Compare commits

..

54 Commits

Author SHA1 Message Date
889811ab5b [ONNX] bump submodule to onnx==1.14.1 (#108895) (#109114)
Bump the pip and submodule ONNX dependencies to official stable 1.14.1; there were no code changes between 1.14.1rc2 and 1.14.1.

Also bump ORT to run tests against ort-nightly==1.16.0.dev20230908001.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108895
Approved by: https://github.com/justinchuby, https://github.com/thiagocrepaldi

Co-authored-by: Aaron Bockover <abock@microsoft.com>
2023-09-12 12:09:59 -04:00
1191449343 Prerequisite of ATen/native/utils header for C++ extension (#109013) (#109106)
# Motivate
Without this PR, if we would like to include the header file like ```#include <ATen/native/ForeachUtils.h>``` in our C++ extension, it will raise a Error ```/home/xxx/torch/include/ATen/native/ForeachUtils.h:7:10: fatal error: 'ATen/native/utils/ParamsHash.h' file not found```. We should fix it.

# Solution
Add the ATen/native/utils header file in the build.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109013
Approved by: https://github.com/ezyang

Co-authored-by: Yu, Guangye <guangye.yu@intel.com>
2023-09-12 11:37:29 -04:00
6d9fad8474 [ONNX] Bump onnx submodule to 1.14.1; ONNX Runtime 1.16 (#106984) (#109045)
Bump dependencies:

- ort-nightly 1.16.0.dev20230824005
- onnx 1.14.1rc2
- onnxscript 0.1.0.dev20230825
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106984
Approved by: https://github.com/BowenBao, https://github.com/thiagocrepaldi

Co-authored-by: Aaron Bockover <abock@microsoft.com>
2023-09-12 07:38:07 -04:00
ed62318bea [export] Fix export arg type declaration (#109060) (#109064)
Summary: Its a arbitrary length tuple of anything. Tuple[Any] means 1 element.

Test Plan: ci

Differential Revision: D49161625

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109060
Approved by: https://github.com/angelayi

Co-authored-by: Jacob Szwejbka <jakeszwe@fb.com>
2023-09-11 17:57:36 -07:00
ee67c4dd6a Refactor ios-build-test workflow to support binary release (#108322) (#109069)
This refactors the logic from CircleCI iOS [build](https://github.com/pytorch/pytorch/blob/main/.circleci/config.yml#L1323-L1344) and [upload](https://github.com/pytorch/pytorch/blob/main/.circleci/config.yml#L1369-L1377) jobs to GHA.

* Nightly artifacts will be available again on `ossci-ios-build` S3 bucket, for example `libtorch_lite_ios_nightly_2.1.0.20230517.zip`.  The last one there was s3://ossci-ios-build/libtorch_lite_ios_nightly_2.1.0.20230517.zip from May 17th
  * [LibTorch-Lite-Nightly](https://github.com/CocoaPods/Specs/blob/master/Specs/c/3/1/LibTorch-Lite-Nightly/1.14.0.20221109/LibTorch-Lite-Nightly.podspec.json) on cocoapods
* Release artifacts will be on `ossci-ios` S3 bucket, for example `s3://ossci-ios/libtorch_lite_ios_1.13.0.zip` from Nov 3rd 2022
  * [LibTorch-Lite](https://github.com/CocoaPods/Specs/blob/master/Specs/c/c/3/LibTorch-Lite/1.13.0.1/LibTorch-Lite.podspec.json) on cocoapods
  * [LibTorch](https://github.com/CocoaPods/Specs/blob/master/Specs/1/3/c/LibTorch/1.13.0.1/LibTorch.podspec.json) on cocoapods

I will clean up Circle CI code in another PR.

### Testing

Generate new release artifacts for testing from main branch.  Simulator testing have all passed.

* With lite interpreter https://github.com/pytorch/pytorch/actions/runs/6093860118
  * https://ossci-ios.s3.amazonaws.com/libtorch_lite_ios_2.1.0.zip
  * https://ossci-ios.s3.amazonaws.com/LibTorch-Lite-2.1.0.podspec

* LibTorch binary can be built without lite interpreter https://github.com/pytorch/pytorch/actions/runs/6103616035 and uses TorchScript, but it has been long dead from my understanding.  The binary can still be built and tested though.
  * https://ossci-ios.s3.amazonaws.com/libtorch_ios_2.1.0.zip
  * https://ossci-ios.s3.amazonaws.com/LibTorch-2.1.0.podspec

### Next step for release

* Once the PR is committed.  I plan to use the workflow dispatch to build the binaries manually on `release/2.1` branch.  Once they looks good, we can publish them on cocoapods.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108322
Approved by: https://github.com/atalman
2023-09-11 17:10:22 -07:00
5529b81631 Add torch_lazy_enable_device_data_cache to disable lazy device data cache (#109051)
* Add logic to enable and disable the lazy device tensor cache without modifying it

* Remove as yet unused compilation cache enable/disable global

* Lint fixes
2023-09-11 18:25:05 -04:00
7e23b4907d [quant][pt2] Fix and rename move_model_to_eval (#108891) (#109027)
Summary:
This commit fixes two silent correctness problems with
the current implementation of `move_model_to_eval`:

(1) Previously the user had to manually call `eliminate_dead_code`
before calling `move_model_to_eval`, otherwise the dropout pattern
won't actually get eliminated. This is because subgraph rewriter
complains the match is not self-contained, and so silently does
not do the replacement.

(2) We wish to error when the user calls `model.train()` or
`model.eval()` on an exported model. This error is raised
correctly immediately after export today, but no longer raised
after the user calls prepare or convert.

We fix (1) by moving the `eliminate_dead_code` call into
`move_model_to_eval`, and fix (2) by ensuring the respective
errors are thrown after prepare and convert as well.

Additionally, this commit renames `move_model_to_eval` to
`move_exported_model_to_eval` to be more explicit.

bypass-github-export-checks

Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_disallow_eval_train
python test/test_quantization.py TestQuantizePT2E.test_move_exported_model_to_eval

Imported from OSS

Differential Revision: D49097293

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108891
Approved by: https://github.com/jerryzh168
2023-09-11 18:14:49 -04:00
71c9d5c3a6 Refactor torch.onnx documentation (#109026)
* Refactor torch.onnx documentation (#108379)

* Distinguish both TorchScript-based exporter (`torch.onnx.export`) and the TorchDynamo-based exporter (`torch.onnx.dynamo_export`) exporters
* Merge ONNX diagnostics page with the exporter page
* Add initial version of a quick overview on the new exporter
* Updates `torch.compiler.html` with the right page for the ONNX Runtime backend for `torch.compile`
* Renamed doc files to clearly identify files belonging to the legacy and newer onnx exporters

Fixes #108274

https://docs-preview.pytorch.org/pytorch/pytorch/108379/index.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108379
Approved by: https://github.com/justinchuby, https://github.com/wschin, https://github.com/malfet

* Follow-up #108379 (#108905)

Fixes #108379

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108905
Approved by: https://github.com/abock
2023-09-11 14:27:26 -07:00
91e414957b fix documentation typo (#109054) 2023-09-11 17:04:48 -04:00
ce3ed7f293 [docs] Properly link register_post_accumulate_grad_hook docs (#108157) (#109047)
it shows up now

![image](https://github.com/pytorch/pytorch/assets/31798555/0aa86839-b9c5-4b4b-b1b1-aa1c0c0abbab)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108157
Approved by: https://github.com/soulitzer, https://github.com/albanD
2023-09-11 17:03:39 -04:00
bd372d460b [ONNX] Add initial support for FP8 ONNX export (#107962) (#108939)
This PR resurrects @tcherckez-nvidia's #106379 with changes to resolve conflicts against newer `main` and defines our own constants for the new ONNX types to [avoid breaking Meta's internal usage of an old ONNX](https://github.com/pytorch/pytorch/pull/106379#issuecomment-1675189340).

- `::torch::onnx::TensorProto_DataType_FLOAT8E4M3FN=17`
- `::torch::onnx::TensorProto_DataType_FLOAT8E5M2=19`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107962
Approved by: https://github.com/justinchuby, https://github.com/titaiwangms

Co-authored-by: Aaron Bockover <abock@microsoft.com>
2023-09-11 14:58:24 -04:00
12b8c26f35 [export] torch.export landing page (#108783) (#108962)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108783
Approved by: https://github.com/avikchaudhuri, https://github.com/gmagogsfm
2023-09-11 10:13:24 -04:00
7397cf324c Don't fastpath conj copy when conj/neg bit mismatch (#108881) (#108961)
Fixes https://github.com/pytorch/pytorch/issues/106051

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108881
Approved by: https://github.com/soulitzer
2023-09-11 10:06:42 -04:00
fa8259db8d Revert and reland fix clang-tidy warnings in torch/csrc (#108825)
* Revert "[1/N] fix clang-tidy warnings in torch/csrc (#107648)"

This reverts commit 49eeca00d1e76dd0158758f2c29da6b1d06bf54a.

Reverted https://github.com/pytorch/pytorch/pull/107648 on behalf of https://github.com/osalpekar due to This causes breakages due to underspecified type ([comment](https://github.com/pytorch/pytorch/pull/107648#issuecomment-1696372588))

* [Reland] [1/N] fix clang-tidy warnings in torch/csrc (#108114)

Reland of PR #107648 with auto replaced with Py_ssize_t in eval_frame.c. This PR applies fixes to some found issues by clang-tidy in torch/csrc.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108114
Approved by: https://github.com/Skylion007

---------

Co-authored-by: PyTorch MergeBot <pytorchmergebot@users.noreply.github.com>
Co-authored-by: cyy <cyyever@outlook.com>
2023-09-08 17:55:48 -04:00
d83c8287ea Use contiguous() to handle noncontiguous outputs during elementwise decomposition (#108140) (#108555)
Fixes https://github.com/pytorch/pytorch/issues/108218

Use contiguous() API to handle noncontiguous outputs during elementwise decomp

With this change, ops is decomposing properly (testcase from the bug):
```
graph():
    %arg0_1 : [#users=3] = placeholder[target=arg0_1]
    %abs_1 : [#users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
    %floor : [#users=1] = call_function[target=torch.ops.aten.floor.default](args = (%abs_1,), kwargs = {})
    %sign : [#users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {})
    %mul : [#users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%floor, %sign), kwargs = {})
    %sub : [#users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mul), kwargs = {})
    return (sub,)
```
Output:
```
tensor([[ 0.2871,  0.7189,  0.7297],
        [ 0.8782, -0.4899,  0.7055]], device='hpu:0')
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108140
Approved by: https://github.com/ezyang
2023-09-07 13:44:04 -04:00
ba19c52e31 Fix multi output layout error in indexing dtype calculation (#108085) (#108693)
Differential Revision: [D48757829](https://our.internmc.facebook.com/intern/diff/D48757829)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108085
Approved by: https://github.com/yanboliang, https://github.com/davidberard98, https://github.com/jansel, https://github.com/peterbell10
2023-09-07 13:29:06 -04:00
c5c9536aa7 move IPEX backend to training/inference category (#108737) 2023-09-07 13:24:20 -04:00
6b7a777661 [dtensor] fix two more requires_grad callsite (#108358) (#108738)
redistribute return a new DTensor and those returned DTensors should
follow the input DTensor requires_grad instead of the input tensor local
tensor's requires_grad
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108358
Approved by: https://github.com/fduwjj
2023-09-07 13:10:15 -04:00
ebd3224303 add torch_api (#108617) 2023-09-07 13:08:29 -04:00
6e4ae13657 Release only change, test against test channel (#108688) 2023-09-06 17:56:41 -04:00
265e46e193 Revert "docs: Match open bracket with close bracket in unsqueeze (#95215)" (#108680)
This reverts commit 9d04d376d81be2f01e5ea6b68943390346f2494c.

Reverted https://github.com/pytorch/pytorch/pull/95215 on behalf of https://github.com/kit1980 due to Incorrect assumptions ([comment](https://github.com/pytorch/pytorch/pull/95215#issuecomment-1708852420))

Co-authored-by: PyTorch MergeBot <pytorchmergebot@users.noreply.github.com>
2023-09-06 17:55:59 -04:00
da7290dfbd [ONNX] Show sarif_report_path (#108398) (#108679)
`sarif_report_path` was not formatted correctly in the error message

@BowenBao

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108398
Approved by: https://github.com/thiagocrepaldi
2023-09-06 17:53:54 -04:00
828992cf13 Inductor cpp wrapper: fix codegen of positional args with default value (#108652)
* Inductor cpp wrapper: fix codegen of positional args with default value (#108552)

Fixes https://github.com/pytorch/pytorch/issues/108323.
Cpp wrapper has functionality regression on `llama` and `tnt_s_patch16_224` due to recent support of scaled dot product flash attention in inductor.

The schema of this OP is as follows:
```
- func: _scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, int max_q, int max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
```

For `llama` and `tnt_s_patch16_224`, the OP is called in the below way, where the three positional args with default values are not passed (`float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False`).
```python
y = torch.ops.aten._scaled_dot_product_flash_attention.default(x0, x1, x2, scale = 0.125)
```

This PR fixes the cpp wrapper support for this case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108552
Approved by: https://github.com/jgong5, https://github.com/desertfire, https://github.com/jansel

* ut: update function name on release branch
2023-09-06 13:41:25 -04:00
48246f3dfb Add check for out of range pointer. (#107510) (#108649)
### Summary

Hi! We've been fuzzing pytorch with [sydr-fuzz](https://github.com/ispras/oss-sydr-fuzz) and found an error of accessing arbitary address while parsing flatbuffer format using `torch::load` function.

pytorch version: 18bcf62bbcf7ffd47e3bcf2596f72aa07a07d65f (the last commit at the moment of reporting the issue)

### Details
The vulnerability appears while loading arbitrary user input using `torch::load` function. To detect the error the input must correspond to FlatbufferFileFormat, so the part of parsing flatbuffer in `import_ir_module` function must be executed.

Firstly error can occur in `GetMutableRoot` in `module.h`, where we add pointer to input data buffer with the value, got from dereference of this pointer (which data fully depends on the user input and can be arbitrary). so the resulting `flatbuffer_module` address can be corrupted.

Moreover, we can get the arbitrary address later at `flatbuffer_loader.cpp:305`, when we get `ival` pointer with `Get` method.
There in `IndirectHelper::Read` function we add pointer with the offset got from the dereference of this pointer, so the address can be corrupted again.

The corrupted `ival` pointer is dereferenced at `table.h` in flatbuffers project, where is used to get another address, which is later dereferenced again at `table.h` in flatbuffers project. The resulting corrupted address is written to `func` pointer at `flatbuffer_loader.cpp:274`, which is then used in `parseFunction`, where write access to the address occurs.

To fix the problem we can compute the end of memory area in `parse_and_initialize_mobile_module` function like this:
```
auto* end = static_cast<char*>(data) + size;
```
And then pass it to all the callees and insert corresponding checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107510
Approved by: https://github.com/albanD

Co-authored-by: Eli Kobrin <kobrineli@ispras.ru>
2023-09-06 13:21:04 -04:00
7d6971dcee [dtensor] fix new_empty_strided op (#107835) (#108600)
This PR fixes the new_empty_strided op to become replicate from sharding
when necessary, this is a quick fix to resolve https://github.com/pytorch/pytorch/issues/107661

We'll need to think more about the behavior of this op when it comes to
sharding, one possibility is to follow the input sharding, but given the
output shape of this op might not be the same as the input, it's hard to
say we should follow the input sharding, further improvement needed once
we figure out the op syntax
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107835
Approved by: https://github.com/fduwjj
2023-09-06 09:28:20 -04:00
5417e23ba8 torch.compile-functorch interaction: update docs (#108130) (#108628)
Doc Preview: https://docs-preview.pytorch.org/pytorch/pytorch/108130/torch.compiler_faq.html#torch-func-works-with-torch-compile-for-grad-and-vmap-transforms

Will also cherry-pick this for release branch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108130
Approved by: https://github.com/zou3519
2023-09-06 08:25:19 -04:00
7a9101951d Improve docs for torch.unique dim argument (#108292) (#108596)
Fixes #103142

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108292
Approved by: https://github.com/albanD

Co-authored-by: Kurt Mohler <kmohler@quansight.com>
2023-09-05 17:47:48 -04:00
03e7f0b99d [Inductor] Add fused_attention pattern matcher with additional clone (#108141) (#108327)
A previous PR https://github.com/pytorch/pytorch/pull/106274 decomposes `aten.dropout` and would create a `clone()` when `eval()` or `p=0`. This makes many SDPA-related models fail to match fused_attention pattern matchers.

This PR adds new fused_attention pattern matchers with an additional clone to re-enable the SDPA op matching.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108141
Approved by: https://github.com/jgong5, https://github.com/eellison
2023-09-05 17:09:39 -04:00
c0e7239f43 Pin pandas version for inductor Docker image (#108355) (#108593)
Building docker in trunk is failing atm https://github.com/pytorch/pytorch/actions/runs/6033657019/job/16370683676 with the following error:

```
+ conda_reinstall numpy=1.24.4
+ as_jenkins conda install -q -n py_3.10 -y --force-reinstall numpy=1.24.4
+ sudo -E -H -u jenkins env -u SUDO_UID -u SUDO_GID -u SUDO_COMMAND -u SUDO_USER env PATH=/opt/conda/envs/py_3.10/bin:/opt/conda/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64 conda install -q -n py_3.10 -y --force-reinstall numpy=1.24.4
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... unsuccessful initial attempt using frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): ...working... done
Solving environment: ...working... unsuccessful initial attempt using frozen solve. Retrying with flexible solve.

PackagesNotFoundError: The following packages are not available from current channels:

  - numpy=1.24.4

Current channels:

  - https://repo.anaconda.com/pkgs/main/linux-64
  - https://repo.anaconda.com/pkgs/main/noarch
  - https://repo.anaconda.com/pkgs/r/linux-64
  - https://repo.anaconda.com/pkgs/r/noarch
```

This was pulled in by pandas 2.1.0 released yesterday https://pypi.org/project/pandas/2.1.0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108355
Approved by: https://github.com/kit1980, https://github.com/atalman, https://github.com/malfet
2023-09-05 17:05:54 -04:00
04c1e07fd7 [quant] Move dropout replacement to move_model_to_eval (#108184) (#108255)
Summary: This commit adds a public facing
`torch.ao.quantization.move_model_to_eval` util function
for QAT users. Instead of calling model.eval() on an exported
model (which doesn't work, see
https://github.com/pytorch/pytorch/issues/103681), the user
would call this new util function instead. This ensures special
ops such as dropout and batchnorm (not supported yet) will have
the right behavior when the graph is later used for inference.

Note: Support for an equivalent `move_model_to_train` will be
added in the future. This is difficult to do for dropout
currently because the eval pattern of dropout is simply a clone
op, which we cannot just match and replace with a dropout op.

Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_move_model_to_eval

Reviewers: jerryzh168, kimishpatel

Subscribers: jerryzh168, kimishpatel, supriyar

Differential Revision: [D48814735](https://our.internmc.facebook.com/intern/diff/D48814735)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108184
Approved by: https://github.com/jerryzh168
2023-09-05 13:42:37 -07:00
cb4362ba5f Error when someone calls train/eval on pre_autograd graph (#108143) (#108258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108143
Approved by: https://github.com/andrewor14

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
2023-09-05 13:41:16 -07:00
bddd30ca7a [inductor] Fix inputs with existing offsets (#108259)
Cherry pick of #108168
2023-09-05 16:24:48 -04:00
9cc99906e9 When byteorder record is missing load as little endian by default (#108523)
* When byteorder record is missing load as little endian by default

Fixes #101688

* Add test for warning

Also change warning type from DeprecationWarning
to UserWarning to make it visible by default.
2023-09-05 16:06:22 -04:00
a49fca4dd4 inductor change needed to update triton pin (#108129)
ghstack-source-id: 5d421f734d5d7d9428b5fed54388cc95e559cd95
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107722
2023-09-05 14:40:23 -04:00
83964c761e [inductor] Add aten.multinomial to disallowed cudagraphs ops (#108122)
Cherry pick of #108105
2023-09-05 14:37:58 -04:00
085bd1da62 [dynamo] Fix setattr nn.Module with new attribute (#108121)
Cherry pick of #108098
2023-09-05 14:36:40 -04:00
90452f41e3 [dynamo] Graph break on pack_padded_sequence (#108120)
Release branch cherrypick of #108096
2023-09-05 14:34:47 -04:00
35c3d5a080 [inductor] Fix constant_to_device issue with ir.Constant (#108119)
Cherry pick of #108087
2023-09-05 14:33:32 -04:00
d07ac50e26 Only add triton dependency to CUDA and ROCm binaries if it hasn't been set as an installation requirement yet (#108424) (#108471)
The dependency was added twice before in CUDA and ROCm binaries, one as an installation dependency from builder and the later as an extra dependency for dynamo, for example:

```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
License-File: LICENSE
License-File: NOTICE
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8)
Provides-Extra: dynamo
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8) ; extra == 'dynamo'
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```

In the previous release, we needed to remove this part from `setup.py` to build release binaries https://github.com/pytorch/pytorch/pull/96010.  With this, that step isn't needed anymore because the dependency will come from builder.

### Testing

Using the draft https://github.com/pytorch/pytorch/pull/108374 for testing and manually inspect the wheels artifact at https://github.com/pytorch/pytorch/actions/runs/6045878399 (don't want to go through all `ciflow/binaries` again)

* torch-2.1.0.dev20230901+cu121-cp39-cp39-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8) <-- This will be 2.1.0 on the release branch after https://github.com/pytorch/builder/pull/1515
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```

* torch-2.1.0.dev20230901+cu121.with.pypi.cudnn-cp39-cp39-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton (==2.1.0+e6216047b8)
Requires-Dist: nvidia-cuda-nvrtc-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cuda-runtime-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cuda-cupti-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cudnn-cu12 (==8.9.2.26) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cublas-cu12 (==12.1.3.1) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cufft-cu12 (==11.0.2.54) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-curand-cu12 (==10.3.2.106) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cusolver-cu12 (==11.4.5.107) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-cusparse-cu12 (==12.1.0.106) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-nccl-cu12 (==2.18.1) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: nvidia-nvtx-cu12 (==12.1.105) ; platform_system == "Linux" and platform_machine == "x86_64"
Requires-Dist: triton (==2.1.0) ; platform_system == "Linux" and platform_machine == "x86_64" <--This is 2.1.0 because it already has https://github.com/pytorch/pytorch/pull/108423, but the package doesn't exist yet atm
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```

* torch-2.1.0.dev20230901+rocm5.6-cp38-cp38-linux_x86_64
```
Requires-Python: >=3.8.0
Description-Content-Type: text/markdown
Requires-Dist: filelock
Requires-Dist: typing-extensions
Requires-Dist: sympy
Requires-Dist: networkx
Requires-Dist: jinja2
Requires-Dist: fsspec
Requires-Dist: pytorch-triton-rocm (==2.1.0+34f8189eae) <-- This will be 2.1.0 on the release branch after https://github.com/pytorch/builder/pull/1515
Provides-Extra: dynamo
Requires-Dist: jinja2 ; extra == 'dynamo'
Provides-Extra: opt-einsum
Requires-Dist: opt-einsum (>=3.3) ; extra == 'opt-einsum'
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108424
Approved by: https://github.com/atalman
2023-09-05 09:22:31 -04:00
8a3b017769 Add triton dependency to PyPI PyTorch package (#108423) 2023-09-01 16:51:10 -04:00
a82894b0d3 Added info for each artifact option, added a help option to TORCH_LOGS, and changed the error message (#107758) (#108365)
New message when invalid option is provided
<img width="1551" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/8b61534a-ee55-431e-94fe-2ffa25b7fd5c">

TORCH_LOGS="help"
<img width="1558" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/72e8939c-92fa-4141-8114-79db71451d42">

TORCH_LOGS="+help"
<img width="1551" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/2cdc94ac-505a-478c-aa58-0175526075d2">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107758
Approved by: https://github.com/ezyang, https://github.com/mlazos
ghstack dependencies: #106192
2023-09-01 16:11:59 -04:00
050fc31538 [MPS] Fix .item() for multi-dim scalar (#107913) (#108410)
By refactoring `_local_scalar_dense_mps` to use `_empty_like` to allocate CPU tensor.
Also, print a more reasonable error message when dst dim is less than src in mps_copy_

This fixes regression introduced by https://github.com/pytorch/pytorch/pull/105617 and adds regression test.

<!--
copilot:poem
-->
### <samp>🤖 Generated by Copilot at abd06e6</samp>

> _Sing, O Muse, of the valiant deeds of the PyTorch developers_
> _Who strive to improve the performance and usability of tensors_
> _And who, with skill and wisdom, fixed a bug in the MPS backend_
> _That caused confusion and dismay to many a user of `item()`_

Fixes https://github.com/pytorch/pytorch/issues/107867

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107913
Approved by: https://github.com/albanD

Co-authored-by: Nikita Shulga <nikita.shulga@gmail.com>
2023-09-01 11:58:26 -04:00
b3cb05b396 Update to RNN documentation (issue #106085) (#106222) (#108385)
Addresses [issue #106085](https://github.com/pytorch/pytorch/issues/106085).

In `torch/nn/modules/rnn.py`:
- Adds documentation string to RNNBase class.
- Adds parameters to __init__ methods for RNN, LSTM, and GRU, classes.
- Adds type annotations to __init__ methods for RNN, LSTM, and GRU.

In `torch/ao/nn/quantized/dynamic/modules/rnn.py`:
- Adds type specifications to `_FLOAT_MODULE` attributes in RNNBase, RNN, LSTM, and GRU classes.
> This resolves a `mypy` assignment error `Incompatible types in assignment (expression has type "Type[LSTM]", base class "RNNBase" defined the type as "Type[RNNBase]")` that seemed to be a result of fully specified type annotations in `torch/nn/modules/rnn.py`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106222
Approved by: https://github.com/mikaylagawarecki
2023-09-01 11:46:16 -04:00
fec68a2799 Add channels_last3d support for mkldnn conv and mkldnn deconv (#95271) (#108216)
### Motivation

- Add channels_last3d support for mkldnn conv and mkldnn deconv.
- Use `ideep::convolution_transpose_forward::compute_v3` instead of `ideep::convolution_transpose_forward::compute`.  compute_v3 uses `is_channels_last` to notify ideep whether to go CL or not to align with the memory format check of PyTorch.

### Testing
1 socket (28 cores):

- memory format: torch.contiguous_format

module | shape | forward / ms | backward / ms
-- | -- | -- | --
conv3d | input size: (32, 32, 10, 100, 100), weight size: (32, 32, 3, 3, 3) | 64.56885 | 150.1796
conv3d | input size: (32, 16, 10, 200, 200), weight size: (16, 16, 3, 3, 3) | 100.6754 | 231.8883
conv3d | input size: (16, 4, 5, 300, 300), weight size: (4, 4, 3, 3, 3) | 19.31751 | 68.31131

module | shape | forward / ms | backward / ms
-- | -- | -- | --
ConvTranspose3d | input size: (32, 32, 10, 100, 100), weight size: (32, 32, 3, 3, 3) | 122.7646 | 207.5125
ConvTranspose3d | input size: (32, 16, 10, 200, 200), weight size: (16, 16, 3, 3, 3) | 202.4542 | 368.5492
ConvTranspose3d | input size: (16, 4, 5, 300, 300), weight size: (4, 4, 3, 3, 3) | 122.959 | 84.62577

- memory format: torch.channels_last_3d

module | shape | forward / ms | backward / ms
-- | -- | -- | --
conv3d | input size: (32, 32, 10, 100, 100), weight size: (32, 32, 3, 3, 3) | 40.06993 | 114.317
conv3d | input size: (32, 16, 10, 200, 200), weight size: (16, 16, 3, 3, 3 | 49.08249 | 133.4079
conv3d | input size: (16, 4, 5, 300, 300), weight size: (4, 4, 3, 3, 3) | 5.873911 | 17.58647

module | shape | forward / ms | backward / ms
-- | -- | -- | --
ConvTranspose3d | input size: (32, 32, 10, 100, 100), weight size: (32, 32, 3, 3, 3) | 88.4246 | 208.2269
ConvTranspose3d | input size: (32, 16, 10, 200, 200), weight size: (16, 16, 3, 3, 3 | 140.0725 | 270.4172
ConvTranspose3d | input size: (16, 4, 5, 300, 300), weight size: (4, 4, 3, 3, 3) | 23.0223 | 37.16972

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95271
Approved by: https://github.com/jgong5, https://github.com/cpuhrsch
2023-09-01 11:44:48 -04:00
f139dda1cc [functorch] make torch.compile support opt-in (#108134) 2023-09-01 10:38:41 -04:00
5252dfb762 Fix triton upload channel detection (#108291) (#108311)
This should be nightly for nightly and test for release candidates.  There are 2 bugs:

* The shell needs to set to `bash` explicitly, otherwise, GHA uses `sh` which doesn't recognized `[[` as shown in https://github.com/pytorch/pytorch/actions/runs/6030476858/job/16362717792#step:6:10
*`${GITHUB_REF_NAME}` is un-quoted.  This is basically https://www.shellcheck.net/wiki/SC2248 but this wasn't captured by actionlint, and shellcheck doesn't work with workflow YAML file.  I will think about how to add a lint rule for this later then.

### Testing

https://github.com/pytorch/pytorch/actions/runs/6031330411 to confirm that setting the channel is performed correctly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108291
Approved by: https://github.com/osalpekar, https://github.com/atalman
2023-09-01 09:41:27 -04:00
da1ccca830 Remove commit hash when building triton wheel and conda in release mode (#108203) (#108251)
This is the follow-up of https://github.com/pytorch/pytorch/pull/108187 to set the correct release version without commit hash for triton wheel and conda binaries when building them in release mode.

### Testing

* With commit hash (nightly): https://github.com/pytorch/pytorch/actions/runs/6019021716
* Without commit hash https://github.com/pytorch/pytorch/actions/runs/6019378616 (by adding `--release` into the PR)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108203
Approved by: https://github.com/atalman
2023-08-30 14:27:06 -04:00
c9cbdaf24f [ROCm] Update ROCm pin to fix triton wheel lib issue (#108229)
main PR already merged: https://github.com/pytorch/pytorch/pull/108137
2023-08-30 09:39:59 -04:00
f187e42a54 Fix various issues on build-triton-wheel workflow (#108187) (#108200)
There are more issues that I expect at the beginning:

* Triton was uploaded on `main` instead of `nightly` and release branch
* The environment `conda-aws-upload` wasn't used correctly in both wheel and conda upload
* Conda update wasn't run in a separate ephemeral runner
* Duplicated upload logic, should have just use `bash .circleci/scripts/binary_upload.sh` instead
* Handle `CONDA_PYTORCHBOT_TOKEN` and `CONDA_PYTORCHBOT_TOKEN_TEST` tokens in a similar way as https://github.com/pytorch/test-infra/pull/4530

Part of https://github.com/pytorch/pytorch/issues/108154
2023-08-30 09:37:49 -04:00
9175987fcc Fix the use of inputs.build_environment in #107868 (#108075) (#108177)
It should be `${{ inputs.build_environment }}`, although I wonder why not just clean up the artifacts directory for all build instead of just `aarch64`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108075
Approved by: https://github.com/atalman, https://github.com/seemethere
2023-08-30 09:36:31 -04:00
d8e6594fb8 skip dynamic shape test for test_conv_bn_fuse (#108113) (#108139)
For test_conv_bn_fuse dynamic case, we always fuse bn with convolution and there only a external convolution call, not loops, so it will failed when we do a dynamic loop vars check. This PR will skip this case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108113
Approved by: https://github.com/huydhn
2023-08-30 09:35:08 -04:00
f82c027774 Fix LayerNorm(bias=False) error (#108078)
ghstack-source-id: 613c4f3608b1a375013fc9da64545c1084025650
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108060
2023-08-30 09:30:22 -04:00
6d20b39d3f [CI] Release only chnages use anaconda token for test env (#108064) 2023-08-28 12:41:57 -04:00
17f400404f [CI] Release only changes for 2.1 release (#108053)
* [CI] Release only changes for 2.1 release

* include circle script

* release only changes for test-infra

* More test-infra related
2023-08-28 11:55:58 -04:00
14852 changed files with 1048809 additions and 632220 deletions

View File

@ -1,4 +1,3 @@
# We do not use this library in our Bazel build. It contains an
# infinitely recursing symlink that makes Bazel very unhappy.
third_party/ittapi/
third_party/opentelemetry-cpp

View File

@ -19,7 +19,6 @@ See `build.sh` for valid build environments (it's the giant switch).
* `ubuntu` -- Dockerfile for Ubuntu image for CPU build and test jobs
* `ubuntu-cuda` -- Dockerfile for Ubuntu image with CUDA support for nvidia-docker
* `ubuntu-rocm` -- Dockerfile for Ubuntu image with ROCm support
* `ubuntu-xpu` -- Dockerfile for Ubuntu image with XPU support
## Usage

View File

@ -71,11 +71,6 @@ if [[ "$image" == *cuda* && "$UBUNTU_VERSION" != "22.04" ]]; then
DOCKERFILE="${OS}-cuda/Dockerfile"
elif [[ "$image" == *rocm* ]]; then
DOCKERFILE="${OS}-rocm/Dockerfile"
elif [[ "$image" == *xpu* ]]; then
DOCKERFILE="${OS}-xpu/Dockerfile"
elif [[ "$image" == *cuda*linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter-cuda/Dockerfile"
elif [[ "$image" == *linter* ]]; then
# Use a separate Dockerfile for linter to keep a small image size
DOCKERFILE="linter/Dockerfile"
@ -84,30 +79,16 @@ fi
# CMake 3.18 is needed to support CUDA17 language variant
CMAKE_VERSION=3.18.5
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
_UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
_UCX_COMMIT=00bcc6bb18fc282eb160623b4c0d300147f579af
_UCC_COMMIT=7cb07a76ccedad7e56ceb136b865eb9319c258ea
# It's annoying to rename jobs every time you want to rewrite a
# configuration, so we hardcode everything here rather than do it
# from scratch
case "$image" in
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
CUDA_VERSION=12.4.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9)
pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
@ -119,24 +100,9 @@ case "$image" in
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9-inductor-benchmarks)
pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
@ -149,39 +115,9 @@ case "$image" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.4.0
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda11.8-cudnn9-py3-gcc9)
pytorch-linux-focal-cuda11.8-cudnn8-py3-gcc9)
CUDA_VERSION=11.8.0
CUDNN_VERSION=9
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
@ -193,11 +129,11 @@ case "$image" in
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
CUDA_VERSION=12.4.0
CUDNN_VERSION=9
pytorch-linux-focal-cuda11.8-cudnn8-py3-gcc7)
CUDA_VERSION=11.8.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
@ -207,23 +143,24 @@ case "$image" in
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.1-cudnn9-py3-gcc9)
pytorch-linux-focal-cuda11.8-cudnn8-py3-gcc7-inductor-benchmarks)
CUDA_VERSION=11.8.0
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-focal-cuda12.1-cudnn8-py3-gcc9)
CUDA_VERSION=12.1.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
DB=yes
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-focal-cuda12.4-cudnn9-py3-gcc9)
CUDA_VERSION=12.4.0
CUDNN_VERSION=9
CUDNN_VERSION=8
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
PROTOBUF=yes
@ -244,13 +181,13 @@ case "$image" in
CONDA_CMAKE=yes
ONNX=yes
;;
pytorch-linux-focal-py3-clang9-android-ndk-r21e)
pytorch-linux-focal-py3-clang7-android-ndk-r19c)
ANACONDA_PYTHON_VERSION=3.8
CLANG_VERSION=9
CLANG_VERSION=7
LLVMDEV=yes
PROTOBUF=yes
ANDROID=yes
ANDROID_NDK_VERSION=r21e
ANDROID_NDK_VERSION=r19c
GRADLE_VERSION=6.8.3
NINJA_VERSION=1.9.0
;;
@ -291,7 +228,7 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=6.0
ROCM_VERSION=5.4.2
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
@ -302,21 +239,21 @@ case "$image" in
PROTOBUF=yes
DB=yes
VISION=yes
ROCM_VERSION=6.1
ROCM_VERSION=5.6
NINJA_VERSION=1.9.0
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-xpu-2024.0-py3)
pytorch-linux-focal-py3.8-gcc7)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=11
GCC_VERSION=7
PROTOBUF=yes
DB=yes
VISION=yes
XPU_VERSION=0.5
NINJA_VERSION=1.9.0
KATEX=yes
CONDA_CMAKE=yes
TRITON=yes
DOCS=yes
;;
pytorch-linux-jammy-py3.8-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.8
@ -330,10 +267,10 @@ case "$image" in
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda11.8-cudnn9-py3.8-clang12)
pytorch-linux-jammy-cuda11.8-cudnn8-py3.8-clang12)
ANACONDA_PYTHON_VERSION=3.8
CUDA_VERSION=11.8
CUDNN_VERSION=9
CUDNN_VERSION=8
CLANG_VERSION=12
PROTOBUF=yes
DB=yes
@ -349,12 +286,6 @@ case "$image" in
CONDA_CMAKE=yes
TRITON=yes
;;
pytorch-linux-jammy-py3-clang15-asan)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=15
CONDA_CMAKE=yes
VISION=yes
;;
pytorch-linux-jammy-py3.8-gcc11)
ANACONDA_PYTHON_VERSION=3.8
GCC_VERSION=11
@ -365,13 +296,6 @@ case "$image" in
CONDA_CMAKE=yes
TRITON=yes
DOCS=yes
UNINSTALL_DILL=yes
;;
pytorch-linux-jammy-py3-clang12-executorch)
ANACONDA_PYTHON_VERSION=3.10
CLANG_VERSION=12
CONDA_CMAKE=yes
EXECUTORCH=yes
;;
pytorch-linux-focal-linter)
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
@ -380,26 +304,6 @@ case "$image" in
ANACONDA_PYTHON_VERSION=3.9
CONDA_CMAKE=yes
;;
pytorch-linux-jammy-cuda11.8-cudnn9-py3.9-linter)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=11.8
CONDA_CMAKE=yes
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
ACL=yes
PROTOBUF=yes
DB=yes
VISION=yes
CONDA_CMAKE=yes
# snadampal: skipping sccache due to the following issue
# https://github.com/pytorch/pytorch/issues/121559
SKIP_SCCACHE_INSTALL=yes
# snadampal: skipping llvm src build install because the current version
# from pytorch/llvm:9.0.1 is x86 specific
SKIP_LLVM_SRC_BUILD_INSTALL=yes
;;
*)
# Catch-all for builds that are not hardcoded.
PROTOBUF=yes
@ -417,9 +321,6 @@ case "$image" in
extract_version_from_image_name rocm ROCM_VERSION
NINJA_VERSION=1.9.0
TRITON=yes
# To ensure that any ROCm config will build using conda cmake
# and thus have LAPACK/MKL enabled
CONDA_CMAKE=yes
fi
if [[ "$image" == *centos7* ]]; then
NINJA_VERSION=1.10.2
@ -447,17 +348,20 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
#when using cudnn version 8 install it separately from cuda
if [[ "$image" == *cuda* && ${OS} == "ubuntu" ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
if [[ ${CUDNN_VERSION} == 9 ]]; then
if [[ ${CUDNN_VERSION} == 8 ]]; then
IMAGE_NAME="nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}"
fi
fi
# Build image
# TODO: build-arg THRIFT is not turned on for any image, remove it once we confirm
# it's no longer needed.
docker build \
--no-cache \
--progress=plain \
--build-arg "BUILD_ENVIRONMENT=${image}" \
--build-arg "PROTOBUF=${PROTOBUF:-}" \
--build-arg "THRIFT=${THRIFT:-}" \
--build-arg "LLVMDEV=${LLVMDEV:-}" \
--build-arg "DB=${DB:-}" \
--build-arg "VISION=${VISION:-}" \
@ -489,17 +393,12 @@ docker build \
--build-arg "ONNX=${ONNX}" \
--build-arg "DOCS=${DOCS}" \
--build-arg "INDUCTOR_BENCHMARKS=${INDUCTOR_BENCHMARKS}" \
--build-arg "EXECUTORCH=${EXECUTORCH}" \
--build-arg "XPU_VERSION=${XPU_VERSION}" \
--build-arg "ACL=${ACL:-}" \
--build-arg "SKIP_SCCACHE_INSTALL=${SKIP_SCCACHE_INSTALL:-}" \
--build-arg "SKIP_LLVM_SRC_BUILD_INSTALL=${SKIP_LLVM_SRC_BUILD_INSTALL:-}" \
-f $(dirname ${DOCKERFILE})/Dockerfile \
-t "$tmp_tag" \
"$@" \
.
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn9-devel-ubuntu18.04-rc`,
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to replace the
# "$UBUNTU_VERSION" == "18.04-rc"

View File

@ -62,7 +62,7 @@ RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
@ -77,9 +77,6 @@ RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh
RUN rm install_rocm_magma.sh
COPY ./common/install_amdsmi.sh install_amdsmi.sh
RUN bash ./install_amdsmi.sh
RUN rm install_amdsmi.sh
ENV PATH /opt/rocm/bin:$PATH
ENV PATH /opt/rocm/hcc/bin:$PATH
ENV PATH /opt/rocm/hip/bin:$PATH
@ -101,30 +98,11 @@ COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
ENV CMAKE_C_COMPILER cc
ENV CMAKE_CXX_COMPILER c++
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-rocm.txt triton-rocm.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-rocm.txt triton_version.txt
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Install AOTriton
COPY ci_commit_pins/aotriton.txt aotriton.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm/aotriton && rm -rf install_aotriton.sh aotriton aotriton.txt common_utils.sh
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}

View File

@ -1 +0,0 @@
24a3fe9cb57e5cda3c923df29743f9767194cc27

View File

@ -1 +0,0 @@
d4b3e5cc607e97afdba79dc90f8ef968142f347c

View File

@ -1 +1 @@
243e186efbf7fb93328dd6b34927a4e8c8f24395
4.27.4

View File

@ -1 +1 @@
730b907b4d45a4713cbc425cbf224c46089fd514
b9d43c7dcac1fe05e851dd7be7187b108af593d2

View File

@ -1 +1 @@
01cbe5045a6898c9a925f01435c8277b2fe6afcc
34f8189eae57a23cc15b4b4f032fe25757e0db8e

View File

@ -1 +0,0 @@
b8c64f64c18d8cac598b3adb355c21e7439c21de

View File

@ -1 +1 @@
45fff310c891f5a92d55445adf8cc9d29df5841e
e6216047b8b0aef1fe8da6ca8667a3ad0a016411

View File

@ -1,16 +0,0 @@
set -euo pipefail
readonly version=v24.04
readonly src_host=https://review.mlplatform.org/ml
readonly src_repo=ComputeLibrary
# Clone ACL
[[ ! -d ${src_repo} ]] && git clone ${src_host}/${src_repo}.git
cd ${src_repo}
git checkout $version
# Build with scons
scons -j8 Werror=0 debug=0 neon=1 opencl=0 embed_kernels=0 \
os=linux arch=armv8a build=native multi_isa=1 \
fixed_format_kernels=1 openmp=1 cppthreads=0

View File

@ -1,5 +0,0 @@
#!/bin/bash
set -ex
cd /opt/rocm/share/amd_smi && pip install .

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
AOTRITON_DIR="aotriton"
AOTRITON_PINNED_NAME="aotriton" # No .txt extension
AOTRITON_PINNED_COMMIT=$(get_pinned_commit ${AOTRITON_PINNED_NAME})
AOTRITON_INSTALL_PREFIX="$1"
git clone https://github.com/ROCm/aotriton.git "${AOTRITON_DIR}"
cd "${AOTRITON_DIR}"
git checkout "${AOTRITON_PINNED_COMMIT}"
git submodule sync --recursive
git submodule update --init --recursive --force --depth 1
mkdir build
cd build
cmake .. -G Ninja -DCMAKE_INSTALL_PREFIX=./install_dir -DCMAKE_BUILD_TYPE=Release -DAOTRITON_COMPRESS_KERNEL=OFF -DAOTRITON_NO_PYTHON=ON -DAOTRITON_NO_SHARED=ON
ninja install
mkdir -p "${AOTRITON_INSTALL_PREFIX}"
cp -r install_dir/* "${AOTRITON_INSTALL_PREFIX}"
find /tmp/ -mindepth 1 -delete
rm -rf ~/.triton

View File

@ -3,13 +3,16 @@
set -ex
install_ubuntu() {
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn9-devel-ubuntu18.04-rc`,
# NVIDIA dockers for RC releases use tag names like `11.0-cudnn8-devel-ubuntu18.04-rc`,
# for this case we will set UBUNTU_VERSION to `18.04-rc` so that the Dockerfile could
# find the correct image. As a result, here we have to check for
# "$UBUNTU_VERSION" == "18.04"*
# instead of
# "$UBUNTU_VERSION" == "18.04"
if [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
if [[ "$UBUNTU_VERSION" == "18.04"* ]]; then
cmake3="cmake=3.10*"
maybe_libiomp_dev="libiomp-dev"
elif [[ "$UBUNTU_VERSION" == "20.04"* ]]; then
cmake3="cmake=3.16*"
maybe_libiomp_dev=""
elif [[ "$UBUNTU_VERSION" == "22.04"* ]]; then
@ -20,9 +23,7 @@ install_ubuntu() {
maybe_libiomp_dev="libiomp-dev"
fi
if [[ "$CLANG_VERSION" == 15 ]]; then
maybe_libomp_dev="libomp-15-dev"
elif [[ "$CLANG_VERSION" == 12 ]]; then
if [[ "$CLANG_VERSION" == 12 ]]; then
maybe_libomp_dev="libomp-12-dev"
elif [[ "$CLANG_VERSION" == 10 ]]; then
maybe_libomp_dev="libomp-10-dev"
@ -61,7 +62,6 @@ install_ubuntu() {
${maybe_libiomp_dev} \
libyaml-dev \
libz-dev \
libjemalloc2 \
libjpeg-dev \
libasound2-dev \
libsndfile-dev \
@ -75,7 +75,6 @@ install_ubuntu() {
libtool \
vim \
unzip \
gpg-agent \
gdb
# Should resolve issues related to various apt package repository cert issues
@ -113,6 +112,7 @@ install_centos() {
glibc-devel \
glibc-headers \
glog-devel \
hiredis-devel \
libstdc++-devel \
libsndfile-devel \
make \
@ -152,7 +152,7 @@ wget https://ossci-linux.s3.amazonaws.com/valgrind-${VALGRIND_VERSION}.tar.bz2
tar -xjf valgrind-${VALGRIND_VERSION}.tar.bz2
cd valgrind-${VALGRIND_VERSION}
./configure --prefix=/usr/local
make -j$[$(nproc) - 2]
make -j6
sudo make install
cd ../../
rm -rf valgrind_build

View File

@ -9,19 +9,10 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
if [[ $(uname -m) == "aarch64" ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download"
case "$MAJOR_PYTHON_VERSION" in
3)
CONDA_FILE="Miniforge3-Linux-aarch64.sh"
2)
CONDA_FILE="Miniconda2-latest-Linux-x86_64.sh"
;;
*)
echo "Unsupported ANACONDA_PYTHON_VERSION: $ANACONDA_PYTHON_VERSION"
exit 1
;;
esac
else
case "$MAJOR_PYTHON_VERSION" in
3)
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
;;
@ -30,7 +21,6 @@ else
exit 1
;;
esac
fi
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda
@ -57,44 +47,30 @@ fi
# Uncomment the below when resolved to track the latest conda update
# as_jenkins conda update -y -n base conda
if [[ $(uname -m) == "aarch64" ]]; then
export SYSROOT_DEP="sysroot_linux-aarch64=2.17"
else
export SYSROOT_DEP="sysroot_linux-64=2.17"
fi
# Install correct Python version
# Also ensure sysroot is using a modern GLIBC to match system compilers
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y\
python="$ANACONDA_PYTHON_VERSION" \
${SYSROOT_DEP}
# libstdcxx from conda default channels are too old, we need GLIBCXX_3.4.30
# which is provided in libstdcxx 12 and up.
conda_install libstdcxx-ng=12.3.0 -c conda-forge
as_jenkins conda create -n py_$ANACONDA_PYTHON_VERSION -y python="$ANACONDA_PYTHON_VERSION"
# Install PyTorch conda deps, as per https://github.com/pytorch/pytorch README
if [[ $(uname -m) == "aarch64" ]]; then
CONDA_COMMON_DEPS="astunparse pyyaml setuptools openblas==0.3.25=*openmp* ninja==1.11.1 scons==4.5.2"
if [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
conda_install numpy=1.24.4 ${CONDA_COMMON_DEPS}
else
conda_install numpy=1.26.2 ${CONDA_COMMON_DEPS}
fi
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2021.4.0 mkl-include=2021.4.0 setuptools"
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ]; then
conda_install numpy=1.23.5 ${CONDA_COMMON_DEPS}
elif [ "$ANACONDA_PYTHON_VERSION" = "3.10" ]; then
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}
elif [ "$ANACONDA_PYTHON_VERSION" = "3.9" ]; then
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}
elif [ "$ANACONDA_PYTHON_VERSION" = "3.8" ]; then
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}
else
CONDA_COMMON_DEPS="astunparse pyyaml mkl=2021.4.0 mkl-include=2021.4.0 setuptools"
if [ "$ANACONDA_PYTHON_VERSION" = "3.11" ] || [ "$ANACONDA_PYTHON_VERSION" = "3.12" ]; then
conda_install numpy=1.26.0 ${CONDA_COMMON_DEPS}
else
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS}
fi
# Install `typing-extensions` for 3.7
conda_install numpy=1.21.2 ${CONDA_COMMON_DEPS} typing-extensions
fi
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
# and libpython-static for torch deploy
conda_install llvmdev=8.0.0 "libpython-static=${ANACONDA_PYTHON_VERSION}"
# This is only supported in 3.8 upward
if [ "$MINOR_PYTHON_VERSION" -gt "7" ]; then
# Install llvm-8 as it is required to compile llvmlite-0.30.0 from source
# and libpython-static for torch deploy
conda_install llvmdev=8.0.0 "libpython-static=${ANACONDA_PYTHON_VERSION}"
fi
# Use conda cmake in some cases. Conda cmake will be newer than our supported
# min version (3.5 for xenial and 3.10 for bionic), so we only do it in those
@ -113,7 +89,13 @@ fi
# Install some other packages, including those needed for Python test reporting
pip_install -r /opt/conda/requirements-ci.txt
pip_install -U scikit-learn
# Update scikit-learn to a python-3.8 compatible version
if [[ $(python -c "import sys; print(int(sys.version_info >= (3, 8)))") == "1" ]]; then
pip_install -U scikit-learn
else
# Pinned scikit-learn due to https://github.com/scikit-learn/scikit-learn/issues/14485 (affects gcc 5.5 only)
pip_install scikit-learn==0.20.3
fi
if [ -n "$DOCS" ]; then
apt-get update
@ -123,5 +105,14 @@ fi
pip_install -r /opt/conda/requirements-docs.txt
fi
# HACK HACK HACK
# gcc-9 for ubuntu-18.04 from http://ppa.launchpad.net/ubuntu-toolchain-r/test/ubuntu
# Pulls llibstdc++6 13.1.0-8ubuntu1~18.04 which is too new for conda
# So remove libstdc++6.so.3.29 installed by https://anaconda.org/anaconda/libstdcxx-ng/files?version=11.2.0
# Same is true for gcc-12 from Ubuntu-22.04
if grep -e [12][82].04.[623] /etc/issue >/dev/null; then
rm /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/lib/libstdc++.so.6
fi
popd
fi

View File

@ -1,22 +1,27 @@
#!/bin/bash
if [[ -n "${CUDNN_VERSION}" ]]; then
if [[ ${CUDNN_VERSION} == 8 ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn
pushd tmp_cudnn
if [[ ${CUDA_VERSION:0:2} == "12" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
mkdir tmp_cudnn && cd tmp_cudnn
CUDNN_NAME="cudnn-linux-x86_64-8.3.2.44_cuda11.5-archive"
if [[ ${CUDA_VERSION:0:4} == "12.1" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-8.9.2.26_cuda12-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-8.7.0.84_cuda11-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.7.0/local_installers/11.8/${CUDNN_NAME}.tar.xz
else
print "Unsupported CUDA version ${CUDA_VERSION}"
exit 1
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/redist/cudnn/v8.3.2/local_installers/11.5/${CUDNN_NAME}.tar.xz
fi
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/include/
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/include/* /usr/include/x86_64-linux-gnu/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
popd
cp -a ${CUDNN_NAME}/lib/* /usr/lib/x86_64-linux-gnu/
cd ..
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -1,26 +0,0 @@
#!/bin/bash
set -ex
# cuSPARSELt license: https://docs.nvidia.com/cuda/cusparselt/license.html
mkdir tmp_cusparselt && cd tmp_cusparselt
if [[ ${CUDA_VERSION:0:4} =~ ^12\.[1-4]$ ]]; then
arch_path='sbsa'
export TARGETARCH=${TARGETARCH:-$(uname -m)}
if [ ${TARGETARCH} = 'amd64' ] || [ "${TARGETARCH}" = 'x86_64' ]; then
arch_path='x86_64'
fi
CUSPARSELT_NAME="libcusparse_lt-linux-${arch_path}-0.5.2.1-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-${arch_path}/${CUSPARSELT_NAME}.tar.xz
elif [[ ${CUDA_VERSION:0:4} == "11.8" ]]; then
CUSPARSELT_NAME="libcusparse_lt-linux-x86_64-0.4.0.7-archive"
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-x86_64/${CUSPARSELT_NAME}.tar.xz
fi
tar xf ${CUSPARSELT_NAME}.tar.xz
cp -a ${CUSPARSELT_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUSPARSELT_NAME}/lib/* /usr/local/cuda/lib64/
cd ..
rm -rf tmp_cusparselt
ldconfig

View File

@ -4,6 +4,11 @@ set -ex
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libhiredis-dev \
libleveldb-dev \
liblmdb-dev \
libsnappy-dev
# Cleanup
apt-get autoclean && apt-get clean
@ -15,6 +20,12 @@ install_centos() {
# See http://fedoraproject.org/wiki/EPEL
yum --enablerepo=extras install -y epel-release
yum install -y \
hiredis-devel \
leveldb-devel \
lmdb-devel \
snappy-devel
# Cleanup
yum clean all
rm -rf /var/cache/yum

View File

@ -1,61 +0,0 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
clone_executorch() {
EXECUTORCH_PINNED_COMMIT=$(get_pinned_commit executorch)
# Clone the Executorch
git clone https://github.com/pytorch/executorch.git
# and fetch the target commit
pushd executorch
git checkout "${EXECUTORCH_PINNED_COMMIT}"
git submodule update --init
popd
chown -R jenkins executorch
}
install_buck2() {
pushd executorch/.ci/docker
BUCK2_VERSION=$(cat ci_commit_pins/buck2.txt)
source common/install_buck.sh
popd
}
install_conda_dependencies() {
pushd executorch/.ci/docker
# Install conda dependencies like flatbuffer
conda_install --file conda-env-ci.txt
popd
}
install_pip_dependencies() {
pushd executorch/.ci/docker
# Install all Python dependencies
pip_install -r requirements-ci.txt
popd
}
setup_executorch() {
pushd executorch
source .ci/scripts/utils.sh
install_flatc_from_source
pip_install .
# Make sure that all the newly generate files are owned by Jenkins
chown -R jenkins .
popd
}
clone_executorch
install_buck2
install_conda_dependencies
install_pip_dependencies
setup_executorch

View File

@ -6,21 +6,19 @@ source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
function install_huggingface() {
local version
commit=$(get_pinned_commit huggingface)
version=$(get_pinned_commit huggingface)
pip_install pandas==2.0.3
pip_install "git+https://github.com/huggingface/transformers@${commit}"
pip_install "transformers==${version}"
}
function install_timm() {
local commit
commit=$(get_pinned_commit timm)
pip_install pandas==2.0.3
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
# Clean up
conda_run pip uninstall -y cmake torch torchvision triton
pip_install "git+https://github.com/rwightman/pytorch-image-models@${commit}"
}
# Pango is needed for weasyprint which is needed for doctr
conda_install pango
install_huggingface
install_timm
# install_timm

View File

@ -10,13 +10,13 @@ retry () {
# A bunch of custom pip dependencies for ONNX
pip_install \
beartype==0.15.0 \
beartype==0.10.4 \
filelock==3.9.0 \
flatbuffers==2.0 \
mock==5.0.1 \
ninja==1.10.2 \
networkx==2.0 \
numpy==1.24.2
numpy==1.22.4
# ONNXRuntime should be installed before installing
# onnx-weekly. Otherwise, onnx-weekly could be
@ -26,19 +26,18 @@ pip_install \
pytest-cov==4.0.0 \
pytest-subtests==0.10.0 \
tabulate==0.9.0 \
transformers==4.36.2
transformers==4.31.0
pip_install coloredlogs packaging
retry pip_install -i https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ --no-cache-dir --no-input ort-nightly==1.16.0.dev20230908001
pip_install onnxruntime==1.18
pip_install onnx==1.16.0
# pip_install "onnxscript@git+https://github.com/microsoft/onnxscript@3e869ef8ccf19b5ebd21c10d3e9c267c9a9fa729" --no-deps
pip_install onnxscript==0.1.0.dev20240523 --no-deps
pip_install onnx==1.14.1
pip_install onnxscript-preview==0.1.0.dev20230828 --no-deps
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
IMPORT_SCRIPT_FILENAME="/tmp/onnx_import_script.py"
as_jenkins echo 'import transformers; transformers.AutoModel.from_pretrained("sshleifer/tiny-gpt2"); transformers.AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2"); transformers.AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large-v3");' > "${IMPORT_SCRIPT_FILENAME}"
as_jenkins echo 'import transformers; transformers.AutoModel.from_pretrained("sshleifer/tiny-gpt2"); transformers.AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2");' > "${IMPORT_SCRIPT_FILENAME}"
# Need a PyTorch version for transformers to work
pip_install --pre torch --index-url https://download.pytorch.org/whl/nightly/cpu

View File

@ -9,8 +9,7 @@ tar xf "${OPENSSL}.tar.gz"
cd "${OPENSSL}"
./config --prefix=/opt/openssl -d '-Wl,--enable-new-dtags,-rpath,$(LIBRPATH)'
# NOTE: openssl install errors out when built with the -j option
NPROC=$[$(nproc) - 2]
make -j${NPROC}; make install_sw
make -j6; make install_sw
# Link the ssl libraries to the /usr/lib folder.
sudo ln -s /opt/openssl/lib/lib* /usr/lib
cd ..

View File

@ -2,18 +2,55 @@
set -ex
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# This function installs protobuf 3.17
install_protobuf_317() {
pb_dir="/usr/temp_pb_install_dir"
mkdir -p $pb_dir
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
# On the nvidia/cuda:9-cudnn7-devel-centos7 image we need this symlink or
# else it will fail with
# g++: error: ./../lib64/crti.o: No such file or directory
ln -s /usr/lib64 "$pb_dir/lib64"
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz" --retry 3
curl -LO "https://github.com/protocolbuffers/protobuf/releases/download/v3.17.3/protobuf-all-3.17.3.tar.gz" --retry 3
tar -xvz -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
# -j6 to balance memory usage and speed.
# naked `-j` seems to use too much memory.
pushd "$pb_dir" && ./configure && make -j6 && make -j6 check && sudo make -j6 install && sudo ldconfig
popd
rm -rf $pb_dir
}
tar -xvz --no-same-owner -C "$pb_dir" --strip-components 1 -f protobuf-all-3.17.3.tar.gz
NPROC=$[$(nproc) - 2]
pushd "$pb_dir" && ./configure && make -j${NPROC} && make -j${NPROC} check && sudo make -j${NRPOC} install && sudo ldconfig
popd
rm -rf $pb_dir
install_ubuntu() {
# Ubuntu 14.04 has cmake 2.8.12 as the default option, so we will
# install cmake3 here and use cmake3.
apt-get update
if [[ "$UBUNTU_VERSION" == 14.04 ]]; then
apt-get install -y --no-install-recommends cmake3
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
install_protobuf_317
}
install_centos() {
install_protobuf_317
}
# Install base packages depending on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -6,6 +6,9 @@ ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
# Map ROCm version to AMDGPU version
declare -A AMDGPU_VERSIONS=( ["5.0"]="21.50" ["5.1.1"]="22.10.1" ["5.2"]="22.20" )
install_ubuntu() {
apt-get update
if [[ $UBUNTU_VERSION == 18.04 ]]; then
@ -23,14 +26,31 @@ install_ubuntu() {
apt-get install -y libc++1
apt-get install -y libc++abi1
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
local amdgpu_baseurl
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/ubuntu"
fi
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
fi
ROCM_REPO="ubuntu"
if [[ $(ver $ROCM_VERSION) -lt $(ver 4.2) ]]; then
ROCM_REPO="xenial"
fi
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
ROCM_REPO="${UBUNTU_VERSION_NAME}"
fi
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
echo "deb [arch=amd64] ${rocm_baseurl} ${ROCM_REPO} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
@ -39,29 +59,27 @@ install_ubuntu() {
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev \
amd-smi-lib
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.1) ]]; then
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated rocm-llvm-dev
fi
roctracer-dev
# precompiled miopen kernels added in ROCm 3.5, renamed in ROCm 5.5
# search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.5) ]]; then
MIOPENHIPGFX=$(apt-cache search --names-only miopen-hip-gfx | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
fi
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENHIPGFX}
MIOPENKERNELS=$(apt-cache search --names-only miopenkernels | awk '{print $1}' | grep -F -v . || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available" && exit 1
else
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated ${MIOPENKERNELS}
fi
fi
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime
for kdb in /opt/rocm/share/miopen/db/*.kdb
do
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
@ -77,19 +95,25 @@ install_centos() {
yum install -y epel-release
yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`
# Add amdgpu repository
local amdgpu_baseurl
if [[ $OS_VERSION == 9 ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/9.0/main/x86_64"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/7.9/main/x86_64"
if [[ $(ver $ROCM_VERSION) -ge $(ver 4.5) ]]; then
# Add amdgpu repository
local amdgpu_baseurl
if [[ $OS_VERSION == 9 ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/9.0/main/x86_64"
else
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.3) ]]; then
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/7.9/main/x86_64"
else
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${AMDGPU_VERSIONS[$ROCM_VERSION]}/rhel/7.9/main/x86_64"
fi
fi
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
fi
echo "[AMDGPU]" > /etc/yum.repos.d/amdgpu.repo
echo "name=AMDGPU" >> /etc/yum.repos.d/amdgpu.repo
echo "baseurl=${amdgpu_baseurl}" >> /etc/yum.repos.d/amdgpu.repo
echo "enabled=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgcheck=1" >> /etc/yum.repos.d/amdgpu.repo
echo "gpgkey=http://repo.radeon.com/rocm/rocm.gpg.key" >> /etc/yum.repos.d/amdgpu.repo
local rocm_baseurl="http://repo.radeon.com/rocm/yum/${ROCM_VERSION}"
echo "[ROCm]" > /etc/yum.repos.d/rocm.repo
@ -107,24 +131,26 @@ install_centos() {
rocm-libs \
rccl \
rocprofiler-dev \
roctracer-dev \
amd-smi-lib
roctracer-dev
# precompiled miopen kernels; search for all unversioned packages
# if search fails it will abort this script; use true to avoid case where search fails
MIOPENHIPGFX=$(yum -q search miopen-hip-gfx | grep miopen-hip-gfx | awk '{print $1}'| grep -F kdb. || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
if [[ $(ver $ROCM_VERSION) -ge $(ver 5.5) ]]; then
MIOPENHIPGFX=$(yum -q search miopen-hip-gfx | grep miopen-hip-gfx | awk '{print $1}'| grep -F kdb. || true)
if [[ "x${MIOPENHIPGFX}" = x ]]; then
echo "miopen-hip-gfx package not available" && exit 1
else
yum install -y ${MIOPENHIPGFX}
fi
else
yum install -y ${MIOPENHIPGFX}
MIOPENKERNELS=$(yum -q search miopenkernels | grep miopenkernels- | awk '{print $1}'| grep -F kdb. || true)
if [[ "x${MIOPENKERNELS}" = x ]]; then
echo "miopenkernels package not available" && exit 1
else
yum install -y ${MIOPENKERNELS}
fi
fi
# ROCm 6.0 had a regression where journal_mode was enabled on the kdb files resulting in permission errors at runtime
for kdb in /opt/rocm/share/miopen/db/*.kdb
do
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
# Cleanup
yum clean all
rm -rf /var/cache/yum

View File

@ -5,10 +5,8 @@ set -ex
# "install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
# Version 2.7.2 + ROCm related updates
git checkout a1625ff4d9bc362906bd01f805dbbe12612953f6
# Fixes memory leaks of magma found while executing linalg UTs
git checkout 28592a7170e4b3707ed92644bf4a689ed600c27f
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc

View File

@ -0,0 +1,14 @@
apt-get update
apt-get install -y sudo wget libboost-dev libboost-test-dev libboost-program-options-dev libboost-filesystem-dev libboost-thread-dev libevent-dev automake libtool flex bison pkg-config g++ libssl-dev
wget https://www-us.apache.org/dist/thrift/0.12.0/thrift-0.12.0.tar.gz
tar -xvf thrift-0.12.0.tar.gz
cd thrift-0.12.0
for file in ./compiler/cpp/Makefile*; do
sed -i 's/\-Werror//' $file
done
./bootstrap.sh
./configure --without-php --without-java --without-python --without-nodejs --without-go --without-ruby
sudo make
sudo make install
cd ..
rm thrift-0.12.0.tar.gz

View File

@ -13,11 +13,8 @@ conda_reinstall() {
}
if [ -n "${ROCM_VERSION}" ]; then
TRITON_REPO="https://github.com/openai/triton"
TRITON_REPO="https://github.com/ROCmSoftwarePlatform/triton"
TRITON_TEXT_FILE="triton-rocm"
elif [ -n "${XPU_VERSION}" ]; then
TRITON_REPO="https://github.com/intel/intel-xpu-backend-for-triton"
TRITON_TEXT_FILE="triton-xpu"
else
TRITON_REPO="https://github.com/openai/triton"
TRITON_TEXT_FILE="triton"
@ -26,10 +23,8 @@ fi
# The logic here is copied from .ci/pytorch/common_utils.sh
TRITON_PINNED_COMMIT=$(get_pinned_commit ${TRITON_TEXT_FILE})
if [ -n "${UBUNTU_VERSION}" ];then
apt update
apt-get install -y gpg-agent
fi
apt update
apt-get install -y gpg-agent
if [ -n "${CONDA_CMAKE}" ]; then
# Keep the current cmake and numpy version here, so we can reinstall them later
@ -41,12 +36,12 @@ if [ -z "${MAX_JOBS}" ]; then
export MAX_JOBS=$(nproc)
fi
if [ -n "${UBUNTU_VERSION}" ] && [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}" == "7" ]]; then
if [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}" == "7" ]]; then
# Triton needs at least gcc-9 to build
apt-get install -y g++-9
CXX=g++-9 pip_install "git+${TRITON_REPO}@${TRITON_PINNED_COMMIT}#subdirectory=python"
elif [ -n "${UBUNTU_VERSION}" ] && [ -n "${CLANG_VERSION}" ]; then
elif [ -n "${CLANG_VERSION}" ]; then
# Triton needs <filesystem> which surprisingly is not available with clang-9 toolchain
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get install -y g++-9
@ -67,6 +62,5 @@ if [ -n "${CONDA_CMAKE}" ]; then
# latest numpy version, which fails ASAN tests with the following import error: Numba
# needs NumPy 1.20 or less.
conda_reinstall cmake="${CMAKE_VERSION}"
# Note that we install numpy with pip as conda might not have the version we want
pip_install --force-reinstall numpy=="${NUMPY_VERSION}"
conda_reinstall numpy="${NUMPY_VERSION}"
fi

View File

@ -36,12 +36,7 @@ function install_ucc() {
git submodule update --init --recursive
./autogen.sh
# We only run distributed tests on Tesla M60 and A10G
NVCC_GENCODE="-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_86,code=compute_86"
./configure --prefix=$UCC_HOME \
--with-ucx=$UCX_HOME \
--with-cuda=$with_cuda \
--with-nvcc-gencode="${NVCC_GENCODE}"
./configure --prefix=$UCC_HOME --with-ucx=$UCX_HOME --with-cuda=$with_cuda
time make -j
sudo make install

View File

@ -5,7 +5,8 @@ set -ex
install_ubuntu() {
apt-get update
apt-get install -y --no-install-recommends \
libopencv-dev
libopencv-dev \
libavcodec-dev
# Cleanup
apt-get autoclean && apt-get clean
@ -18,7 +19,8 @@ install_centos() {
yum --enablerepo=extras install -y epel-release
yum install -y \
opencv-devel
opencv-devel \
ffmpeg-devel
# Cleanup
yum clean all

View File

@ -1,114 +0,0 @@
#!/bin/bash
set -xe
# Intel® software for general purpose GPU capabilities.
# Refer to https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpus.html
# Users should update to the latest version as it becomes available
function install_ubuntu() {
apt-get update -y
apt-get install -y gpg-agent wget
# Set up the repository. To do this, download the key to the system keyring
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key \
| gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
wget -qO - https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor --output /usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg
# Add the signed entry to APT sources and configure the APT client to use the Intel repository
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] \
https://repositories.intel.com/gpu/ubuntu jammy/lts/2350 unified" \
| tee /etc/apt/sources.list.d/intel-gpu-jammy.list
echo "deb [signed-by=/usr/share/keyrings/intel-for-pytorch-gpu-dev-keyring.gpg] \
https://apt.repos.intel.com/intel-for-pytorch-gpu-dev all main" \
| tee /etc/apt/sources.list.d/intel-for-pytorch-gpu-dev.list
# Update the packages list and repository index
apt-get update
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
# Install Intel Support Packages
if [ -n "$XPU_VERSION" ]; then
apt-get install -y intel-for-pytorch-gpu-dev-${XPU_VERSION}
else
apt-get install -y intel-for-pytorch-gpu-dev
fi
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
}
function install_centos() {
dnf install -y 'dnf-command(config-manager)'
dnf config-manager --add-repo \
https://repositories.intel.com/gpu/rhel/8.6/production/2328/unified/intel-gpu-8.6.repo
# To add the EPEL repository needed for DKMS
dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
# https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm
# Create the YUM repository file in the /temp directory as a normal user
tee > /tmp/oneAPI.repo << EOF
[oneAPI]
name=Intel® oneAPI repository
baseurl=https://yum.repos.intel.com/oneapi
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
# Move the newly created oneAPI.repo file to the YUM configuration directory /etc/yum.repos.d
mv /tmp/oneAPI.repo /etc/yum.repos.d
# The xpu-smi packages
dnf install -y flex bison xpu-smi
# Compute and Media Runtimes
dnf install -y \
intel-opencl intel-media intel-mediasdk libmfxgen1 libvpl2\
level-zero intel-level-zero-gpu mesa-dri-drivers mesa-vulkan-drivers \
mesa-vdpau-drivers libdrm mesa-libEGL mesa-libgbm mesa-libGL \
mesa-libxatracker libvpl-tools intel-metrics-discovery \
intel-metrics-library intel-igc-core intel-igc-cm \
libva libva-utils intel-gmmlib libmetee intel-gsc intel-ocloc hwinfo clinfo
# Development packages
dnf install -y --refresh \
intel-igc-opencl-devel level-zero-devel intel-gsc-devel libmetee-devel \
level-zero-devel
# Install Intel® oneAPI Base Toolkit
dnf install intel-basekit -y
# Cleanup
dnf clean all
rm -rf /var/cache/yum
rm -rf /var/lib/yum/yumdb
rm -rf /var/lib/yum/history
}
# The installation depends on the base OS
ID=$(grep -oP '(?<=^ID=).+' /etc/os-release | tr -d '"')
case "$ID" in
ubuntu)
install_ubuntu
;;
centos)
install_centos
;;
*)
echo "Unable to determine OS..."
exit 1
;;
esac

View File

@ -1,44 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install missing libomp-dev
RUN apt-get update && apt-get install -y --no-install-recommends libomp-dev && apt-get autoclean && apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
COPY requirements-ci.txt /opt/conda/requirements-ci.txt
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt
# Install cuda and cudnn
ARG CUDA_VERSION
RUN wget -q https://raw.githubusercontent.com/pytorch/builder/main/common/install_cuda.sh -O install_cuda.sh
RUN bash ./install_cuda.sh ${CUDA_VERSION} && rm install_cuda.sh
ENV DESIRED_CUDA ${CUDA_VERSION}
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH
# Note that Docker build forbids copying file outside the build context
COPY ./common/install_linter.sh install_linter.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_linter.sh
RUN rm install_linter.sh common_utils.sh
USER jenkins
CMD ["bash"]

View File

@ -15,7 +15,7 @@ click
#Pinned versions:
#test that import:
coremltools==5.0b5 ; python_version < "3.12"
coremltools==5.0b5
#Description: Apple framework for ML integration
#Pinned versions: 5.0b5
#test that import:
@ -25,11 +25,6 @@ coremltools==5.0b5 ; python_version < "3.12"
#Pinned versions:
#test that import:
dill==0.3.7
#Description: dill extends pickle with serializing and de-serializing for most built-ins
#Pinned versions: 0.3.7
#test that import: dynamo/test_replay_record.py test_dataloader.py test_datapipe.py test_serialization.py
expecttest==0.1.6
#Description: method for writing tests where test framework auto populates
# the expected output based on previous runs
@ -52,11 +47,6 @@ junitparser==2.1.1
#Pinned versions: 2.1.1
#test that import:
lark==0.12.0
#Description: parser
#Pinned versions: 0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
@ -76,7 +66,7 @@ librosa>=0.6.2 ; python_version < "3.11"
#Description: A testing library that allows you to replace parts of your
#system under test with mock objects
#Pinned versions:
#test that import: test_modules.py, test_nn.py,
#test that import: test_module_init.py, test_modules.py, test_nn.py,
#test_testing.py
#MonkeyType # breaks pytorch-xla-linux-bionic-py3.7-clang8
@ -85,10 +75,10 @@ librosa>=0.6.2 ; python_version < "3.11"
#Pinned versions:
#test that import:
mypy==1.9.0
mypy==1.4.1
# Pin MyPy version because new errors are likely to appear with each release
#Description: linter
#Pinned versions: 1.9.0
#Pinned versions: 1.4.1
#test that import: test_typing.py, test_type_hints.py
networkx==2.8.8
@ -134,22 +124,10 @@ opt-einsum==3.3
#Pinned versions: 3.3
#test that import: test_linalg.py
optree==0.11.0
#Description: A library for tree manipulation
#Pinned versions: 0.11.0
#test that import: test_vmap.py, test_aotdispatch.py, test_dynamic_shapes.py,
#test_pytree.py, test_ops.py, test_control_flow.py, test_modules.py,
#common_utils.py, test_eager_transforms.py, test_python_dispatch.py,
#test_expanded_weights.py, test_decomp.py, test_overrides.py, test_masked.py,
#test_ops.py, test_prims.py, test_subclass.py, test_functionalization.py,
#test_schema_check.py, test_profiler_tree.py, test_meta.py, test_torchxla_num_output.py,
#test_utils.py, test_proxy_tensor.py, test_memory_profiler.py, test_view_ops.py,
#test_pointwise_ops.py, test_dtensor_ops.py, test_torchinductor.py, test_fx.py,
#test_fake_tensor.py, test_mps.py
pillow==10.3.0
pillow==9.3.0 ; python_version <= "3.8"
pillow==9.5.0 ; python_version > "3.8"
#Description: Python Imaging Library fork
#Pinned versions: 10.3.0
#Pinned versions:
#test that import:
protobuf==3.20.2
@ -172,6 +150,11 @@ pytest-xdist==3.3.1
#Pinned versions:
#test that import:
pytest-shard==0.1.2
#Description: plugin spliting up tests in pytest
#Pinned versions:
#test that import:
pytest-flakefinder==1.1.0
#Description: plugin for rerunning tests a fixed number of times in pytest
#Pinned versions: 1.1.0
@ -228,11 +211,12 @@ scikit-image==0.20.0 ; python_version >= "3.10"
#Pinned versions: 0.20.3
#test that import:
scipy==1.10.1 ; python_version <= "3.11"
scipy==1.12.0 ; python_version == "3.12"
scipy==1.6.3 ; python_version < "3.10"
scipy==1.8.1 ; python_version == "3.10"
scipy==1.10.1 ; python_version == "3.11"
# Pin SciPy because of failing distribution tests (see #60347)
#Description: scientific python
#Pinned versions: 1.10.1
#Pinned versions: 1.6.3
#test that import: test_unary_ufuncs.py, test_torch.py,test_tensor_creation_ops.py
#test_spectral_ops.py, test_sparse_csr.py, test_reductions.py,test_nn.py
#test_linalg.py, test_binary_ufuncs.py
@ -247,8 +231,7 @@ tb-nightly==2.13.0a20230426
#Pinned versions:
#test that import:
# needed by torchgen utils
typing-extensions
#typing-extensions
#Description: type hints for python
#Pinned versions:
#test that import:
@ -263,10 +246,9 @@ unittest-xml-reporting<=3.2.0,>=2.0.0
#Pinned versions:
#test that import:
#lintrunner is supported on aarch64-linux only from 0.12.4 version
lintrunner==0.12.5
lintrunner==0.10.7
#Description: all about linters!
#Pinned versions: 0.12.5
#Pinned versions: 0.10.7
#test that import:
rockset==1.0.3
@ -274,14 +256,14 @@ rockset==1.0.3
#Pinned versions: 1.0.3
#test that import:
ghstack==0.8.0
ghstack==0.7.1
#Description: ghstack tool
#Pinned versions: 0.8.0
#Pinned versions: 0.7.1
#test that import:
jinja2==3.1.4
jinja2==3.1.2
#Description: jinja2 template engine
#Pinned versions: 3.1.4
#Pinned versions: 3.1.2
#test that import:
pytest-cpp==2.3.0
@ -293,22 +275,3 @@ z3-solver==4.12.2.0
#Description: The Z3 Theorem Prover Project
#Pinned versions:
#test that import:
tensorboard==2.13.0
#Description: Also included in .ci/docker/requirements-docs.txt
#Pinned versions:
#test that import: test_tensorboard
pywavelets==1.4.1 ; python_version < "3.12"
pywavelets==1.5.0 ; python_version >= "3.12"
#Description: This is a requirement of scikit-image, we need to pin
# it here because 1.5.0 conflicts with numpy 1.21.2 used in CI
#Pinned versions: 1.4.1
#test that import:
lxml==5.0.0.
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries
PyGithub==2.3.0

View File

@ -1 +1 @@
3.0.0
2.1.0

View File

@ -56,7 +56,7 @@ RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
@ -79,6 +79,12 @@ ENV OPENSSL_ROOT_DIR /opt/openssl
RUN bash ./install_openssl.sh
ENV OPENSSL_DIR /opt/openssl
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
ARG INDUCTOR_BENCHMARKS
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
@ -87,12 +93,6 @@ COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
@ -139,20 +139,13 @@ COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
ARG CUDNN_VERSION
ARG CUDA_VERSION
COPY ./common/install_cudnn.sh install_cudnn.sh
RUN if [ -n "${CUDNN_VERSION}" ]; then bash install_cudnn.sh; fi
RUN if [ "${CUDNN_VERSION}" -eq 8 ]; then bash install_cudnn.sh; fi
RUN rm install_cudnn.sh
# Install CUSPARSELT
ARG CUDA_VERSION
COPY ./common/install_cusparselt.sh install_cusparselt.sh
RUN bash install_cusparselt.sh
RUN rm install_cusparselt.sh
# Delete /usr/local/cuda-11.X/cuda-11.X symlinks
RUN if [ -h /usr/local/cuda-11.6/cuda-11.6 ]; then rm /usr/local/cuda-11.6/cuda-11.6; fi
RUN if [ -h /usr/local/cuda-11.7/cuda-11.7 ]; then rm /usr/local/cuda-11.7/cuda-11.7; fi
RUN if [ -h /usr/local/cuda-12.1/cuda-12.1 ]; then rm /usr/local/cuda-12.1/cuda-12.1; fi
RUN if [ -h /usr/local/cuda-12.4/cuda-12.4 ]; then rm /usr/local/cuda-12.4/cuda-12.4; fi
USER jenkins
CMD ["bash"]

View File

@ -53,7 +53,7 @@ RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
@ -78,11 +78,6 @@ ENV MAGMA_HOME /opt/rocm/magma
ENV LANG C.UTF-8
ENV LC_ALL C.UTF-8
# Install amdsmi
COPY ./common/install_amdsmi.sh install_amdsmi.sh
RUN bash ./install_amdsmi.sh
RUN rm install_amdsmi.sh
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
@ -110,13 +105,6 @@ COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Install AOTriton
COPY ci_commit_pins/aotriton.txt aotriton.txt
COPY ./common/common_utils.sh common_utils.sh
COPY ./common/install_aotriton.sh install_aotriton.sh
RUN bash ./install_aotriton.sh /opt/rocm/aotriton && rm -rf install_aotriton.sh aotriton aotriton.txt common_utils.sh
ENV AOTRITON_INSTALLED_PREFIX /opt/rocm/aotriton
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}

View File

@ -1,118 +0,0 @@
ARG UBUNTU_VERSION
FROM ubuntu:${UBUNTU_VERSION}
ARG UBUNTU_VERSION
ENV DEBIAN_FRONTEND noninteractive
ARG CLANG_VERSION
# Install common dependencies (so that this step can be cached separately)
COPY ./common/install_base.sh install_base.sh
RUN bash ./install_base.sh && rm install_base.sh
# Install clang
ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
# Install katex
ARG KATEX
COPY ./common/install_docs_reqs.sh install_docs_reqs.sh
RUN bash ./install_docs_reqs.sh && rm install_docs_reqs.sh
# Install conda and other packages (e.g., numpy, pytest)
ARG ANACONDA_PYTHON_VERSION
ARG CONDA_CMAKE
ARG DOCS
ENV ANACONDA_PYTHON_VERSION=$ANACONDA_PYTHON_VERSION
ENV PATH /opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/bin:/opt/conda/bin:$PATH
ENV DOCS=$DOCS
COPY requirements-ci.txt requirements-docs.txt /opt/conda/
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
# Install gcc
ARG GCC_VERSION
COPY ./common/install_gcc.sh install_gcc.sh
RUN bash ./install_gcc.sh && rm install_gcc.sh
# Install lcov for C++ code coverage
COPY ./common/install_lcov.sh install_lcov.sh
RUN bash ./install_lcov.sh && rm install_lcov.sh
COPY ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh
ENV OPENSSL_ROOT_DIR /opt/openssl
ENV OPENSSL_DIR /opt/openssl
RUN rm install_openssl.sh
ARG INDUCTOR_BENCHMARKS
COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# Install XPU Dependencies
ARG XPU_VERSION
COPY ./common/install_xpu.sh install_xpu.sh
RUN bash ./install_xpu.sh && rm install_xpu.sh
ARG TRITON
# Install triton, this needs to be done before sccache because the latter will
# try to reach out to S3, which docker build runners don't have access
COPY ./common/install_triton.sh install_triton.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/triton-xpu.txt triton-xpu.txt
COPY triton_version.txt triton_version.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton-xpu.txt triton_version.txt
# (optional) Install database packages like LMDB and LevelDB
ARG DB
COPY ./common/install_db.sh install_db.sh
RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
RUN rm install_vision.sh cache_vision_models.sh common_utils.sh
ENV INSTALLED_VISION ${VISION}
# (optional) Install non-default CMake version
ARG CMAKE_VERSION
COPY ./common/install_cmake.sh install_cmake.sh
RUN if [ -n "${CMAKE_VERSION}" ]; then bash ./install_cmake.sh; fi
RUN rm install_cmake.sh
# (optional) Install non-default Ninja version
ARG NINJA_VERSION
COPY ./common/install_ninja.sh install_ninja.sh
RUN if [ -n "${NINJA_VERSION}" ]; then bash ./install_ninja.sh; fi
RUN rm install_ninja.sh
# Install ccache/sccache (do this last, so we get priority in PATH)
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN bash ./install_cache.sh && rm install_cache.sh
# Include BUILD_ENVIRONMENT environment variable in image
ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
USER jenkins
CMD ["bash"]

View File

@ -17,6 +17,13 @@ ARG LLVMDEV
COPY ./common/install_clang.sh install_clang.sh
RUN bash ./install_clang.sh && rm install_clang.sh
# (optional) Install thrift.
ARG THRIFT
COPY ./common/install_thrift.sh install_thrift.sh
RUN if [ -n "${THRIFT}" ]; then bash ./install_thrift.sh; fi
RUN rm install_thrift.sh
ENV INSTALLED_THRIFT ${THRIFT}
# Install user
COPY ./common/install_user.sh install_user.sh
RUN bash ./install_user.sh && rm install_user.sh
@ -37,7 +44,6 @@ COPY requirements-ci.txt requirements-docs.txt /opt/conda/
COPY ./common/install_conda.sh install_conda.sh
COPY ./common/common_utils.sh common_utils.sh
RUN bash ./install_conda.sh && rm install_conda.sh common_utils.sh /opt/conda/requirements-ci.txt /opt/conda/requirements-docs.txt
RUN if [ -n "${UNINSTALL_DILL}" ]; then pip uninstall -y dill; fi
# Install gcc
ARG GCC_VERSION
@ -80,7 +86,7 @@ RUN if [ -n "${DB}" ]; then bash ./install_db.sh; fi
RUN rm install_db.sh
ENV INSTALLED_DB ${DB}
# (optional) Install vision packages like OpenCV
# (optional) Install vision packages like OpenCV and ffmpeg
ARG VISION
COPY ./common/install_vision.sh ./common/cache_vision_models.sh ./common/common_utils.sh ./
RUN if [ -n "${VISION}" ]; then bash ./install_vision.sh; fi
@ -147,33 +153,16 @@ COPY ci_commit_pins/triton.txt triton.txt
RUN if [ -n "${TRITON}" ]; then bash ./install_triton.sh; fi
RUN rm install_triton.sh common_utils.sh triton.txt
ARG EXECUTORCH
# Build and install executorch
COPY ./common/install_executorch.sh install_executorch.sh
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/executorch.txt executorch.txt
RUN if [ -n "${EXECUTORCH}" ]; then bash ./install_executorch.sh; fi
RUN rm install_executorch.sh common_utils.sh executorch.txt
ARG ONNX
# Install ONNX dependencies
COPY ./common/install_onnx.sh ./common/common_utils.sh ./
RUN if [ -n "${ONNX}" ]; then bash ./install_onnx.sh; fi
RUN rm install_onnx.sh common_utils.sh
# (optional) Build ACL
ARG ACL
COPY ./common/install_acl.sh install_acl.sh
RUN if [ -n "${ACL}" ]; then bash ./install_acl.sh; fi
RUN rm install_acl.sh
ENV INSTALLED_ACL ${ACL}
# Install ccache/sccache (do this last, so we get priority in PATH)
ARG SKIP_SCCACHE_INSTALL
COPY ./common/install_cache.sh install_cache.sh
ENV PATH /opt/cache/bin:$PATH
RUN if [ -z "${SKIP_SCCACHE_INSTALL}" ]; then bash ./install_cache.sh; fi
RUN rm install_cache.sh
RUN bash ./install_cache.sh && rm install_cache.sh
# Add jni.h for java host build
COPY ./common/install_jni.sh install_jni.sh
@ -190,9 +179,7 @@ ARG BUILD_ENVIRONMENT
ENV BUILD_ENVIRONMENT ${BUILD_ENVIRONMENT}
# Install LLVM dev version (Defined in the pytorch/builder github repository)
ARG SKIP_LLVM_SRC_BUILD_INSTALL
COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
RUN if [ -n "${SKIP_LLVM_SRC_BUILD_INSTALL}" ]; then set -eu; rm -rf /opt/llvm; fi
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell

View File

@ -1,9 +1,5 @@
#!/bin/bash
set -ex
source "$(dirname "${BASH_SOURCE[0]}")/../pytorch/common_utils.sh"
LOCAL_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)
ROOT_DIR=$(cd "$LOCAL_DIR"/../.. && pwd)
TEST_DIR="$ROOT_DIR/test"

View File

@ -3,19 +3,10 @@
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
cleanup_workspace() {
echo "sudo may print the following warning message that can be ignored. The chown command will still run."
echo " sudo: setrlimit(RLIMIT_STACK): Operation not permitted"
echo "For more details refer to https://github.com/sudo-project/sudo/issues/42"
sudo chown -R "$WORKSPACE_ORIGINAL_OWNER_ID" /var/lib/jenkins/workspace
# Use to retry ONNX test, only retry it twice
retry () {
"$@" || (sleep 60 && "$@")
}
# Disable shellcheck SC2064 as we want to parse the original owner immediately.
# shellcheck disable=SC2064
trap_add cleanup_workspace EXIT
sudo chown -R jenkins /var/lib/jenkins/workspace
git config --global --add safe.directory /var/lib/jenkins/workspace
if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# TODO: This can be removed later once vision is also part of the Docker image
@ -25,5 +16,5 @@ if [[ "$BUILD_ENVIRONMENT" == *onnx* ]]; then
# NB: ONNX test is fast (~15m) so it's ok to retry it few more times to avoid any flaky issue, we
# need to bring this to the standard PyTorch run_test eventually. The issue will be tracked in
# https://github.com/pytorch/pytorch/issues/98626
"$ROOT_DIR/scripts/onnx/test.sh"
retry "$ROOT_DIR/scripts/onnx/test.sh"
fi

View File

@ -28,8 +28,6 @@ echo "Environment variables:"
env
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
# Use jemalloc during compilation to mitigate https://github.com/pytorch/pytorch/issues/116289
export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2
echo "NVCC version:"
nvcc --version
fi
@ -44,7 +42,15 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda11* ]]; then
fi
fi
if [[ ${BUILD_ENVIRONMENT} == *"parallelnative"* ]]; then
if [[ ${BUILD_ENVIRONMENT} == *"caffe2"* ]]; then
echo "Caffe2 build is ON"
export BUILD_CAFFE2=ON
fi
if [[ ${BUILD_ENVIRONMENT} == *"paralleltbb"* ]]; then
export ATEN_THREADING=TBB
export USE_TBB=1
elif [[ ${BUILD_ENVIRONMENT} == *"parallelnative"* ]]; then
export ATEN_THREADING=NATIVE
fi
@ -57,12 +63,6 @@ else
export LLVM_DIR=/opt/llvm/lib/cmake/llvm
fi
if [[ "$BUILD_ENVIRONMENT" == *executorch* ]]; then
# To build test_edge_op_registration
export BUILD_EXECUTORCH=ON
export USE_CUDA=0
fi
if ! which conda; then
# In ROCm CIs, we are doing cross compilation on build machines with
# intel cpu and later run tests on machines with amd cpu.
@ -73,35 +73,7 @@ if ! which conda; then
export USE_MKLDNN=0
fi
else
# CMAKE_PREFIX_PATH precedences
# 1. $CONDA_PREFIX, if defined. This follows the pytorch official build instructions.
# 2. /opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}, if ANACONDA_PYTHON_VERSION defined.
# This is for CI, which defines ANACONDA_PYTHON_VERSION but not CONDA_PREFIX.
# 3. $(conda info --base). The fallback value of pytorch official build
# instructions actually refers to this.
# Commonly this is /opt/conda/
if [[ -v CONDA_PREFIX ]]; then
export CMAKE_PREFIX_PATH=${CONDA_PREFIX}
elif [[ -v ANACONDA_PYTHON_VERSION ]]; then
export CMAKE_PREFIX_PATH="/opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}"
else
# already checked by `! which conda`
CMAKE_PREFIX_PATH="$(conda info --base)"
export CMAKE_PREFIX_PATH
fi
# Workaround required for MKL library linkage
# https://github.com/pytorch/pytorch/issues/119557
if [ "$ANACONDA_PYTHON_VERSION" = "3.12" ]; then
export CMAKE_LIBRARY_PATH="/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/lib/"
export CMAKE_INCLUDE_PATH="/opt/conda/envs/py_$ANACONDA_PYTHON_VERSION/include/"
fi
fi
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export USE_MKLDNN=1
export USE_MKLDNN_ACL=1
export ACL_ROOT_DIR=/ComputeLibrary
export CMAKE_PREFIX_PATH=/opt/conda
fi
if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
@ -173,12 +145,6 @@ if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
python tools/amd_build/build_amd.py
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
export USE_XPU=1
fi
# sccache will fail for CUDA builds if all cores are used for compiling
# gcc 7 with sccache seems to have intermittent OOM issue if all cores are used
if [ -z "$MAX_JOBS" ]; then
@ -193,14 +159,6 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* && -z "$TORCH_CUDA_ARCH_LIST" ]]; then
exit 1
fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ "$TORCH_CUDA_ARCH_LIST" == *"8.6"* || "$TORCH_CUDA_ARCH_LIST" == *"8.0"* ]]; then
echo "WARNING: FlashAttention files require large amounts of memory to build and will OOM"
echo "Setting MAX_JOBS=(nproc-2)/3 to reduce memory usage"
export MAX_JOBS="$(( $(nproc --ignore=2) / 3 ))"
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
export CC=clang
export CXX=clang++
@ -210,6 +168,7 @@ if [[ "$BUILD_ENVIRONMENT" == *-clang*-asan* ]]; then
export LDSHARED="clang --shared"
export USE_CUDA=0
export USE_ASAN=1
export USE_MKLDNN=0
export UBSAN_FLAGS="-fno-sanitize-recover=all;-fno-sanitize=float-divide-by-zero;-fno-sanitize=float-cast-overflow"
unset USE_LLVM
fi
@ -230,24 +189,6 @@ if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
# Do not change workspace permissions for ROCm CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
cleanup_workspace() {
echo "sudo may print the following warning message that can be ignored. The chown command will still run."
echo " sudo: setrlimit(RLIMIT_STACK): Operation not permitted"
echo "For more details refer to https://github.com/sudo-project/sudo/issues/42"
sudo chown -R "$WORKSPACE_ORIGINAL_OWNER_ID" /var/lib/jenkins/workspace
}
# Disable shellcheck SC2064 as we want to parse the original owner immediately.
# shellcheck disable=SC2064
trap_add cleanup_workspace EXIT
sudo chown -R jenkins /var/lib/jenkins/workspace
git config --global --add safe.directory /var/lib/jenkins/workspace
fi
if [[ "$BUILD_ENVIRONMENT" == *-bazel-* ]]; then
set -e
@ -273,22 +214,15 @@ else
( ! get_exit_code python setup.py clean bad_argument )
if [[ "$BUILD_ENVIRONMENT" != *libtorch* ]]; then
# rocm builds fail when WERROR=1
# XLA test build fails when WERROR=1
# set only when building other architectures
# or building non-XLA tests.
if [[ "$BUILD_ENVIRONMENT" != *rocm* &&
"$BUILD_ENVIRONMENT" != *xla* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *py3.8* ]]; then
# Install numpy-2.0 release candidate for builds
# Which should be backward compatible with Numpy-1.X
python -mpip install --pre numpy==2.0.0rc1
fi
WERROR=1 python setup.py bdist_wheel
else
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
python setup.py bdist_wheel
fi
pip_install_whl "$(echo dist/*.whl)"
@ -330,7 +264,7 @@ else
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$CUSTOM_OP_BUILD"
pushd "$CUSTOM_OP_BUILD"
cmake "$CUSTOM_OP_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
cmake "$CUSTOM_OP_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
@ -343,7 +277,7 @@ else
SITE_PACKAGES="$(python -c 'from distutils.sysconfig import get_python_lib; print(get_python_lib())')"
mkdir -p "$JIT_HOOK_BUILD"
pushd "$JIT_HOOK_BUILD"
cmake "$JIT_HOOK_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
cmake "$JIT_HOOK_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
@ -355,7 +289,7 @@ else
python --version
mkdir -p "$CUSTOM_BACKEND_BUILD"
pushd "$CUSTOM_BACKEND_BUILD"
cmake "$CUSTOM_BACKEND_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPython_EXECUTABLE="$(which python)" \
cmake "$CUSTOM_BACKEND_TEST" -DCMAKE_PREFIX_PATH="$SITE_PACKAGES/torch" -DPYTHON_EXECUTABLE="$(which python)" \
-DCMAKE_MODULE_PATH="$CUSTOM_TEST_MODULE_PATH" -DUSE_ROCM="$CUSTOM_TEST_USE_ROCM"
make VERBOSE=1
popd
@ -386,8 +320,4 @@ if [[ "$BUILD_ENVIRONMENT" != *libtorch* && "$BUILD_ENVIRONMENT" != *bazel* ]];
python tools/stats/export_test_times.py
fi
# snadampal: skipping it till sccache support added for aarch64
# https://github.com/pytorch/pytorch/issues/121559
if [[ "$BUILD_ENVIRONMENT" != *aarch64* ]]; then
print_sccache_stats
fi
print_sccache_stats

View File

@ -43,7 +43,7 @@ function assert_git_not_dirty() {
# TODO: we should add an option to `build_amd.py` that reverts the repo to
# an unmodified state.
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]] && [[ "$BUILD_ENVIRONMENT" != *xla* ]] ; then
git_status=$(git status --porcelain | grep -v '?? third_party' || true)
git_status=$(git status --porcelain)
if [[ $git_status ]]; then
echo "Build left local git repository checkout dirty"
echo "git status --porcelain:"
@ -158,11 +158,6 @@ function install_torchvision() {
fi
}
function install_tlparse() {
pip_install --user "tlparse==0.3.7"
PATH="$(python -m site --user-base)/bin:$PATH"
}
function install_torchrec_and_fbgemm() {
local torchrec_commit
torchrec_commit=$(get_pinned_commit torchrec)
@ -176,9 +171,16 @@ function install_torchrec_and_fbgemm() {
pip_install --no-use-pep517 --user "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
}
function install_numpy_pytorch_interop() {
local commit
commit=$(get_pinned_commit numpy_pytorch_interop)
# TODO: --no-use-pep517 will result in failure.
pip_install --user "git+https://github.com/Quansight-Labs/numpy_pytorch_interop.git@${commit}"
}
function clone_pytorch_xla() {
if [[ ! -d ./xla ]]; then
git clone --recursive --quiet https://github.com/pytorch/xla.git
git clone --recursive -b r2.1 https://github.com/pytorch/xla.git
pushd xla
# pin the xla hash so that we don't get broken by changes to xla
git checkout "$(cat ../.github/ci_commit_pins/xla.txt)"
@ -210,6 +212,15 @@ function test_torch_deploy(){
popd
}
function install_timm() {
local commit
commit=$(get_pinned_commit timm)
pip_install pandas
pip_install scipy
pip_install z3-solver
pip_install "git+https://github.com/rwightman/pytorch-image-models@${commit}"
}
function checkout_install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)

View File

@ -6,4 +6,4 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
echo "Testing pytorch docs"
cd docs
TERM=vt100 make doctest
make doctest

View File

@ -1,37 +0,0 @@
#!/bin/bash
# Script for installing sccache on the xla build job, which uses xla's docker
# image and doesn't have sccache installed on it. This is mostly copied from
# .ci/docker/install_cache.sh. Changes are: removing checks that will always
# return the same thing, ex checks for for rocm, CUDA, and changing the path
# where sccache is installed, and not changing /etc/environment.
set -ex
install_binary() {
echo "Downloading sccache binary from S3 repo"
curl --retry 3 https://s3.amazonaws.com/ossci-linux/sccache -o /tmp/cache/bin/sccache
}
mkdir -p /tmp/cache/bin
mkdir -p /tmp/cache/lib
export PATH="/tmp/cache/bin:$PATH"
install_binary
chmod a+x /tmp/cache/bin/sccache
function write_sccache_stub() {
# Unset LD_PRELOAD for ps because of asan + ps issues
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90589
# shellcheck disable=SC2086
# shellcheck disable=SC2059
printf "#!/bin/sh\nif [ \$(env -u LD_PRELOAD ps -p \$PPID -o comm=) != sccache ]; then\n exec sccache $(which $1) \"\$@\"\nelse\n exec $(which $1) \"\$@\"\nfi" > "/tmp/cache/bin/$1"
chmod a+x "/tmp/cache/bin/$1"
}
write_sccache_stub cc
write_sccache_stub c++
write_sccache_stub gcc
write_sccache_stub g++
write_sccache_stub clang
write_sccache_stub clang++

View File

@ -43,7 +43,7 @@ cross_compile_arm64() {
compile_arm64() {
# Compilation for arm64
# TODO: Compile with OpenMP support (but this causes CI regressions as cross-compilation were done with OpenMP disabled)
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel
USE_DISTRIBUTED=0 USE_OPENMP=0 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel
}
compile_x86_64() {

View File

@ -9,7 +9,7 @@ sysctl -a | grep machdep.cpu
# These are required for both the build job and the test job.
# In the latter to test cpp extensions.
export MACOSX_DEPLOYMENT_TARGET=11.1
export MACOSX_DEPLOYMENT_TARGET=11.0
export CXX=clang++
export CC=clang

View File

@ -149,8 +149,6 @@ test_jit_hooks() {
assert_git_not_dirty
}
install_tlparse
if [[ $NUM_TEST_SHARDS -gt 1 ]]; then
test_python_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then

View File

@ -18,7 +18,6 @@ time python test/run_test.py --verbose -i distributed/test_c10d_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_nccl
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_cuda_p2p
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
@ -35,28 +34,19 @@ time python test/run_test.py --verbose -i distributed/_shard/sharded_tensor/test
# functional collective tests
time python test/run_test.py --verbose -i distributed/test_functional_api
# DTensor tests
time python test/run_test.py --verbose -i distributed/_tensor/test_device_mesh
time python test/run_test.py --verbose -i distributed/_tensor/test_random_ops
time python test/run_test.py --verbose -i distributed/_tensor/test_dtensor_compile
# DeviceMesh test
time python test/run_test.py --verbose -i distributed/test_device_mesh
# DTensor/TP tests
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_ddp_2d_parallel
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_fsdp_2d_parallel
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_examples
time python test/run_test.py --verbose -i distributed/tensor/parallel/test_tp_random_state
# FSDP2 tests
time python test/run_test.py --verbose -i distributed/_composable/fsdp/test_fully_shard_training -- -k test_2d_mlp_with_nd_mesh
# Pipelining composability tests
time python test/run_test.py --verbose -i distributed/pipelining/test_composability.py
# Other tests
time python test/run_test.py --verbose -i test_cuda_primary_ctx
time python test/run_test.py --verbose -i test_optim -- -k test_forloop_goes_right_direction_multigpu
time python test/run_test.py --verbose -i test_optim -- -k test_mixed_device_dtype
time python test/run_test.py --verbose -i test_optim -- -k optimizers_with_varying_tensors
time python test/run_test.py --verbose -i test_foreach -- -k test_tensors_grouping
assert_git_not_dirty

View File

@ -59,16 +59,16 @@ print("sample mean: ", sample_mean)
print("sample sigma: ", sample_sigma)
if math.isnan(sample_mean):
raise Exception("""Error: sample mean is NaN""") # noqa: TRY002
raise Exception("""Error: sample mean is NaN""")
elif math.isnan(sample_sigma):
raise Exception("""Error: sample sigma is NaN""") # noqa: TRY002
raise Exception("""Error: sample sigma is NaN""")
z_value = (sample_mean - mean) / sigma
print("z-value: ", z_value)
if z_value >= 3:
raise Exception( # noqa: TRY002
raise Exception(
f"""\n
z-value >= 3, there is high chance of perf regression.\n
To reproduce this regression, run

View File

@ -26,8 +26,8 @@ echo "error: python_doc_push_script.sh: version (arg2) not specified"
fi
# Argument 1: Where to copy the built documentation to
# (pytorch_docs/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-${DOCS_VERSION}}}"
# (pytorch.github.io/$install_path)
install_path="${1:-${DOCS_INSTALL_PATH:-docs/${DOCS_VERSION}}}"
if [ -z "$install_path" ]; then
echo "error: python_doc_push_script.sh: install_path (arg1) not specified"
exit 1
@ -68,8 +68,8 @@ build_docs () {
}
git clone https://github.com/pytorch/docs pytorch_docs -b "$branch" --depth 1
pushd pytorch_docs
git clone https://github.com/pytorch/pytorch.github.io -b "$branch" --depth 1
pushd pytorch.github.io
export LC_ALL=C
export PATH=/opt/conda/bin:$PATH
@ -105,7 +105,6 @@ if [ "$is_main_doc" = true ]; then
echo undocumented objects found:
cat build/coverage/python.txt
echo "Make sure you've updated relevant .rsts in docs/source!"
echo "You can reproduce locally by running 'cd docs && make coverage && cat build/coverage/python.txt'"
exit 1
fi
else

View File

@ -6,27 +6,6 @@
set -ex
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# Do not change workspace permissions for ROCm CI jobs
# as it can leave workspace with bad permissions for cancelled jobs
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
# Workaround for dind-rootless userid mapping (https://github.com/pytorch/ci-infra/issues/96)
WORKSPACE_ORIGINAL_OWNER_ID=$(stat -c '%u' "/var/lib/jenkins/workspace")
cleanup_workspace() {
echo "sudo may print the following warning message that can be ignored. The chown command will still run."
echo " sudo: setrlimit(RLIMIT_STACK): Operation not permitted"
echo "For more details refer to https://github.com/sudo-project/sudo/issues/42"
sudo chown -R "$WORKSPACE_ORIGINAL_OWNER_ID" /var/lib/jenkins/workspace
}
# Disable shellcheck SC2064 as we want to parse the original owner immediately.
# shellcheck disable=SC2064
trap_add cleanup_workspace EXIT
sudo chown -R jenkins /var/lib/jenkins/workspace
git config --global --add safe.directory /var/lib/jenkins/workspace
fi
echo "Environment variables:"
env
@ -39,10 +18,6 @@ BUILD_DIR="build"
BUILD_RENAMED_DIR="build_renamed"
BUILD_BIN_DIR="$BUILD_DIR"/bin
#Set Default values for these variables in case they are not set
SHARD_NUMBER="${SHARD_NUMBER:=1}"
NUM_TEST_SHARDS="${NUM_TEST_SHARDS:=1}"
export VALGRIND=ON
# export TORCH_INDUCTOR_INSTALL_GXX=ON
if [[ "$BUILD_ENVIRONMENT" == *clang9* ]]; then
@ -105,11 +80,9 @@ if [[ "$BUILD_ENVIRONMENT" != *bazel* ]]; then
CUSTOM_TEST_ARTIFACT_BUILD_DIR=$(realpath "${CUSTOM_TEST_ARTIFACT_BUILD_DIR:-"build/custom_test_artifacts"}")
fi
# Reduce set of tests to include when running run_test.py
if [[ -n $TESTS_TO_INCLUDE ]]; then
echo "Setting INCLUDE_CLAUSE"
INCLUDE_CLAUSE="--include $TESTS_TO_INCLUDE"
fi
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
echo "Environment variables"
env
@ -146,10 +119,6 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* || "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# mainly used so that we're not spending extra cycles testing cpu
# devices on expensive gpu machines
export PYTORCH_TESTING_DEVICE_ONLY_FOR="cuda"
elif [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
export PYTORCH_TESTING_DEVICE_ONLY_FOR="xpu"
# setting PYTHON_TEST_EXTRA_OPTION
export PYTHON_TEST_EXTRA_OPTION="--xpu"
fi
if [[ "$TEST_CONFIG" == *crossref* ]]; then
@ -157,22 +126,11 @@ if [[ "$TEST_CONFIG" == *crossref* ]]; then
fi
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
# regression in ROCm 6.0 on MI50 CI runners due to hipblaslt; remove in 6.1
export VALGRIND=OFF
# Print GPU info
rocminfo
rocminfo | grep -E 'Name:.*\sgfx|Marketing'
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
# Source Intel oneAPI envrioment script to enable xpu runtime related libraries
# refer to https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-0/use-the-setvars-and-oneapi-vars-scripts-with-linux.html
# shellcheck disable=SC1091
source /opt/intel/oneapi/compiler/latest/env/vars.sh
# Check XPU status before testing
xpu-smi discovery
fi
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]] ; then
# JIT C++ extensions require ninja.
pip_install --user "ninja==1.10.2"
@ -181,13 +139,6 @@ if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]] ; then
export PATH="$HOME/.local/bin:$PATH"
fi
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
# TODO: revisit this once the CI is stabilized on aarch64 linux
export VALGRIND=OFF
fi
install_tlparse
# DANGER WILL ROBINSON. The LD_PRELOAD here could cause you problems
# if you're not careful. Check this if you made some changes and the
# ASAN test is not working
@ -197,7 +148,7 @@ if [[ "$BUILD_ENVIRONMENT" == *asan* ]]; then
export PYTORCH_TEST_WITH_ASAN=1
export PYTORCH_TEST_WITH_UBSAN=1
# TODO: Figure out how to avoid hard-coding these paths
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-15/bin/llvm-symbolizer
export ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-12/bin/llvm-symbolizer
export TORCH_USE_RTLD_GLOBAL=1
# NB: We load libtorch.so with RTLD_GLOBAL for UBSAN, unlike our
# default behavior.
@ -231,9 +182,11 @@ if [[ "$BUILD_ENVIRONMENT" == *asan* ]]; then
# have, and it applies to child processes.
# TODO: get rid of the hardcoded path
export LD_PRELOAD=/usr/lib/llvm-15/lib/clang/15.0.7/lib/linux/libclang_rt.asan-x86_64.so
export LD_PRELOAD=/usr/lib/llvm-12/lib/clang/12.0.1/lib/linux/libclang_rt.asan-x86_64.so
# Disable valgrind for asan
export VALGRIND=OFF
# Increase stack size, because ASAN red zones use more stack
ulimit -s 81920
(cd test && python -c "import torch; print(torch.__version__, torch.version.git_version)")
echo "The next four invocations are expected to crash; if they don't that means ASAN/UBSAN is misconfigured"
@ -264,18 +217,6 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
# temp workarounds for https://github.com/pytorch/pytorch/issues/126692, remove when fixed
if [[ "$BUILD_ENVIRONMENT" != *-bazel-* ]]; then
pushd test
CUDA_VERSION=$(python -c "import torch; print(torch.version.cuda)")
if [ "$CUDA_VERSION" == "12.4" ]; then
ISCUDA124="cu124"
else
ISCUDA124=""
fi
popd
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -287,16 +228,13 @@ test_python_shard() {
exit 1
fi
# Bare --include flag is not supported and quoting for lint ends up with flag not being interpreted correctly
# shellcheck disable=SC2086
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS" --verbose
assert_git_not_dirty
}
test_python() {
# shellcheck disable=SC2086
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --verbose
assert_git_not_dirty
}
@ -307,13 +245,33 @@ test_dynamo_shard() {
exit 1
fi
python tools/dynamo/verify_dynamo.py
# PLEASE DO NOT ADD ADDITIONAL EXCLUDES HERE.
# Instead, use @skipIfTorchDynamo on your tests.
# Temporarily disable test_fx for dynamo pending the investigation on TTS
# regression in https://github.com/pytorch/torchdynamo/issues/784
time python test/run_test.py --dynamo \
--exclude-inductor-tests \
--exclude-jit-executor \
--exclude-distributed-tests \
--exclude-torch-export-tests \
--exclude \
test_autograd \
test_jit \
test_proxy_tensor \
test_quantization \
test_public_bindings \
test_dataloader \
test_reductions \
test_namedtensor \
test_namedtuple_return_api \
profiler/test_profiler \
profiler/test_profiler_tree \
test_overrides \
test_python_dispatch \
test_fx \
test_package \
test_legacy_vmap \
test_custom_ops \
test_content_store \
export/test_db \
functorch/test_dims \
functorch/test_aotdispatch \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
assert_git_not_dirty
@ -322,24 +280,7 @@ test_dynamo_shard() {
test_inductor_distributed() {
# Smuggle a few multi-gpu tests here so that we don't have to request another large node
echo "Testing multi_gpu tests in test_torchinductor"
python test/run_test.py -i inductor/test_torchinductor.py -k test_multi_gpu --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_non_default_cuda_device --verbose
python test/run_test.py -i inductor/test_aot_inductor.py -k test_replicate_on_devices --verbose
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
python test/run_test.py -i distributed/_tensor/test_dtensor_compile.py --verbose
python test/run_test.py -i distributed/tensor/parallel/test_fsdp_2d_parallel.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_comm.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_multi_group --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_with_activation_checkpointing --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_2d_mlp --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_hsdp --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_2d_transformer_checkpoint_resume --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_gradient_accumulation --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_frozen.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_compute_dtype --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_reduce_dtype --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_clip_grad_norm_.py -k test_clip_grad_norm_2d --verbose
python test/run_test.py -i distributed/fsdp/test_fsdp_tp_integration.py -k test_fsdp_tp_integration --verbose
pytest test/inductor/test_torchinductor.py -k test_multi_gpu
# this runs on both single-gpu and multi-gpu instance. It should be smart about skipping tests that aren't supported
# with if required # gpus aren't available
@ -351,48 +292,25 @@ test_inductor() {
python tools/dynamo/verify_dynamo.py
python test/run_test.py --inductor --include test_modules test_ops test_ops_gradients test_torch --verbose
# Do not add --inductor for the following inductor unit tests, otherwise we will fail because of nested dynamo state
python test/run_test.py --include inductor/test_torchinductor inductor/test_torchinductor_opinfo inductor/test_aot_inductor --verbose
python test/run_test.py --include inductor/test_torchinductor inductor/test_torchinductor_opinfo --verbose
# docker build uses bdist_wheel which does not work with test_aot_inductor
# TODO: need a faster way to build
if [[ "$BUILD_ENVIRONMENT" != *rocm* ]]; then
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference
fi
}
test_inductor_cpp_wrapper_abi_compatible() {
export TORCHINDUCTOR_ABI_COMPATIBLE=1
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
echo "Testing Inductor cpp wrapper mode with TORCHINDUCTOR_ABI_COMPATIBLE=1"
# cpu stack allocation causes segfault and needs more investigation
PYTORCH_TESTING_DEVICE_ONLY_FOR="" python test/run_test.py --include inductor/test_cpu_cpp_wrapper
python test/run_test.py --include inductor/test_cuda_cpp_wrapper
TORCHINDUCTOR_CPP_WRAPPER=1 python benchmarks/dynamo/timm_models.py --device cuda --accuracy --amp \
--training --inductor --disable-cudagraphs --only vit_base_patch16_224 \
--output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_training.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_timm_training.csv"
BUILD_AOT_INDUCTOR_TEST=1 python setup.py develop
CPP_TESTS_DIR="${BUILD_BIN_DIR}" LD_LIBRARY_PATH="${TORCH_LIB_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_aot_inductor
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
# For example 'dynamic_aot_eager_torchbench' TEST_CONFIG means we run
# the benchmark script with '--dynamic-shapes --backend aot_eager --device cuda'
# The matrix of test options is specified in .github/workflows/inductor.yml,
# .github/workflows/inductor-periodic.yml, and
# .github/workflows/inductor-perf-test-nightly.yml
# The matrix of test options is specified in .github/workflows/periodic.yml
# and .github/workflows/inductor.yml
DYNAMO_BENCHMARK_FLAGS=()
if [[ "${TEST_CONFIG}" == *dynamo_eager* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--backend eager)
elif [[ "${TEST_CONFIG}" == *aot_eager* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--backend aot_eager)
elif [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--export-aot-inductor)
elif [[ "${TEST_CONFIG}" == *inductor* && "${TEST_CONFIG}" != *perf* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--inductor)
fi
@ -401,7 +319,7 @@ if [[ "${TEST_CONFIG}" == *dynamic* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--dynamic-shapes --dynamic-batch-only)
fi
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_accuracy* ]]; then
DYNAMO_BENCHMARK_FLAGS+=(--device cpu)
else
DYNAMO_BENCHMARK_FLAGS+=(--device cuda)
@ -456,8 +374,8 @@ test_perf_for_dashboard() {
--output "$TEST_REPORTS_DIR/${backend}_dynamic_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *cppwrapper-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_CPP_WRAPPER=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs "$@" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" --disable-cudagraphs --cpp-wrapper "$@" \
--output "$TEST_REPORTS_DIR/${backend}_cpp_wrapper_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *freezing_cudagraphs-true* ]] && [[ "$mode" == "inference" ]]; then
@ -465,13 +383,8 @@ test_perf_for_dashboard() {
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" --freezing \
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *freeze_autotune_cudagraphs-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_MAX_AUTOTUNE=1 python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" --freezing \
--output "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_freezing_autotune_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *aotinductor-true* ]] && [[ "$mode" == "inference" ]]; then
TORCHINDUCTOR_ABI_COMPATIBLE=1 python "benchmarks/dynamo/$suite.py" \
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --"$dtype" --export-aot-inductor --disable-cudagraphs "$@" \
--output "$TEST_REPORTS_DIR/${backend}_aot_inductor_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
@ -480,17 +393,6 @@ test_perf_for_dashboard() {
"${target_flag[@]}" --"$mode" --"$dtype" --backend "$backend" "$@" \
--output "$TEST_REPORTS_DIR/${backend}_max_autotune_${suite}_${dtype}_${mode}_cuda_${target}.csv"
fi
if [[ "$DASHBOARD_TAG" == *cudagraphs_low_precision-true* ]] && [[ "$mode" == "inference" ]]; then
# TODO: This has a new dtype called quant and the benchmarks script needs to be updated to support this.
# The tentative command is as follows. It doesn't work now, but it's ok because we only need mock data
# to fill the dashboard.
python "benchmarks/dynamo/$suite.py" \
"${target_flag[@]}" --"$mode" --quant --backend "$backend" "$@" \
--output "$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_cuda_${target}.csv" || true
# Copy cudagraph results as mock data, easiest choice?
cp "$TEST_REPORTS_DIR/${backend}_with_cudagraphs_${suite}_${dtype}_${mode}_cuda_${target}.csv" \
"$TEST_REPORTS_DIR/${backend}_cudagraphs_low_precision_${suite}_quant_${mode}_cuda_${target}.csv"
fi
done
done
}
@ -526,28 +428,25 @@ test_single_dynamo_benchmark() {
test_perf_for_dashboard "$suite" \
"${DYNAMO_BENCHMARK_FLAGS[@]}" "$@" "${partition_flags[@]}"
else
if [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
# Test AOTInductor with the ABI-compatible mode on CI
# This can be removed once the ABI-compatible mode becomes default.
export TORCHINDUCTOR_ABI_COMPATIBLE=1
fi
python "benchmarks/dynamo/$suite.py" \
--ci --accuracy --timing --explain \
"${DYNAMO_BENCHMARK_FLAGS[@]}" \
"$@" "${partition_flags[@]}" \
--output "$TEST_REPORTS_DIR/${name}_${suite}.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
python benchmarks/dynamo/check_graph_breaks.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/${TEST_CONFIG}_${name}.csv"
fi
}
test_inductor_micro_benchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
python benchmarks/gpt_fast/benchmark.py --output "${TEST_REPORTS_DIR}/gpt_fast_benchmark.csv"
if [[ "${TEST_CONFIG}" == *inductor* ]] && [[ "${TEST_CONFIG}" != *cpu_accuracy* ]]; then
# other jobs (e.g. periodic, cpu-accuracy) may have different set of expected models.
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
python benchmarks/dynamo/check_graph_breaks.py \
--actual "$TEST_REPORTS_DIR/${name}_$suite.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${TEST_CONFIG}_${name}.csv"
else
python benchmarks/dynamo/check_csv.py \
-f "$TEST_REPORTS_DIR/${name}_${suite}.csv"
fi
fi
}
test_dynamo_benchmark() {
@ -564,14 +463,8 @@ test_dynamo_benchmark() {
elif [[ "${TEST_CONFIG}" == *perf* ]]; then
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
else
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *freezing* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 --freezing "$@"
else
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 "$@"
fi
elif [[ "${TEST_CONFIG}" == *aot_inductor* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --bfloat16 "$@"
if [[ "${TEST_CONFIG}" == *cpu_accuracy* ]]; then
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --float32 "$@"
else
test_single_dynamo_benchmark "inference" "$suite" "$shard_id" --inference --bfloat16 "$@"
test_single_dynamo_benchmark "training" "$suite" "$shard_id" --training --amp "$@"
@ -583,37 +476,12 @@ test_inductor_torchbench_smoketest_perf() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
# Test some models in the cpp wrapper mode
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1 python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only hf_T5 --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1 python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only llama --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
TORCHINDUCTOR_ABI_COMPATIBLE=1 TORCHINDUCTOR_CPP_WRAPPER=1 python benchmarks/dynamo/torchbench.py --device cuda --accuracy \
--bfloat16 --inference --inductor --only moco --output "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_cpp_wrapper_inference.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_torchbench_inference.csv"
python benchmarks/dynamo/torchbench.py --device cuda --performance --backend inductor --float16 --training \
--batch-size-file "$(realpath benchmarks/dynamo/torchbench_models_list.txt)" --only hf_Bert \
--output "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
# The threshold value needs to be actively maintained to make this check useful
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv" -t 1.4
TORCHINDUCTOR_ABI_COMPATIBLE=1 python benchmarks/dynamo/torchbench.py --device cuda --performance --bfloat16 --inference \
--export-aot-inductor --only nanogpt --output "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv"
# The threshold value needs to be actively maintained to make this check useful
# The perf number of nanogpt seems not very stable, e.g.
# https://github.com/pytorch/pytorch/actions/runs/7158691360/job/19491437314,
# and thus we lower its threshold to reduce flakiness. If this continues to be a problem,
# we switch to use some other model.
# Use 4.7 for cuda 12.4, change back to 4.9 after fixing https://github.com/pytorch/pytorch/issues/126692
if [ "$CUDA_VERSION" == "12.4" ]; then
THRESHOLD=4.7
else
THRESHOLD=4.9
fi
python benchmarks/dynamo/check_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_inference_smoketest.csv" -t $THRESHOLD
# the reference speedup value is hardcoded in check_hf_bert_perf_csv.py
# this value needs to be actively maintained to make this check useful
python benchmarks/dynamo/check_hf_bert_perf_csv.py -f "$TEST_REPORTS_DIR/inductor_training_smoketest.csv"
# Check memory compression ratio for a few models
for test in hf_Albert timm_vision_transformer; do
@ -625,65 +493,6 @@ test_inductor_torchbench_smoketest_perf() {
"$TEST_REPORTS_DIR/inductor_training_smoketest_$test.csv" \
--expected benchmarks/dynamo/expected_ci_perf_inductor_torchbench.csv
done
# Perform some "warm-start" runs for a few huggingface models.
for test in AlbertForQuestionAnswering AllenaiLongformerBase DistilBertForMaskedLM DistillGPT2 GoogleFnet YituTechConvBert; do
python benchmarks/dynamo/huggingface.py --accuracy --training --amp --inductor --device cuda --warm-start-latency \
--only $test --output "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv"
python benchmarks/dynamo/check_accuracy.py \
--actual "$TEST_REPORTS_DIR/inductor_warm_start_smoketest_$test.csv" \
--expected "benchmarks/dynamo/ci_expected_accuracy/${ISCUDA124}/inductor_huggingface_training.csv"
done
}
test_inductor_torchbench_cpu_smoketest_perf(){
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
#set jemalloc
JEMALLOC_LIB="/usr/lib/x86_64-linux-gnu/libjemalloc.so.2"
IOMP_LIB="$(dirname "$(which python)")/../lib/libiomp5.so"
export LD_PRELOAD="$JEMALLOC_LIB":"$IOMP_LIB":"$LD_PRELOAD"
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
export KMP_AFFINITY=granularity=fine,compact,1,0
export KMP_BLOCKTIME=1
CORES=$(lscpu | grep Core | awk '{print $4}')
export OMP_NUM_THREADS=$CORES
end_core=$(( CORES-1 ))
MODELS_SPEEDUP_TARGET=benchmarks/dynamo/expected_ci_speedup_inductor_torchbench_cpu.csv
grep -v '^ *#' < "$MODELS_SPEEDUP_TARGET" | while IFS=',' read -r -a model_cfg
do
local model_name=${model_cfg[0]}
local data_type=${model_cfg[1]}
local speedup_target=${model_cfg[4]}
if [[ ${model_cfg[3]} == "cpp" ]]; then
export TORCHINDUCTOR_CPP_WRAPPER=1
else
unset TORCHINDUCTOR_CPP_WRAPPER
fi
local output_name="$TEST_REPORTS_DIR/inductor_inference_${model_cfg[0]}_${model_cfg[1]}_${model_cfg[2]}_${model_cfg[3]}_cpu_smoketest.csv"
if [[ ${model_cfg[2]} == "dynamic" ]]; then
taskset -c 0-"$end_core" python benchmarks/dynamo/torchbench.py \
--inference --performance --"$data_type" -dcpu -n50 --only "$model_name" --dynamic-shapes \
--dynamic-batch-only --freezing --timeout 9000 --backend=inductor --output "$output_name"
else
taskset -c 0-"$end_core" python benchmarks/dynamo/torchbench.py \
--inference --performance --"$data_type" -dcpu -n50 --only "$model_name" \
--freezing --timeout 9000 --backend=inductor --output "$output_name"
fi
cat "$output_name"
# The threshold value needs to be actively maintained to make this check useful.
python benchmarks/dynamo/check_perf_csv.py -f "$output_name" -t "$speedup_target"
done
}
test_torchbench_gcp_smoketest(){
pushd "${TORCHBENCHPATH}"
python test.py -v
popd
}
test_python_gloo_with_tls() {
@ -717,6 +526,7 @@ test_aten() {
${SUDO} ln -sf "$TORCH_LIB_DIR"/libmkldnn* "$TEST_BASE_DIR"
${SUDO} ln -sf "$TORCH_LIB_DIR"/libnccl* "$TEST_BASE_DIR"
${SUDO} ln -sf "$TORCH_LIB_DIR"/libtorch* "$TEST_BASE_DIR"
${SUDO} ln -sf "$TORCH_LIB_DIR"/libtbb* "$TEST_BASE_DIR"
ls "$TEST_BASE_DIR"
aten/tools/run_tests.sh "$TEST_BASE_DIR"
@ -734,13 +544,24 @@ test_without_numpy() {
python -c "import sys;sys.path.insert(0, 'fake_numpy');from unittest import TestCase;import torch;x=torch.randn(3,3);TestCase().assertRaises(RuntimeError, lambda: x.numpy())"
# Regression test for https://github.com/pytorch/pytorch/issues/66353
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;print(torch.tensor([torch.tensor(0.), torch.tensor(1.)]))"
# Regression test for https://github.com/pytorch/pytorch/issues/109387
if [[ "${TEST_CONFIG}" == *dynamo* ]]; then
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;torch.compile(lambda x:print(x))('Hello World')"
fi
popd
}
# pytorch extensions require including torch/extension.h which includes all.h
# which includes utils.h which includes Parallel.h.
# So you can call for instance parallel_for() from your extension,
# but the compilation will fail because of Parallel.h has only declarations
# and definitions are conditionally included Parallel.h(see last lines of Parallel.h).
# I tried to solve it #39612 and #39881 by including Config.h into Parallel.h
# But if Pytorch is built with TBB it provides Config.h
# that has AT_PARALLEL_NATIVE_TBB=1(see #3961 or #39881) and it means that if you include
# torch/extension.h which transitively includes Parallel.h
# which transitively includes tbb.h which is not available!
if [[ "${BUILD_ENVIRONMENT}" == *tbb* ]]; then
sudo mkdir -p /usr/include/tbb
sudo cp -r "$PWD"/third_party/tbb/include/tbb/* /usr/include/tbb
fi
test_libtorch() {
local SHARD="$1"
@ -754,6 +575,7 @@ test_libtorch() {
ln -sf "$TORCH_LIB_DIR"/libc10* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libshm* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libtorch* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libtbb* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libnvfuser* "$TORCH_BIN_DIR"
export CPP_TESTS_DIR="${TORCH_BIN_DIR}"
@ -779,7 +601,7 @@ test_libtorch_jit() {
# Run jit and lazy tensor cpp tests together to finish them faster
if [[ "$BUILD_ENVIRONMENT" == *cuda* && "$TEST_CONFIG" != *nogpu* ]]; then
LTC_TS_CUDA=1 python test/run_test.py --cpp --verbose -i cpp/test_jit cpp/test_lazy
LTC_TS_CUDA=1 python test/run_test.py --cpp --verbose -i cpp/test_jit cpp/nvfuser_tests cpp/test_lazy
else
# CUDA tests have already been skipped when CUDA is not available
python test/run_test.py --cpp --verbose -i cpp/test_jit cpp/test_lazy -k "not CUDA"
@ -815,19 +637,6 @@ test_libtorch_api() {
fi
}
test_xpu_bin(){
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
for xpu_case in "${BUILD_BIN_DIR}"/*{xpu,sycl}*; do
if [[ "$xpu_case" != *"*"* && "$xpu_case" != *.so && "$xpu_case" != *.a ]]; then
case_name=$(basename "$xpu_case")
echo "Testing ${case_name} ..."
"$xpu_case" --gtest_output=xml:"$TEST_REPORTS_DIR"/"$case_name".xml
fi
done
}
test_aot_compilation() {
echo "Testing Ahead of Time compilation"
ln -sf "$TORCH_LIB_DIR"/libc10* "$TORCH_BIN_DIR"
@ -853,8 +662,7 @@ test_vulkan() {
test_distributed() {
echo "Testing distributed python tests"
# shellcheck disable=SC2086
time python test/run_test.py --distributed-tests --shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" $INCLUDE_CLAUSE --verbose
time python test/run_test.py --distributed-tests --shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
assert_git_not_dirty
if [[ ("$BUILD_ENVIRONMENT" == *cuda* || "$BUILD_ENVIRONMENT" == *rocm*) && "$SHARD_NUMBER" == 1 ]]; then
@ -890,6 +698,7 @@ test_rpc() {
# test reporting process to function as expected.
ln -sf "$TORCH_LIB_DIR"/libtorch* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libc10* "$TORCH_BIN_DIR"
ln -sf "$TORCH_LIB_DIR"/libtbb* "$TORCH_BIN_DIR"
CPP_TESTS_DIR="${TORCH_BIN_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_cpp_rpc
}
@ -1067,8 +876,7 @@ test_bazel() {
tools/bazel test --config=cpu-only --test_timeout=480 --test_output=all --test_tag_filters=-gpu-required --test_filter=-*CUDA :all_tests
else
# Increase the test timeout to 480 like CPU tests because modules_test frequently timeout
tools/bazel test --test_timeout=480 --test_output=errors \
tools/bazel test --test_output=errors \
//:any_test \
//:autograd_test \
//:dataloader_test \
@ -1163,69 +971,23 @@ test_docs_test() {
}
test_executorch() {
echo "Install torchvision and torchaudio"
install_torchvision
install_torchaudio
pushd /executorch
# NB: We need to build ExecuTorch runner here and not inside the Docker image
# because it depends on PyTorch
# shellcheck disable=SC1091
source .ci/scripts/utils.sh
build_executorch_runner "cmake"
echo "Run ExecuTorch regression tests for some models"
# NB: This is a sample model, more can be added here
export PYTHON_EXECUTABLE=python
# TODO(huydhn): Add more coverage here using ExecuTorch's gather models script
# shellcheck disable=SC1091
source .ci/scripts/test.sh mv3 cmake xnnpack-quantization-delegation ''
popd
# Test torchgen generated code for Executorch.
echo "Testing ExecuTorch op registration"
echo "Testing Executorch op registration"
"$BUILD_BIN_DIR"/test_edge_op_registration
assert_git_not_dirty
}
test_linux_aarch64(){
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
test_transformers test_multiprocessing test_numpy_interop --verbose
# Dynamo tests
python test/run_test.py --include dynamo/test_compile dynamo/test_backends dynamo/test_comptime dynamo/test_config \
dynamo/test_functions dynamo/test_fx_passes_pre_grad dynamo/test_interop dynamo/test_model_output dynamo/test_modules \
dynamo/test_optimizers dynamo/test_recompile_ux dynamo/test_recompiles --verbose
# Inductor tests
python test/run_test.py --include inductor/test_torchinductor inductor/test_benchmark_fusion inductor/test_codecache \
inductor/test_config inductor/test_control_flow inductor/test_coordinate_descent_tuner inductor/test_fx_fusion \
inductor/test_group_batch_fusion inductor/test_inductor_freezing inductor/test_inductor_utils \
inductor/test_inplacing_pass inductor/test_kernel_benchmark inductor/test_layout_optim \
inductor/test_max_autotune inductor/test_memory_planning inductor/test_metrics inductor/test_multi_kernel inductor/test_pad_mm \
inductor/test_pattern_matcher inductor/test_perf inductor/test_profiler inductor/test_select_algorithm inductor/test_smoke \
inductor/test_split_cat_fx_passes inductor/test_standalone_compile inductor/test_torchinductor \
inductor/test_torchinductor_codegen_dynamic_shapes inductor/test_torchinductor_dynamic_shapes --verbose
}
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
(cd test && python -c "import torch; print(torch.__config__.show())")
(cd test && python -c "import torch; print(torch.__config__.parallel_info())")
fi
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
test_linux_aarch64
elif [[ "${TEST_CONFIG}" == *backward* ]]; then
if [[ "${TEST_CONFIG}" == *backward* ]]; then
test_forward_backward_compatibility
# Do NOT add tests after bc check tests, see its comment.
elif [[ "${TEST_CONFIG}" == *xla* ]]; then
install_torchvision
build_xla
test_xla
elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
test_executorch
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
test_python_legacy_jit
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
@ -1242,18 +1004,17 @@ elif [[ "$TEST_CONFIG" == deploy ]]; then
test_torch_deploy
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-micro-benchmark* ]]; then
test_inductor_micro_benchmark
elif [[ "${TEST_CONFIG}" == *huggingface* ]]; then
install_torchvision
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark huggingface "$id"
elif [[ "${TEST_CONFIG}" == *timm* ]]; then
install_torchvision
install_timm
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" == *cpu_accuracy* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
@ -1264,52 +1025,37 @@ elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
if [[ "${TEST_CONFIG}" == *inductor_torchbench_smoketest_perf* ]]; then
checkout_install_torchbench hf_Bert hf_Albert nanogpt timm_vision_transformer
checkout_install_torchbench hf_Bert hf_Albert timm_vision_transformer
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_smoketest_perf
elif [[ "${TEST_CONFIG}" == *inductor_torchbench_cpu_smoketest_perf* ]]; then
checkout_install_torchbench timm_vision_transformer phlippe_densenet basic_gnn_gcn \
llama_v2_7b_16h resnet50 timm_efficientnet mobilenet_v3_large timm_resnest \
shufflenet_v2_x1_0 hf_GPT2
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_cpu_smoketest_perf
elif [[ "${TEST_CONFIG}" == *torchbench_gcp_smoketest* ]]; then
checkout_install_torchbench
TORCHBENCHPATH=$(pwd)/torchbench test_torchbench_gcp_smoketest
else
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu_inductor* ]]; then
if [[ "${TEST_CONFIG}" != *cpu_accuracy* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
fi
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper_abi_compatible* ]]; then
install_torchvision
test_inductor_cpp_wrapper_abi_compatible
elif [[ "${TEST_CONFIG}" == *inductor* && "${SHARD_NUMBER}" == 1 ]]; then
install_torchvision
test_inductor
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *dynamo* && "${SHARD_NUMBER}" == 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
test_without_numpy
install_torchvision
install_numpy_pytorch_interop
test_dynamo_shard 1
test_aten
elif [[ "${TEST_CONFIG}" == *dynamo* && $SHARD_NUMBER -gt 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
elif [[ "${TEST_CONFIG}" == *dynamo* && "${SHARD_NUMBER}" == 2 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_dynamo_shard "${SHARD_NUMBER}"
elif [[ "${BUILD_ENVIRONMENT}" == *rocm* && -n "$TESTS_TO_INCLUDE" ]]; then
install_torchvision
test_python_shard "$SHARD_NUMBER"
test_aten
install_numpy_pytorch_interop
test_dynamo_shard 2
elif [[ "${SHARD_NUMBER}" == 1 && $NUM_TEST_SHARDS -gt 1 ]]; then
test_without_numpy
install_torchvision
test_python_shard 1
test_aten
test_libtorch 1
if [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
test_xpu_bin
fi
elif [[ "${SHARD_NUMBER}" == 2 && $NUM_TEST_SHARDS -gt 1 ]]; then
install_torchvision
test_python_shard 2
@ -1330,11 +1076,6 @@ elif [[ "${BUILD_ENVIRONMENT}" == *-mobile-lightweight-dispatch* ]]; then
test_libtorch
elif [[ "${TEST_CONFIG}" = docs_test ]]; then
test_docs_test
elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
install_torchvision
test_python
test_aten
test_xpu_bin
else
install_torchvision
install_monkeytype
@ -1347,4 +1088,5 @@ else
test_custom_backend
test_torch_function_benchmark
test_benchmarks
test_executorch
fi

View File

@ -16,23 +16,24 @@ set PATH=C:\Program Files\CMake\bin;C:\Program Files\7-Zip;C:\ProgramData\chocol
set INSTALLER_DIR=%SCRIPT_HELPERS_DIR%\installation-helpers
call %INSTALLER_DIR%\install_mkl.bat
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
call %INSTALLER_DIR%\install_magma.bat
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
call %INSTALLER_DIR%\install_sccache.bat
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
:: Miniconda has been installed as part of the Windows AMI with all the dependencies.
:: We just need to activate it here
call %INSTALLER_DIR%\activate_miniconda3.bat
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
call pip install mkl-include==2021.4.0 mkl-devel==2021.4.0
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
:: Override VS env here
pushd .
@ -41,8 +42,8 @@ if "%VC_VERSION%" == "" (
) else (
call "C:\Program Files (x86)\Microsoft Visual Studio\%VC_YEAR%\%VC_PRODUCT%\VC\Auxiliary\Build\vcvarsall.bat" x64 -vcvars_ver=%VC_VERSION%
)
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
@echo on
popd
@ -52,12 +53,12 @@ set CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION%
if x%CUDA_VERSION:.=%==x%CUDA_VERSION% (
echo CUDA version %CUDA_VERSION% format isn't correct, which doesn't contain '.'
goto fail
exit /b 1
)
rem version transformer, for example 10.1 to 10_1.
if x%CUDA_VERSION:.=%==x%CUDA_VERSION% (
echo CUDA version %CUDA_VERSION% format isn't correct, which doesn't contain '.'
goto fail
exit /b 1
)
set VERSION_SUFFIX=%CUDA_VERSION:.=_%
set CUDA_PATH_V%VERSION_SUFFIX%=%CUDA_PATH%
@ -88,8 +89,8 @@ set SCCACHE_IGNORE_SERVER_IO_ERROR=1
sccache --stop-server
sccache --start-server
sccache --zero-stats
set CMAKE_C_COMPILER_LAUNCHER=sccache
set CMAKE_CXX_COMPILER_LAUNCHER=sccache
set CC=sccache-cl
set CXX=sccache-cl
set CMAKE_GENERATOR=Ninja
@ -101,8 +102,8 @@ if "%USE_CUDA%"=="1" (
:: CMake requires a single command as CUDA_NVCC_EXECUTABLE, so we push the wrappers
:: randomtemp.exe and sccache.exe into a batch file which CMake invokes.
curl -kL https://github.com/peterjc123/randomtemp-rust/releases/download/v0.4/randomtemp.exe --output %TMP_DIR_WIN%\bin\randomtemp.exe
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
echo @"%TMP_DIR_WIN%\bin\randomtemp.exe" "%TMP_DIR_WIN%\bin\sccache.exe" "%CUDA_PATH%\bin\nvcc.exe" %%* > "%TMP_DIR%/bin/nvcc.bat"
cat %TMP_DIR%/bin/nvcc.bat
set CUDA_NVCC_EXECUTABLE=%TMP_DIR%/bin/nvcc.bat
@ -114,8 +115,8 @@ if "%USE_CUDA%"=="1" (
set
python setup.py bdist_wheel
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
sccache --show-stats
python -c "import os, glob; os.system('python -mpip install --no-index --no-deps ' + glob.glob('dist/*.whl')[0])"
(
@ -126,7 +127,8 @@ python -c "import os, glob; os.system('python -mpip install --no-index --no-deps
:: export test times so that potential sharded tests that'll branch off this build will use consistent data
python tools/stats/export_test_times.py
robocopy /E ".additional_ci_files" "%PYTORCH_FINAL_PACKAGE_DIR%\.additional_ci_files"
copy /Y ".pytorch-test-times.json" "%PYTORCH_FINAL_PACKAGE_DIR%"
copy /Y ".pytorch-test-file-ratings.json" "%PYTORCH_FINAL_PACKAGE_DIR%"
:: Also save build/.ninja_log as an artifact
copy /Y "build\.ninja_log" "%PYTORCH_FINAL_PACKAGE_DIR%\"
@ -135,8 +137,3 @@ python -c "import os, glob; os.system('python -mpip install --no-index --no-deps
sccache --show-stats --stats-format json | jq .stats > sccache-stats-%BUILD_ENVIRONMENT%-%OUR_GITHUB_JOB_ID%.json
sccache --stop-server
exit /b 0
:fail
exit /b 1

View File

@ -0,0 +1,14 @@
if "%REBUILD%"=="" (
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/mkl_2020.2.254.7z --output %TMP_DIR_WIN%\mkl.7z
) else (
aws s3 cp s3://ossci-windows/mkl_2020.2.254.7z %TMP_DIR_WIN%\mkl.7z --quiet
)
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
7z x -aoa %TMP_DIR_WIN%\mkl.7z -o%TMP_DIR_WIN%\mkl
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
set CMAKE_INCLUDE_PATH=%TMP_DIR_WIN%\mkl\include
set LIB=%TMP_DIR_WIN%\mkl\lib;%LIB%

View File

@ -1,13 +1,18 @@
mkdir %TMP_DIR_WIN%\bin
if "%REBUILD%"=="" (
IF EXIST %TMP_DIR_WIN%\bin\sccache.exe (
:check_sccache
%TMP_DIR_WIN%\bin\sccache.exe --show-stats || (
taskkill /im sccache.exe /f /t || ver > nul
del %TMP_DIR_WIN%\bin\sccache.exe || ver > nul
del %TMP_DIR_WIN%\bin\sccache-cl.exe || ver > nul
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/sccache.exe --output %TMP_DIR_WIN%\bin\sccache.exe
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/sccache-cl.exe --output %TMP_DIR_WIN%\bin\sccache-cl.exe
) else (
aws s3 cp s3://ossci-windows/sccache.exe %TMP_DIR_WIN%\bin\sccache.exe
aws s3 cp s3://ossci-windows/sccache-cl.exe %TMP_DIR_WIN%\bin\sccache-cl.exe
)
goto :check_sccache
)
if "%BUILD_ENVIRONMENT%"=="" (
curl --retry 3 --retry-all-errors -k https://s3.amazonaws.com/ossci-windows/sccache-v0.7.4.exe --output %TMP_DIR_WIN%\bin\sccache.exe
) else (
aws s3 cp s3://ossci-windows/sccache-v0.7.4.exe %TMP_DIR_WIN%\bin\sccache.exe
)
)
)

View File

@ -2,7 +2,6 @@
import os
import subprocess
import sys
COMMON_TESTS = [
(
@ -54,4 +53,4 @@ if __name__ == "__main__":
print("Reruning with traceback enabled")
print("Command:", command_string)
subprocess.run(command_args, check=False)
sys.exit(e.returncode)
exit(e.returncode)

View File

@ -26,6 +26,11 @@ popd
python test_custom_ops.py -v
if ERRORLEVEL 1 exit /b 1
:: TODO: fix and re-enable this test
:: See https://github.com/pytorch/pytorch/issues/25155
:: python test_custom_classes.py -v
:: if ERRORLEVEL 1 exit /b 1
python model.py --export-script-module="build/model.pt"
if ERRORLEVEL 1 exit /b 1

View File

@ -1,3 +1,7 @@
:: Skip LibTorch tests when building a GPU binary and testing on a CPU machine
:: because LibTorch tests are not well designed for this use case.
if "%USE_CUDA%" == "0" IF NOT "%CUDA_VERSION%" == "cpu" exit /b 0
call %SCRIPT_HELPERS_DIR%\setup_pytorch_env.bat
if errorlevel 1 exit /b 1
@ -17,7 +21,7 @@ if not errorlevel 0 exit /b 1
cd %TMP_DIR_WIN%\build\torch\test
for /r "." %%a in (*.exe) do (
call :libtorch_check "%%~na" "%%~fa"
if errorlevel 1 goto fail
if errorlevel 1 exit /b 1
)
goto :eof
@ -30,6 +34,18 @@ set CPP_TESTS_DIR=%TMP_DIR_WIN%\build\torch\test
:: Skip verify_api_visibility as it a compile level test
if "%~1" == "verify_api_visibility" goto :eof
:: See https://github.com/pytorch/pytorch/issues/25161
if "%~1" == "c10_metaprogramming_test" goto :eof
if "%~1" == "module_test" goto :eof
:: See https://github.com/pytorch/pytorch/issues/25312
if "%~1" == "converter_nomigraph_test" goto :eof
:: See https://github.com/pytorch/pytorch/issues/35636
if "%~1" == "generate_proposals_op_gpu_test" goto :eof
:: See https://github.com/pytorch/pytorch/issues/35648
if "%~1" == "reshape_op_gpu_test" goto :eof
:: See https://github.com/pytorch/pytorch/issues/35651
if "%~1" == "utility_ops_gpu_test" goto :eof
echo Running "%~2"
if "%~1" == "c10_intrusive_ptr_benchmark" (
:: NB: This is not a gtest executable file, thus couldn't be handled by pytest-cpp
@ -40,15 +56,11 @@ if "%~1" == "c10_intrusive_ptr_benchmark" (
python test\run_test.py --cpp --verbose -i "cpp/%~1"
if errorlevel 1 (
echo %1 failed with exit code %errorlevel%
goto fail
exit /b 1
)
if not errorlevel 0 (
echo %1 failed with exit code %errorlevel%
goto fail
exit /b 1
)
:eof
exit /b 0
:fail
exit /b 1
goto :eof

View File

@ -1,7 +1,8 @@
call %SCRIPT_HELPERS_DIR%\setup_pytorch_env.bat
echo Copying over test times file
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
copy /Y "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.pytorch-test-times.json" "%PROJECT_DIR_WIN%"
copy /Y "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.pytorch-test-file-ratings.json" "%PROJECT_DIR_WIN%"
pushd test

View File

@ -22,7 +22,8 @@ if "%SHARD_NUMBER%" == "1" (
)
echo Copying over test times file
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
copy /Y "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.pytorch-test-times.json" "%PROJECT_DIR_WIN%"
copy /Y "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.pytorch-test-file-ratings.json" "%PROJECT_DIR_WIN%"
echo Run nn tests
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose

View File

@ -35,10 +35,10 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
fi
# TODO: Move both of them to Windows AMI
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.12.2.0
python -m pip install z3-solver
run_tests() {
# Run nvidia-smi if available

View File

@ -1,4 +1,468 @@
Warning
=======
PyTorch migration from CircleCI to github actions has been completed. All continuous integration & deployment workflows are defined in `.github/workflows` folder
Contents may be out of date. Our CircleCI workflows are gradually being migrated to Github actions.
Structure of CI
===============
setup job:
1. Does a git checkout
2. Persists CircleCI scripts (everything in `.circleci`) into a workspace. Why?
We don't always do a Git checkout on all subjobs, but we usually
still want to be able to call scripts one way or another in a subjob.
Persisting files this way lets us have access to them without doing a
checkout. This workspace is conventionally mounted on `~/workspace`
(this is distinguished from `~/project`, which is the conventional
working directory that CircleCI will default to starting your jobs
in.)
3. Write out the commit message to `.circleci/COMMIT_MSG`. This is so
we can determine in subjobs if we should actually run the jobs or
not, even if there isn't a Git checkout.
CircleCI configuration generator
================================
One may no longer make changes to the `.circleci/config.yml` file directly.
Instead, one must edit these Python scripts or files in the `verbatim-sources/` directory.
Usage
----------
1. Make changes to these scripts.
2. Run the `regenerate.sh` script in this directory and commit the script changes and the resulting change to `config.yml`.
You'll see a build failure on GitHub if the scripts don't agree with the checked-in version.
Motivation
----------
These scripts establish a single, authoritative source of documentation for the CircleCI configuration matrix.
The documentation, in the form of diagrams, is automatically generated and cannot drift out of sync with the YAML content.
Furthermore, consistency is enforced within the YAML config itself, by using a single source of data to generate
multiple parts of the file.
* Facilitates one-off culling/enabling of CI configs for testing PRs on special targets
Also see https://github.com/pytorch/pytorch/issues/17038
Future direction
----------------
### Declaring sparse config subsets
See comment [here](https://github.com/pytorch/pytorch/pull/17323#pullrequestreview-206945747):
In contrast with a full recursive tree traversal of configuration dimensions,
> in the future I think we actually want to decrease our matrix somewhat and have only a few mostly-orthogonal builds that taste as many different features as possible on PRs, plus a more complete suite on every PR and maybe an almost full suite nightly/weekly (we don't have this yet). Specifying PR jobs in the future might be easier to read with an explicit list when we come to this.
----------------
----------------
# How do the binaries / nightlies / releases work?
### What is a binary?
A binary or package (used interchangeably) is a pre-built collection of c++ libraries, header files, python bits, and other files. We build these and distribute them so that users do not need to install from source.
A **binary configuration** is a collection of
* release or nightly
* releases are stable, nightlies are beta and built every night
* python version
* linux: 3.7m (mu is wide unicode or something like that. It usually doesn't matter but you should know that it exists)
* macos: 3.7, 3.8
* windows: 3.7, 3.8
* cpu version
* cpu, cuda 9.0, cuda 10.0
* The supported cuda versions occasionally change
* operating system
* Linux - these are all built on CentOS. There haven't been any problems in the past building on CentOS and using on Ubuntu
* MacOS
* Windows - these are built on Azure pipelines
* devtoolset version (gcc compiler version)
* This only matters on Linux cause only Linux uses gcc. tldr is gcc made a backwards incompatible change from gcc 4.8 to gcc 5, because it had to change how it implemented std::vector and std::string
### Where are the binaries?
The binaries are built in CircleCI. There are nightly binaries built every night at 9pm PST (midnight EST) and release binaries corresponding to Pytorch releases, usually every few months.
We have 3 types of binary packages
* pip packages - nightlies are stored on s3 (pip install -f \<a s3 url\>). releases are stored in a pip repo (pip install torch) (ask Soumith about this)
* conda packages - nightlies and releases are both stored in a conda repo. Nighty packages have a '_nightly' suffix
* libtorch packages - these are zips of all the c++ libraries, header files, and sometimes dependencies. These are c++ only
* shared with dependencies (the only supported option for Windows)
* static with dependencies
* shared without dependencies
* static without dependencies
All binaries are built in CircleCI workflows except Windows. There are checked-in workflows (committed into the .circleci/config.yml) to build the nightlies every night. Releases are built by manually pushing a PR that builds the suite of release binaries (overwrite the config.yml to build the release)
# CircleCI structure of the binaries
Some quick vocab:
* A \**workflow** is a CircleCI concept; it is a DAG of '**jobs**'. ctrl-f 'workflows' on https://github.com/pytorch/pytorch/blob/main/.circleci/config.yml to see the workflows.
* **jobs** are a sequence of '**steps**'
* **steps** are usually just a bash script or a builtin CircleCI command. *All steps run in new environments, environment variables declared in one script DO NOT persist to following steps*
* CircleCI has a **workspace**, which is essentially a cache between steps of the *same job* in which you can store artifacts between steps.
## How are the workflows structured?
The nightly binaries have 3 workflows. We have one job (actually 3 jobs: build, test, and upload) per binary configuration
1. binary_builds
1. every day midnight EST
2. linux: https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/linux-binary-build-defaults.yml
3. macos: https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/macos-binary-build-defaults.yml
4. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. binary_linux_conda_3.7_cpu_build
1. Builds the build. On linux jobs this uses the 'docker executor'.
2. Persists the package to the workspace
2. binary_linux_conda_3.7_cpu_test
1. Loads the package to the workspace
2. Spins up a docker image (on Linux), mapping the package and code repos into the docker
3. Runs some smoke tests in the docker
4. (Actually, for macos this is a step rather than a separate job)
3. binary_linux_conda_3.7_cpu_upload
1. Logs in to aws/conda
2. Uploads the package
2. update_s3_htmls
1. every day 5am EST
2. https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/binary_update_htmls.yml
3. See below for what these are for and why they're needed
4. Three jobs that each examine the current contents of aws and the conda repo and update some html files in s3
3. binarysmoketests
1. every day
2. https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
3. For each binary configuration, e.g. linux_conda_3.7_cpu there is a
1. smoke_linux_conda_3.7_cpu
1. Downloads the package from the cloud, e.g. using the official pip or conda instructions
2. Runs the smoke tests
## How are the jobs structured?
The jobs are in https://github.com/pytorch/pytorch/tree/main/.circleci/verbatim-sources. Jobs are made of multiple steps. There are some shared steps used by all the binaries/smokes. Steps of these jobs are all delegated to scripts in https://github.com/pytorch/pytorch/tree/main/.circleci/scripts .
* Linux jobs: https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/linux-binary-build-defaults.yml
* binary_linux_build.sh
* binary_linux_test.sh
* binary_linux_upload.sh
* MacOS jobs: https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/macos-binary-build-defaults.yml
* binary_macos_build.sh
* binary_macos_test.sh
* binary_macos_upload.sh
* Update html jobs: https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/binary_update_htmls.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/main/cron/update_s3_htmls.sh
* https://github.com/pytorch/builder/blob/main/cron/upload_binary_sizes.sh
* Smoke jobs (both linux and macos): https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/nightly-build-smoke-tests-defaults.yml
* These delegate from the pytorch/builder repo
* https://github.com/pytorch/builder/blob/main/run_tests.sh
* https://github.com/pytorch/builder/blob/main/smoke_test.sh
* https://github.com/pytorch/builder/blob/main/check_binary.sh
* Common shared code (shared across linux and macos): https://github.com/pytorch/pytorch/blob/main/.circleci/verbatim-sources/nightly-binary-build-defaults.yml
* binary_checkout.sh - checks out pytorch/builder repo. Right now this also checks out pytorch/pytorch, but it shouldn't. pytorch/pytorch should just be shared through the workspace. This can handle being run before binary_populate_env.sh
* binary_populate_env.sh - parses BUILD_ENVIRONMENT into the separate env variables that make up a binary configuration. Also sets lots of default values, the date, the version strings, the location of folders in s3, all sorts of things. This generally has to be run before other steps.
* binary_install_miniconda.sh - Installs miniconda, cross platform. Also hacks this for the update_binary_sizes job that doesn't have the right env variables
* binary_run_in_docker.sh - Takes a bash script file (the actual test code) from a hardcoded location, spins up a docker image, and runs the script inside the docker image
### **Why do the steps all refer to scripts?**
CircleCI creates a final yaml file by inlining every <<* segment, so if we were to keep all the code in the config.yml itself then the config size would go over 4 MB and cause infra problems.
### **What is binary_run_in_docker for?**
So, CircleCI has several executor types: macos, machine, and docker are the ones we use. The 'machine' executor gives you two cores on some linux vm. The 'docker' executor gives you considerably more cores (nproc was 32 instead of 2 back when I tried in February). Since the dockers are faster, we try to run everything that we can in dockers. Thus
* linux build jobs use the docker executor. Running them on the docker executor was at least 2x faster than running them on the machine executor
* linux test jobs use the machine executor in order for them to properly interface with GPUs since docker executors cannot execute with attached GPUs
* linux upload jobs use the machine executor. The upload jobs are so short that it doesn't really matter what they use
* linux smoke test jobs use the machine executor for the same reason as the linux test jobs
binary_run_in_docker.sh is a way to share the docker start-up code between the binary test jobs and the binary smoke test jobs
### **Why does binary_checkout also checkout pytorch? Why shouldn't it?**
We want all the nightly binary jobs to run on the exact same git commit, so we wrote our own checkout logic to ensure that the same commit was always picked. Later circleci changed that to use a single pytorch checkout and persist it through the workspace (they did this because our config file was too big, so they wanted to take a lot of the setup code into scripts, but the scripts needed the code repo to exist to be called, so they added a prereq step called 'setup' to checkout the code and persist the needed scripts to the workspace). The changes to the binary jobs were not properly tested, so they all broke from missing pytorch code no longer existing. We hotfixed the problem by adding the pytorch checkout back to binary_checkout, so now there's two checkouts of pytorch on the binary jobs. This problem still needs to be fixed, but it takes careful tracing of which code is being called where.
# Code structure of the binaries (circleci agnostic)
## Overview
The code that runs the binaries lives in two places, in the normal [github.com/pytorch/pytorch](http://github.com/pytorch/pytorch), but also in [github.com/pytorch/builder](http://github.com/pytorch/builder), which is a repo that defines how all the binaries are built. The relevant code is
```
# All code needed to set-up environments for build code to run in,
# but only code that is specific to the current CI system
pytorch/pytorch
- .circleci/ # Folder that holds all circleci related stuff
- config.yml # GENERATED file that actually controls all circleci behavior
- verbatim-sources # Used to generate job/workflow sections in ^
- scripts/ # Code needed to prepare circleci environments for binary build scripts
- setup.py # Builds pytorch. This is wrapped in pytorch/builder
- cmake files # used in normal building of pytorch
# All code needed to prepare a binary build, given an environment
# with all the right variables/packages/paths.
pytorch/builder
# Given an installed binary and a proper python env, runs some checks
# to make sure the binary was built the proper way. Checks things like
# the library dependencies, symbols present, etc.
- check_binary.sh
# Given an installed binary, runs python tests to make sure everything
# is in order. These should be de-duped. Right now they both run smoke
# tests, but are called from different places. Usually just call some
# import statements, but also has overlap with check_binary.sh above
- run_tests.sh
- smoke_test.sh
# Folders that govern how packages are built. See paragraphs below
- conda/
- build_pytorch.sh # Entrypoint. Delegates to proper conda build folder
- switch_cuda_version.sh # Switches activate CUDA installation in Docker
- pytorch-nightly/ # Build-folder
- manywheel/
- build_cpu.sh # Entrypoint for cpu builds
- build.sh # Entrypoint for CUDA builds
- build_common.sh # Actual build script that ^^ call into
- wheel/
- build_wheel.sh # Entrypoint for wheel builds
- windows/
- build_pytorch.bat # Entrypoint for wheel builds on Windows
```
Every type of package has an entrypoint build script that handles the all the important logic.
## Conda
Linux, MacOS and Windows use the same code flow for the conda builds.
Conda packages are built with conda-build, see https://conda.io/projects/conda-build/en/latest/resources/commands/conda-build.html
Basically, you pass `conda build` a build folder (pytorch-nightly/ above) that contains a build script and a meta.yaml. The meta.yaml specifies in what python environment to build the package in, and what dependencies the resulting package should have, and the build script gets called in the env to build the thing.
tl;dr on conda-build is
1. Creates a brand new conda environment, based off of deps in the meta.yaml
1. Note that environment variables do not get passed into this build env unless they are specified in the meta.yaml
2. If the build fails this environment will stick around. You can activate it for much easier debugging. The “General Python” section below explains what exactly a python “environment” is.
2. Calls build.sh in the environment
3. Copies the finished package to a new conda env, also specified by the meta.yaml
4. Runs some simple import tests (if specified in the meta.yaml)
5. Saves the finished package as a tarball
The build.sh we use is essentially a wrapper around `python setup.py build`, but it also manually copies in some of our dependent libraries into the resulting tarball and messes with some rpaths.
The entrypoint file `builder/conda/build_conda.sh` is complicated because
* It works for Linux, MacOS and Windows
* The mac builds used to create their own environments, since they all used to be on the same machine. Theres now a lot of extra logic to handle conda envs. This extra machinery could be removed
* It used to handle testing too, which adds more logic messing with python environments too. This extra machinery could be removed.
## Manywheels (linux pip and libtorch packages)
Manywheels are pip packages for linux distros. Note that these manywheels are not actually manylinux compliant.
`builder/manywheel/build_cpu.sh` and `builder/manywheel/build.sh` (for CUDA builds) just set different env vars and then call into `builder/manywheel/build_common.sh`
The entrypoint file `builder/manywheel/build_common.sh` is really really complicated because
* This used to handle building for several different python versions at the same time. The loops have been removed, but there's still unnecessary folders and movements here and there.
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
* There is a lot of messing with rpaths. This is necessary, but could be made much much simpler if the above issues were fixed.
## Wheels (MacOS pip and libtorch packages)
The entrypoint file `builder/wheel/build_wheel.sh` is complicated because
* The mac builds used to all run on one machine (we didnt have autoscaling mac machines till circleci). So this script handled siloing itself by setting-up and tearing-down its build env and siloing itself into its own build directory.
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* Ditto the comment above. This should definitely be separated out.
Note that the MacOS Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## Windows Wheels (Windows pip and libtorch packages)
The entrypoint file `builder/windows/build_pytorch.bat` is complicated because
* This used to handle building for several different python versions at the same time. This is why there are loops everywhere
* The script is never used this way anymore. This extra machinery could be removed.
* This used to handle testing the pip packages too. This is why theres testing code at the end that messes with python installations and stuff
* The script is never used this way anymore. This extra machinery could be removed.
* This also builds libtorch packages
* This should really be separate. libtorch packages are c++ only and have no python. They should not share infra with all the python specific stuff in this file.
Note that the Windows Python wheels are still built in conda environments. Some of the dependencies present during build also come from conda.
## General notes
### Note on run_tests.sh, smoke_test.sh, and check_binary.sh
* These should all be consolidated
* These must run on all OS types: MacOS, Linux, and Windows
* These all run smoke tests at the moment. They inspect the packages some, maybe run a few import statements. They DO NOT run the python tests nor the cpp tests. The idea is that python tests on main and PR merges will catch all breakages. All these tests have to do is make sure the special binary machinery didnt mess anything up.
* There are separate run_tests.sh and smoke_test.sh because one used to be called by the smoke jobs and one used to be called by the binary test jobs (see circleci structure section above). This is still true actually, but these could be united into a single script that runs these checks, given an installed pytorch package.
### Note on libtorch
Libtorch packages are built in the wheel build scripts: manywheel/build_*.sh for linux and build_wheel.sh for mac. There are several things wrong with this
* Its confusing. Most of those scripts deal with python specifics.
* The extra conditionals everywhere severely complicate the wheel build scripts
* The process for building libtorch is different from the official instructions (a plain call to cmake, or a call to a script)
### Note on docker images / Dockerfiles
All linux builds occur in docker images. The docker images are
* pytorch/conda-cuda
* Has ALL CUDA versions installed. The script pytorch/builder/conda/switch_cuda_version.sh sets /usr/local/cuda to a symlink to e.g. /usr/local/cuda-10.0 to enable different CUDA builds
* Also used for cpu builds
* pytorch/manylinux-cuda90
* pytorch/manylinux-cuda100
* Also used for cpu builds
The Dockerfiles are available in pytorch/builder, but there is no circleci job or script to build these docker images, and they cannot be run locally (unless you have the correct local packages/paths). Only Soumith can build them right now.
### General Python
* This is still a good explanation of python installations https://caffe2.ai/docs/faq.html#why-do-i-get-import-errors-in-python-when-i-try-to-use-caffe2
# How to manually rebuild the binaries
tl;dr make a PR that looks like https://github.com/pytorch/pytorch/pull/21159
Sometimes we want to push a change to mainand then rebuild all of today's binaries after that change. As of May 30, 2019 there isn't a way to manually run a workflow in the UI. You can manually re-run a workflow, but it will use the exact same git commits as the first run and will not include any changes. So we have to make a PR and then force circleci to run the binary workflow instead of the normal tests. The above PR is an example of how to do this; essentially you copy-paste the binarybuilds workflow steps into the default workflow steps. If you need to point the builder repo to a different commit then you'd need to change https://github.com/pytorch/pytorch/blob/main/.circleci/scripts/binary_checkout.sh#L42-L45 to checkout what you want.
## How to test changes to the binaries via .circleci
Writing PRs that test the binaries is annoying, since the default circleci jobs that run on PRs are not the jobs that you want to run. Likely, changes to the binaries will touch something under .circleci/ and require that .circleci/config.yml be regenerated (.circleci/config.yml controls all .circleci behavior, and is generated using `.circleci/regenerate.sh` in python 3.7). But you also need to manually hardcode the binary jobs that you want to test into the .circleci/config.yml workflow, so you should actually make at least two commits, one for your changes and one to temporarily hardcode jobs. See https://github.com/pytorch/pytorch/pull/22928 as an example of how to do this.
```sh
# Make your changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
# Regenerate the yaml, has to be in python 3.7
.circleci/regenerate.sh
# Make a commit
git add .circleci *
git commit -m "My real changes"
git push origin my_branch
# Now hardcode the jobs that you want in the .circleci/config.yml workflows section
# Also eliminate ensure-consistency and should_run_job checks
# e.g. https://github.com/pytorch/pytorch/commit/2b3344bfed8772fe86e5210cc4ee915dee42b32d
# Make a commit you won't keep
git add .circleci
git commit -m "[DO NOT LAND] testing binaries for above changes"
git push origin my_branch
# Now you need to make some changes to the first commit.
git rebase -i HEAD~2 # mark the first commit as 'edit'
# Make the changes
touch .circleci/verbatim-sources/nightly-binary-build-defaults.yml
.circleci/regenerate.sh
# Ammend the commit and recontinue
git add .circleci
git commit --amend
git rebase --continue
# Update the PR, need to force since the commits are different now
git push origin my_branch --force
```
The advantage of this flow is that you can make new changes to the base commit and regenerate the .circleci without having to re-write which binary jobs you want to test on. The downside is that all updates will be force pushes.
## How to build a binary locally
### Linux
You can build Linux binaries locally easily using docker.
```sh
# Run the docker
# Use the correct docker image, pytorch/conda-cuda used here as an example
#
# -v path/to/foo:path/to/bar makes path/to/foo on your local machine (the
# machine that you're running the command on) accessible to the docker
# container at path/to/bar. So if you then run `touch path/to/bar/baz`
# in the docker container then you will see path/to/foo/baz on your local
# machine. You could also clone the pytorch and builder repos in the docker.
#
# If you know how, add ccache as a volume too and speed up everything
docker run \
-v your/pytorch/repo:/pytorch \
-v your/builder/repo:/builder \
-v where/you/want/packages/to/appear:/final_pkgs \
-it pytorch/conda-cuda /bin/bash
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.7
export DESIRED_CUDA=cpu
# Call the entrypoint
# `|& tee foo.log` just copies all stdout and stderr output to foo.log
# The builds generate lots of output so you probably need this when
# building locally.
/builder/conda/build_pytorch.sh |& tee build_output.log
```
**Building CUDA binaries on docker**
You can build CUDA binaries on CPU only machines, but you can only run CUDA binaries on CUDA machines. This means that you can build a CUDA binary on a docker on your laptop if you so choose (though its gonna take a long time).
For Facebook employees, ask about beefy machines that have docker support and use those instead of your laptop; it will be 5x as fast.
### MacOS
Theres no easy way to generate reproducible hermetic MacOS environments. If you have a Mac laptop then you can try emulating the .circleci environments as much as possible, but you probably have packages in /usr/local/, possibly installed by brew, that will probably interfere with the build. If youre trying to repro an error on a Mac build in .circleci and you cant seem to repro locally, then my best advice is actually to iterate on .circleci :/
But if you want to try, then Id recommend
```sh
# Create a new terminal
# Clear your LD_LIBRARY_PATH and trim as much out of your PATH as you
# know how to do
# Install a new miniconda
# First remove any other python or conda installation from your PATH
# Always install miniconda 3, even if building for Python <3
new_conda="~/my_new_conda"
conda_sh="$new_conda/install_miniconda.sh"
curl -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
export PATH="~/my_new_conda/bin:$PATH"
# Create a clean python env
# All MacOS builds use conda to manage the python env and dependencies
# that are built with, even the pip packages
conda create -yn binary python=2.7
conda activate binary
# Export whatever variables are important to you. All variables that you'd
# possibly need are in .circleci/scripts/binary_populate_env.sh
# You should probably always export at least these 3 variables
export PACKAGE_TYPE=conda
export DESIRED_PYTHON=3.7
export DESIRED_CUDA=cpu
# Call the entrypoint you want
path/to/builder/wheel/build_wheel.sh
```
N.B. installing a brand new miniconda is important. This has to do with how conda installations work. See the “General Python” section above, but tldr; is that
1. You make the conda command accessible by prepending `path/to/conda_root/bin` to your PATH.
2. You make a new env and activate it, which then also gets prepended to your PATH. Now you have `path/to/conda_root/envs/new_env/bin:path/to/conda_root/bin:$PATH`
3. Now say you (or some code that you ran) call python executable `foo`
1. if you installed `foo` in `new_env`, then `path/to/conda_root/envs/new_env/bin/foo` will get called, as expected.
2. But if you forgot to installed `foo` in `new_env` but happened to previously install it in your root conda env (called base), then unix/linux will still find `path/to/conda_root/bin/foo` . This is dangerous, since `foo` can be a different version than you want; `foo` can even be for an incompatible python version!
Newer conda versions and proper python hygiene can prevent this, but just install a new miniconda to be safe.
### Windows
TODO: fill in

View File

@ -0,0 +1,198 @@
"""
This module models the tree of configuration variants
for "smoketest" builds.
Each subclass of ConfigNode represents a layer of the configuration hierarchy.
These tree nodes encapsulate the logic for whether a branch of the hierarchy
should be "pruned".
"""
from collections import OrderedDict
import cimodel.data.dimensions as dimensions
from cimodel.lib.conf_tree import ConfigNode
LINKING_DIMENSIONS = [
"shared",
"static",
]
DEPS_INCLUSION_DIMENSIONS = [
"with-deps",
"without-deps",
]
def get_processor_arch_name(gpu_version):
return (
"cpu"
if not gpu_version
else (
"cu" + gpu_version.strip("cuda")
if gpu_version.startswith("cuda")
else gpu_version
)
)
CONFIG_TREE_DATA = OrderedDict()
# GCC config variants:
#
# All the nightlies (except libtorch with new gcc ABI) are built with devtoolset7,
# which can only build with old gcc ABI. It is better than devtoolset3
# because it understands avx512, which is needed for good fbgemm performance.
#
# Libtorch with new gcc ABI is built with gcc 5.4 on Ubuntu 16.04.
LINUX_GCC_CONFIG_VARIANTS = OrderedDict(
manywheel=["devtoolset7"],
conda=["devtoolset7"],
libtorch=[
"devtoolset7",
"gcc5.4_cxx11-abi",
],
)
WINDOWS_LIBTORCH_CONFIG_VARIANTS = [
"debug",
"release",
]
class TopLevelNode(ConfigNode):
def __init__(self, node_name, config_tree_data, smoke):
super().__init__(None, node_name)
self.config_tree_data = config_tree_data
self.props["smoke"] = smoke
def get_children(self):
return [
OSConfigNode(self, x, c, p) for (x, (c, p)) in self.config_tree_data.items()
]
class OSConfigNode(ConfigNode):
def __init__(self, parent, os_name, gpu_versions, py_tree):
super().__init__(parent, os_name)
self.py_tree = py_tree
self.props["os_name"] = os_name
self.props["gpu_versions"] = gpu_versions
def get_children(self):
return [PackageFormatConfigNode(self, k, v) for k, v in self.py_tree.items()]
class PackageFormatConfigNode(ConfigNode):
def __init__(self, parent, package_format, python_versions):
super().__init__(parent, package_format)
self.props["python_versions"] = python_versions
self.props["package_format"] = package_format
def get_children(self):
if self.find_prop("os_name") == "linux":
return [
LinuxGccConfigNode(self, v)
for v in LINUX_GCC_CONFIG_VARIANTS[self.find_prop("package_format")]
]
elif (
self.find_prop("os_name") == "windows"
and self.find_prop("package_format") == "libtorch"
):
return [
WindowsLibtorchConfigNode(self, v)
for v in WINDOWS_LIBTORCH_CONFIG_VARIANTS
]
else:
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
class LinuxGccConfigNode(ConfigNode):
def __init__(self, parent, gcc_config_variant):
super().__init__(parent, "GCC_CONFIG_VARIANT=" + str(gcc_config_variant))
self.props["gcc_config_variant"] = gcc_config_variant
def get_children(self):
gpu_versions = self.find_prop("gpu_versions")
# XXX devtoolset7 on CUDA 9.0 is temporarily disabled
# see https://github.com/pytorch/pytorch/issues/20066
if self.find_prop("gcc_config_variant") == "devtoolset7":
gpu_versions = filter(lambda x: x != "cuda_90", gpu_versions)
# XXX disabling conda rocm build since docker images are not there
if self.find_prop("package_format") == "conda":
gpu_versions = filter(
lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions
)
# XXX libtorch rocm build is temporarily disabled
if self.find_prop("package_format") == "libtorch":
gpu_versions = filter(
lambda x: x not in dimensions.ROCM_VERSION_LABELS, gpu_versions
)
return [ArchConfigNode(self, v) for v in gpu_versions]
class WindowsLibtorchConfigNode(ConfigNode):
def __init__(self, parent, libtorch_config_variant):
super().__init__(
parent, "LIBTORCH_CONFIG_VARIANT=" + str(libtorch_config_variant)
)
self.props["libtorch_config_variant"] = libtorch_config_variant
def get_children(self):
return [ArchConfigNode(self, v) for v in self.find_prop("gpu_versions")]
class ArchConfigNode(ConfigNode):
def __init__(self, parent, gpu):
super().__init__(parent, get_processor_arch_name(gpu))
self.props["gpu"] = gpu
def get_children(self):
return [PyVersionConfigNode(self, v) for v in self.find_prop("python_versions")]
class PyVersionConfigNode(ConfigNode):
def __init__(self, parent, pyver):
super().__init__(parent, pyver)
self.props["pyver"] = pyver
def get_children(self):
package_format = self.find_prop("package_format")
os_name = self.find_prop("os_name")
has_libtorch_variants = package_format == "libtorch" and os_name == "linux"
linking_variants = LINKING_DIMENSIONS if has_libtorch_variants else []
return [LinkingVariantConfigNode(self, v) for v in linking_variants]
class LinkingVariantConfigNode(ConfigNode):
def __init__(self, parent, linking_variant):
super().__init__(parent, linking_variant)
def get_children(self):
return [
DependencyInclusionConfigNode(self, v) for v in DEPS_INCLUSION_DIMENSIONS
]
class DependencyInclusionConfigNode(ConfigNode):
def __init__(self, parent, deps_variant):
super().__init__(parent, deps_variant)
self.props["libtorch_variant"] = "-".join(
[self.parent.get_label(), self.get_label()]
)

View File

@ -0,0 +1,275 @@
from collections import OrderedDict
import cimodel.data.binary_build_data as binary_build_data
import cimodel.data.simple.util.branch_filters as branch_filters
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
class Conf:
def __init__(
self,
os,
gpu_version,
pydistro,
parms,
smoke,
libtorch_variant,
gcc_config_variant,
libtorch_config_variant,
):
self.os = os
self.gpu_version = gpu_version
self.pydistro = pydistro
self.parms = parms
self.smoke = smoke
self.libtorch_variant = libtorch_variant
self.gcc_config_variant = gcc_config_variant
self.libtorch_config_variant = libtorch_config_variant
def gen_build_env_parms(self):
elems = (
[self.pydistro]
+ self.parms
+ [binary_build_data.get_processor_arch_name(self.gpu_version)]
)
if self.gcc_config_variant is not None:
elems.append(str(self.gcc_config_variant))
if self.libtorch_config_variant is not None:
elems.append(str(self.libtorch_config_variant))
return elems
def gen_docker_image(self):
if self.gcc_config_variant == "gcc5.4_cxx11-abi":
if self.gpu_version is None:
return miniutils.quote("pytorch/libtorch-cxx11-builder:cpu")
else:
return miniutils.quote(
f"pytorch/libtorch-cxx11-builder:{self.gpu_version}"
)
if self.pydistro == "conda":
if self.gpu_version is None:
return miniutils.quote("pytorch/conda-builder:cpu")
else:
return miniutils.quote(f"pytorch/conda-builder:{self.gpu_version}")
docker_word_substitution = {
"manywheel": "manylinux",
"libtorch": "manylinux",
}
docker_distro_prefix = miniutils.override(
self.pydistro, docker_word_substitution
)
# The cpu nightlies are built on the pytorch/manylinux-cuda102 docker image
# TODO cuda images should consolidate into tag-base images similar to rocm
alt_docker_suffix = (
"cuda102"
if not self.gpu_version
else (
"rocm:" + self.gpu_version.strip("rocm")
if self.gpu_version.startswith("rocm")
else self.gpu_version
)
)
docker_distro_suffix = (
alt_docker_suffix
if self.pydistro != "conda"
else ("cuda" if alt_docker_suffix.startswith("cuda") else "rocm")
)
return miniutils.quote(
"pytorch/" + docker_distro_prefix + "-" + docker_distro_suffix
)
def get_name_prefix(self):
return "smoke" if self.smoke else "binary"
def gen_build_name(self, build_or_test, nightly):
parts = [self.get_name_prefix(), self.os] + self.gen_build_env_parms()
if nightly:
parts.append("nightly")
if self.libtorch_variant:
parts.append(self.libtorch_variant)
if not self.smoke:
parts.append(build_or_test)
joined = "_".join(parts)
return joined.replace(".", "_")
def gen_workflow_job(self, phase, upload_phase_dependency=None, nightly=False):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase, nightly)
job_def["build_environment"] = miniutils.quote(
" ".join(self.gen_build_env_parms())
)
if self.smoke:
job_def["requires"] = [
"update_s3_htmls",
]
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=["postnightly"],
)
else:
filter_branch = r"/.*/"
job_def["filters"] = branch_filters.gen_filter_dict(
branches_list=[filter_branch],
tags_list=[branch_filters.RC_PATTERN],
)
if self.libtorch_variant:
job_def["libtorch_variant"] = miniutils.quote(self.libtorch_variant)
if phase == "test":
if not self.smoke:
job_def["requires"] = [self.gen_build_name("build", nightly)]
if not (self.smoke and self.os == "macos") and self.os != "windows":
job_def["docker_image"] = self.gen_docker_image()
# fix this. only works on cuda not rocm
if self.os != "windows" and self.gpu_version:
job_def["use_cuda_docker_runtime"] = miniutils.quote("1")
else:
if self.os == "linux" and phase != "upload":
job_def["docker_image"] = self.gen_docker_image()
if phase == "test":
if self.gpu_version:
if self.os == "windows":
job_def["executor"] = "windows-with-nvidia-gpu"
else:
job_def["resource_class"] = "gpu.medium"
os_name = miniutils.override(self.os, {"macos": "mac"})
job_name = "_".join([self.get_name_prefix(), os_name, phase])
return {job_name: job_def}
def gen_upload_job(self, phase, requires_dependency):
"""Generate binary_upload job for configuration
Output looks similar to:
- binary_upload:
name: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_upload
context: org-member
requires: binary_linux_manywheel_3_7m_cu113_devtoolset7_nightly_test
filters:
branches:
only:
- nightly
tags:
only: /v[0-9]+(\\.[0-9]+)*-rc[0-9]+/
package_type: manywheel
upload_subfolder: cu113
"""
return {
"binary_upload": OrderedDict(
{
"name": self.gen_build_name(phase, nightly=True),
"context": "org-member",
"requires": [
self.gen_build_name(requires_dependency, nightly=True)
],
"filters": branch_filters.gen_filter_dict(
branches_list=["nightly"],
tags_list=[branch_filters.RC_PATTERN],
),
"package_type": self.pydistro,
"upload_subfolder": binary_build_data.get_processor_arch_name(
self.gpu_version,
),
}
)
}
def get_root(smoke, name):
return binary_build_data.TopLevelNode(
name,
binary_build_data.CONFIG_TREE_DATA,
smoke,
)
def gen_build_env_list(smoke):
root = get_root(smoke, "N/A")
config_list = conf_tree.dfs(root)
newlist = []
for c in config_list:
conf = Conf(
c.find_prop("os_name"),
c.find_prop("gpu"),
c.find_prop("package_format"),
[c.find_prop("pyver")],
c.find_prop("smoke")
and not (c.find_prop("os_name") == "macos_arm64"), # don't test arm64
c.find_prop("libtorch_variant"),
c.find_prop("gcc_config_variant"),
c.find_prop("libtorch_config_variant"),
)
newlist.append(conf)
return newlist
def predicate_exclude_macos(config):
return config.os == "linux" or config.os == "windows"
def get_nightly_uploads():
configs = gen_build_env_list(False)
mylist = []
for conf in configs:
phase_dependency = "test" if predicate_exclude_macos(conf) else "build"
mylist.append(conf.gen_upload_job("upload", phase_dependency))
return mylist
def get_post_upload_jobs():
return [
{
"update_s3_htmls": {
"name": "update_s3_htmls",
"context": "org-member",
"filters": branch_filters.gen_filter_dict(
branches_list=["postnightly"],
),
},
},
]
def get_nightly_tests():
configs = gen_build_env_list(False)
filtered_configs = filter(predicate_exclude_macos, configs)
tests = []
for conf_options in filtered_configs:
yaml_item = conf_options.gen_workflow_job("test", nightly=True)
tests.append(yaml_item)
return tests
def get_jobs(toplevel_key, smoke):
jobs_list = []
configs = gen_build_env_list(smoke)
phase = "build" if toplevel_key == "binarybuilds" else "test"
for build_config in configs:
# don't test for macos_arm64 as it's cross compiled
if phase != "test" or build_config.os != "macos_arm64":
jobs_list.append(build_config.gen_workflow_job(phase, nightly=True))
return jobs_list
def get_binary_build_jobs():
return get_jobs("binarybuilds", False)
def get_binary_smoke_test_jobs():
return get_jobs("binarysmoketests", True)

View File

@ -0,0 +1,19 @@
PHASES = ["build", "test"]
CUDA_VERSIONS = [
"102",
"113",
"116",
"117",
]
ROCM_VERSIONS = [
"4.3.1",
"4.5.2",
]
ROCM_VERSION_LABELS = ["rocm" + v for v in ROCM_VERSIONS]
GPU_VERSIONS = [None] + ["cuda" + v for v in CUDA_VERSIONS] + ROCM_VERSION_LABELS
STANDARD_PYTHON_VERSIONS = ["3.7", "3.8", "3.9", "3.10"]

View File

@ -0,0 +1,296 @@
from cimodel.lib.conf_tree import ConfigNode
CONFIG_TREE_DATA = []
def get_major_pyver(dotted_version):
parts = dotted_version.split(".")
return "py" + parts[0]
class TreeConfigNode(ConfigNode):
def __init__(self, parent, node_name, subtree):
super().__init__(parent, self.modify_label(node_name))
self.subtree = subtree
self.init2(node_name)
def modify_label(self, label):
return label
def init2(self, node_name):
pass
def get_children(self):
return [self.child_constructor()(self, k, v) for (k, v) in self.subtree]
class TopLevelNode(TreeConfigNode):
def __init__(self, node_name, subtree):
super().__init__(None, node_name, subtree)
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return DistroConfigNode
class DistroConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["distro_name"] = node_name
def child_constructor(self):
distro = self.find_prop("distro_name")
next_nodes = {
"xenial": XenialCompilerConfigNode,
"bionic": BionicCompilerConfigNode,
}
return next_nodes[distro]
class PyVerConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["pyver"] = node_name
self.props["abbreviated_pyver"] = get_major_pyver(node_name)
if node_name == "3.9":
self.props["abbreviated_pyver"] = "py3.9"
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ExperimentalFeatureConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["experimental_feature"] = node_name
def child_constructor(self):
experimental_feature = self.find_prop("experimental_feature")
next_nodes = {
"asan": AsanConfigNode,
"xla": XlaConfigNode,
"mps": MPSConfigNode,
"vulkan": VulkanConfigNode,
"parallel_tbb": ParallelTBBConfigNode,
"crossref": CrossRefConfigNode,
"dynamo": DynamoConfigNode,
"parallel_native": ParallelNativeConfigNode,
"onnx": ONNXConfigNode,
"libtorch": LibTorchConfigNode,
"important": ImportantConfigNode,
"build_only": BuildOnlyConfigNode,
"shard_test": ShardTestConfigNode,
"cuda_gcc_override": CudaGccOverrideConfigNode,
"pure_torch": PureTorchConfigNode,
"slow_gradcheck": SlowGradcheckConfigNode,
}
return next_nodes[experimental_feature]
class SlowGradcheckConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_slow_gradcheck"] = True
def child_constructor(self):
return ExperimentalFeatureConfigNode
class PureTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PURE_TORCH=" + str(label)
def init2(self, node_name):
self.props["is_pure_torch"] = node_name
def child_constructor(self):
return ImportantConfigNode
class XlaConfigNode(TreeConfigNode):
def modify_label(self, label):
return "XLA=" + str(label)
def init2(self, node_name):
self.props["is_xla"] = node_name
def child_constructor(self):
return ImportantConfigNode
class MPSConfigNode(TreeConfigNode):
def modify_label(self, label):
return "MPS=" + str(label)
def init2(self, node_name):
self.props["is_mps"] = node_name
def child_constructor(self):
return ImportantConfigNode
class AsanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Asan=" + str(label)
def init2(self, node_name):
self.props["is_asan"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ONNXConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Onnx=" + str(label)
def init2(self, node_name):
self.props["is_onnx"] = node_name
def child_constructor(self):
return ImportantConfigNode
class VulkanConfigNode(TreeConfigNode):
def modify_label(self, label):
return "Vulkan=" + str(label)
def init2(self, node_name):
self.props["is_vulkan"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelTBBConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELTBB=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "paralleltbb"
def child_constructor(self):
return ImportantConfigNode
class CrossRefConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_crossref"] = node_name
def child_constructor(self):
return ImportantConfigNode
class DynamoConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["is_dynamo"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ParallelNativeConfigNode(TreeConfigNode):
def modify_label(self, label):
return "PARALLELNATIVE=" + str(label)
def init2(self, node_name):
self.props["parallel_backend"] = "parallelnative"
def child_constructor(self):
return ImportantConfigNode
class LibTorchConfigNode(TreeConfigNode):
def modify_label(self, label):
return "BUILD_TEST_LIBTORCH=" + str(label)
def init2(self, node_name):
self.props["is_libtorch"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class CudaGccOverrideConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["cuda_gcc_override"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class BuildOnlyConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["build_only"] = node_name
def child_constructor(self):
return ExperimentalFeatureConfigNode
class ShardTestConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["shard_test"] = node_name
def child_constructor(self):
return ImportantConfigNode
class ImportantConfigNode(TreeConfigNode):
def modify_label(self, label):
return "IMPORTANT=" + str(label)
def init2(self, node_name):
self.props["is_important"] = node_name
def get_children(self):
return []
class XenialCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return (
XenialCompilerVersionConfigNode
if self.props["compiler_name"]
else PyVerConfigNode
)
class BionicCompilerConfigNode(TreeConfigNode):
def modify_label(self, label):
return label or "<unspecified>"
def init2(self, node_name):
self.props["compiler_name"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return (
BionicCompilerVersionConfigNode
if self.props["compiler_name"]
else PyVerConfigNode
)
class XenialCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode
class BionicCompilerVersionConfigNode(TreeConfigNode):
def init2(self, node_name):
self.props["compiler_version"] = node_name
# noinspection PyMethodMayBeStatic
def child_constructor(self):
return PyVerConfigNode

View File

@ -0,0 +1,382 @@
from collections import OrderedDict
from dataclasses import dataclass, field
from typing import List, Optional
import cimodel.data.dimensions as dimensions
import cimodel.lib.conf_tree as conf_tree
import cimodel.lib.miniutils as miniutils
from cimodel.data.pytorch_build_data import CONFIG_TREE_DATA, TopLevelNode
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.data.simple.util.docker_constants import gen_docker_image
@dataclass
class Conf:
distro: str
parms: List[str]
parms_list_ignored_for_docker_image: Optional[List[str]] = None
pyver: Optional[str] = None
cuda_version: Optional[str] = None
rocm_version: Optional[str] = None
# TODO expand this to cover all the USE_* that we want to test for
# tesnrorrt, leveldb, lmdb, redis, opencv, mkldnn, ideep, etc.
# (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259453608)
is_xla: bool = False
is_vulkan: bool = False
is_pure_torch: bool = False
restrict_phases: Optional[List[str]] = None
gpu_resource: Optional[str] = None
dependent_tests: List = field(default_factory=list)
parent_build: Optional["Conf"] = None
is_libtorch: bool = False
is_important: bool = False
parallel_backend: Optional[str] = None
build_only: bool = False
@staticmethod
def is_test_phase(phase):
return "test" in phase
# TODO: Eliminate the special casing for docker paths
# In the short term, we *will* need to support special casing as docker images are merged for caffe2 and pytorch
def get_parms(self, for_docker):
leading = []
# We just don't run non-important jobs on pull requests;
# previously we also named them in a way to make it obvious
# if self.is_important and not for_docker:
# leading.append("AAA")
leading.append("pytorch")
if self.is_xla and not for_docker:
leading.append("xla")
if self.is_vulkan and not for_docker:
leading.append("vulkan")
if self.is_libtorch and not for_docker:
leading.append("libtorch")
if self.is_pure_torch and not for_docker:
leading.append("pure_torch")
if self.parallel_backend is not None and not for_docker:
leading.append(self.parallel_backend)
cuda_parms = []
if self.cuda_version:
cudnn = "cudnn8" if self.cuda_version.startswith("11.") else "cudnn7"
cuda_parms.extend(["cuda" + self.cuda_version, cudnn])
if self.rocm_version:
cuda_parms.extend([f"rocm{self.rocm_version}"])
result = leading + ["linux", self.distro] + cuda_parms + self.parms
if not for_docker and self.parms_list_ignored_for_docker_image is not None:
result = result + self.parms_list_ignored_for_docker_image
return result
def gen_docker_image_path(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
image_name, _ = gen_docker_image(base_build_env_name)
return miniutils.quote(image_name)
def gen_docker_image_requires(self):
parms_source = self.parent_build or self
base_build_env_name = "-".join(parms_source.get_parms(True))
_, requires = gen_docker_image(base_build_env_name)
return miniutils.quote(requires)
def get_build_job_name_pieces(self, build_or_test):
return self.get_parms(False) + [build_or_test]
def gen_build_name(self, build_or_test):
return (
("_".join(map(str, self.get_build_job_name_pieces(build_or_test))))
.replace(".", "_")
.replace("-", "_")
)
def get_dependents(self):
return self.dependent_tests or []
def gen_workflow_params(self, phase):
parameters = OrderedDict()
build_job_name_pieces = self.get_build_job_name_pieces(phase)
build_env_name = "-".join(map(str, build_job_name_pieces))
parameters["build_environment"] = miniutils.quote(build_env_name)
parameters["docker_image"] = self.gen_docker_image_path()
if Conf.is_test_phase(phase) and self.gpu_resource:
parameters["use_cuda_docker_runtime"] = miniutils.quote("1")
if Conf.is_test_phase(phase):
resource_class = "large"
if self.gpu_resource:
resource_class = "gpu." + self.gpu_resource
if self.rocm_version is not None:
resource_class = "pytorch/amd-gpu"
parameters["resource_class"] = resource_class
if phase == "build" and self.rocm_version is not None:
parameters["resource_class"] = "xlarge"
if hasattr(self, "filters"):
parameters["filters"] = self.filters
if self.build_only:
parameters["build_only"] = miniutils.quote(str(int(True)))
return parameters
def gen_workflow_job(self, phase):
job_def = OrderedDict()
job_def["name"] = self.gen_build_name(phase)
if Conf.is_test_phase(phase):
# TODO When merging the caffe2 and pytorch jobs, it might be convenient for a while to make a
# caffe2 test job dependent on a pytorch build job. This way we could quickly dedup the repeated
# build of pytorch in the caffe2 build job, and just run the caffe2 tests off of a completed
# pytorch build job (from https://github.com/pytorch/pytorch/pull/17323#discussion_r259452641)
dependency_build = self.parent_build or self
job_def["requires"] = [dependency_build.gen_build_name("build")]
job_name = "pytorch_linux_test"
else:
job_name = "pytorch_linux_build"
job_def["requires"] = [self.gen_docker_image_requires()]
if not self.is_important:
job_def["filters"] = gen_filter_dict()
job_def.update(self.gen_workflow_params(phase))
return {job_name: job_def}
# TODO This is a hack to special case some configs just for the workflow list
class HiddenConf:
def __init__(self, name, parent_build=None, filters=None):
self.name = name
self.parent_build = parent_build
self.filters = filters
def gen_workflow_job(self, phase):
return {
self.gen_build_name(phase): {
"requires": [self.parent_build.gen_build_name("build")],
"filters": self.filters,
}
}
def gen_build_name(self, _):
return self.name
class DocPushConf:
def __init__(self, name, parent_build=None, branch="master"):
self.name = name
self.parent_build = parent_build
self.branch = branch
def gen_workflow_job(self, phase):
return {
"pytorch_doc_push": {
"name": self.name,
"branch": self.branch,
"requires": [self.parent_build],
"context": "org-member",
"filters": gen_filter_dict(
branches_list=["nightly"], tags_list=RC_PATTERN
),
}
}
def gen_docs_configs(xenial_parent_config):
configs = []
configs.append(
HiddenConf(
"pytorch_python_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(
branches_list=["master", "main", "nightly"], tags_list=RC_PATTERN
),
)
)
configs.append(
DocPushConf(
"pytorch_python_doc_push",
parent_build="pytorch_python_doc_build",
branch="site",
)
)
configs.append(
HiddenConf(
"pytorch_cpp_doc_build",
parent_build=xenial_parent_config,
filters=gen_filter_dict(
branches_list=["master", "main", "nightly"], tags_list=RC_PATTERN
),
)
)
configs.append(
DocPushConf(
"pytorch_cpp_doc_push",
parent_build="pytorch_cpp_doc_build",
branch="master",
)
)
return configs
def get_root():
return TopLevelNode("PyTorch Builds", CONFIG_TREE_DATA)
def gen_tree():
root = get_root()
configs_list = conf_tree.dfs(root)
return configs_list
def instantiate_configs(only_slow_gradcheck):
config_list = []
root = get_root()
found_configs = conf_tree.dfs(root)
for fc in found_configs:
restrict_phases = None
distro_name = fc.find_prop("distro_name")
compiler_name = fc.find_prop("compiler_name")
compiler_version = fc.find_prop("compiler_version")
is_xla = fc.find_prop("is_xla") or False
is_asan = fc.find_prop("is_asan") or False
is_crossref = fc.find_prop("is_crossref") or False
is_dynamo = fc.find_prop("is_dynamo") or False
is_onnx = fc.find_prop("is_onnx") or False
is_pure_torch = fc.find_prop("is_pure_torch") or False
is_vulkan = fc.find_prop("is_vulkan") or False
is_slow_gradcheck = fc.find_prop("is_slow_gradcheck") or False
parms_list_ignored_for_docker_image = []
if only_slow_gradcheck ^ is_slow_gradcheck:
continue
python_version = None
if compiler_name == "cuda" or compiler_name == "android":
python_version = fc.find_prop("pyver")
parms_list = [fc.find_prop("abbreviated_pyver")]
else:
parms_list = ["py" + fc.find_prop("pyver")]
cuda_version = None
rocm_version = None
if compiler_name == "cuda":
cuda_version = fc.find_prop("compiler_version")
elif compiler_name == "rocm":
rocm_version = fc.find_prop("compiler_version")
restrict_phases = ["build", "test1", "test2", "caffe2_test"]
elif compiler_name == "android":
android_ndk_version = fc.find_prop("compiler_version")
# TODO: do we need clang to compile host binaries like protoc?
parms_list.append("clang5")
parms_list.append("android-ndk-" + android_ndk_version)
android_abi = fc.find_prop("android_abi")
parms_list_ignored_for_docker_image.append(android_abi)
restrict_phases = ["build"]
elif compiler_name:
gcc_version = compiler_name + (fc.find_prop("compiler_version") or "")
parms_list.append(gcc_version)
if is_asan:
parms_list.append("asan")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
if is_crossref:
parms_list_ignored_for_docker_image.append("crossref")
if is_dynamo:
parms_list_ignored_for_docker_image.append("dynamo")
if is_onnx:
parms_list.append("onnx")
python_version = fc.find_prop("pyver")
parms_list[0] = fc.find_prop("abbreviated_pyver")
restrict_phases = ["build", "ort_test1", "ort_test2"]
if cuda_version:
cuda_gcc_version = fc.find_prop("cuda_gcc_override") or "gcc7"
parms_list.append(cuda_gcc_version)
is_libtorch = fc.find_prop("is_libtorch") or False
is_important = fc.find_prop("is_important") or False
parallel_backend = fc.find_prop("parallel_backend") or None
build_only = fc.find_prop("build_only") or False
shard_test = fc.find_prop("shard_test") or False
# TODO: fix pure_torch python test packaging issue.
if shard_test:
restrict_phases = ["build"] if restrict_phases is None else restrict_phases
restrict_phases.extend(["test1", "test2"])
if build_only or is_pure_torch:
restrict_phases = ["build"]
if is_slow_gradcheck:
parms_list_ignored_for_docker_image.append("old")
parms_list_ignored_for_docker_image.append("gradcheck")
gpu_resource = None
if cuda_version and cuda_version != "10":
gpu_resource = "medium"
c = Conf(
distro_name,
parms_list,
parms_list_ignored_for_docker_image,
python_version,
cuda_version,
rocm_version,
is_xla,
is_vulkan,
is_pure_torch,
restrict_phases,
gpu_resource,
is_libtorch=is_libtorch,
is_important=is_important,
parallel_backend=parallel_backend,
build_only=build_only,
)
# run docs builds on "pytorch-linux-xenial-py3.7-gcc5.4". Docs builds
# should run on a CPU-only build that runs on all PRs.
# XXX should this be updated to a more modern build?
if (
distro_name == "xenial"
and fc.find_prop("pyver") == "3.7"
and cuda_version is None
and parallel_backend is None
and not is_vulkan
and not is_pure_torch
and compiler_name == "gcc"
and fc.find_prop("compiler_version") == "5.4"
):
c.filters = gen_filter_dict(branches_list=r"/.*/", tags_list=RC_PATTERN)
c.dependent_tests = gen_docs_configs(c)
config_list.append(c)
return config_list
def get_workflow_jobs(only_slow_gradcheck=False):
config_list = instantiate_configs(only_slow_gradcheck)
x = []
for conf_options in config_list:
phases = conf_options.restrict_phases or dimensions.PHASES
for phase in phases:
# TODO why does this not have a test?
if Conf.is_test_phase(phase) and conf_options.cuda_version == "10":
continue
x.append(conf_options.gen_workflow_job(phase))
# TODO convert to recursion
for conf in conf_options.get_dependents():
x.append(conf.gen_workflow_job("test"))
return x

View File

@ -0,0 +1,28 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict
from cimodel.lib.miniutils import quote
CHANNELS_TO_PRUNE = ["pytorch-nightly", "pytorch-test"]
PACKAGES_TO_PRUNE = "pytorch torchvision torchaudio torchtext ignite torchcsprng"
def gen_workflow_job(channel: str):
return OrderedDict(
{
"anaconda_prune": OrderedDict(
{
"name": f"anaconda-prune-{channel}",
"context": quote("org-member"),
"packages": quote(PACKAGES_TO_PRUNE),
"channel": channel,
"filters": gen_filter_dict(branches_list=["postnightly"]),
}
)
}
)
def get_workflow_jobs():
return [gen_workflow_job(channel) for channel in CHANNELS_TO_PRUNE]

View File

@ -0,0 +1,39 @@
from collections import OrderedDict
from cimodel.data.simple.util.branch_filters import gen_filter_dict, RC_PATTERN
from cimodel.lib.miniutils import quote
# NOTE: All hardcoded docker image builds have been migrated to GHA
IMAGE_NAMES = []
# This entry should be an element from the list above
# This should contain the image matching the "slow_gradcheck" entry in
# pytorch_build_data.py
SLOW_GRADCHECK_IMAGE_NAME = "pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
def get_workflow_jobs(images=IMAGE_NAMES, only_slow_gradcheck=False):
"""Generates a list of docker image build definitions"""
ret = []
for image_name in images:
if image_name.startswith("docker-"):
image_name = image_name.lstrip("docker-")
if only_slow_gradcheck and image_name is not SLOW_GRADCHECK_IMAGE_NAME:
continue
parameters = OrderedDict(
{
"name": quote(f"docker-{image_name}"),
"image_name": quote(image_name),
}
)
if image_name == "pytorch-linux-xenial-py3.7-gcc5.4":
# pushing documentation on tags requires CircleCI to also
# build all the dependencies on tags, including this docker image
parameters["filters"] = gen_filter_dict(
branches_list=r"/.*/", tags_list=RC_PATTERN
)
ret.append(OrderedDict({"docker_build_job": parameters}))
return ret

View File

@ -0,0 +1,100 @@
import cimodel.lib.miniutils as miniutils
from cimodel.data.simple.util.branch_filters import gen_filter_dict_exclude
from cimodel.data.simple.util.versions import MultiPartVersion
XCODE_VERSION = MultiPartVersion([12, 5, 1])
class ArchVariant:
def __init__(self, name, custom_build_name=""):
self.name = name
self.custom_build_name = custom_build_name
def render(self):
extra_parts = (
[self.custom_build_name] if len(self.custom_build_name) > 0 else []
)
return "-".join([self.name] + extra_parts).replace("_", "-")
def get_platform(arch_variant_name):
return "SIMULATOR" if arch_variant_name == "x86_64" else "OS"
class IOSJob:
def __init__(
self, xcode_version, arch_variant, is_org_member_context=True, extra_props=None
):
self.xcode_version = xcode_version
self.arch_variant = arch_variant
self.is_org_member_context = is_org_member_context
self.extra_props = extra_props
def gen_name_parts(self):
version_parts = self.xcode_version.render_dots_or_parts("-")
build_variant_suffix = self.arch_variant.render()
return (
[
"ios",
]
+ version_parts
+ [
build_variant_suffix,
]
)
def gen_job_name(self):
return "-".join(self.gen_name_parts())
def gen_tree(self):
platform_name = get_platform(self.arch_variant.name)
props_dict = {
"name": self.gen_job_name(),
"build_environment": self.gen_job_name(),
"ios_arch": self.arch_variant.name,
"ios_platform": platform_name,
}
if self.is_org_member_context:
props_dict["context"] = "org-member"
if self.extra_props:
props_dict.update(self.extra_props)
props_dict["filters"] = gen_filter_dict_exclude()
return [{"pytorch_ios_build": props_dict}]
WORKFLOW_DATA = [
IOSJob(
XCODE_VERSION,
ArchVariant("x86_64"),
is_org_member_context=False,
extra_props={"lite_interpreter": miniutils.quote(str(int(True)))},
),
# IOSJob(XCODE_VERSION, ArchVariant("arm64"), extra_props={
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "metal"), extra_props={
# "use_metal": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "custom-ops"), extra_props={
# "op_list": "mobilenetv2.yaml",
# "lite_interpreter": miniutils.quote(str(int(True)))}),
IOSJob(
XCODE_VERSION,
ArchVariant("x86_64", "coreml"),
is_org_member_context=False,
extra_props={
"use_coreml": miniutils.quote(str(int(True))),
"lite_interpreter": miniutils.quote(str(int(True))),
},
),
# IOSJob(XCODE_VERSION, ArchVariant("arm64", "coreml"), extra_props={
# "use_coreml": miniutils.quote(str(int(True))),
# "lite_interpreter": miniutils.quote(str(int(True)))}),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,54 @@
class MacOsJob:
def __init__(self, os_version, is_build=False, is_test=False, extra_props=tuple()):
# extra_props is tuple type, because mutable data structures for argument defaults
# is not recommended.
self.os_version = os_version
self.is_build = is_build
self.is_test = is_test
self.extra_props = dict(extra_props)
def gen_tree(self):
non_phase_parts = ["pytorch", "macos", self.os_version, "py3"]
extra_name_list = [name for name, exist in self.extra_props.items() if exist]
full_job_name_list = (
non_phase_parts
+ extra_name_list
+ [
"build" if self.is_build else None,
"test" if self.is_test else None,
]
)
full_job_name = "_".join(list(filter(None, full_job_name_list)))
test_build_dependency = "_".join(non_phase_parts + ["build"])
extra_dependencies = [test_build_dependency] if self.is_test else []
job_dependencies = extra_dependencies
# Yes we name the job after itself, it needs a non-empty value in here
# for the YAML output to work.
props_dict = {"requires": job_dependencies, "name": full_job_name}
return [{full_job_name: props_dict}]
WORKFLOW_DATA = [
MacOsJob("10_15", is_build=True),
MacOsJob("10_13", is_build=True),
MacOsJob(
"10_13",
is_build=False,
is_test=True,
),
MacOsJob(
"10_13",
is_build=True,
is_test=True,
extra_props=tuple({"lite_interpreter": True}.items()),
),
]
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,51 @@
"""
PyTorch Mobile PR builds (use linux host toolchain + mobile build options)
"""
import cimodel.data.simple.util.branch_filters
import cimodel.lib.miniutils as miniutils
class MobileJob:
def __init__(
self, docker_image, docker_requires, variant_parts, is_master_only=False
):
self.docker_image = docker_image
self.docker_requires = docker_requires
self.variant_parts = variant_parts
self.is_master_only = is_master_only
def gen_tree(self):
non_phase_parts = [
"pytorch",
"linux",
"xenial",
"py3",
"clang5",
"mobile",
] + self.variant_parts
full_job_name = "_".join(non_phase_parts)
build_env_name = "-".join(non_phase_parts)
props_dict = {
"build_environment": build_env_name,
"build_only": miniutils.quote(str(int(True))),
"docker_image": self.docker_image,
"requires": self.docker_requires,
"name": full_job_name,
}
if self.is_master_only:
props_dict[
"filters"
] = cimodel.data.simple.util.branch_filters.gen_filter_dict()
return [{"pytorch_linux_build": props_dict}]
WORKFLOW_DATA = []
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,96 @@
import cimodel.data.simple.ios_definitions as ios_definitions
import cimodel.lib.miniutils as miniutils
class IOSNightlyJob:
def __init__(self, variant, is_full_jit=False, is_upload=False):
self.variant = variant
self.is_full_jit = is_full_jit
self.is_upload = is_upload
def get_phase_name(self):
return "upload" if self.is_upload else "build"
def get_common_name_pieces(self, sep):
extra_name_suffix = [self.get_phase_name()] if self.is_upload else []
extra_name = ["full_jit"] if self.is_full_jit else []
common_name_pieces = (
[
"ios",
]
+ extra_name
+ []
+ ios_definitions.XCODE_VERSION.render_dots_or_parts(sep)
+ [
"nightly",
self.variant,
"build",
]
+ extra_name_suffix
)
return common_name_pieces
def gen_job_name(self):
return "_".join(["pytorch"] + self.get_common_name_pieces(None))
def gen_tree(self):
build_configs = BUILD_CONFIGS_FULL_JIT if self.is_full_jit else BUILD_CONFIGS
extra_requires = (
[x.gen_job_name() for x in build_configs] if self.is_upload else []
)
props_dict = {
"build_environment": "-".join(
["libtorch"] + self.get_common_name_pieces(".")
),
"requires": extra_requires,
"context": "org-member",
"filters": {"branches": {"only": "nightly"}},
}
if not self.is_upload:
props_dict["ios_arch"] = self.variant
props_dict["ios_platform"] = ios_definitions.get_platform(self.variant)
props_dict["name"] = self.gen_job_name()
props_dict["use_metal"] = miniutils.quote(str(int(True)))
props_dict["use_coreml"] = miniutils.quote(str(int(True)))
if self.is_full_jit:
props_dict["lite_interpreter"] = miniutils.quote(str(int(False)))
template_name = "_".join(
[
"binary",
"ios",
self.get_phase_name(),
]
)
return [{template_name: props_dict}]
BUILD_CONFIGS = [
IOSNightlyJob("x86_64"),
IOSNightlyJob("arm64"),
]
BUILD_CONFIGS_FULL_JIT = [
IOSNightlyJob("x86_64", is_full_jit=True),
IOSNightlyJob("arm64", is_full_jit=True),
]
WORKFLOW_DATA = (
BUILD_CONFIGS
+ BUILD_CONFIGS_FULL_JIT
+ [
IOSNightlyJob("binary", is_full_jit=False, is_upload=True),
IOSNightlyJob("binary", is_full_jit=True, is_upload=True),
]
)
def get_workflow_jobs():
return [item.gen_tree() for item in WORKFLOW_DATA]

View File

@ -0,0 +1,36 @@
NON_PR_BRANCH_LIST = [
"main",
"master",
r"/ci-all\/.*/",
r"/release\/.*/",
]
PR_BRANCH_LIST = [
r"/gh\/.*\/head/",
r"/pull\/.*/",
]
RC_PATTERN = r"/v[0-9]+(\.[0-9]+)*-rc[0-9]+/"
MAC_IOS_EXCLUSION_LIST = ["nightly", "postnightly"]
def gen_filter_dict(branches_list=NON_PR_BRANCH_LIST, tags_list=None):
"""Generates a filter dictionary for use with CircleCI's job filter"""
filter_dict = {
"branches": {
"only": branches_list,
},
}
if tags_list is not None:
filter_dict["tags"] = {"only": tags_list}
return filter_dict
def gen_filter_dict_exclude(branches_list=MAC_IOS_EXCLUSION_LIST):
return {
"branches": {
"ignore": branches_list,
},
}

View File

@ -0,0 +1,35 @@
AWS_DOCKER_HOST = "308535385114.dkr.ecr.us-east-1.amazonaws.com"
def gen_docker_image(container_type):
return (
"/".join([AWS_DOCKER_HOST, "pytorch", container_type]),
f"docker-{container_type}",
)
def gen_docker_image_requires(image_name):
return [f"docker-{image_name}"]
DOCKER_IMAGE_BASIC, DOCKER_REQUIREMENT_BASE = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc5.4"
)
DOCKER_IMAGE_CUDA_10_2, DOCKER_REQUIREMENT_CUDA_10_2 = gen_docker_image(
"pytorch-linux-xenial-cuda10.2-cudnn7-py3-gcc7"
)
DOCKER_IMAGE_GCC7, DOCKER_REQUIREMENT_GCC7 = gen_docker_image(
"pytorch-linux-xenial-py3.7-gcc7"
)
def gen_mobile_docker(specifier):
container_type = "pytorch-linux-xenial-py3-clang5-" + specifier
return gen_docker_image(container_type)
DOCKER_IMAGE_ASAN, DOCKER_REQUIREMENT_ASAN = gen_mobile_docker("asan")
DOCKER_IMAGE_NDK, DOCKER_REQUIREMENT_NDK = gen_mobile_docker("android-ndk-r19c")

View File

@ -0,0 +1,36 @@
from typing import Optional
class MultiPartVersion:
def __init__(self, parts, prefix=""):
self.parts = parts
self.prefix = prefix
def prefixed_parts(self):
"""
Prepends the first element of the version list
with the prefix string.
"""
if self.parts:
return [self.prefix + str(self.parts[0])] + [
str(part) for part in self.parts[1:]
]
else:
return [self.prefix]
def render_dots_or_parts(self, sep: Optional[str] = None):
if sep is None:
return self.prefixed_parts()
else:
return [sep.join(self.prefixed_parts())]
class CudaVersion(MultiPartVersion):
def __init__(self, major, minor):
self.major = major
self.minor = minor
super().__init__([self.major, self.minor], "cuda")
def __str__(self):
return f"{self.major}.{self.minor}"

View File

@ -0,0 +1,111 @@
from dataclasses import dataclass, field
from typing import Dict, Optional
def X(val):
"""
Compact way to write a leaf node
"""
return val, []
def XImportant(name):
"""Compact way to write an important (run on PRs) leaf node"""
return (name, [("important", [X(True)])])
@dataclass
class Ver:
"""
Represents a product with a version number
"""
name: str
version: str = ""
def __str__(self):
return self.name + self.version
@dataclass
class ConfigNode:
parent: Optional["ConfigNode"]
node_name: str
props: Dict[str, str] = field(default_factory=dict)
def get_label(self):
return self.node_name
# noinspection PyMethodMayBeStatic
def get_children(self):
return []
def get_parents(self):
return (
(self.parent.get_parents() + [self.parent.get_label()])
if self.parent
else []
)
def get_depth(self):
return len(self.get_parents())
def get_node_key(self):
return "%".join(self.get_parents() + [self.get_label()])
def find_prop(self, propname, searched=None):
"""
Checks if its own dictionary has
the property, otherwise asks parent node.
"""
if searched is None:
searched = []
searched.append(self.node_name)
if propname in self.props:
return self.props[propname]
elif self.parent:
return self.parent.find_prop(propname, searched)
else:
# raise Exception('Property "%s" does not exist anywhere in the tree! Searched: %s' % (propname, searched))
return None
def dfs_recurse(
node,
leaf_callback=lambda x: None,
discovery_callback=lambda x, y, z: None,
child_callback=lambda x, y: None,
sibling_index=0,
sibling_count=1,
):
discovery_callback(node, sibling_index, sibling_count)
node_children = node.get_children()
if node_children:
for i, child in enumerate(node_children):
child_callback(node, child)
dfs_recurse(
child,
leaf_callback,
discovery_callback,
child_callback,
i,
len(node_children),
)
else:
leaf_callback(node)
def dfs(toplevel_config_node):
config_list = []
def leaf_callback(node):
config_list.append(node)
dfs_recurse(toplevel_config_node, leaf_callback)
return config_list

View File

@ -0,0 +1,10 @@
def quote(s):
return sandwich('"', s)
def sandwich(bread, jam):
return bread + jam + bread
def override(word, substitutions):
return substitutions.get(word, word)

View File

@ -0,0 +1,51 @@
from collections import OrderedDict
import cimodel.lib.miniutils as miniutils
LIST_MARKER = "- "
INDENTATION_WIDTH = 2
def is_dict(data):
return type(data) in [dict, OrderedDict]
def is_collection(data):
return is_dict(data) or type(data) is list
def render(fh, data, depth, is_list_member=False):
"""
PyYaml does not allow precise control over the quoting
behavior, especially for merge references.
Therefore, we use this custom YAML renderer.
"""
indentation = " " * INDENTATION_WIDTH * depth
if is_dict(data):
tuples = list(data.items())
if type(data) is not OrderedDict:
tuples.sort()
for i, (k, v) in enumerate(tuples):
if not v:
continue
# If this dict is itself a list member, the first key gets prefixed with a list marker
list_marker_prefix = LIST_MARKER if is_list_member and not i else ""
trailing_whitespace = "\n" if is_collection(v) else " "
fh.write(indentation + list_marker_prefix + k + ":" + trailing_whitespace)
render(fh, v, depth + 1 + int(is_list_member))
elif type(data) is list:
for v in data:
render(fh, v, depth, True)
else:
# use empty quotes to denote an empty string value instead of blank space
modified_data = miniutils.quote(data) if data == "" else data
list_member_prefix = indentation + LIST_MARKER if is_list_member else ""
fh.write(list_member_prefix + str(modified_data) + "\n")

1435
.circleci/config.yml generated Normal file

File diff suppressed because it is too large Load Diff

41
.circleci/ensure-consistency.py Executable file
View File

@ -0,0 +1,41 @@
#!/usr/bin/env python3
import os
import subprocess
import sys
import tempfile
import generate_config_yml
CHECKED_IN_FILE = "config.yml"
REGENERATION_SCRIPT = "regenerate.sh"
PARENT_DIR = os.path.basename(os.path.dirname(os.path.abspath(__file__)))
README_PATH = os.path.join(PARENT_DIR, "README.md")
ERROR_MESSAGE_TEMPLATE = """
The checked-in CircleCI "%s" file does not match what was generated by the scripts.
Please re-run the "%s" script in the "%s" directory and commit the result. See "%s" for more information.
"""
def check_consistency():
_, temp_filename = tempfile.mkstemp("-generated-config.yml")
with open(temp_filename, "w") as fh:
generate_config_yml.stitch_sources(fh)
try:
subprocess.check_call(["cmp", temp_filename, CHECKED_IN_FILE])
except subprocess.CalledProcessError:
sys.exit(
ERROR_MESSAGE_TEMPLATE
% (CHECKED_IN_FILE, REGENERATION_SCRIPT, PARENT_DIR, README_PATH)
)
finally:
os.remove(temp_filename)
if __name__ == "__main__":
check_consistency()

199
.circleci/generate_config_yml.py Executable file
View File

@ -0,0 +1,199 @@
#!/usr/bin/env python3
"""
This script is the source of truth for config.yml.
Please see README.md in this directory for details.
"""
import os
import shutil
import sys
from collections import namedtuple
import cimodel.data.simple.anaconda_prune_defintions
import cimodel.data.simple.docker_definitions
import cimodel.data.simple.mobile_definitions
import cimodel.data.simple.nightly_ios
import cimodel.lib.miniutils as miniutils
import cimodel.lib.miniyaml as miniyaml
class File:
"""
Verbatim copy the contents of a file into config.yml
"""
def __init__(self, filename):
self.filename = filename
def write(self, output_filehandle):
with open(os.path.join("verbatim-sources", self.filename)) as fh:
shutil.copyfileobj(fh, output_filehandle)
class FunctionGen(namedtuple("FunctionGen", "function depth")):
__slots__ = ()
class Treegen(FunctionGen):
"""
Insert the content of a YAML tree into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
class Listgen(FunctionGen):
"""
Insert the content of a YAML list into config.yml
"""
def write(self, output_filehandle):
miniyaml.render(output_filehandle, self.function(), self.depth)
def horizontal_rule():
return "".join("#" * 78)
class Header:
def __init__(self, title, summary=None):
self.title = title
self.summary_lines = summary or []
def write(self, output_filehandle):
text_lines = [self.title] + self.summary_lines
comment_lines = ["# " + x for x in text_lines]
lines = miniutils.sandwich([horizontal_rule()], comment_lines)
for line in filter(None, lines):
output_filehandle.write(line + "\n")
def _for_all_items(items, functor) -> None:
if isinstance(items, list):
for item in items:
_for_all_items(item, functor)
if isinstance(items, dict) and len(items) == 1:
item_type, item = next(iter(items.items()))
functor(item_type, item)
def filter_master_only_jobs(items):
def _is_main_or_master_item(item):
filters = item.get("filters", None)
branches = filters.get("branches", None) if filters is not None else None
branches_only = branches.get("only", None) if branches is not None else None
return (
("main" in branches_only or "master" in branches_only)
if branches_only is not None
else False
)
master_deps = set()
def _save_requires_if_master(item_type, item):
requires = item.get("requires", None)
item_name = item.get("name", None)
if not isinstance(requires, list):
return
if _is_main_or_master_item(item) or item_name in master_deps:
master_deps.update([n.strip('"') for n in requires])
def _do_filtering(items):
if isinstance(items, list):
rc = [_do_filtering(item) for item in items]
return [item for item in rc if len(item if item is not None else []) > 0]
assert isinstance(items, dict) and len(items) == 1
item_type, item = next(iter(items.items()))
item_name = item.get("name", None)
item_name = item_name.strip('"') if item_name is not None else None
if not _is_main_or_master_item(item) and item_name not in master_deps:
return None
if "filters" in item:
item = item.copy()
item.pop("filters")
return {item_type: item}
# Scan of dependencies twice to pick up nested required jobs
# I.e. jobs depending on jobs that main-only job depend on
_for_all_items(items, _save_requires_if_master)
_for_all_items(items, _save_requires_if_master)
return _do_filtering(items)
def generate_required_docker_images(items):
required_docker_images = set()
def _requires_docker_image(item_type, item):
requires = item.get("requires", None)
if not isinstance(requires, list):
return
for requirement in requires:
requirement = requirement.replace('"', "")
if requirement.startswith("docker-"):
required_docker_images.add(requirement)
_for_all_items(items, _requires_docker_image)
return required_docker_images
def gen_build_workflows_tree():
build_workflows_functions = [
cimodel.data.simple.mobile_definitions.get_workflow_jobs,
cimodel.data.simple.nightly_ios.get_workflow_jobs,
cimodel.data.simple.anaconda_prune_defintions.get_workflow_jobs,
]
build_jobs = [f() for f in build_workflows_functions]
build_jobs.extend(
cimodel.data.simple.docker_definitions.get_workflow_jobs(
# sort for consistency
sorted(generate_required_docker_images(build_jobs))
)
)
master_build_jobs = filter_master_only_jobs(build_jobs)
rc = {
"workflows": {
"build": {
"when": r"<< pipeline.parameters.run_build >>",
"jobs": build_jobs,
},
}
}
if len(master_build_jobs) > 0:
rc["workflows"]["master_build"] = {
"when": r"<< pipeline.parameters.run_master_build >>",
"jobs": master_build_jobs,
}
return rc
# Order of this list matters to the generated config.yml.
YAML_SOURCES = [
File("header-section.yml"),
File("commands.yml"),
File("nightly-binary-build-defaults.yml"),
Header("Build parameters"),
File("build-parameters/pytorch-build-params.yml"),
File("build-parameters/binary-build-params.yml"),
Header("Job specs"),
File("job-specs/binary-job-specs.yml"),
File("job-specs/job-specs-custom.yml"),
File("job-specs/binary_update_htmls.yml"),
File("job-specs/binary-build-tests.yml"),
File("job-specs/docker_jobs.yml"),
Header("Workflows"),
Treegen(gen_build_workflows_tree, 0),
]
def stitch_sources(output_filehandle):
for f in YAML_SOURCES:
f.write(output_filehandle)
if __name__ == "__main__":
stitch_sources(sys.stdout)

5
.circleci/regenerate.ps1 Normal file
View File

@ -0,0 +1,5 @@
cd $PSScriptRoot;
$NewFile = New-TemporaryFile;
python generate_config_yml.py > $NewFile.name
(Get-Content $NewFile.name -Raw).TrimEnd().Replace("`r`n","`n") | Set-Content config.yml -Force
Remove-Item $NewFile.name

17
.circleci/regenerate.sh Executable file
View File

@ -0,0 +1,17 @@
#!/bin/bash -e
# Allows this script to be invoked from any directory:
cd "$(dirname "$0")"
UNCOMMIT_CHANGE=$(git status -s | grep " config.yml" | wc -l | xargs)
if [[ $UNCOMMIT_CHANGE != 0 ]]; then
OLD_FILE=$(mktemp)
cp config.yml "$OLD_FILE"
echo "Uncommitted change detected in .circleci/config.yml"
echo "It has been backed up to $OLD_FILE"
fi
NEW_FILE=$(mktemp)
./generate_config_yml.py > "$NEW_FILE"
cp "$NEW_FILE" config.yml
echo "New config generated in .circleci/config.yml"

View File

@ -0,0 +1,69 @@
#!/bin/bash
set -eux -o pipefail
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
# macos executor (builds and tests)
workdir="/Users/distiller/project"
elif [[ "$OSTYPE" == "msys" ]]; then
# windows executor (builds and tests)
rm -rf /c/w
ln -s "/c/Users/circleci/project" /c/w
workdir="/c/w"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
workdir="/home/circleci/project"
else
# docker executor (binary builds)
workdir="/"
fi
# It is very important that this stays in sync with binary_populate_env.sh
if [[ "$OSTYPE" == "msys" ]]; then
# We need to make the paths as short as possible on Windows
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
# Try to extract PR number from branch if not already set
if [[ -z "${CIRCLE_PR_NUMBER:-}" ]]; then
CIRCLE_PR_NUMBER="$(echo ${CIRCLE_BRANCH} | sed -E -n 's/pull\/([0-9]*).*/\1/p')"
fi
# Clone the Pytorch branch
retry git clone https://github.com/pytorch/pytorch.git "$PYTORCH_ROOT"
pushd "$PYTORCH_ROOT"
if [[ -n "${CIRCLE_PR_NUMBER:-}" ]]; then
# "smoke" binary build on PRs
git fetch --force origin "pull/${CIRCLE_PR_NUMBER}/head:remotes/origin/pull/${CIRCLE_PR_NUMBER}"
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B "$CIRCLE_BRANCH"
git reset --hard "$CIRCLE_SHA1"
elif [[ -n "${CIRCLE_SHA1:-}" ]]; then
# Scheduled workflows & "smoke" binary build on trunk on PR merges
DEFAULT_BRANCH="$(git remote show $CIRCLE_REPOSITORY_URL | awk '/HEAD branch/ {print $NF}')"
git reset --hard "$CIRCLE_SHA1"
git checkout -q -B $DEFAULT_BRANCH
else
echo "Can't tell what to checkout"
exit 1
fi
retry git submodule update --init --recursive
echo "Using Pytorch from "
git --no-pager log --max-count 1
popd
# Clone the Builder main repo
retry git clone -q https://github.com/pytorch/builder.git -b release/2.1 "$BUILDER_ROOT"
pushd "$BUILDER_ROOT"
echo "Using builder from "
git --no-pager log --max-count 1
popd

View File

@ -0,0 +1,44 @@
#!/bin/bash
set -eux -o pipefail
# This step runs on multiple executors with different envfile locations
if [[ "$(uname)" == Darwin ]]; then
envfile="/Users/distiller/project/env"
elif [[ -d "/home/circleci/project" ]]; then
# machine executor (binary tests)
envfile="/home/circleci/project/env"
else
# docker executor (binary builds)
envfile="/env"
fi
# TODO this is super hacky and ugly. Basically, the binary_update_html job does
# not have an env file, since it does not call binary_populate_env.sh, since it
# does not have a BUILD_ENVIRONMENT. So for this one case, which we detect by a
# lack of an env file, we manually export the environment variables that we
# need to install miniconda
if [[ ! -f "$envfile" ]]; then
MINICONDA_ROOT="/home/circleci/project/miniconda"
workdir="/home/circleci/project"
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
export -f retry
else
source "$envfile"
fi
conda_sh="$workdir/install_miniconda.sh"
if [[ "$(uname)" == Darwin ]]; then
curl --retry 3 --retry-all-errors -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-py39_4.12.0-MacOSX-x86_64.sh
else
curl --retry 3 --retry-all-errors -o "$conda_sh" https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
fi
chmod +x "$conda_sh"
"$conda_sh" -b -p "$MINICONDA_ROOT"
rm -f "$conda_sh"
# We can't actually add miniconda to the PATH in the envfile, because that
# breaks 'unbuffer' in Mac jobs. This is probably because conda comes with
# a tclsh, which then gets inserted before the tclsh needed in /usr/bin

View File

@ -33,7 +33,7 @@ fi
cp ${PROJ_ROOT}/LICENSE ${ZIP_DIR}/
# zip the library
export DATE="$(date -u +%Y%m%d)"
export IOS_NIGHTLY_BUILD_VERSION="2.2.0.${DATE}"
export IOS_NIGHTLY_BUILD_VERSION="2.1.0.${DATE}"
if [ "${BUILD_LITE_INTERPRETER}" == "1" ]; then
# libtorch_lite_ios_nightly_1.11.0.20210810.zip
ZIPFILE="libtorch_lite_ios_nightly_${IOS_NIGHTLY_BUILD_VERSION}.zip"

View File

@ -54,7 +54,7 @@ fi
# Move debug wheels out of the package dir so they don't get installed
# Move debug wheels out of the the package dir so they don't get installed
mkdir -p /tmp/debug_final_pkgs
mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to move"
@ -66,12 +66,6 @@ mv /final_pkgs/debug-*.zip /tmp/debug_final_pkgs || echo "no debug packages to m
# conda build scripts themselves. These should really be consolidated
# Pick only one package of multiple available (which happens as result of workflow re-runs)
pkg="/final_pkgs/\$(ls -1 /final_pkgs|sort|tail -1)"
if [[ "\$PYTORCH_BUILD_VERSION" == *dev* ]]; then
CHANNEL="nightly"
else
CHANNEL="test"
fi
if [[ "$PACKAGE_TYPE" == conda ]]; then
(
# For some reason conda likes to re-activate the conda environment when attempting this install
@ -89,20 +83,26 @@ if [[ "$PACKAGE_TYPE" == conda ]]; then
if [[ "$DESIRED_CUDA" == 'cpu' ]]; then
retry conda install -c pytorch -y cpuonly
else
cu_ver="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4}"
CUDA_PACKAGE="pytorch-cuda"
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c "pytorch-\${CHANNEL}" "pytorch-cuda=\${cu_ver}"
PYTORCH_CHANNEL="pytorch"
if [[ "\${TORCH_CONDA_BUILD_FOLDER}" == "pytorch-nightly" ]]; then
PYTORCH_CHANNEL="pytorch-nightly"
fi
retry conda install \${EXTRA_CONDA_FLAGS} -yq -c nvidia -c pytorch-test "pytorch-cuda=\${cu_ver}"
fi
conda install \${EXTRA_CONDA_FLAGS} -y "\$pkg" --offline
)
elif [[ "$PACKAGE_TYPE" != libtorch ]]; then
if [[ "\$BUILD_ENVIRONMENT" != *s390x* ]]; then
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
if [[ "$(uname -m)" == aarch64 ]]; then
# Using "extra-index-url" until all needed aarch64 dependencies are
# added to "https://download.pytorch.org/whl/nightly/"
pip install "\$pkg" --extra-index-url "https://download.pytorch.org/whl/test/${DESIRED_CUDA}"
else
pip install "\$pkg"
retry pip install -q numpy protobuf typing-extensions
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/test/${DESIRED_CUDA}"
fi
retry pip install -q numpy protobuf typing-extensions
fi
if [[ "$PACKAGE_TYPE" == libtorch ]]; then
pkg="\$(ls /final_pkgs/*-latest.zip)"

View File

@ -4,6 +4,10 @@ set -eux -o pipefail
source "${BINARY_ENV_FILE:-/Users/distiller/project/env}"
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR"
if [[ -z "${GITHUB_ACTIONS:-}" ]]; then
export PATH="${workdir:-${HOME}}/miniconda/bin:${PATH}"
fi
# Build
export USE_PYTORCH_METAL_EXPORT=1
export USE_COREML_DELEGATE=1

View File

@ -3,9 +3,17 @@ set -eux -o pipefail
export TZ=UTC
tagged_version() {
GIT_DIR="${workdir}/pytorch/.git"
# Grabs version from either the env variable CIRCLE_TAG
# or the pytorch git described version
if [[ "$OSTYPE" == "msys" && -z "${GITHUB_ACTIONS:-}" ]]; then
GIT_DIR="${workdir}/p/.git"
else
GIT_DIR="${workdir}/pytorch/.git"
fi
GIT_DESCRIBE="git --git-dir ${GIT_DIR} describe --tags --match v[0-9]*.[0-9]*.[0-9]*"
if [[ ! -d "${GIT_DIR}" ]]; then
if [[ -n "${CIRCLE_TAG:-}" ]]; then
echo "${CIRCLE_TAG}"
elif [[ ! -d "${GIT_DIR}" ]]; then
echo "Abort, abort! Git dir ${GIT_DIR} does not exists!"
kill $$
elif ${GIT_DESCRIBE} --exact >/dev/null; then
@ -50,8 +58,8 @@ fi
PIP_UPLOAD_FOLDER='nightly/'
# We put this here so that OVERRIDE_PACKAGE_VERSION below can read from it
export DATE="$(date -u +%Y%m%d)"
BASE_BUILD_VERSION="$(cat ${PYTORCH_ROOT}/version.txt|cut -da -f1).dev${DATE}"
#TODO: We should be pulling semver version from the base version.txt
BASE_BUILD_VERSION="2.1.0.dev$DATE"
# Change BASE_BUILD_VERSION to git tag when on a git tag
# Use 'git -C' to make doubly sure we're in the correct directory for checking
# the git tag
@ -69,36 +77,12 @@ else
export PYTORCH_BUILD_VERSION="${BASE_BUILD_VERSION}+$DESIRED_CUDA"
fi
if [[ -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_BUILD_VERSION="${PYTORCH_BUILD_VERSION}-with-pypi-cudnn"
fi
export PYTORCH_BUILD_NUMBER=1
# Set triton version as part of PYTORCH_EXTRA_INSTALL_REQUIREMENTS
TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
# Only linux Python < 3.13 are supported wheels for triton
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64' and python_version < '3.13'"
TRITON_REQUIREMENT="triton==${TRITON_VERSION}; ${TRITON_CONSTRAINT}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton.txt)
TRITON_REQUIREMENT="pytorch-triton==${TRITON_VERSION}+${TRITON_SHORTHASH}; ${TRITON_CONSTRAINT}"
fi
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS} | ${TRITON_REQUIREMENT}"
fi
# Set triton via PYTORCH_EXTRA_INSTALL_REQUIREMENTS for triton rocm package
if [[ "$PACKAGE_TYPE" =~ .*wheel.* && -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*rocm.* && $(uname) == "Linux" && "$DESIRED_PYTHON" != "3.12" ]]; then
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}"
if [[ -n "$PYTORCH_BUILD_VERSION" && "$PYTORCH_BUILD_VERSION" =~ .*dev.* ]]; then
TRITON_SHORTHASH=$(cut -c1-10 $PYTORCH_ROOT/.ci/docker/ci_commit_pins/triton-rocm.txt)
TRITON_REQUIREMENT="pytorch-triton-rocm==${TRITON_VERSION}+${TRITON_SHORTHASH}"
fi
if [[ -z "${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}" ]]; then
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${TRITON_REQUIREMENT}"
else
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS} | ${TRITON_REQUIREMENT}"
fi
fi
JAVA_HOME=
BUILD_JNI=OFF
@ -145,13 +129,12 @@ if [[ "${OSTYPE}" == "msys" ]]; then
else
export DESIRED_DEVTOOLSET="${DESIRED_DEVTOOLSET:-}"
fi
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}"
export DATE="$DATE"
export NIGHTLIES_DATE_PREAMBLE=1.14.0.dev
export PYTORCH_BUILD_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_BUILD_NUMBER="$PYTORCH_BUILD_NUMBER"
export OVERRIDE_PACKAGE_VERSION="$PYTORCH_BUILD_VERSION"
export PYTORCH_EXTRA_INSTALL_REQUIREMENTS="${PYTORCH_EXTRA_INSTALL_REQUIREMENTS:-}"
# TODO: We don't need this anymore IIUC
export TORCH_PACKAGE_NAME='torch'
@ -172,8 +155,8 @@ EOL
# nproc doesn't exist on darwin
if [[ "$(uname)" != Darwin ]]; then
# This was lowered from 18 to 12 to avoid OOMs when compiling FlashAttentionV2
MEMORY_LIMIT_MAX_JOBS=12
# Because most Circle executors only have 20 CPUs, using more causes OOMs w/ Ninja and nvcc parallelization
MEMORY_LIMIT_MAX_JOBS=18
NUM_CPUS=$(( $(nproc) - 2 ))
# Defaults here for **binary** linux builds so they can be changed in one place
@ -184,6 +167,28 @@ if [[ "$(uname)" != Darwin ]]; then
EOL
fi
if [[ -z "${GITHUB_ACTIONS:-}" ]]; then
cat >>"$envfile" <<EOL
export workdir="$workdir"
export MAC_PACKAGE_WORK_DIR="$workdir"
if [[ "$OSTYPE" == "msys" ]]; then
export PYTORCH_ROOT="$workdir/p"
export BUILDER_ROOT="$workdir/b"
else
export PYTORCH_ROOT="$workdir/pytorch"
export BUILDER_ROOT="$workdir/builder"
fi
export MINICONDA_ROOT="$workdir/miniconda"
export PYTORCH_FINAL_PACKAGE_DIR="$workdir/final_pkgs"
export CIRCLE_TAG="${CIRCLE_TAG:-}"
export CIRCLE_SHA1="$CIRCLE_SHA1"
export CIRCLE_PR_NUMBER="${CIRCLE_PR_NUMBER:-}"
export CIRCLE_BRANCH="$CIRCLE_BRANCH"
export CIRCLE_WORKFLOW_ID="$CIRCLE_WORKFLOW_ID"
EOL
fi
echo 'retry () {' >> "$envfile"
echo ' $* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)' >> "$envfile"
echo '}' >> "$envfile"

View File

@ -0,0 +1,29 @@
#!/bin/bash
# This section is used in the binary_test and smoke_test jobs. It expects
# 'binary_populate_env' to have populated /home/circleci/project/env and it
# expects another section to populate /home/circleci/project/ci_test_script.sh
# with the code to run in the docker
# Expect all needed environment variables to be written to this file
source /home/circleci/project/env
echo "Running the following code in Docker"
cat /home/circleci/project/ci_test_script.sh
echo
echo
set -eux -o pipefail
# Expect actual code to be written to this file
chmod +x /home/circleci/project/ci_test_script.sh
VOLUME_MOUNTS="-v /home/circleci/project/:/circleci_stuff -v /home/circleci/project/final_pkgs:/final_pkgs -v ${PYTORCH_ROOT}:/pytorch -v ${BUILDER_ROOT}:/builder"
# Run the docker
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --gpus all ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
else
export id=$(docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined ${VOLUME_MOUNTS} -t -d "${DOCKER_IMAGE}")
fi
# Execute the test script that was populated by an earlier section
export COMMAND='((echo "source /circleci_stuff/env && /circleci_stuff/ci_test_script.sh") | docker exec -i "$id" bash) 2>&1'
echo ${COMMAND} > ./command.sh && unbuffer bash ./command.sh | ts

View File

@ -16,6 +16,11 @@ UPLOAD_BUCKET="s3://pytorch"
BACKUP_BUCKET="s3://pytorch-backup"
BUILD_NAME=${BUILD_NAME:-}
# this is temporary change to upload pypi-cudnn builds to separate folder
if [[ ${BUILD_NAME} == *with-pypi-cudnn* ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_pypi_cudnn"
fi
DRY_RUN=${DRY_RUN:-enabled}
# Don't actually do work unless explicit
ANACONDA="true anaconda"

View File

@ -22,7 +22,7 @@ done < <(find /var/lib/jenkins/.gradle -type f -print0)
# Patch pocketfft (as Android does not have aligned_alloc even if compiled with c++17
if [ -f ~/workspace/third_party/pocketfft/pocketfft_hdronly.h ]; then
sed -i -e "s/__cplusplus >= 201703L/0/" ~/workspace/third_party/pocketfft/pocketfft_hdronly.h
sed -i -e "s/#if __cplusplus >= 201703L/#if 0/" ~/workspace/third_party/pocketfft/pocketfft_hdronly.h
fi
export GRADLE_LOCAL_PROPERTIES=~/workspace/android/local.properties
@ -40,7 +40,7 @@ if [[ "${BUILD_ENVIRONMENT}" == *-gradle-custom-build* ]]; then
# Install torch & torchvision - used to download & dump used ops from test model.
retry pip install torch torchvision --progress-bar off
exec "$(dirname "${BASH_SOURCE[0]}")/../android/build_test_app_custom.sh" armeabi-v7a
exec "$(dirname "${BASH_SOURCE[0]}")/../../android/build_test_app_custom.sh" armeabi-v7a
fi
# Run default build

View File

@ -0,0 +1,111 @@
#!/usr/bin/env bash
set -ex -o pipefail
# Remove unnecessary sources
sudo rm -f /etc/apt/sources.list.d/google-chrome.list
sudo rm -f /etc/apt/heroku.list
sudo rm -f /etc/apt/openjdk-r-ubuntu-ppa-xenial.list
sudo rm -f /etc/apt/partner.list
# To increase the network reliability, let apt decide which mirror is best to use
sudo sed -i -e 's/http:\/\/.*archive/mirror:\/\/mirrors/' -e 's/\/ubuntu\//\/mirrors.txt/' /etc/apt/sources.list
retry () {
$* || $* || $* || $* || $*
}
# Method adapted from here: https://askubuntu.com/questions/875213/apt-get-to-retry-downloading
# (with use of tee to avoid permissions problems)
# This is better than retrying the whole apt-get command
echo "APT::Acquire::Retries \"3\";" | sudo tee /etc/apt/apt.conf.d/80-retries
retry sudo apt-get update -qq
retry sudo apt-get -y install \
moreutils \
expect-dev
echo "== DOCKER VERSION =="
docker version
if ! command -v aws >/dev/null; then
retry sudo pip3 -q install awscli==1.19.64
fi
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
DRIVER_FN="NVIDIA-Linux-x86_64-515.76.run"
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
nvidia-smi
# Taken directly from https://github.com/NVIDIA/nvidia-docker
# Add the package repositories
distribution=$(. /etc/os-release;echo "$ID$VERSION_ID")
curl -s -L --retry 3 --retry-all-errors https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L --retry 3 --retry-all-errors "https://nvidia.github.io/nvidia-docker/${distribution}/nvidia-docker.list" | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
retry sudo apt-get update -qq
# Necessary to get the `--gpus` flag to function within docker
retry sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
else
# Explicitly remove nvidia docker apt repositories if not building for cuda
sudo rm -rf /etc/apt/sources.list.d/nvidia-docker.list
fi
add_to_env_file() {
local name=$1
local value=$2
case "$value" in
*\ *)
# BASH_ENV should be set by CircleCI
echo "${name}='${value}'" >> "${BASH_ENV:-/tmp/env}"
;;
*)
echo "${name}=${value}" >> "${BASH_ENV:-/tmp/env}"
;;
esac
}
add_to_env_file CI_MASTER "${CI_MASTER:-}"
add_to_env_file COMMIT_SOURCE "${CIRCLE_BRANCH:-}"
add_to_env_file BUILD_ENVIRONMENT "${BUILD_ENVIRONMENT}"
add_to_env_file CIRCLE_PULL_REQUEST "${CIRCLE_PULL_REQUEST}"
if [[ "${BUILD_ENVIRONMENT}" == *-build ]]; then
add_to_env_file SCCACHE_BUCKET ossci-compiler-cache-circleci-v2
SCCACHE_MAX_JOBS=$(( $(nproc) - 1 ))
MEMORY_LIMIT_MAX_JOBS=8 # the "large" resource class on CircleCI has 32 CPU cores, if we use all of them we'll OOM
MAX_JOBS=$(( ${SCCACHE_MAX_JOBS} > ${MEMORY_LIMIT_MAX_JOBS} ? ${MEMORY_LIMIT_MAX_JOBS} : ${SCCACHE_MAX_JOBS} ))
add_to_env_file MAX_JOBS "${MAX_JOBS}"
if [ -n "${USE_CUDA_DOCKER_RUNTIME:-}" ]; then
add_to_env_file TORCH_CUDA_ARCH_LIST 5.2
fi
if [[ "${BUILD_ENVIRONMENT}" == *xla* ]]; then
# This IAM user allows write access to S3 bucket for sccache & bazels3cache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_AND_XLA_BAZEL_S3_BUCKET_V2:-}"
set -x
else
# This IAM user allows write access to S3 bucket for sccache
set +x
add_to_env_file XLA_CLANG_CACHE_S3_BUCKET_NAME "${XLA_CLANG_CACHE_S3_BUCKET_NAME:-}"
add_to_env_file AWS_ACCESS_KEY_ID "${CIRCLECI_AWS_ACCESS_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
add_to_env_file AWS_SECRET_ACCESS_KEY "${CIRCLECI_AWS_SECRET_KEY_FOR_SCCACHE_S3_BUCKET_V4:-}"
set -x
fi
fi
# This IAM user only allows read-write access to ECR
set +x
export AWS_ACCESS_KEY_ID=${CIRCLECI_AWS_ACCESS_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_SECRET_ACCESS_KEY=${CIRCLECI_AWS_SECRET_KEY_FOR_ECR_READ_WRITE_V4:-}
export AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\")
export AWS_REGION=us-east-1
aws ecr get-login-password --region $AWS_REGION|docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com
set -x

View File

@ -0,0 +1,50 @@
#!/usr/bin/env bash
set -eux -o pipefail
# Set up CircleCI GPG keys for apt, if needed
curl --retry 3 --retry-all-errors -s -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
# Stop background apt updates. Hypothetically, the kill should not
# be necessary, because stop is supposed to send a kill signal to
# the process, but we've added it for good luck. Also
# hypothetically, it's supposed to be unnecessary to wait for
# the process to block. We also have that line for good luck.
# If you like, try deleting them and seeing if it works.
sudo systemctl stop apt-daily.service || true
sudo systemctl kill --kill-who=all apt-daily.service || true
sudo systemctl stop unattended-upgrades.service || true
sudo systemctl kill --kill-who=all unattended-upgrades.service || true
# wait until `apt-get update` has been killed
while systemctl is-active --quiet apt-daily.service
do
sleep 1;
done
while systemctl is-active --quiet unattended-upgrades.service
do
sleep 1;
done
# See if we actually were successful
systemctl list-units --all | cat
# For good luck, try even harder to kill apt-get
sudo pkill apt-get || true
# For even better luck, purge unattended-upgrades
sudo apt-get purge -y unattended-upgrades || true
cat /etc/apt/sources.list
# For the bestest luck, kill again now
sudo pkill apt || true
sudo pkill dpkg || true
# Try to detect if apt/dpkg is stuck
if ps auxfww | grep '[a]pt'; then
echo "WARNING: There are leftover apt processes; subsequent apt update will likely fail"
fi
if ps auxfww | grep '[d]pkg'; then
echo "WARNING: There are leftover dpkg processes; subsequent apt update will likely fail"
fi

View File

@ -0,0 +1,65 @@
binary_linux_build_params: &binary_linux_build_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
libtorch_variant:
type: string
default: ""
resource_class:
type: string
default: "2xlarge+"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
LIBTORCH_VARIANT: << parameters.libtorch_variant >>
ANACONDA_USER: pytorch
resource_class: << parameters.resource_class >>
docker:
- image: << parameters.docker_image >>
binary_linux_test_upload_params: &binary_linux_test_upload_params
parameters:
build_environment:
type: string
default: ""
docker_image:
type: string
default: ""
libtorch_variant:
type: string
default: ""
resource_class:
type: string
default: "medium"
use_cuda_docker_runtime:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
DOCKER_IMAGE: << parameters.docker_image >>
USE_CUDA_DOCKER_RUNTIME: << parameters.use_cuda_docker_runtime >>
LIBTORCH_VARIANT: << parameters.libtorch_variant >>
resource_class: << parameters.resource_class >>
binary_mac_params: &binary_mac_params
parameters:
build_environment:
type: string
default: ""
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
binary_windows_params: &binary_windows_params
parameters:
build_environment:
type: string
default: ""
executor:
type: string
default: "windows-xlarge-cpu-with-nvidia-cuda"
environment:
BUILD_ENVIRONMENT: << parameters.build_environment >>
JOB_EXECUTOR: <<parameters.executor>>

Some files were not shown because too many files have changed in this diff Show More