAllocatorImpl
void free_block_slowpath(Block* block) {
auto start = std::chrono::steady_clock::now();
// Users may change the allocator config at will. torch unit tests do this.
// However, allocations using cudaHostRegister should use corresponding
// However, allocations using cudaHostRegister should use corresonding
// cudaHostUnregister and similarly for cudaHostAlloc / cudaFreeHost.
void* ptr = block->ptr_;
bool use_register = false;

View File

@ -70,7 +70,11 @@
#define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max()
#endif
#if defined(USE_ROCM)
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
#if !defined(USE_ROCM)
namespace at_cuda_detail {
#endif
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
@ -92,6 +96,10 @@ template <>
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
#if !defined(USE_ROCM)
} // namespace at_cuda_detail
#endif
#endif
#if !defined(USE_ROCM)
@ -113,7 +121,7 @@ struct cuda_type<c10::Half> {
using type = __half;
};
#if !defined(USE_ROCM)
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
template<>
struct cuda_type<c10::BFloat16> {
@ -195,6 +203,36 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
}
#if !CUB_SUPPORTS_FUTURE_VALUE()
template<typename ValueT, typename InputIteratorT>
struct chained_iterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = ValueT;
using pointer = ValueT*;
using reference = ValueT&;
InputIteratorT iter;
ValueT *first;
difference_type offset = 0;
__device__ ValueT operator[](difference_type i) {
i += offset;
if (i == 0) {
return *first;
} else {
return ValueT(iter[i - 1]);
}
}
__device__ chained_iterator operator+(difference_type i) {
return chained_iterator{iter, first, i};
}
__device__ ValueT operator*() {
return (*this)[0];
}
};
#endif
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
// so split at int_max/2
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
@ -239,6 +277,25 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
first_elem_ptr,
scan_op);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#if !CUB_SUPPORTS_FUTURE_VALUE()
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
using tuple = typename ArgIndexInputIterator::value_type;
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
if (x.key == 0) {
return *first_elem_ptr;
} else {
return x.value;
}
};
auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)(
ArgIndexInputIterator(input + i), input_iter_transform);
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
input_,
output + i,
scan_op,
size_cub,
at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
input + i + 1,
output + i,
@ -246,6 +303,7 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
size_cub,
at::cuda::getCurrentCUDAStream());
#endif
}
#endif
}
@ -497,6 +555,16 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
first_elem_ptr,
scan_op);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#if !CUB_SUPPORTS_FUTURE_VALUE()
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
input + i, first_elem_ptr};
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
input_,
output + i,
scan_op,
size_cub,
at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
input + i,
output + i,
@ -504,6 +572,7 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
size_cub,
at::cuda::getCurrentCUDAStream());
#endif
}
#endif
}

View File

@ -4,7 +4,7 @@
#include <ATen/cuda/CUDAConfig.h>
// NOTE: These templates are intentionally not defined in this header,
// which avoids re-compiling them for each translation unit. If you get
// which aviods re-compiling them for each translation unit. If you get
// a link error, you need to add an explicit instantiation for your
// types in cub.cu

View File

@ -10,6 +10,14 @@
#define CUB_VERSION 200001
#endif
// cub sort support for __nv_bfloat16 is added to cub 1.13 in:
// https://github.com/NVIDIA/cub/pull/306
#if CUB_VERSION >= 101300
#define CUB_SUPPORTS_NV_BFLOAT16() true
#else
#define CUB_SUPPORTS_NV_BFLOAT16() false
#endif
// cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in:
// https://github.com/NVIDIA/cub/pull/326
// CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake
@ -20,6 +28,14 @@
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
#endif
// cub support for cub::FutureValue is added to cub 1.15 in:
// https://github.com/NVIDIA/cub/pull/305
#if CUB_VERSION >= 101500
#define CUB_SUPPORTS_FUTURE_VALUE() true
#else
#define CUB_SUPPORTS_FUTURE_VALUE() false
#endif
// There were many bc-breaking changes in major version release of CCCL v3.0.0
// Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html
#if CUB_VERSION >= 200800

View File

@ -38,7 +38,7 @@ GemmTunableOp_float_NT,nt_25088_4096_64,1219,1.262
GemmTunableOp_float_NT,nt_4096_4096_64,1216,0.033
```
Note the "Validator" lines. If you change a library version, or ROCm version, or PyTorch version, TunableOp will detect
Note the "Validator" lines. If you change a library verison, or ROCm version, or PyTorch version, TunableOp will detect
this and reject the tunings file because the prior tunings are likely affected by other software changes.
The remaining lines are the tuned solutions for each TunableOp encountered during your execution. Each line consists of

View File

@ -235,7 +235,7 @@ class TunableOp {
// numeric check option is controlled by non-static env var, so check it once per tuned operator
bool do_numerics_check = ctx->IsNumericsCheckEnabled();
// calculate a reference answer for numerical check
// calcaulte a reference answer for numerical check
if (do_numerics_check) {
reference_params = params->DeepCopy(false);
TORCH_CHECK(ops_[ResultEntry::Default()]->Call(reference_params) == OK);

View File

@ -12,7 +12,7 @@ namespace at {
// AcceleratorHooksInterface is a shared interface provided by all
// accelerators to allow generic code.
// This interface is hook-based as it corresponds to all the functions
// This inferface is hook-based as it corresponds to all the functions
// that are going to be called in a generic way from the CPU code.
struct TORCH_API AcceleratorHooksInterface {

View File

@ -38,7 +38,7 @@ struct TORCH_API PrivateUse1HooksInterface : AcceleratorHooksInterface {
Generator getNewGenerator(
[[maybe_unused]] DeviceIndex device_index = -1) const override {
// TODO(FFFrog): Preserved for BC and will be removed in the future.
// TODO(FFFrog): Perserved for BC and will be removed in the future.
if (at::GetGeneratorPrivate().has_value())
return at::GetGeneratorForPrivateuse1(device_index);

View File

@ -1,23 +0,0 @@
#include <ATen/detail/XLAHooksInterface.h>
namespace at {
namespace detail {
const XLAHooksInterface& getXLAHooks() {
auto create_impl = [] {
// Create XLA hooks using the registry
auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{});
if (hooks) {
return hooks;
}
// If hooks creation fails, fall back to default implementation
return std::make_unique<XLAHooksInterface>();
};
static auto hooks = create_impl();
return *hooks;
}
} // namespace detail
C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs)
} // namespace at

View File

@ -1,79 +0,0 @@
#pragma once
#include <c10/core/Device.h>
#include <c10/util/Exception.h>
#include <c10/util/Registry.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter")
namespace at {
constexpr const char* XLA_HELP =
"This error has occurred because you are trying "
"to use some XLA functionality, but the XLA library has not been "
"loaded by the dynamic linker. You must load xla libraries by `import torch_xla`";
struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface {
~XLAHooksInterface() override = default;
void init() const override {
TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP);
}
virtual bool hasXLA() const {
return false;
}
virtual std::string showConfig() const {
TORCH_CHECK(
false,
"Cannot query detailed XLA version without torch_xla library. ",
XLA_HELP);
}
const Generator& getDefaultGenerator(
[[maybe_unused]] DeviceIndex device_index = -1) const override {
TORCH_CHECK(
false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP);
}
Generator getNewGenerator(
[[maybe_unused]] DeviceIndex device_index = -1) const override {
TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP);
}
virtual DeviceIndex getCurrentDevice() const override {
TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP);
}
Device getDeviceFromPtr(void* /*data*/) const override {
TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP);
}
Allocator* getPinnedMemoryAllocator() const override {
TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP);
}
bool isPinnedPtr(const void* data) const override {
return false;
}
bool hasPrimaryContext(DeviceIndex device_index) const override {
TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP);
}
};
struct TORCH_API XLAHooksArgs {};
TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs);
#define REGISTER_XLA_HOOKS(clsname) \
C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname)
namespace detail {
TORCH_API const XLAHooksInterface& getXLAHooks();
} // namespace detail
} // namespace at
C10_DIAGNOSTIC_POP()

View File

@ -283,7 +283,7 @@ inline void boxed_existing_bdim_all_batch_rule(
// Use when all tensors arguments accept one (normal) batch dim.
// This batching rule expands the batch dim on all Tensors, reshapes it into
// dim 0, calls the op, and then reshapes the batch dim out of dim 0.
// This is not the most efficient thing; if there are alternatives, please try
// This is not the most efficient thing; if there are alternatives, plese try
// to use them. Use this only as a last resort.
#define EXISTING_BDIM_ALL_BOXED(op) \
m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>());

View File

@ -384,7 +384,7 @@ fourOutputs solve_ex_batch_rule(
// NOTE [ solve_ex Batch Rule Contiguity ]
// A determines whether or not linalg_solve takes an optimized path. We need the check on A_ to match the one run on
// A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behavior
// A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behvaior
// differs based on whether or not the optimized path was taken
const auto batched_A_was_contiguous = A_bdim.has_value() ? at::select(A, *A_bdim, 0).is_contiguous() : A.is_contiguous();
if (batched_A_was_contiguous && !A.is_complex()) {

View File

@ -282,7 +282,7 @@ static std::tuple<Tensor, std::optional<int64_t>> _softmax_backward_batch_rule(
dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim);
// Not sure why output_ needs to be marked as .contiguous(). Something must
// Not sure why output_ needs to be marked as .contiguous(). Someting must
// have changed in PyTorch (and output of softmax is probably always contiguous)
return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0);
}

View File

@ -224,7 +224,7 @@ static Tensor safeStack(TensorList tensors) {
// is possible for the backward function to return an undefined grad for some
// grad_input for each example. In that case, we return an undefined grad.
//
// It is theoretically possible for *some* of the examples to produce an
// It is theoretically posssible for *some* of the examples to produce an
// undefined grad (a kernel could peek at the gradient values and return an
// undefined tensor if it determines the gradient is full of zeros). We
// could handle this by treating the undefined grad as a zero-filled tensor

View File

@ -113,7 +113,7 @@ SymIntArrayRef BatchedTensorImpl::sym_sizes_custom() const {
return sym_sizes_default();
}
// The following are publicly exposed as methods of Tensor
// The following are publically exposed as methods of Tensor
IntArrayRef BatchedTensorImpl::strides_custom() const {
return strides_default();

View File

@ -37,7 +37,7 @@ namespace at::functorch {
// how to perform the transform.
//
// TODO: we can excise DynamicLayer in favor of Interpreter,
// But I am going to leave it for now as a compatibility shim to avoid
// But I am going to leave it for now as a compatiblity shim to avoid
// needing to refactor a lot of callsites...
struct TORCH_API DynamicLayer {
explicit DynamicLayer(

View File

@ -88,7 +88,7 @@ std::ostream& operator<<(std::ostream& os, const TransformType& t);
// >>> VmapInterpreterPtr(&interpreter).batchSize()
//
// Finally, Interpreter::process switches on the type of the interpreter
// and calls one of {Transform}Interpreter::processImpl under the hood.
// and calls one of {Transform}Intepreter::processImpl under the hood.
// Same for Interpreter::sendToNextInterpreter :)
struct VmapInterpreterMeta {

View File

@ -733,7 +733,7 @@ TORCH_LIBRARY_IMPL(_, FuncTorchBatched, m) {
}
TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) {
// still legacy b/c returns multiple tensors
// still legacy b/c teturns multiple tensors
m.impl("split.Tensor", split_batching_rule);
m.impl("split_with_sizes", split_with_sizes_batching_rule);
m.impl("split_with_sizes_copy", split_with_sizes_copy_batching_rule);

View File

@ -158,7 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
endKernelCoalescing();
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
// For some reason fillBufferfor stopped working for length > 4Gb on MacOS 26
// For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26
// See https://github.com/pytorch/pytorch/issues/163962
// Workaround by batching copy commands into 4Gb chunks
constexpr size_t max_copy_size = 0x100000000; // 4GB

View File

@ -3620,7 +3620,7 @@ Tensor& _int_mm_out_cpu(const Tensor& self, const Tensor& mat2, Tensor& result)
try {
mkldnn_matmul_i8i8i32(self, mat2, result);
dispatched = true;
} catch ([[maybe_unused]] const std::exception& e) {
} catch (const std::exception& e) {
TORCH_WARN(func_name, " failed, switching to BLAS gemm: ", e.what());
}
}

View File

@ -148,7 +148,7 @@ inline void checkInputsSolver(const Tensor& A,
inline bool is_row_or_column_contiguous(const Tensor& t) {
// This could be made more general, similar to how it's checked in matmul, which would allow to
// elide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky.
// ellide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky.
// We choose to be conservative for simplicity
return t.is_contiguous() || t.transpose(-2, -1).is_contiguous();
}

View File

@ -11,8 +11,6 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto
"pixel_shuffle expects a positive upscale_factor, but got ",
upscale_factor);
int64_t c = self.size(-3);
TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor,
"upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor);
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
TORCH_CHECK(c % upscale_factor_squared == 0,
"pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "

View File

@ -21,7 +21,7 @@ enum class fft_norm_mode {
// NOTE [ Fourier Transform Conjugate Symmetry ]
//
// Real-to-complex Fourier transform satisfies the conjugate symmetry. That is,
// assuming X is the transformed K-dimensional signal, we have
// assuming X is the transformed K-dimensionsal signal, we have
//
// X[i_1, ..., i_K] = X[j_i, ..., j_K]*,
//

View File

@ -141,6 +141,8 @@ void compute_triu_tril(const Tensor& self, int64_t k, const Tensor &result) {
return;
}
checkTrilTriuMemoryOverlap(result, self);
bool inplace_op = self.is_same(result);
bool inplace_update = false;

View File

@ -1,3 +1,4 @@
#include <ATen/MemoryOverlap.h>
#include <ATen/core/Tensor.h>
#include <ATen/native/LinearAlgebraUtils.h>
@ -54,4 +55,13 @@ static inline std::tuple<bool, Tensor> checkTrilTriuBatchContiguous(const Tensor
return std::make_tuple(true, tensor);
}
static inline void checkTrilTriuMemoryOverlap(const Tensor& result, const Tensor& self) {
if (result.is_same(self)) {
at::assert_no_internal_overlap(result);
} else {
at::assert_no_internal_overlap(result);
at::assert_no_overlap(result, self);
}
}
} // namespace at::native

View File

@ -128,7 +128,7 @@ at::Tensor PackedLinearWeight::apply_impl(
auto* input_tr_ptr =
reinterpret_cast<uint8_t*>(input_tr.data_ptr<c10::quint8>());
// TODO: Activation transpose before and after the kernel can be removed if we
// keep activation tensor always transposed.
// keep activation tensor always tranposed.
fbgemm::transpose_simd<uint8_t>(
batch_size, K, input_ptr, K, input_tr_ptr, batch_size);

View File

@ -520,7 +520,7 @@ cpu_adaptive_avg_pool3d_channels_last(
scalar_t* out = output_data + i * channels;
int64_t size = channels;
// Note: For ordinary usage scenario, each out lane should
// Note: For oridinary usage scenario, each out lane should
// fit in L1 cache; otherwise consider block dim C.
// Pass I: zero the out lane
int64_t d1 = 0;

View File

@ -259,20 +259,11 @@ inline void winograd_f2k3_input_transform_inplace__rvv(
const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4);
const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4);
const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4);
/* GCC 14.2 (RISC-V RVV) ICE workaround:
* Avoid single-statement read-modify-write on MEM_REF like:
* *input_tile_val =
* __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
* This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin)
* with -march=rv64gcv. Use a temporary then write back.
* Do NOT refactor into the single-statement form. Clang is unaffected.
*/
vfloat32m1x4_t tmp_input_tile_val = *input_tile_val;
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0);
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1);
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2);
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3);
*input_tile_val = tmp_input_tile_val;
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0);
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1);
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2);
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3);
}
inline void winograd_f2k3_output_transform_inplace__rvv(
@ -286,15 +277,9 @@ inline void winograd_f2k3_output_transform_inplace__rvv(
const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4);
const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4);
const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4);
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
* Keep the temporary + write-back pattern to avoid ICE.
* Do NOT rewrite into:
* *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
*/
vfloat32m1x4_t tmp_output_tile_val = *input_tile_val;
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0);
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1);
*input_tile_val = tmp_output_tile_val;
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0);
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1);
}
inline vfloat32m1_t
@ -315,17 +300,11 @@ inline void winograd_f2k3_kernel_transform__rvv(
const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4);
const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4);
vfloat32m1_t half_g0_plus_g2 = __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4);
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
* Keep the temporary + write-back pattern to avoid ICE.
* Do NOT rewrite into:
* *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val);
*/
vfloat32m1x4_t tmp_transform = *transform;
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0);
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2);
*transform = tmp_transform;
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0);
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2);
}
inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) {

View File

@ -34,7 +34,7 @@ struct Dist {
// finish : This tells what to do with the aggregated value to compute
// the norm. Generally this is the result of val ^ (1 / p).
// backward : This is the gradient for that norm. Arguments are pretty
// self explanatory.
// self explanitory.
//
// There are a few cases where these aren't used. The 0 norm has no backward,
// because it's always 0, so that's shortcircuited earlier. There's a special

Some files were not shown because too many files have changed in this diff Show More