mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-28 18:54:57 +08:00
Compare commits
3 Commits
gh/anijain
...
cpp-docs-d
| Author | SHA1 | Date | |
|---|---|---|---|
| 5b6cc8215f | |||
| 1c43c9cfd0 | |||
| 102e0d5437 |
@ -19,7 +19,7 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.23.1
|
||||
pip_install onnxruntime==1.23.0
|
||||
pip_install onnxscript==0.5.4
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
|
||||
@ -334,12 +334,12 @@ sympy==1.13.3
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnx==1.19.1
|
||||
onnx==1.18.0
|
||||
#Description: Required by onnx tests, and mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.5.4
|
||||
onnxscript==0.5.3
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
@ -1,15 +1,11 @@
|
||||
sphinx==5.3.0
|
||||
sphinx==7.2.6
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 5.3.0
|
||||
#Pinned versions: 7.2.6
|
||||
|
||||
standard-imghdr==3.13.0; python_version >= "3.13"
|
||||
#Description: This is needed by Sphinx, so it needs to be added here.
|
||||
# The reasons are as follows:
|
||||
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
|
||||
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
|
||||
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
|
||||
pytorch_sphinx_theme2==0.1.0
|
||||
#Description: This is needed to generate PyTorch docs
|
||||
#Pinned versions: 0.1.0
|
||||
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2
|
||||
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
|
||||
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
|
||||
# something related to Docker setup. We can investigate this later.
|
||||
@ -36,17 +32,17 @@ tensorboard==2.18.0 ; python_version >= "3.13"
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 2.13.0
|
||||
|
||||
breathe==4.34.0
|
||||
breathe==4.36.0
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 4.34.0
|
||||
#Pinned versions: 4.36.0
|
||||
|
||||
exhale==0.2.3
|
||||
exhale==0.3.7
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 0.2.3
|
||||
#Pinned versions: 0.3.7
|
||||
|
||||
docutils==0.16
|
||||
docutils==0.20
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
#Pinned versions: 0.16
|
||||
#Pinned versions: 0.20
|
||||
|
||||
bs4==0.0.1
|
||||
#Description: This is used to generate PyTorch C++ docs
|
||||
@ -56,13 +52,13 @@ IPython==8.12.0
|
||||
#Description: This is used to generate PyTorch functorch docs
|
||||
#Pinned versions: 8.12.0
|
||||
|
||||
myst-nb==0.17.2
|
||||
myst-nb==1.3.0
|
||||
#Description: This is used to generate PyTorch functorch and torch.compile docs.
|
||||
#Pinned versions: 0.17.2
|
||||
#Pinned versions: 1.3.0
|
||||
|
||||
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
|
||||
python-etcd==0.4.5
|
||||
sphinx-copybutton==0.5.0
|
||||
sphinx-design==0.4.0
|
||||
sphinx-design==0.6.1
|
||||
sphinxcontrib-mermaid==1.0.0
|
||||
myst-parser==0.18.1
|
||||
myst-parser==4.0.1
|
||||
|
||||
@ -6,7 +6,7 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.9.5"
|
||||
"uv==0.8.6"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
||||
@ -102,8 +102,18 @@ if [ "$is_main_doc" = true ]; then
|
||||
echo coverage output not found
|
||||
exit 1
|
||||
elif [ $undocumented -gt 0 ]; then
|
||||
echo undocumented objects found:
|
||||
echo "======================================"
|
||||
echo "ERROR: $undocumented undocumented objects found!"
|
||||
echo "======================================"
|
||||
echo ""
|
||||
echo "Full coverage report:"
|
||||
cat build/coverage/python.txt
|
||||
echo ""
|
||||
echo "======================================"
|
||||
echo "Undocumented modules/objects (lines after TOTAL):"
|
||||
tail -n +$((lines - undocumented + 1)) build/coverage/python.txt
|
||||
echo "======================================"
|
||||
echo ""
|
||||
echo "Make sure you've updated relevant .rsts in docs/source!"
|
||||
echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'"
|
||||
exit 1
|
||||
|
||||
@ -1,354 +0,0 @@
|
||||
# PyTorch Docstring Writing Guide
|
||||
|
||||
This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in `torch/_tensor_docs.py` and `torch/nn/functional.py`.
|
||||
|
||||
## General Principles
|
||||
|
||||
- Use **raw strings** (`r"""..."""`) for all docstrings to avoid issues with LaTeX/math backslashes
|
||||
- Follow **Sphinx/reStructuredText** (reST) format for documentation
|
||||
- Be **concise but complete** - include all essential information
|
||||
- Always include **examples** when possible
|
||||
- Use **cross-references** to related functions/classes
|
||||
|
||||
## Docstring Structure
|
||||
|
||||
### 1. Function Signature (First Line)
|
||||
|
||||
Start with the function signature showing all parameters:
|
||||
|
||||
```python
|
||||
r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
- Include the function name
|
||||
- Show positional and keyword-only arguments (use `*` separator)
|
||||
- Include default values
|
||||
- Show return type annotation
|
||||
- This line should NOT end with a period
|
||||
|
||||
### 2. Brief Description
|
||||
|
||||
Provide a one-line description of what the function does:
|
||||
|
||||
```python
|
||||
r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 2D convolution over an input image composed of several input
|
||||
planes.
|
||||
```
|
||||
|
||||
### 3. Mathematical Formulas (if applicable)
|
||||
|
||||
Use Sphinx math directives for mathematical expressions:
|
||||
|
||||
```python
|
||||
.. math::
|
||||
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
||||
```
|
||||
|
||||
Or inline math: `:math:\`x^2\``
|
||||
|
||||
### 4. Cross-References
|
||||
|
||||
Link to related classes and functions using Sphinx roles:
|
||||
|
||||
- `:class:\`~torch.nn.ModuleName\`` - Link to a class
|
||||
- `:func:\`torch.function_name\`` - Link to a function
|
||||
- `:meth:\`~Tensor.method_name\`` - Link to a method
|
||||
- `:attr:\`attribute_name\`` - Reference an attribute
|
||||
- The `~` prefix shows only the last component (e.g., `Conv2d` instead of `torch.nn.Conv2d`)
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
See :class:`~torch.nn.Conv2d` for details and output shape.
|
||||
```
|
||||
|
||||
### 5. Notes and Warnings
|
||||
|
||||
Use admonitions for important information:
|
||||
|
||||
```python
|
||||
.. note::
|
||||
This function doesn't work directly with NLLLoss,
|
||||
which expects the Log to be computed between the Softmax and itself.
|
||||
Use log_softmax instead (it's faster and has better numerical properties).
|
||||
|
||||
.. warning::
|
||||
:func:`new_tensor` always copies :attr:`data`. If you have a Tensor
|
||||
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
||||
or :func:`torch.Tensor.detach`.
|
||||
```
|
||||
|
||||
### 6. Args Section
|
||||
|
||||
Document all parameters with type annotations and descriptions:
|
||||
|
||||
```python
|
||||
Args:
|
||||
input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)`
|
||||
bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
|
||||
stride (int or tuple): the stride of the convolving kernel. Can be a single number or a
|
||||
tuple `(sH, sW)`. Default: 1
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Parameter name in **lowercase**
|
||||
- Type in parentheses: `(Type)`, `(Type, optional)` for optional parameters
|
||||
- Description follows the type
|
||||
- For optional parameters, include "Default: ``value``" at the end
|
||||
- Use double backticks for inline code: ``` ``None`` ```
|
||||
- Indent continuation lines by 2 spaces
|
||||
|
||||
### 7. Keyword Args Section (if applicable)
|
||||
|
||||
Sometimes keyword arguments are documented separately:
|
||||
|
||||
```python
|
||||
Keyword args:
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same :class:`torch.dtype` as this tensor.
|
||||
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
||||
Default: if None, same :class:`torch.device` as this tensor.
|
||||
requires_grad (bool, optional): If autograd should record operations on the
|
||||
returned tensor. Default: ``False``.
|
||||
```
|
||||
|
||||
### 8. Returns Section (if needed)
|
||||
|
||||
Document the return value:
|
||||
|
||||
```python
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
```
|
||||
|
||||
Or simply include it in the function signature line if obvious from context.
|
||||
|
||||
### 9. Examples Section
|
||||
|
||||
Always include examples when possible:
|
||||
|
||||
```python
|
||||
Examples::
|
||||
|
||||
>>> inputs = torch.randn(33, 16, 30)
|
||||
>>> filters = torch.randn(20, 16, 5)
|
||||
>>> F.conv1d(inputs, filters)
|
||||
|
||||
>>> # With square kernels and equal stride
|
||||
>>> filters = torch.randn(8, 4, 3, 3)
|
||||
>>> inputs = torch.randn(1, 4, 5, 5)
|
||||
>>> F.conv2d(inputs, filters, padding=1)
|
||||
```
|
||||
|
||||
**Formatting rules:**
|
||||
- Use `Examples::` with double colon
|
||||
- Use `>>>` prompt for Python code
|
||||
- Include comments with `#` when helpful
|
||||
- Show actual output when it helps understanding (indent without `>>>`)
|
||||
|
||||
### 10. External References
|
||||
|
||||
Link to papers or external documentation:
|
||||
|
||||
```python
|
||||
.. _Link Name:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
```
|
||||
|
||||
Reference them in text: ```See `Link Name`_```
|
||||
|
||||
## Method Types
|
||||
|
||||
### Native Python Functions
|
||||
|
||||
For regular Python functions, use a standard docstring:
|
||||
|
||||
```python
|
||||
def relu(input: Tensor, inplace: bool = False) -> Tensor:
|
||||
r"""relu(input, inplace=False) -> Tensor
|
||||
|
||||
Applies the rectified linear unit function element-wise. See
|
||||
:class:`~torch.nn.ReLU` for more details.
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
### C-Bound Functions (using add_docstr)
|
||||
|
||||
For C-bound functions, use `_add_docstr`:
|
||||
|
||||
```python
|
||||
conv1d = _add_docstr(
|
||||
torch.conv1d,
|
||||
r"""
|
||||
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||||
|
||||
Applies a 1D convolution over an input signal composed of several input
|
||||
planes.
|
||||
|
||||
See :class:`~torch.nn.Conv1d` for details and output shape.
|
||||
|
||||
Args:
|
||||
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||||
weight: filters of shape :math:`(\text{out\_channels} , kW)`
|
||||
...
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### In-Place Variants
|
||||
|
||||
For in-place operations (ending with `_`), reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"abs_",
|
||||
r"""
|
||||
abs_() -> Tensor
|
||||
|
||||
In-place version of :meth:`~Tensor.abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
### Alias Functions
|
||||
|
||||
For aliases, simply reference the original:
|
||||
|
||||
```python
|
||||
add_docstr_all(
|
||||
"absolute",
|
||||
r"""
|
||||
absolute() -> Tensor
|
||||
|
||||
Alias for :func:`abs`
|
||||
""",
|
||||
)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Shape Documentation
|
||||
|
||||
Use LaTeX math notation for tensor shapes:
|
||||
|
||||
```python
|
||||
:math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||||
```
|
||||
|
||||
### Reusable Argument Definitions
|
||||
|
||||
For commonly used arguments, define them once and reuse:
|
||||
|
||||
```python
|
||||
common_args = parse_kwargs(
|
||||
"""
|
||||
dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
|
||||
Default: if None, same as this tensor.
|
||||
"""
|
||||
)
|
||||
|
||||
# Then use with .format():
|
||||
r"""
|
||||
...
|
||||
|
||||
Keyword args:
|
||||
{dtype}
|
||||
{device}
|
||||
""".format(**common_args)
|
||||
```
|
||||
|
||||
### Template Insertion
|
||||
|
||||
Insert reproducibility notes or other common text:
|
||||
|
||||
```python
|
||||
r"""
|
||||
{tf32_note}
|
||||
|
||||
{cudnn_reproducibility_note}
|
||||
""".format(**reproducibility_notes, **tf32_notes)
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
Here's a complete example showing all elements:
|
||||
|
||||
```python
|
||||
def gumbel_softmax(
|
||||
logits: Tensor,
|
||||
tau: float = 1,
|
||||
hard: bool = False,
|
||||
eps: float = 1e-10,
|
||||
dim: int = -1,
|
||||
) -> Tensor:
|
||||
r"""
|
||||
Sample from the Gumbel-Softmax distribution and optionally discretize.
|
||||
|
||||
Args:
|
||||
logits (Tensor): `[..., num_features]` unnormalized log probabilities
|
||||
tau (float): non-negative scalar temperature
|
||||
hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors,
|
||||
but will be differentiated as if it is the soft sample in autograd. Default: ``False``
|
||||
dim (int): A dimension along which softmax will be computed. Default: -1
|
||||
|
||||
Returns:
|
||||
Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||||
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||||
be probability distributions that sum to 1 across `dim`.
|
||||
|
||||
.. note::
|
||||
This function is here for legacy reasons, may be removed from nn.Functional in the future.
|
||||
|
||||
Examples::
|
||||
>>> logits = torch.randn(20, 32)
|
||||
>>> # Sample soft categorical using reparametrization trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=False)
|
||||
>>> # Sample hard categorical using "Straight-through" trick:
|
||||
>>> F.gumbel_softmax(logits, tau=1, hard=True)
|
||||
|
||||
.. _Link 1:
|
||||
https://arxiv.org/abs/1611.00712
|
||||
"""
|
||||
# implementation
|
||||
```
|
||||
|
||||
## Quick Checklist
|
||||
|
||||
When writing a PyTorch docstring, ensure:
|
||||
|
||||
- [ ] Use raw string (`r"""`)
|
||||
- [ ] Include function signature on first line
|
||||
- [ ] Provide brief description
|
||||
- [ ] Document all parameters in Args section with types
|
||||
- [ ] Include default values for optional parameters
|
||||
- [ ] Use Sphinx cross-references (`:func:`, `:class:`, `:meth:`)
|
||||
- [ ] Add mathematical formulas if applicable
|
||||
- [ ] Include at least one example in Examples section
|
||||
- [ ] Add warnings/notes for important caveats
|
||||
- [ ] Link to related module class with `:class:`
|
||||
- [ ] Use proper math notation for tensor shapes
|
||||
- [ ] Follow consistent formatting and indentation
|
||||
|
||||
## Common Sphinx Roles Reference
|
||||
|
||||
- `:class:\`~torch.nn.Module\`` - Class reference
|
||||
- `:func:\`torch.function\`` - Function reference
|
||||
- `:meth:\`~Tensor.method\`` - Method reference
|
||||
- `:attr:\`attribute\`` - Attribute reference
|
||||
- `:math:\`equation\`` - Inline math
|
||||
- `:ref:\`label\`` - Internal reference
|
||||
- ``` ``code`` ``` - Inline code (use double backticks)
|
||||
|
||||
## Additional Notes
|
||||
|
||||
- **Indentation**: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions
|
||||
- **Line length**: Try to keep lines under 100 characters when possible
|
||||
- **Periods**: End sentences with periods, but not the signature line
|
||||
- **Backticks**: Use double backticks for code: ``` ``True`` ``None`` ``False`` ```
|
||||
- **Types**: Common types are `Tensor`, `int`, `float`, `bool`, `str`, `tuple`, `list`, etc.
|
||||
7
.github/actions/setup-rocm/action.yml
vendored
7
.github/actions/setup-rocm/action.yml
vendored
@ -124,10 +124,3 @@ runs:
|
||||
id: login-ecr
|
||||
continue-on-error: true
|
||||
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
|
||||
|
||||
- name: Preserve github env variables for use in docker
|
||||
shell: bash
|
||||
run: |
|
||||
env | grep '^GITHUB' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^CI' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
env | grep '^RUNNER' >> "${RUNNER_TEMP}/github_env_${GITHUB_RUN_ID}"
|
||||
|
||||
2
.github/ci_commit_pins/vision.txt
vendored
2
.github/ci_commit_pins/vision.txt
vendored
@ -1 +1 @@
|
||||
1752fe6809b74921644866275ab80244b96e80bc
|
||||
faffd5cf673615583da6517275e361cb3dbc77e6
|
||||
|
||||
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
df6798dfb931ce7c7fe5bed2447cd1092a5981af
|
||||
0fa6e3129e61143224663e1ec67980d12b7ec4eb
|
||||
|
||||
5
.github/ci_configs/vllm/Dockerfile
vendored
5
.github/ci_configs/vllm/Dockerfile
vendored
@ -283,9 +283,6 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
fi
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --pre apache-tvm-ffi==0.1.0b15
|
||||
|
||||
# Install the vllm wheel from previous stage
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/vllm/*.whl --verbose
|
||||
@ -298,8 +295,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
|
||||
# TODO(elainewy): remove this once vllm commit is updated, and install flashinfer from pip
|
||||
# see https://github.com/pytorch/pytorch/pull/165274#issuecomment-3408531784
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
|
||||
|
||||
9
.github/label_to_label.yml
vendored
9
.github/label_to_label.yml
vendored
@ -15,11 +15,6 @@
|
||||
- "module: reinplacing"
|
||||
then:
|
||||
- "module: pt2-dispatcher"
|
||||
- any:
|
||||
- "vllm-compile"
|
||||
then:
|
||||
- "module: vllm"
|
||||
- "oncall: pt2"
|
||||
- any:
|
||||
- "module: vmap"
|
||||
then:
|
||||
@ -32,6 +27,10 @@
|
||||
- "module: pt2 optimizer"
|
||||
then:
|
||||
- "module: dynamo"
|
||||
- any:
|
||||
- "module: flex attention"
|
||||
then:
|
||||
- "module: higher order operators"
|
||||
- any:
|
||||
- "module: aotinductor"
|
||||
then:
|
||||
|
||||
1
.github/workflows/inductor-periodic.yml
vendored
1
.github/workflows/inductor-periodic.yml
vendored
@ -88,6 +88,7 @@ jobs:
|
||||
with:
|
||||
build-environment: linux-jammy-rocm-py3_10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
15
.github/workflows/periodic.yml
vendored
15
.github/workflows/periodic.yml
vendored
@ -147,16 +147,15 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-debug
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9
|
||||
cuda-arch-list: 8.9
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 1, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 2, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 3, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 4, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 5, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 6, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
{ config: "default", shard: 7, num_shards: 7, runner: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge.nvidia.gpu", owners: ["oncall:debug-build"] },
|
||||
]}
|
||||
secrets: inherit
|
||||
|
||||
|
||||
3
.github/workflows/pull.yml
vendored
3
.github/workflows/pull.yml
vendored
@ -347,8 +347,7 @@ jobs:
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
# This should sync with the build in xpu.yml but xpu uses a larger runner
|
||||
# sync-tag: linux-xpu-n-build
|
||||
sync-tag: linux-xpu-n-build
|
||||
runner_prefix: ${{ needs.get-label-type.outputs.label-type }}
|
||||
build-environment: linux-jammy-xpu-n-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-xpu-n-py3
|
||||
|
||||
1
.github/workflows/rocm-mi300.yml
vendored
1
.github/workflows/rocm-mi300.yml
vendored
@ -45,6 +45,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi300
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.gfx942.1" },
|
||||
|
||||
1
.github/workflows/rocm-mi355.yml
vendored
1
.github/workflows/rocm-mi355.yml
vendored
@ -42,6 +42,7 @@ jobs:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-noble-rocm-py3.12-mi355
|
||||
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
test-matrix: |
|
||||
{ include: [
|
||||
{ config: "default", shard: 1, num_shards: 6, runner: "linux.rocm.gpu.mi355.1" },
|
||||
|
||||
12
.github/workflows/rocm-navi31.yml
vendored
12
.github/workflows/rocm-navi31.yml
vendored
@ -26,23 +26,11 @@ jobs:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
|
||||
12
.github/workflows/rocm.yml
vendored
12
.github/workflows/rocm.yml
vendored
@ -26,23 +26,11 @@ jobs:
|
||||
id-token: write
|
||||
contents: read
|
||||
|
||||
get-label-type:
|
||||
name: get-label-type
|
||||
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
with:
|
||||
triggering_actor: ${{ github.triggering_actor }}
|
||||
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
|
||||
curr_branch: ${{ github.head_ref || github.ref_name }}
|
||||
curr_ref_type: ${{ github.ref_type }}
|
||||
|
||||
linux-jammy-rocm-py3_10-build:
|
||||
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
|
||||
name: linux-jammy-rocm-py3.10
|
||||
uses: ./.github/workflows/_linux-build.yml
|
||||
needs: get-label-type
|
||||
with:
|
||||
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
|
||||
build-environment: linux-jammy-rocm-py3.10
|
||||
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
|
||||
sync-tag: rocm-build
|
||||
|
||||
149
.github/workflows/trunk-tagging.yml
vendored
149
.github/workflows/trunk-tagging.yml
vendored
@ -58,10 +58,8 @@ jobs:
|
||||
else
|
||||
COMMIT_SHA="${{ github.sha }}"
|
||||
fi
|
||||
{
|
||||
echo "sha=${COMMIT_SHA}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
echo "sha=${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
echo "tag_name=trunk/${COMMIT_SHA}" >> "${GITHUB_OUTPUT}"
|
||||
|
||||
- name: Validate commit SHA
|
||||
run: |
|
||||
@ -89,7 +87,7 @@ jobs:
|
||||
echo "✅ Commit ${COMMIT_SHA} is valid (automatic push trigger)"
|
||||
fi
|
||||
|
||||
- name: Create and push tag(s) with retry
|
||||
- name: Create and push tag with retry
|
||||
id: check_tag
|
||||
env:
|
||||
TAG_NAME: ${{ steps.commit.outputs.tag_name }}
|
||||
@ -114,23 +112,14 @@ jobs:
|
||||
return 1
|
||||
}
|
||||
|
||||
# Counters for summary reporting
|
||||
created_count=0
|
||||
skipped_count=0
|
||||
failed_count=0
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
echo "exists=true" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
# Always write outputs once on exit
|
||||
finish() {
|
||||
set +e
|
||||
if [ -n "${GITHUB_OUTPUT:-}" ]; then
|
||||
{
|
||||
echo "created_count=${created_count}"
|
||||
echo "skipped_count=${skipped_count}"
|
||||
echo "failed_count=${failed_count}"
|
||||
} >> "${GITHUB_OUTPUT}"
|
||||
fi
|
||||
}
|
||||
trap finish EXIT
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
# Retry configuration
|
||||
MAX_RETRIES=5
|
||||
@ -205,111 +194,31 @@ jobs:
|
||||
}
|
||||
}
|
||||
|
||||
# New behavior for push events: enumerate commits in the push and tag each one.
|
||||
# For workflow_dispatch, retain existing single-SHA behavior.
|
||||
|
||||
# Always fetch tags once up front to improve idempotency in loops
|
||||
git fetch origin --tags --quiet || true
|
||||
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
BEFORE_SHA="${{ github.event.before }}"
|
||||
AFTER_SHA="${{ github.sha }}" # same as event.after
|
||||
|
||||
# List commits introduced by this push (old..new), oldest first for stable ordering
|
||||
commits_file="$(mktemp)"
|
||||
git rev-list --reverse "${BEFORE_SHA}..${AFTER_SHA}" > "${commits_file}"
|
||||
|
||||
if [ ! -s "${commits_file}" ]; then
|
||||
echo "No new commits found between ${BEFORE_SHA}..${AFTER_SHA}; nothing to tag."
|
||||
rm -f "${commits_file}"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
commit_count="$(wc -l < "${commits_file}" | tr -d ' ')"
|
||||
echo "Found ${commit_count} commit(s) to tag for push:"
|
||||
while IFS= read -r sha; do
|
||||
printf ' %s\n' "${sha}"
|
||||
done < "${commits_file}"
|
||||
|
||||
while IFS= read -r sha; do
|
||||
TAG_NAME="trunk/${sha}"
|
||||
COMMIT_SHA="${sha}"
|
||||
|
||||
# If tag already exists locally or remotely, skip (idempotent)
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag ${TAG_NAME} already exists - skipping"
|
||||
skipped_count=$((skipped_count + 1))
|
||||
continue
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=$((created_count + 1))
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts for ${TAG_NAME}"
|
||||
failed_count=$((failed_count + 1))
|
||||
fi
|
||||
done < "${commits_file}"
|
||||
|
||||
rm -f "${commits_file}"
|
||||
|
||||
if [ "${failed_count}" -gt 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
# Execute with retry
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
echo "exists=false" >> "${GITHUB_OUTPUT}"
|
||||
exit 0
|
||||
else
|
||||
# workflow_dispatch path (single SHA tagging preserved)
|
||||
|
||||
# Exit early if tag already exists
|
||||
if check_tag_exists; then
|
||||
echo "✅ Tag already exists - no action needed"
|
||||
skipped_count=1
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "Tag ${TAG_NAME} does not exist, proceeding with creation"
|
||||
|
||||
if retry_with_backoff "tag_with_retry" "Creating tag ${TAG_NAME} for commit ${COMMIT_SHA}"; then
|
||||
created_count=1
|
||||
exit 0
|
||||
else
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
failed_count=1
|
||||
exit 1
|
||||
fi
|
||||
echo "Tag creation failed after all retry attempts"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Tag creation summary
|
||||
if: always()
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" = "push" ]; then
|
||||
echo "Trigger: push on main"
|
||||
echo "Created: ${{ steps.check_tag.outputs.created_count }}"
|
||||
echo "Skipped (already existed): ${{ steps.check_tag.outputs.skipped_count }}"
|
||||
echo "Failed: ${{ steps.check_tag.outputs.failed_count }}"
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
echo "✅ Completed tagging for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
else
|
||||
echo "❌ Some tags failed to create for push range ${{ github.event.before }}..${{ github.sha }}"
|
||||
fi
|
||||
if [ "${{ steps.check_tag.outputs.exists }}" = "true" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
elif [ "${{ job.status }}" = "success" ]; then
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
else
|
||||
if [ "${{ steps.check_tag.outputs.failed_count }}" = "0" ]; then
|
||||
if [ "${{ steps.check_tag.outputs.created_count }}" = "0" ]; then
|
||||
echo "✅ Tag ${{ steps.commit.outputs.tag_name }} already existed - no action needed"
|
||||
else
|
||||
echo "✅ Successfully created tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
else
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
echo "❌ Failed to create tag ${{ steps.commit.outputs.tag_name }} for commit ${{ steps.commit.outputs.sha }}"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Tag details:"
|
||||
echo " Name: ${{ steps.commit.outputs.tag_name }}"
|
||||
echo " Commit: ${{ steps.commit.outputs.sha }}"
|
||||
echo " Trigger: ${{ github.event_name }}"
|
||||
if [ -n "${{ github.event.inputs.commit_sha }}" ]; then
|
||||
echo " Manual commit: ${{ github.event.inputs.commit_sha }}"
|
||||
fi
|
||||
|
||||
@ -833,7 +833,8 @@ exclude_patterns = [
|
||||
command = [
|
||||
'python3',
|
||||
'tools/linter/adapters/grep_linter.py',
|
||||
'--pattern=(cudaSetDevice|cudaGetDevice)\\(',
|
||||
'--pattern=cudaSetDevice(',
|
||||
'--pattern=cudaGetDevice(',
|
||||
'--linter-name=RAWCUDADEVICE',
|
||||
'--error-name=raw CUDA API usage',
|
||||
"""--error-description=\
|
||||
@ -1137,8 +1138,11 @@ command = [
|
||||
[[linter]]
|
||||
code = 'WORKFLOWSYNC'
|
||||
include_patterns = [
|
||||
'.github/workflows/*.yml',
|
||||
'.github/workflows/*.yaml',
|
||||
'.github/workflows/pull.yml',
|
||||
'.github/workflows/trunk.yml',
|
||||
'.github/workflows/periodic.yml',
|
||||
'.github/workflows/mac-mps.yml',
|
||||
'.github/workflows/slow.yml',
|
||||
]
|
||||
command = [
|
||||
'python3',
|
||||
|
||||
@ -31,9 +31,9 @@ Be careful when running untrusted models. This classification includes models cr
|
||||
|
||||
**Prefer to execute untrusted models within a secure, isolated environment such as a sandbox** (e.g., containers, virtual machines). This helps protect your system from potentially malicious code. You can find further details and instructions in [this page](https://developers.google.com/code-sandboxing).
|
||||
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) has a significantly larger surface of attack but is more flexible in what it can serialize. See the documentation for more details.
|
||||
**Be mindful of risky model formats**. Give preference to share and load weights with the appropriate format for your use case. [safetensors](https://huggingface.co/docs/safetensors/en/index) gives the most safety but is the most restricted in what it supports. [`torch.load`](https://pytorch.org/docs/stable/generated/torch.load.html#torch.load) with `weights_only=True` is also secure to our knowledge even though it offers significantly larger surface of attack. Loading un-trusted checkpoint with `weights_only=False` MUST never be done.
|
||||
|
||||
|
||||
Even for more secure serialization formats, unexpected inputs to the downstream system can cause diverse security threats (e.g. denial of service, out of bound reads/writes) and thus we recommend extensive validation of any untrusted inputs.
|
||||
|
||||
Important Note: The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
|
||||
|
||||
|
||||
@ -38,7 +38,7 @@ set_bool(AT_HIPSPARSELT_ENABLED CAFFE2_USE_HIPSPARSELT)
|
||||
|
||||
configure_file(Config.h.in "${CMAKE_CURRENT_SOURCE_DIR}/Config.h")
|
||||
# TODO: Do not generate CUDAConfig.h for ROCm BUILDS
|
||||
# At the moment, `jit_macros.h` include CUDAConfig.h for both CUDA and HIP builds
|
||||
# At the moment, `jit_macors.h` include CUDAConfig.h for both CUDA and HIP builds
|
||||
if(USE_CUDA OR USE_ROCM)
|
||||
configure_file(cuda/CUDAConfig.h.in "${CMAKE_CURRENT_SOURCE_DIR}/cuda/CUDAConfig.h")
|
||||
endif()
|
||||
@ -289,15 +289,14 @@ IF(USE_FBGEMM_GENAI)
|
||||
|
||||
set_target_properties(fbgemm_genai PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
set(fbgemm_genai_cuh
|
||||
set(fbgemm_genai_mx8mx8bf16_grouped
|
||||
"${FBGEMM_GENAI_SRCS}/cutlass_extensions/mx8mx8bf16_grouped/"
|
||||
"${FBGEMM_GENAI_SRCS}/"
|
||||
)
|
||||
|
||||
target_include_directories(fbgemm_genai PRIVATE
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/include
|
||||
${FBGEMM_THIRD_PARTY}/cutlass/tools/util/include
|
||||
${fbgemm_genai_cuh}
|
||||
${fbgemm_genai_mx8mx8bf16_grouped}
|
||||
${FBGEMM_GENAI_SRCS}/common/include/ # includes fbgemm_gpu/quantize/utils.h, fbgemm_gpu/quantize/tuning_cache.hpp
|
||||
${FBGEMM_GENAI_SRCS}/include/ # includes fbgemm_gpu/torch_ops.h
|
||||
)
|
||||
|
||||
@ -19,7 +19,6 @@
|
||||
#include <ATen/detail/MPSHooksInterface.h>
|
||||
#include <ATen/detail/MTIAHooksInterface.h>
|
||||
#include <ATen/detail/PrivateUse1HooksInterface.h>
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
#include <ATen/detail/XPUHooksInterface.h>
|
||||
#include <c10/core/QEngine.h>
|
||||
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
||||
@ -89,8 +88,6 @@ class TORCH_API Context {
|
||||
return at::detail::getHIPHooks();
|
||||
} else if (opt_device_type == at::kHPU) {
|
||||
return at::detail::getHPUHooks();
|
||||
} else if (opt_device_type == at::kXLA) {
|
||||
return at::detail::getXLAHooks();
|
||||
} else {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
@ -199,7 +196,7 @@ class TORCH_API Context {
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::IPU);
|
||||
}
|
||||
static bool hasXLA() {
|
||||
return detail::getXLAHooks().hasXLA();
|
||||
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::XLA);
|
||||
}
|
||||
static bool hasXPU() {
|
||||
return detail::getXPUHooks().hasXPU();
|
||||
|
||||
@ -122,7 +122,7 @@ void FunctionalTensorWrapper::freeze_storage() const {
|
||||
// | have their own storages, but backends like functorch |
|
||||
// \/ are allowed to re-alias underneath the pass \/
|
||||
// . - - - - - - - - - - - - - . . - - - - - - - - - - - - - - - .
|
||||
// | underlying_storage | | underlying_storage |
|
||||
// | underyling_storage | | underyling_storage |
|
||||
// . - - - - - - - - - - - - - . . - - - - - - - - - - - - - - - .
|
||||
//
|
||||
// This constructor is only used by view ops.
|
||||
|
||||
@ -1534,7 +1534,7 @@ void TensorIteratorBase::build(TensorIteratorConfig& config) {
|
||||
|
||||
// XLA and lazy tensors don't have storage, so they don't have an underlying data pointer.
|
||||
// Nothing beyond this point is important for meta functions, so it's fine to exit early here.
|
||||
// Extend the condition to MAIA tensors as MAIA tensors also don't have storage.
|
||||
// Extend the condition to MAIA tesnors as MAIA tensors also don't have storage.
|
||||
if (privateuse1_without_storage ||
|
||||
common_device_.type() == DeviceType::XLA ||
|
||||
common_device_.type() == DeviceType::IPU ||
|
||||
|
||||
@ -94,11 +94,11 @@ struct PinnedReserveSegment {
|
||||
struct TORCH_API HostStats {
|
||||
// COUNT: total allocations (active)
|
||||
Stat active_requests;
|
||||
// SUM: bytes allocated/reserved by this memory allocator. (active)
|
||||
// SUM: bytes allocated/reserved by this memory alocator. (active)
|
||||
Stat active_bytes;
|
||||
// COUNT: total allocations (active + free)
|
||||
Stat allocations;
|
||||
// SUM: bytes allocated/reserved by this memory allocator. This accounts
|
||||
// SUM: bytes allocated/reserved by this memory alocator. This accounts
|
||||
// for both free and in-use blocks.
|
||||
Stat allocated_bytes;
|
||||
|
||||
@ -127,7 +127,7 @@ struct alignas(hardware_destructive_interference_size) HostStatsStaged {
|
||||
// COUNT: total allocations (active + free)
|
||||
// LOCK: access to this stat is protected by the allocator's blocks_mutex_
|
||||
Stat allocations;
|
||||
// SUM: bytes allocated/reserved by this memory allocator. This accounts
|
||||
// SUM: bytes allocated/reserved by this memory alocator. This accounts
|
||||
// for both free and in-use blocks.
|
||||
Stat allocated_bytes;
|
||||
// COUNT: number of allocations per bucket (active)
|
||||
@ -455,7 +455,7 @@ struct CachingHostAllocatorImpl {
|
||||
}
|
||||
|
||||
void resetAccumulatedStats() {
|
||||
// Resetting accumulated memory stats requires concurrently holding both the
|
||||
// Reseting accumulated memory stats requires concurrently holding both the
|
||||
// free list mutexes and the blocks mutex. Previously, this was only done in
|
||||
// empty_cache function.
|
||||
for (size_t i = 0; i < free_list_.size(); ++i) {
|
||||
@ -482,7 +482,7 @@ struct CachingHostAllocatorImpl {
|
||||
}
|
||||
|
||||
void resetPeakStats() {
|
||||
// Resetting peak memory stats requires concurrently holding both the
|
||||
// Reseting peak memory stats requires concurrently holding both the
|
||||
// free list mutexes and the blocks mutex. Previously, this was only done in
|
||||
// empty_cache function.
|
||||
for (size_t i = 0; i < free_list_.size(); ++i) {
|
||||
|
||||
@ -59,7 +59,9 @@ struct TORCH_API Generator {
|
||||
|
||||
explicit Generator(c10::intrusive_ptr<c10::GeneratorImpl> gen_impl)
|
||||
: impl_(std::move(gen_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "GeneratorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("GeneratorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const Generator& rhs) const {
|
||||
|
||||
@ -111,7 +111,9 @@ class TORCH_API TensorBase {
|
||||
explicit TensorBase(
|
||||
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
|
||||
: impl_(std::move(tensor_impl)) {
|
||||
TORCH_CHECK(impl_.get(), "TensorImpl with nullptr is not supported");
|
||||
if (impl_.get() == nullptr) {
|
||||
throw std::runtime_error("TensorImpl with nullptr is not supported");
|
||||
}
|
||||
}
|
||||
TensorBase(const TensorBase&) = default;
|
||||
TensorBase(TensorBase&&) noexcept = default;
|
||||
|
||||
@ -109,10 +109,6 @@ TORCH_LIBRARY_IMPL(_, AutogradHPU, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL(_, AutogradPrivateUse1, m) {
|
||||
m.fallback(AUTOGRAD_FALLBACK);
|
||||
}
|
||||
|
||||
#undef AUTOGRAD_FALLBACK
|
||||
|
||||
} // namespace
|
||||
|
||||
@ -148,7 +148,7 @@ struct TORCH_API ClassType : public NamedType {
|
||||
|
||||
void checkNotExist(const std::string& name, const std::string& what) const;
|
||||
|
||||
// Attributes are stored in a specific slot at runtime for efficiency.
|
||||
// Attributes are stored in a specific slot at runtime for effiency.
|
||||
// When emitting instructions we specify the slot so that attribute access is
|
||||
// a constant lookup
|
||||
std::optional<size_t> findAttributeSlot(const std::string& name) const {
|
||||
@ -412,7 +412,7 @@ struct TORCH_API ClassType : public NamedType {
|
||||
// Holds method attributes
|
||||
std::weak_ptr<CompilationUnit> compilation_unit_;
|
||||
|
||||
// Holds all attributes, attribute details are found on ClassAttribute
|
||||
// Holds all atrributes, attribute details are found on ClassAttribute
|
||||
std::vector<ClassAttribute> attributes_;
|
||||
// Construct mirroring attributes_, only around due to the fact that `containedTypes()` method returns an ArrayRef.
|
||||
// Never fill this without using the appropriate provideNewClassAttribute method
|
||||
|
||||
@ -442,17 +442,11 @@ RegistrationHandleRAII Dispatcher::registerFallback(DispatchKey dispatchKey, Ker
|
||||
|
||||
auto idx = getDispatchTableIndexForDispatchKey(dispatchKey);
|
||||
TORCH_CHECK(idx >= 0 && static_cast<uint64_t>(idx) < backendFallbackKernels_.size(), "idx=", idx);
|
||||
// NB: Perserve BC for registering fallback for AutogradPrivateUse1 multiple time,
|
||||
// refer to https://github.com/pytorch/pytorch/issues/163979 for more informations.
|
||||
TORCH_CHECK(
|
||||
dispatchKey == DispatchKey::AutogradPrivateUse1 ||
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ",
|
||||
dispatchKey,
|
||||
"; previous registration ",
|
||||
backendFallbackKernels_[idx].debug,
|
||||
", new registration ",
|
||||
debug);
|
||||
!backendFallbackKernels_[idx].kernel.isValid(),
|
||||
"Tried to register multiple backend fallbacks for the same dispatch key ", dispatchKey, "; previous registration ",
|
||||
backendFallbackKernels_[idx].debug, ", new registration ", debug
|
||||
);
|
||||
// NB: inferred function schema is always nullptr for fallbacks, as fallbacks
|
||||
// cannot be unboxed
|
||||
backendFallbackKernels_[idx] = impl::AnnotatedKernel(std::move(kernel), nullptr, std::move(debug));
|
||||
@ -537,7 +531,7 @@ int64_t Dispatcher::sequenceNumberForRunningRecordFunction(DispatchKey dispatchK
|
||||
|
||||
// Note: this records a sequence number for both Autograd keys, and for
|
||||
// non-Autograd keys where the dispatchKeySet still contains an autograd key.
|
||||
// This means that we might collect the same sequence number two different
|
||||
// This means that we might collect the same sequence nubmer two different
|
||||
// events if they all occurred above Autograd and still had the Autograd
|
||||
// dispatch key in the dispatch key set.
|
||||
// However, this usually doesn't happen: normally the first call will
|
||||
|
||||
@ -585,7 +585,7 @@ class TORCH_API OperatorHandle {
|
||||
|
||||
// We need to store this iterator in order to make
|
||||
// Dispatcher::cleanup() fast -- it runs a lot on program
|
||||
// termination (and presumably library unloading).
|
||||
// termination (and presuambly library unloading).
|
||||
std::list<Dispatcher::OperatorDef>::iterator operatorIterator_;
|
||||
};
|
||||
|
||||
|
||||
@ -365,7 +365,7 @@ std::pair<const AnnotatedKernel&, const char*> OperatorEntry::computeDispatchTab
|
||||
// For autograd keys, we only use kernel from CompositeImplicitAutograd when there's no direct registration
|
||||
// to its corresponding backend key or CompositeExplicitAutograd. See Note [CompositeExplicitAutograd and CompositeImplicitAutograd].
|
||||
// For AutogradOther, we eagerly return ambiguousAutogradOtherKernel() if there's registration to any of
|
||||
// its backends and ask backend extender to request a dedicated Autograd key for the backend.
|
||||
// its backends and ask backend extender to request a decicated Autograd key for the backend.
|
||||
// See Note [Ambiguity in AutogradOther kernel] for more details.
|
||||
// A CompositeExplicitAutograd kernel prevents CompositeImplicitAutograd kernel being used for Autograd keys, but it doesn't
|
||||
// cause confusion for AutogradOther. It's pretty straightforward to use Autograd (if available)
|
||||
|
||||
@ -261,7 +261,7 @@ std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
|
||||
//
|
||||
// There are 2 cases
|
||||
// 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'.
|
||||
// without the extra parenthesis, the c++ scheme parser can not parse it.
|
||||
// without the extra parenthesis, the c++ schem parser can not parse it.
|
||||
// 2. something like '-> ((str, str))'. Need extra parenthesis so the return
|
||||
// type is a single tuple rather than two strings.
|
||||
// PR (https://github.com/pytorch/pytorch/pull/23204) has more context about
|
||||
|
||||
@ -68,7 +68,11 @@ Symbol InternedStrings::_symbol(const std::string& s) {
|
||||
return it->second;
|
||||
|
||||
auto pos = s.find("::");
|
||||
TORCH_CHECK(pos != std::string::npos, "all symbols must have a namespace, <namespace>::<string>, but found: ", s);
|
||||
if (pos == std::string::npos) {
|
||||
std::stringstream ss;
|
||||
ss << "all symbols must have a namespace, <namespace>::<string>, but found: " << s;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
Symbol ns = _symbol("namespaces::" + s.substr(0, pos));
|
||||
|
||||
Symbol sym(sym_to_info_.size());
|
||||
@ -117,7 +121,12 @@ std::string Symbol::domainString() const {
|
||||
}
|
||||
|
||||
Symbol Symbol::fromDomainAndUnqualString(const std::string & d, const std::string & s) {
|
||||
TORCH_CHECK(d.compare(0, domain_prefix().size(), domain_prefix()) == 0, "Symbol: domain string is expected to be prefixed with '", domain_prefix(), "', e.g. 'org.pytorch.aten'");
|
||||
if (d.compare(0, domain_prefix().size(), domain_prefix()) != 0) {
|
||||
std::ostringstream ss;
|
||||
ss << "Symbol: domain string is expected to be prefixed with '"
|
||||
<< domain_prefix() << "', e.g. 'org.pytorch.aten'";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
std::string qualString = d.substr(domain_prefix().size()) + "::" + s;
|
||||
return fromQualString(qualString);
|
||||
}
|
||||
|
||||
@ -7,7 +7,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <ATen/core/stack.h>
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/StringUtil.h>
|
||||
#include <c10/util/hash.h>
|
||||
#include <c10/util/irange.h>
|
||||
@ -413,7 +412,7 @@ size_t IValue::hash(const IValue& v) {
|
||||
case Tag::Enum:
|
||||
case Tag::Stream:
|
||||
case Tag::Uninitialized:
|
||||
TORCH_CHECK(false,
|
||||
throw std::runtime_error(
|
||||
"unhashable type: '" + v.type()->repr_str() + "'");
|
||||
}
|
||||
// the above switch should be exhaustive
|
||||
|
||||
@ -1176,7 +1176,7 @@ struct TORCH_API IValue final {
|
||||
using HashIdentityIValueMap =
|
||||
std::unordered_map<IValue, IValue, HashIdentityIValue, CompIdentityIValues>;
|
||||
|
||||
// Checks if this and rhs has a subvalues in common.
|
||||
// Chechs if this and rhs has a subvalues in common.
|
||||
// [t1,t2] and [t2, t3] returns true.
|
||||
bool overlaps(const IValue& rhs) const;
|
||||
|
||||
|
||||
@ -1501,7 +1501,7 @@ struct C10_EXPORT ivalue::Object final : c10::intrusive_ptr_target {
|
||||
// However, the CompilationUnit holds ownership of the type's graphs, so
|
||||
// inserting a constant object into a Graph would create a reference cycle if
|
||||
// that constant object held a shared_ptr to its CU. For these objects we
|
||||
// instantiate them with non-owning references to its CU
|
||||
// instatiate them with non-owning references to its CU
|
||||
Object(WeakOrStrongTypePtr type, size_t numSlots) : type_(std::move(type)) {
|
||||
slots_.resize(numSlots);
|
||||
}
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/type_factory.h>
|
||||
#include <ATen/core/qualified_name.h>
|
||||
#include <c10/util/TypeList.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <optional>
|
||||
#include <c10/core/SymFloat.h>
|
||||
#include <c10/core/SymBool.h>
|
||||
@ -117,8 +116,10 @@ struct SingleElementType : public SharedType {
|
||||
|
||||
protected:
|
||||
SingleElementType(TypePtr elem) : SharedType(Kind), elem(std::move(elem)) {
|
||||
TORCH_CHECK(this->elem, c10::str(
|
||||
if (!this->elem) {
|
||||
throw std::runtime_error(c10::str(
|
||||
"Can not create ", typeKindToString(Kind), " with None type"));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -373,7 +374,7 @@ struct TORCH_API SymbolicShape {
|
||||
// Unranked shape constructor.
|
||||
SymbolicShape() : dims_(std::nullopt) {}
|
||||
|
||||
// Known rank but unknown dimensions.
|
||||
// Known rank but unknown dimentions.
|
||||
SymbolicShape(std::optional<size_t> rank) : dims_(std::nullopt) {
|
||||
if(!rank) {
|
||||
return;
|
||||
@ -415,12 +416,16 @@ struct TORCH_API SymbolicShape {
|
||||
}
|
||||
|
||||
ShapeSymbol operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
ShapeSymbol at(size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -515,7 +520,9 @@ struct VaryingShape {
|
||||
}
|
||||
|
||||
const std::optional<T> &operator[](size_t i) const {
|
||||
TORCH_CHECK(dims_, "Rank isn't fixed");
|
||||
if (!dims_) {
|
||||
throw std::runtime_error("Rank isn't fixed");
|
||||
}
|
||||
return (*dims_).at(i);
|
||||
}
|
||||
|
||||
@ -884,9 +891,9 @@ struct TORCH_API ListType
|
||||
|
||||
// global singleton
|
||||
// Given an inner type T and an identifier,
|
||||
// this function will return the global singleton type pointer
|
||||
// this function wil return the global singleton type pointer
|
||||
// the type List<T>.
|
||||
// The extra "identifier" argument is needed because we have multiple container types
|
||||
// The extra "identifier" argument is needed beccause we have multiple container types
|
||||
// that all re-use this function (List<T>, array<T, N>, etc.)
|
||||
static TypePtr get(const std::string& identifier, TypePtr inner);
|
||||
|
||||
@ -950,7 +957,9 @@ struct TORCH_API DictType : public SharedType {
|
||||
|
||||
TypePtr createWithContained(
|
||||
std::vector<TypePtr> contained_types) const override {
|
||||
TORCH_CHECK(contained_types.size() == 2, "Expected 2 contained types");
|
||||
if (contained_types.size() != 2) {
|
||||
throw std::runtime_error("Expected 2 contained types");
|
||||
}
|
||||
return create(std::move(contained_types.at(0)), std::move(contained_types.at(1)));
|
||||
}
|
||||
|
||||
|
||||
@ -185,11 +185,11 @@ struct TORCH_API Type {
|
||||
: repr_(nullptr) {}
|
||||
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<T> p)
|
||||
: repr_(makeSingletonSharedPtr(p.get())) {}
|
||||
: repr_(p) {}
|
||||
|
||||
template <typename U, std::enable_if_t<std::is_convertible_v<U*, T*>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(SingletonTypePtr<U> p)
|
||||
: repr_(makeSingletonSharedPtr(static_cast<T*>(p.get()))) {}
|
||||
: repr_(SingletonTypePtr<T>(p.get())) {}
|
||||
|
||||
|
||||
// We need to support construction from T* for pybind. The problem
|
||||
@ -202,8 +202,8 @@ struct TORCH_API Type {
|
||||
// Case 2: if T is exactly Type, we need to do a dynamic_cast to
|
||||
// check if it's a SharedType and do the right thing.
|
||||
//
|
||||
// Case 3: Otherwise, T is not a SharedType. Use a singleton
|
||||
// pointer.
|
||||
// Case 3: Otherwise, T is not a SharedType. (debug-check this
|
||||
// assumption!) Use a singleton pointer.
|
||||
|
||||
template <typename U = T, std::enable_if_t<std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) : SingletonOrSharedTypePtr(static_cast<typename detail::as_shared_type<U>::type>(p)->shared_from_this()) {}
|
||||
@ -211,15 +211,15 @@ struct TORCH_API Type {
|
||||
template <typename U = T, std::enable_if_t<std::is_same_v<Type, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p) {
|
||||
if (auto* shared_p = dynamic_cast<typename detail::as_shared_type<U>::type>(p)) {
|
||||
repr_ = shared_p->shared_from_this();
|
||||
repr_ = Repr(shared_p->shared_from_this());
|
||||
} else {
|
||||
repr_ = makeSingletonSharedPtr(p);
|
||||
repr_ = Repr(p);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<Type, U> && !std::is_base_of_v<SharedType, U>, bool> = true>
|
||||
/* implicit */ SingletonOrSharedTypePtr(T* p)
|
||||
: repr_(makeSingletonSharedPtr(p)) {
|
||||
: repr_(p) {
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(dynamic_cast<typename detail::as_shared_type<U>::type>(p) == nullptr);
|
||||
}
|
||||
|
||||
@ -230,19 +230,19 @@ struct TORCH_API Type {
|
||||
~SingletonOrSharedTypePtr() = default;
|
||||
|
||||
T* get() const {
|
||||
return repr_.get();
|
||||
return repr_.isSharedAndNonNull() ? repr_.shared_.repr_.get() : static_cast<T*>(repr_.rawRepr().first);
|
||||
}
|
||||
|
||||
operator bool() const {
|
||||
return repr_ != nullptr;
|
||||
return repr_.isNonNull();
|
||||
}
|
||||
|
||||
bool operator==(std::nullptr_t) const {
|
||||
return repr_ == nullptr;
|
||||
return !repr_.isNonNull();
|
||||
}
|
||||
|
||||
bool operator!=(std::nullptr_t) const {
|
||||
return repr_ != nullptr;
|
||||
return repr_.isNonNull();
|
||||
}
|
||||
|
||||
template <typename U = T, std::enable_if_t<!std::is_same_v<std::remove_const_t<U>, void>, bool> = true>
|
||||
@ -255,14 +255,138 @@ struct TORCH_API Type {
|
||||
}
|
||||
|
||||
private:
|
||||
// Use shared_ptr's aliasing constructor to create a non-owning pointer
|
||||
// to a singleton. The lifetime is tied to the null shared_ptr, so there's
|
||||
// no reference counting overhead for the singleton itself.
|
||||
static std::shared_ptr<T> makeSingletonSharedPtr(T* ptr) {
|
||||
return std::shared_ptr<T>(std::shared_ptr<T>(), ptr);
|
||||
}
|
||||
// NOTE: SharedPtrWrapper exists to work around a baffling bug in
|
||||
// nvcc; see comment in destroy() below.
|
||||
struct SharedPtrWrapper {
|
||||
SharedPtrWrapper(std::shared_ptr<T> &&x)
|
||||
: repr_(std::move(x)) {}
|
||||
std::shared_ptr<T> repr_;
|
||||
};
|
||||
union Repr {
|
||||
Repr() : Repr(nullptr) {}
|
||||
|
||||
std::shared_ptr<T> repr_;
|
||||
explicit Repr(std::shared_ptr<T> x)
|
||||
: shared_(std::move(x)) {}
|
||||
|
||||
explicit Repr(std::nullptr_t)
|
||||
: singletonRepr_(nullptr) {}
|
||||
|
||||
explicit Repr(SingletonTypePtr<T> p)
|
||||
: singletonRepr_(p.get()) {}
|
||||
|
||||
~Repr() {
|
||||
destroy();
|
||||
}
|
||||
|
||||
// NOTE: the only non-UB way to access our null state is through
|
||||
// rawRepr(), because our copy operation doesn't preserve which
|
||||
// union member is active for null pointers.
|
||||
Repr(const Repr& rhs) {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr(Repr&& rhs) noexcept {
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
} else {
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.singletonRepr_.unused_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
Repr& operator=(const Repr& rhs) {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = rhs.shared_;
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(rhs.shared_);
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
Repr& operator=(Repr&& rhs) noexcept {
|
||||
if (&rhs == this) {
|
||||
return *this;
|
||||
}
|
||||
if (rhs.isSharedAndNonNull()) {
|
||||
if (isSharedAndNonNull()) {
|
||||
shared_ = std::move(rhs.shared_);
|
||||
} else {
|
||||
new (&shared_) SharedPtrWrapper(std::move(rhs.shared_));
|
||||
}
|
||||
} else {
|
||||
if (isSharedAndNonNull()) {
|
||||
destroy();
|
||||
}
|
||||
singletonRepr_.singleton_ = static_cast<T*>(rhs.rawRepr().first);
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(rhs.rawRepr().nullIfSingleton_ == nullptr);
|
||||
singletonRepr_.unused_ = nullptr;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
SharedPtrWrapper shared_;
|
||||
|
||||
struct SingletonRepr {
|
||||
explicit SingletonRepr(T* s) : singleton_(s) {}
|
||||
T* singleton_;
|
||||
void* unused_ = nullptr;
|
||||
} singletonRepr_;
|
||||
struct RawRepr {
|
||||
void* first;
|
||||
void* nullIfSingleton_;
|
||||
};
|
||||
|
||||
// It is UB to read the singleton part of Repr if it was
|
||||
// constructed as a shared_ptr and vice versa, but memcpying out
|
||||
// the representation is always OK, so here's an accessor to obey
|
||||
// the letter of the law.
|
||||
RawRepr rawRepr() const {
|
||||
RawRepr repr{};
|
||||
memcpy(&repr, reinterpret_cast<const char *>(this), sizeof(RawRepr));
|
||||
return repr;
|
||||
}
|
||||
|
||||
bool isNonNull() const {
|
||||
auto repr = rawRepr();
|
||||
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(repr.nullIfSingleton_ == nullptr || repr.first != nullptr);
|
||||
return repr.first != nullptr;
|
||||
}
|
||||
|
||||
bool isSharedAndNonNull() const {
|
||||
return rawRepr().nullIfSingleton_ != nullptr;
|
||||
}
|
||||
|
||||
private:
|
||||
void destroy() {
|
||||
if (isSharedAndNonNull()) {
|
||||
// Without SharedPtrWrapper, this line would read
|
||||
// `shared_.~shared_ptr()` and nvcc would complain with
|
||||
// "error: expected primary-expression before '>' token"
|
||||
// referring to the "t" in "shared_ptr". SharedPtrWrapper
|
||||
// exists to work around this compiler bug.
|
||||
shared_.~SharedPtrWrapper();
|
||||
}
|
||||
}
|
||||
} repr_;
|
||||
};
|
||||
|
||||
using TypePtr = SingletonOrSharedTypePtr<Type>;
|
||||
|
||||
@ -21,7 +21,7 @@ namespace c10 {
|
||||
|
||||
namespace detail {
|
||||
// The first argument of the schema might be of type DispatchKeySet, in which case we remove it.
|
||||
// We do this because every argument in a function schema is expected to be convertible
|
||||
// We do this because every argument in a function schema is expected to be convertable
|
||||
// to an ivalue, but DispatchKeySet is not a type we want the jit to be aware of.
|
||||
// See Note [Plumbing Keys Through The Dispatcher]
|
||||
template<class KernelFunctor>
|
||||
|
||||
@ -251,7 +251,7 @@ TEST(OperatorRegistrationTest, whenRegisteringCPUTensorType_thenCanOnlyCallUnbox
|
||||
callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CPU), dummyTensor(c10::DispatchKey::CUDA));
|
||||
EXPECT_TRUE(called_kernel_cpu);
|
||||
|
||||
// Ensure that dispatch key from tensor is not used here.
|
||||
// Ensure that disptach key from tensor is not used here.
|
||||
called_kernel_cpu = false;
|
||||
expectThrows<c10::Error>([&] {
|
||||
callOpUnboxedWithPrecomputedDispatchKeySet<void, Tensor>(*op, c10::DispatchKeySet(c10::DispatchKey::CUDA), dummyTensor(c10::DispatchKey::CPU));
|
||||
|
||||
@ -172,7 +172,7 @@ VaryingShape<Stride> TensorType::computeStrideProps(
|
||||
// The logic below follows what TensorIterator uses in its logic:
|
||||
// 1. Fast_set_up is the short-cut to identify a. channels_last and
|
||||
// b. contiguous format, which is what we have in the below logic.
|
||||
// 2. In more general cases, it does best effort to preserve permutatoin.
|
||||
// 2. In more generla cases, it does best effort to preserve permutatoin.
|
||||
if (is_channels_last_strides_2d(sizes, strides) || is_channels_last_strides_3d(sizes, strides)) {
|
||||
// case 1.a. short cut channels last
|
||||
std::iota(stride_indices.rbegin() + 1, stride_indices.rend() - 1, 2);
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
#include <ATen/core/jit_type.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/env.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/flat_hash_map.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <array>
|
||||
@ -827,7 +826,9 @@ TupleType::TupleType(
|
||||
: NamedType(TypeKind::TupleType, std::move(name)),
|
||||
elements_(std::move(elements)),
|
||||
has_free_variables_(std::any_of(elements_.begin(), elements_.end(), [](const TypePtr& v) {
|
||||
TORCH_CHECK(v, "Can not create tuple with None type");
|
||||
if (!v) {
|
||||
throw std::runtime_error("Can not create tuple with None type");
|
||||
}
|
||||
return v->hasFreeVariables();
|
||||
})), schema_(std::move(schema)) {
|
||||
|
||||
|
||||
@ -104,6 +104,71 @@ class Vectorized<float> {
|
||||
}
|
||||
return b;
|
||||
}
|
||||
// Implementation is picked from
|
||||
// https://github.com/ARM-software/ComputeLibrary/blob/v25.01/src/core/NEON/SVEMath.inl#L105
|
||||
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x) const {
|
||||
const auto c1 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3f7ffff6)); // x^1: 0x1.ffffecp-1f
|
||||
const auto c2 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3efffedb)); // x^2: 0x1.fffdb6p-2f
|
||||
const auto c3 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3e2aaf33)); // x^3: 0x1.555e66p-3f
|
||||
const auto c4 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3d2b9f17)); // x^4: 0x1.573e2ep-5f
|
||||
const auto c5 =
|
||||
svreinterpret_f32_u32(svdup_n_u32(0x3c072010)); // x^5: 0x1.0e4020p-7f
|
||||
const auto shift = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
|
||||
const auto inv_ln2 = svreinterpret_f32_u32(
|
||||
svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
|
||||
const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
|
||||
const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(
|
||||
0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
|
||||
const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
|
||||
const auto max_input = svdup_n_f32(88.37f); // Approximately ln(2^127.5)
|
||||
const auto zero = svdup_n_f32(0.f);
|
||||
const auto min_input = svdup_n_f32(-86.64f); // Approximately ln(2^-125)
|
||||
// Range reduction:
|
||||
// e^x = 2^n * e^r
|
||||
// where:
|
||||
// n = floor(x / ln(2))
|
||||
// r = x - n * ln(2)
|
||||
//
|
||||
// By adding x / ln(2) with 2^23 + 127 (shift):
|
||||
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127
|
||||
// forces decimal part
|
||||
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e.
|
||||
// n) + 127 will occupy the whole fraction part of z in FP32 format.
|
||||
// Subtracting 2^23 + 127 (shift) from z will result in the integer part
|
||||
// of x / ln(2) (i.e. n) because the decimal part has been pushed out
|
||||
// and lost.
|
||||
// * The addition of 127 makes the FP32 fraction part of z ready to be
|
||||
// used as the exponent
|
||||
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
|
||||
const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
|
||||
const auto n = svsub_f32_z(pg, z, shift);
|
||||
const auto scale = svreinterpret_f32_u32(
|
||||
svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
|
||||
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy
|
||||
// beyond FP32. This outperforms longer Taylor series (3-4 tabs) both in
|
||||
// term of accuracy and performance.
|
||||
const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
|
||||
const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
|
||||
// Compute the truncated Taylor series of e^r.
|
||||
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
|
||||
const auto r2 = svmul_f32_z(pg, r, r);
|
||||
const auto p1 = svmul_f32_z(pg, c1, r);
|
||||
const auto p23 = svmla_f32_z(pg, c2, c3, r);
|
||||
const auto p45 = svmla_f32_z(pg, c4, c5, r);
|
||||
const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
|
||||
const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
|
||||
auto poly = svmla_f32_z(pg, scale, p12345, scale);
|
||||
// Handle underflow and overflow.
|
||||
poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
|
||||
poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
|
||||
return poly;
|
||||
}
|
||||
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size())
|
||||
return svld1_f32(ptrue, reinterpret_cast<const float*>(ptr));
|
||||
@ -248,41 +313,11 @@ class Vectorized<float> {
|
||||
return USE_SLEEF(
|
||||
Vectorized<float>(Sleef_expm1fx_u10sve(values)), map(std::expm1));
|
||||
}
|
||||
// Implementation copied from Arm Optimized Routines:
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/sve/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
// special case to handle special inputs that are too large or too small
|
||||
// i.e. where there's at least one element x, s.t. |x| >= 87.3...
|
||||
svbool_t is_special_case = svacgt(svptrue_b32(), values, 0x1.5d5e2ap+6f);
|
||||
if (svptest_any(svptrue_b32(), is_special_case)) {
|
||||
return exp();
|
||||
}
|
||||
const svfloat32_t ln2_hi = svdup_n_f32(0x1.62e4p-1f);
|
||||
const svfloat32_t ln2_lo = svdup_n_f32(0x1.7f7d1cp-20f);
|
||||
const svfloat32_t c1 = svdup_n_f32(0.5f);
|
||||
const svfloat32_t inv_ln2 = svdup_n_f32(0x1.715476p+0f);
|
||||
|
||||
const float shift = 0x1.803f8p17f;
|
||||
|
||||
/* n = round(x/(ln2/N)). */
|
||||
svfloat32_t z = svmad_x(svptrue_b32(), inv_ln2, values, shift);
|
||||
svfloat32_t n = svsub_x(svptrue_b32(), z, shift);
|
||||
|
||||
/* r = x - n*ln2/N. */
|
||||
svfloat32_t r = values;
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_hi);
|
||||
r = svmls_x(svptrue_b32(), r, n, ln2_lo);
|
||||
|
||||
/* scale = 2^(n/N). */
|
||||
svfloat32_t scale = svexpa(svreinterpret_u32(z));
|
||||
|
||||
/* poly(r) = exp(r) - 1 ~= r + 0.5 r^2. */
|
||||
svfloat32_t r2 = svmul_x(svptrue_b32(), r, r);
|
||||
svfloat32_t poly = svmla_x(svptrue_b32(), r, r2, c1);
|
||||
return svmla_x(svptrue_b32(), scale, scale, poly);
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp_u20();
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fmod(const Vectorized<float>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<float>(Sleef_fmodfx_sve(values, q)); },
|
||||
@ -418,11 +453,9 @@ class Vectorized<float> {
|
||||
ptrue, svmax_f32_z(ptrue, values, CONST_MIN_TANH), CONST_MAX_TANH);
|
||||
|
||||
// Step 2: Calculate exp(2 * x), where x is the clamped value.
|
||||
// svmul_f32_z computes 2 * x, and exp_u20() computes the exponential of
|
||||
// the result (via Vectorized<float>, then auto-converts back to
|
||||
// svfloat32_t).
|
||||
svfloat32_t exp2x =
|
||||
Vectorized<float>(svmul_f32_z(ptrue, CONST_2, x)).exp_u20();
|
||||
// svmul_f32_z computes 2 * x, and svexp_f32_z computes the exponential of
|
||||
// the result.
|
||||
svfloat32_t exp2x = svexp_f32_z(ptrue, svmul_f32_z(ptrue, CONST_2, x));
|
||||
|
||||
// Step 3: Calculate the numerator of the tanh function, which is exp(2x)
|
||||
// - 1.
|
||||
|
||||
@ -6,11 +6,9 @@
|
||||
#ifdef __aarch64__
|
||||
#if !defined(CPU_CAPABILITY_SVE)
|
||||
#include <ATen/cpu/vec/vec128/vec128_bfloat16_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_double_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_float_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_half_neon.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_int_aarch64.h>
|
||||
#include <ATen/cpu/vec/vec128/vec128_uint_aarch64.h>
|
||||
#endif
|
||||
|
||||
#include <ATen/cpu/vec/vec128/vec128_convert.h>
|
||||
|
||||
@ -354,47 +354,9 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(abs)
|
||||
Vectorized frac() const;
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(trunc)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(sqrt)
|
||||
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
Vectorized<c10::BFloat16> neg() const {
|
||||
return -values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> reciprocal() const {
|
||||
return 1.0f / values;
|
||||
}
|
||||
Vectorized<c10::BFloat16> operator==(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values == other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator!=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values != other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values < other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator<=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values <= other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values > other.values;
|
||||
}
|
||||
|
||||
Vectorized<c10::BFloat16> operator>=(
|
||||
const Vectorized<c10::BFloat16>& other) const {
|
||||
return values >= other.values;
|
||||
}
|
||||
#else
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(neg)
|
||||
DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD(reciprocal)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator==)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator!=)
|
||||
@ -402,7 +364,6 @@ class Vectorized<c10::BFloat16> : public Vectorized16<
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator<=)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>)
|
||||
DEFINE_BINARY_COMPARISON_OPERATOR_VIA_FLOAT_METHOD(operator>=)
|
||||
#endif
|
||||
|
||||
#undef DEFINE_UNARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
#undef DEFINE_BINARY_ELEMENTWISE_FUNC_VIA_FLOAT_METHOD
|
||||
@ -451,52 +412,28 @@ template <>
|
||||
Vectorized<c10::BFloat16> inline operator+(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x + y;
|
||||
#else
|
||||
return binary_operator_via_float(std::plus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator-(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x - y;
|
||||
#else
|
||||
return binary_operator_via_float(std::minus<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator*(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x * y;
|
||||
#else
|
||||
return binary_operator_via_float(std::multiplies<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<c10::BFloat16> inline operator/(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
return x / y;
|
||||
#else
|
||||
return binary_operator_via_float(std::divides<Vectorized<float>>(), a, b);
|
||||
#endif
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
@ -607,19 +544,12 @@ Vectorized<c10::BFloat16> inline fmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y + z;
|
||||
#else
|
||||
// NOTE [BF16 FMA]: There isn't an FMA that accumulates into BF16! Also,
|
||||
// vbfmlalbq_f32 and vbfmlaltq_f32 take the even and odd-numbered
|
||||
// elements, not the bottom and top half, so they don't seem
|
||||
// particularly useful here. Ideally we would include dot product in
|
||||
// the Vectorized interface...
|
||||
return a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -627,15 +557,8 @@ Vectorized<c10::BFloat16> inline fnmadd(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y + z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b + c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -643,15 +566,8 @@ Vectorized<c10::BFloat16> inline fmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return x * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <>
|
||||
@ -659,15 +575,8 @@ Vectorized<c10::BFloat16> inline fnmsub(
|
||||
const Vectorized<c10::BFloat16>& a,
|
||||
const Vectorized<c10::BFloat16>& b,
|
||||
const Vectorized<c10::BFloat16>& c) {
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
bfloat16x8_t x = a;
|
||||
bfloat16x8_t y = b;
|
||||
bfloat16x8_t z = c;
|
||||
return (-x) * y - z;
|
||||
#else
|
||||
// See NOTE [BF16 FMA] above.
|
||||
return -a * b - c;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !defined(C10_MOBILE) && defined(__aarch64__)
|
||||
|
||||
@ -5,114 +5,6 @@
|
||||
namespace at::vec {
|
||||
inline namespace CPU_CAPABILITY {
|
||||
#if (defined(__aarch64__) && !defined(CPU_CAPABILITY_SVE256))
|
||||
|
||||
// Enable auto-vectorization for GCC-13+ and clang-17+
|
||||
// GCC-12 has a bug: gcc.gnu.org/bugzilla/show_bug.cgi?id=117001
|
||||
#if __GNUC__ > 12 || (defined(__clang__) && (__clang_major__ >= 17))
|
||||
|
||||
template <typename from_type, typename to_type>
|
||||
inline void convertImpl(
|
||||
const from_type* __restrict src,
|
||||
to_type* __restrict dst,
|
||||
int64_t n) {
|
||||
uint64_t len = static_cast<uint64_t>(n);
|
||||
for (uint64_t i = 0; i < len; i++) {
|
||||
dst[i] = static_cast<to_type>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#define CONVERT_TEMPLATE(from_type, to_type) \
|
||||
template <> \
|
||||
inline void convert(const from_type* src, to_type* dst, int64_t n) { \
|
||||
return convertImpl<from_type, to_type>(src, dst, n); \
|
||||
}
|
||||
|
||||
CONVERT_TEMPLATE(uint8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int8_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int16_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int32_t)
|
||||
CONVERT_TEMPLATE(uint8_t, int64_t)
|
||||
CONVERT_TEMPLATE(uint8_t, float)
|
||||
CONVERT_TEMPLATE(uint8_t, double)
|
||||
CONVERT_TEMPLATE(int8_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int8_t)
|
||||
CONVERT_TEMPLATE(int8_t, int16_t)
|
||||
CONVERT_TEMPLATE(int8_t, int32_t)
|
||||
CONVERT_TEMPLATE(int8_t, int64_t)
|
||||
CONVERT_TEMPLATE(int8_t, float)
|
||||
CONVERT_TEMPLATE(int8_t, double)
|
||||
CONVERT_TEMPLATE(int16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int8_t)
|
||||
CONVERT_TEMPLATE(int16_t, int16_t)
|
||||
CONVERT_TEMPLATE(int16_t, int32_t)
|
||||
CONVERT_TEMPLATE(int16_t, int64_t)
|
||||
CONVERT_TEMPLATE(int16_t, float)
|
||||
CONVERT_TEMPLATE(int16_t, double)
|
||||
CONVERT_TEMPLATE(int32_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int8_t)
|
||||
CONVERT_TEMPLATE(int32_t, int16_t)
|
||||
CONVERT_TEMPLATE(int32_t, int32_t)
|
||||
CONVERT_TEMPLATE(int32_t, int64_t)
|
||||
CONVERT_TEMPLATE(int32_t, float)
|
||||
CONVERT_TEMPLATE(int32_t, double)
|
||||
CONVERT_TEMPLATE(int64_t, uint8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int8_t)
|
||||
CONVERT_TEMPLATE(int64_t, int16_t)
|
||||
CONVERT_TEMPLATE(int64_t, int32_t)
|
||||
CONVERT_TEMPLATE(int64_t, int64_t)
|
||||
CONVERT_TEMPLATE(int64_t, float)
|
||||
CONVERT_TEMPLATE(int64_t, double)
|
||||
CONVERT_TEMPLATE(float, uint8_t)
|
||||
CONVERT_TEMPLATE(float, int8_t)
|
||||
CONVERT_TEMPLATE(float, int16_t)
|
||||
CONVERT_TEMPLATE(float, int32_t)
|
||||
CONVERT_TEMPLATE(float, int64_t)
|
||||
CONVERT_TEMPLATE(float, float)
|
||||
CONVERT_TEMPLATE(float, double)
|
||||
CONVERT_TEMPLATE(double, uint8_t)
|
||||
CONVERT_TEMPLATE(double, int8_t)
|
||||
CONVERT_TEMPLATE(double, int16_t)
|
||||
CONVERT_TEMPLATE(double, int32_t)
|
||||
CONVERT_TEMPLATE(double, int64_t)
|
||||
CONVERT_TEMPLATE(double, float)
|
||||
CONVERT_TEMPLATE(double, double)
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
CONVERT_TEMPLATE(float16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int8_t)
|
||||
CONVERT_TEMPLATE(float16_t, int16_t)
|
||||
CONVERT_TEMPLATE(float16_t, int32_t)
|
||||
CONVERT_TEMPLATE(float16_t, int64_t)
|
||||
CONVERT_TEMPLATE(float16_t, float16_t)
|
||||
CONVERT_TEMPLATE(float16_t, float)
|
||||
CONVERT_TEMPLATE(float16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int8_t, float16_t)
|
||||
CONVERT_TEMPLATE(int16_t, float16_t)
|
||||
CONVERT_TEMPLATE(int32_t, float16_t)
|
||||
CONVERT_TEMPLATE(int64_t, float16_t)
|
||||
CONVERT_TEMPLATE(float, float16_t)
|
||||
CONVERT_TEMPLATE(double, float16_t)
|
||||
#endif
|
||||
#ifdef __ARM_FEATURE_BF16
|
||||
CONVERT_TEMPLATE(bfloat16_t, uint8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int8_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int32_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, int64_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(bfloat16_t, float)
|
||||
CONVERT_TEMPLATE(bfloat16_t, double)
|
||||
CONVERT_TEMPLATE(uint8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int8_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int16_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int32_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(int64_t, bfloat16_t)
|
||||
CONVERT_TEMPLATE(float, bfloat16_t)
|
||||
CONVERT_TEMPLATE(double, bfloat16_t)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
template <typename src_t>
|
||||
struct VecConvert<
|
||||
float,
|
||||
|
||||
@ -1,586 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
#include <cmath>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
template <>
|
||||
struct is_vec_specialized_for<double> : std::bool_constant<true> {};
|
||||
|
||||
template <>
|
||||
class Vectorized<double> {
|
||||
private:
|
||||
float64x2_t values;
|
||||
|
||||
public:
|
||||
using value_type = double;
|
||||
using size_type = int;
|
||||
static constexpr size_type size() {
|
||||
return 2;
|
||||
}
|
||||
Vectorized() {
|
||||
values = vdupq_n_f64(0.0);
|
||||
}
|
||||
Vectorized(float64x2_t v) : values(v) {}
|
||||
Vectorized(double val) {
|
||||
values = vdupq_n_f64(val);
|
||||
}
|
||||
template <
|
||||
typename... Args,
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
||||
Vectorized(Args... vals) {
|
||||
__at_align__ double buffer[size()] = {vals...};
|
||||
values = vld1q_f64(buffer);
|
||||
}
|
||||
operator float64x2_t() const {
|
||||
return values;
|
||||
}
|
||||
template <int64_t mask>
|
||||
static Vectorized<double> blend(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint64x2_t maskArray = {
|
||||
(mask & 1ULL) ? 0xFFFFFFFFFFFFFFFF : 0,
|
||||
(mask & 2ULL) ? 0xFFFFFFFFFFFFFFFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_f64(maskArray, b.values, a.values);
|
||||
}
|
||||
static Vectorized<double> blendv(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& mask_) {
|
||||
return vbslq_f64(vreinterpretq_u64_f64(mask_.values), b.values, a.values);
|
||||
}
|
||||
template <typename step_t>
|
||||
static Vectorized<double> arange(
|
||||
double base = 0.,
|
||||
step_t step = static_cast<step_t>(1)) {
|
||||
return {base, base + static_cast<double>(step)};
|
||||
}
|
||||
static inline Vectorized<double> set(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
int64_t count = size()) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 2) {
|
||||
return b;
|
||||
} else {
|
||||
float64x2_t c = {b.values[0], a.values[1]};
|
||||
return c;
|
||||
}
|
||||
}
|
||||
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
||||
if (count == size()) {
|
||||
return vld1q_f64(reinterpret_cast<const double*>(ptr));
|
||||
} else if (count == 1) {
|
||||
float64x1_t x = vld1_f64(reinterpret_cast<const double*>(ptr));
|
||||
float64x1_t z = {0.0};
|
||||
return vcombine_f64(x, z);
|
||||
} else {
|
||||
return vdupq_n_f64(0.0);
|
||||
}
|
||||
}
|
||||
void store(void* ptr, int64_t count = size()) const {
|
||||
if (count == size()) {
|
||||
vst1q_f64(reinterpret_cast<double*>(ptr), values);
|
||||
} else if (count == 1) {
|
||||
vst1_f64(reinterpret_cast<double*>(ptr), vget_low_f64(values));
|
||||
}
|
||||
}
|
||||
const double& operator[](int idx) const = delete;
|
||||
double& operator[](int idx) = delete;
|
||||
int64_t zero_mask() const {
|
||||
// returns an integer mask where all zero elements are translated to 1-bit
|
||||
// and others are translated to 0-bit
|
||||
uint64x2_t cmpReg = vceqzq_f64(values);
|
||||
uint64x2_t mask = {1, 2};
|
||||
uint64x2_t res = vandq_u64(cmpReg, mask);
|
||||
return res[0] | res[1];
|
||||
}
|
||||
Vectorized<double> isnan() const {
|
||||
// NaN check
|
||||
return vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, values))));
|
||||
}
|
||||
bool has_inf_nan() const {
|
||||
Vectorized<double> x = vsubq_f64(values, values);
|
||||
float64x2_t r = x.isnan();
|
||||
uint64x2_t u = vreinterpretq_u64_f64(r);
|
||||
return u[0] | u[1];
|
||||
}
|
||||
Vectorized<double> map(double (*f)(double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0]);
|
||||
result[1] = f(values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> map2(
|
||||
const Vectorized<double>& second,
|
||||
double (*const f)(double, double)) const {
|
||||
float64x2_t result;
|
||||
result[0] = f(values[0], second.values[0]);
|
||||
result[1] = f(values[1], second.values[1]);
|
||||
return result;
|
||||
}
|
||||
Vectorized<double> abs() const {
|
||||
return vabsq_f64(values);
|
||||
}
|
||||
Vectorized<double> angle() const {
|
||||
auto zero = Vectorized<double>(0.0);
|
||||
auto pi = Vectorized<double>(c10::pi<double>);
|
||||
auto tmp = blendv(zero, pi, vreinterpretq_f64_u64(vcltzq_f64(values)));
|
||||
return blendv(tmp, *this, isnan());
|
||||
}
|
||||
Vectorized<double> real() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> imag() const {
|
||||
return Vectorized<double>(0.0);
|
||||
}
|
||||
Vectorized<double> conj() const {
|
||||
return *this;
|
||||
}
|
||||
Vectorized<double> acos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acosd2_u10(values)), map(std::acos));
|
||||
}
|
||||
Vectorized<double> acosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_acoshd2_u10(values)), map(std::acosh));
|
||||
}
|
||||
Vectorized<double> asin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asind2_u10(values)), map(std::asin));
|
||||
}
|
||||
Vectorized<double> asinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_asinhd2_u10(values)), map(std::asinh));
|
||||
}
|
||||
Vectorized<double> atan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atand2_u10(values)), map(std::atan));
|
||||
}
|
||||
Vectorized<double> atanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_atanhd2_u10(values)), map(std::atanh));
|
||||
}
|
||||
Vectorized<double> atan2(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_atan2d2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::atan2(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> copysign(const Vectorized<double>& sign) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_copysignd2(values, sign)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_sign[size()];
|
||||
store(tmp);
|
||||
sign.store(tmp_sign);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> erf() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfd2_u10(values)), map(std::erf));
|
||||
}
|
||||
Vectorized<double> erfc() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_erfcd2_u15(values)), map(std::erfc));
|
||||
}
|
||||
Vectorized<double> exp() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expd2_u10(values)), map(std::exp));
|
||||
}
|
||||
Vectorized<double> exp2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_exp2d2_u10(values)), map(std::exp2));
|
||||
}
|
||||
Vectorized<double> expm1() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_expm1d2_u10(values)), map(std::expm1));
|
||||
}
|
||||
Vectorized<double> fmod(const Vectorized<double>& q) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_fmodd2(values, q)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_q[size()];
|
||||
store(tmp);
|
||||
q.store(tmp_q);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> hypot(const Vectorized<double>& b) const {
|
||||
USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_hypotd2_u05(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> i0() const {
|
||||
return map(calc_i0);
|
||||
}
|
||||
Vectorized<double> nextafter(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_nextafterd2(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); ++i) {
|
||||
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} Vectorized<double> log() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_logd2_u10(values)), map(std::log));
|
||||
}
|
||||
Vectorized<double> log2() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log2d2_u10(values)), map(std::log2));
|
||||
}
|
||||
Vectorized<double> log10() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log10d2_u10(values)), map(std::log10));
|
||||
}
|
||||
Vectorized<double> log1p() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_log1pd2_u10(values)), map(std::log1p));
|
||||
}
|
||||
Vectorized<double> frac() const;
|
||||
Vectorized<double> sin() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sind2_u10(values)), map(std::sin));
|
||||
}
|
||||
Vectorized<double> sinh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_sinhd2_u10(values)), map(std::sinh));
|
||||
}
|
||||
Vectorized<double> cos() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_cosd2_u10(values)), map(std::cos));
|
||||
}
|
||||
Vectorized<double> cosh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_coshd2_u10(values)), map(std::cosh));
|
||||
}
|
||||
Vectorized<double> pow(const Vectorized<double>& b) const {USE_SLEEF(
|
||||
{ return Vectorized<double>(Sleef_powd2_u10(values, b)); },
|
||||
{
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_b[size()];
|
||||
store(tmp);
|
||||
b.store(tmp_b);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = std::pow(tmp[i], tmp_b[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
})} // Comparison using the _CMP_**_OQ predicate.
|
||||
// `O`: get false if an operand is NaN
|
||||
// `Q`: do not raise if an operand is NaN
|
||||
Vectorized<double> tan() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tand2_u10(values)), map(std::tan));
|
||||
}
|
||||
Vectorized<double> tanh() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_tanhd2_u10(values)), map(std::tanh));
|
||||
}
|
||||
Vectorized<double> lgamma() const {
|
||||
return USE_SLEEF(
|
||||
Vectorized<double>(Sleef_lgammad2_u10(values)), map(std::lgamma));
|
||||
}
|
||||
Vectorized<double> erfinv() const {
|
||||
return map(calc_erfinv);
|
||||
}
|
||||
Vectorized<double> exp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> fexp_u20() const {
|
||||
return exp();
|
||||
}
|
||||
Vectorized<double> i0e() const {
|
||||
return map(calc_i0e);
|
||||
}
|
||||
Vectorized<double> digamma() const {
|
||||
return map(calc_digamma);
|
||||
}
|
||||
Vectorized<double> igamma(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> igammac(const Vectorized<double>& x) const {
|
||||
__at_align__ double tmp[size()];
|
||||
__at_align__ double tmp_x[size()];
|
||||
store(tmp);
|
||||
x.store(tmp_x);
|
||||
for (int64_t i = 0; i < size(); i++) {
|
||||
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
||||
}
|
||||
return loadu(tmp);
|
||||
}
|
||||
Vectorized<double> ceil() const {
|
||||
return vrndpq_f64(values);
|
||||
}
|
||||
Vectorized<double> floor() const {
|
||||
return vrndmq_f64(values);
|
||||
}
|
||||
Vectorized<double> neg() const {
|
||||
return vnegq_f64(values);
|
||||
}
|
||||
Vectorized<double> round() const {
|
||||
return vrndiq_f64(values);
|
||||
}
|
||||
Vectorized<double> trunc() const {
|
||||
return vrndq_f64(values);
|
||||
}
|
||||
Vectorized<double> sqrt() const {
|
||||
return vsqrtq_f64(values);
|
||||
}
|
||||
Vectorized<double> reciprocal() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), values);
|
||||
}
|
||||
Vectorized<double> rsqrt() const {
|
||||
return vdivq_f64(vdupq_n_f64(1.0), vsqrtq_f64(values));
|
||||
}
|
||||
double reduce_add() const {
|
||||
return vaddvq_f64(values);
|
||||
}
|
||||
double reduce_max() const {
|
||||
return vmaxvq_f64(values);
|
||||
}
|
||||
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vceqq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
||||
float64x2_t r0 = vreinterpretq_f64_u32(
|
||||
vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(values, other.values))));
|
||||
return Vectorized<double>(r0);
|
||||
}
|
||||
|
||||
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcltq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcleq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgtq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
||||
return Vectorized<double>(
|
||||
vreinterpretq_f64_u64(vcgeq_f64(values, other.values)));
|
||||
}
|
||||
|
||||
Vectorized<double> eq(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ne(const Vectorized<double>& other) const;
|
||||
Vectorized<double> gt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> ge(const Vectorized<double>& other) const;
|
||||
Vectorized<double> lt(const Vectorized<double>& other) const;
|
||||
Vectorized<double> le(const Vectorized<double>& other) const;
|
||||
};
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator+(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vaddq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator-(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vsubq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator*(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmulq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator/(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vdivq_f64(a, b);
|
||||
}
|
||||
|
||||
// frac. Implement this here so we can use subtraction
|
||||
Vectorized<double> inline Vectorized<double>::frac() const {
|
||||
return *this - this->trunc();
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline maximum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vmaxq_f64(a, b);
|
||||
}
|
||||
|
||||
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
||||
// either input is a NaN.
|
||||
template <>
|
||||
Vectorized<double> inline minimum(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vminq_f64(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, vmaxq_f64(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_max(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& max) {
|
||||
return vminq_f64(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline clamp_min(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& min) {
|
||||
return vmaxq_f64(min, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator&(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vandq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator|(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
vorrq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline operator^(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b) {
|
||||
return vreinterpretq_f64_u64(
|
||||
veorq_u64(vreinterpretq_u64_f64(a), vreinterpretq_u64_f64(b)));
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::eq(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this == other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ne(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this != other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::gt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this > other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::ge(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this >= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::lt(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this < other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
inline Vectorized<double> Vectorized<double>::le(
|
||||
const Vectorized<double>& other) const {
|
||||
return (*this <= other) & Vectorized<double>(1.0);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmadd(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(c, a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmaq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<double> inline fnmsub(
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& c) {
|
||||
return vfmsq_f64(vnegq_f64(c), a, b);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -307,49 +307,11 @@ class Vectorized<float> {
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(exp2)
|
||||
DEFINE_SLEEF_COMPATIBLE_UNARY_ELEMENTWISE_FUNC(expm1)
|
||||
// Implementation copied from Arm Optimized Routine
|
||||
// https://github.com/ARM-software/optimized-routines/blob/master/math/aarch64/advsimd/expf.c
|
||||
Vectorized<float> exp_u20() const {
|
||||
// bail out to sleef if it's a special case:
|
||||
// i.e. there's an input s.t. |input| > 87.3....
|
||||
const float32x4_t special_bound = vdupq_n_f32(0x1.5d5e2ap+6f);
|
||||
uint32x4_t cmp = vcagtq_f32(values, special_bound);
|
||||
if (vpaddd_u64(vreinterpretq_u64_u32(cmp)) != 0) {
|
||||
return exp();
|
||||
}
|
||||
|
||||
const float32x4_t inv_ln2 = vdupq_n_f32(0x1.715476p+0f);
|
||||
const float ln2_hi = 0x1.62e4p-1f;
|
||||
const float ln2_lo = 0x1.7f7d1cp-20f;
|
||||
const float c0 = 0x1.0e4020p-7f;
|
||||
const float c2 = 0x1.555e66p-3f;
|
||||
const float32x4_t ln2_c02 = {ln2_hi, ln2_lo, c0, c2};
|
||||
|
||||
const uint32x4_t exponent_bias = vdupq_n_u32(0x3f800000);
|
||||
const float32x4_t c1 = vdupq_n_f32(0x1.573e2ep-5f);
|
||||
const float32x4_t c3 = vdupq_n_f32(0x1.fffdb6p-2f);
|
||||
const float32x4_t c4 = vdupq_n_f32(0x1.ffffecp-1f);
|
||||
|
||||
/* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)]
|
||||
x = ln2*n + r, with r in [-ln2/2, ln2/2]. */
|
||||
|
||||
float32x4_t n = vrndaq_f32(vmulq_f32(values, inv_ln2));
|
||||
float32x4_t r = vfmsq_laneq_f32(values, n, ln2_c02, 0);
|
||||
r = vfmsq_laneq_f32(r, n, ln2_c02, 1);
|
||||
uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_s32(vcvtq_s32_f32(n)), 23);
|
||||
float32x4_t scale = vreinterpretq_f32_u32(vaddq_u32(e, exponent_bias));
|
||||
|
||||
float32x4_t r2 = vmulq_f32(r, r);
|
||||
float32x4_t p = vfmaq_laneq_f32(c1, r, ln2_c02, 2);
|
||||
float32x4_t q = vfmaq_laneq_f32(c3, r, ln2_c02, 3);
|
||||
q = vfmaq_f32(q, p, r2);
|
||||
p = vmulq_f32(c4, r);
|
||||
float32x4_t poly = vfmaq_f32(p, q, r2);
|
||||
|
||||
return vfmaq_f32(scale, poly, scale);
|
||||
return exp();
|
||||
}
|
||||
Vectorized<float> fexp_u20() const {
|
||||
return exp_u20();
|
||||
return exp();
|
||||
}
|
||||
DEFINE_SLEEF_COMPATIBLE_BINARY_ELEMENTWISE_FUNC_WITH_SLEEF_NAME(
|
||||
fmod,
|
||||
@ -578,6 +540,42 @@ inline Vectorized<float> Vectorized<float>::le(
|
||||
return (*this <= other) & Vectorized<float>(1.0f);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int32_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<float>::size());
|
||||
i += Vectorized<float>::size()) {
|
||||
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<float> inline fmadd(
|
||||
const Vectorized<float>& a,
|
||||
@ -634,7 +632,8 @@ inline Vectorized<float> Vectorized<float>::erf() const {
|
||||
// - exp(- x * x)
|
||||
auto pow_2 = (*this) * (*this);
|
||||
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
|
||||
auto tmp4 = neg_pow_2.exp();
|
||||
auto tmp4 = neg_pow_2.map(
|
||||
std::exp); // This can be swapped for a faster implementation of exp.
|
||||
auto tmp5 = tmp4 ^ neg_zero_vec;
|
||||
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
||||
auto tmp6 = t * tmp5;
|
||||
|
||||
@ -234,7 +234,7 @@ class Vectorized<c10::Half> : public Vectorized16<
|
||||
vshlq_u16(vandq_u16(is_zero_vec, vdupq_n_u16(1)), shift);
|
||||
return vaddvq_u16(bits_vec);
|
||||
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
// use known working implementation.
|
||||
// use known working implmentation.
|
||||
__at_align__ value_type tmp[size()];
|
||||
store(tmp);
|
||||
int mask = 0;
|
||||
@ -569,6 +569,46 @@ inline Vectorized<c10::Half> Vectorized<c10::Half>::le(
|
||||
return (*this <= other) & Vectorized<c10::Half>(1);
|
||||
}
|
||||
|
||||
// These are global functions, so the defaults in vec_base.h should
|
||||
// work fine if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC is not available.
|
||||
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
template <>
|
||||
inline void convert(const float16_t* src, int16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_s16(dst + i, vcvtq_s16_f16(vld1q_f16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<int16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void convert(const int16_t* src, float16_t* dst, int64_t n) {
|
||||
int64_t i;
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (i = 0; i <= (n - Vectorized<c10::Half>::size());
|
||||
i += Vectorized<c10::Half>::size()) {
|
||||
vst1q_f16(dst + i, vcvtq_f16_s16(vld1q_s16(src + i)));
|
||||
}
|
||||
#ifndef __msvc_cl__
|
||||
#pragma unroll
|
||||
#endif
|
||||
for (; i < n; i++) {
|
||||
dst[i] = static_cast<float16_t>(src[i]);
|
||||
}
|
||||
}
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <>
|
||||
Vectorized<c10::Half> inline fmadd(
|
||||
const Vectorized<c10::Half>& a,
|
||||
|
||||
@ -1,378 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <ATen/cpu/vec/intrinsics.h>
|
||||
#include <ATen/cpu/vec/vec_base.h>
|
||||
#include <c10/macros/Macros.h>
|
||||
#include <c10/util/irange.h>
|
||||
|
||||
namespace at::vec {
|
||||
// Note [CPU_CAPABILITY namespace]
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
// This header, and all of its subheaders, will be compiled with
|
||||
// different architecture flags for each supported set of vector
|
||||
// intrinsics. So we need to make sure they aren't inadvertently
|
||||
// linked together. We do this by declaring objects in an `inline
|
||||
// namespace` which changes the name mangling, but can still be
|
||||
// accessed as `at::vec`.
|
||||
inline namespace CPU_CAPABILITY {
|
||||
|
||||
#define VEC_UINT_NEON_TEMPLATE(vl, bit) \
|
||||
template <> \
|
||||
struct is_vec_specialized_for<uint##bit##_t> : std::bool_constant<true> {}; \
|
||||
\
|
||||
template <> \
|
||||
class Vectorized<uint##bit##_t> { \
|
||||
using neon_type = uint##bit##x##vl##_t; \
|
||||
\
|
||||
private: \
|
||||
neon_type values; \
|
||||
\
|
||||
public: \
|
||||
using value_type = uint##bit##_t; \
|
||||
using size_type = int; \
|
||||
static constexpr size_type size() { \
|
||||
return vl; \
|
||||
} \
|
||||
Vectorized() { \
|
||||
values = vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized(neon_type v) : values(v) {} \
|
||||
Vectorized(uint##bit##_t val); \
|
||||
template < \
|
||||
typename... Args, \
|
||||
typename = std::enable_if_t<(sizeof...(Args) == size())>> \
|
||||
Vectorized(Args... vals) { \
|
||||
__at_align__ uint##bit##_t buffer[size()] = {vals...}; \
|
||||
values = vld1q_u##bit(buffer); \
|
||||
} \
|
||||
operator neon_type() const { \
|
||||
return values; \
|
||||
} \
|
||||
static Vectorized<uint##bit##_t> loadu( \
|
||||
const void* ptr, \
|
||||
uint64_t count = size()); \
|
||||
void store(void* ptr, uint64_t count = size()) const; \
|
||||
template <uint64_t mask> \
|
||||
static Vectorized<uint##bit##_t> blend( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b); \
|
||||
static Vectorized<uint##bit##_t> blendv( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
const Vectorized<uint##bit##_t>& mask_) { \
|
||||
return vbslq_u##bit(mask_.values, b, a); \
|
||||
} \
|
||||
template <typename step_t> \
|
||||
static Vectorized<uint##bit##_t> arange( \
|
||||
value_type base = 0, \
|
||||
step_t step = static_cast<step_t>(1)); \
|
||||
static Vectorized<uint##bit##_t> set( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b, \
|
||||
uint64_t count = size()); \
|
||||
const uint##bit##_t& operator[](uint idx) const = delete; \
|
||||
uint##bit##_t& operator[](uint idx) = delete; \
|
||||
Vectorized<uint##bit##_t> abs() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> real() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> imag() const { \
|
||||
return vdupq_n_u##bit(0); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> conj() const { \
|
||||
return values; \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> neg() const { \
|
||||
return vreinterpretq_u##bit##_s##bit( \
|
||||
vnegq_s##bit(vreinterpretq_s##bit##_u##bit(values))); \
|
||||
} \
|
||||
uint##bit##_t reduce_add() const { \
|
||||
return vaddvq_u##bit(values); \
|
||||
} \
|
||||
uint##bit##_t reduce_max() const; \
|
||||
Vectorized<uint##bit##_t> operator==( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vceqq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator!=( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> operator<( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcltq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator<=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcleq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgtq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> operator>=( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return Vectorized<value_type>(vcgeq_u##bit(values, other.values)); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
Vectorized<uint##bit##_t> le( \
|
||||
const Vectorized<uint##bit##_t>& other) const; \
|
||||
}; \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator+( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vaddq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator-( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vsubq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator&( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vandq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator|( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return vorrq_u##bit(a, b); \
|
||||
} \
|
||||
template <> \
|
||||
Vectorized<uint##bit##_t> inline operator^( \
|
||||
const Vectorized<uint##bit##_t>& a, \
|
||||
const Vectorized<uint##bit##_t>& b) { \
|
||||
return veorq_u##bit(a, b); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::eq( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this == other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ne( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this != other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::gt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this > other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::ge( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this >= other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::lt( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this < other) & Vectorized<uint##bit##_t>(1); \
|
||||
} \
|
||||
Vectorized<uint##bit##_t> inline Vectorized<uint##bit##_t>::le( \
|
||||
const Vectorized<uint##bit##_t>& other) const { \
|
||||
return (*this <= other) & Vectorized<uint##bit##_t>(1); \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_TEMPLATE(16, 8)
|
||||
|
||||
inline uint8_t Vectorized<uint8_t>::reduce_max() const {
|
||||
return vmaxvq_u8(values);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator*(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmulq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
|
||||
return vmvnq_u8(a);
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::operator!=(
|
||||
const Vectorized<uint8_t>& other) const {
|
||||
return ~(*this == other);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline minimum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vminq_u8(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline maximum(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
return vmaxq_u8(a, b);
|
||||
}
|
||||
|
||||
template <uint64_t mask>
|
||||
Vectorized<uint8_t> Vectorized<uint8_t>::blend(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding bit
|
||||
// in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
(mask & 1LL) ? 0xFF : 0,
|
||||
(mask & 2LL) ? 0xFF : 0,
|
||||
(mask & 4LL) ? 0xFF : 0,
|
||||
(mask & 8LL) ? 0xFF : 0,
|
||||
(mask & 16LL) ? 0xFF : 0,
|
||||
(mask & 32LL) ? 0xFF : 0,
|
||||
(mask & 64LL) ? 0xFF : 0,
|
||||
(mask & 128LL) ? 0xFF : 0,
|
||||
(mask & 256LL) ? 0xFF : 0,
|
||||
(mask & 512LL) ? 0xFF : 0,
|
||||
(mask & 1024LL) ? 0xFF : 0,
|
||||
(mask & 2048LL) ? 0xFF : 0,
|
||||
(mask & 4096LL) ? 0xFF : 0,
|
||||
(mask & 8192LL) ? 0xFF : 0,
|
||||
(mask & 16384LL) ? 0xFF : 0,
|
||||
(mask & 32768LL) ? 0xFF : 0};
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
|
||||
#define VEC_UINT_NEON_OPS(vl, bit) \
|
||||
inline Vectorized<uint##bit##_t>::Vectorized(uint##bit##_t val) { \
|
||||
values = vdupq_n_u##bit(val); \
|
||||
} \
|
||||
inline Vectorized<uint##bit##_t> Vectorized<uint##bit##_t>::loadu( \
|
||||
const void* ptr, uint64_t count) { \
|
||||
if (count == size()) { \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(ptr)); \
|
||||
} else { \
|
||||
__at_align__ uint##bit##_t tmp_values[size()]; \
|
||||
for (const auto i : c10::irange(size())) { \
|
||||
tmp_values[i] = 0; \
|
||||
} \
|
||||
std::memcpy( \
|
||||
tmp_values, \
|
||||
reinterpret_cast<const uint##bit##_t*>(ptr), \
|
||||
count * sizeof(uint##bit##_t)); \
|
||||
return vld1q_u##bit(reinterpret_cast<const uint##bit##_t*>(tmp_values)); \
|
||||
} \
|
||||
} \
|
||||
inline void Vectorized<uint##bit##_t>::store(void* ptr, uint64_t count) \
|
||||
const { \
|
||||
if (count == size()) { \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(ptr), values); \
|
||||
} else { \
|
||||
uint##bit##_t tmp_values[size()]; \
|
||||
vst1q_u##bit(reinterpret_cast<uint##bit##_t*>(tmp_values), values); \
|
||||
std::memcpy(ptr, tmp_values, count * sizeof(uint##bit##_t)); \
|
||||
} \
|
||||
}
|
||||
|
||||
VEC_UINT_NEON_OPS(16, 8)
|
||||
|
||||
template <typename step_t>
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::arange(
|
||||
uint8_t base,
|
||||
step_t step) {
|
||||
const Vectorized<uint8_t> base_vec(base);
|
||||
const Vectorized<uint8_t> step_vec(step);
|
||||
const uint8x16_t step_sizes = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
|
||||
return vmlaq_u8(base_vec, step_sizes, step_vec);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator>>(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return x >> z;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator<<(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t bound = vdupq_n_u8(8);
|
||||
uint8x16_t z = vminq_u8(b, bound);
|
||||
return vshlq_u8(a, vreinterpretq_s8_u8(z));
|
||||
}
|
||||
|
||||
inline Vectorized<uint8_t> Vectorized<uint8_t>::set(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b,
|
||||
uint64_t count) {
|
||||
if (count == 0) {
|
||||
return a;
|
||||
} else if (count >= 16) {
|
||||
return b;
|
||||
} else {
|
||||
// Build an array of flags: each bit of element is 1 if the corresponding
|
||||
// bit in 'mask' is set, 0 otherwise.
|
||||
uint8x16_t maskArray = {
|
||||
static_cast<uint8_t>((count >= 1LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 2LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 3LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 4LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 5LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 6LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 7LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 8LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 9LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 10LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 11LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 12LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 13LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 14LL) ? 0xFF : 0),
|
||||
static_cast<uint8_t>((count >= 15LL) ? 0xFF : 0),
|
||||
0};
|
||||
|
||||
// Use BSL to select elements from b where the mask is 1, else from a
|
||||
return vbslq_u8(maskArray, b.values, a.values);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline operator/(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& b) {
|
||||
uint8x16_t x = a;
|
||||
uint8x16_t y = b;
|
||||
return x / y;
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, maximum(min, a));
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_max(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& max) {
|
||||
return minimum(max, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
Vectorized<uint8_t> inline clamp_min(
|
||||
const Vectorized<uint8_t>& a,
|
||||
const Vectorized<uint8_t>& min) {
|
||||
return maximum(min, a);
|
||||
}
|
||||
|
||||
} // namespace CPU_CAPABILITY
|
||||
} // namespace at::vec
|
||||
@ -1740,7 +1740,7 @@ Vectorized<int16_t> inline shift_256_16(
|
||||
|
||||
// Control masks for shuffle operation, treating 256 bits as an
|
||||
// array of 16-bit elements, and considering pairs of neighboring
|
||||
// elements. Specifically, a mask named "ctl_M_N" (M,N in [0,1], and
|
||||
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
||||
// M!=N) is set so that shuffle will move element with index M from
|
||||
// input pair into element with index N in output pair, and element
|
||||
// with index M in output pair will be set to all 0s.
|
||||
@ -1875,7 +1875,7 @@ Vectorized<T> inline shift_256_8(
|
||||
|
||||
// Control masks for shuffle operation, treating 256 bits as an
|
||||
// array of 8-bit elements, and considering quadruples of
|
||||
// neighboring elements. Specifically, a mask named "ctl_M_N" (M,N
|
||||
// neighboring elements. Specifially, a mask named "ctl_M_N" (M,N
|
||||
// in [0,1,2,3], and M!=N) is set so that shuffle will move element
|
||||
// with index M from input quadruple into element with index N in
|
||||
// output quadruple, and other elements in output quadruple will be
|
||||
|
||||
@ -1390,7 +1390,7 @@ std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
|
||||
std::pair<Vectorized<float>, Vectorized<float>> inline convert_int8_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_hi = vmovl_u16(vget_high_u16(u16x8));
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
@ -1412,7 +1412,7 @@ Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
|
||||
Vectorized<float> inline convert_int8_half_register_to_float(
|
||||
at::vec::Vectorized<uint8_t> src) {
|
||||
auto u8x8 = vget_low_u8(src);
|
||||
auto u8x8 = vld1_u8(src.operator const uint8_t*());
|
||||
auto u16x8 = vmovl_u8(u8x8);
|
||||
auto u32x4_lo = vmovl_u16(vget_low_u16(u16x8));
|
||||
|
||||
|
||||
@ -143,7 +143,7 @@ class Vectorized<double> {
|
||||
const Vectorized<double>& a,
|
||||
const Vectorized<double>& b,
|
||||
const Vectorized<double>& mask) {
|
||||
// the mask used here returned by comparison of vec256
|
||||
// the mask used here returned by comparision of vec256
|
||||
|
||||
return {
|
||||
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
||||
|
||||
@ -142,7 +142,7 @@ class Vectorized<float> {
|
||||
const Vectorized<float>& a,
|
||||
const Vectorized<float>& b,
|
||||
const Vectorized<float>& mask) {
|
||||
// the mask used here returned by comparison of vec256
|
||||
// the mask used here returned by comparision of vec256
|
||||
// assuming this we can use the same mask directly with vec_sel
|
||||
return {
|
||||
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
||||
|
||||
@ -202,7 +202,7 @@ class Vectorized<int16_t> {
|
||||
const Vectorized<int16_t>& a,
|
||||
const Vectorized<int16_t>& b,
|
||||
const Vectorized<int16_t>& mask) {
|
||||
// the mask used here returned by comparison of vec256
|
||||
// the mask used here returned by comparision of vec256
|
||||
// assuming this we can use the same mask directly with vec_sel
|
||||
// warning intel style mask will not work properly
|
||||
return {
|
||||
|
||||
@ -155,7 +155,7 @@ class Vectorized<int32_t> {
|
||||
const Vectorized<int32_t>& a,
|
||||
const Vectorized<int32_t>& b,
|
||||
const Vectorized<int32_t>& mask) {
|
||||
// the mask used here returned by comparison of vec256
|
||||
// the mask used here returned by comparision of vec256
|
||||
// assuming this we can use the same mask directly with vec_sel
|
||||
// warning intel style mask will not work properly
|
||||
return {
|
||||
|
||||
@ -119,7 +119,7 @@ class Vectorized<int64_t> {
|
||||
const Vectorized<int64_t>& a,
|
||||
const Vectorized<int64_t>& b,
|
||||
const Vectorized<int64_t>& mask) {
|
||||
// the mask used here returned by comparison of vec256
|
||||
// the mask used here returned by comparision of vec256
|
||||
|
||||
return {
|
||||
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
||||
|
||||
@ -397,7 +397,7 @@ inline Vectorized<bool> operator&&(
|
||||
const __m512i* other_ = reinterpret_cast<const __m512i*>(other.as_bytes());
|
||||
__m512i out = _mm512_and_si512(*self_, *other_);
|
||||
Vectorized<bool> ret;
|
||||
// We do not have a constructor that takes __m512i, so we need to memcpy
|
||||
// We do not have a constructer that takes __m512i, so we need to memcpy
|
||||
std::memcpy(ret, &out, ret.size() * sizeof(bool));
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -1852,7 +1852,7 @@ Vectorized<T> inline shift_512_8(
|
||||
|
||||
// Control masks for shuffle operation, treating 512 bits as an
|
||||
// array of 8-bit elements, and considering pairs of neighboring
|
||||
// elements. Specifically, a mask named "ctl_M_N" (M,N in [0,1], and
|
||||
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
||||
// M!=N) is set so that shuffle will move element with index M from
|
||||
// input pair into element with index N in output pair, and element
|
||||
// with index M in output pair will be set to all 0s.
|
||||
|
||||
@ -634,7 +634,7 @@ struct Vectorized {
|
||||
}
|
||||
Vectorized<T> neg() const {
|
||||
// NB: the trailing return type is needed because we need to coerce the
|
||||
// return value back to T in the case of unary operator- incurring a
|
||||
// return value back to T in the case of unary operator- incuring a
|
||||
// promotion
|
||||
return map([](T x) -> T { return -x; });
|
||||
}
|
||||
|
||||
@ -1958,7 +1958,7 @@ void scaled_gemm(
|
||||
ScalarType result_dtype,
|
||||
bool use_fast_accum,
|
||||
const std::optional<Tensor>& alpha) {
|
||||
// Note: see `cublasCommonArgs` for various non-intuitive manipulations
|
||||
// Note: see `cublasCommonArgs` for various non-intuitive manupulations
|
||||
// of input arguments to this function.
|
||||
const auto computeType = CUBLAS_COMPUTE_32F;
|
||||
const auto scaleType = CUDA_R_32F;
|
||||
|
||||
@ -168,9 +168,11 @@ void CUDAGraph::instantiate() {
|
||||
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597
|
||||
// cudaGraphInstantiateWithFlags
|
||||
// https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ga2c652a24ba93e52b99a47bec0888233
|
||||
#if !defined(USE_ROCM) || ROCM_VERSION >= 60200
|
||||
int version = 0;
|
||||
AT_CUDA_CHECK(cudaDriverGetVersion(&version));
|
||||
if (version < 11040) {
|
||||
#endif
|
||||
// Trailing NULL, NULL, 0 arguments were recommended by Cuda driver people,
|
||||
// who prefer not to report error message through these arguments moving forward
|
||||
// (they prefer return value, or errors on api calls internal to the capture)
|
||||
@ -181,11 +183,13 @@ void CUDAGraph::instantiate() {
|
||||
#endif
|
||||
//Since ROCm 6.2, we want to go down this path as hipGraphExecDestroy in the destructor will not immediately free the memory.
|
||||
//It will wait for the next sync operation. cudaGraphInstantiateFlagAutoFreeOnLaunch will add async frees after graph launch.
|
||||
#if !defined(USE_ROCM) || ROCM_VERSION >= 60200
|
||||
} else {
|
||||
AT_CUDA_CHECK(cudaGraphInstantiateWithFlags(&graph_exec_,
|
||||
graph_,
|
||||
cudaGraphInstantiateFlagAutoFreeOnLaunch));
|
||||
}
|
||||
#endif
|
||||
has_graph_exec_ = true;
|
||||
}
|
||||
|
||||
@ -307,7 +311,7 @@ CUDAGraph::~CUDAGraph() {
|
||||
// There are recent HIP changes where hipGraphExecDestroy doesn't immediately free memory.
|
||||
// They wait for next sync point in order to free the memory, this is to ensure that all
|
||||
// hipGraphLaunch are finished before we release any memory. This feature was enabled in rocm6.2.
|
||||
// We need to ensure all async operations finish before deleting the object.
|
||||
// We need to ensure all async opreations finish before deleting the object.
|
||||
#if (defined(USE_ROCM) && ROCM_VERSION >= 60200)
|
||||
if (capture_dev_ != UNDEFINED_DEVICE) // check if capture_dev_ contains the real device id
|
||||
{
|
||||
|
||||
@ -1,192 +0,0 @@
|
||||
#include <ATen/cuda/CUDAGreenContext.h>
|
||||
|
||||
namespace at::cuda {
|
||||
GreenContext::GreenContext(uint32_t device_id, uint32_t num_sms) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int driver_version;
|
||||
C10_CUDA_CHECK(cudaDriverGetVersion(&driver_version));
|
||||
TORCH_CHECK(
|
||||
driver_version >= 12080, "cuda driver too old to use green context!");
|
||||
CUcontext pctx = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(&pctx));
|
||||
if (C10_UNLIKELY(!pctx)) {
|
||||
TORCH_WARN(
|
||||
"Attempted to create a green context but"
|
||||
" there was no primary context! Creating a primary context...");
|
||||
|
||||
cudaFree(0);
|
||||
}
|
||||
|
||||
CUdevice device;
|
||||
device_id_ = device_id;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDeviceGet_(&device, device_id));
|
||||
|
||||
// Get device resources
|
||||
CUdevResource device_resource;
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuDeviceGetDevResource_(
|
||||
device, &device_resource, CU_DEV_RESOURCE_TYPE_SM));
|
||||
|
||||
// Split resources
|
||||
std::vector<CUdevResource> result(1);
|
||||
auto result_data = result.data();
|
||||
unsigned int nb_groups = 1;
|
||||
CUdevResource remaining;
|
||||
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevSmResourceSplitByCount_(
|
||||
result_data,
|
||||
&nb_groups,
|
||||
&device_resource,
|
||||
&remaining,
|
||||
0, // default flags
|
||||
num_sms));
|
||||
|
||||
TORCH_CHECK(nb_groups == 1, "Failed to create single resource group");
|
||||
|
||||
// Generate resource descriptor
|
||||
CUdevResourceDesc desc;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuDevResourceGenerateDesc_(
|
||||
&desc, result_data, 1));
|
||||
|
||||
// Create green context
|
||||
// CU_GREEN_CTX_DEFAULT_STREAM is required per docs:
|
||||
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__GREEN__CONTEXTS.html
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxCreate_(
|
||||
&green_ctx_, desc, device, CU_GREEN_CTX_DEFAULT_STREAM));
|
||||
|
||||
// Convert to regular context
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxFromGreenCtx_(&context_, green_ctx_));
|
||||
TORCH_CHECK(context_, "Green ctx conversion to regular ctx failed!");
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
std::unique_ptr<GreenContext> GreenContext::create(
|
||||
uint32_t num_sms,
|
||||
std::optional<uint32_t> device_id) {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (!device_id.has_value()) {
|
||||
device_id = at::cuda::current_device();
|
||||
}
|
||||
return std::make_unique<GreenContext>(device_id.value(), num_sms);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Implement move operations
|
||||
GreenContext::GreenContext(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext& GreenContext::operator=(GreenContext&& other) noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
if (this != &other) {
|
||||
// Clean up current resources
|
||||
if (green_ctx_) {
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (current == context_) {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"attempting to overwrite current green ctx "
|
||||
"when it is active!");
|
||||
}
|
||||
C10_CUDA_DRIVER_CHECK(c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
}
|
||||
|
||||
// Take ownership of other's resources
|
||||
device_id_ = std::exchange(other.device_id_, -1);
|
||||
green_ctx_ = std::exchange(other.green_ctx_, nullptr);
|
||||
context_ = std::exchange(other.context_, nullptr);
|
||||
parent_stream_ = std::exchange(other.parent_stream_, nullptr);
|
||||
}
|
||||
return *this;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
GreenContext::~GreenContext() noexcept{
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuGreenCtxDestroy_(green_ctx_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext GreenContext::getContext() const {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
return context_;
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx GreenContext::getGreenContext() const {
|
||||
return green_ctx_;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void GreenContext::setContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
auto current_stream = c10::cuda::getCurrentCUDAStream();
|
||||
parent_stream_ = current_stream.stream();
|
||||
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(current_stream);
|
||||
|
||||
CUcontext current = nullptr;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxGetCurrent_(¤t));
|
||||
if (!current) {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxSetCurrent_(context_));
|
||||
} else {
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPushCurrent_(context_));
|
||||
}
|
||||
// currently hardcodes the new green context to use the default stream
|
||||
// TODO(eqy): consider creating a new stream if e.g., it allows interop
|
||||
// with CUDA Graph captures etc.
|
||||
auto default_stream = c10::cuda::getDefaultCUDAStream();
|
||||
ev.block(default_stream);
|
||||
c10::cuda::setCurrentCUDAStream(default_stream);
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
|
||||
void GreenContext::popContext() {
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
// see above note about stream being hardcoded to the default stream
|
||||
at::cuda::CUDAEvent ev;
|
||||
ev.record(c10::cuda::getCurrentCUDAStream());
|
||||
CUcontext popped;
|
||||
C10_CUDA_DRIVER_CHECK(
|
||||
c10::cuda::DriverAPI::get()->cuCtxPopCurrent_(&popped));
|
||||
TORCH_INTERNAL_ASSERT(
|
||||
popped == context_, "expected popped context to be the current ctx");
|
||||
ev.block(c10::cuda::getStreamFromExternal(parent_stream_, device_id_));
|
||||
#else
|
||||
TORCH_CHECK(false, "Green Context is only supported on CUDA 12.8+!");
|
||||
#endif
|
||||
}
|
||||
} // namespace at::cuda
|
||||
@ -1,53 +0,0 @@
|
||||
#pragma once
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
#if defined(CUDA_VERSION) && !defined(USE_ROCM) && defined(PYTORCH_C10_DRIVER_API_SUPPORTED)
|
||||
#include <c10/cuda/driver_api.h>
|
||||
#include <cuda.h>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#define CUDA_HAS_GREEN_CONTEXT 1
|
||||
#else
|
||||
#define CUDA_HAS_GREEN_CONTEXT 0
|
||||
#endif
|
||||
|
||||
namespace at::cuda {
|
||||
|
||||
class TORCH_CUDA_CPP_API GreenContext {
|
||||
public:
|
||||
GreenContext(uint32_t device_id, uint32_t num_sms);
|
||||
|
||||
static std::unique_ptr<GreenContext> create(uint32_t num_sms, std::optional<uint32_t> device_id);
|
||||
|
||||
// Delete copy constructor and assignment
|
||||
GreenContext(const GreenContext&) = delete;
|
||||
GreenContext& operator=(const GreenContext&) = delete;
|
||||
|
||||
// Implement move operations
|
||||
GreenContext(GreenContext&& other) noexcept;
|
||||
GreenContext& operator=(GreenContext&& other) noexcept;
|
||||
~GreenContext() noexcept;
|
||||
|
||||
// Get the underlying CUDA context
|
||||
CUcontext getContext() const;
|
||||
|
||||
// Get the underlying green context
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
CUgreenCtx getGreenContext() const;
|
||||
#endif
|
||||
|
||||
// Make this context current
|
||||
void setContext();
|
||||
|
||||
void popContext();
|
||||
|
||||
private:
|
||||
#if CUDA_HAS_GREEN_CONTEXT
|
||||
int32_t device_id_ = -1;
|
||||
CUgreenCtx green_ctx_ = nullptr;
|
||||
CUcontext context_ = nullptr;
|
||||
cudaStream_t parent_stream_ = nullptr;
|
||||
#endif
|
||||
};
|
||||
} // namespace at::cuda
|
||||
@ -1,270 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs a single scale, {Tensorwise (float)}
|
||||
*/
|
||||
bool check_tensorwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8,
|
||||
* Each needs scales, {Rowwise (float)}
|
||||
*/
|
||||
bool check_rowwise_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (!isFloat8Type(type_a) || !isFloat8Type(type_b)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scale each, {Tensorwise, float}
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {RowWise, dp32} for A & B
|
||||
if (recipe_a[0] != ScalingType::RowWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::RowWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Two-level scaling, canonical NVFP4
|
||||
* Both inputs must be fp4
|
||||
* A, B need 2 scales, {Blockwise_1x16 (e4m3), Tensorwise (fp32)}
|
||||
*/
|
||||
bool check_nvfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 2 || recipe_a.size() != 2 || scales_b.size() != 2 || recipe_b.size() != 2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16 || recipe_a[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_a[1].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16 || recipe_b[1] != ScalingType::TensorWise) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn || scales_b[1].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Single-level scaling, what PyT currently understands
|
||||
* Both inputs must be fp4
|
||||
* A, B need 1 scale, {Blockwise_1x16 (e4m3)}
|
||||
*/
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2 scales, 2 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x16, e4m3 for scale[0], Tensorwise, fp32 for scale[1]}
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x16) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e4m3fn) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must only have 1 scale each, A: {Blockwise_1x128 (float), B: {Blockwise_128x128 (float)
|
||||
*/
|
||||
bool check_deepseek_recipe(ScalingType expected_recipe_a,
|
||||
ScalingType expected_recipe_b,
|
||||
c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x128, float} for A, {Blockwise_128x128, float} for B
|
||||
if (recipe_a[0] != expected_recipe_a) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float) return false;
|
||||
if (recipe_b[0] != expected_recipe_b) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp8
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp8_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp8
|
||||
if (type_a != ScalarType::Float8_e4m3fn || type_b != ScalarType::Float8_e4m3fn) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Both inputs must be fp4
|
||||
* A, B must have 1 scale each, {Blockwise_1x32, e8m0}
|
||||
*/
|
||||
bool check_mxfp4_recipe(c10::ScalarType type_a,
|
||||
std::vector<ScalingType>& recipe_a,
|
||||
ArrayRef<Tensor>& scales_a,
|
||||
c10::ScalarType type_b,
|
||||
std::vector<ScalingType>& recipe_b,
|
||||
ArrayRef<Tensor>& scales_b) {
|
||||
// both types must be fp4
|
||||
if (type_a != ScalarType::Float4_e2m1fn_x2 || type_b != ScalarType::Float4_e2m1fn_x2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 1 scales, 1 recipes for each input
|
||||
if (scales_a.size() != 1 || recipe_a.size() != 1 || scales_b.size() != 1 || recipe_b.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Need {Blockwise_1x32, e8m0} for A & B
|
||||
if (recipe_a[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_a[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
if (recipe_b[0] != ScalingType::BlockWise1x32) return false;
|
||||
if (scales_b[0].scalar_type() != ScalarType::Float8_e8m0fnu) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
@ -1,174 +0,0 @@
|
||||
#include <cstdint>
|
||||
#include <c10/util/typeid.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/SmallVector.h>
|
||||
#include <c10/core/Scalar.h>
|
||||
#include <c10/core/ScalarType.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
||||
#include <ATen/core/Tensor.h>
|
||||
#include <ATen/core/NamedTensor.h>
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <ATen/ExpandUtils.h>
|
||||
#include <ATen/OpMathType.h>
|
||||
#include <ATen/TensorUtils.h>
|
||||
#include <ATen/cuda/CUDABlas.h>
|
||||
#include <ATen/cuda/tunable/Tunable.h>
|
||||
#include <ATen/cuda/tunable/TunableGemm.h>
|
||||
#include <ATen/native/Resize.h>
|
||||
#include <c10/util/MaybeOwned.h>
|
||||
#include <ATen/native/GroupedMMUtils.h>
|
||||
#include <ATen/native/cuda/RowwiseScaledMM.h>
|
||||
#include <ATen/native/cuda/ScaledGroupMM.h>
|
||||
#include <ATen/native/cuda/GroupMM.h>
|
||||
#include <ATen/ceil_div.h>
|
||||
|
||||
#ifdef USE_FBGEMM_GENAI
|
||||
#include <fbgemm_gpu/torch_ops.h>
|
||||
#endif
|
||||
|
||||
#ifndef AT_PER_OPERATOR_HEADERS
|
||||
#include <ATen/Functions.h>
|
||||
#include <ATen/NativeFunctions.h>
|
||||
#else
|
||||
#include <ATen/ops/_addmm_activation_native.h>
|
||||
#include <ATen/ops/_efficientzerotensor.h>
|
||||
#include <ATen/ops/_scaled_mm_native.h>
|
||||
#include <ATen/ops/_unsafe_view_native.h>
|
||||
#include <ATen/ops/abs.h>
|
||||
#include <ATen/ops/addmm_native.h>
|
||||
#include <ATen/ops/addmv_native.h>
|
||||
#include <ATen/ops/baddbmm_native.h>
|
||||
#include <ATen/ops/bmm_native.h>
|
||||
#include <ATen/ops/copy_native.h>
|
||||
#include <ATen/ops/dot_native.h>
|
||||
#include <ATen/ops/empty.h>
|
||||
#include <ATen/ops/empty_strided.h>
|
||||
#include <ATen/ops/gelu.h>
|
||||
#include <ATen/ops/max.h>
|
||||
#include <ATen/ops/mm_native.h>
|
||||
#include <ATen/ops/mul.h>
|
||||
#include <ATen/ops/relu.h>
|
||||
#include <ATen/ops/ones.h>
|
||||
#include <ATen/ops/scalar_tensor_native.h>
|
||||
#include <ATen/ops/vdot_native.h>
|
||||
#endif
|
||||
|
||||
using at::blas::ScalingType;
|
||||
using at::blas::SwizzleType;
|
||||
|
||||
namespace at::cuda::scaled {
|
||||
|
||||
static bool _scaled_mm_allowed_device(bool sm90_only=false, bool sm100_only=false) {
|
||||
#ifdef USE_ROCM
|
||||
static const std::vector<std::string> archs = {
|
||||
"gfx942",
|
||||
#if ROCM_VERSION >= 60300
|
||||
"gfx1200", "gfx1201",
|
||||
#endif
|
||||
#if ROCM_VERSION >= 60500
|
||||
"gfx950"
|
||||
#endif
|
||||
};
|
||||
return at::detail::getCUDAHooks().isGPUArch(archs);
|
||||
#else
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
|
||||
if (sm90_only || sm100_only) {
|
||||
return (sm90_only && dprops->major == 9) || (sm100_only && dprops->major == 10);
|
||||
} else {
|
||||
return dprops->major >= 9 || (dprops->major == 8 && dprops->minor == 9);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef USE_ROCM
|
||||
static bool _scaled_mm_is_fnuz() {
|
||||
return at::detail::getCUDAHooks().isGPUArch({"gfx942"});
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* Track concrete implementations available
|
||||
*/
|
||||
enum class ScaledGemmImplementation {
|
||||
NONE = 0,
|
||||
TENSORWISE_TENSORWISE = 1,
|
||||
ROWWISE_ROWWISE = 2,
|
||||
BLOCK_128x128_1x128 = 3,
|
||||
BLOCK_1x128_128x128 = 4,
|
||||
BLOCK_1x128_1x128 = 5,
|
||||
MXFP8_MXFP8 = 6,
|
||||
NVFP4_NVFP4 = 7,
|
||||
NVFP4_NVFP4_SINGLE_SCALE = 8,
|
||||
MXFP4_MXFP4 = 9,
|
||||
};
|
||||
|
||||
/**
|
||||
* Convert passed int (enum) from python back into a
|
||||
* strictly-typed enum
|
||||
*/
|
||||
template <class EnumType, class ArrayType>
|
||||
std::vector<EnumType> convert_int_to_enum(ArrayType& v) {
|
||||
std::vector<EnumType> converted;
|
||||
converted.reserve(v.size());
|
||||
|
||||
for (auto vi : v) {
|
||||
converted.push_back(static_cast<EnumType>(vi));
|
||||
}
|
||||
return converted;
|
||||
}
|
||||
|
||||
bool check_tensorwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
|
||||
bool check_rowwise_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_nvfp4_recipe_single_scale
|
||||
(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_deepseek_recipe(ScalingType,
|
||||
ScalingType,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp8_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
bool check_mxfp4_recipe(c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&,
|
||||
c10::ScalarType,
|
||||
std::vector<ScalingType>&,
|
||||
ArrayRef<Tensor>&);
|
||||
|
||||
} // namespace at::native::cuda::blas::scaled
|
||||
@ -137,7 +137,7 @@ struct CUDACachingHostAllocatorImpl
|
||||
void free_block_slowpath(Block* block) {
|
||||
auto start = std::chrono::steady_clock::now();
|
||||
// Users may change the allocator config at will. torch unit tests do this.
|
||||
// However, allocations using cudaHostRegister should use corresponding
|
||||
// However, allocations using cudaHostRegister should use corresonding
|
||||
// cudaHostUnregister and similarly for cudaHostAlloc / cudaFreeHost.
|
||||
void* ptr = block->ptr_;
|
||||
bool use_register = false;
|
||||
|
||||
@ -70,7 +70,11 @@
|
||||
#define ATEN_CUB_MAXIMUM() NO_ROCM(at_cuda_detail)ROCM_HIPCUB(::cub)::Max()
|
||||
#endif
|
||||
|
||||
#if defined(USE_ROCM)
|
||||
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
namespace at_cuda_detail {
|
||||
#endif
|
||||
|
||||
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
|
||||
|
||||
@ -92,6 +96,10 @@ template <>
|
||||
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
|
||||
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
} // namespace at_cuda_detail
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
@ -113,7 +121,7 @@ struct cuda_type<c10::Half> {
|
||||
using type = __half;
|
||||
};
|
||||
|
||||
#if !defined(USE_ROCM)
|
||||
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
|
||||
|
||||
template<>
|
||||
struct cuda_type<c10::BFloat16> {
|
||||
@ -195,6 +203,36 @@ __global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputItera
|
||||
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
|
||||
}
|
||||
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
template<typename ValueT, typename InputIteratorT>
|
||||
struct chained_iterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
using difference_type = std::ptrdiff_t;
|
||||
using value_type = ValueT;
|
||||
using pointer = ValueT*;
|
||||
using reference = ValueT&;
|
||||
|
||||
InputIteratorT iter;
|
||||
ValueT *first;
|
||||
difference_type offset = 0;
|
||||
|
||||
__device__ ValueT operator[](difference_type i) {
|
||||
i += offset;
|
||||
if (i == 0) {
|
||||
return *first;
|
||||
} else {
|
||||
return ValueT(iter[i - 1]);
|
||||
}
|
||||
}
|
||||
__device__ chained_iterator operator+(difference_type i) {
|
||||
return chained_iterator{iter, first, i};
|
||||
}
|
||||
__device__ ValueT operator*() {
|
||||
return (*this)[0];
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
|
||||
// so split at int_max/2
|
||||
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
|
||||
@ -239,6 +277,25 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
|
||||
using tuple = typename ArgIndexInputIterator::value_type;
|
||||
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
|
||||
if (x.key == 0) {
|
||||
return *first_elem_ptr;
|
||||
} else {
|
||||
return x.value;
|
||||
}
|
||||
};
|
||||
auto input_ = ATEN_CUB_TRANSFORM_ITERATOR(input_t, decltype(input_iter_transform), ArgIndexInputIterator)(
|
||||
ArgIndexInputIterator(input + i), input_iter_transform);
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i + 1,
|
||||
output + i,
|
||||
@ -246,6 +303,7 @@ inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -497,6 +555,16 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
first_elem_ptr,
|
||||
scan_op);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
#if !CUB_SUPPORTS_FUTURE_VALUE()
|
||||
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
|
||||
input + i, first_elem_ptr};
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
|
||||
input_,
|
||||
output + i,
|
||||
scan_op,
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#else
|
||||
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
|
||||
input + i,
|
||||
output + i,
|
||||
@ -504,6 +572,7 @@ inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT
|
||||
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
|
||||
size_cub,
|
||||
at::cuda::getCurrentCUDAStream());
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
#include <ATen/cuda/CUDAConfig.h>
|
||||
|
||||
// NOTE: These templates are intentionally not defined in this header,
|
||||
// which avoids re-compiling them for each translation unit. If you get
|
||||
// which aviods re-compiling them for each translation unit. If you get
|
||||
// a link error, you need to add an explicit instantiation for your
|
||||
// types in cub.cu
|
||||
|
||||
|
||||
@ -10,6 +10,14 @@
|
||||
#define CUB_VERSION 200001
|
||||
#endif
|
||||
|
||||
// cub sort support for __nv_bfloat16 is added to cub 1.13 in:
|
||||
// https://github.com/NVIDIA/cub/pull/306
|
||||
#if CUB_VERSION >= 101300
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_NV_BFLOAT16() false
|
||||
#endif
|
||||
|
||||
// cub support for CUB_WRAPPED_NAMESPACE is added to cub 1.13.1 in:
|
||||
// https://github.com/NVIDIA/cub/pull/326
|
||||
// CUB_WRAPPED_NAMESPACE is defined globally in cmake/Dependencies.cmake
|
||||
@ -20,6 +28,14 @@
|
||||
#define USE_GLOBAL_CUB_WRAPPED_NAMESPACE() false
|
||||
#endif
|
||||
|
||||
// cub support for cub::FutureValue is added to cub 1.15 in:
|
||||
// https://github.com/NVIDIA/cub/pull/305
|
||||
#if CUB_VERSION >= 101500
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() true
|
||||
#else
|
||||
#define CUB_SUPPORTS_FUTURE_VALUE() false
|
||||
#endif
|
||||
|
||||
// There were many bc-breaking changes in major version release of CCCL v3.0.0
|
||||
// Please see https://nvidia.github.io/cccl/cccl/3.0_migration_guide.html
|
||||
#if CUB_VERSION >= 200800
|
||||
|
||||
@ -38,7 +38,7 @@ GemmTunableOp_float_NT,nt_25088_4096_64,1219,1.262
|
||||
GemmTunableOp_float_NT,nt_4096_4096_64,1216,0.033
|
||||
```
|
||||
|
||||
Note the "Validator" lines. If you change a library version, or ROCm version, or PyTorch version, TunableOp will detect
|
||||
Note the "Validator" lines. If you change a library verison, or ROCm version, or PyTorch version, TunableOp will detect
|
||||
this and reject the tunings file because the prior tunings are likely affected by other software changes.
|
||||
|
||||
The remaining lines are the tuned solutions for each TunableOp encountered during your execution. Each line consists of
|
||||
|
||||
@ -235,7 +235,7 @@ class TunableOp {
|
||||
// numeric check option is controlled by non-static env var, so check it once per tuned operator
|
||||
bool do_numerics_check = ctx->IsNumericsCheckEnabled();
|
||||
|
||||
// calculate a reference answer for numerical check
|
||||
// calcaulte a reference answer for numerical check
|
||||
if (do_numerics_check) {
|
||||
reference_params = params->DeepCopy(false);
|
||||
TORCH_CHECK(ops_[ResultEntry::Default()]->Call(reference_params) == OK);
|
||||
|
||||
@ -12,7 +12,7 @@ namespace at {
|
||||
|
||||
// AcceleratorHooksInterface is a shared interface provided by all
|
||||
// accelerators to allow generic code.
|
||||
// This interface is hook-based as it corresponds to all the functions
|
||||
// This inferface is hook-based as it corresponds to all the functions
|
||||
// that are going to be called in a generic way from the CPU code.
|
||||
|
||||
struct TORCH_API AcceleratorHooksInterface {
|
||||
|
||||
@ -38,7 +38,7 @@ struct TORCH_API PrivateUse1HooksInterface : AcceleratorHooksInterface {
|
||||
|
||||
Generator getNewGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
// TODO(FFFrog): Preserved for BC and will be removed in the future.
|
||||
// TODO(FFFrog): Perserved for BC and will be removed in the future.
|
||||
if (at::GetGeneratorPrivate().has_value())
|
||||
return at::GetGeneratorForPrivateuse1(device_index);
|
||||
|
||||
|
||||
@ -1,23 +0,0 @@
|
||||
#include <ATen/detail/XLAHooksInterface.h>
|
||||
|
||||
namespace at {
|
||||
namespace detail {
|
||||
|
||||
const XLAHooksInterface& getXLAHooks() {
|
||||
auto create_impl = [] {
|
||||
// Create XLA hooks using the registry
|
||||
auto hooks = XLAHooksRegistry()->Create("torch_xla::detail::XLAHooks", XLAHooksArgs{});
|
||||
if (hooks) {
|
||||
return hooks;
|
||||
}
|
||||
// If hooks creation fails, fall back to default implementation
|
||||
return std::make_unique<XLAHooksInterface>();
|
||||
};
|
||||
static auto hooks = create_impl();
|
||||
return *hooks;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
C10_DEFINE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs)
|
||||
|
||||
} // namespace at
|
||||
@ -1,79 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <c10/core/Device.h>
|
||||
#include <c10/util/Exception.h>
|
||||
#include <c10/util/Registry.h>
|
||||
|
||||
#include <ATen/detail/AcceleratorHooksInterface.h>
|
||||
|
||||
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-parameter")
|
||||
|
||||
namespace at {
|
||||
|
||||
constexpr const char* XLA_HELP =
|
||||
"This error has occurred because you are trying "
|
||||
"to use some XLA functionality, but the XLA library has not been "
|
||||
"loaded by the dynamic linker. You must load xla libraries by `import torch_xla`";
|
||||
|
||||
struct TORCH_API XLAHooksInterface : AcceleratorHooksInterface {
|
||||
~XLAHooksInterface() override = default;
|
||||
|
||||
void init() const override {
|
||||
TORCH_CHECK(false, "Cannot initialize XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual bool hasXLA() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual std::string showConfig() const {
|
||||
TORCH_CHECK(
|
||||
false,
|
||||
"Cannot query detailed XLA version without torch_xla library. ",
|
||||
XLA_HELP);
|
||||
}
|
||||
|
||||
const Generator& getDefaultGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(
|
||||
false, "Cannot get default XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Generator getNewGenerator(
|
||||
[[maybe_unused]] DeviceIndex device_index = -1) const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA generator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
virtual DeviceIndex getCurrentDevice() const override {
|
||||
TORCH_CHECK(false, "Cannot get current XLA device without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Device getDeviceFromPtr(void* /*data*/) const override {
|
||||
TORCH_CHECK(false, "Cannot get device of pointer on XLA without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
Allocator* getPinnedMemoryAllocator() const override {
|
||||
TORCH_CHECK(false, "Cannot get XLA pinned memory allocator without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
bool isPinnedPtr(const void* data) const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool hasPrimaryContext(DeviceIndex device_index) const override {
|
||||
TORCH_CHECK(false, "Cannot query primary context without torch_xla library. ", XLA_HELP);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct TORCH_API XLAHooksArgs {};
|
||||
|
||||
TORCH_DECLARE_REGISTRY(XLAHooksRegistry, XLAHooksInterface, XLAHooksArgs);
|
||||
#define REGISTER_XLA_HOOKS(clsname) \
|
||||
C10_REGISTER_CLASS(XLAHooksRegistry, clsname, clsname)
|
||||
|
||||
namespace detail {
|
||||
TORCH_API const XLAHooksInterface& getXLAHooks();
|
||||
} // namespace detail
|
||||
} // namespace at
|
||||
C10_DIAGNOSTIC_POP()
|
||||
@ -283,7 +283,7 @@ inline void boxed_existing_bdim_all_batch_rule(
|
||||
// Use when all tensors arguments accept one (normal) batch dim.
|
||||
// This batching rule expands the batch dim on all Tensors, reshapes it into
|
||||
// dim 0, calls the op, and then reshapes the batch dim out of dim 0.
|
||||
// This is not the most efficient thing; if there are alternatives, please try
|
||||
// This is not the most efficient thing; if there are alternatives, plese try
|
||||
// to use them. Use this only as a last resort.
|
||||
#define EXISTING_BDIM_ALL_BOXED(op) \
|
||||
m.impl(#op, torch::CppFunction::makeFromBoxedFunction<boxed_existing_bdim_all_batch_rule>());
|
||||
|
||||
@ -384,7 +384,7 @@ fourOutputs solve_ex_batch_rule(
|
||||
|
||||
// NOTE [ solve_ex Batch Rule Contiguity ]
|
||||
// A determines whether or not linalg_solve takes an optimized path. We need the check on A_ to match the one run on
|
||||
// A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behavior
|
||||
// A as BatchedTensor since it might have been saved by autograd (specifically by the jvp) and the autograd behvaior
|
||||
// differs based on whether or not the optimized path was taken
|
||||
const auto batched_A_was_contiguous = A_bdim.has_value() ? at::select(A, *A_bdim, 0).is_contiguous() : A.is_contiguous();
|
||||
if (batched_A_was_contiguous && !A.is_complex()) {
|
||||
|
||||
@ -282,7 +282,7 @@ static std::tuple<Tensor, std::optional<int64_t>> _softmax_backward_batch_rule(
|
||||
|
||||
dim = getPhysicalDim(output_, /*has_batch_dim*/true, dim);
|
||||
|
||||
// Not sure why output_ needs to be marked as .contiguous(). Something must
|
||||
// Not sure why output_ needs to be marked as .contiguous(). Someting must
|
||||
// have changed in PyTorch (and output of softmax is probably always contiguous)
|
||||
return std::make_tuple(at::_softmax_backward_data(grad_output_, output_.contiguous(), dim, input_dtype), 0);
|
||||
}
|
||||
|
||||
@ -224,7 +224,7 @@ static Tensor safeStack(TensorList tensors) {
|
||||
// is possible for the backward function to return an undefined grad for some
|
||||
// grad_input for each example. In that case, we return an undefined grad.
|
||||
//
|
||||
// It is theoretically possible for *some* of the examples to produce an
|
||||
// It is theoretically posssible for *some* of the examples to produce an
|
||||
// undefined grad (a kernel could peek at the gradient values and return an
|
||||
// undefined tensor if it determines the gradient is full of zeros). We
|
||||
// could handle this by treating the undefined grad as a zero-filled tensor
|
||||
|
||||
@ -113,7 +113,7 @@ SymIntArrayRef BatchedTensorImpl::sym_sizes_custom() const {
|
||||
return sym_sizes_default();
|
||||
}
|
||||
|
||||
// The following are publicly exposed as methods of Tensor
|
||||
// The following are publically exposed as methods of Tensor
|
||||
|
||||
IntArrayRef BatchedTensorImpl::strides_custom() const {
|
||||
return strides_default();
|
||||
|
||||
@ -37,7 +37,7 @@ namespace at::functorch {
|
||||
// how to perform the transform.
|
||||
//
|
||||
// TODO: we can excise DynamicLayer in favor of Interpreter,
|
||||
// But I am going to leave it for now as a compatibility shim to avoid
|
||||
// But I am going to leave it for now as a compatiblity shim to avoid
|
||||
// needing to refactor a lot of callsites...
|
||||
struct TORCH_API DynamicLayer {
|
||||
explicit DynamicLayer(
|
||||
|
||||
@ -88,7 +88,7 @@ std::ostream& operator<<(std::ostream& os, const TransformType& t);
|
||||
// >>> VmapInterpreterPtr(&interpreter).batchSize()
|
||||
//
|
||||
// Finally, Interpreter::process switches on the type of the interpreter
|
||||
// and calls one of {Transform}Interpreter::processImpl under the hood.
|
||||
// and calls one of {Transform}Intepreter::processImpl under the hood.
|
||||
// Same for Interpreter::sendToNextInterpreter :)
|
||||
|
||||
struct VmapInterpreterMeta {
|
||||
|
||||
@ -733,7 +733,7 @@ TORCH_LIBRARY_IMPL(_, FuncTorchBatched, m) {
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) {
|
||||
// still legacy b/c returns multiple tensors
|
||||
// still legacy b/c teturns multiple tensors
|
||||
m.impl("split.Tensor", split_batching_rule);
|
||||
m.impl("split_with_sizes", split_with_sizes_batching_rule);
|
||||
m.impl("split_with_sizes_copy", split_with_sizes_copy_batching_rule);
|
||||
|
||||
@ -158,7 +158,7 @@ void MPSStream::fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t
|
||||
endKernelCoalescing();
|
||||
id<MTLBlitCommandEncoder> blitEncoder = [commandBuffer() blitCommandEncoder];
|
||||
|
||||
// For some reason fillBufferfor stopped working for length > 4Gb on MacOS 26
|
||||
// For some reason fillBufferfor stopped working for lengh > 4Gb on MacOS 26
|
||||
// See https://github.com/pytorch/pytorch/issues/163962
|
||||
// Workaround by batching copy commands into 4Gb chunks
|
||||
constexpr size_t max_copy_size = 0x100000000; // 4GB
|
||||
|
||||
@ -148,7 +148,7 @@ inline void checkInputsSolver(const Tensor& A,
|
||||
|
||||
inline bool is_row_or_column_contiguous(const Tensor& t) {
|
||||
// This could be made more general, similar to how it's checked in matmul, which would allow to
|
||||
// elide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky.
|
||||
// ellide the copy with strides such as (6, 12, 1, 3) or (3, 1, 9), but this is quite tricky.
|
||||
// We choose to be conservative for simplicity
|
||||
return t.is_contiguous() || t.transpose(-2, -1).is_contiguous();
|
||||
}
|
||||
|
||||
@ -11,8 +11,6 @@ inline void check_pixel_shuffle_shapes(const Tensor& self, int64_t upscale_facto
|
||||
"pixel_shuffle expects a positive upscale_factor, but got ",
|
||||
upscale_factor);
|
||||
int64_t c = self.size(-3);
|
||||
TORCH_CHECK_VALUE(upscale_factor <= std::numeric_limits<decltype(upscale_factor)>::max() / upscale_factor,
|
||||
"upscale factor is too large, (upscale_factor)^2 overflowed: upscale_factor=", upscale_factor);
|
||||
int64_t upscale_factor_squared = upscale_factor * upscale_factor;
|
||||
TORCH_CHECK(c % upscale_factor_squared == 0,
|
||||
"pixel_shuffle expects its input's 'channel' dimension to be divisible by the square of "
|
||||
|
||||
@ -21,7 +21,7 @@ enum class fft_norm_mode {
|
||||
// NOTE [ Fourier Transform Conjugate Symmetry ]
|
||||
//
|
||||
// Real-to-complex Fourier transform satisfies the conjugate symmetry. That is,
|
||||
// assuming X is the transformed K-dimensional signal, we have
|
||||
// assuming X is the transformed K-dimensionsal signal, we have
|
||||
//
|
||||
// X[i_1, ..., i_K] = X[j_i, ..., j_K]*,
|
||||
//
|
||||
|
||||
@ -128,7 +128,7 @@ at::Tensor PackedLinearWeight::apply_impl(
|
||||
auto* input_tr_ptr =
|
||||
reinterpret_cast<uint8_t*>(input_tr.data_ptr<c10::quint8>());
|
||||
// TODO: Activation transpose before and after the kernel can be removed if we
|
||||
// keep activation tensor always transposed.
|
||||
// keep activation tensor always tranposed.
|
||||
fbgemm::transpose_simd<uint8_t>(
|
||||
batch_size, K, input_ptr, K, input_tr_ptr, batch_size);
|
||||
|
||||
|
||||
@ -520,7 +520,7 @@ cpu_adaptive_avg_pool3d_channels_last(
|
||||
scalar_t* out = output_data + i * channels;
|
||||
int64_t size = channels;
|
||||
|
||||
// Note: For ordinary usage scenario, each out lane should
|
||||
// Note: For oridinary usage scenario, each out lane should
|
||||
// fit in L1 cache; otherwise consider block dim C.
|
||||
// Pass I: zero the out lane
|
||||
int64_t d1 = 0;
|
||||
|
||||
@ -259,20 +259,11 @@ inline void winograd_f2k3_input_transform_inplace__rvv(
|
||||
const vfloat32m1_t wd1 = __riscv_vfadd_vv_f32m1(d1, d2, 4);
|
||||
const vfloat32m1_t wd2 = __riscv_vfsub_vv_f32m1(d2, d1, 4);
|
||||
const vfloat32m1_t wd3 = __riscv_vfsub_vv_f32m1(d1, d3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround:
|
||||
* Avoid single-statement read-modify-write on MEM_REF like:
|
||||
* *input_tile_val =
|
||||
* __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
* This triggers an ICE during GIMPLE lower (gsi_replace / riscv_gimple_fold_builtin)
|
||||
* with -march=rv64gcv. Use a temporary then write back.
|
||||
* Do NOT refactor into the single-statement form. Clang is unaffected.
|
||||
*/
|
||||
vfloat32m1x4_t tmp_input_tile_val = *input_tile_val;
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 0, wd0);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 1, wd1);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 2, wd2);
|
||||
tmp_input_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_input_tile_val, 3, wd3);
|
||||
*input_tile_val = tmp_input_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wd0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wd1);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 2, wd2);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 3, wd3);
|
||||
}
|
||||
|
||||
inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
@ -286,15 +277,9 @@ inline void winograd_f2k3_output_transform_inplace__rvv(
|
||||
const vfloat32m1_t wm0 = __riscv_vfadd_vv_f32m1(m0_plus_m1, m2, 4);
|
||||
const vfloat32m1_t m1_sub_m2 = __riscv_vfsub_vv_f32m1(m1, m2, 4);
|
||||
const vfloat32m1_t wm1 = __riscv_vfsub_vv_f32m1(m1_sub_m2, m3, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_output_tile_val = *input_tile_val;
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 0, wm0);
|
||||
tmp_output_tile_val = __riscv_vset_v_f32m1_f32m1x4(tmp_output_tile_val, 1, wm1);
|
||||
*input_tile_val = tmp_output_tile_val;
|
||||
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 0, wm0);
|
||||
*input_tile_val = __riscv_vset_v_f32m1_f32m1x4(*input_tile_val, 1, wm1);
|
||||
}
|
||||
|
||||
inline vfloat32m1_t
|
||||
@ -315,17 +300,11 @@ inline void winograd_f2k3_kernel_transform__rvv(
|
||||
const vfloat32m1_t const_half = __riscv_vfmv_v_f_f32m1(0.5f, 4);
|
||||
const vfloat32m1_t g0_plus_g2 = __riscv_vfadd_vv_f32m1(g0, g2, 4);
|
||||
vfloat32m1_t half_g0_plus_g2 = __riscv_vfmul_vv_f32m1(const_half, g0_plus_g2, 4);
|
||||
/* GCC 14.2 (RISC-V RVV) ICE workaround — see note above.
|
||||
* Keep the temporary + write-back pattern to avoid ICE.
|
||||
* Do NOT rewrite into:
|
||||
* *transform = __riscv_vset_v_f32m1_f32m1x4(*transform, idx, val);
|
||||
*/
|
||||
vfloat32m1x4_t tmp_transform = *transform;
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 0, g0);
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
tmp_transform = __riscv_vset_v_f32m1_f32m1x4(tmp_transform, 3, g2);
|
||||
*transform = tmp_transform;
|
||||
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 0, g0);
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 1, vmuladdq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 2, vmulsubq_f32(half_g0_plus_g2, const_half, g1));
|
||||
*transform = __riscv_vset_v_f32m1_f32m1x4(*transform, 3, g2);
|
||||
}
|
||||
|
||||
inline vfloat32m1x4_t v4f_transpose4x4__rvv(const vfloat32m1x4_t m) {
|
||||
|
||||
@ -34,7 +34,7 @@ struct Dist {
|
||||
// finish : This tells what to do with the aggregated value to compute
|
||||
// the norm. Generally this is the result of val ^ (1 / p).
|
||||
// backward : This is the gradient for that norm. Arguments are pretty
|
||||
// self explanatory.
|
||||
// self explanitory.
|
||||
//
|
||||
// There are a few cases where these aren't used. The 0 norm has no backward,
|
||||
// because it's always 0, so that's shortcircuited earlier. There's a special
|
||||
|
||||
@ -30,7 +30,7 @@ vec::Vectorized<scalar_t> is_nan_vec(vec::Vectorized<scalar_t> vec) {
|
||||
return vec.isnan();
|
||||
}
|
||||
|
||||
// TODO: use is_integral/is_same to check the scalar_t and simplify the implementation
|
||||
// TODO: use is_integeral/is_same to check the scalar_t and simplify the implementation
|
||||
// currently it does not work
|
||||
template <>
|
||||
vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) {
|
||||
|
||||
@ -74,7 +74,7 @@ it to sum up the entire array into a single value.
|
||||
|
||||
`ReduceOpsKernel.cpp` uses the `CPU_CAPABILITY_*` macros to "know" under which
|
||||
compiler flags it is currently compiled. This allows the programmer to write
|
||||
generic code, which will be compiled under multiplied compilation settings.
|
||||
generic code, which will be compiled under multipled compilation settings.
|
||||
|
||||
`../ReduceOps.cpp` now includes the header `ReduceOpsKernel.h`, which contains
|
||||
a generic definition of `sumImplAll`. This function allows the user to reduce
|
||||
|
||||
@ -889,7 +889,7 @@ void ImagingResampleHorizontalConvolution8u(
|
||||
_mm_loadu_si128((__m128i *) (lineIn_min + stride * i))),
|
||||
_mm_loadu_si128((__m128i *) (lineIn_min + stride * (i + 4))), 1);
|
||||
|
||||
// Extract lower part of each lane, cast to epi16 and reorder RGBARGBA -> RRGGBBAA
|
||||
// Extract lower part of each lane, cast to epi16 and reoder RGBARGBA -> RRGGBBAA
|
||||
// RGBA: pix1 = [
|
||||
// r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 a0 0 a1 0
|
||||
// r4 0 r5 0 g4 0 g5 0 b4 0 b5 0 a4 0 a5 0
|
||||
|
||||
@ -240,7 +240,7 @@ _PS256_CONST(coscof_p2, 4.166664568298827E-002);
|
||||
_PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
|
||||
|
||||
|
||||
/* evaluation of 8 sines at once using AVX intrinsics
|
||||
/* evaluation of 8 sines at onces using AVX intrinsics
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
|
||||
@ -311,7 +311,7 @@ void GroupNormKernelImplChannelsLastInternal(
|
||||
const bool gamma_null = (gamma_data == nullptr);
|
||||
const bool beta_null = beta_data == nullptr;
|
||||
|
||||
// NB: About algorithm chosen:
|
||||
// NB: About algorithm choosen:
|
||||
//
|
||||
// On channels last, GroupNorm has a input shape of {N, H, W, GD},
|
||||
// Mean and rstd are collected per each n and g, which involves reduction
|
||||
|
||||
@ -930,7 +930,7 @@ void ref_dyn_quant_matmul_4bit_channelwise_kernel(
|
||||
}
|
||||
};
|
||||
|
||||
// Dynamically Quantize the float32 input to 8 bit asymmetric
|
||||
// Dynamically Quantize the float32 input to 8 bit assymetric
|
||||
input_quant_pack_8bit_channelwise(m, k, lhs_f32, (int8_t*)lhs_qa8dx);
|
||||
|
||||
const size_t lhs_stride =
|
||||
@ -1163,7 +1163,7 @@ void dyn_quant_matmul_4bit_kernel(
|
||||
const int64_t weight_packed_size =
|
||||
kleidiai::kai_pack_rhs_int4_size(N, K, block_size);
|
||||
if (weight_packed_size == packed_weights.numel()) {
|
||||
// KleidiAI interface internally handles the Channelwise and groupwise
|
||||
// KleidiAI interface intenally handles the Channelwise and groupwise
|
||||
// distinction
|
||||
kleidiai::kai_quant_pack_lhs_int4_mm(
|
||||
output, inp, packed_weights, M, N, K, block_size);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user