mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-01 04:48:43 +08:00 
			
		
		
		
	Compare commits
	
		
			3 Commits
		
	
	
		
			gh/anijain
			...
			cpp-docs-d
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 5b6cc8215f | |||
| 1c43c9cfd0 | |||
| 102e0d5437 | 
| @ -129,7 +129,7 @@ function install_129 { | |||||||
| } | } | ||||||
|  |  | ||||||
| function install_128 { | function install_128 { | ||||||
|   CUDNN_VERSION=9.10.2.21 |   CUDNN_VERSION=9.8.0.87 | ||||||
|   echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1" |   echo "Installing CUDA 12.8.1 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1" | ||||||
|   # install CUDA 12.8.1 in the same container |   # install CUDA 12.8.1 in the same container | ||||||
|   install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux |   install_cuda 12.8.1 cuda_12.8.1_570.124.06_linux | ||||||
|  | |||||||
| @ -19,7 +19,7 @@ pip_install \ | |||||||
|   transformers==4.36.2 |   transformers==4.36.2 | ||||||
|  |  | ||||||
| pip_install coloredlogs packaging | pip_install coloredlogs packaging | ||||||
| pip_install onnxruntime==1.23.1 | pip_install onnxruntime==1.23.0 | ||||||
| pip_install onnxscript==0.5.4 | pip_install onnxscript==0.5.4 | ||||||
|  |  | ||||||
| # Cache the transformers model to be used later by ONNX tests. We need to run the transformers | # Cache the transformers model to be used later by ONNX tests. We need to run the transformers | ||||||
|  | |||||||
| @ -334,12 +334,12 @@ sympy==1.13.3 | |||||||
| #Pinned versions: | #Pinned versions: | ||||||
| #test that import: | #test that import: | ||||||
|  |  | ||||||
| onnx==1.19.1 | onnx==1.18.0 | ||||||
| #Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal | #Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal | ||||||
| #Pinned versions: | #Pinned versions: | ||||||
| #test that import: | #test that import: | ||||||
|  |  | ||||||
| onnxscript==0.5.4 | onnxscript==0.5.3 | ||||||
| #Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal | #Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal | ||||||
| #Pinned versions: | #Pinned versions: | ||||||
| #test that import: | #test that import: | ||||||
|  | |||||||
| @ -1,15 +1,11 @@ | |||||||
| sphinx==5.3.0 | sphinx==7.2.6 | ||||||
| #Description: This is used to generate PyTorch docs | #Description: This is used to generate PyTorch docs | ||||||
| #Pinned versions: 5.3.0 | #Pinned versions: 7.2.6 | ||||||
|  |  | ||||||
| standard-imghdr==3.13.0; python_version >= "3.13" | pytorch_sphinx_theme2==0.1.0 | ||||||
| #Description: This is needed by Sphinx, so it needs to be added here. | #Description: This is needed to generate PyTorch docs | ||||||
| # The reasons are as follows: | #Pinned versions: 0.1.0 | ||||||
| # 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr); |  | ||||||
| # 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13. |  | ||||||
| # Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency. |  | ||||||
|  |  | ||||||
| -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2 |  | ||||||
| # TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering | # TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering | ||||||
| # but it doesn't seem to work and hangs around idly. The initial thought that it is probably | # but it doesn't seem to work and hangs around idly. The initial thought that it is probably | ||||||
| # something related to Docker setup. We can investigate this later. | # something related to Docker setup. We can investigate this later. | ||||||
| @ -36,17 +32,17 @@ tensorboard==2.18.0 ; python_version >= "3.13" | |||||||
| #Description: This is used to generate PyTorch docs | #Description: This is used to generate PyTorch docs | ||||||
| #Pinned versions: 2.13.0 | #Pinned versions: 2.13.0 | ||||||
|  |  | ||||||
| breathe==4.34.0 | breathe==4.36.0 | ||||||
| #Description: This is used to generate PyTorch C++ docs | #Description: This is used to generate PyTorch C++ docs | ||||||
| #Pinned versions: 4.34.0 | #Pinned versions: 4.36.0 | ||||||
|  |  | ||||||
| exhale==0.2.3 | exhale==0.3.7 | ||||||
| #Description: This is used to generate PyTorch C++ docs | #Description: This is used to generate PyTorch C++ docs | ||||||
| #Pinned versions: 0.2.3 | #Pinned versions: 0.3.7 | ||||||
|  |  | ||||||
| docutils==0.16 | docutils==0.20 | ||||||
| #Description: This is used to generate PyTorch C++ docs | #Description: This is used to generate PyTorch C++ docs | ||||||
| #Pinned versions: 0.16 | #Pinned versions: 0.20 | ||||||
|  |  | ||||||
| bs4==0.0.1 | bs4==0.0.1 | ||||||
| #Description: This is used to generate PyTorch C++ docs | #Description: This is used to generate PyTorch C++ docs | ||||||
| @ -56,13 +52,13 @@ IPython==8.12.0 | |||||||
| #Description: This is used to generate PyTorch functorch docs | #Description: This is used to generate PyTorch functorch docs | ||||||
| #Pinned versions: 8.12.0 | #Pinned versions: 8.12.0 | ||||||
|  |  | ||||||
| myst-nb==0.17.2 | myst-nb==1.3.0 | ||||||
| #Description: This is used to generate PyTorch functorch and torch.compile docs. | #Description: This is used to generate PyTorch functorch and torch.compile docs. | ||||||
| #Pinned versions: 0.17.2 | #Pinned versions: 1.3.0 | ||||||
|  |  | ||||||
| # The following are required to build torch.distributed.elastic.rendezvous.etcd* docs | # The following are required to build torch.distributed.elastic.rendezvous.etcd* docs | ||||||
| python-etcd==0.4.5 | python-etcd==0.4.5 | ||||||
| sphinx-copybutton==0.5.0 | sphinx-copybutton==0.5.0 | ||||||
| sphinx-design==0.4.0 | sphinx-design==0.6.1 | ||||||
| sphinxcontrib-mermaid==1.0.0 | sphinxcontrib-mermaid==1.0.0 | ||||||
| myst-parser==0.18.1 | myst-parser==4.0.1 | ||||||
|  | |||||||
| @ -6,7 +6,7 @@ dependencies = [ | |||||||
|     "GitPython==3.1.45", |     "GitPython==3.1.45", | ||||||
|     "docker==7.1.0", |     "docker==7.1.0", | ||||||
|     "pytest==7.3.2", |     "pytest==7.3.2", | ||||||
|     "uv==0.9.5" |     "uv==0.8.6" | ||||||
| ] | ] | ||||||
|  |  | ||||||
| [tool.setuptools] | [tool.setuptools] | ||||||
|  | |||||||
| @ -102,8 +102,18 @@ if [ "$is_main_doc" = true ]; then | |||||||
|     echo coverage output not found |     echo coverage output not found | ||||||
|     exit 1 |     exit 1 | ||||||
|   elif [ $undocumented -gt 0 ]; then |   elif [ $undocumented -gt 0 ]; then | ||||||
|     echo undocumented objects found: |     echo "======================================" | ||||||
|  |     echo "ERROR: $undocumented undocumented objects found!" | ||||||
|  |     echo "======================================" | ||||||
|  |     echo "" | ||||||
|  |     echo "Full coverage report:" | ||||||
|     cat build/coverage/python.txt |     cat build/coverage/python.txt | ||||||
|  |     echo "" | ||||||
|  |     echo "======================================" | ||||||
|  |     echo "Undocumented modules/objects (lines after TOTAL):" | ||||||
|  |     tail -n +$((lines - undocumented + 1)) build/coverage/python.txt | ||||||
|  |     echo "======================================" | ||||||
|  |     echo "" | ||||||
|     echo "Make sure you've updated relevant .rsts in docs/source!" |     echo "Make sure you've updated relevant .rsts in docs/source!" | ||||||
|     echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'" |     echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'" | ||||||
|     exit 1 |     exit 1 | ||||||
|  | |||||||
| @ -272,18 +272,6 @@ def smoke_test_cuda( | |||||||
|         torch_cudnn_version = cudnn_to_version_str(torch.backends.cudnn.version()) |         torch_cudnn_version = cudnn_to_version_str(torch.backends.cudnn.version()) | ||||||
|         print(f"Torch cuDNN version: {torch_cudnn_version}") |         print(f"Torch cuDNN version: {torch_cudnn_version}") | ||||||
|  |  | ||||||
|         torch_cudnn_compile_version = torch._C._cudnn.getCompileVersion() |  | ||||||
|         print(f"Torch cuDNN compile-time version: {torch_cudnn_compile_version}") |  | ||||||
|         torch_cudnn_runtime_version = tuple( |  | ||||||
|             [int(x) for x in torch_cudnn_version.split(".")] |  | ||||||
|         ) |  | ||||||
|         if torch_cudnn_runtime_version != torch_cudnn_compile_version: |  | ||||||
|             raise RuntimeError( |  | ||||||
|                 "cuDNN runtime version doesn't match comple version. " |  | ||||||
|                 f"Loaded: {torch_cudnn_runtime_version} " |  | ||||||
|                 f"Expected: {torch_cudnn_compile_version}" |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|         if sys.platform in ["linux", "linux2"]: |         if sys.platform in ["linux", "linux2"]: | ||||||
|             torch_nccl_version = ".".join(str(v) for v in torch.cuda.nccl.version()) |             torch_nccl_version = ".".join(str(v) for v in torch.cuda.nccl.version()) | ||||||
|             print(f"Torch nccl; version: {torch_nccl_version}") |             print(f"Torch nccl; version: {torch_nccl_version}") | ||||||
|  | |||||||
| @ -1,354 +0,0 @@ | |||||||
| # PyTorch Docstring Writing Guide |  | ||||||
|  |  | ||||||
| This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`. |  | ||||||
|  |  | ||||||
| ## General Principles |  | ||||||
|  |  | ||||||
| - Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes |  | ||||||
| - Follow **Sphinx/reStructuredText** (reST) format for documentation |  | ||||||
| - Be **concise but complete** - include all essential information |  | ||||||
| - Always include **examples** when possible |  | ||||||
| - Use **cross-references** to related functions/classes |  | ||||||
|  |  | ||||||
| ## Docstring Structure |  | ||||||
|  |  | ||||||
| ### 1. Function Signature (First Line) |  | ||||||
|  |  | ||||||
| Start with the function signature showing all parameters: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| **Notes:** |  | ||||||
| - Include the function name |  | ||||||
| - Show positional and keyword-only arguments (use `*` separator) |  | ||||||
| - Include default values |  | ||||||
| - Show return type annotation |  | ||||||
| - This line should NOT end with a period |  | ||||||
|  |  | ||||||
| ### 2. Brief Description |  | ||||||
|  |  | ||||||
| Provide a one-line description of what the function does: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor |  | ||||||
|  |  | ||||||
| Applies a 2D convolution over an input image composed of several input |  | ||||||
| planes. |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### 3. Mathematical Formulas (if applicable) |  | ||||||
|  |  | ||||||
| Use Sphinx math directives for mathematical expressions: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| .. math:: |  | ||||||
|     \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| Or inline math: `:math:\`x^2\`` |  | ||||||
|  |  | ||||||
| ### 4. Cross-References |  | ||||||
|  |  | ||||||
| Link to related classes and functions using Sphinx roles: |  | ||||||
|  |  | ||||||
| - `:class:\`~torch.nn.ModuleName\`` - Link to a class |  | ||||||
| - `:func:\`torch.function_name\`` - Link to a function |  | ||||||
| - `:meth:\`~Tensor.method_name\`` - Link to a method |  | ||||||
| - `:attr:\`attribute_name\`` - Reference an attribute |  | ||||||
| - The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`) |  | ||||||
|  |  | ||||||
| **Example:** |  | ||||||
| ```python |  | ||||||
| See :class:`~torch.nn.Conv2d` for details and output shape. |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### 5. Notes and Warnings |  | ||||||
|  |  | ||||||
| Use admonitions for important information: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| .. note:: |  | ||||||
|     This function doesn't work directly with NLLLoss, |  | ||||||
|     which expects the Log to be computed between the Softmax and itself. |  | ||||||
|     Use log_softmax instead (it's faster and has better numerical properties). |  | ||||||
|  |  | ||||||
| .. warning:: |  | ||||||
|     :func:`new_tensor` always copies :attr:`data`. If you have a Tensor |  | ||||||
|     ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` |  | ||||||
|     or :func:`torch.Tensor.detach`. |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### 6. Args Section |  | ||||||
|  |  | ||||||
| Document all parameters with type annotations and descriptions: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| Args: |  | ||||||
|     input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` |  | ||||||
|     weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)` |  | ||||||
|     bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None`` |  | ||||||
|     stride (int or tuple): the stride of the convolving kernel. Can be a single number or a |  | ||||||
|       tuple `(sH, sW)`. Default: 1 |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| **Formatting rules:** |  | ||||||
| - Parameter name in **lowercase** |  | ||||||
| - Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters |  | ||||||
| - Description follows the type |  | ||||||
| - For optional parameters, include "Default: ``value``" at the end |  | ||||||
| - Use double backticks for inline code: ``` ``None`` ``` |  | ||||||
| - Indent continuation lines by 2 spaces |  | ||||||
|  |  | ||||||
| ### 7. Keyword Args Section (if applicable) |  | ||||||
|  |  | ||||||
| Sometimes keyword arguments are documented separately: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| Keyword args: |  | ||||||
|     dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. |  | ||||||
|         Default: if None, same :class:`torch.dtype` as this tensor. |  | ||||||
|     device (:class:`torch.device`, optional): the desired device of returned tensor. |  | ||||||
|         Default: if None, same :class:`torch.device` as this tensor. |  | ||||||
|     requires_grad (bool, optional): If autograd should record operations on the |  | ||||||
|         returned tensor. Default: ``False``. |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### 8. Returns Section (if needed) |  | ||||||
|  |  | ||||||
| Document the return value: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| Returns: |  | ||||||
|     Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. |  | ||||||
|         If ``hard=True``, the returned samples will be one-hot, otherwise they will |  | ||||||
|         be probability distributions that sum to 1 across `dim`. |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| Or simply include it in the function signature line if obvious from context. |  | ||||||
|  |  | ||||||
| ### 9. Examples Section |  | ||||||
|  |  | ||||||
| Always include examples when possible: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| Examples:: |  | ||||||
|  |  | ||||||
|     >>> inputs = torch.randn(33, 16, 30) |  | ||||||
|     >>> filters = torch.randn(20, 16, 5) |  | ||||||
|     >>> F.conv1d(inputs, filters) |  | ||||||
|  |  | ||||||
|     >>> # With square kernels and equal stride |  | ||||||
|     >>> filters = torch.randn(8, 4, 3, 3) |  | ||||||
|     >>> inputs = torch.randn(1, 4, 5, 5) |  | ||||||
|     >>> F.conv2d(inputs, filters, padding=1) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| **Formatting rules:** |  | ||||||
| - Use `Examples::` with double colon |  | ||||||
| - Use `>>>` prompt for Python code |  | ||||||
| - Include comments with `#` when helpful |  | ||||||
| - Show actual output when it helps understanding (indent without `>>>`) |  | ||||||
|  |  | ||||||
| ### 10. External References |  | ||||||
|  |  | ||||||
| Link to papers or external documentation: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| .. _Link Name: |  | ||||||
|     https://arxiv.org/abs/1611.00712 |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| Reference them in text: ```See `Link Name`_``` |  | ||||||
|  |  | ||||||
| ## Method Types |  | ||||||
|  |  | ||||||
| ### Native Python Functions |  | ||||||
|  |  | ||||||
| For regular Python functions, use a standard docstring: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| def relu(input: Tensor, inplace: bool = False) -> Tensor: |  | ||||||
|     r"""relu(input, inplace=False) -> Tensor |  | ||||||
|  |  | ||||||
|     Applies the rectified linear unit function element-wise. See |  | ||||||
|     :class:`~torch.nn.ReLU` for more details. |  | ||||||
|     """ |  | ||||||
|     # implementation |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### C-Bound Functions (using add_docstr) |  | ||||||
|  |  | ||||||
| For C-bound functions, use `_add_docstr`: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| conv1d = _add_docstr( |  | ||||||
|     torch.conv1d, |  | ||||||
|     r""" |  | ||||||
| conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor |  | ||||||
|  |  | ||||||
| Applies a 1D convolution over an input signal composed of several input |  | ||||||
| planes. |  | ||||||
|  |  | ||||||
| See :class:`~torch.nn.Conv1d` for details and output shape. |  | ||||||
|  |  | ||||||
| Args: |  | ||||||
|     input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)` |  | ||||||
|     weight: filters of shape :math:`(\text{out\_channels} , kW)` |  | ||||||
|     ... |  | ||||||
| """, |  | ||||||
| ) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### In-Place Variants |  | ||||||
|  |  | ||||||
| For in-place operations (ending with `_`), reference the original: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| add_docstr_all( |  | ||||||
|     "abs_", |  | ||||||
|     r""" |  | ||||||
| abs_() -> Tensor |  | ||||||
|  |  | ||||||
| In-place version of :meth:`~Tensor.abs` |  | ||||||
| """, |  | ||||||
| ) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### Alias Functions |  | ||||||
|  |  | ||||||
| For aliases, simply reference the original: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| add_docstr_all( |  | ||||||
|     "absolute", |  | ||||||
|     r""" |  | ||||||
| absolute() -> Tensor |  | ||||||
|  |  | ||||||
| Alias for :func:`abs` |  | ||||||
| """, |  | ||||||
| ) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ## Common Patterns |  | ||||||
|  |  | ||||||
| ### Shape Documentation |  | ||||||
|  |  | ||||||
| Use LaTeX math notation for tensor shapes: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)` |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### Reusable Argument Definitions |  | ||||||
|  |  | ||||||
| For commonly used arguments, define them once and reuse: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| common_args = parse_kwargs( |  | ||||||
|     """ |  | ||||||
|     dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. |  | ||||||
|         Default: if None, same as this tensor. |  | ||||||
| """ |  | ||||||
| ) |  | ||||||
|  |  | ||||||
| # Then use with .format(): |  | ||||||
| r""" |  | ||||||
| ... |  | ||||||
|  |  | ||||||
| Keyword args: |  | ||||||
|     {dtype} |  | ||||||
|     {device} |  | ||||||
| """.format(**common_args) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ### Template Insertion |  | ||||||
|  |  | ||||||
| Insert reproducibility notes or other common text: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| r""" |  | ||||||
| {tf32_note} |  | ||||||
|  |  | ||||||
| {cudnn_reproducibility_note} |  | ||||||
| """.format(**reproducibility_notes, **tf32_notes) |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ## Complete Example |  | ||||||
|  |  | ||||||
| Here's a complete example showing all elements: |  | ||||||
|  |  | ||||||
| ```python |  | ||||||
| def gumbel_softmax( |  | ||||||
|     logits: Tensor, |  | ||||||
|     tau: float = 1, |  | ||||||
|     hard: bool = False, |  | ||||||
|     eps: float = 1e-10, |  | ||||||
|     dim: int = -1, |  | ||||||
| ) -> Tensor: |  | ||||||
|     r""" |  | ||||||
|     Sample from the Gumbel-Softmax distribution and optionally discretize. |  | ||||||
|  |  | ||||||
|     Args: |  | ||||||
|         logits (Tensor): `[..., num_features]` unnormalized log probabilities |  | ||||||
|         tau (float): non-negative scalar temperature |  | ||||||
|         hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors, |  | ||||||
|               but will be differentiated as if it is the soft sample in autograd. Default: ``False`` |  | ||||||
|         dim (int): A dimension along which softmax will be computed. Default: -1 |  | ||||||
|  |  | ||||||
|     Returns: |  | ||||||
|         Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. |  | ||||||
|             If ``hard=True``, the returned samples will be one-hot, otherwise they will |  | ||||||
|             be probability distributions that sum to 1 across `dim`. |  | ||||||
|  |  | ||||||
|     .. note:: |  | ||||||
|         This function is here for legacy reasons, may be removed from nn.Functional in the future. |  | ||||||
|  |  | ||||||
|     Examples:: |  | ||||||
|         >>> logits = torch.randn(20, 32) |  | ||||||
|         >>> # Sample soft categorical using reparametrization trick: |  | ||||||
|         >>> F.gumbel_softmax(logits, tau=1, hard=False) |  | ||||||
|         >>> # Sample hard categorical using "Straight-through" trick: |  | ||||||
|         >>> F.gumbel_softmax(logits, tau=1, hard=True) |  | ||||||
|  |  | ||||||
|     .. _Link 1: |  | ||||||
|         https://arxiv.org/abs/1611.00712 |  | ||||||
|     """ |  | ||||||
|     # implementation |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| ## Quick Checklist |  | ||||||
|  |  | ||||||
| When writing a PyTorch docstring, ensure: |  | ||||||
|  |  | ||||||
| - [ ] Use raw string (`r"""`) |  | ||||||
| - [ ] Include function signature on first line |  | ||||||
| - [ ] Provide brief description |  | ||||||
| - [ ] Document all parameters in Args section with types |  | ||||||
| - [ ] Include default values for optional parameters |  | ||||||
| - [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`) |  | ||||||
| - [ ] Add mathematical formulas if applicable |  | ||||||
| - [ ] Include at least one example in Examples section |  | ||||||
| - [ ] Add warnings/notes for important caveats |  | ||||||
| - [ ] Link to related module class with `:class:` |  | ||||||
| - [ ] Use proper math notation for tensor shapes |  | ||||||
| - [ ] Follow consistent formatting and indentation |  | ||||||
|  |  | ||||||
| ## Common Sphinx Roles Reference |  | ||||||
|  |  | ||||||
| - `:class:\`~torch.nn.Module\`` - Class reference |  | ||||||
| - `:func:\`torch.function\`` - Function reference |  | ||||||
| - `:meth:\`~Tensor.method\`` - Method reference |  | ||||||
| - `:attr:\`attribute\`` - Attribute reference |  | ||||||
| - `:math:\`equation\`` - Inline math |  | ||||||
| - `:ref:\`label\`` - Internal reference |  | ||||||
| - ``` ``code`` ``` - Inline code (use double backticks) |  | ||||||
|  |  | ||||||
| ## Additional Notes |  | ||||||
|  |  | ||||||
| - **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions |  | ||||||
| - **Line length**: Try to keep lines under 100 characters when possible |  | ||||||
| - **Periods**: End sentences with periods, but not the signature line |  | ||||||
| - **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ``` |  | ||||||
| - **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc. |  | ||||||
							
								
								
									
										7
									
								
								.github/actions/setup-rocm/action.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										7
									
								
								.github/actions/setup-rocm/action.yml
									
									
									
									
										vendored
									
									
								
							| @ -124,10 +124,3 @@ runs: | |||||||
|       id: login-ecr |       id: login-ecr | ||||||
|       continue-on-error: true |       continue-on-error: true | ||||||
|       uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1 |       uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1 | ||||||
|  |  | ||||||
|     - name: Preserve github env variables for use in docker |  | ||||||
|       shell: bash |  | ||||||
|       run: | |  | ||||||
|         env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" |  | ||||||
|         env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" |  | ||||||
|         env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}" |  | ||||||
|  | |||||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/vision.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | |||||||
| 1752fe6809b74921644866275ab80244b96e80bc | faffd5cf673615583da6517275e361cb3dbc77e6 | ||||||
|  | |||||||
							
								
								
									
										2
									
								
								.github/ci_commit_pins/xla.txt
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/ci_commit_pins/xla.txt
									
									
									
									
										vendored
									
									
								
							| @ -1 +1 @@ | |||||||
| df6798dfb931ce7c7fe5bed2447cd1092a5981af | 0fa6e3129e61143224663e1ec67980d12b7ec4eb | ||||||
|  | |||||||
							
								
								
									
										5
									
								
								.github/ci_configs/vllm/Dockerfile
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										5
									
								
								.github/ci_configs/vllm/Dockerfile
									
									
									
									
										vendored
									
									
								
							| @ -283,9 +283,6 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \ | |||||||
|         uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \ |         uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \ | ||||||
|     fi |     fi | ||||||
|  |  | ||||||
| RUN --mount=type=cache,target=/root/.cache/uv \ |  | ||||||
|     uv pip install --system --pre apache-tvm-ffi==0.1.0b15 |  | ||||||
|  |  | ||||||
| # Install the vllm wheel from previous stage | # Install the vllm wheel from previous stage | ||||||
| RUN --mount=type=cache,target=/root/.cache/uv \ | RUN --mount=type=cache,target=/root/.cache/uv \ | ||||||
|     uv pip install --system /wheels/vllm/*.whl --verbose |     uv pip install --system /wheels/vllm/*.whl --verbose | ||||||
| @ -298,8 +295,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \ | |||||||
| ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0' | ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0' | ||||||
| ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list} | ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list} | ||||||
|  |  | ||||||
| # TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip |  | ||||||
| # see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784 |  | ||||||
| ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git" | ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git" | ||||||
| ARG FLASHINFER_GIT_REF="v0.2.14.post1" | ARG FLASHINFER_GIT_REF="v0.2.14.post1" | ||||||
|  |  | ||||||
|  | |||||||
							
								
								
									
										9
									
								
								.github/label_to_label.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										9
									
								
								.github/label_to_label.yml
									
									
									
									
										vendored
									
									
								
							| @ -15,11 +15,6 @@ | |||||||
|   - "module: reinplacing" |   - "module: reinplacing" | ||||||
|   then: |   then: | ||||||
|   - "module: pt2-dispatcher" |   - "module: pt2-dispatcher" | ||||||
| - any: |  | ||||||
|   - "vllm-compile" |  | ||||||
|   then: |  | ||||||
|   - "module: vllm" |  | ||||||
|   - "oncall: pt2" |  | ||||||
| - any: | - any: | ||||||
|   - "module: vmap" |   - "module: vmap" | ||||||
|   then: |   then: | ||||||
| @ -32,6 +27,10 @@ | |||||||
|   - "module: pt2 optimizer" |   - "module: pt2 optimizer" | ||||||
|   then: |   then: | ||||||
|   - "module: dynamo" |   - "module: dynamo" | ||||||
|  | - any: | ||||||
|  |   - "module: flex attention" | ||||||
|  |   then: | ||||||
|  |   - "module: higher order operators" | ||||||
| - any: | - any: | ||||||
|   - "module: aotinductor" |   - "module: aotinductor" | ||||||
|   then: |   then: | ||||||
|  | |||||||
							
								
								
									
										1
									
								
								.github/workflows/inductor-periodic.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/inductor-periodic.yml
									
									
									
									
										vendored
									
									
								
							| @ -88,6 +88,7 @@ jobs: | |||||||
|     with: |     with: | ||||||
|       build-environment: linux-jammy-rocm-py3_10 |       build-environment: linux-jammy-rocm-py3_10 | ||||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks |       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks | ||||||
|  |       sync-tag: rocm-build | ||||||
|       test-matrix: | |       test-matrix: | | ||||||
|         { include: [ |         { include: [ | ||||||
|           { config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" }, |           { config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" }, | ||||||
|  | |||||||
							
								
								
									
										15
									
								
								.github/workflows/periodic.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										15
									
								
								.github/workflows/periodic.yml
									
									
									
									
										vendored
									
									
								
							| @ -147,16 +147,15 @@ jobs: | |||||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" |       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||||
|       build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug |       build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug | ||||||
|       docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9 |       docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9 | ||||||
|       cuda-arch-list: 8.9 |  | ||||||
|       test-matrix: | |       test-matrix: | | ||||||
|         { include: [ |         { include: [ | ||||||
|           { config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|           { config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] }, |           { config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] }, | ||||||
|         ]} |         ]} | ||||||
|     secrets: inherit |     secrets: inherit | ||||||
|  |  | ||||||
|  | |||||||
							
								
								
									
										3
									
								
								.github/workflows/pull.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										3
									
								
								.github/workflows/pull.yml
									
									
									
									
										vendored
									
									
								
							| @ -347,8 +347,7 @@ jobs: | |||||||
|     uses: ./.github/workflows/_linux-build.yml |     uses: ./.github/workflows/_linux-build.yml | ||||||
|     needs: get-label-type |     needs: get-label-type | ||||||
|     with: |     with: | ||||||
|       # This should sync with the build in xpu.yml but xpu uses a larger runner |       sync-tag: linux-xpu-n-build | ||||||
|       # sync-tag: linux-xpu-n-build |  | ||||||
|       runner_prefix: ${{ needs.get-label-type.outputs.label-type }} |       runner_prefix: ${{ needs.get-label-type.outputs.label-type }} | ||||||
|       build-environment: linux-jammy-xpu-n-py3.10 |       build-environment: linux-jammy-xpu-n-py3.10 | ||||||
|       docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3 |       docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3 | ||||||
|  | |||||||
							
								
								
									
										1
									
								
								.github/workflows/rocm-mi300.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/rocm-mi300.yml
									
									
									
									
										vendored
									
									
								
							| @ -45,6 +45,7 @@ jobs: | |||||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" |       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||||
|       build-environment: linux-noble-rocm-py3.12-mi300 |       build-environment: linux-noble-rocm-py3.12-mi300 | ||||||
|       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 |       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 | ||||||
|  |       sync-tag: rocm-build | ||||||
|       test-matrix: | |       test-matrix: | | ||||||
|         { include: [ |         { include: [ | ||||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" }, |           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" }, | ||||||
|  | |||||||
							
								
								
									
										1
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.github/workflows/rocm-mi355.yml
									
									
									
									
										vendored
									
									
								
							| @ -42,6 +42,7 @@ jobs: | |||||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" |       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" | ||||||
|       build-environment: linux-noble-rocm-py3.12-mi355 |       build-environment: linux-noble-rocm-py3.12-mi355 | ||||||
|       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 |       docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3 | ||||||
|  |       sync-tag: rocm-build | ||||||
|       test-matrix: | |       test-matrix: | | ||||||
|         { include: [ |         { include: [ | ||||||
|           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, |           { config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" }, | ||||||
|  | |||||||
							
								
								
									
										12
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/rocm-navi31.yml
									
									
									
									
										vendored
									
									
								
							| @ -26,23 +26,11 @@ jobs: | |||||||
|       id-token: write |       id-token: write | ||||||
|       contents: read |       contents: read | ||||||
|  |  | ||||||
|   get-label-type: |  | ||||||
|     name: get-label-type |  | ||||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main |  | ||||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} |  | ||||||
|     with: |  | ||||||
|       triggering_actor: ${{ github.triggering_actor }} |  | ||||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} |  | ||||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} |  | ||||||
|       curr_ref_type: ${{ github.ref_type }} |  | ||||||
|  |  | ||||||
|   linux-jammy-rocm-py3_10-build: |   linux-jammy-rocm-py3_10-build: | ||||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} |     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||||
|     name: linux-jammy-rocm-py3.10 |     name: linux-jammy-rocm-py3.10 | ||||||
|     uses: ./.github/workflows/_linux-build.yml |     uses: ./.github/workflows/_linux-build.yml | ||||||
|     needs: get-label-type |  | ||||||
|     with: |     with: | ||||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" |  | ||||||
|       build-environment: linux-jammy-rocm-py3.10 |       build-environment: linux-jammy-rocm-py3.10 | ||||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 |       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||||
|       sync-tag: rocm-build |       sync-tag: rocm-build | ||||||
|  | |||||||
							
								
								
									
										12
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								.github/workflows/rocm.yml
									
									
									
									
										vendored
									
									
								
							| @ -26,23 +26,11 @@ jobs: | |||||||
|       id-token: write |       id-token: write | ||||||
|       contents: read |       contents: read | ||||||
|  |  | ||||||
|   get-label-type: |  | ||||||
|     name: get-label-type |  | ||||||
|     uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main |  | ||||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} |  | ||||||
|     with: |  | ||||||
|       triggering_actor: ${{ github.triggering_actor }} |  | ||||||
|       issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }} |  | ||||||
|       curr_branch: ${{ github.head_ref || github.ref_name }} |  | ||||||
|       curr_ref_type: ${{ github.ref_type }} |  | ||||||
|  |  | ||||||
|   linux-jammy-rocm-py3_10-build: |   linux-jammy-rocm-py3_10-build: | ||||||
|     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} |     if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }} | ||||||
|     name: linux-jammy-rocm-py3.10 |     name: linux-jammy-rocm-py3.10 | ||||||
|     uses: ./.github/workflows/_linux-build.yml |     uses: ./.github/workflows/_linux-build.yml | ||||||
|     needs: get-label-type |  | ||||||
|     with: |     with: | ||||||
|       runner_prefix: "${{ needs.get-label-type.outputs.label-type }}" |  | ||||||
|       build-environment: linux-jammy-rocm-py3.10 |       build-environment: linux-jammy-rocm-py3.10 | ||||||
|       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 |       docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3 | ||||||
|       sync-tag: rocm-build |       sync-tag: rocm-build | ||||||
|  | |||||||
							
								
								
									
										149
									
								
								.github/workflows/trunk-tagging.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										149
									
								
								.github/workflows/trunk-tagging.yml
									
									
									
									
										vendored
									
									
								
							| @ -58,10 +58,8 @@ jobs: | |||||||
|           else |           else | ||||||
|             COMMIT_SHA="${{ github.sha }}" |             COMMIT_SHA="${{ github.sha }}" | ||||||
|           fi |           fi | ||||||
|           { |           echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}" | ||||||
|             echo "sha=${COMMIT_SHA}" |           echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}" | ||||||
|             echo "tag_name=trunk/${COMMIT_SHA}" |  | ||||||
|           } >> "${GITHUB_OUTPUT}" |  | ||||||
|  |  | ||||||
|       - name: Validate commit SHA |       - name: Validate commit SHA | ||||||
|         run: | |         run: | | ||||||
| @ -89,7 +87,7 @@ jobs: | |||||||
|             echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)" |             echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)" | ||||||
|           fi |           fi | ||||||
|  |  | ||||||
|       - name: Create and push tag(s) with retry |       - name: Create and push tag with retry | ||||||
|         id: check_tag |         id: check_tag | ||||||
|         env: |         env: | ||||||
|           TAG_NAME: ${{ steps.commit.outputs.tag_name }} |           TAG_NAME: ${{ steps.commit.outputs.tag_name }} | ||||||
| @ -114,23 +112,14 @@ jobs: | |||||||
|             return 1 |             return 1 | ||||||
|           } |           } | ||||||
|  |  | ||||||
|           # Counters for summary reporting |           # Exit early if tag already exists | ||||||
|           created_count=0 |           if check_tag_exists; then | ||||||
|           skipped_count=0 |             echo "✅ Tag already exists - no action needed" | ||||||
|           failed_count=0 |             echo "exists=true" >> "${GITHUB_OUTPUT}" | ||||||
|  |             exit 0 | ||||||
|  |           fi | ||||||
|  |  | ||||||
|           # Always write outputs once on exit |           echo "Tag ${TAG_NAME} does not exist, proceeding with creation" | ||||||
|           finish() { |  | ||||||
|             set +e |  | ||||||
|             if [ -n "${GITHUB_OUTPUT:-}" ]; then |  | ||||||
|               { |  | ||||||
|                 echo "created_count=${created_count}" |  | ||||||
|                 echo "skipped_count=${skipped_count}" |  | ||||||
|                 echo "failed_count=${failed_count}" |  | ||||||
|               } >> "${GITHUB_OUTPUT}" |  | ||||||
|             fi |  | ||||||
|           } |  | ||||||
|           trap finish EXIT |  | ||||||
|  |  | ||||||
|           # Retry configuration |           # Retry configuration | ||||||
|           MAX_RETRIES=5 |           MAX_RETRIES=5 | ||||||
| @ -205,111 +194,31 @@ jobs: | |||||||
|             } |             } | ||||||
|           } |           } | ||||||
|  |  | ||||||
|           # New behavior for push events: enumerate commits in the push and tag each one. |           # Execute with retry | ||||||
|           # For workflow_dispatch, retain existing single-SHA behavior. |           if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then | ||||||
|  |             echo "exists=false" >> "${GITHUB_OUTPUT}" | ||||||
|           # Always fetch tags once up front to improve idempotency in loops |  | ||||||
|           git fetch origin --tags --quiet || true |  | ||||||
|  |  | ||||||
|           if [ "${{ github.event_name }}" = "push" ]; then |  | ||||||
|             BEFORE_SHA="${{ github.event.before }}" |  | ||||||
|             AFTER_SHA="${{ github.sha }}"  # same as event.after |  | ||||||
|  |  | ||||||
|             # List commits introduced by this push (old..new), oldest first for stable ordering |  | ||||||
|             commits_file="$(mktemp)" |  | ||||||
|             git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}" |  | ||||||
|  |  | ||||||
|             if [ ! -s "${commits_file}" ]; then |  | ||||||
|               echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag." |  | ||||||
|               rm -f "${commits_file}" |  | ||||||
|               exit 0 |  | ||||||
|             fi |  | ||||||
|  |  | ||||||
|             commit_count="$(wc -l < "${commits_file}" | tr -d ' ')" |  | ||||||
|             echo "Found ${commit_count} commit(s) to tag for push:" |  | ||||||
|             while IFS= read -r sha; do |  | ||||||
|               printf '  %s\n' "${sha}" |  | ||||||
|             done < "${commits_file}" |  | ||||||
|  |  | ||||||
|             while IFS= read -r sha; do |  | ||||||
|               TAG_NAME="trunk/${sha}" |  | ||||||
|               COMMIT_SHA="${sha}" |  | ||||||
|  |  | ||||||
|               # If tag already exists locally or remotely, skip (idempotent) |  | ||||||
|               if check_tag_exists; then |  | ||||||
|                 echo "✅ Tag ${TAG_NAME} already exists - skipping" |  | ||||||
|                 skipped_count=$((skipped_count + 1)) |  | ||||||
|                 continue |  | ||||||
|               fi |  | ||||||
|  |  | ||||||
|               echo "Tag ${TAG_NAME} does not exist, proceeding with creation" |  | ||||||
|  |  | ||||||
|               if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then |  | ||||||
|                 created_count=$((created_count + 1)) |  | ||||||
|               else |  | ||||||
|                 echo "Tag creation failed after all retry attempts for ${TAG_NAME}" |  | ||||||
|                 failed_count=$((failed_count + 1)) |  | ||||||
|               fi |  | ||||||
|             done < "${commits_file}" |  | ||||||
|  |  | ||||||
|             rm -f "${commits_file}" |  | ||||||
|  |  | ||||||
|             if [ "${failed_count}" -gt 0 ]; then |  | ||||||
|               exit 1 |  | ||||||
|             fi |  | ||||||
|             exit 0 |             exit 0 | ||||||
|           else |           else | ||||||
|             # workflow_dispatch path (single SHA tagging preserved) |             echo "Tag creation failed after all retry attempts" | ||||||
|  |             exit 1 | ||||||
|             # Exit early if tag already exists |  | ||||||
|             if check_tag_exists; then |  | ||||||
|               echo "✅ Tag already exists - no action needed" |  | ||||||
|               skipped_count=1 |  | ||||||
|               exit 0 |  | ||||||
|             fi |  | ||||||
|  |  | ||||||
|             echo "Tag ${TAG_NAME} does not exist, proceeding with creation" |  | ||||||
|  |  | ||||||
|             if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then |  | ||||||
|               created_count=1 |  | ||||||
|               exit 0 |  | ||||||
|             else |  | ||||||
|               echo "Tag creation failed after all retry attempts" |  | ||||||
|               failed_count=1 |  | ||||||
|               exit 1 |  | ||||||
|             fi |  | ||||||
|           fi |           fi | ||||||
|  |  | ||||||
|       - name: Tag creation summary |       - name: Tag creation summary | ||||||
|         if: always() |         if: always() | ||||||
|         run: | |         run: | | ||||||
|           if [ "${{ github.event_name }}" = "push" ]; then |           if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then | ||||||
|             echo "Trigger: push on main" |             echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed" | ||||||
|             echo "Created: ${{ steps.check_tag.outputs.created_count }}" |           elif [ "${{ job.status }}" = "success" ]; then | ||||||
|             echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}" |             echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}" | ||||||
|             echo "Failed: ${{ steps.check_tag.outputs.failed_count }}" |  | ||||||
|             if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then |  | ||||||
|               echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}" |  | ||||||
|             else |  | ||||||
|               echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}" |  | ||||||
|             fi |  | ||||||
|           else |           else | ||||||
|             if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then |             echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}" | ||||||
|               if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then |           fi | ||||||
|                 echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed" |  | ||||||
|               else |           echo "" | ||||||
|                 echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}" |           echo "Tag details:" | ||||||
|               fi |           echo "  Name: ${{ steps.commit.outputs.tag_name }}" | ||||||
|             else |           echo "  Commit: ${{ steps.commit.outputs.sha }}" | ||||||
|               echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}" |           echo "  Trigger: ${{ github.event_name }}" | ||||||
|             fi |           if [ -n "${{ github.event.inputs.commit_sha }}" ]; then | ||||||
|  |             echo "  Manual commit: ${{ github.event.inputs.commit_sha }}" | ||||||
|             echo "" |  | ||||||
|             echo "Tag details:" |  | ||||||
|             echo "  Name: ${{ steps.commit.outputs.tag_name }}" |  | ||||||
|             echo "  Commit: ${{ steps.commit.outputs.sha }}" |  | ||||||
|             echo "  Trigger: ${{ github.event_name }}" |  | ||||||
|             if [ -n "${{ github.event.inputs.commit_sha }}" ]; then |  | ||||||
|               echo "  Manual commit: ${{ github.event.inputs.commit_sha }}" |  | ||||||
|             fi |  | ||||||
|           fi |           fi | ||||||
|  | |||||||
| @ -833,7 +833,8 @@ exclude_patterns = [ | |||||||
| command = [ | command = [ | ||||||
|     'python3', |     'python3', | ||||||
|     'tools/linter/adapters/grep_linter.py', |     'tools/linter/adapters/grep_linter.py', | ||||||
|     '--pattern=(cudaSetDevice|cudaGetDevice)\\(', |     '--pattern=cudaSetDevice(', | ||||||
|  |     '--pattern=cudaGetDevice(', | ||||||
|     '--linter-name=RAWCUDADEVICE', |     '--linter-name=RAWCUDADEVICE', | ||||||
|     '--error-name=raw CUDA API usage', |     '--error-name=raw CUDA API usage', | ||||||
|     """--error-description=\ |     """--error-description=\ | ||||||
| @ -1137,8 +1138,11 @@ command = [ | |||||||
| [[linter]] | [[linter]] | ||||||
| code = 'WORKFLOWSYNC' | code = 'WORKFLOWSYNC' | ||||||
| include_patterns = [ | include_patterns = [ | ||||||
|     '.github/workflows/*.yml', |     '.github/workflows/pull.yml', | ||||||
|     '.github/workflows/*.yaml', |     '.github/workflows/trunk.yml', | ||||||
|  |     '.github/workflows/periodic.yml', | ||||||
|  |     '.github/workflows/mac-mps.yml', | ||||||
|  |     '.github/workflows/slow.yml', | ||||||
| ] | ] | ||||||
| command = [ | command = [ | ||||||
|     'python3', |     'python3', | ||||||
|  | |||||||
| @ -31,9 +31,9 @@ Be careful when running untrusted models. This classification includes models cr | |||||||
|  |  | ||||||
| **Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing). | **Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing). | ||||||
|  |  | ||||||
| **Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details. | **Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) with `weights_only=True` is also secure to our knowledge even though it offers significantly larger surface of attack. Loading un-trusted checkpoint with `weights_only=False` MUST never be done. | ||||||
|  |  | ||||||
|  |  | ||||||
| Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs. |  | ||||||
|  |  | ||||||
| Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance. | Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance. | ||||||
|  |  | ||||||
|  | |||||||
| @ -38,7 +38,7 @@ set_bool(AT_HIPSPARSELT_ENABLED CAFFE2_USE_HIPSPARSELT) | |||||||
|  |  | ||||||
| configure_file(Config.h.in "${CMAKE_CURRENT_SOURCE_DIR}/Config.h") | configure_file(Config.h.in "${CMAKE_CURRENT_SOURCE_DIR}/Config.h") | ||||||
| # TODO: Do not generate CUDAConfig.h for ROCm BUILDS | # TODO: Do not generate CUDAConfig.h for ROCm BUILDS | ||||||
| # At the moment, `jit_macros.h` include CUDAConfig.h for both CUDA and HIP builds | # At the moment, `jit_macors.h` include CUDAConfig.h for both CUDA and HIP builds | ||||||
| if(USE_CUDA OR USE_ROCM) | if(USE_CUDA OR USE_ROCM) | ||||||
|   configure_file(cuda/CUDAConfig.h.in "${CMAKE_CURRENT_SOURCE_DIR}/cuda/CUDAConfig.h") |   configure_file(cuda/CUDAConfig.h.in "${CMAKE_CURRENT_SOURCE_DIR}/cuda/CUDAConfig.h") | ||||||
| endif() | endif() | ||||||
| @ -289,15 +289,14 @@ IF(USE_FBGEMM_GENAI) | |||||||
|  |  | ||||||
|     set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON) |     set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON) | ||||||
|  |  | ||||||
|     set(fbgemm_genai_cuh |     set(fbgemm_genai_mx8mx8bf16_grouped | ||||||
|       "${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/" |       "${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/" | ||||||
|       "${FBGEMM_GENAI_SRCS}/" |  | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
|     target_include_directories(fbgemm_genai PRIVATE |     target_include_directories(fbgemm_genai PRIVATE | ||||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/include |       ${FBGEMM_THIRD_PARTY}/cutlass/include | ||||||
|       ${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include |       ${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include | ||||||
|       ${fbgemm_genai_cuh} |       ${fbgemm_genai_mx8mx8bf16_grouped} | ||||||
|       ${FBGEMM_GENAI_SRCS}/common/include/   # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp |       ${FBGEMM_GENAI_SRCS}/common/include/   # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp | ||||||
|       ${FBGEMM_GENAI_SRCS}/include/          # includes fbgemm_gpu/torch_ops.h |       ${FBGEMM_GENAI_SRCS}/include/          # includes fbgemm_gpu/torch_ops.h | ||||||
|     ) |     ) | ||||||
|  | |||||||
| @ -19,7 +19,6 @@ | |||||||
| #include <ATen/detail/MPSHooksInterface.h> | #include <ATen/detail/MPSHooksInterface.h> | ||||||
| #include <ATen/detail/MTIAHooksInterface.h> | #include <ATen/detail/MTIAHooksInterface.h> | ||||||
| #include <ATen/detail/PrivateUse1HooksInterface.h> | #include <ATen/detail/PrivateUse1HooksInterface.h> | ||||||
| #include <ATen/detail/XLAHooksInterface.h> |  | ||||||
| #include <ATen/detail/XPUHooksInterface.h> | #include <ATen/detail/XPUHooksInterface.h> | ||||||
| #include <c10/core/QEngine.h> | #include <c10/core/QEngine.h> | ||||||
| #include <c10/core/impl/DeviceGuardImplInterface.h> | #include <c10/core/impl/DeviceGuardImplInterface.h> | ||||||
| @ -89,8 +88,6 @@ class TORCH_API Context { | |||||||
|       return at::detail::getHIPHooks(); |       return at::detail::getHIPHooks(); | ||||||
|     } else if (opt_device_type == at::kHPU) { |     } else if (opt_device_type == at::kHPU) { | ||||||
|       return at::detail::getHPUHooks(); |       return at::detail::getHPUHooks(); | ||||||
|     } else if (opt_device_type == at::kXLA) { |  | ||||||
|       return at::detail::getXLAHooks(); |  | ||||||
|     } else { |     } else { | ||||||
|       TORCH_CHECK( |       TORCH_CHECK( | ||||||
|           false, |           false, | ||||||
| @ -199,7 +196,7 @@ class TORCH_API Context { | |||||||
|     return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU); |     return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU); | ||||||
|   } |   } | ||||||
|   static bool hasXLA() { |   static bool hasXLA() { | ||||||
|     return detail::getXLAHooks().hasXLA(); |     return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA); | ||||||
|   } |   } | ||||||
|   static bool hasXPU() { |   static bool hasXPU() { | ||||||
|     return detail::getXPUHooks().hasXPU(); |     return detail::getXPUHooks().hasXPU(); | ||||||
|  | |||||||
| @ -122,7 +122,7 @@ void FunctionalTensorWrapper::freeze_storage() const { | |||||||
| //          |   have their own storages, but backends like functorch      | | //          |   have their own storages, but backends like functorch      | | ||||||
| //         \/   are allowed to re-alias underneath the pass               \/ | //         \/   are allowed to re-alias underneath the pass               \/ | ||||||
| // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | ||||||
| // |    underlying_storage     |                             |      underlying_storage       | | // |    underyling_storage     |                             |      underyling_storage       | | ||||||
| // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | // . - - - - - - - - - - - - - .                             . - - - - - - - - - - - - - - - . | ||||||
| // | // | ||||||
| // This constructor is only used by view ops. | // This constructor is only used by view ops. | ||||||
|  | |||||||
| @ -1534,7 +1534,7 @@ void TensorIteratorBase::build(TensorIteratorConfig& config) { | |||||||
|  |  | ||||||
|   // XLA and lazy tensors don't have storage, so they don't have an underlying data pointer. |   // XLA and lazy tensors don't have storage, so they don't have an underlying data pointer. | ||||||
|   // Nothing beyond this point is important for meta functions, so it's fine to exit early here. |   // Nothing beyond this point is important for meta functions, so it's fine to exit early here. | ||||||
|   // Extend the condition to MAIA tensors as MAIA tensors also don't have storage. |   // Extend the condition to MAIA tesnors as MAIA tensors also don't have storage. | ||||||
|   if (privateuse1_without_storage  || |   if (privateuse1_without_storage  || | ||||||
|       common_device_.type() == DeviceType::XLA  || |       common_device_.type() == DeviceType::XLA  || | ||||||
|       common_device_.type() == DeviceType::IPU  || |       common_device_.type() == DeviceType::IPU  || | ||||||
|  | |||||||
| @ -94,11 +94,11 @@ struct PinnedReserveSegment { | |||||||
| struct TORCH_API HostStats { | struct TORCH_API HostStats { | ||||||
|   // COUNT: total allocations (active) |   // COUNT: total allocations (active) | ||||||
|   Stat active_requests; |   Stat active_requests; | ||||||
|   // SUM: bytes allocated/reserved by this memory allocator. (active) |   // SUM: bytes allocated/reserved by this memory alocator. (active) | ||||||
|   Stat active_bytes; |   Stat active_bytes; | ||||||
|   // COUNT: total allocations (active + free) |   // COUNT: total allocations (active + free) | ||||||
|   Stat allocations; |   Stat allocations; | ||||||
|   // SUM: bytes allocated/reserved by this memory allocator. This accounts |   // SUM: bytes allocated/reserved by this memory alocator. This accounts | ||||||
|   // for both free and in-use blocks. |   // for both free and in-use blocks. | ||||||
|   Stat allocated_bytes; |   Stat allocated_bytes; | ||||||
|  |  | ||||||
| @ -127,7 +127,7 @@ struct alignas(hardware_destructive_interference_size) HostStatsStaged { | |||||||
|   // COUNT: total allocations (active + free) |   // COUNT: total allocations (active + free) | ||||||
|   // LOCK: access to this stat is protected by the allocator's blocks_mutex_ |   // LOCK: access to this stat is protected by the allocator's blocks_mutex_ | ||||||
|   Stat allocations; |   Stat allocations; | ||||||
|   // SUM: bytes allocated/reserved by this memory allocator. This accounts |   // SUM: bytes allocated/reserved by this memory alocator. This accounts | ||||||
|   // for both free and in-use blocks. |   // for both free and in-use blocks. | ||||||
|   Stat allocated_bytes; |   Stat allocated_bytes; | ||||||
|   // COUNT: number of allocations per bucket (active) |   // COUNT: number of allocations per bucket (active) | ||||||
| @ -455,7 +455,7 @@ struct CachingHostAllocatorImpl { | |||||||
|   } |   } | ||||||
|  |  | ||||||
|   void resetAccumulatedStats() { |   void resetAccumulatedStats() { | ||||||
|     // Resetting accumulated memory stats requires concurrently holding both the |     // Reseting accumulated memory stats requires concurrently holding both the | ||||||
|     // free list mutexes and the blocks mutex. Previously, this was only done in |     // free list mutexes and the blocks mutex. Previously, this was only done in | ||||||
|     // empty_cache function. |     // empty_cache function. | ||||||
|     for (size_t i = 0; i < free_list_.size(); ++i) { |     for (size_t i = 0; i < free_list_.size(); ++i) { | ||||||
| @ -482,7 +482,7 @@ struct CachingHostAllocatorImpl { | |||||||
|   } |   } | ||||||
|  |  | ||||||
|   void resetPeakStats() { |   void resetPeakStats() { | ||||||
|     // Resetting peak memory stats requires concurrently holding both the |     // Reseting peak memory stats requires concurrently holding both the | ||||||
|     // free list mutexes and the blocks mutex. Previously, this was only done in |     // free list mutexes and the blocks mutex. Previously, this was only done in | ||||||
|     // empty_cache function. |     // empty_cache function. | ||||||
|     for (size_t i = 0; i < free_list_.size(); ++i) { |     for (size_t i = 0; i < free_list_.size(); ++i) { | ||||||
|  | |||||||
| @ -59,7 +59,9 @@ struct TORCH_API Generator { | |||||||
|  |  | ||||||
|   explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl) |   explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl) | ||||||
|    : impl_(std::move(gen_impl)) { |    : impl_(std::move(gen_impl)) { | ||||||
|     TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported"); |     if (impl_.get() == nullptr) { | ||||||
|  |       throw std::runtime_error("GeneratorImpl with nullptr is not supported"); | ||||||
|  |     } | ||||||
|   } |   } | ||||||
|  |  | ||||||
|   bool operator==(const Generator& rhs) const { |   bool operator==(const Generator& rhs) const { | ||||||
|  | |||||||
| @ -111,7 +111,9 @@ class TORCH_API TensorBase { | |||||||
|   explicit TensorBase( |   explicit TensorBase( | ||||||
|       c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) |       c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) | ||||||
|       : impl_(std::move(tensor_impl)) { |       : impl_(std::move(tensor_impl)) { | ||||||
|     TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported"); |     if (impl_.get() == nullptr) { | ||||||
|  |       throw std::runtime_error("TensorImpl with nullptr is not supported"); | ||||||
|  |     } | ||||||
|   } |   } | ||||||
|   TensorBase(const TensorBase&) = default; |   TensorBase(const TensorBase&) = default; | ||||||
|   TensorBase(TensorBase&&) noexcept = default; |   TensorBase(TensorBase&&) noexcept = default; | ||||||
|  | |||||||
| @ -109,10 +109,6 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) { | |||||||
|   m.fallback(AUTOGRAD_FALLBACK); |   m.fallback(AUTOGRAD_FALLBACK); | ||||||
| } | } | ||||||
|  |  | ||||||
| TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) { |  | ||||||
|   m.fallback(AUTOGRAD_FALLBACK); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| #undef AUTOGRAD_FALLBACK | #undef AUTOGRAD_FALLBACK | ||||||
|  |  | ||||||
| } // namespace | } // namespace | ||||||
|  | |||||||
| @ -148,7 +148,7 @@ struct TORCH_API ClassType : public NamedType { | |||||||
|  |  | ||||||
|   void checkNotExist(const std::string& name, const std::string& what) const; |   void checkNotExist(const std::string& name, const std::string& what) const; | ||||||
|  |  | ||||||
|   // Attributes are stored in a specific slot at runtime for efficiency. |   // Attributes are stored in a specific slot at runtime for effiency. | ||||||
|   // When emitting instructions we specify the slot so that attribute access is |   // When emitting instructions we specify the slot so that attribute access is | ||||||
|   // a constant lookup |   // a constant lookup | ||||||
|   std::optional<size_t> findAttributeSlot(const std::string& name) const { |   std::optional<size_t> findAttributeSlot(const std::string& name) const { | ||||||
| @ -412,7 +412,7 @@ struct TORCH_API ClassType : public NamedType { | |||||||
|   // Holds method attributes |   // Holds method attributes | ||||||
|   std::weak_ptr<CompilationUnit> compilation_unit_; |   std::weak_ptr<CompilationUnit> compilation_unit_; | ||||||
|  |  | ||||||
|   // Holds all attributes, attribute details are found on ClassAttribute |   // Holds all atrributes, attribute details are found on ClassAttribute | ||||||
|   std::vector<ClassAttribute> attributes_; |   std::vector<ClassAttribute> attributes_; | ||||||
|   // Construct mirroring attributes_, only around due to the fact that `containedTypes()` method returns an ArrayRef. |   // Construct mirroring attributes_, only around due to the fact that `containedTypes()` method returns an ArrayRef. | ||||||
|   // Never fill this without using the appropriate provideNewClassAttribute method |   // Never fill this without using the appropriate provideNewClassAttribute method | ||||||
|  | |||||||
| @ -442,17 +442,11 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker | |||||||
|  |  | ||||||
|   auto idx = getDispatchTableIndexForDispatchKey(dispatchKey); |   auto idx = getDispatchTableIndexForDispatchKey(dispatchKey); | ||||||
|   TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx); |   TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx); | ||||||
|   // NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time, |  | ||||||
|   // refer to https://github.com/pytorch/pytorch/issues/163979 for more informations. |  | ||||||
|   TORCH_CHECK( |   TORCH_CHECK( | ||||||
|       dispatchKey == DispatchKey::AutogradPrivateUse1 || |     !backendFallbackKernels_[idx].kernel.isValid(), | ||||||
|           !backendFallbackKernels_[idx].kernel.isValid(), |     "Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ", | ||||||
|       "Tried to register multiple backend fallbacks for the same dispatch key ", |     backendFallbackKernels_[idx].debug, ", new registration ", debug | ||||||
|       dispatchKey, |   ); | ||||||
|       "; previous registration ", |  | ||||||
|       backendFallbackKernels_[idx].debug, |  | ||||||
|       ", new registration ", |  | ||||||
|       debug); |  | ||||||
|   // NB: inferred function schema is always nullptr for fallbacks, as fallbacks |   // NB: inferred function schema is always nullptr for fallbacks, as fallbacks | ||||||
|   // cannot be unboxed |   // cannot be unboxed | ||||||
|   backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug)); |   backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug)); | ||||||
| @ -537,7 +531,7 @@ int64_t Dispatcher::sequenceNumberForRunningRecordFunction(DispatchKey dispatchK | |||||||
|  |  | ||||||
|   // Note: this records a sequence number for both Autograd keys, and for |   // Note: this records a sequence number for both Autograd keys, and for | ||||||
|   // non-Autograd keys where the dispatchKeySet still contains an autograd key. |   // non-Autograd keys where the dispatchKeySet still contains an autograd key. | ||||||
|   // This means that we might collect the same sequence number two different |   // This means that we might collect the same sequence nubmer two different | ||||||
|   // events if they all occurred above Autograd and still had the Autograd |   // events if they all occurred above Autograd and still had the Autograd | ||||||
|   // dispatch key in the dispatch key set. |   // dispatch key in the dispatch key set. | ||||||
|   // However, this usually doesn't happen: normally the first call will |   // However, this usually doesn't happen: normally the first call will | ||||||
|  | |||||||
| @ -585,7 +585,7 @@ class TORCH_API OperatorHandle { | |||||||
|  |  | ||||||
|   // We need to store this iterator in order to make |   // We need to store this iterator in order to make | ||||||
|   // Dispatcher::cleanup() fast -- it runs a lot on program |   // Dispatcher::cleanup() fast -- it runs a lot on program | ||||||
|   // termination (and presumably library unloading). |   // termination (and presuambly library unloading). | ||||||
|   std::list<Dispatcher::OperatorDef>::iterator operatorIterator_; |   std::list<Dispatcher::OperatorDef>::iterator operatorIterator_; | ||||||
| }; | }; | ||||||
|  |  | ||||||
|  | |||||||
| @ -365,7 +365,7 @@ std::pair<const AnnotatedKernel&, const char*> OperatorEntry::computeDispatchTab | |||||||
|   //          For autograd keys, we only use kernel from CompositeImplicitAutograd when there's no direct registration |   //          For autograd keys, we only use kernel from CompositeImplicitAutograd when there's no direct registration | ||||||
|   //          to its corresponding backend key or CompositeExplicitAutograd. See Note [CompositeExplicitAutograd and CompositeImplicitAutograd]. |   //          to its corresponding backend key or CompositeExplicitAutograd. See Note [CompositeExplicitAutograd and CompositeImplicitAutograd]. | ||||||
|   //          For AutogradOther, we eagerly return ambiguousAutogradOtherKernel() if there's registration to any of |   //          For AutogradOther, we eagerly return ambiguousAutogradOtherKernel() if there's registration to any of | ||||||
|   //          its backends and ask backend extender to request a dedicated Autograd key for the backend. |   //          its backends and ask backend extender to request a decicated Autograd key for the backend. | ||||||
|   //          See Note [Ambiguity in AutogradOther kernel] for more details. |   //          See Note [Ambiguity in AutogradOther kernel] for more details. | ||||||
|   //          A CompositeExplicitAutograd kernel prevents CompositeImplicitAutograd kernel being used for Autograd keys, but it doesn't |   //          A CompositeExplicitAutograd kernel prevents CompositeImplicitAutograd kernel being used for Autograd keys, but it doesn't | ||||||
|   //          cause confusion for AutogradOther. It's pretty straightforward to use Autograd (if available) |   //          cause confusion for AutogradOther. It's pretty straightforward to use Autograd (if available) | ||||||
|  | |||||||
| @ -261,7 +261,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) { | |||||||
|     // |     // | ||||||
|     // There are 2 cases |     // There are 2 cases | ||||||
|     // 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'. |     // 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'. | ||||||
|     // without the extra parenthesis, the c++ scheme parser can not parse it. |     // without the extra parenthesis, the c++ schem parser can not parse it. | ||||||
|     // 2. something like '-> ((str, str))'. Need extra parenthesis so the return |     // 2. something like '-> ((str, str))'. Need extra parenthesis so the return | ||||||
|     // type is a single tuple rather than two strings. |     // type is a single tuple rather than two strings. | ||||||
|     // PR (https://github.com/pytorch/pytorch/pull/23204) has more context about |     // PR (https://github.com/pytorch/pytorch/pull/23204) has more context about | ||||||
|  | |||||||
| @ -68,7 +68,11 @@ Symbol InternedStrings::_symbol(const std::string& s) { | |||||||
|     return it->second; |     return it->second; | ||||||
|  |  | ||||||
|   auto pos = s.find("::"); |   auto pos = s.find("::"); | ||||||
|   TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s); |   if (pos == std::string::npos) { | ||||||
|  |     std::stringstream ss; | ||||||
|  |     ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s; | ||||||
|  |     throw std::runtime_error(ss.str()); | ||||||
|  |   } | ||||||
|   Symbol ns = _symbol("namespaces::" + s.substr(0, pos)); |   Symbol ns = _symbol("namespaces::" + s.substr(0, pos)); | ||||||
|  |  | ||||||
|   Symbol sym(sym_to_info_.size()); |   Symbol sym(sym_to_info_.size()); | ||||||
| @ -117,7 +121,12 @@ std::string Symbol::domainString() const { | |||||||
| } | } | ||||||
|  |  | ||||||
| Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) { | Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) { | ||||||
|   TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'"); |   if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) { | ||||||
|  |     std::ostringstream ss; | ||||||
|  |     ss << "Symbol: domain string is expected to be prefixed with '" | ||||||
|  |        << domain_prefix() << "', e.g. 'org.pytorch.aten'"; | ||||||
|  |     throw std::runtime_error(ss.str()); | ||||||
|  |   } | ||||||
|   std::string qualString = d.substr(domain_prefix().size()) + "::" + s; |   std::string qualString = d.substr(domain_prefix().size()) + "::" + s; | ||||||
|   return fromQualString(qualString); |   return fromQualString(qualString); | ||||||
| } | } | ||||||
|  | |||||||
| @ -7,7 +7,6 @@ | |||||||
| #include <ATen/core/jit_type.h> | #include <ATen/core/jit_type.h> | ||||||
| #include <ATen/core/stack.h> | #include <ATen/core/stack.h> | ||||||
| #include <ATen/core/type_factory.h> | #include <ATen/core/type_factory.h> | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <c10/util/StringUtil.h> | #include <c10/util/StringUtil.h> | ||||||
| #include <c10/util/hash.h> | #include <c10/util/hash.h> | ||||||
| #include <c10/util/irange.h> | #include <c10/util/irange.h> | ||||||
| @ -413,7 +412,7 @@ size_t IValue::hash(const IValue& v) { | |||||||
|     case Tag::Enum: |     case Tag::Enum: | ||||||
|     case Tag::Stream: |     case Tag::Stream: | ||||||
|     case Tag::Uninitialized: |     case Tag::Uninitialized: | ||||||
|       TORCH_CHECK(false, |       throw std::runtime_error( | ||||||
|           "unhashable type: '" + v.type()->repr_str() + "'"); |           "unhashable type: '" + v.type()->repr_str() + "'"); | ||||||
|   } |   } | ||||||
|   // the above switch should be exhaustive |   // the above switch should be exhaustive | ||||||
|  | |||||||
| @ -1176,7 +1176,7 @@ struct TORCH_API IValue final { | |||||||
|   using HashIdentityIValueMap = |   using HashIdentityIValueMap = | ||||||
|       std::unordered_map<IValue, IValue, HashIdentityIValue, CompIdentityIValues>; |       std::unordered_map<IValue, IValue, HashIdentityIValue, CompIdentityIValues>; | ||||||
|  |  | ||||||
|   // Checks if this and rhs has a subvalues in common. |   // Chechs if this and rhs has a subvalues in common. | ||||||
|   // [t1,t2] and [t2, t3] returns true. |   // [t1,t2] and [t2, t3] returns true. | ||||||
|   bool overlaps(const IValue& rhs) const; |   bool overlaps(const IValue& rhs) const; | ||||||
|  |  | ||||||
|  | |||||||
| @ -1501,7 +1501,7 @@ struct C10_EXPORT ivalue::Object final : c10::intrusive_ptr_target { | |||||||
|   // However, the CompilationUnit holds ownership of the type's graphs, so |   // However, the CompilationUnit holds ownership of the type's graphs, so | ||||||
|   // inserting a constant object into a Graph would create a reference cycle if |   // inserting a constant object into a Graph would create a reference cycle if | ||||||
|   // that constant object held a shared_ptr to its CU. For these objects we |   // that constant object held a shared_ptr to its CU. For these objects we | ||||||
|   // instantiate them with non-owning references to its CU |   // instatiate them with non-owning references to its CU | ||||||
|   Object(WeakOrStrongTypePtr type, size_t numSlots) : type_(std::move(type)) { |   Object(WeakOrStrongTypePtr type, size_t numSlots) : type_(std::move(type)) { | ||||||
|     slots_.resize(numSlots); |     slots_.resize(numSlots); | ||||||
|   } |   } | ||||||
|  | |||||||
| @ -8,7 +8,6 @@ | |||||||
| #include <ATen/core/type_factory.h> | #include <ATen/core/type_factory.h> | ||||||
| #include <ATen/core/qualified_name.h> | #include <ATen/core/qualified_name.h> | ||||||
| #include <c10/util/TypeList.h> | #include <c10/util/TypeList.h> | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <optional> | #include <optional> | ||||||
| #include <c10/core/SymFloat.h> | #include <c10/core/SymFloat.h> | ||||||
| #include <c10/core/SymBool.h> | #include <c10/core/SymBool.h> | ||||||
| @ -117,8 +116,10 @@ struct SingleElementType : public SharedType { | |||||||
|  |  | ||||||
|  protected: |  protected: | ||||||
|   SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) { |   SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) { | ||||||
|     TORCH_CHECK(this->elem, c10::str( |     if (!this->elem) { | ||||||
|  |       throw std::runtime_error(c10::str( | ||||||
|             "Can not create ", typeKindToString(Kind), " with None type")); |             "Can not create ", typeKindToString(Kind), " with None type")); | ||||||
|  |     } | ||||||
|   } |   } | ||||||
|  |  | ||||||
|  private: |  private: | ||||||
| @ -373,7 +374,7 @@ struct TORCH_API SymbolicShape { | |||||||
|   // Unranked shape constructor. |   // Unranked shape constructor. | ||||||
|   SymbolicShape() : dims_(std::nullopt) {} |   SymbolicShape() : dims_(std::nullopt) {} | ||||||
|  |  | ||||||
|   // Known rank but unknown dimensions. |   // Known rank but unknown dimentions. | ||||||
|   SymbolicShape(std::optional<size_t> rank) : dims_(std::nullopt) { |   SymbolicShape(std::optional<size_t> rank) : dims_(std::nullopt) { | ||||||
|     if(!rank) { |     if(!rank) { | ||||||
|       return; |       return; | ||||||
| @ -415,12 +416,16 @@ struct TORCH_API SymbolicShape { | |||||||
|   } |   } | ||||||
|  |  | ||||||
|   ShapeSymbol operator[](size_t i) const { |   ShapeSymbol operator[](size_t i) const { | ||||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); |     if (!dims_) { | ||||||
|  |       throw std::runtime_error("Rank isn't fixed"); | ||||||
|  |     } | ||||||
|     return (*dims_).at(i); |     return (*dims_).at(i); | ||||||
|   } |   } | ||||||
|  |  | ||||||
|   ShapeSymbol at(size_t i) const { |   ShapeSymbol at(size_t i) const { | ||||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); |     if (!dims_) { | ||||||
|  |       throw std::runtime_error("Rank isn't fixed"); | ||||||
|  |     } | ||||||
|     return (*dims_).at(i); |     return (*dims_).at(i); | ||||||
|   } |   } | ||||||
|  |  | ||||||
| @ -515,7 +520,9 @@ struct VaryingShape { | |||||||
|   } |   } | ||||||
|  |  | ||||||
|   const std::optional<T> &operator[](size_t i) const { |   const std::optional<T> &operator[](size_t i) const { | ||||||
|     TORCH_CHECK(dims_, "Rank isn't fixed"); |     if (!dims_) { | ||||||
|  |       throw std::runtime_error("Rank isn't fixed"); | ||||||
|  |     } | ||||||
|     return (*dims_).at(i); |     return (*dims_).at(i); | ||||||
|   } |   } | ||||||
|  |  | ||||||
| @ -884,9 +891,9 @@ struct TORCH_API ListType | |||||||
|  |  | ||||||
|   // global singleton |   // global singleton | ||||||
|   // Given an inner type T and an identifier, |   // Given an inner type T and an identifier, | ||||||
|   // this function will return the global singleton type pointer |   // this function wil return the global singleton type pointer | ||||||
|   // the type List<T>. |   // the type List<T>. | ||||||
|   // The extra "identifier" argument is needed because we have multiple container types |   // The extra "identifier" argument is needed beccause we have multiple container types | ||||||
|   // that all re-use this function (List<T>, array<T, N>, etc.) |   // that all re-use this function (List<T>, array<T, N>, etc.) | ||||||
|   static TypePtr get(const std::string& identifier, TypePtr inner); |   static TypePtr get(const std::string& identifier, TypePtr inner); | ||||||
|  |  | ||||||
| @ -950,7 +957,9 @@ struct TORCH_API DictType : public SharedType { | |||||||
|  |  | ||||||
|   TypePtr createWithContained( |   TypePtr createWithContained( | ||||||
|       std::vector<TypePtr> contained_types) const override { |       std::vector<TypePtr> contained_types) const override { | ||||||
|     TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types"); |     if (contained_types.size() != 2) { | ||||||
|  |       throw std::runtime_error("Expected 2 contained types"); | ||||||
|  |     } | ||||||
|     return create(std::move(contained_types.at(0)), std::move(contained_types.at(1))); |     return create(std::move(contained_types.at(0)), std::move(contained_types.at(1))); | ||||||
|   } |   } | ||||||
|  |  | ||||||
|  | |||||||
| @ -185,11 +185,11 @@ struct TORCH_API Type { | |||||||
|         : repr_(nullptr) {} |         : repr_(nullptr) {} | ||||||
|  |  | ||||||
|     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p) |     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p) | ||||||
|         : repr_(makeSingletonSharedPtr(p.get())) {} |         : repr_(p) {} | ||||||
|  |  | ||||||
|     template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true> |     template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true> | ||||||
|     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p) |     /* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p) | ||||||
|         : repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {} |         : repr_(SingletonTypePtr<T>(p.get())) {} | ||||||
|  |  | ||||||
|  |  | ||||||
|     // We need to support construction from T* for pybind. The problem |     // We need to support construction from T* for pybind. The problem | ||||||
| @ -202,8 +202,8 @@ struct TORCH_API Type { | |||||||
|     // Case 2: if T is exactly Type, we need to do a dynamic_cast to |     // Case 2: if T is exactly Type, we need to do a dynamic_cast to | ||||||
|     // check if it's a SharedType and do the right thing. |     // check if it's a SharedType and do the right thing. | ||||||
|     // |     // | ||||||
|     // Case 3: Otherwise, T is not a SharedType. Use a singleton |     // Case 3: Otherwise, T is not a SharedType. (debug-check this | ||||||
|     // pointer. |     // assumption!) Use a singleton pointer. | ||||||
|  |  | ||||||
|     template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true> |     template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true> | ||||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {} |     /* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {} | ||||||
| @ -211,15 +211,15 @@ struct TORCH_API Type { | |||||||
|     template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true> |     template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true> | ||||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) { |     /* implicit */ SingletonOrSharedTypePtr(T* p) { | ||||||
|       if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) { |       if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) { | ||||||
|         repr_ = shared_p->shared_from_this(); |         repr_ = Repr(shared_p->shared_from_this()); | ||||||
|       } else { |       } else { | ||||||
|         repr_ = makeSingletonSharedPtr(p); |         repr_ = Repr(p); | ||||||
|       } |       } | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true> |     template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true> | ||||||
|     /* implicit */ SingletonOrSharedTypePtr(T* p) |     /* implicit */ SingletonOrSharedTypePtr(T* p) | ||||||
|         : repr_(makeSingletonSharedPtr(p)) { |         : repr_(p) { | ||||||
|       TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr); |       TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr); | ||||||
|     } |     } | ||||||
|  |  | ||||||
| @ -230,19 +230,19 @@ struct TORCH_API Type { | |||||||
|     ~SingletonOrSharedTypePtr() = default; |     ~SingletonOrSharedTypePtr() = default; | ||||||
|  |  | ||||||
|     T* get() const { |     T* get() const { | ||||||
|       return repr_.get(); |       return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     operator bool() const { |     operator bool() const { | ||||||
|       return repr_ != nullptr; |       return repr_.isNonNull(); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     bool operator==(std::nullptr_t) const { |     bool operator==(std::nullptr_t) const { | ||||||
|       return repr_ == nullptr; |       return !repr_.isNonNull(); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     bool operator!=(std::nullptr_t) const { |     bool operator!=(std::nullptr_t) const { | ||||||
|       return repr_ != nullptr; |       return repr_.isNonNull(); | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true> |     template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true> | ||||||
| @ -255,14 +255,138 @@ struct TORCH_API Type { | |||||||
|     } |     } | ||||||
|  |  | ||||||
|   private: |   private: | ||||||
|     // Use shared_ptr's aliasing constructor to create a non-owning pointer |     // NOTE: SharedPtrWrapper exists to work around a baffling bug in | ||||||
|     // to a singleton. The lifetime is tied to the null shared_ptr, so there's |     // nvcc; see comment in destroy() below. | ||||||
|     // no reference counting overhead for the singleton itself. |     struct SharedPtrWrapper { | ||||||
|     static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) { |       SharedPtrWrapper(std::shared_ptr<T> &&x) | ||||||
|       return std::shared_ptr<T>(std::shared_ptr<T>(), ptr); |           : repr_(std::move(x)) {} | ||||||
|     } |       std::shared_ptr<T> repr_; | ||||||
|  |     }; | ||||||
|  |     union Repr { | ||||||
|  |       Repr() : Repr(nullptr) {} | ||||||
|  |  | ||||||
|     std::shared_ptr<T> repr_; |       explicit Repr(std::shared_ptr<T> x) | ||||||
|  |           : shared_(std::move(x)) {} | ||||||
|  |  | ||||||
|  |       explicit Repr(std::nullptr_t) | ||||||
|  |           : singletonRepr_(nullptr) {} | ||||||
|  |  | ||||||
|  |       explicit Repr(SingletonTypePtr<T> p) | ||||||
|  |           : singletonRepr_(p.get()) {} | ||||||
|  |  | ||||||
|  |       ~Repr() { | ||||||
|  |         destroy(); | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       // NOTE: the only non-UB way to access our null state is through | ||||||
|  |       // rawRepr(), because our copy operation doesn't preserve which | ||||||
|  |       // union member is active for null pointers. | ||||||
|  |       Repr(const Repr& rhs) { | ||||||
|  |         if (rhs.isSharedAndNonNull()) { | ||||||
|  |           new (&shared_) SharedPtrWrapper(rhs.shared_); | ||||||
|  |         } else { | ||||||
|  |           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||||
|  |           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr); | ||||||
|  |           singletonRepr_.unused_ = nullptr; | ||||||
|  |         } | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       Repr(Repr&& rhs) noexcept { | ||||||
|  |         if (rhs.isSharedAndNonNull()) { | ||||||
|  |           new (&shared_) SharedPtrWrapper(std::move(rhs.shared_)); | ||||||
|  |         } else { | ||||||
|  |           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||||
|  |           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr); | ||||||
|  |           singletonRepr_.unused_ = nullptr; | ||||||
|  |         } | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       Repr& operator=(const Repr& rhs) { | ||||||
|  |         if (&rhs == this) { | ||||||
|  |           return *this; | ||||||
|  |         } | ||||||
|  |         if (rhs.isSharedAndNonNull()) { | ||||||
|  |           if (isSharedAndNonNull()) { | ||||||
|  |             shared_ = rhs.shared_; | ||||||
|  |           } else { | ||||||
|  |             new (&shared_) SharedPtrWrapper(rhs.shared_); | ||||||
|  |           } | ||||||
|  |         } else { | ||||||
|  |           if (isSharedAndNonNull()) { | ||||||
|  |             destroy(); | ||||||
|  |           } | ||||||
|  |           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||||
|  |           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr); | ||||||
|  |           singletonRepr_.unused_ = nullptr; | ||||||
|  |         } | ||||||
|  |         return *this; | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       Repr& operator=(Repr&& rhs) noexcept { | ||||||
|  |         if (&rhs == this) { | ||||||
|  |           return *this; | ||||||
|  |         } | ||||||
|  |         if (rhs.isSharedAndNonNull()) { | ||||||
|  |           if (isSharedAndNonNull()) { | ||||||
|  |             shared_ = std::move(rhs.shared_); | ||||||
|  |           } else { | ||||||
|  |             new (&shared_) SharedPtrWrapper(std::move(rhs.shared_)); | ||||||
|  |           } | ||||||
|  |         } else { | ||||||
|  |           if (isSharedAndNonNull()) { | ||||||
|  |             destroy(); | ||||||
|  |           } | ||||||
|  |           singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first); | ||||||
|  |           TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr); | ||||||
|  |           singletonRepr_.unused_ = nullptr; | ||||||
|  |         } | ||||||
|  |         return *this; | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       SharedPtrWrapper shared_; | ||||||
|  |  | ||||||
|  |       struct SingletonRepr { | ||||||
|  |         explicit SingletonRepr(T* s) : singleton_(s) {} | ||||||
|  |         T* singleton_; | ||||||
|  |         void* unused_ = nullptr; | ||||||
|  |       } singletonRepr_; | ||||||
|  |       struct RawRepr { | ||||||
|  |         void* first; | ||||||
|  |         void* nullIfSingleton_; | ||||||
|  |       }; | ||||||
|  |  | ||||||
|  |       // It is UB to read the singleton part of Repr if it was | ||||||
|  |       // constructed as a shared_ptr and vice versa, but memcpying out | ||||||
|  |       // the representation is always OK, so here's an accessor to obey | ||||||
|  |       // the letter of the law. | ||||||
|  |       RawRepr rawRepr() const { | ||||||
|  |         RawRepr repr{}; | ||||||
|  |         memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr)); | ||||||
|  |         return repr; | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       bool isNonNull() const { | ||||||
|  |         auto repr = rawRepr(); | ||||||
|  |         TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr); | ||||||
|  |         return repr.first != nullptr; | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |       bool isSharedAndNonNull() const { | ||||||
|  |         return rawRepr().nullIfSingleton_ != nullptr; | ||||||
|  |       } | ||||||
|  |  | ||||||
|  |      private: | ||||||
|  |       void destroy() { | ||||||
|  |         if (isSharedAndNonNull()) { | ||||||
|  |           // Without SharedPtrWrapper, this line would read | ||||||
|  |           // `shared_.~shared_ptr()` and nvcc would complain with | ||||||
|  |           // "error: expected primary-expression before '>' token" | ||||||
|  |           // referring to the "t" in "shared_ptr". SharedPtrWrapper | ||||||
|  |           // exists to work around this compiler bug. | ||||||
|  |           shared_.~SharedPtrWrapper(); | ||||||
|  |         } | ||||||
|  |       } | ||||||
|  |     } repr_; | ||||||
|   }; |   }; | ||||||
|  |  | ||||||
|   using TypePtr = SingletonOrSharedTypePtr<Type>; |   using TypePtr = SingletonOrSharedTypePtr<Type>; | ||||||
|  | |||||||
| @ -21,7 +21,7 @@ namespace c10 { | |||||||
|  |  | ||||||
| namespace detail { | namespace detail { | ||||||
| // The first argument of the schema might be of type DispatchKeySet, in which case we remove it. | // The first argument of the schema might be of type DispatchKeySet, in which case we remove it. | ||||||
| // We do this because every argument in a function schema is expected to be convertible | // We do this because every argument in a function schema is expected to be convertable | ||||||
| // to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of. | // to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of. | ||||||
| // See Note [Plumbing Keys Through The Dispatcher] | // See Note [Plumbing Keys Through The Dispatcher] | ||||||
| template<class KernelFunctor> | template<class KernelFunctor> | ||||||
|  | |||||||
| @ -251,7 +251,7 @@ TEST(OperatorRegistrationTest, whenRegisteringCPUTensorType_thenCanOnlyCallUnbox | |||||||
|   callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CPU), dummyTensor(c10::DispatchKey::CUDA)); |   callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CPU), dummyTensor(c10::DispatchKey::CUDA)); | ||||||
|   EXPECT_TRUE(called_kernel_cpu); |   EXPECT_TRUE(called_kernel_cpu); | ||||||
|  |  | ||||||
|   // Ensure that dispatch key from tensor is not used here. |   // Ensure that disptach key from tensor is not used here. | ||||||
|   called_kernel_cpu = false; |   called_kernel_cpu = false; | ||||||
|   expectThrows<c10::Error>([&] { |   expectThrows<c10::Error>([&] { | ||||||
|     callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CUDA), dummyTensor(c10::DispatchKey::CPU)); |     callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CUDA), dummyTensor(c10::DispatchKey::CPU)); | ||||||
|  | |||||||
| @ -172,7 +172,7 @@ VaryingShape<Stride> TensorType::computeStrideProps( | |||||||
|   // The logic below follows what TensorIterator uses in its logic: |   // The logic below follows what TensorIterator uses in its logic: | ||||||
|   //   1. Fast_set_up is the short-cut to identify a. channels_last and |   //   1. Fast_set_up is the short-cut to identify a. channels_last and | ||||||
|   //      b. contiguous format, which is what we have in the below logic. |   //      b. contiguous format, which is what we have in the below logic. | ||||||
|   //   2. In more general cases, it does best effort to preserve permutatoin. |   //   2. In more generla cases, it does best effort to preserve permutatoin. | ||||||
|   if (is_channels_last_strides_2d(sizes, strides) || is_channels_last_strides_3d(sizes, strides)) { |   if (is_channels_last_strides_2d(sizes, strides) || is_channels_last_strides_3d(sizes, strides)) { | ||||||
|     // case 1.a. short cut channels last |     // case 1.a. short cut channels last | ||||||
|     std::iota(stride_indices.rbegin() + 1, stride_indices.rend() - 1, 2); |     std::iota(stride_indices.rbegin() + 1, stride_indices.rend() - 1, 2); | ||||||
|  | |||||||
| @ -8,7 +8,6 @@ | |||||||
| #include <ATen/core/jit_type.h> | #include <ATen/core/jit_type.h> | ||||||
| #include <c10/macros/Macros.h> | #include <c10/macros/Macros.h> | ||||||
| #include <c10/util/env.h> | #include <c10/util/env.h> | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <c10/util/flat_hash_map.h> | #include <c10/util/flat_hash_map.h> | ||||||
| #include <c10/util/irange.h> | #include <c10/util/irange.h> | ||||||
| #include <array> | #include <array> | ||||||
| @ -827,7 +826,9 @@ TupleType::TupleType( | |||||||
|     : NamedType(TypeKind::TupleType, std::move(name)), |     : NamedType(TypeKind::TupleType, std::move(name)), | ||||||
|       elements_(std::move(elements)), |       elements_(std::move(elements)), | ||||||
|       has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) { |       has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) { | ||||||
|         TORCH_CHECK(v, "Can not create tuple with None type"); |         if (!v) { | ||||||
|  |           throw std::runtime_error("Can not create tuple with None type"); | ||||||
|  |         } | ||||||
|         return v->hasFreeVariables(); |         return v->hasFreeVariables(); | ||||||
|       })), schema_(std::move(schema)) { |       })), schema_(std::move(schema)) { | ||||||
|  |  | ||||||
|  | |||||||
| @ -104,6 +104,71 @@ class Vectorized<float> { | |||||||
|     } |     } | ||||||
|     return b; |     return b; | ||||||
|   } |   } | ||||||
|  |   // Implementation is picked from | ||||||
|  |   // https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105 | ||||||
|  |   inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const { | ||||||
|  |     const auto c1 = | ||||||
|  |         svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f | ||||||
|  |     const auto c2 = | ||||||
|  |         svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f | ||||||
|  |     const auto c3 = | ||||||
|  |         svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f | ||||||
|  |     const auto c4 = | ||||||
|  |         svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f | ||||||
|  |     const auto c5 = | ||||||
|  |         svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f | ||||||
|  |     const auto shift = svreinterpret_f32_u32( | ||||||
|  |         svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f | ||||||
|  |     const auto inv_ln2 = svreinterpret_f32_u32( | ||||||
|  |         svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f | ||||||
|  |     const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32( | ||||||
|  |         0xbf317200)); // -ln(2) from bits  -1 to -19: -0x1.62e400p-1f | ||||||
|  |     const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32( | ||||||
|  |         0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f | ||||||
|  |     const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity()); | ||||||
|  |     const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5) | ||||||
|  |     const auto zero = svdup_n_f32(0.f); | ||||||
|  |     const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125) | ||||||
|  |     // Range reduction: | ||||||
|  |     //   e^x = 2^n * e^r | ||||||
|  |     // where: | ||||||
|  |     //   n = floor(x / ln(2)) | ||||||
|  |     //   r = x - n * ln(2) | ||||||
|  |     // | ||||||
|  |     // By adding x / ln(2) with 2^23 + 127 (shift): | ||||||
|  |     //   * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 | ||||||
|  |     //   forces decimal part | ||||||
|  |     //     of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. | ||||||
|  |     //     n) + 127 will occupy the whole fraction part of z in FP32 format. | ||||||
|  |     //     Subtracting 2^23 + 127 (shift) from z will result in the integer part | ||||||
|  |     //     of x / ln(2) (i.e. n) because the decimal part has been pushed out | ||||||
|  |     //     and lost. | ||||||
|  |     //   * The addition of 127 makes the FP32 fraction part of z ready to be | ||||||
|  |     //   used as the exponent | ||||||
|  |     //     in FP32 format. Left shifting z by 23 bits will result in 2^n. | ||||||
|  |     const auto z = svmla_f32_z(pg, shift, x, inv_ln2); | ||||||
|  |     const auto n = svsub_f32_z(pg, z, shift); | ||||||
|  |     const auto scale = svreinterpret_f32_u32( | ||||||
|  |         svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n | ||||||
|  |     // The calculation of n * ln(2) is done using 2 steps to achieve accuracy | ||||||
|  |     // beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in | ||||||
|  |     // term of accuracy and performance. | ||||||
|  |     const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi); | ||||||
|  |     const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo); | ||||||
|  |     // Compute the truncated Taylor series of e^r. | ||||||
|  |     //   poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5) | ||||||
|  |     const auto r2 = svmul_f32_z(pg, r, r); | ||||||
|  |     const auto p1 = svmul_f32_z(pg, c1, r); | ||||||
|  |     const auto p23 = svmla_f32_z(pg, c2, c3, r); | ||||||
|  |     const auto p45 = svmla_f32_z(pg, c4, c5, r); | ||||||
|  |     const auto p2345 = svmla_f32_z(pg, p23, p45, r2); | ||||||
|  |     const auto p12345 = svmla_f32_z(pg, p1, p2345, r2); | ||||||
|  |     auto poly = svmla_f32_z(pg, scale, p12345, scale); | ||||||
|  |     // Handle underflow and overflow. | ||||||
|  |     poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly); | ||||||
|  |     poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly); | ||||||
|  |     return poly; | ||||||
|  |   } | ||||||
|   static Vectorized<float> loadu(const void* ptr, int64_t count = size()) { |   static Vectorized<float> loadu(const void* ptr, int64_t count = size()) { | ||||||
|     if (count == size()) |     if (count == size()) | ||||||
|       return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr)); |       return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr)); | ||||||
| @ -248,41 +313,11 @@ class Vectorized<float> { | |||||||
|     return USE_SLEEF( |     return USE_SLEEF( | ||||||
|         Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1)); |         Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1)); | ||||||
|   } |   } | ||||||
|   // Implementation copied from Arm Optimized Routines: |  | ||||||
|   // https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c |  | ||||||
|   Vectorized<float> exp_u20() const { |   Vectorized<float> exp_u20() const { | ||||||
|     // special case to handle special inputs that are too large or too small |     return exp(); | ||||||
|     // i.e. where there's at least one element x, s.t. |x| >= 87.3... |  | ||||||
|     svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f); |  | ||||||
|     if (svptest_any(svptrue_b32(), is_special_case)) { |  | ||||||
|       return exp(); |  | ||||||
|     } |  | ||||||
|     const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f); |  | ||||||
|     const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f); |  | ||||||
|     const svfloat32_t c1 = svdup_n_f32(0.5f); |  | ||||||
|     const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f); |  | ||||||
|  |  | ||||||
|     const float shift = 0x1.803f8p17f; |  | ||||||
|  |  | ||||||
|     /* n = round(x/(ln2/N)).  */ |  | ||||||
|     svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift); |  | ||||||
|     svfloat32_t n = svsub_x(svptrue_b32(), z, shift); |  | ||||||
|  |  | ||||||
|     /* r = x - n*ln2/N.  */ |  | ||||||
|     svfloat32_t r = values; |  | ||||||
|     r = svmls_x(svptrue_b32(), r, n, ln2_hi); |  | ||||||
|     r = svmls_x(svptrue_b32(), r, n, ln2_lo); |  | ||||||
|  |  | ||||||
|     /* scale = 2^(n/N).  */ |  | ||||||
|     svfloat32_t scale = svexpa(svreinterpret_u32(z)); |  | ||||||
|  |  | ||||||
|     /* poly(r) = exp(r) - 1 ~= r + 0.5 r^2.  */ |  | ||||||
|     svfloat32_t r2 = svmul_x(svptrue_b32(), r, r); |  | ||||||
|     svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1); |  | ||||||
|     return svmla_x(svptrue_b32(), scale, scale, poly); |  | ||||||
|   } |   } | ||||||
|   Vectorized<float> fexp_u20() const { |   Vectorized<float> fexp_u20() const { | ||||||
|     return exp_u20(); |     return exp(); | ||||||
|   } |   } | ||||||
|   Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF( |   Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF( | ||||||
|       { return Vectorized<float>(Sleef_fmodfx_sve(values, q)); }, |       { return Vectorized<float>(Sleef_fmodfx_sve(values, q)); }, | ||||||
| @ -418,11 +453,9 @@ class Vectorized<float> { | |||||||
|         ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH); |         ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH); | ||||||
|  |  | ||||||
|     // Step 2: Calculate exp(2 * x), where x is the clamped value. |     // Step 2: Calculate exp(2 * x), where x is the clamped value. | ||||||
|     // svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of |     // svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of | ||||||
|     // the result (via Vectorized<float>, then auto-converts back to |     // the result. | ||||||
|     // svfloat32_t). |     svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x)); | ||||||
|     svfloat32_t exp2x = |  | ||||||
|         Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20(); |  | ||||||
|  |  | ||||||
|     // Step 3: Calculate the numerator of the tanh function, which is exp(2x) |     // Step 3: Calculate the numerator of the tanh function, which is exp(2x) | ||||||
|     // - 1. |     // - 1. | ||||||
|  | |||||||
| @ -6,11 +6,9 @@ | |||||||
| #ifdef __aarch64__ | #ifdef __aarch64__ | ||||||
| #if !defined(CPU_CAPABILITY_SVE) | #if !defined(CPU_CAPABILITY_SVE) | ||||||
| #include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h> | #include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h> | ||||||
| #include <ATen/cpu/vec/vec128/vec128_double_neon.h> |  | ||||||
| #include <ATen/cpu/vec/vec128/vec128_float_neon.h> | #include <ATen/cpu/vec/vec128/vec128_float_neon.h> | ||||||
| #include <ATen/cpu/vec/vec128/vec128_half_neon.h> | #include <ATen/cpu/vec/vec128/vec128_half_neon.h> | ||||||
| #include <ATen/cpu/vec/vec128/vec128_int_aarch64.h> | #include <ATen/cpu/vec/vec128/vec128_int_aarch64.h> | ||||||
| #include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h> |  | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
| #include <ATen/cpu/vec/vec128/vec128_convert.h> | #include <ATen/cpu/vec/vec128/vec128_convert.h> | ||||||
|  | |||||||
| @ -354,47 +354,9 @@ class Vectorized<c10::BFloat16> : public Vectorized16< | |||||||
|  |  | ||||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs) |   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs) | ||||||
|   Vectorized frac() const; |   Vectorized frac() const; | ||||||
|  |   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg) | ||||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc) |   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc) | ||||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt) |   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt) | ||||||
|  |  | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   Vectorized<c10::BFloat16> neg() const { |  | ||||||
|     return -values; |  | ||||||
|   } |  | ||||||
|   Vectorized<c10::BFloat16> reciprocal() const { |  | ||||||
|     return 1.0f / values; |  | ||||||
|   } |  | ||||||
|   Vectorized<c10::BFloat16> operator==( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values == other.values; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<c10::BFloat16> operator!=( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values != other.values; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<c10::BFloat16> operator<( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values < other.values; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<c10::BFloat16> operator<=( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values <= other.values; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<c10::BFloat16> operator>( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values > other.values; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<c10::BFloat16> operator>=( |  | ||||||
|       const Vectorized<c10::BFloat16>& other) const { |  | ||||||
|     return values >= other.values; |  | ||||||
|   } |  | ||||||
| #else |  | ||||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg) |  | ||||||
|   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal) |   DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal) | ||||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==) |   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==) | ||||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=) |   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=) | ||||||
| @ -402,7 +364,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16< | |||||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=) |   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=) | ||||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>) |   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>) | ||||||
|   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=) |   DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=) | ||||||
| #endif |  | ||||||
|  |  | ||||||
| #undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | #undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | ||||||
| #undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | #undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD | ||||||
| @ -451,52 +412,28 @@ template <> | |||||||
| Vectorized<c10::BFloat16> inline operator+( | Vectorized<c10::BFloat16> inline operator+( | ||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b) { |     const Vectorized<c10::BFloat16>& b) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   return x + y; |  | ||||||
| #else |  | ||||||
|   return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b); |   return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b); | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| Vectorized<c10::BFloat16> inline operator-( | Vectorized<c10::BFloat16> inline operator-( | ||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b) { |     const Vectorized<c10::BFloat16>& b) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   return x - y; |  | ||||||
| #else |  | ||||||
|   return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b); |   return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b); | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| Vectorized<c10::BFloat16> inline operator*( | Vectorized<c10::BFloat16> inline operator*( | ||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b) { |     const Vectorized<c10::BFloat16>& b) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   return x * y; |  | ||||||
| #else |  | ||||||
|   return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b); |   return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b); | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| Vectorized<c10::BFloat16> inline operator/( | Vectorized<c10::BFloat16> inline operator/( | ||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b) { |     const Vectorized<c10::BFloat16>& b) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   return x / y; |  | ||||||
| #else |  | ||||||
|   return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b); |   return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b); | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| // frac. Implement this here so we can use subtraction | // frac. Implement this here so we can use subtraction | ||||||
| @ -607,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd( | |||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b, |     const Vectorized<c10::BFloat16>& b, | ||||||
|     const Vectorized<c10::BFloat16>& c) { |     const Vectorized<c10::BFloat16>& c) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   bfloat16x8_t z = c; |  | ||||||
|   return x * y + z; |  | ||||||
| #else |  | ||||||
|   // NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16!  Also, |   // NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16!  Also, | ||||||
|   // vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered |   // vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered | ||||||
|   // elements, not the bottom and top half, so they don't seem |   // elements, not the bottom and top half, so they don't seem | ||||||
|   // particularly useful here. Ideally we would include dot product in |   // particularly useful here. Ideally we would include dot product in | ||||||
|   // the Vectorized interface... |   // the Vectorized interface... | ||||||
|   return a * b + c; |   return a * b + c; | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| @ -627,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd( | |||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b, |     const Vectorized<c10::BFloat16>& b, | ||||||
|     const Vectorized<c10::BFloat16>& c) { |     const Vectorized<c10::BFloat16>& c) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   bfloat16x8_t z = c; |  | ||||||
|   return (-x) * y + z; |  | ||||||
| #else |  | ||||||
|   // See NOTE [BF16 FMA] above. |   // See NOTE [BF16 FMA] above. | ||||||
|   return -a * b + c; |   return -a * b + c; | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| @ -643,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub( | |||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b, |     const Vectorized<c10::BFloat16>& b, | ||||||
|     const Vectorized<c10::BFloat16>& c) { |     const Vectorized<c10::BFloat16>& c) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   bfloat16x8_t z = c; |  | ||||||
|   return x * y - z; |  | ||||||
| #else |  | ||||||
|   // See NOTE [BF16 FMA] above. |   // See NOTE [BF16 FMA] above. | ||||||
|   return a * b - c; |   return a * b - c; | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| @ -659,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub( | |||||||
|     const Vectorized<c10::BFloat16>& a, |     const Vectorized<c10::BFloat16>& a, | ||||||
|     const Vectorized<c10::BFloat16>& b, |     const Vectorized<c10::BFloat16>& b, | ||||||
|     const Vectorized<c10::BFloat16>& c) { |     const Vectorized<c10::BFloat16>& c) { | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
|   bfloat16x8_t x = a; |  | ||||||
|   bfloat16x8_t y = b; |  | ||||||
|   bfloat16x8_t z = c; |  | ||||||
|   return (-x) * y - z; |  | ||||||
| #else |  | ||||||
|   // See NOTE [BF16 FMA] above. |   // See NOTE [BF16 FMA] above. | ||||||
|   return -a * b - c; |   return -a * b - c; | ||||||
| #endif |  | ||||||
| } | } | ||||||
|  |  | ||||||
| #endif // !defined(C10_MOBILE) && defined(__aarch64__) | #endif // !defined(C10_MOBILE) && defined(__aarch64__) | ||||||
|  | |||||||
| @ -5,129 +5,6 @@ | |||||||
| namespace at::vec { | namespace at::vec { | ||||||
| inline namespace CPU_CAPABILITY { | inline namespace CPU_CAPABILITY { | ||||||
| #if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)) | #if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256)) | ||||||
|  |  | ||||||
| // Enable auto-vectorization for GCC-13+ and clang-17+ |  | ||||||
| // GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001 |  | ||||||
| #if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17)) |  | ||||||
|  |  | ||||||
| template <typename from_type, typename to_type> |  | ||||||
| inline void convertImpl( |  | ||||||
|     const from_type* __restrict src, |  | ||||||
|     to_type* __restrict dst, |  | ||||||
|     int64_t n) { |  | ||||||
|   uint64_t len = static_cast<uint64_t>(n); |  | ||||||
|   for (uint64_t i = 0; i < len; i++) { |  | ||||||
|     dst[i] = static_cast<to_type>(src[i]); |  | ||||||
|   } |  | ||||||
| } |  | ||||||
|  |  | ||||||
| #define CONVERT_TEMPLATE(from_type, to_type)                           \ |  | ||||||
|   template <>                                                          \ |  | ||||||
|   inline void convert(const from_type* src, to_type* dst, int64_t n) { \ |  | ||||||
|     return convertImpl<from_type, to_type>(src, dst, n);               \ |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| CONVERT_TEMPLATE(uint8_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, float) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, double) |  | ||||||
| CONVERT_TEMPLATE(int8_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, float) |  | ||||||
| CONVERT_TEMPLATE(int8_t, double) |  | ||||||
| CONVERT_TEMPLATE(int16_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, float) |  | ||||||
| CONVERT_TEMPLATE(int16_t, double) |  | ||||||
| CONVERT_TEMPLATE(int32_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, float) |  | ||||||
| CONVERT_TEMPLATE(int32_t, double) |  | ||||||
| CONVERT_TEMPLATE(int64_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, float) |  | ||||||
| CONVERT_TEMPLATE(int64_t, double) |  | ||||||
| CONVERT_TEMPLATE(float, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(float, int8_t) |  | ||||||
| CONVERT_TEMPLATE(float, int16_t) |  | ||||||
| CONVERT_TEMPLATE(float, int32_t) |  | ||||||
| CONVERT_TEMPLATE(float, int64_t) |  | ||||||
| CONVERT_TEMPLATE(float, float) |  | ||||||
| CONVERT_TEMPLATE(float, double) |  | ||||||
| CONVERT_TEMPLATE(double, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(double, int8_t) |  | ||||||
| CONVERT_TEMPLATE(double, int16_t) |  | ||||||
| CONVERT_TEMPLATE(double, int32_t) |  | ||||||
| CONVERT_TEMPLATE(double, int64_t) |  | ||||||
| CONVERT_TEMPLATE(double, float) |  | ||||||
| CONVERT_TEMPLATE(double, double) |  | ||||||
| #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC |  | ||||||
|  |  | ||||||
| #define CONVERT_FROM_FP16_TEMPLATE(to_type)                            \ |  | ||||||
|   template <>                                                          \ |  | ||||||
|   inline void convert(const at::Half* src, to_type* dst, int64_t n) {  \ |  | ||||||
|     const float16_t* srcPtr = reinterpret_cast<const float16_t*>(src); \ |  | ||||||
|     return convertImpl<float16_t, to_type>(srcPtr, dst, n);            \ |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| #define CONVERT_TO_FP16_TEMPLATE(from_type)                             \ |  | ||||||
|   template <>                                                           \ |  | ||||||
|   inline void convert(const from_type* src, at::Half* dst, int64_t n) { \ |  | ||||||
|     float16_t* dstPtr = reinterpret_cast<float16_t*>(dst);              \ |  | ||||||
|     return convertImpl<from_type, float16_t>(src, dstPtr, n);           \ |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(uint8_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(int8_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(int16_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(int32_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(int64_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(float16_t) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(float) |  | ||||||
| CONVERT_FROM_FP16_TEMPLATE(double) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(uint8_t) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(int8_t) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(int16_t) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(int32_t) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(int64_t) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(float) |  | ||||||
| CONVERT_TO_FP16_TEMPLATE(double) |  | ||||||
| #endif |  | ||||||
| #ifdef __ARM_FEATURE_BF16 |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, uint8_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, int8_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, int16_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, int32_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, int64_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, float) |  | ||||||
| CONVERT_TEMPLATE(bfloat16_t, double) |  | ||||||
| CONVERT_TEMPLATE(uint8_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(int8_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(int16_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(int32_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(int64_t, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(float, bfloat16_t) |  | ||||||
| CONVERT_TEMPLATE(double, bfloat16_t) |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| template <typename src_t> | template <typename src_t> | ||||||
| struct VecConvert< | struct VecConvert< | ||||||
|     float, |     float, | ||||||
|  | |||||||
| @ -1,586 +0,0 @@ | |||||||
| #pragma once |  | ||||||
|  |  | ||||||
| #include <ATen/cpu/vec/intrinsics.h> |  | ||||||
| #include <ATen/cpu/vec/vec_base.h> |  | ||||||
| #include <c10/macros/Macros.h> |  | ||||||
| #include <c10/util/irange.h> |  | ||||||
| #include <cmath> |  | ||||||
|  |  | ||||||
| namespace at::vec { |  | ||||||
| // Note [CPU_CAPABILITY namespace] |  | ||||||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  | ||||||
| // This header, and all of its subheaders, will be compiled with |  | ||||||
| // different architecture flags for each supported set of vector |  | ||||||
| // intrinsics. So we need to make sure they aren't inadvertently |  | ||||||
| // linked together. We do this by declaring objects in an `inline |  | ||||||
| // namespace` which changes the name mangling, but can still be |  | ||||||
| // accessed as `at::vec`. |  | ||||||
| inline namespace CPU_CAPABILITY { |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| struct is_vec_specialized_for<double> : std::bool_constant<true> {}; |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| class Vectorized<double> { |  | ||||||
|  private: |  | ||||||
|   float64x2_t values; |  | ||||||
|  |  | ||||||
|  public: |  | ||||||
|   using value_type = double; |  | ||||||
|   using size_type = int; |  | ||||||
|   static constexpr size_type size() { |  | ||||||
|     return 2; |  | ||||||
|   } |  | ||||||
|   Vectorized() { |  | ||||||
|     values = vdupq_n_f64(0.0); |  | ||||||
|   } |  | ||||||
|   Vectorized(float64x2_t v) : values(v) {} |  | ||||||
|   Vectorized(double val) { |  | ||||||
|     values = vdupq_n_f64(val); |  | ||||||
|   } |  | ||||||
|   template < |  | ||||||
|       typename... Args, |  | ||||||
|       typename = std::enable_if_t<(sizeof...(Args) == size())>> |  | ||||||
|   Vectorized(Args... vals) { |  | ||||||
|     __at_align__ double buffer[size()] = {vals...}; |  | ||||||
|     values = vld1q_f64(buffer); |  | ||||||
|   } |  | ||||||
|   operator float64x2_t() const { |  | ||||||
|     return values; |  | ||||||
|   } |  | ||||||
|   template <int64_t mask> |  | ||||||
|   static Vectorized<double> blend( |  | ||||||
|       const Vectorized<double>& a, |  | ||||||
|       const Vectorized<double>& b) { |  | ||||||
|     // Build an array of flags: each bit of element is 1 if the corresponding |  | ||||||
|     // bit in 'mask' is set, 0 otherwise. |  | ||||||
|     uint64x2_t maskArray = { |  | ||||||
|         (mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0, |  | ||||||
|         (mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0}; |  | ||||||
|     // Use BSL to select elements from b where the mask is 1, else from a |  | ||||||
|     return vbslq_f64(maskArray, b.values, a.values); |  | ||||||
|   } |  | ||||||
|   static Vectorized<double> blendv( |  | ||||||
|       const Vectorized<double>& a, |  | ||||||
|       const Vectorized<double>& b, |  | ||||||
|       const Vectorized<double>& mask_) { |  | ||||||
|     return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values); |  | ||||||
|   } |  | ||||||
|   template <typename step_t> |  | ||||||
|   static Vectorized<double> arange( |  | ||||||
|       double base = 0., |  | ||||||
|       step_t step = static_cast<step_t>(1)) { |  | ||||||
|     return {base, base + static_cast<double>(step)}; |  | ||||||
|   } |  | ||||||
|   static inline Vectorized<double> set( |  | ||||||
|       const Vectorized<double>& a, |  | ||||||
|       const Vectorized<double>& b, |  | ||||||
|       int64_t count = size()) { |  | ||||||
|     if (count == 0) { |  | ||||||
|       return a; |  | ||||||
|     } else if (count >= 2) { |  | ||||||
|       return b; |  | ||||||
|     } else { |  | ||||||
|       float64x2_t c = {b.values[0], a.values[1]}; |  | ||||||
|       return c; |  | ||||||
|     } |  | ||||||
|   } |  | ||||||
|   static Vectorized<double> loadu(const void* ptr, int64_t count = size()) { |  | ||||||
|     if (count == size()) { |  | ||||||
|       return vld1q_f64(reinterpret_cast<const double*>(ptr)); |  | ||||||
|     } else if (count == 1) { |  | ||||||
|       float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr)); |  | ||||||
|       float64x1_t z = {0.0}; |  | ||||||
|       return vcombine_f64(x, z); |  | ||||||
|     } else { |  | ||||||
|       return vdupq_n_f64(0.0); |  | ||||||
|     } |  | ||||||
|   } |  | ||||||
|   void store(void* ptr, int64_t count = size()) const { |  | ||||||
|     if (count == size()) { |  | ||||||
|       vst1q_f64(reinterpret_cast<double*>(ptr), values); |  | ||||||
|     } else if (count == 1) { |  | ||||||
|       vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values)); |  | ||||||
|     } |  | ||||||
|   } |  | ||||||
|   const double& operator[](int idx) const = delete; |  | ||||||
|   double& operator[](int idx) = delete; |  | ||||||
|   int64_t zero_mask() const { |  | ||||||
|     // returns an integer mask where all zero elements are translated to 1-bit |  | ||||||
|     // and others are translated to 0-bit |  | ||||||
|     uint64x2_t cmpReg = vceqzq_f64(values); |  | ||||||
|     uint64x2_t mask = {1, 2}; |  | ||||||
|     uint64x2_t res = vandq_u64(cmpReg, mask); |  | ||||||
|     return res[0] | res[1]; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> isnan() const { |  | ||||||
|     // NaN check |  | ||||||
|     return vreinterpretq_f64_u32( |  | ||||||
|         vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values)))); |  | ||||||
|   } |  | ||||||
|   bool has_inf_nan() const { |  | ||||||
|     Vectorized<double> x = vsubq_f64(values, values); |  | ||||||
|     float64x2_t r = x.isnan(); |  | ||||||
|     uint64x2_t u = vreinterpretq_u64_f64(r); |  | ||||||
|     return u[0] | u[1]; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> map(double (*f)(double)) const { |  | ||||||
|     float64x2_t result; |  | ||||||
|     result[0] = f(values[0]); |  | ||||||
|     result[1] = f(values[1]); |  | ||||||
|     return result; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> map2( |  | ||||||
|       const Vectorized<double>& second, |  | ||||||
|       double (*const f)(double, double)) const { |  | ||||||
|     float64x2_t result; |  | ||||||
|     result[0] = f(values[0], second.values[0]); |  | ||||||
|     result[1] = f(values[1], second.values[1]); |  | ||||||
|     return result; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> abs() const { |  | ||||||
|     return vabsq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> angle() const { |  | ||||||
|     auto zero = Vectorized<double>(0.0); |  | ||||||
|     auto pi = Vectorized<double>(c10::pi<double>); |  | ||||||
|     auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values))); |  | ||||||
|     return blendv(tmp, *this, isnan()); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> real() const { |  | ||||||
|     return *this; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> imag() const { |  | ||||||
|     return Vectorized<double>(0.0); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> conj() const { |  | ||||||
|     return *this; |  | ||||||
|   } |  | ||||||
|   Vectorized<double> acos() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> acosh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> asin() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> asinh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> atan() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> atanh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF( |  | ||||||
|       { return Vectorized<double>(Sleef_atan2d2_u10(values, b)); }, |  | ||||||
|       { |  | ||||||
|         __at_align__ double tmp[size()]; |  | ||||||
|         __at_align__ double tmp_b[size()]; |  | ||||||
|         store(tmp); |  | ||||||
|         b.store(tmp_b); |  | ||||||
|         for (int64_t i = 0; i < size(); i++) { |  | ||||||
|           tmp[i] = std::atan2(tmp[i], tmp_b[i]); |  | ||||||
|         } |  | ||||||
|         return loadu(tmp); |  | ||||||
|       })} Vectorized<double> copysign(const Vectorized<double>& sign) const { |  | ||||||
|       USE_SLEEF( |  | ||||||
|           { return Vectorized<double>(Sleef_copysignd2(values, sign)); }, |  | ||||||
|           { |  | ||||||
|             __at_align__ double tmp[size()]; |  | ||||||
|             __at_align__ double tmp_sign[size()]; |  | ||||||
|             store(tmp); |  | ||||||
|             sign.store(tmp_sign); |  | ||||||
|             for (int64_t i = 0; i < size(); i++) { |  | ||||||
|               tmp[i] = std::copysign(tmp[i], tmp_sign[i]); |  | ||||||
|             } |  | ||||||
|             return loadu(tmp); |  | ||||||
|           })} Vectorized<double> erf() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> erfc() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> exp() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> exp2() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> expm1() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF( |  | ||||||
|       { return Vectorized<double>(Sleef_fmodd2(values, q)); }, |  | ||||||
|       { |  | ||||||
|         __at_align__ double tmp[size()]; |  | ||||||
|         __at_align__ double tmp_q[size()]; |  | ||||||
|         store(tmp); |  | ||||||
|         q.store(tmp_q); |  | ||||||
|         for (int64_t i = 0; i < size(); i++) { |  | ||||||
|           tmp[i] = std::fmod(tmp[i], tmp_q[i]); |  | ||||||
|         } |  | ||||||
|         return loadu(tmp); |  | ||||||
|       })} Vectorized<double> hypot(const Vectorized<double>& b) const { |  | ||||||
|       USE_SLEEF( |  | ||||||
|           { return Vectorized<double>(Sleef_hypotd2_u05(values, b)); }, |  | ||||||
|           { |  | ||||||
|             __at_align__ double tmp[size()]; |  | ||||||
|             __at_align__ double tmp_b[size()]; |  | ||||||
|             store(tmp); |  | ||||||
|             b.store(tmp_b); |  | ||||||
|             for (int64_t i = 0; i < size(); i++) { |  | ||||||
|               tmp[i] = std::hypot(tmp[i], tmp_b[i]); |  | ||||||
|             } |  | ||||||
|             return loadu(tmp); |  | ||||||
|           })} Vectorized<double> i0() const { |  | ||||||
|     return map(calc_i0); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF( |  | ||||||
|       { return Vectorized<double>(Sleef_nextafterd2(values, b)); }, |  | ||||||
|       { |  | ||||||
|         __at_align__ double tmp[size()]; |  | ||||||
|         __at_align__ double tmp_b[size()]; |  | ||||||
|         store(tmp); |  | ||||||
|         b.store(tmp_b); |  | ||||||
|         for (int64_t i = 0; i < size(); ++i) { |  | ||||||
|           tmp[i] = std::nextafter(tmp[i], tmp_b[i]); |  | ||||||
|         } |  | ||||||
|         return loadu(tmp); |  | ||||||
|       })} Vectorized<double> log() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_logd2_u10(values)), map(std::log)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> log2() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> log10() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> log1p() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> frac() const; |  | ||||||
|   Vectorized<double> sin() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> sinh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> cos() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> cosh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF( |  | ||||||
|       { return Vectorized<double>(Sleef_powd2_u10(values, b)); }, |  | ||||||
|       { |  | ||||||
|         __at_align__ double tmp[size()]; |  | ||||||
|         __at_align__ double tmp_b[size()]; |  | ||||||
|         store(tmp); |  | ||||||
|         b.store(tmp_b); |  | ||||||
|         for (int64_t i = 0; i < size(); i++) { |  | ||||||
|           tmp[i] = std::pow(tmp[i], tmp_b[i]); |  | ||||||
|         } |  | ||||||
|         return loadu(tmp); |  | ||||||
|       })} // Comparison using the _CMP_**_OQ predicate. |  | ||||||
|           //   `O`: get false if an operand is NaN |  | ||||||
|           //   `Q`: do not raise if an operand is NaN |  | ||||||
|   Vectorized<double> tan() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> tanh() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> lgamma() const { |  | ||||||
|     return USE_SLEEF( |  | ||||||
|         Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma)); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> erfinv() const { |  | ||||||
|     return map(calc_erfinv); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> exp_u20() const { |  | ||||||
|     return exp(); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> fexp_u20() const { |  | ||||||
|     return exp(); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> i0e() const { |  | ||||||
|     return map(calc_i0e); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> digamma() const { |  | ||||||
|     return map(calc_digamma); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> igamma(const Vectorized<double>& x) const { |  | ||||||
|     __at_align__ double tmp[size()]; |  | ||||||
|     __at_align__ double tmp_x[size()]; |  | ||||||
|     store(tmp); |  | ||||||
|     x.store(tmp_x); |  | ||||||
|     for (int64_t i = 0; i < size(); i++) { |  | ||||||
|       tmp[i] = calc_igamma(tmp[i], tmp_x[i]); |  | ||||||
|     } |  | ||||||
|     return loadu(tmp); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> igammac(const Vectorized<double>& x) const { |  | ||||||
|     __at_align__ double tmp[size()]; |  | ||||||
|     __at_align__ double tmp_x[size()]; |  | ||||||
|     store(tmp); |  | ||||||
|     x.store(tmp_x); |  | ||||||
|     for (int64_t i = 0; i < size(); i++) { |  | ||||||
|       tmp[i] = calc_igammac(tmp[i], tmp_x[i]); |  | ||||||
|     } |  | ||||||
|     return loadu(tmp); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> ceil() const { |  | ||||||
|     return vrndpq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> floor() const { |  | ||||||
|     return vrndmq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> neg() const { |  | ||||||
|     return vnegq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> round() const { |  | ||||||
|     return vrndiq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> trunc() const { |  | ||||||
|     return vrndq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> sqrt() const { |  | ||||||
|     return vsqrtq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> reciprocal() const { |  | ||||||
|     return vdivq_f64(vdupq_n_f64(1.0), values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> rsqrt() const { |  | ||||||
|     return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values)); |  | ||||||
|   } |  | ||||||
|   double reduce_add() const { |  | ||||||
|     return vaddvq_f64(values); |  | ||||||
|   } |  | ||||||
|   double reduce_max() const { |  | ||||||
|     return vmaxvq_f64(values); |  | ||||||
|   } |  | ||||||
|   Vectorized<double> operator==(const Vectorized<double>& other) const { |  | ||||||
|     return Vectorized<double>( |  | ||||||
|         vreinterpretq_f64_u64(vceqq_f64(values, other.values))); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> operator!=(const Vectorized<double>& other) const { |  | ||||||
|     float64x2_t r0 = vreinterpretq_f64_u32( |  | ||||||
|         vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values)))); |  | ||||||
|     return Vectorized<double>(r0); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> operator<(const Vectorized<double>& other) const { |  | ||||||
|     return Vectorized<double>( |  | ||||||
|         vreinterpretq_f64_u64(vcltq_f64(values, other.values))); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> operator<=(const Vectorized<double>& other) const { |  | ||||||
|     return Vectorized<double>( |  | ||||||
|         vreinterpretq_f64_u64(vcleq_f64(values, other.values))); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> operator>(const Vectorized<double>& other) const { |  | ||||||
|     return Vectorized<double>( |  | ||||||
|         vreinterpretq_f64_u64(vcgtq_f64(values, other.values))); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> operator>=(const Vectorized<double>& other) const { |  | ||||||
|     return Vectorized<double>( |  | ||||||
|         vreinterpretq_f64_u64(vcgeq_f64(values, other.values))); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Vectorized<double> eq(const Vectorized<double>& other) const; |  | ||||||
|   Vectorized<double> ne(const Vectorized<double>& other) const; |  | ||||||
|   Vectorized<double> gt(const Vectorized<double>& other) const; |  | ||||||
|   Vectorized<double> ge(const Vectorized<double>& other) const; |  | ||||||
|   Vectorized<double> lt(const Vectorized<double>& other) const; |  | ||||||
|   Vectorized<double> le(const Vectorized<double>& other) const; |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator+( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vaddq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator-( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vsubq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator*( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vmulq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator/( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vdivq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| // frac. Implement this here so we can use subtraction |  | ||||||
| Vectorized<double> inline Vectorized<double>::frac() const { |  | ||||||
|   return *this - this->trunc(); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| // Implements the IEEE 754 201X `maximum` operation, which propagates NaN if |  | ||||||
| // either input is a NaN. |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline maximum( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vmaxq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| // Implements the IEEE 754 201X `minimum` operation, which propagates NaN if |  | ||||||
| // either input is a NaN. |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline minimum( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vminq_f64(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline clamp( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& min, |  | ||||||
|     const Vectorized<double>& max) { |  | ||||||
|   return vminq_f64(max, vmaxq_f64(min, a)); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline clamp_max( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& max) { |  | ||||||
|   return vminq_f64(max, a); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline clamp_min( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& min) { |  | ||||||
|   return vmaxq_f64(min, a); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator&( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vreinterpretq_f64_u64( |  | ||||||
|       vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator|( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vreinterpretq_f64_u64( |  | ||||||
|       vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline operator^( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b) { |  | ||||||
|   return vreinterpretq_f64_u64( |  | ||||||
|       veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b))); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::eq( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this == other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::ne( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this != other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::gt( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this > other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::ge( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this >= other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::lt( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this < other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<double> Vectorized<double>::le( |  | ||||||
|     const Vectorized<double>& other) const { |  | ||||||
|   return (*this <= other) & Vectorized<double>(1.0); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline fmadd( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b, |  | ||||||
|     const Vectorized<double>& c) { |  | ||||||
|   return vfmaq_f64(c, a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline fnmadd( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b, |  | ||||||
|     const Vectorized<double>& c) { |  | ||||||
|   return vfmsq_f64(c, a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline fmsub( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b, |  | ||||||
|     const Vectorized<double>& c) { |  | ||||||
|   return vfmaq_f64(vnegq_f64(c), a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<double> inline fnmsub( |  | ||||||
|     const Vectorized<double>& a, |  | ||||||
|     const Vectorized<double>& b, |  | ||||||
|     const Vectorized<double>& c) { |  | ||||||
|   return vfmsq_f64(vnegq_f64(c), a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| } // namespace CPU_CAPABILITY |  | ||||||
| } // namespace at::vec |  | ||||||
| @ -307,49 +307,11 @@ class Vectorized<float> { | |||||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp) |   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp) | ||||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2) |   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2) | ||||||
|   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1) |   DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1) | ||||||
|   // Implementation copied from Arm Optimized Routine |  | ||||||
|   // https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c |  | ||||||
|   Vectorized<float> exp_u20() const { |   Vectorized<float> exp_u20() const { | ||||||
|     // bail out to sleef if it's a special case: |     return exp(); | ||||||
|     // i.e. there's an input s.t. |input| > 87.3.... |  | ||||||
|     const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f); |  | ||||||
|     uint32x4_t cmp = vcagtq_f32(values, special_bound); |  | ||||||
|     if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) { |  | ||||||
|       return exp(); |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f); |  | ||||||
|     const float ln2_hi = 0x1.62e4p-1f; |  | ||||||
|     const float ln2_lo = 0x1.7f7d1cp-20f; |  | ||||||
|     const float c0 = 0x1.0e4020p-7f; |  | ||||||
|     const float c2 = 0x1.555e66p-3f; |  | ||||||
|     const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2}; |  | ||||||
|  |  | ||||||
|     const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000); |  | ||||||
|     const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f); |  | ||||||
|     const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f); |  | ||||||
|     const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f); |  | ||||||
|  |  | ||||||
|     /* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)] |  | ||||||
|       x = ln2*n + r, with r in [-ln2/2, ln2/2].  */ |  | ||||||
|  |  | ||||||
|     float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2)); |  | ||||||
|     float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0); |  | ||||||
|     r = vfmsq_laneq_f32(r, n, ln2_c02, 1); |  | ||||||
|     uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23); |  | ||||||
|     float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias)); |  | ||||||
|  |  | ||||||
|     float32x4_t r2 = vmulq_f32(r, r); |  | ||||||
|     float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2); |  | ||||||
|     float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3); |  | ||||||
|     q = vfmaq_f32(q, p, r2); |  | ||||||
|     p = vmulq_f32(c4, r); |  | ||||||
|     float32x4_t poly = vfmaq_f32(p, q, r2); |  | ||||||
|  |  | ||||||
|     return vfmaq_f32(scale, poly, scale); |  | ||||||
|   } |   } | ||||||
|   Vectorized<float> fexp_u20() const { |   Vectorized<float> fexp_u20() const { | ||||||
|     return exp_u20(); |     return exp(); | ||||||
|   } |   } | ||||||
|   DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME( |   DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME( | ||||||
|       fmod, |       fmod, | ||||||
| @ -578,6 +540,42 @@ inline Vectorized<float> Vectorized<float>::le( | |||||||
|   return (*this <= other) & Vectorized<float>(1.0f); |   return (*this <= other) & Vectorized<float>(1.0f); | ||||||
| } | } | ||||||
|  |  | ||||||
|  | template <> | ||||||
|  | inline void convert(const float* src, int32_t* dst, int64_t n) { | ||||||
|  |   int64_t i; | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (i = 0; i <= (n - Vectorized<float>::size()); | ||||||
|  |        i += Vectorized<float>::size()) { | ||||||
|  |     vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i))); | ||||||
|  |   } | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (; i < n; i++) { | ||||||
|  |     dst[i] = static_cast<int32_t>(src[i]); | ||||||
|  |   } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | template <> | ||||||
|  | inline void convert(const int32_t* src, float* dst, int64_t n) { | ||||||
|  |   int64_t i; | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (i = 0; i <= (n - Vectorized<float>::size()); | ||||||
|  |        i += Vectorized<float>::size()) { | ||||||
|  |     vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i))); | ||||||
|  |   } | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (; i < n; i++) { | ||||||
|  |     dst[i] = static_cast<float>(src[i]); | ||||||
|  |   } | ||||||
|  | } | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| Vectorized<float> inline fmadd( | Vectorized<float> inline fmadd( | ||||||
|     const Vectorized<float>& a, |     const Vectorized<float>& a, | ||||||
| @ -634,7 +632,8 @@ inline Vectorized<float> Vectorized<float>::erf() const { | |||||||
|   // - exp(- x * x) |   // - exp(- x * x) | ||||||
|   auto pow_2 = (*this) * (*this); |   auto pow_2 = (*this) * (*this); | ||||||
|   auto neg_pow_2 = pow_2 ^ neg_zero_vec; |   auto neg_pow_2 = pow_2 ^ neg_zero_vec; | ||||||
|   auto tmp4 = neg_pow_2.exp(); |   auto tmp4 = neg_pow_2.map( | ||||||
|  |       std::exp); // This can be swapped for a faster implementation of exp. | ||||||
|   auto tmp5 = tmp4 ^ neg_zero_vec; |   auto tmp5 = tmp4 ^ neg_zero_vec; | ||||||
|   // erf(x) = sign(x) * (1 - r * t * exp(- x * x)) |   // erf(x) = sign(x) * (1 - r * t * exp(- x * x)) | ||||||
|   auto tmp6 = t * tmp5; |   auto tmp6 = t * tmp5; | ||||||
|  | |||||||
| @ -234,7 +234,7 @@ class Vectorized<c10::Half> : public Vectorized16< | |||||||
|         vshlq_u16(vandq_u16(is_zero_vec, vdupq_n_u16(1)), shift); |         vshlq_u16(vandq_u16(is_zero_vec, vdupq_n_u16(1)), shift); | ||||||
|     return vaddvq_u16(bits_vec); |     return vaddvq_u16(bits_vec); | ||||||
| #else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | #else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||||
|     // use known working implementation. |     // use known working implmentation. | ||||||
|     __at_align__ value_type tmp[size()]; |     __at_align__ value_type tmp[size()]; | ||||||
|     store(tmp); |     store(tmp); | ||||||
|     int mask = 0; |     int mask = 0; | ||||||
| @ -569,6 +569,46 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le( | |||||||
|   return (*this <= other) & Vectorized<c10::Half>(1); |   return (*this <= other) & Vectorized<c10::Half>(1); | ||||||
| } | } | ||||||
|  |  | ||||||
|  | // These are global functions, so the defaults in vec_base.h should | ||||||
|  | // work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available. | ||||||
|  | #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||||
|  | template <> | ||||||
|  | inline void convert(const float16_t* src, int16_t* dst, int64_t n) { | ||||||
|  |   int64_t i; | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (i = 0; i <= (n - Vectorized<c10::Half>::size()); | ||||||
|  |        i += Vectorized<c10::Half>::size()) { | ||||||
|  |     vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i))); | ||||||
|  |   } | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (; i < n; i++) { | ||||||
|  |     dst[i] = static_cast<int16_t>(src[i]); | ||||||
|  |   } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | template <> | ||||||
|  | inline void convert(const int16_t* src, float16_t* dst, int64_t n) { | ||||||
|  |   int64_t i; | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (i = 0; i <= (n - Vectorized<c10::Half>::size()); | ||||||
|  |        i += Vectorized<c10::Half>::size()) { | ||||||
|  |     vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i))); | ||||||
|  |   } | ||||||
|  | #ifndef __msvc_cl__ | ||||||
|  | #pragma unroll | ||||||
|  | #endif | ||||||
|  |   for (; i < n; i++) { | ||||||
|  |     dst[i] = static_cast<float16_t>(src[i]); | ||||||
|  |   } | ||||||
|  | } | ||||||
|  | #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | ||||||
|  |  | ||||||
| template <> | template <> | ||||||
| Vectorized<c10::Half> inline fmadd( | Vectorized<c10::Half> inline fmadd( | ||||||
|     const Vectorized<c10::Half>& a, |     const Vectorized<c10::Half>& a, | ||||||
|  | |||||||
| @ -1,378 +0,0 @@ | |||||||
| #pragma once |  | ||||||
|  |  | ||||||
| #include <ATen/cpu/vec/intrinsics.h> |  | ||||||
| #include <ATen/cpu/vec/vec_base.h> |  | ||||||
| #include <c10/macros/Macros.h> |  | ||||||
| #include <c10/util/irange.h> |  | ||||||
|  |  | ||||||
| namespace at::vec { |  | ||||||
| // Note [CPU_CAPABILITY namespace] |  | ||||||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  | ||||||
| // This header, and all of its subheaders, will be compiled with |  | ||||||
| // different architecture flags for each supported set of vector |  | ||||||
| // intrinsics. So we need to make sure they aren't inadvertently |  | ||||||
| // linked together. We do this by declaring objects in an `inline |  | ||||||
| // namespace` which changes the name mangling, but can still be |  | ||||||
| // accessed as `at::vec`. |  | ||||||
| inline namespace CPU_CAPABILITY { |  | ||||||
|  |  | ||||||
| #define VEC_UINT_NEON_TEMPLATE(vl, bit)                                       \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \ |  | ||||||
|                                                                               \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   class Vectorized<uint##bit##_t> {                                           \ |  | ||||||
|     using neon_type = uint##bit##x##vl##_t;                                   \ |  | ||||||
|                                                                               \ |  | ||||||
|    private:                                                                   \ |  | ||||||
|     neon_type values;                                                         \ |  | ||||||
|                                                                               \ |  | ||||||
|    public:                                                                    \ |  | ||||||
|     using value_type = uint##bit##_t;                                         \ |  | ||||||
|     using size_type = int;                                                    \ |  | ||||||
|     static constexpr size_type size() {                                       \ |  | ||||||
|       return vl;                                                              \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized() {                                                            \ |  | ||||||
|       values = vdupq_n_u##bit(0);                                             \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized(neon_type v) : values(v) {}                                    \ |  | ||||||
|     Vectorized(uint##bit##_t val);                                            \ |  | ||||||
|     template <                                                                \ |  | ||||||
|         typename... Args,                                                     \ |  | ||||||
|         typename = std::enable_if_t<(sizeof...(Args) == size())>>             \ |  | ||||||
|     Vectorized(Args... vals) {                                                \ |  | ||||||
|       __at_align__ uint##bit##_t buffer[size()] = {vals...};                  \ |  | ||||||
|       values = vld1q_u##bit(buffer);                                          \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     operator neon_type() const {                                              \ |  | ||||||
|       return values;                                                          \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     static Vectorized<uint##bit##_t> loadu(                                   \ |  | ||||||
|         const void* ptr,                                                      \ |  | ||||||
|         uint64_t count = size());                                             \ |  | ||||||
|     void store(void* ptr, uint64_t count = size()) const;                     \ |  | ||||||
|     template <uint64_t mask>                                                  \ |  | ||||||
|     static Vectorized<uint##bit##_t> blend(                                   \ |  | ||||||
|         const Vectorized<uint##bit##_t>& a,                                   \ |  | ||||||
|         const Vectorized<uint##bit##_t>& b);                                  \ |  | ||||||
|     static Vectorized<uint##bit##_t> blendv(                                  \ |  | ||||||
|         const Vectorized<uint##bit##_t>& a,                                   \ |  | ||||||
|         const Vectorized<uint##bit##_t>& b,                                   \ |  | ||||||
|         const Vectorized<uint##bit##_t>& mask_) {                             \ |  | ||||||
|       return vbslq_u##bit(mask_.values, b, a);                                \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     template <typename step_t>                                                \ |  | ||||||
|     static Vectorized<uint##bit##_t> arange(                                  \ |  | ||||||
|         value_type base = 0,                                                  \ |  | ||||||
|         step_t step = static_cast<step_t>(1));                                \ |  | ||||||
|     static Vectorized<uint##bit##_t> set(                                     \ |  | ||||||
|         const Vectorized<uint##bit##_t>& a,                                   \ |  | ||||||
|         const Vectorized<uint##bit##_t>& b,                                   \ |  | ||||||
|         uint64_t count = size());                                             \ |  | ||||||
|     const uint##bit##_t& operator[](uint idx) const = delete;                 \ |  | ||||||
|     uint##bit##_t& operator[](uint idx) = delete;                             \ |  | ||||||
|     Vectorized<uint##bit##_t> abs() const {                                   \ |  | ||||||
|       return values;                                                          \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> real() const {                                  \ |  | ||||||
|       return values;                                                          \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> imag() const {                                  \ |  | ||||||
|       return vdupq_n_u##bit(0);                                               \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> conj() const {                                  \ |  | ||||||
|       return values;                                                          \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> neg() const {                                   \ |  | ||||||
|       return vreinterpretq_u##bit##_s##bit(                                   \ |  | ||||||
|           vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values)));               \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     uint##bit##_t reduce_add() const {                                        \ |  | ||||||
|       return vaddvq_u##bit(values);                                           \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     uint##bit##_t reduce_max() const;                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> operator==(                                     \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const {                       \ |  | ||||||
|       return Vectorized<value_type>(vceqq_u##bit(values, other.values));      \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> operator!=(                                     \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> operator<(                                      \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const {                       \ |  | ||||||
|       return Vectorized<value_type>(vcltq_u##bit(values, other.values));      \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> operator<=(                                     \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const {                       \ |  | ||||||
|       return Vectorized<value_type>(vcleq_u##bit(values, other.values));      \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> operator>(                                      \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const {                       \ |  | ||||||
|       return Vectorized<value_type>(vcgtq_u##bit(values, other.values));      \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> operator>=(                                     \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const {                       \ |  | ||||||
|       return Vectorized<value_type>(vcgeq_u##bit(values, other.values));      \ |  | ||||||
|     }                                                                         \ |  | ||||||
|     Vectorized<uint##bit##_t> eq(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> ne(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> gt(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> ge(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> lt(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|     Vectorized<uint##bit##_t> le(                                             \ |  | ||||||
|         const Vectorized<uint##bit##_t>& other) const;                        \ |  | ||||||
|   };                                                                          \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   Vectorized<uint##bit##_t> inline operator+(                                 \ |  | ||||||
|       const Vectorized<uint##bit##_t>& a,                                     \ |  | ||||||
|       const Vectorized<uint##bit##_t>& b) {                                   \ |  | ||||||
|     return vaddq_u##bit(a, b);                                                \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   Vectorized<uint##bit##_t> inline operator-(                                 \ |  | ||||||
|       const Vectorized<uint##bit##_t>& a,                                     \ |  | ||||||
|       const Vectorized<uint##bit##_t>& b) {                                   \ |  | ||||||
|     return vsubq_u##bit(a, b);                                                \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   Vectorized<uint##bit##_t> inline operator&(                                 \ |  | ||||||
|       const Vectorized<uint##bit##_t>& a,                                     \ |  | ||||||
|       const Vectorized<uint##bit##_t>& b) {                                   \ |  | ||||||
|     return vandq_u##bit(a, b);                                                \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   Vectorized<uint##bit##_t> inline operator|(                                 \ |  | ||||||
|       const Vectorized<uint##bit##_t>& a,                                     \ |  | ||||||
|       const Vectorized<uint##bit##_t>& b) {                                   \ |  | ||||||
|     return vorrq_u##bit(a, b);                                                \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   template <>                                                                 \ |  | ||||||
|   Vectorized<uint##bit##_t> inline operator^(                                 \ |  | ||||||
|       const Vectorized<uint##bit##_t>& a,                                     \ |  | ||||||
|       const Vectorized<uint##bit##_t>& b) {                                   \ |  | ||||||
|     return veorq_u##bit(a, b);                                                \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this == other) & Vectorized<uint##bit##_t>(1);                   \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this != other) & Vectorized<uint##bit##_t>(1);                   \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this > other) & Vectorized<uint##bit##_t>(1);                    \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this >= other) & Vectorized<uint##bit##_t>(1);                   \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this < other) & Vectorized<uint##bit##_t>(1);                    \ |  | ||||||
|   }                                                                           \ |  | ||||||
|   Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le(             \ |  | ||||||
|       const Vectorized<uint##bit##_t>& other) const {                         \ |  | ||||||
|     return (*this <= other) & Vectorized<uint##bit##_t>(1);                   \ |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| VEC_UINT_NEON_TEMPLATE(16, 8) |  | ||||||
|  |  | ||||||
| inline uint8_t Vectorized<uint8_t>::reduce_max() const { |  | ||||||
|   return vmaxvq_u8(values); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline operator*( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   return vmulq_u8(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) { |  | ||||||
|   return vmvnq_u8(a); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=( |  | ||||||
|     const Vectorized<uint8_t>& other) const { |  | ||||||
|   return ~(*this == other); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline minimum( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   return vminq_u8(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline maximum( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   return vmaxq_u8(a, b); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <uint64_t mask> |  | ||||||
| Vectorized<uint8_t> Vectorized<uint8_t>::blend( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   // Build an array of flags: each bit of element is 1 if the corresponding bit |  | ||||||
|   // in 'mask' is set, 0 otherwise. |  | ||||||
|   uint8x16_t maskArray = { |  | ||||||
|       (mask & 1LL) ? 0xFF : 0, |  | ||||||
|       (mask & 2LL) ? 0xFF : 0, |  | ||||||
|       (mask & 4LL) ? 0xFF : 0, |  | ||||||
|       (mask & 8LL) ? 0xFF : 0, |  | ||||||
|       (mask & 16LL) ? 0xFF : 0, |  | ||||||
|       (mask & 32LL) ? 0xFF : 0, |  | ||||||
|       (mask & 64LL) ? 0xFF : 0, |  | ||||||
|       (mask & 128LL) ? 0xFF : 0, |  | ||||||
|       (mask & 256LL) ? 0xFF : 0, |  | ||||||
|       (mask & 512LL) ? 0xFF : 0, |  | ||||||
|       (mask & 1024LL) ? 0xFF : 0, |  | ||||||
|       (mask & 2048LL) ? 0xFF : 0, |  | ||||||
|       (mask & 4096LL) ? 0xFF : 0, |  | ||||||
|       (mask & 8192LL) ? 0xFF : 0, |  | ||||||
|       (mask & 16384LL) ? 0xFF : 0, |  | ||||||
|       (mask & 32768LL) ? 0xFF : 0}; |  | ||||||
|   // Use BSL to select elements from b where the mask is 1, else from a |  | ||||||
|   return vbslq_u8(maskArray, b.values, a.values); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| #define VEC_UINT_NEON_OPS(vl, bit)                                             \ |  | ||||||
|   inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) {            \ |  | ||||||
|     values = vdupq_n_u##bit(val);                                              \ |  | ||||||
|   }                                                                            \ |  | ||||||
|   inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu(           \ |  | ||||||
|       const void* ptr, uint64_t count) {                                       \ |  | ||||||
|     if (count == size()) {                                                     \ |  | ||||||
|       return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr));        \ |  | ||||||
|     } else {                                                                   \ |  | ||||||
|       __at_align__ uint##bit##_t tmp_values[size()];                           \ |  | ||||||
|       for (const auto i : c10::irange(size())) {                               \ |  | ||||||
|         tmp_values[i] = 0;                                                     \ |  | ||||||
|       }                                                                        \ |  | ||||||
|       std::memcpy(                                                             \ |  | ||||||
|           tmp_values,                                                          \ |  | ||||||
|           reinterpret_cast<const uint##bit##_t*>(ptr),                         \ |  | ||||||
|           count * sizeof(uint##bit##_t));                                      \ |  | ||||||
|       return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \ |  | ||||||
|     }                                                                          \ |  | ||||||
|   }                                                                            \ |  | ||||||
|   inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count)      \ |  | ||||||
|       const {                                                                  \ |  | ||||||
|     if (count == size()) {                                                     \ |  | ||||||
|       vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values);             \ |  | ||||||
|     } else {                                                                   \ |  | ||||||
|       uint##bit##_t tmp_values[size()];                                        \ |  | ||||||
|       vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values);      \ |  | ||||||
|       std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t));             \ |  | ||||||
|     }                                                                          \ |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| VEC_UINT_NEON_OPS(16, 8) |  | ||||||
|  |  | ||||||
| template <typename step_t> |  | ||||||
| inline Vectorized<uint8_t> Vectorized<uint8_t>::arange( |  | ||||||
|     uint8_t base, |  | ||||||
|     step_t step) { |  | ||||||
|   const Vectorized<uint8_t> base_vec(base); |  | ||||||
|   const Vectorized<uint8_t> step_vec(step); |  | ||||||
|   const uint8x16_t step_sizes = { |  | ||||||
|       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; |  | ||||||
|   return vmlaq_u8(base_vec, step_sizes, step_vec); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline operator>>( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   uint8x16_t x = a; |  | ||||||
|   uint8x16_t bound = vdupq_n_u8(8); |  | ||||||
|   uint8x16_t z = vminq_u8(b, bound); |  | ||||||
|   return x >> z; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline operator<<( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   uint8x16_t bound = vdupq_n_u8(8); |  | ||||||
|   uint8x16_t z = vminq_u8(b, bound); |  | ||||||
|   return vshlq_u8(a, vreinterpretq_s8_u8(z)); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| inline Vectorized<uint8_t> Vectorized<uint8_t>::set( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b, |  | ||||||
|     uint64_t count) { |  | ||||||
|   if (count == 0) { |  | ||||||
|     return a; |  | ||||||
|   } else if (count >= 16) { |  | ||||||
|     return b; |  | ||||||
|   } else { |  | ||||||
|     // Build an array of flags: each bit of element is 1 if the corresponding |  | ||||||
|     // bit in 'mask' is set, 0 otherwise. |  | ||||||
|     uint8x16_t maskArray = { |  | ||||||
|         static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0), |  | ||||||
|         static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0), |  | ||||||
|         0}; |  | ||||||
|  |  | ||||||
|     // Use BSL to select elements from b where the mask is 1, else from a |  | ||||||
|     return vbslq_u8(maskArray, b.values, a.values); |  | ||||||
|   } |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline operator/( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& b) { |  | ||||||
|   uint8x16_t x = a; |  | ||||||
|   uint8x16_t y = b; |  | ||||||
|   return x / y; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline clamp( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& min, |  | ||||||
|     const Vectorized<uint8_t>& max) { |  | ||||||
|   return minimum(max, maximum(min, a)); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline clamp_max( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& max) { |  | ||||||
|   return minimum(max, a); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| template <> |  | ||||||
| Vectorized<uint8_t> inline clamp_min( |  | ||||||
|     const Vectorized<uint8_t>& a, |  | ||||||
|     const Vectorized<uint8_t>& min) { |  | ||||||
|   return maximum(min, a); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| } // namespace CPU_CAPABILITY |  | ||||||
| } // namespace at::vec |  | ||||||
| @ -1740,7 +1740,7 @@ Vectorized<int16_t> inline shift_256_16( | |||||||
|  |  | ||||||
|   // Control masks for shuffle operation, treating 256 bits as an |   // Control masks for shuffle operation, treating 256 bits as an | ||||||
|   // array of 16-bit elements, and considering pairs of neighboring |   // array of 16-bit elements, and considering pairs of neighboring | ||||||
|   // elements.  Specifically, a mask named "ctl_M_N" (M,N in [0,1], and |   // elements.  Specifially, a mask named "ctl_M_N" (M,N in [0,1], and | ||||||
|   // M!=N) is set so that shuffle will move element with index M from |   // M!=N) is set so that shuffle will move element with index M from | ||||||
|   // input pair into element with index N in output pair, and element |   // input pair into element with index N in output pair, and element | ||||||
|   // with index M in output pair will be set to all 0s. |   // with index M in output pair will be set to all 0s. | ||||||
| @ -1875,7 +1875,7 @@ Vectorized<T> inline shift_256_8( | |||||||
|  |  | ||||||
|   // Control masks for shuffle operation, treating 256 bits as an |   // Control masks for shuffle operation, treating 256 bits as an | ||||||
|   // array of 8-bit elements, and considering quadruples of |   // array of 8-bit elements, and considering quadruples of | ||||||
|   // neighboring elements.  Specifically, a mask named "ctl_M_N" (M,N |   // neighboring elements.  Specifially, a mask named "ctl_M_N" (M,N | ||||||
|   // in [0,1,2,3], and M!=N) is set so that shuffle will move element |   // in [0,1,2,3], and M!=N) is set so that shuffle will move element | ||||||
|   // with index M from input quadruple into element with index N in |   // with index M from input quadruple into element with index N in | ||||||
|   // output quadruple, and other elements in output quadruple will be |   // output quadruple, and other elements in output quadruple will be | ||||||
|  | |||||||
| @ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float( | |||||||
|  |  | ||||||
| std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float( | std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float( | ||||||
|     at::vec::Vectorized<uint8_t> src) { |     at::vec::Vectorized<uint8_t> src) { | ||||||
|   auto u8x8 = vget_low_u8(src); |   auto u8x8 = vld1_u8(src.operator const uint8_t*()); | ||||||
|   auto u16x8 = vmovl_u8(u8x8); |   auto u16x8 = vmovl_u8(u8x8); | ||||||
|   auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8)); |   auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8)); | ||||||
|   auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8)); |   auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8)); | ||||||
| @ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float( | |||||||
|  |  | ||||||
| Vectorized<float> inline convert_int8_half_register_to_float( | Vectorized<float> inline convert_int8_half_register_to_float( | ||||||
|     at::vec::Vectorized<uint8_t> src) { |     at::vec::Vectorized<uint8_t> src) { | ||||||
|   auto u8x8 = vget_low_u8(src); |   auto u8x8 = vld1_u8(src.operator const uint8_t*()); | ||||||
|   auto u16x8 = vmovl_u8(u8x8); |   auto u16x8 = vmovl_u8(u8x8); | ||||||
|   auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8)); |   auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8)); | ||||||
|  |  | ||||||
|  | |||||||
| @ -143,7 +143,7 @@ class Vectorized<double> { | |||||||
|       const Vectorized<double>& a, |       const Vectorized<double>& a, | ||||||
|       const Vectorized<double>& b, |       const Vectorized<double>& b, | ||||||
|       const Vectorized<double>& mask) { |       const Vectorized<double>& mask) { | ||||||
|     // the mask used here returned by comparison of vec256 |     // the mask used here returned by comparision of vec256 | ||||||
|  |  | ||||||
|     return { |     return { | ||||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), |         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||||
|  | |||||||
| @ -142,7 +142,7 @@ class Vectorized<float> { | |||||||
|       const Vectorized<float>& a, |       const Vectorized<float>& a, | ||||||
|       const Vectorized<float>& b, |       const Vectorized<float>& b, | ||||||
|       const Vectorized<float>& mask) { |       const Vectorized<float>& mask) { | ||||||
|     // the mask used here returned by comparison of vec256 |     // the mask used here returned by comparision of vec256 | ||||||
|     // assuming this we can use the same mask directly with vec_sel |     // assuming this we can use the same mask directly with vec_sel | ||||||
|     return { |     return { | ||||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), |         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||||
|  | |||||||
| @ -202,7 +202,7 @@ class Vectorized<int16_t> { | |||||||
|       const Vectorized<int16_t>& a, |       const Vectorized<int16_t>& a, | ||||||
|       const Vectorized<int16_t>& b, |       const Vectorized<int16_t>& b, | ||||||
|       const Vectorized<int16_t>& mask) { |       const Vectorized<int16_t>& mask) { | ||||||
|     // the mask used here returned by comparison of vec256 |     // the mask used here returned by comparision of vec256 | ||||||
|     // assuming this we can use the same mask directly with vec_sel |     // assuming this we can use the same mask directly with vec_sel | ||||||
|     // warning intel style mask will not work properly |     // warning intel style mask will not work properly | ||||||
|     return { |     return { | ||||||
|  | |||||||
| @ -155,7 +155,7 @@ class Vectorized<int32_t> { | |||||||
|       const Vectorized<int32_t>& a, |       const Vectorized<int32_t>& a, | ||||||
|       const Vectorized<int32_t>& b, |       const Vectorized<int32_t>& b, | ||||||
|       const Vectorized<int32_t>& mask) { |       const Vectorized<int32_t>& mask) { | ||||||
|     // the mask used here returned by comparison of vec256 |     // the mask used here returned by comparision of vec256 | ||||||
|     // assuming this we can use the same mask directly with vec_sel |     // assuming this we can use the same mask directly with vec_sel | ||||||
|     // warning intel style mask will not work properly |     // warning intel style mask will not work properly | ||||||
|     return { |     return { | ||||||
|  | |||||||
| @ -119,7 +119,7 @@ class Vectorized<int64_t> { | |||||||
|       const Vectorized<int64_t>& a, |       const Vectorized<int64_t>& a, | ||||||
|       const Vectorized<int64_t>& b, |       const Vectorized<int64_t>& b, | ||||||
|       const Vectorized<int64_t>& mask) { |       const Vectorized<int64_t>& mask) { | ||||||
|     // the mask used here returned by comparison of vec256 |     // the mask used here returned by comparision of vec256 | ||||||
|  |  | ||||||
|     return { |     return { | ||||||
|         vec_sel(a._vec0, b._vec0, mask._vecb0), |         vec_sel(a._vec0, b._vec0, mask._vecb0), | ||||||
|  | |||||||
| @ -397,7 +397,7 @@ inline Vectorized<bool> operator&&( | |||||||
|   const __m512i* other_ = reinterpret_cast<const __m512i*>(other.as_bytes()); |   const __m512i* other_ = reinterpret_cast<const __m512i*>(other.as_bytes()); | ||||||
|   __m512i out = _mm512_and_si512(*self_, *other_); |   __m512i out = _mm512_and_si512(*self_, *other_); | ||||||
|   Vectorized<bool> ret; |   Vectorized<bool> ret; | ||||||
|   // We do not have a constructor that takes __m512i, so we need to memcpy |   // We do not have a constructer that takes __m512i, so we need to memcpy | ||||||
|   std::memcpy(ret, &out, ret.size() * sizeof(bool)); |   std::memcpy(ret, &out, ret.size() * sizeof(bool)); | ||||||
|   return ret; |   return ret; | ||||||
| } | } | ||||||
|  | |||||||
| @ -1852,7 +1852,7 @@ Vectorized<T> inline shift_512_8( | |||||||
|  |  | ||||||
|   // Control masks for shuffle operation, treating 512 bits as an |   // Control masks for shuffle operation, treating 512 bits as an | ||||||
|   // array of 8-bit elements, and considering pairs of neighboring |   // array of 8-bit elements, and considering pairs of neighboring | ||||||
|   // elements.  Specifically, a mask named "ctl_M_N" (M,N in [0,1], and |   // elements.  Specifially, a mask named "ctl_M_N" (M,N in [0,1], and | ||||||
|   // M!=N) is set so that shuffle will move element with index M from |   // M!=N) is set so that shuffle will move element with index M from | ||||||
|   // input pair into element with index N in output pair, and element |   // input pair into element with index N in output pair, and element | ||||||
|   // with index M in output pair will be set to all 0s. |   // with index M in output pair will be set to all 0s. | ||||||
|  | |||||||
| @ -634,7 +634,7 @@ struct Vectorized { | |||||||
|   } |   } | ||||||
|   Vectorized<T> neg() const { |   Vectorized<T> neg() const { | ||||||
|     // NB: the trailing return type is needed because we need to coerce the |     // NB: the trailing return type is needed because we need to coerce the | ||||||
|     // return value back to T in the case of unary operator- incurring a |     // return value back to T in the case of unary operator- incuring a | ||||||
|     // promotion |     // promotion | ||||||
|     return map([](T x) -> T { return -x; }); |     return map([](T x) -> T { return -x; }); | ||||||
|   } |   } | ||||||
|  | |||||||
| @ -1958,7 +1958,7 @@ void scaled_gemm( | |||||||
|     ScalarType result_dtype, |     ScalarType result_dtype, | ||||||
|     bool use_fast_accum, |     bool use_fast_accum, | ||||||
|     const std::optional<Tensor>& alpha) { |     const std::optional<Tensor>& alpha) { | ||||||
|   // Note: see `cublasCommonArgs` for various non-intuitive manipulations |   // Note: see `cublasCommonArgs` for various non-intuitive manupulations | ||||||
|   // of input arguments to this function. |   // of input arguments to this function. | ||||||
|   const auto computeType = CUBLAS_COMPUTE_32F; |   const auto computeType = CUBLAS_COMPUTE_32F; | ||||||
|   const auto scaleType = CUDA_R_32F; |   const auto scaleType = CUDA_R_32F; | ||||||
|  | |||||||
| @ -168,9 +168,11 @@ void CUDAGraph::instantiate() { | |||||||
|   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597 |   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597 | ||||||
|   // cudaGraphInstantiateWithFlags |   // cudaGraphInstantiateWithFlags | ||||||
|   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233 |   // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233 | ||||||
|  | #if !defined(USE_ROCM) || ROCM_VERSION >= 60200 | ||||||
|   int version = 0; |   int version = 0; | ||||||
|   AT_CUDA_CHECK(cudaDriverGetVersion(&version)); |   AT_CUDA_CHECK(cudaDriverGetVersion(&version)); | ||||||
|   if (version < 11040) { |   if (version < 11040) { | ||||||
|  | #endif | ||||||
|     // Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people, |     // Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people, | ||||||
|     // who prefer not to report error message through these arguments moving forward |     // who prefer not to report error message through these arguments moving forward | ||||||
|     // (they prefer return value, or errors on api calls internal to the capture) |     // (they prefer return value, or errors on api calls internal to the capture) | ||||||
| @ -181,11 +183,13 @@ void CUDAGraph::instantiate() { | |||||||
| #endif | #endif | ||||||
| //Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory. | //Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory. | ||||||
| //It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch. | //It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch. | ||||||
|  | #if !defined(USE_ROCM) || ROCM_VERSION >= 60200 | ||||||
|   } else { |   } else { | ||||||
|     AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_, |     AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_, | ||||||
|                                                 graph_, |                                                 graph_, | ||||||
|                                                 cudaGraphInstantiateFlagAutoFreeOnLaunch)); |                                                 cudaGraphInstantiateFlagAutoFreeOnLaunch)); | ||||||
|   } |   } | ||||||
|  | #endif | ||||||
|   has_graph_exec_ = true; |   has_graph_exec_ = true; | ||||||
| } | } | ||||||
|  |  | ||||||
| @ -307,7 +311,7 @@ CUDAGraph::~CUDAGraph() { | |||||||
| // There are recent HIP changes where hipGraphExecDestroy doesn't immediately free memory. | // There are recent HIP changes where hipGraphExecDestroy doesn't immediately free memory. | ||||||
| // They wait for next sync point in order to free the memory, this is to ensure that all | // They wait for next sync point in order to free the memory, this is to ensure that all | ||||||
| // hipGraphLaunch are finished before we release any memory. This feature was enabled in rocm6.2. | // hipGraphLaunch are finished before we release any memory. This feature was enabled in rocm6.2. | ||||||
| // We need to ensure all async operations finish before deleting the object. | // We need to ensure all async opreations finish before deleting the object. | ||||||
| #if (defined(USE_ROCM) && ROCM_VERSION >= 60200) | #if (defined(USE_ROCM) && ROCM_VERSION >= 60200) | ||||||
|   if (capture_dev_ != UNDEFINED_DEVICE) // check if capture_dev_ contains the real device id |   if (capture_dev_ != UNDEFINED_DEVICE) // check if capture_dev_ contains the real device id | ||||||
|   { |   { | ||||||
|  | |||||||
| @ -1,192 +0,0 @@ | |||||||
| #include <ATen/cuda/CUDAGreenContext.h> |  | ||||||
|  |  | ||||||
| namespace at::cuda { |  | ||||||
|   GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) { |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     int driver_version; |  | ||||||
|     C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version)); |  | ||||||
|     TORCH_CHECK( |  | ||||||
|         driver_version >= 12080, "cuda driver too old to use green context!"); |  | ||||||
|     CUcontext pctx = nullptr; |  | ||||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx)); |  | ||||||
|     if (C10_UNLIKELY(!pctx)) { |  | ||||||
|       TORCH_WARN( |  | ||||||
|           "Attempted to create a green context but" |  | ||||||
|           " there was no primary context! Creating a primary context..."); |  | ||||||
|  |  | ||||||
|       cudaFree(0); |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     CUdevice device; |  | ||||||
|     device_id_ = device_id; |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id)); |  | ||||||
|  |  | ||||||
|     // Get device resources |  | ||||||
|     CUdevResource device_resource; |  | ||||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_( |  | ||||||
|         device, &device_resource, CU_DEV_RESOURCE_TYPE_SM)); |  | ||||||
|  |  | ||||||
|     // Split resources |  | ||||||
|     std::vector<CUdevResource> result(1); |  | ||||||
|     auto result_data = result.data(); |  | ||||||
|     unsigned int nb_groups = 1; |  | ||||||
|     CUdevResource remaining; |  | ||||||
|  |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_( |  | ||||||
|             result_data, |  | ||||||
|             &nb_groups, |  | ||||||
|             &device_resource, |  | ||||||
|             &remaining, |  | ||||||
|             0, // default flags |  | ||||||
|             num_sms)); |  | ||||||
|  |  | ||||||
|     TORCH_CHECK(nb_groups == 1, "Failed to create single resource group"); |  | ||||||
|  |  | ||||||
|     // Generate resource descriptor |  | ||||||
|     CUdevResourceDesc desc; |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_( |  | ||||||
|             &desc, result_data, 1)); |  | ||||||
|  |  | ||||||
|     // Create green context |  | ||||||
|     // CU_GREEN_CTX_DEFAULT_STREAM is required per docs: |  | ||||||
|     // https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html |  | ||||||
|     C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_( |  | ||||||
|         &green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM)); |  | ||||||
|  |  | ||||||
|     // Convert to regular context |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_)); |  | ||||||
|     TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!"); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   std::unique_ptr<GreenContext> GreenContext::create( |  | ||||||
|       uint32_t num_sms, |  | ||||||
|       std::optional<uint32_t> device_id) { |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     if (!device_id.has_value()) { |  | ||||||
|       device_id = at::cuda::current_device(); |  | ||||||
|     } |  | ||||||
|     return std::make_unique<GreenContext>(device_id.value(), num_sms); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Implement move operations |  | ||||||
|   GreenContext::GreenContext(GreenContext&& other) noexcept{ |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     device_id_ = std::exchange(other.device_id_, -1); |  | ||||||
|     green_ctx_ = std::exchange(other.green_ctx_, nullptr); |  | ||||||
|     context_ = std::exchange(other.context_, nullptr); |  | ||||||
|     parent_stream_ = std::exchange(other.parent_stream_, nullptr); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{ |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     if (this != &other) { |  | ||||||
|       // Clean up current resources |  | ||||||
|       if (green_ctx_) { |  | ||||||
|         CUcontext current = nullptr; |  | ||||||
|         C10_CUDA_DRIVER_CHECK( |  | ||||||
|             c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t)); |  | ||||||
|         if (current == context_) { |  | ||||||
|           TORCH_CHECK( |  | ||||||
|               false, |  | ||||||
|               "attempting to overwrite current green ctx " |  | ||||||
|               "when it is active!"); |  | ||||||
|         } |  | ||||||
|         C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_)); |  | ||||||
|       } |  | ||||||
|  |  | ||||||
|       // Take ownership of other's resources |  | ||||||
|       device_id_ = std::exchange(other.device_id_, -1); |  | ||||||
|       green_ctx_ = std::exchange(other.green_ctx_, nullptr); |  | ||||||
|       context_ = std::exchange(other.context_, nullptr); |  | ||||||
|       parent_stream_ = std::exchange(other.parent_stream_, nullptr); |  | ||||||
|     } |  | ||||||
|     return *this; |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   GreenContext::~GreenContext() noexcept{ |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_)); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Get the underlying CUDA context |  | ||||||
|   CUcontext GreenContext::getContext() const { |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     return context_; |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Get the underlying green context |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|   CUgreenCtx GreenContext::getGreenContext() const { |  | ||||||
|     return green_ctx_; |  | ||||||
|   } |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
|   // Make this context current |  | ||||||
|   void GreenContext::setContext() { |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     auto current_stream = c10::cuda::getCurrentCUDAStream(); |  | ||||||
|     parent_stream_ = current_stream.stream(); |  | ||||||
|  |  | ||||||
|     at::cuda::CUDAEvent ev; |  | ||||||
|     ev.record(current_stream); |  | ||||||
|  |  | ||||||
|     CUcontext current = nullptr; |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t)); |  | ||||||
|     if (!current) { |  | ||||||
|       C10_CUDA_DRIVER_CHECK( |  | ||||||
|           c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_)); |  | ||||||
|     } else { |  | ||||||
|       C10_CUDA_DRIVER_CHECK( |  | ||||||
|           c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_)); |  | ||||||
|     } |  | ||||||
|     // currently hardcodes the new green context to use the default stream |  | ||||||
|     // TODO(eqy): consider creating a new stream if e.g., it allows interop |  | ||||||
|     // with CUDA Graph captures etc. |  | ||||||
|     auto default_stream = c10::cuda::getDefaultCUDAStream(); |  | ||||||
|     ev.block(default_stream); |  | ||||||
|     c10::cuda::setCurrentCUDAStream(default_stream); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   void GreenContext::popContext() { |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|     // see above note about stream being hardcoded to the default stream |  | ||||||
|     at::cuda::CUDAEvent ev; |  | ||||||
|     ev.record(c10::cuda::getCurrentCUDAStream()); |  | ||||||
|     CUcontext popped; |  | ||||||
|     C10_CUDA_DRIVER_CHECK( |  | ||||||
|         c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped)); |  | ||||||
|     TORCH_INTERNAL_ASSERT( |  | ||||||
|         popped == context_, "expected popped context to be the current ctx"); |  | ||||||
|     ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_)); |  | ||||||
| #else |  | ||||||
|     TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!"); |  | ||||||
| #endif |  | ||||||
|   } |  | ||||||
| } // namespace at::cuda |  | ||||||
| @ -1,53 +0,0 @@ | |||||||
| #pragma once |  | ||||||
| #include <ATen/cuda/CUDAEvent.h> |  | ||||||
|  |  | ||||||
| #if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED) |  | ||||||
| #include <c10/cuda/driver_api.h> |  | ||||||
| #include <cuda.h> |  | ||||||
| #include <memory> |  | ||||||
| #include <stdexcept> |  | ||||||
| #include <vector> |  | ||||||
| #define CUDA_HAS_GREEN_CONTEXT 1 |  | ||||||
| #else |  | ||||||
| #define CUDA_HAS_GREEN_CONTEXT 0 |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| namespace at::cuda { |  | ||||||
|  |  | ||||||
| class TORCH_CUDA_CPP_API GreenContext { |  | ||||||
|  public: |  | ||||||
|   GreenContext(uint32_t device_id, uint32_t num_sms); |  | ||||||
|  |  | ||||||
|   static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id); |  | ||||||
|  |  | ||||||
|   // Delete copy constructor and assignment |  | ||||||
|   GreenContext(const GreenContext&) = delete; |  | ||||||
|   GreenContext& operator=(const GreenContext&) = delete; |  | ||||||
|  |  | ||||||
|   // Implement move operations |  | ||||||
|   GreenContext(GreenContext&& other) noexcept; |  | ||||||
|   GreenContext& operator=(GreenContext&& other) noexcept; |  | ||||||
|   ~GreenContext() noexcept; |  | ||||||
|  |  | ||||||
|   // Get the underlying CUDA context |  | ||||||
|   CUcontext getContext() const; |  | ||||||
|  |  | ||||||
|   // Get the underlying green context |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|   CUgreenCtx getGreenContext() const; |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
|   // Make this context current |  | ||||||
|   void setContext(); |  | ||||||
|  |  | ||||||
|   void popContext(); |  | ||||||
|  |  | ||||||
|  private: |  | ||||||
| #if CUDA_HAS_GREEN_CONTEXT |  | ||||||
|   int32_t device_id_ = -1; |  | ||||||
|   CUgreenCtx green_ctx_ = nullptr; |  | ||||||
|   CUcontext context_ = nullptr; |  | ||||||
|   cudaStream_t parent_stream_ = nullptr; |  | ||||||
| #endif |  | ||||||
| }; |  | ||||||
| } // namespace at::cuda |  | ||||||
| @ -1,270 +0,0 @@ | |||||||
| #include <cstdint> |  | ||||||
| #include <c10/util/typeid.h> |  | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <c10/util/SmallVector.h> |  | ||||||
| #include <c10/core/Scalar.h> |  | ||||||
| #include <c10/core/ScalarType.h> |  | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |  | ||||||
| #include <ATen/core/Tensor.h> |  | ||||||
| #include <ATen/core/NamedTensor.h> |  | ||||||
| #include <ATen/Dispatch.h> |  | ||||||
| #include <ATen/ExpandUtils.h> |  | ||||||
| #include <ATen/OpMathType.h> |  | ||||||
| #include <ATen/TensorUtils.h> |  | ||||||
| #include <ATen/cuda/CUDABlas.h> |  | ||||||
| #include <ATen/cuda/tunable/Tunable.h> |  | ||||||
| #include <ATen/cuda/tunable/TunableGemm.h> |  | ||||||
| #include <ATen/native/Resize.h> |  | ||||||
| #include <c10/util/MaybeOwned.h> |  | ||||||
| #include <ATen/native/GroupedMMUtils.h> |  | ||||||
| #include <ATen/native/cuda/RowwiseScaledMM.h> |  | ||||||
| #include <ATen/native/cuda/ScaledGroupMM.h> |  | ||||||
| #include <ATen/native/cuda/GroupMM.h> |  | ||||||
| #include <ATen/ceil_div.h> |  | ||||||
|  |  | ||||||
| #ifdef USE_FBGEMM_GENAI |  | ||||||
| #include <fbgemm_gpu/torch_ops.h> |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| #ifndef AT_PER_OPERATOR_HEADERS |  | ||||||
| #include <ATen/Functions.h> |  | ||||||
| #include <ATen/NativeFunctions.h> |  | ||||||
| #else |  | ||||||
| #include <ATen/ops/_addmm_activation_native.h> |  | ||||||
| #include <ATen/ops/_efficientzerotensor.h> |  | ||||||
| #include <ATen/ops/_scaled_mm_native.h> |  | ||||||
| #include <ATen/ops/_unsafe_view_native.h> |  | ||||||
| #include <ATen/ops/abs.h> |  | ||||||
| #include <ATen/ops/addmm_native.h> |  | ||||||
| #include <ATen/ops/addmv_native.h> |  | ||||||
| #include <ATen/ops/baddbmm_native.h> |  | ||||||
| #include <ATen/ops/bmm_native.h> |  | ||||||
| #include <ATen/ops/copy_native.h> |  | ||||||
| #include <ATen/ops/dot_native.h> |  | ||||||
| #include <ATen/ops/empty.h> |  | ||||||
| #include <ATen/ops/empty_strided.h> |  | ||||||
| #include <ATen/ops/gelu.h> |  | ||||||
| #include <ATen/ops/max.h> |  | ||||||
| #include <ATen/ops/mm_native.h> |  | ||||||
| #include <ATen/ops/mul.h> |  | ||||||
| #include <ATen/ops/relu.h> |  | ||||||
| #include <ATen/ops/ones.h> |  | ||||||
| #include <ATen/ops/scalar_tensor_native.h> |  | ||||||
| #include <ATen/ops/vdot_native.h> |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| using at::blas::ScalingType; |  | ||||||
| using at::blas::SwizzleType; |  | ||||||
|  |  | ||||||
| namespace at::cuda::scaled { |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Both inputs must be fp8, |  | ||||||
|  * Each needs a single scale, {Tensorwise (float)} |  | ||||||
|  */ |  | ||||||
| bool check_tensorwise_recipe(c10::ScalarType type_a, |  | ||||||
|                              std::vector<ScalingType>& recipe_a, |  | ||||||
|                              ArrayRef<Tensor>& scales_a, |  | ||||||
|                              c10::ScalarType type_b, |  | ||||||
|                              std::vector<ScalingType>& recipe_b, |  | ||||||
|                              ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp8 |  | ||||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 1 scale each, {Tensorwise, float} |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|   // Need {Blockwise_1x32, e8m0} for A & B |  | ||||||
|   if (recipe_a[0] != ScalingType::TensorWise) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::TensorWise) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Both inputs must be fp8, |  | ||||||
|  * Each needs scales, {Rowwise (float)} |  | ||||||
|  */ |  | ||||||
| bool check_rowwise_recipe(c10::ScalarType type_a, |  | ||||||
|                              std::vector<ScalingType>& recipe_a, |  | ||||||
|                              ArrayRef<Tensor>& scales_a, |  | ||||||
|                              c10::ScalarType type_b, |  | ||||||
|                              std::vector<ScalingType>& recipe_b, |  | ||||||
|                              ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp8 |  | ||||||
|   if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 1 scale each, {Tensorwise, float} |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {RowWise, dp32} for A & B |  | ||||||
|   if (recipe_a[0] != ScalingType::RowWise) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::RowWise) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Two-level scaling, canonical NVFP4 |  | ||||||
|  * Both inputs must be fp4 |  | ||||||
|  * A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)} |  | ||||||
|  */ |  | ||||||
| bool check_nvfp4_recipe(c10::ScalarType type_a, |  | ||||||
|                         std::vector<ScalingType>& recipe_a, |  | ||||||
|                         ArrayRef<Tensor>& scales_a, |  | ||||||
|                         c10::ScalarType type_b, |  | ||||||
|                         std::vector<ScalingType>& recipe_b, |  | ||||||
|                         ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp4 |  | ||||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 2 scales, 2 recipes for each input |  | ||||||
|   if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} |  | ||||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Single-level scaling, what PyT currently understands |  | ||||||
|  * Both inputs must be fp4 |  | ||||||
|  * A, B need 1 scale, {Blockwise_1x16 (e4m3)} |  | ||||||
|  */ |  | ||||||
| bool check_nvfp4_recipe_single_scale |  | ||||||
|                        (c10::ScalarType type_a, |  | ||||||
|                         std::vector<ScalingType>& recipe_a, |  | ||||||
|                         ArrayRef<Tensor>& scales_a, |  | ||||||
|                         c10::ScalarType type_b, |  | ||||||
|                         std::vector<ScalingType>& recipe_b, |  | ||||||
|                         ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp4 |  | ||||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 2 scales, 2 recipes for each input |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]} |  | ||||||
|   if (recipe_a[0] != ScalingType::BlockWise1x16) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::BlockWise1x16) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Both inputs must be fp8 |  | ||||||
|  * A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float) |  | ||||||
|  */ |  | ||||||
| bool check_deepseek_recipe(ScalingType expected_recipe_a, |  | ||||||
|                            ScalingType expected_recipe_b, |  | ||||||
|                            c10::ScalarType type_a, |  | ||||||
|                            std::vector<ScalingType>& recipe_a, |  | ||||||
|                            ArrayRef<Tensor>& scales_a, |  | ||||||
|                            c10::ScalarType type_b, |  | ||||||
|                            std::vector<ScalingType>& recipe_b, |  | ||||||
|                            ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp8 |  | ||||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 1 scales, 1 recipes for each input |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B |  | ||||||
|   if (recipe_a[0] != expected_recipe_a) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|   if (recipe_b[0] != expected_recipe_b) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Both inputs must be fp8 |  | ||||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} |  | ||||||
|  */ |  | ||||||
| bool check_mxfp8_recipe(c10::ScalarType type_a, |  | ||||||
|                         std::vector<ScalingType>& recipe_a, |  | ||||||
|                         ArrayRef<Tensor>& scales_a, |  | ||||||
|                         c10::ScalarType type_b, |  | ||||||
|                         std::vector<ScalingType>& recipe_b, |  | ||||||
|                         ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp8 |  | ||||||
|   if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 1 scales, 1 recipes for each input |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {Blockwise_1x32, e8m0} for A & B |  | ||||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Both inputs must be fp4 |  | ||||||
|  * A, B must have 1 scale each, {Blockwise_1x32, e8m0} |  | ||||||
|  */ |  | ||||||
| bool check_mxfp4_recipe(c10::ScalarType type_a, |  | ||||||
|                         std::vector<ScalingType>& recipe_a, |  | ||||||
|                         ArrayRef<Tensor>& scales_a, |  | ||||||
|                         c10::ScalarType type_b, |  | ||||||
|                         std::vector<ScalingType>& recipe_b, |  | ||||||
|                         ArrayRef<Tensor>& scales_b) { |  | ||||||
|   // both types must be fp4 |  | ||||||
|   if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // 1 scales, 1 recipes for each input |  | ||||||
|   if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   // Need {Blockwise_1x32, e8m0} for A & B |  | ||||||
|   if (recipe_a[0] != ScalingType::BlockWise1x32) return false; |  | ||||||
|   if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; |  | ||||||
|   if (recipe_b[0] != ScalingType::BlockWise1x32) return false; |  | ||||||
|   if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false; |  | ||||||
|  |  | ||||||
|   return true; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| } // namespace at::native::cuda::blas::scaled |  | ||||||
| @ -1,174 +0,0 @@ | |||||||
| #include <cstdint> |  | ||||||
| #include <c10/util/typeid.h> |  | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <c10/util/SmallVector.h> |  | ||||||
| #include <c10/core/Scalar.h> |  | ||||||
| #include <c10/core/ScalarType.h> |  | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |  | ||||||
| #include <ATen/core/Tensor.h> |  | ||||||
| #include <ATen/core/NamedTensor.h> |  | ||||||
| #include <ATen/Dispatch.h> |  | ||||||
| #include <ATen/ExpandUtils.h> |  | ||||||
| #include <ATen/OpMathType.h> |  | ||||||
| #include <ATen/TensorUtils.h> |  | ||||||
| #include <ATen/cuda/CUDABlas.h> |  | ||||||
| #include <ATen/cuda/tunable/Tunable.h> |  | ||||||
| #include <ATen/cuda/tunable/TunableGemm.h> |  | ||||||
| #include <ATen/native/Resize.h> |  | ||||||
| #include <c10/util/MaybeOwned.h> |  | ||||||
| #include <ATen/native/GroupedMMUtils.h> |  | ||||||
| #include <ATen/native/cuda/RowwiseScaledMM.h> |  | ||||||
| #include <ATen/native/cuda/ScaledGroupMM.h> |  | ||||||
| #include <ATen/native/cuda/GroupMM.h> |  | ||||||
| #include <ATen/ceil_div.h> |  | ||||||
|  |  | ||||||
| #ifdef USE_FBGEMM_GENAI |  | ||||||
| #include <fbgemm_gpu/torch_ops.h> |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| #ifndef AT_PER_OPERATOR_HEADERS |  | ||||||
| #include <ATen/Functions.h> |  | ||||||
| #include <ATen/NativeFunctions.h> |  | ||||||
| #else |  | ||||||
| #include <ATen/ops/_addmm_activation_native.h> |  | ||||||
| #include <ATen/ops/_efficientzerotensor.h> |  | ||||||
| #include <ATen/ops/_scaled_mm_native.h> |  | ||||||
| #include <ATen/ops/_unsafe_view_native.h> |  | ||||||
| #include <ATen/ops/abs.h> |  | ||||||
| #include <ATen/ops/addmm_native.h> |  | ||||||
| #include <ATen/ops/addmv_native.h> |  | ||||||
| #include <ATen/ops/baddbmm_native.h> |  | ||||||
| #include <ATen/ops/bmm_native.h> |  | ||||||
| #include <ATen/ops/copy_native.h> |  | ||||||
| #include <ATen/ops/dot_native.h> |  | ||||||
| #include <ATen/ops/empty.h> |  | ||||||
| #include <ATen/ops/empty_strided.h> |  | ||||||
| #include <ATen/ops/gelu.h> |  | ||||||
| #include <ATen/ops/max.h> |  | ||||||
| #include <ATen/ops/mm_native.h> |  | ||||||
| #include <ATen/ops/mul.h> |  | ||||||
| #include <ATen/ops/relu.h> |  | ||||||
| #include <ATen/ops/ones.h> |  | ||||||
| #include <ATen/ops/scalar_tensor_native.h> |  | ||||||
| #include <ATen/ops/vdot_native.h> |  | ||||||
| #endif |  | ||||||
|  |  | ||||||
| using at::blas::ScalingType; |  | ||||||
| using at::blas::SwizzleType; |  | ||||||
|  |  | ||||||
| namespace at::cuda::scaled { |  | ||||||
|  |  | ||||||
| static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) { |  | ||||||
| #ifdef USE_ROCM |  | ||||||
|     static const std::vector<std::string> archs = { |  | ||||||
|         "gfx942", |  | ||||||
| #if ROCM_VERSION >= 60300 |  | ||||||
|         "gfx1200", "gfx1201", |  | ||||||
| #endif |  | ||||||
| #if ROCM_VERSION >= 60500 |  | ||||||
|         "gfx950" |  | ||||||
| #endif |  | ||||||
|     }; |  | ||||||
|     return at::detail::getCUDAHooks().isGPUArch(archs); |  | ||||||
| #else |  | ||||||
|     auto dprops = at::cuda::getCurrentDeviceProperties(); |  | ||||||
|  |  | ||||||
|     if (sm90_only || sm100_only) { |  | ||||||
|       return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10); |  | ||||||
|     } else { |  | ||||||
|       return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9); |  | ||||||
|     } |  | ||||||
| #endif |  | ||||||
| } |  | ||||||
|  |  | ||||||
| #ifdef USE_ROCM |  | ||||||
| static bool _scaled_mm_is_fnuz() { |  | ||||||
|     return at::detail::getCUDAHooks().isGPUArch({"gfx942"}); |  | ||||||
| } |  | ||||||
| #endif |  | ||||||
| /** |  | ||||||
|  * Track concrete implementations available |  | ||||||
|  */ |  | ||||||
| enum class ScaledGemmImplementation { |  | ||||||
|   NONE = 0, |  | ||||||
|   TENSORWISE_TENSORWISE = 1, |  | ||||||
|   ROWWISE_ROWWISE = 2, |  | ||||||
|   BLOCK_128x128_1x128 = 3, |  | ||||||
|   BLOCK_1x128_128x128 = 4, |  | ||||||
|   BLOCK_1x128_1x128 = 5, |  | ||||||
|   MXFP8_MXFP8 = 6, |  | ||||||
|   NVFP4_NVFP4 = 7, |  | ||||||
|   NVFP4_NVFP4_SINGLE_SCALE = 8, |  | ||||||
|   MXFP4_MXFP4 = 9, |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| /** |  | ||||||
|  * Convert passed int (enum) from python back into a |  | ||||||
|  * strictly-typed enum |  | ||||||
|  */ |  | ||||||
| template <class EnumType, class ArrayType> |  | ||||||
| std::vector<EnumType> convert_int_to_enum(ArrayType& v) { |  | ||||||
|   std::vector<EnumType> converted; |  | ||||||
|   converted.reserve(v.size()); |  | ||||||
|  |  | ||||||
|   for (auto vi : v) { |  | ||||||
|     converted.push_back(static_cast<EnumType>(vi)); |  | ||||||
|   } |  | ||||||
|   return converted; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| bool check_tensorwise_recipe(c10::ScalarType, |  | ||||||
|                              std::vector<ScalingType>&, |  | ||||||
|                              ArrayRef<Tensor>&, |  | ||||||
|                              c10::ScalarType, |  | ||||||
|                              std::vector<ScalingType>&, |  | ||||||
|                              ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
|  |  | ||||||
| bool check_rowwise_recipe(c10::ScalarType, |  | ||||||
|                              std::vector<ScalingType>&, |  | ||||||
|                              ArrayRef<Tensor>&, |  | ||||||
|                              c10::ScalarType, |  | ||||||
|                              std::vector<ScalingType>&, |  | ||||||
|                              ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| bool check_nvfp4_recipe(c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&, |  | ||||||
|                         c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| bool check_nvfp4_recipe_single_scale |  | ||||||
|                        (c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&, |  | ||||||
|                         c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| bool check_deepseek_recipe(ScalingType, |  | ||||||
|                            ScalingType, |  | ||||||
|                            c10::ScalarType, |  | ||||||
|                            std::vector<ScalingType>&, |  | ||||||
|                            ArrayRef<Tensor>&, |  | ||||||
|                            c10::ScalarType, |  | ||||||
|                            std::vector<ScalingType>&, |  | ||||||
|                            ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| bool check_mxfp8_recipe(c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&, |  | ||||||
|                         c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| bool check_mxfp4_recipe(c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&, |  | ||||||
|                         c10::ScalarType, |  | ||||||
|                         std::vector<ScalingType>&, |  | ||||||
|                         ArrayRef<Tensor>&); |  | ||||||
|  |  | ||||||
| } // namespace at::native::cuda::blas::scaled |  | ||||||
| @ -137,7 +137,7 @@ struct CUDACachingHostAllocatorImpl | |||||||
|   void free_block_slowpath(Block* block) { |   void free_block_slowpath(Block* block) { | ||||||
|     auto start = std::chrono::steady_clock::now(); |     auto start = std::chrono::steady_clock::now(); | ||||||
|     // Users may change the allocator config at will. torch unit tests do this. |     // Users may change the allocator config at will. torch unit tests do this. | ||||||
|     // However, allocations using cudaHostRegister should use corresponding |     // However, allocations using cudaHostRegister should use corresonding | ||||||
|     // cudaHostUnregister and similarly for cudaHostAlloc / cudaFreeHost. |     // cudaHostUnregister and similarly for cudaHostAlloc / cudaFreeHost. | ||||||
|     void* ptr = block->ptr_; |     void* ptr = block->ptr_; | ||||||
|     bool use_register = false; |     bool use_register = false; | ||||||
|  | |||||||
| @ -70,7 +70,11 @@ | |||||||
| #define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max() | #define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max() | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
| #if defined(USE_ROCM) | #if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM) | ||||||
|  |  | ||||||
|  | #if !defined(USE_ROCM) | ||||||
|  | namespace at_cuda_detail { | ||||||
|  | #endif | ||||||
|  |  | ||||||
| // backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16 | // backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16 | ||||||
|  |  | ||||||
| @ -92,6 +96,10 @@ template <> | |||||||
| struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>: | struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>: | ||||||
|        ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {}; |        ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {}; | ||||||
|  |  | ||||||
|  | #if !defined(USE_ROCM) | ||||||
|  | } // namespace at_cuda_detail | ||||||
|  | #endif | ||||||
|  |  | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
| #if !defined(USE_ROCM) | #if !defined(USE_ROCM) | ||||||
| @ -113,7 +121,7 @@ struct cuda_type<c10::Half> { | |||||||
|   using type = __half; |   using type = __half; | ||||||
| }; | }; | ||||||
|  |  | ||||||
| #if !defined(USE_ROCM) | #if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16() | ||||||
|  |  | ||||||
| template<> | template<> | ||||||
| struct cuda_type<c10::BFloat16> { | struct cuda_type<c10::BFloat16> { | ||||||
| @ -195,6 +203,36 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera | |||||||
|   *out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b)); |   *out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b)); | ||||||
| } | } | ||||||
|  |  | ||||||
|  | #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||||
|  | template<typename ValueT, typename InputIteratorT> | ||||||
|  | struct chained_iterator { | ||||||
|  |   using iterator_category = std::random_access_iterator_tag; | ||||||
|  |   using difference_type   = std::ptrdiff_t; | ||||||
|  |   using value_type        = ValueT; | ||||||
|  |   using pointer           = ValueT*; | ||||||
|  |   using reference         = ValueT&; | ||||||
|  |  | ||||||
|  |   InputIteratorT iter; | ||||||
|  |   ValueT *first; | ||||||
|  |   difference_type offset = 0; | ||||||
|  |  | ||||||
|  |   __device__ ValueT operator[](difference_type i) { | ||||||
|  |     i +=  offset; | ||||||
|  |     if (i == 0) { | ||||||
|  |       return *first; | ||||||
|  |     } else { | ||||||
|  |       return ValueT(iter[i - 1]); | ||||||
|  |     } | ||||||
|  |   } | ||||||
|  |   __device__ chained_iterator operator+(difference_type i) { | ||||||
|  |     return chained_iterator{iter, first, i}; | ||||||
|  |   } | ||||||
|  |   __device__ ValueT operator*() { | ||||||
|  |     return (*this)[0]; | ||||||
|  |   } | ||||||
|  | }; | ||||||
|  | #endif | ||||||
|  |  | ||||||
| // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, | // even though cub is supposed to support tensors with int_max elements, in reality it doesn't, | ||||||
| // so split at int_max/2 | // so split at int_max/2 | ||||||
| constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30 | constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30 | ||||||
| @ -239,6 +277,25 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | |||||||
|         first_elem_ptr, |         first_elem_ptr, | ||||||
|         scan_op); |         scan_op); | ||||||
|     C10_CUDA_KERNEL_LAUNCH_CHECK(); |     C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||||
|  | #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||||
|  |     using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>; | ||||||
|  |     using tuple = typename ArgIndexInputIterator::value_type; | ||||||
|  |     auto input_iter_transform = [=] __device__ (const tuple &x)->input_t  { | ||||||
|  |       if (x.key == 0) { | ||||||
|  |         return *first_elem_ptr; | ||||||
|  |       } else { | ||||||
|  |         return x.value; | ||||||
|  |       } | ||||||
|  |     }; | ||||||
|  |     auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)( | ||||||
|  |       ArgIndexInputIterator(input + i), input_iter_transform); | ||||||
|  |     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, | ||||||
|  |         input_, | ||||||
|  |         output + i, | ||||||
|  |         scan_op, | ||||||
|  |         size_cub, | ||||||
|  |         at::cuda::getCurrentCUDAStream()); | ||||||
|  | #else | ||||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, |     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, | ||||||
|         input + i + 1, |         input + i + 1, | ||||||
|         output + i, |         output + i, | ||||||
| @ -246,6 +303,7 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | |||||||
|         ::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr), |         ::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr), | ||||||
|         size_cub, |         size_cub, | ||||||
|         at::cuda::getCurrentCUDAStream()); |         at::cuda::getCurrentCUDAStream()); | ||||||
|  | #endif | ||||||
|   } |   } | ||||||
| #endif | #endif | ||||||
| } | } | ||||||
| @ -497,6 +555,16 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | |||||||
|         first_elem_ptr, |         first_elem_ptr, | ||||||
|         scan_op); |         scan_op); | ||||||
|     C10_CUDA_KERNEL_LAUNCH_CHECK(); |     C10_CUDA_KERNEL_LAUNCH_CHECK(); | ||||||
|  | #if !CUB_SUPPORTS_FUTURE_VALUE() | ||||||
|  |     auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{ | ||||||
|  |       input + i, first_elem_ptr}; | ||||||
|  |     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan, | ||||||
|  |         input_, | ||||||
|  |         output + i, | ||||||
|  |         scan_op, | ||||||
|  |         size_cub, | ||||||
|  |         at::cuda::getCurrentCUDAStream()); | ||||||
|  | #else | ||||||
|     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, |     CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan, | ||||||
|         input + i, |         input + i, | ||||||
|         output + i, |         output + i, | ||||||
| @ -504,6 +572,7 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT | |||||||
|         ::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr), |         ::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr), | ||||||
|         size_cub, |         size_cub, | ||||||
|         at::cuda::getCurrentCUDAStream()); |         at::cuda::getCurrentCUDAStream()); | ||||||
|  | #endif | ||||||
|   } |   } | ||||||
| #endif | #endif | ||||||
| } | } | ||||||
|  | |||||||
| @ -4,7 +4,7 @@ | |||||||
| #include <ATen/cuda/CUDAConfig.h> | #include <ATen/cuda/CUDAConfig.h> | ||||||
|  |  | ||||||
| // NOTE: These templates are intentionally not defined in this header, | // NOTE: These templates are intentionally not defined in this header, | ||||||
| // which avoids re-compiling them for each translation unit. If you get | // which aviods re-compiling them for each translation unit. If you get | ||||||
| // a link error, you need to add an explicit instantiation for your | // a link error, you need to add an explicit instantiation for your | ||||||
| // types in cub.cu | // types in cub.cu | ||||||
|  |  | ||||||
|  | |||||||
| @ -10,6 +10,14 @@ | |||||||
| #define CUB_VERSION 200001 | #define CUB_VERSION 200001 | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
|  | // cub sort support for __nv_bfloat16 is added to cub 1.13 in: | ||||||
|  | // https://github.com/NVIDIA/cub/pull/306 | ||||||
|  | #if CUB_VERSION >= 101300 | ||||||
|  | #define CUB_SUPPORTS_NV_BFLOAT16() true | ||||||
|  | #else | ||||||
|  | #define CUB_SUPPORTS_NV_BFLOAT16() false | ||||||
|  | #endif | ||||||
|  |  | ||||||
| // cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in: | // cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in: | ||||||
| // https://github.com/NVIDIA/cub/pull/326 | // https://github.com/NVIDIA/cub/pull/326 | ||||||
| // CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake | // CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake | ||||||
| @ -20,6 +28,14 @@ | |||||||
| #define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false | #define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false | ||||||
| #endif | #endif | ||||||
|  |  | ||||||
|  | // cub support for cub::FutureValue is added to cub 1.15 in: | ||||||
|  | // https://github.com/NVIDIA/cub/pull/305 | ||||||
|  | #if CUB_VERSION >= 101500 | ||||||
|  | #define CUB_SUPPORTS_FUTURE_VALUE() true | ||||||
|  | #else | ||||||
|  | #define CUB_SUPPORTS_FUTURE_VALUE() false | ||||||
|  | #endif | ||||||
|  |  | ||||||
| // There were many bc-breaking changes in major version release of CCCL v3.0.0 | // There were many bc-breaking changes in major version release of CCCL v3.0.0 | ||||||
| // Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html | // Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html | ||||||
| #if CUB_VERSION >= 200800 | #if CUB_VERSION >= 200800 | ||||||
|  | |||||||
| @ -38,7 +38,7 @@ GemmTunableOp_float_NT,nt_25088_4096_64,1219,1.262 | |||||||
| GemmTunableOp_float_NT,nt_4096_4096_64,1216,0.033 | GemmTunableOp_float_NT,nt_4096_4096_64,1216,0.033 | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| Note the "Validator" lines. If you change a library version, or ROCm version, or PyTorch version, TunableOp will detect | Note the "Validator" lines. If you change a library verison, or ROCm version, or PyTorch version, TunableOp will detect | ||||||
| this and reject the tunings file because the prior tunings are likely affected by other software changes. | this and reject the tunings file because the prior tunings are likely affected by other software changes. | ||||||
|  |  | ||||||
| The remaining lines are the tuned solutions for each TunableOp encountered during your execution. Each line consists of | The remaining lines are the tuned solutions for each TunableOp encountered during your execution. Each line consists of | ||||||
|  | |||||||
| @ -235,7 +235,7 @@ class TunableOp { | |||||||
|       // numeric check option is controlled by non-static env var, so check it once per tuned operator |       // numeric check option is controlled by non-static env var, so check it once per tuned operator | ||||||
|       bool do_numerics_check = ctx->IsNumericsCheckEnabled(); |       bool do_numerics_check = ctx->IsNumericsCheckEnabled(); | ||||||
|  |  | ||||||
|       // calculate a reference answer for numerical check |       // calcaulte a reference answer for numerical check | ||||||
|       if (do_numerics_check) { |       if (do_numerics_check) { | ||||||
|         reference_params = params->DeepCopy(false); |         reference_params = params->DeepCopy(false); | ||||||
|         TORCH_CHECK(ops_[ResultEntry::Default()]->Call(reference_params) == OK); |         TORCH_CHECK(ops_[ResultEntry::Default()]->Call(reference_params) == OK); | ||||||
|  | |||||||
| @ -12,7 +12,7 @@ namespace at { | |||||||
|  |  | ||||||
| // AcceleratorHooksInterface is a shared interface provided by all | // AcceleratorHooksInterface is a shared interface provided by all | ||||||
| // accelerators to allow generic code. | // accelerators to allow generic code. | ||||||
| // This interface is hook-based as it corresponds to all the functions | // This inferface is hook-based as it corresponds to all the functions | ||||||
| // that are going to be called in a generic way from the CPU code. | // that are going to be called in a generic way from the CPU code. | ||||||
|  |  | ||||||
| struct TORCH_API AcceleratorHooksInterface { | struct TORCH_API AcceleratorHooksInterface { | ||||||
|  | |||||||
| @ -38,7 +38,7 @@ struct TORCH_API PrivateUse1HooksInterface : AcceleratorHooksInterface { | |||||||
|  |  | ||||||
|   Generator getNewGenerator( |   Generator getNewGenerator( | ||||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { |       [[maybe_unused]] DeviceIndex device_index = -1) const override { | ||||||
|     // TODO(FFFrog): Preserved for BC and will be removed in the future. |     // TODO(FFFrog): Perserved for BC and will be removed in the future. | ||||||
|     if (at::GetGeneratorPrivate().has_value()) |     if (at::GetGeneratorPrivate().has_value()) | ||||||
|       return at::GetGeneratorForPrivateuse1(device_index); |       return at::GetGeneratorForPrivateuse1(device_index); | ||||||
|  |  | ||||||
|  | |||||||
| @ -1,23 +0,0 @@ | |||||||
| #include <ATen/detail/XLAHooksInterface.h> |  | ||||||
|  |  | ||||||
| namespace at { |  | ||||||
| namespace detail { |  | ||||||
|  |  | ||||||
| const XLAHooksInterface& getXLAHooks() { |  | ||||||
|   auto create_impl = [] { |  | ||||||
|     // Create XLA hooks using the registry |  | ||||||
|     auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{}); |  | ||||||
|     if (hooks) { |  | ||||||
|       return hooks; |  | ||||||
|     } |  | ||||||
|     // If hooks creation fails, fall back to default implementation |  | ||||||
|     return std::make_unique<XLAHooksInterface>(); |  | ||||||
|   }; |  | ||||||
|   static auto hooks = create_impl(); |  | ||||||
|   return *hooks; |  | ||||||
| } |  | ||||||
| } // namespace detail |  | ||||||
|  |  | ||||||
| C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs) |  | ||||||
|  |  | ||||||
| } // namespace at |  | ||||||
| @ -1,79 +0,0 @@ | |||||||
| #pragma once |  | ||||||
|  |  | ||||||
| #include <c10/core/Device.h> |  | ||||||
| #include <c10/util/Exception.h> |  | ||||||
| #include <c10/util/Registry.h> |  | ||||||
|  |  | ||||||
| #include <ATen/detail/AcceleratorHooksInterface.h> |  | ||||||
|  |  | ||||||
| C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter") |  | ||||||
|  |  | ||||||
| namespace at { |  | ||||||
|  |  | ||||||
| constexpr const char* XLA_HELP = |  | ||||||
|   "This error has occurred because you are trying " |  | ||||||
|   "to use some XLA functionality, but the XLA library has not been " |  | ||||||
|   "loaded by the dynamic linker. You must load xla libraries by `import torch_xla`"; |  | ||||||
|  |  | ||||||
| struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface { |  | ||||||
|   ~XLAHooksInterface() override = default; |  | ||||||
|  |  | ||||||
|   void init() const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   virtual bool hasXLA() const { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   virtual std::string showConfig() const { |  | ||||||
|     TORCH_CHECK( |  | ||||||
|         false, |  | ||||||
|         "Cannot query detailed XLA version without torch_xla library. ", |  | ||||||
|         XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   const Generator& getDefaultGenerator( |  | ||||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { |  | ||||||
|     TORCH_CHECK( |  | ||||||
|         false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Generator getNewGenerator( |  | ||||||
|       [[maybe_unused]] DeviceIndex device_index = -1) const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   virtual DeviceIndex getCurrentDevice() const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Device getDeviceFromPtr(void* /*data*/) const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   Allocator* getPinnedMemoryAllocator() const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   bool isPinnedPtr(const void* data) const override { |  | ||||||
|     return false; |  | ||||||
|   } |  | ||||||
|  |  | ||||||
|   bool hasPrimaryContext(DeviceIndex device_index) const override { |  | ||||||
|     TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP); |  | ||||||
|   } |  | ||||||
|  |  | ||||||
| }; |  | ||||||
|  |  | ||||||
| struct TORCH_API XLAHooksArgs {}; |  | ||||||
|  |  | ||||||
| TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs); |  | ||||||
| #define REGISTER_XLA_HOOKS(clsname) \ |  | ||||||
|   C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname) |  | ||||||
|  |  | ||||||
| namespace detail { |  | ||||||
| TORCH_API const XLAHooksInterface& getXLAHooks(); |  | ||||||
| } // namespace detail |  | ||||||
| } // namespace at |  | ||||||
| C10_DIAGNOSTIC_POP() |  | ||||||
| @ -283,7 +283,7 @@ inline void boxed_existing_bdim_all_batch_rule( | |||||||
| // Use when all tensors arguments accept one (normal) batch dim. | // Use when all tensors arguments accept one (normal) batch dim. | ||||||
| // This batching rule expands the batch dim on all Tensors, reshapes it into | // This batching rule expands the batch dim on all Tensors, reshapes it into | ||||||
| // dim 0, calls the op, and then reshapes the batch dim out of dim 0. | // dim 0, calls the op, and then reshapes the batch dim out of dim 0. | ||||||
| // This is not the most efficient thing; if there are alternatives, please try | // This is not the most efficient thing; if there are alternatives, plese try | ||||||
| // to use them. Use this only as a last resort. | // to use them. Use this only as a last resort. | ||||||
| #define EXISTING_BDIM_ALL_BOXED(op) \ | #define EXISTING_BDIM_ALL_BOXED(op) \ | ||||||
|   m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>()); |   m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>()); | ||||||
|  | |||||||
| @ -384,7 +384,7 @@ fourOutputs solve_ex_batch_rule( | |||||||
|  |  | ||||||
|   // NOTE [ solve_ex Batch Rule Contiguity ] |   // NOTE [ solve_ex Batch Rule Contiguity ] | ||||||
|   // A determines whether or not linalg_solve takes an optimized path. We need the check on A_ to match the one run on |   // A determines whether or not linalg_solve takes an optimized path. We need the check on A_ to match the one run on | ||||||
|   // A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behavior |   // A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behvaior | ||||||
|   // differs based on whether or not the optimized path was taken |   // differs based on whether or not the optimized path was taken | ||||||
|   const auto batched_A_was_contiguous = A_bdim.has_value() ? at::select(A, *A_bdim, 0).is_contiguous() : A.is_contiguous(); |   const auto batched_A_was_contiguous = A_bdim.has_value() ? at::select(A, *A_bdim, 0).is_contiguous() : A.is_contiguous(); | ||||||
|   if (batched_A_was_contiguous && !A.is_complex()) { |   if (batched_A_was_contiguous && !A.is_complex()) { | ||||||
|  | |||||||
| @ -282,7 +282,7 @@ static std::tuple<Tensor, std::optional<int64_t>> _softmax_backward_batch_rule( | |||||||
|  |  | ||||||
|   dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim); |   dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim); | ||||||
|  |  | ||||||
|   // Not sure why output_ needs to be marked as .contiguous(). Something must |   // Not sure why output_ needs to be marked as .contiguous(). Someting must | ||||||
|   // have changed in PyTorch (and output of softmax is probably always contiguous) |   // have changed in PyTorch (and output of softmax is probably always contiguous) | ||||||
|   return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0); |   return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0); | ||||||
| } | } | ||||||
|  | |||||||
| @ -224,7 +224,7 @@ static Tensor safeStack(TensorList tensors) { | |||||||
|   // is possible for the backward function to return an undefined grad for some |   // is possible for the backward function to return an undefined grad for some | ||||||
|   // grad_input for each example. In that case, we return an undefined grad. |   // grad_input for each example. In that case, we return an undefined grad. | ||||||
|   // |   // | ||||||
|   // It is theoretically possible for *some* of the examples to produce an |   // It is theoretically posssible for *some* of the examples to produce an | ||||||
|   // undefined grad (a kernel could peek at the gradient values and return an |   // undefined grad (a kernel could peek at the gradient values and return an | ||||||
|   // undefined tensor if it determines the gradient is full of zeros). We |   // undefined tensor if it determines the gradient is full of zeros). We | ||||||
|   // could handle this by treating the undefined grad as a zero-filled tensor |   // could handle this by treating the undefined grad as a zero-filled tensor | ||||||
|  | |||||||
| @ -113,7 +113,7 @@ SymIntArrayRef BatchedTensorImpl::sym_sizes_custom() const { | |||||||
|   return sym_sizes_default(); |   return sym_sizes_default(); | ||||||
| } | } | ||||||
|  |  | ||||||
| // The following are publicly exposed as methods of Tensor | // The following are publically exposed as methods of Tensor | ||||||
|  |  | ||||||
| IntArrayRef BatchedTensorImpl::strides_custom() const { | IntArrayRef BatchedTensorImpl::strides_custom() const { | ||||||
|   return strides_default(); |   return strides_default(); | ||||||
|  | |||||||
| @ -37,7 +37,7 @@ namespace at::functorch  { | |||||||
| // how to perform the transform. | // how to perform the transform. | ||||||
| // | // | ||||||
| // TODO: we can excise DynamicLayer in favor of Interpreter, | // TODO: we can excise DynamicLayer in favor of Interpreter, | ||||||
| // But I am going to leave it for now as a compatibility shim to avoid | // But I am going to leave it for now as a compatiblity shim to avoid | ||||||
| // needing to refactor a lot of callsites... | // needing to refactor a lot of callsites... | ||||||
| struct TORCH_API DynamicLayer { | struct TORCH_API DynamicLayer { | ||||||
|   explicit DynamicLayer( |   explicit DynamicLayer( | ||||||
|  | |||||||
| @ -88,7 +88,7 @@ std::ostream& operator<<(std::ostream& os, const TransformType& t); | |||||||
| // >>> VmapInterpreterPtr(&interpreter).batchSize() | // >>> VmapInterpreterPtr(&interpreter).batchSize() | ||||||
| // | // | ||||||
| // Finally, Interpreter::process switches on the type of the interpreter | // Finally, Interpreter::process switches on the type of the interpreter | ||||||
| // and calls one of {Transform}Interpreter::processImpl under the hood. | // and calls one of {Transform}Intepreter::processImpl under the hood. | ||||||
| // Same for Interpreter::sendToNextInterpreter :) | // Same for Interpreter::sendToNextInterpreter :) | ||||||
|  |  | ||||||
| struct VmapInterpreterMeta { | struct VmapInterpreterMeta { | ||||||
|  | |||||||
| @ -733,7 +733,7 @@ TORCH_LIBRARY_IMPL(_, FuncTorchBatched, m) { | |||||||
| } | } | ||||||
|  |  | ||||||
| TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) { | TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) { | ||||||
|   // still legacy b/c returns multiple tensors |   // still legacy b/c teturns multiple tensors | ||||||
|   m.impl("split.Tensor", split_batching_rule); |   m.impl("split.Tensor", split_batching_rule); | ||||||
|   m.impl("split_with_sizes", split_with_sizes_batching_rule); |   m.impl("split_with_sizes", split_with_sizes_batching_rule); | ||||||
|   m.impl("split_with_sizes_copy", split_with_sizes_copy_batching_rule); |   m.impl("split_with_sizes_copy", split_with_sizes_copy_batching_rule); | ||||||
|  | |||||||
| @ -158,7 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t | |||||||
|       endKernelCoalescing(); |       endKernelCoalescing(); | ||||||
|       id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder]; |       id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder]; | ||||||
|  |  | ||||||
|       // For some reason fillBufferfor stopped working for length > 4Gb on MacOS 26 |       // For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26 | ||||||
|       // See https://github.com/pytorch/pytorch/issues/163962 |       // See https://github.com/pytorch/pytorch/issues/163962 | ||||||
|       // Workaround by batching copy commands into 4Gb chunks |       // Workaround by batching copy commands into 4Gb chunks | ||||||
|       constexpr size_t max_copy_size = 0x100000000; // 4GB |       constexpr size_t max_copy_size = 0x100000000; // 4GB | ||||||
|  | |||||||
| @ -148,7 +148,7 @@ inline void checkInputsSolver(const Tensor& A, | |||||||
|  |  | ||||||
| inline bool is_row_or_column_contiguous(const Tensor& t) { | inline bool is_row_or_column_contiguous(const Tensor& t) { | ||||||
|   // This could be made more general, similar to how it's checked in matmul, which would allow to |   // This could be made more general, similar to how it's checked in matmul, which would allow to | ||||||
|   // elide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky. |   // ellide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky. | ||||||
|   // We choose to be conservative for simplicity |   // We choose to be conservative for simplicity | ||||||
|   return t.is_contiguous() || t.transpose(-2, -1).is_contiguous(); |   return t.is_contiguous() || t.transpose(-2, -1).is_contiguous(); | ||||||
| } | } | ||||||
|  | |||||||
| @ -11,8 +11,6 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto | |||||||
|               "pixel_shuffle expects a positive upscale_factor, but got ", |               "pixel_shuffle expects a positive upscale_factor, but got ", | ||||||
|               upscale_factor); |               upscale_factor); | ||||||
|   int64_t c = self.size(-3); |   int64_t c = self.size(-3); | ||||||
|   TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor, |  | ||||||
|         "upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor); |  | ||||||
|   int64_t upscale_factor_squared = upscale_factor * upscale_factor; |   int64_t upscale_factor_squared = upscale_factor * upscale_factor; | ||||||
|   TORCH_CHECK(c % upscale_factor_squared == 0, |   TORCH_CHECK(c % upscale_factor_squared == 0, | ||||||
|               "pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of " |               "pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of " | ||||||
|  | |||||||
| @ -21,7 +21,7 @@ enum class fft_norm_mode { | |||||||
| // NOTE [ Fourier Transform Conjugate Symmetry ] | // NOTE [ Fourier Transform Conjugate Symmetry ] | ||||||
| // | // | ||||||
| // Real-to-complex Fourier transform satisfies the conjugate symmetry. That is, | // Real-to-complex Fourier transform satisfies the conjugate symmetry. That is, | ||||||
| // assuming X is the transformed K-dimensional signal, we have | // assuming X is the transformed K-dimensionsal signal, we have | ||||||
| // | // | ||||||
| //     X[i_1, ..., i_K] = X[j_i, ..., j_K]*, | //     X[i_1, ..., i_K] = X[j_i, ..., j_K]*, | ||||||
| // | // | ||||||
|  | |||||||
| @ -128,7 +128,7 @@ at::Tensor PackedLinearWeight::apply_impl( | |||||||
|   auto* input_tr_ptr = |   auto* input_tr_ptr = | ||||||
|       reinterpret_cast<uint8_t*>(input_tr.data_ptr<c10::quint8>()); |       reinterpret_cast<uint8_t*>(input_tr.data_ptr<c10::quint8>()); | ||||||
|   // TODO: Activation transpose before and after the kernel can be removed if we |   // TODO: Activation transpose before and after the kernel can be removed if we | ||||||
|   // keep activation tensor always transposed. |   // keep activation tensor always tranposed. | ||||||
|   fbgemm::transpose_simd<uint8_t>( |   fbgemm::transpose_simd<uint8_t>( | ||||||
|       batch_size, K, input_ptr, K, input_tr_ptr, batch_size); |       batch_size, K, input_ptr, K, input_tr_ptr, batch_size); | ||||||
|  |  | ||||||
|  | |||||||
| @ -520,7 +520,7 @@ cpu_adaptive_avg_pool3d_channels_last( | |||||||
|       scalar_t* out = output_data + i * channels; |       scalar_t* out = output_data + i * channels; | ||||||
|       int64_t size = channels; |       int64_t size = channels; | ||||||
|  |  | ||||||
|       // Note: For ordinary usage scenario, each out lane should |       // Note: For oridinary usage scenario, each out lane should | ||||||
|       //   fit in L1 cache; otherwise consider block dim C. |       //   fit in L1 cache; otherwise consider block dim C. | ||||||
|       // Pass I: zero the out lane |       // Pass I: zero the out lane | ||||||
|       int64_t d1 = 0; |       int64_t d1 = 0; | ||||||
|  | |||||||
| @ -259,20 +259,11 @@ inline void winograd_f2k3_input_transform_inplace__rvv( | |||||||
|   const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4); |   const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4); | ||||||
|   const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4); |   const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4); | ||||||
|   const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4); |   const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4); | ||||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround: |  | ||||||
|    * Avoid single-statement read-modify-write on MEM_REF like: |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0); | ||||||
|    *   *input_tile_val = |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1); | ||||||
|    *     __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val); |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2); | ||||||
|    * This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin) |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3); | ||||||
|    * with -march=rv64gcv. Use a temporary then write back. |  | ||||||
|    * Do NOT refactor into the single-statement form. Clang is unaffected. |  | ||||||
|    */ |  | ||||||
|   vfloat32m1x4_t tmp_input_tile_val = *input_tile_val; |  | ||||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0); |  | ||||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1); |  | ||||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2); |  | ||||||
|   tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3); |  | ||||||
|   *input_tile_val = tmp_input_tile_val; |  | ||||||
| } | } | ||||||
|  |  | ||||||
| inline void winograd_f2k3_output_transform_inplace__rvv( | inline void winograd_f2k3_output_transform_inplace__rvv( | ||||||
| @ -286,15 +277,9 @@ inline void winograd_f2k3_output_transform_inplace__rvv( | |||||||
|   const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4); |   const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4); | ||||||
|   const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4); |   const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4); | ||||||
|   const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4); |   const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4); | ||||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround — see note above. |  | ||||||
|    * Keep the temporary + write-back pattern to avoid ICE. |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0); | ||||||
|    * Do NOT rewrite into: |   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1); | ||||||
|    *   *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val); |  | ||||||
|    */ |  | ||||||
|   vfloat32m1x4_t tmp_output_tile_val = *input_tile_val; |  | ||||||
|   tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0); |  | ||||||
|   tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1); |  | ||||||
|   *input_tile_val = tmp_output_tile_val; |  | ||||||
| } | } | ||||||
|  |  | ||||||
| inline vfloat32m1_t | inline vfloat32m1_t | ||||||
| @ -315,17 +300,11 @@ inline void winograd_f2k3_kernel_transform__rvv( | |||||||
|   const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4); |   const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4); | ||||||
|   const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4); |   const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4); | ||||||
|   vfloat32m1_t half_g0_plus_g2 =  __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4); |   vfloat32m1_t half_g0_plus_g2 =  __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4); | ||||||
|   /* GCC 14.2 (RISC-V RVV) ICE workaround — see note above. |  | ||||||
|    * Keep the temporary + write-back pattern to avoid ICE. |   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0); | ||||||
|    * Do NOT rewrite into: |   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1)); | ||||||
|    *   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val); |   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1)); | ||||||
|    */ |   *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2); | ||||||
|   vfloat32m1x4_t tmp_transform = *transform; |  | ||||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0); |  | ||||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1)); |  | ||||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1)); |  | ||||||
|   tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2); |  | ||||||
|   *transform = tmp_transform; |  | ||||||
| } | } | ||||||
|  |  | ||||||
| inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) { | inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) { | ||||||
|  | |||||||
| @ -34,7 +34,7 @@ struct Dist { | |||||||
|   //     finish :   This tells what to do with the aggregated value to compute |   //     finish :   This tells what to do with the aggregated value to compute | ||||||
|   //                the norm. Generally this is the result of val ^ (1 / p). |   //                the norm. Generally this is the result of val ^ (1 / p). | ||||||
|   //     backward : This is the gradient for that norm. Arguments are pretty |   //     backward : This is the gradient for that norm. Arguments are pretty | ||||||
|   //                self explanatory. |   //                self explanitory. | ||||||
|   // |   // | ||||||
|   // There are a few cases where these aren't used. The 0 norm has no backward, |   // There are a few cases where these aren't used. The 0 norm has no backward, | ||||||
|   // because it's always 0, so that's shortcircuited earlier. There's a special |   // because it's always 0, so that's shortcircuited earlier. There's a special | ||||||
|  | |||||||
| @ -30,7 +30,7 @@ vec::Vectorized<scalar_t> is_nan_vec(vec::Vectorized<scalar_t> vec) { | |||||||
|   return vec.isnan(); |   return vec.isnan(); | ||||||
| } | } | ||||||
|  |  | ||||||
| // TODO: use is_integral/is_same to check the scalar_t and simplify the implementation | // TODO: use is_integeral/is_same to check the scalar_t and simplify the implementation | ||||||
| // currently it does not work | // currently it does not work | ||||||
| template <> | template <> | ||||||
| vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) { | vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) { | ||||||
|  | |||||||
| @ -74,7 +74,7 @@ it to sum up the entire array into a single value. | |||||||
|  |  | ||||||
| `ReduceOpsKernel.cpp` uses the `CPU_CAPABILITY_*` macros to "know" under which | `ReduceOpsKernel.cpp` uses the `CPU_CAPABILITY_*` macros to "know" under which | ||||||
| compiler flags it is currently compiled. This allows the programmer to write | compiler flags it is currently compiled. This allows the programmer to write | ||||||
| generic code, which will be compiled under multiplied compilation settings. | generic code, which will be compiled under multipled compilation settings. | ||||||
|  |  | ||||||
| `../ReduceOps.cpp` now includes the header `ReduceOpsKernel.h`, which contains | `../ReduceOps.cpp` now includes the header `ReduceOpsKernel.h`, which contains | ||||||
| a generic definition of `sumImplAll`. This function allows the user to reduce | a generic definition of `sumImplAll`. This function allows the user to reduce | ||||||
|  | |||||||
| @ -889,7 +889,7 @@ void ImagingResampleHorizontalConvolution8u( | |||||||
|             _mm_loadu_si128((__m128i *) (lineIn_min + stride * i))), |             _mm_loadu_si128((__m128i *) (lineIn_min + stride * i))), | ||||||
|             _mm_loadu_si128((__m128i *) (lineIn_min + stride * (i + 4))), 1); |             _mm_loadu_si128((__m128i *) (lineIn_min + stride * (i + 4))), 1); | ||||||
|  |  | ||||||
|         // Extract lower part of each lane, cast to epi16 and reorder RGBARGBA -> RRGGBBAA |         // Extract lower part of each lane, cast to epi16 and reoder RGBARGBA -> RRGGBBAA | ||||||
|         // RGBA: pix1 = [ |         // RGBA: pix1 = [ | ||||||
|         //   r0 0 r1 0  g0 0 g1 0  b0 0 b1 0  a0 0 a1 0 |         //   r0 0 r1 0  g0 0 g1 0  b0 0 b1 0  a0 0 a1 0 | ||||||
|         //   r4 0 r5 0  g4 0 g5 0  b4 0 b5 0  a4 0 a5 0 |         //   r4 0 r5 0  g4 0 g5 0  b4 0 b5 0  a4 0 a5 0 | ||||||
|  | |||||||
| @ -240,7 +240,7 @@ _PS256_CONST(coscof_p2,  4.166664568298827E-002); | |||||||
| _PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI | _PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI | ||||||
|  |  | ||||||
|  |  | ||||||
| /* evaluation of 8 sines at once using AVX intrinsics | /* evaluation of 8 sines at onces using AVX intrinsics | ||||||
|  |  | ||||||
|    The code is the exact rewriting of the cephes sinf function. |    The code is the exact rewriting of the cephes sinf function. | ||||||
|    Precision is excellent as long as x < 8192 (I did not bother to |    Precision is excellent as long as x < 8192 (I did not bother to | ||||||
|  | |||||||
Some files were not shown because too many files have changed in this diff Show More
		Reference in New Issue
	
	Block a user
	