Compare commits

..

1 Commits

Author SHA1 Message Date
39e77ce851 [dynamo] Add most recent bytecode to graph break with developer initiation
ghstack-source-id: 8b538f2e1ac703a4538468a758f08db0c89b91a7
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163720

Add most recent bytecode to dynamo graph break called by user

Fix other user-initiated graph break and issues

Fix linter
2025-10-01 17:21:03 -07:00
671 changed files with 12753 additions and 14894 deletions

View File

@ -1004,7 +1004,7 @@ if __name__ == "__main__":
install_condaforge_python(host, args.python_version)
sys.exit(0)
python_version = args.python_version if args.python_version is not None else "3.10"
python_version = args.python_version if args.python_version is not None else "3.9"
if args.use_torch_from_pypi:
configure_system(host, compiler=args.compiler, python_version=python_version)

View File

@ -69,8 +69,7 @@ RUN bash ./install_cuda.sh 13.0
ENV DESIRED_CUDA=13.0
FROM ${ROCM_IMAGE} as rocm
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
ENV MKLROOT /opt/intel

View File

@ -36,12 +36,6 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)
echo "ERROR: Unknown docker tag ${DOCKER_TAG_PREFIX}"

View File

@ -1 +1 @@
v2.28.3-1
v2.27.5-1

View File

@ -1 +1 @@
v2.28.3-1
v2.27.7-1

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -40,16 +40,12 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -82,7 +82,7 @@ case ${image} in
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
@ -90,10 +90,6 @@ case ${image} in
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)

View File

@ -112,6 +112,8 @@ ninja==1.11.1.3
#Pinned versions: 1.11.1.3
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#Description: Just-In-Time Compiler for Numerical Functions
@ -132,7 +134,7 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.10"
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13"
@ -324,6 +326,8 @@ pywavelets==1.7.0 ; python_version >= "3.12"
lxml==5.3.0
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries
PyGithub==2.3.0
sympy==1.13.3

View File

@ -1,15 +1,8 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
standard-imghdr==3.13.0; python_version >= "3.13"
#Description: This is needed by Sphinx, so it needs to be added here.
# The reasons are as follows:
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@d53b0ffb9b1cda68260693ea98f3483823c88d8e#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.

View File

@ -1,11 +1,11 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_ROCM ?= 7.0
DESIRED_ROCM ?= 6.4
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
PACKAGE_NAME = magma-rocm
# inherit this from underlying docker image, do not pass this env var to docker
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma-rocm/build_magma.sh
.PHONY: all
all: magma-rocm70
all: magma-rocm64
all: magma-rocm63
@ -25,11 +24,6 @@ clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-rocm70
magma-rocm70: DESIRED_ROCM := 7.0
magma-rocm70:
$(DOCKER_RUN)
.PHONY: magma-rocm64
magma-rocm64: DESIRED_ROCM := 6.4
magma-rocm64:

View File

@ -6,8 +6,8 @@ set -eou pipefail
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
git clone https://github.com/jeffdaily/magma
git clone https://bitbucket.org/icl/magma.git
pushd magma
git checkout ${MAGMA_VERSION}
popd

View File

@ -58,7 +58,7 @@ time python tools/setup_helpers/generate_code.py \
# Build the docs
pushd docs/cpp
time make VERBOSE=1 html
time make VERBOSE=1 html -j
popd
popd

View File

@ -35,11 +35,10 @@ fi
print_cmake_info
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
# backends (specifically the gloo backend), so test that this case works too
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
fi
if which sccache > /dev/null; then

View File

@ -13,9 +13,13 @@ if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available(
fi
popd
python -mpip install -r requirements.txt
# enable debug asserts in serialization
export TORCH_SERIALIZATION_DEBUG=1
python -mpip install --no-input -r requirements.txt
setup_test_python() {
# The CircleCI worker hostname doesn't resolve to an address.
# This environment variable makes ProcessGroupGloo default to
@ -55,7 +59,7 @@ test_python_shard() {
setup_test_python
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "$1" "$NUM_TEST_SHARDS"
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS"
assert_git_not_dirty
}

View File

@ -322,14 +322,14 @@ test_python_shard() {
# modify LD_LIBRARY_PATH to ensure it has the conda env.
# This set of tests has been shown to be buggy without it for the split-build
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python() {
# shellcheck disable=SC2086
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
assert_git_not_dirty
}
@ -390,7 +390,6 @@ test_dynamo_wrapped_shard() {
--exclude-distributed-tests \
--exclude-torch-export-tests \
--exclude-aot-dispatch-tests \
--exclude-quantization-tests \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose \
--upload-artifacts-while-running
@ -1163,12 +1162,6 @@ test_distributed() {
fi
}
test_quantization() {
echo "Testing quantization"
python test/test_quantization.py
}
test_rpc() {
echo "Testing RPC C++ tests"
# NB: the ending test_rpc must match the current function name for the current
@ -1586,7 +1579,7 @@ test_executorch() {
test_linux_aarch64() {
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops profiler/test_memory_profiler \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
distributed/elastic/timer/api_test distributed/elastic/timer/local_timer_example distributed/elastic/timer/local_timer_test \
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
@ -1630,25 +1623,6 @@ test_operator_benchmark() {
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
--benchmark-name "PyTorch operator microbenchmark" --use-compile
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}.json" \
--benchmark-name "PyTorch operator microbenchmark"
done
}
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
(cd test && python -c "import torch; print(torch.__config__.show())")
@ -1681,8 +1655,6 @@ elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
test_executorch
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
test_python_legacy_jit
elif [[ "$TEST_CONFIG" == 'quantization' ]]; then
test_quantization
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
# TODO: run some C++ tests
echo "no-op at the moment"
@ -1705,8 +1677,6 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
test_operator_benchmark cpu ${TEST_MODE}
fi
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
test_operator_microbenchmark
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
@ -1815,8 +1785,6 @@ elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == "b200-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else

View File

@ -25,7 +25,7 @@ echo Copying over test times file
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
echo Run nn tests
python run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
if ERRORLEVEL 1 goto fail
popd

View File

@ -63,7 +63,7 @@ if errorlevel 1 exit /b 1
call %CONDA_HOME%\condabin\activate.bat testenv
if errorlevel 1 exit /b 1
call conda install -y -q -c conda-forge libuv=1.51
call conda install -y -q -c conda-forge libuv=1.39
call conda install -y -q intel-openmp
echo "install and test libtorch"

View File

@ -177,7 +177,8 @@ source ~/${desired_python}-build/bin/activate
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
# is build as part of tensorpipe submodule
export USE_DISTRIBUTED=1
export USE_MKLDNN=OFF

View File

@ -0,0 +1,47 @@
#!/bin/bash
# =================== The following code **should** be executed inside Docker container ===================
# Install dependencies
sudo apt-get -y update
sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.ci/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip -q install -r requirements.txt
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ $version == "main" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -69,8 +69,6 @@ readability-string-compare,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'
LineFilter:
- name: '/usr/include/.*'
CheckOptions:
cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor: true
cppcoreguidelines-special-member-functions.AllowImplicitlyDeletedCopyOrMove: true

View File

@ -22,9 +22,6 @@ self-hosted-runner:
- linux.arm64.m7g.4xlarge
- linux.arm64.m7g.4xlarge.ephemeral
- linux.arm64.r7g.12xlarge.memory
- linux.aws.h100
- linux.aws.h100.4
- linux.aws.h100.8
- linux.4xlarge.nvidia.gpu
- linux.8xlarge.nvidia.gpu
- linux.16xlarge.nvidia.gpu

View File

@ -59,7 +59,7 @@ runs:
set -x
# Create new py_tmp env with python-version
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp libuv
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp
PYTHON3=$(${CONDA_RUN} -n py_tmp which python3)
EXIT_CODE=$?

View File

@ -1 +1 @@
0307428d65acf5cf1a73a70a7722e076bbb83f22
090197034faf3b193c4467cedeb9281e3078892d

View File

@ -525,21 +525,6 @@
- Lint
- pull
- name: typechecking
patterns:
- 'pyrefly.toml'
- 'mypy.ini'
- 'mypy-strict.ini'
approved_by:
- lolpack
- maggiemoss
- ndmitchell
- kinto0
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: superuser
patterns:
- '*'

View File

@ -1,44 +1,42 @@
tracking_issue: 24422
ciflow_tracking_issue: 64124
ciflow_push_tags:
- ciflow/b200
- ciflow/b200-symm-mem
- ciflow/binaries
- ciflow/binaries_libtorch
- ciflow/binaries_wheel
- ciflow/h100
- ciflow/h100-cutlass-backend
- ciflow/h100-distributed
- ciflow/h100-symm-mem
- ciflow/triton_binaries
- ciflow/inductor
- ciflow/inductor-cu126
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-compare
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-periodic
- ciflow/inductor-rocm
- ciflow/inductor-perf-test-nightly-rocm
- ciflow/inductor-perf-compare
- ciflow/inductor-micro-benchmark
- ciflow/inductor-micro-benchmark-cpu-x86
- ciflow/inductor-perf-test-nightly-x86-zen
- ciflow/inductor-cu126
- ciflow/linux-aarch64
- ciflow/mps
- ciflow/nightly
- ciflow/op-benchmark
- ciflow/periodic
- ciflow/periodic-rocm-mi300
- ciflow/pull
- ciflow/quantization-periodic
- ciflow/riscv64
- ciflow/rocm
- ciflow/rocm-mi300
- ciflow/s390
- ciflow/riscv64
- ciflow/slow
- ciflow/torchbench
- ciflow/triton_binaries
- ciflow/trunk
- ciflow/unstable
- ciflow/vllm
- ciflow/win-arm64
- ciflow/xpu
- ciflow/vllm
- ciflow/torchbench
- ciflow/op-benchmark
- ciflow/pull
- ciflow/h100
- ciflow/h100-distributed
- ciflow/win-arm64
- ciflow/h100-symm-mem
- ciflow/h100-cutlass-backend
- ciflow/b200
retryable_workflows:
- pull
- trunk
@ -47,4 +45,4 @@ retryable_workflows:
- inductor-A100-perf-nightly
labeler_config: labeler.yml
label_to_label_config: label_to_label.yml
mergebot: true
mergebot: True

View File

@ -30,7 +30,7 @@ CUDA_ARCHES_CUDNN_VERSION = {
}
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
ROCM_ARCHES = ["6.4", "7.0"]
ROCM_ARCHES = ["6.3", "6.4"]
XPU_ARCHES = ["xpu"]
@ -53,7 +53,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
@ -70,7 +70,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
@ -87,7 +87,7 @@ PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | "
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "

View File

@ -155,7 +155,7 @@ LINUX_BINARY_SMOKE_WORKFLOWS = [
package_type="manywheel",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["13.0"],
arches=["12.8"],
python_versions=["3.12"],
),
branches="main",

View File

@ -71,15 +71,12 @@ jobs:
with:!{{ upload.binary_env_as_input(config) }}
{%- if "aarch64" in build_environment %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
{%- elif "s390x" in build_environment %}
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
timeout-minutes: 420
{%- elif config["gpu_arch_type"] == "rocm" %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
{%- elif "conda" in build_environment and config["gpu_arch_type"] == "cuda" %}
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.24xlarge.ephemeral

View File

@ -67,7 +67,7 @@ jobs:
# an OOM issue when running the job, so this upgrades the runner from 4xlarge
# to the next available tier of 12xlarge. So much memory just to generate cpp
# doc
runner: ${{ inputs.runner_prefix }}linux.12xlarge.memory
runner: ${{ inputs.runner_prefix }}linux.12xlarge
# TODO: Nightly cpp docs take longer and longer to finish (more than 3h now)
# Let's try to figure out how this can be improved
timeout-minutes: 360

View File

@ -273,8 +273,6 @@ jobs:
TEST_CONFIG: ${{ matrix.config }}
SHARD_NUMBER: ${{ matrix.shard }}
NUM_TEST_SHARDS: ${{ matrix.num_shards }}
EXTRA_FLAGS: ${{ matrix.extra_flags || '' }}
OP_BENCHMARK_TESTS: ${{ matrix.op_benchmark_tests }}
REENABLED_ISSUES: ${{ steps.keep-going.outputs.reenabled-issues }}
CONTINUE_THROUGH_ERROR: ${{ steps.keep-going.outputs.keep-going }}
VERBOSE_TEST_LOGS: ${{ steps.keep-going.outputs.ci-verbose-test-logs }}

View File

@ -1,60 +0,0 @@
name: Limited CI for symmetric memory tests on B200
on:
pull_request:
paths:
- .github/workflows/b200-symm-mem.yml
workflow_dispatch:
push:
tags:
- ciflow/b200-symm-mem/*
schedule:
- cron: 22 8 * * * # about 1:22am PDT
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "b200-symm-mem", shard: 1, num_shards: 1, runner: "linux.dgx.b200.8" },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm100-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm100-symm
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm100-build-symm.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
secrets: inherit

View File

@ -36,7 +36,7 @@ jobs:
runs-on: linux.9xlarge.ephemeral
strategy:
matrix:
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "rocm7.0", "cpu"]
tag: ["cuda12.6", "cuda12.8", "cuda12.9", "cuda13.0", "rocm6.3", "rocm6.4", "cpu"]
steps:
- name: Build docker image
uses: pytorch/pytorch/.github/actions/binary-docker-build@main

View File

@ -52,8 +52,8 @@ jobs:
{ tag: "cuda12.9" },
{ tag: "cuda12.8" },
{ tag: "cuda12.6" },
{ tag: "rocm6.3" },
{ tag: "rocm6.4" },
{ tag: "rocm7.0" },
{ tag: "cpu" },
]
steps:

View File

@ -34,7 +34,7 @@ jobs:
id-token: write
strategy:
matrix:
rocm_version: ["70", "64"]
rocm_version: ["64", "63"]
steps:
- name: Checkout PyTorch
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -52,8 +52,8 @@ jobs:
{ name: "manylinuxaarch64-builder", tag: "cuda13.0", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.8", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxaarch64-builder", tag: "cuda12.6", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.3", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm6.4", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "rocm7.0", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28-builder", tag: "cpu", runner: "linux.9xlarge.ephemeral" },
{ name: "manylinux2_28_aarch64-builder", tag: "cpu-aarch64", runner: "linux.arm64.2xlarge.ephemeral" },
{ name: "manylinuxcxx11-abi-builder", tag: "cpu-cxx11-abi", runner: "linux.9xlarge.ephemeral" },

View File

@ -50,12 +50,12 @@ jobs:
strategy:
fail-fast: false
matrix:
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
device: ["cuda", "rocm", "xpu", "aarch64"]
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
- device: "rocm"
rocm_version: "7.0"
rocm_version: "6.4"
runs_on: "${{ needs.get-label-type.outputs.label-type }}linux.4xlarge"
- device: "cuda"
rocm_version: ""
@ -108,6 +108,9 @@ jobs:
# Determine python executable for given version
case $PY_VERS in
3.9)
PYTHON_EXECUTABLE=/opt/python/cp39-cp39/bin/python
;;
3.10)
PYTHON_EXECUTABLE=/opt/python/cp310-cp310/bin/python
;;
@ -191,7 +194,7 @@ jobs:
strategy:
fail-fast: false
matrix:
py_vers: [ "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
device: ["xpu"]
timeout-minutes: 40
env:

View File

@ -35,7 +35,6 @@ jobs:
contents: write
outputs:
pt_release_name: ${{ steps.release_name.outputs.pt_release_name }}
pt_pep517_release_name: ${{ steps.release_name.outputs.pt_pep517_release_name }}
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
@ -54,12 +53,8 @@ jobs:
tag_or_branch="${tag_or_branch#refs/heads/}"
# replace directory separators with _ in branch name
tag_or_branch="${tag_or_branch//\//_}"
torch_version="$(python -c 'from tools.generate_torch_version import get_torch_version; print(get_torch_version())')"
{
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch";
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz";
echo "PT_PEP517_RELEASE_FILE=torch-${torch_version}.tar.gz";
} >> "$GITHUB_ENV"
echo "PT_RELEASE_NAME=pytorch-$tag_or_branch" >> "$GITHUB_ENV"
echo "PT_RELEASE_FILE=pytorch-$tag_or_branch.tar.gz" >> "$GITHUB_ENV"
- name: Checkout optional submodules
run: python3 tools/optional_submodules.py
- name: Copy docs requirements for inclusion
@ -69,47 +64,30 @@ jobs:
cp .ci/docker/requirements-docs.txt docs/requirements.txt
- name: Create source distribution
run: |
# Create new folder with specified name so extracting the archive yields that
rm -rf "/tmp/$PT_RELEASE_NAME"
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
mv "/tmp/$PT_RELEASE_NAME" .
# Cleanup
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
# Create archive
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
- name: Create PEP 517 compatible source distribution
run: |
pip install build==1.2.2.post1 || exit 1
python -m build --sdist || exit 1
cd dist || exit 1
# Create new folder with specified name so extracting the archive yields that
rm -rf "/tmp/$PT_RELEASE_NAME"
cp -r "$PWD" "/tmp/$PT_RELEASE_NAME"
mv "/tmp/$PT_RELEASE_NAME" .
# Cleanup
rm -rf "$PT_RELEASE_NAME"/{.circleci,.ci}
find "$PT_RELEASE_NAME" -name '.git*' -exec rm -rv {} \; || true
# Create archive
tar -czf "$PT_RELEASE_FILE" "$PT_RELEASE_NAME"
echo "Created source archive $PT_RELEASE_FILE with content: $(ls -a "$PT_RELEASE_NAME")"
- name: Upload source distribution for release
if: ${{ github.event_name == 'release' }}
uses: softprops/action-gh-release@da05d552573ad5aba039eaac05058a918a7bf631 # v2.2.2
with:
files: |
${{ env.PT_RELEASE_FILE }}
${{ env.PT_PEP517_RELEASE_FILE }}
- name: Upload source distribution to GHA artifacts # for release tags
files: ${{env.PT_RELEASE_FILE}}
- name: Upload source distribution to GHA artifacts for release tags
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
with:
name: ${{ env.PT_RELEASE_FILE }}
path: ${{ env.PT_RELEASE_FILE }}
- name: Upload PEP 517 source distribution to GHA artifacts # for release tags
if: ${{ github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
uses: actions/upload-artifact@50769540e7f4bd5e21e526ee35c689e35e0d6874 # v4.4.0
with:
name: ${{ env.PT_PEP517_RELEASE_FILE }}
path: dist/${{ env.PT_PEP517_RELEASE_FILE }}
- name: Set output
id: release_name
run: |
{
echo "pt_release_name=${{ env.PT_RELEASE_FILE }}";
echo "pt_pep517_release_name=${{ env.PT_PEP517_RELEASE_FILE }}";
} >> "${GITHUB_OUTPUT}"
run: echo "pt_release_name=${{ env.PT_RELEASE_NAME }}.tar.gz" >> "${GITHUB_OUTPUT}"
upload_source_code_to_s3:
if: ${{ github.repository == 'pytorch/pytorch' && github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v') && contains(github.ref, 'rc') }}
@ -125,9 +103,6 @@ jobs:
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
with:
name: ${{ needs.release.outputs.pt_release_name }}
- uses: actions/download-artifact@65a9edc5881444af0b9093a5e628f2fe47ea3b2e # v4.1.7
with:
name: ${{ needs.release.outputs.pt_pep517_release_name }}
- name: Configure AWS credentials(PyTorch account)
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
@ -138,9 +113,7 @@ jobs:
s3-bucket: pytorch
s3-prefix: source_code/test
if-no-files-found: warn
path: |
${{ needs.release.outputs.pt_release_name }}
${{ needs.release.outputs.pt_pep517_release_name }}
path: ${{ needs.release.outputs.pt_release_name }}
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name }}

View File

@ -62,7 +62,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -128,11 +128,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -174,11 +174,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -220,11 +220,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_10-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -265,7 +265,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -331,11 +331,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -377,11 +377,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -423,11 +423,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_11-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -468,7 +468,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -534,11 +534,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -580,11 +580,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -626,11 +626,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_12-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -671,7 +671,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -737,11 +737,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -783,11 +783,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -829,11 +829,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -874,7 +874,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -940,11 +940,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -986,11 +986,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1032,11 +1032,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_13t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1077,7 +1077,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -1143,11 +1143,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1189,11 +1189,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1235,11 +1235,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.14"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1280,7 +1280,7 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -1346,11 +1346,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_6
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1392,11 +1392,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-12_8
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
@ -1438,11 +1438,11 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DESIRED_PYTHON: "3.14t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.r7g.12xlarge.memory
runs_on: linux.arm64.m7g.4xlarge.ephemeral
ALPINE_IMAGE: "arm64v8/alpine"
build_name: manywheel-py3_14t-cuda-aarch64-13_0
build_environment: linux-aarch64-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
timeout-minutes: 420
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -316,6 +316,120 @@ jobs:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_3-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: libtorch-rocm6_3-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm6_3-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm6_3-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm6_3-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm6.3
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm6_3-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm6_3-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm6.3
GPU_ARCH_VERSION: "6.3"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.3
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm6_3-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm6_4-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
@ -333,7 +447,6 @@ jobs:
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm6_4-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
@ -430,118 +543,3 @@ jobs:
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml
libtorch-rocm7_0-shared-with-deps-release-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: libtorch-rocm7_0-shared-with-deps-release
build_environment: linux-binary-libtorch
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
libtorch-rocm7_0-shared-with-deps-release-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- libtorch-rocm7_0-shared-with-deps-release-build
- get-label-type
runs-on: linux.rocm.gpu.mi250
timeout-minutes: 240
env:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
steps:
- name: Setup ROCm
uses: ./.github/actions/setup-rocm
- uses: actions/download-artifact@v4.1.7
name: Download Build Artifacts
with:
name: libtorch-rocm7_0-shared-with-deps-release
path: "${{ runner.temp }}/artifacts/"
- name: Checkout PyTorch
uses: actions/checkout@v4
with:
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
submodules: recursive
path: pytorch
show-progress: false
- name: Clean PyTorch checkout
run: |
# Remove any artifacts from the previous checkouts
git clean -fxd
working-directory: pytorch
- name: ROCm set GPU_FLAG
run: |
echo "GPU_FLAG=--device=/dev/mem --device=/dev/kfd --device=/dev/dri --group-add video --group-add daemon" >> "${GITHUB_ENV}"
- name: configure aws credentials
id: aws_creds
if: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') }}
uses: aws-actions/configure-aws-credentials@v4
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
aws-region: us-east-1
role-duration-seconds: 18000
- name: Calculate docker image
id: calculate-docker-image
uses: pytorch/test-infra/.github/actions/calculate-docker-image@main
with:
docker-registry: ${{ startsWith(github.event.ref, 'refs/tags/ciflow/') && '308535385114.dkr.ecr.us-east-1.amazonaws.com' || 'docker.io' }}
docker-image-name: libtorch-cxx11-builder
custom-tag-prefix: rocm7.0
docker-build-dir: .ci/docker
working-directory: pytorch
- name: Pull Docker image
uses: pytorch/test-infra/.github/actions/pull-docker-image@main
with:
docker-image: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Test Pytorch binary
uses: ./pytorch/.github/actions/test-pytorch-binary
env:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
- name: Teardown ROCm
uses: ./.github/actions/teardown-rocm
libtorch-rocm7_0-shared-with-deps-release-upload: # Uploading
if: ${{ github.repository_owner == 'pytorch' }}
permissions:
id-token: write
contents: read
needs: libtorch-rocm7_0-shared-with-deps-release-test
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: libtorch
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: rocm7.0
GPU_ARCH_VERSION: "7.0"
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: libtorch-cxx11-builder
DOCKER_IMAGE_TAG_PREFIX: rocm7.0
LIBTORCH_CONFIG: release
LIBTORCH_VARIANT: shared-with-deps
build_name: libtorch-rocm7_0-shared-with-deps-release
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
uses: ./.github/workflows/_binary-upload.yml

View File

@ -42,7 +42,7 @@ jobs:
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
manywheel-py3_12-cuda13_0-build:
manywheel-py3_12-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -51,22 +51,22 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu130
GPU_ARCH_VERSION: "13.0"
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda13_0
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | nvidia-cublas==13.0.0.19; platform_system == 'Linux' | nvidia-cufft==12.0.0.15; platform_system == 'Linux' | nvidia-curand==10.4.0.35; platform_system == 'Linux' | nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | nvidia-nccl-cu13==2.28.3; platform_system == 'Linux' | nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | nvidia-nvtx==13.0.39; platform_system == 'Linux' | nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | nvidia-cufile==1.15.0.42; platform_system == 'Linux'
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda13_0-test: # Testing
manywheel-py3_12-cuda12_8-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_12-cuda13_0-build
- manywheel-py3_12-cuda12_8-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
@ -74,13 +74,13 @@ jobs:
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu130
GPU_ARCH_VERSION: "13.0"
DESIRED_CUDA: cu128
GPU_ARCH_VERSION: "12.8"
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda13.0
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda13_0
build_name: manywheel-py3_12-cuda12_8
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8+ builds need sm_70+ runner

File diff suppressed because it is too large Load Diff

View File

@ -60,7 +60,6 @@ jobs:
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
timeout-minutes: 300
build_name: manywheel-py3_10-rocm6_4
build_environment: linux-binary-manywheel-rocm
secrets:

View File

@ -1,46 +0,0 @@
name: operator_microbenchmark
on:
push:
tags:
- ciflow/op-benchmark/*
workflow_dispatch:
schedule:
# Run at 06:00 UTC everyday
- cron: 0 6 * * *
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
opmicrobenchmark-build:
if: github.repository_owner == 'pytorch'
name: opmicrobenchmark-build
uses: ./.github/workflows/_linux-build.yml
with:
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.0 9.0'
test-matrix: |
{ include: [
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.h100" },
{ config: "operator_microbenchmark_test", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
]}
secrets: inherit
opmicrobenchmark-test:
name: opmicrobenchmark-test
uses: ./.github/workflows/_linux-test.yml
needs: opmicrobenchmark-build
with:
timeout-minutes: 500
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image: ${{ needs.opmicrobenchmark-build.outputs.docker-image }}
test-matrix: ${{ needs.opmicrobenchmark-build.outputs.test-matrix }}
secrets: inherit

View File

@ -127,8 +127,6 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# More memory is needed to build with asan
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

View File

@ -1,54 +0,0 @@
name: quantization-periodic
on:
push:
tags:
- ciflow/quantization-periodic/*
workflow_dispatch:
schedule:
# run weekly
- cron: "45 0 * * 0"
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-default-label-prefix:
name: get-default-label-prefix
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
periodic-quantization-build:
name: periodic-quantization-build
uses: ./.github/workflows/_linux-build.yml
needs: get-default-label-prefix
with:
runner_prefix: "${{ needs.get-default-label-prefix.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '8.9'
test-matrix: |
{ include: [
{ config: "quantization", shard: 1, num_shards: 1, runner: "${{ needs.get-default-label-prefix.outputs.label-type }}linux.g6.4xlarge.experimental.nvidia.gpu" },
]}
secrets: inherit
periodic-test-quantization:
name: periodic-test-quantization
uses: ./.github/workflows/_linux-test.yml
needs: periodic-quantization-build
with:
build-environment: linux-jammy-cuda12.8-cudnn9-py3-gcc11
docker-image: ${{ needs.periodic-quantization-build.outputs.docker-image }}
test-matrix: ${{ needs.periodic-quantization-build.outputs.test-matrix }}
secrets: inherit

View File

@ -140,8 +140,6 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
# More memory is needed to build with asan
runner: linux.2xlarge.memory
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-py3.10-clang18-asan
docker-image-name: ci-image:pytorch-linux-jammy-py3-clang18-asan

1
.gitignore vendored
View File

@ -82,7 +82,6 @@ torch/return_types.pyi
torch/nn/functional.pyi
torch/utils/data/datapipes/datapipe.pyi
torch/csrc/autograd/generated/*
torch/csrc/functionalization/generated/*
torch/csrc/lazy/generated/*.[!m]*
torch_compile_debug/
# Listed manually because some files in this directory are not generated

View File

@ -49,7 +49,7 @@ init_command = [
'mccabe==0.7.0',
'pycodestyle==2.14.0',
'pyflakes==3.4.0',
'torchfix==0.4.0 ; python_version >= "3.10" and python_version < "3.13"',
'torchfix==0.4.0 ; python_version >= "3.9" and python_version < "3.13"',
]
@ -153,7 +153,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'numpy==1.26.4 ; python_version >= "3.10" and python_version <= "3.11"',
'numpy==1.26.4 ; python_version >= "3.9" and python_version <= "3.11"',
'numpy==2.1.0 ; python_version >= "3.12"',
'expecttest==0.3.0',
'mypy==1.16.0',
@ -1453,7 +1453,7 @@ init_command = [
'--dry-run={{DRYRUN}}',
'usort==1.0.8.post1',
'isort==6.0.1',
'ruff==0.13.1', # sync with RUFF
'ruff==0.12.9', # sync with RUFF
]
is_formatter = true
@ -1587,7 +1587,7 @@ init_command = [
'python3',
'tools/linter/adapters/pip_init.py',
'--dry-run={{DRYRUN}}',
'ruff==0.13.1', # sync with PYFMT
'ruff==0.12.9', # sync with PYFMT
]
is_formatter = true

View File

@ -22,7 +22,6 @@ COMMON_COPTS = [
"-DHAVE_SHM_UNLINK=1",
"-D_FILE_OFFSET_BITS=64",
"-DUSE_FBGEMM",
"-DUSE_DISTRIBUTED",
"-DAT_PER_OPERATOR_HEADERS",
"-DATEN_THREADING=NATIVE",
"-DNO_CUDNN_DESTROY_HANDLE",
@ -91,8 +90,6 @@ generated_cpu_cpp = [
"aten/src/ATen/NativeMetaFunctions.h",
"aten/src/ATen/RegistrationDeclarations.h",
"aten/src/ATen/VmapGeneratedPlumbing.h",
"aten/src/ATen/ViewMetaClasses.h",
"aten/src/ATen/ViewMetaClasses.cpp",
"aten/src/ATen/core/aten_interned_strings.h",
"aten/src/ATen/core/enum_tag.h",
"aten/src/ATen/core/TensorBody.h",
@ -813,7 +810,7 @@ cc_library(
name = "torch_python",
srcs = libtorch_python_core_sources
+ if_cuda(libtorch_python_cuda_sources)
+ if_cuda(libtorch_python_distributed_sources)
+ libtorch_python_distributed_sources
+ GENERATED_AUTOGRAD_PYTHON,
hdrs = glob([
"torch/csrc/generic/*.cpp",
@ -835,6 +832,36 @@ pybind_extension(
],
)
cc_library(
name = "functorch",
hdrs = glob([
"functorch/csrc/dim/*.h",
]),
srcs = glob([
"functorch/csrc/dim/*.cpp",
]),
deps = [
":aten_nvrtc",
":torch_python",
"@pybind11",
],
)
pybind_extension(
name = "functorch/_C",
copts=[
"-DTORCH_EXTENSION_NAME=_C"
],
srcs = [
"functorch/csrc/init_dim_only.cpp",
],
deps = [
":functorch",
":torch_python",
":aten_nvrtc",
],
)
cc_binary(
name = "torch/bin/torch_shm_manager",
srcs = [
@ -875,6 +902,7 @@ py_library(
],
data = [
":torch/_C.so",
":functorch/_C.so",
":torch/bin/torch_shm_manager",
],
)
@ -1077,7 +1105,6 @@ test_suite(
"aten/src/ATen/templates/LazyNonNativeIr.h",
"aten/src/ATen/templates/RegisterDispatchKey.cpp",
"aten/src/ATen/templates/RegisterDispatchDefinitions.ini",
"aten/src/ATen/templates/ViewMetaClassesPythonBinding.cpp",
"aten/src/ATen/native/native_functions.yaml",
"aten/src/ATen/native/tags.yaml",
"aten/src/ATen/native/ts_native_functions.yaml",

View File

@ -180,8 +180,9 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(ppc64le)")
set(CPU_POWER ON)
endif()
# For non-supported platforms, turn USE_DISTRIBUTED off by default. It is not
# tested and likely won't work without additional changes.
# For non-supported platforms, turn USE_DISTRIBUTED off by default.
# NB: USE_DISTRIBUTED simply disables the backend; distributed code
# still gets built
if(NOT LINUX AND NOT WIN32)
set(USE_DISTRIBUTED
OFF
@ -261,11 +262,11 @@ option(USE_PYTORCH_METAL "Use Metal for PyTorch iOS build" OFF)
option(USE_PYTORCH_METAL_EXPORT "Export Metal models on MacOSX desktop" OFF)
option(USE_NATIVE_ARCH "Use -march=native" OFF)
cmake_dependent_option(USE_MPS "Use MPS for macOS build" ON "MPS_FOUND" OFF)
option(USE_DISTRIBUTED "Use distributed" ON)
option(USE_DISTRIBUTED "Enable default distributed backends" ON)
cmake_dependent_option(USE_NCCL "Use NCCL" ON
"USE_DISTRIBUTED;USE_CUDA OR USE_ROCM;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_XCCL "Use XCCL" ON
"USE_XPU;UNIX;NOT APPLE" OFF)
"USE_DISTRIBUTED;USE_XPU;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON USE_NCCL OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON "USE_NCCL;NOT WIN32" OFF)
cmake_dependent_option(USE_STATIC_NCCL "Use static NCCL" OFF "USE_NCCL" OFF)
@ -437,12 +438,11 @@ if(WIN32)
PATH_SUFFIXES lib
NO_DEFAULT_PATH)
if(NOT libuv_tmp_LIBRARY)
set(USE_DISTRIBUTED OFF)
set(USE_GLOO OFF)
message(
WARNING
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.51' to install libuv."
"Libuv is not installed in current conda env. Set USE_GLOO to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
)
else()
set(ENV{libuv_ROOT} ${libuv_tmp_LIBRARY}/../../)
@ -1390,6 +1390,10 @@ endif()
include(cmake/Summary.cmake)
caffe2_print_configuration_summary()
if(BUILD_FUNCTORCH)
add_subdirectory(functorch)
endif()
# Parse custom debug info
if(DEFINED USE_CUSTOM_DEBINFO)
string(REPLACE ";" " " SOURCE_FILES "${USE_CUSTOM_DEBINFO}")

View File

@ -1,61 +1,20 @@
# Reference: https://setuptools.pypa.io/en/latest/userguide/miscellaneous.html
# Include individual top-level files
include CITATION.cff
include CODEOWNERS
include Dockerfile
include LICENSE
include MANIFEST.in
include Makefile
include NOTICE
include .bc-linter.yml
include .clang-format .clang-tidy
include .cmakelintrc
include .coveragerc
include .dockerignore
include .editorconfig
include .flake8
include .gdbinit
include .lintrunner.toml
include .lldbinit
include codex_setup.sh
include docker.Makefile
include pyrefly.toml
include ubsan.supp
# Include bazel and BUCK related files
include BUILD.bazel BUCK.oss
include WORKSPACE
include *.bzl
include .bazelignore .bazelrc .bazelversion
# Include general configuration files
include *.ini
# Include important top-level information
include *.md
# Include technical text files at the moment, comprises
# version.txt, CMakeLists.txt, requirements.txt
include *.txt
# Include ctags configuration
include .ctags.d/*.ctags
# Include subfolders completely
graft .devcontainer
graft .vscode
# Include source files in SDist
include CMakeLists.txt
include *.bzl *.bazel .bazel* BUILD *.BUILD BUILD.* WORKSPACE
include BUCK BUCK.*
include requirements*.txt
include version.txt
include [Mm]akefile *.[Mm]akefile [Mm]akefile.*
include [Dd]ockerfile *.[Dd]ockerfile [Dd]ockerfile.* .dockerignore
graft android
graft aten
graft benchmarks
graft binaries
graft c10
graft caffe2
graft cmake
graft docs
graft functorch
graft ios
graft mypy_plugins
graft scripts
graft test
graft third_party
graft tools
graft torch
@ -63,37 +22,29 @@ graft torchgen
# FIXME: torch-xla build during codegen will fail if include this file in wheel
exclude torchgen/BUILD.bazel
# The following exclusions omit parts from third-party dependencies that
# contain invalid symlinks[1] and that are not needed for pytorch, such as
# bindings for unused languages
prune third_party/flatbuffers/java
prune third_party/flatbuffers/kotlin
prune third_party/ittapi/rust
prune third_party/nccl/pkg/debian
prune third_party/opentelemetry-cpp/third_party/prometheus-cpp/cmake/project-import-*
# The following document is also an invalid symlink[1] and superfluous
exclude third_party/flatbuffers/docs/source/CONTRIBUTING.md
# Omit autogenerated code
prune torchgen/packaged
# Omit caches, compiled, and scm related content
prune */__pycache__
prune **/.github
prune **/.gitlab
global-exclude *.o *.obj *.so *.dylib *.a *.pxd *.dll *.lib
global-exclude *.py[cod] *.swp *~
global-exclude .git .git-blame-ignore-revs .gitattributes .gitignore .gitmodules
global-exclude .gitlab-ci.yml
# Misc files and directories in SDist
include *.md
include CITATION.cff
include LICENSE NOTICE
include mypy*.ini
graft benchmarks
graft docs
graft mypy_plugins
graft scripts
# Misc files needed for custom setuptools command
include .gitignore
include .gitmodules
# [1] Invalid symlinks for the purposes of Python source distributions are,
# according to the source distribution format[2] links pointing outside the
# destination directory or links with a `..` component, which is those of
# concern here.
# Include test suites in SDist
graft test
include pytest.ini
include .coveragerc
# [2] https://packaging.python.org/en/latest/specifications/source-distribution-format/#source-distribution-archive-features
# Prune generated/compiled files
prune torchgen/packaged
prune */__pycache__
global-exclude *.o *.obj *.so *.a *.dylib *.pxd *.dll *.lib *.py[cod]
prune */.git
global-exclude .git *~ *.swp

View File

@ -161,7 +161,7 @@ They require JetPack 4.2 and above, and [@dusty-nv](https://github.com/dusty-nv)
#### Prerequisites
If you are installing from source, you will need:
- Python 3.10 or later
- Python 3.9 or later
- A compiler that fully supports C++17, such as clang or gcc (gcc 9.4.0 or newer is required, on Linux)
- Visual Studio or Visual Studio Build Tool (Windows only)
@ -275,7 +275,7 @@ conda install pkg-config libuv
pip install mkl-static mkl-include
# Add these packages if torch.distributed is needed.
# Distributed package support on Windows is a prototype feature and is subject to changes.
conda install -c conda-forge libuv=1.51
conda install -c conda-forge libuv
```
#### Install PyTorch

View File

@ -468,7 +468,7 @@ inline Tensor _sum_to(
// if we assume no reduction due to unbacked we ensure that at runtime.
TORCH_MAYBE_SYM_CHECK(
sym_eq(shape[i - leading_dims], sizes[i]),
"non-reduction path was assumed due to unbacked symbols expected those two sizes to be the same:",
"non-reduction path was assumed due to unabcked symbols expected those two sizes to be the same:",
shape[i - leading_dims],
", ",
sizes[i])

View File

@ -9,6 +9,11 @@
namespace at::functionalization {
ViewMeta ViewMeta::to_out_idx(int64_t out_idx) {
if (out_idx == this->out_index) return *this;
return ViewMeta(forward_fn, reverse_fn, has_symbolic_inputs, is_multi_output, is_as_strided, out_idx);
}
// Note [Functionalization: Alias Removal Part 2]
// See Note [Functionalization: Alias Removal] for more details.
// This function applies a single update from one of the views to the StorageImpl.
@ -37,12 +42,12 @@ namespace at::functionalization {
static const Tensor apply_update(const FunctionalStorageImpl::Update& update, const Tensor& base) {
at::Tensor t = update.new_val;
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
if (update.view_metas.empty()) { return t; }
if (update.view_metas.empty()) return t;
std::vector<at::Tensor> tmp_values({base});
tmp_values.reserve(update.view_metas.size());
for (size_t i = 0; i < update.view_metas.size() - 1; ++i) {
at::Tensor next_view = update.view_metas[i]->forward(tmp_values.back());
at::Tensor next_view = update.view_metas[i].forward_fn(tmp_values.back(), update.view_metas[i].out_index);
// NB: We only actually need tmp_values for ops like select/slice/diagonal/squeeze/as_strided
// All of these ops require additional information to recover the sizes of the original tensor.
// If need to, we could probably apply this optimization and only bother computing tmp_values
@ -50,8 +55,9 @@ static const Tensor apply_update(const FunctionalStorageImpl::Update& update, co
tmp_values.push_back(std::move(next_view));
}
for(int64_t i = static_cast<int64_t>(update.view_metas.size()) - 1; i >= 0; --i) {
int64_t out_idx = update.view_metas[i].out_index;
// Each view inverse is implemented in ViewInverses.cpp.
t = update.view_metas[i]->reverse(tmp_values[i], t);
t = update.view_metas[i].reverse_fn(tmp_values[i], t, out_idx);
}
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
return t;
@ -105,13 +111,13 @@ FunctionalStorageImpl::FunctionalStorageImpl(const Tensor& base)
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(base_));
}
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<std::shared_ptr<ViewMeta>>& metas) {
void FunctionalStorageImpl::add_update(const Tensor& updated_val, const std::vector<ViewMeta>& metas) {
TORCH_CHECK(!frozen_, "cannot mutate tensors with frozen storage");
if (metas.size() > 1) {
for (size_t i = 1; i < metas.size(); ++i) {
// Skipping this check for XLA. Would be good to add it back, but it is failing XLA CI
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i]->is_as_strided,
TORCH_CHECK(updated_val.device().type() == c10::DeviceType::XLA || !metas[i].is_as_strided,
"During torch.compile, encountered a mutation on a view chain of length ", metas.size(), ", where view ", i,
" was an as_strided() call. as_strided() is non-compositional, and therefore is not possible to functionalize properly today,"
"so this behavior is banned in compile. As a workaround, you can either remove the mutation from the model code, or you "

View File

@ -8,89 +8,44 @@ namespace at::functionalization {
// See Note [Functionalization Pass In Core]
enum class InverseReturnMode {
/// Specifies that functional inverses should always return a view.
AlwaysView,
/// Specifies that functional inverses should always return a non-view / copy.
NeverView,
/// Specifies that functional inverses should return a view unless a (copying)
/// scatter
/// inverse exists, in which case that will be used instead.
/// This avoids as_strided() calls that can be difficult for subclasses to
/// handle.
ViewOrScatterInverse,
};
#define FUNCTIONALIZATION_VIEWMETA_NAME(TYPE) \
static const char* name() { \
return #TYPE; \
}
#define FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(...) \
using SerializableTuple = std::tuple<__VA_ARGS__>
// ViewMeta is a class used by the functionalization pass to navigate between
// a base tensor and a view tensor.
// For example, if I call `b = a.view1(...)`
// the functionalization pass will generate and store a ViewMeta specialization
// for `view1` operation on b that looks like:
// the functionalization pass will generate and store a ViewMeta on b that looks
// like:
//
// struct TORCH_API view1_ViewMeta : public ViewMeta {
// FUNCTIONALIZATION_VIEWMETA_NAME(view1_ViewMeta);
// FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
// bool /* reapply_views */,
// const std::vector<int64_t>&);
//
// view1_ViewMeta(const SerializableTuple& tpl)
// : view1_ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
//
// view1_ViewMeta(bool reapply_views, const std::vector<int64_t>& size)
// : ViewMeta(/*has_symbolic_inputs=*/false),
// reapply_views(reapply_views),
// size(size) {}
//
// Tensor forward(const Tensor& base) override {
// return base.view1(...);
// ViewMeta(
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
// return base.view1(...);
// },
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
// int64_t mutated_view_idx) -> at::Tensor {
// return at::functionalization::impl::view1_inverse(base, mutated_view,
// ...);
// }
//
// Tensor reverse(const Tensor& base, const Tensor& mutated_view) override {
// return at::functionalization::impl::view1_inverse(base, mutated_view,
// ...);
// }
// The forward_fn lambda describes how to replay view1 on a tensor.
//
// SerializableTuple to_serializable_tuple() {
// return std::make_tuple(reapply_views, size);
// }
//
// bool reapply_views;
// std::vector<int64_t> size;
// };
//
// The forward function describes how to replay view1 on a tensor.
//
// The reverse function describes how, given a tensor that is already a view,
// The reverse_fn lambda describes how, given a tensor that is already a view,
// how to get the corresponding base tensor. See Note [Functionalization Pass:
// View Inverses] for details.
//
// `SerializedTuple` is a typedef that defines an `std::tuple<...>` type
// representing the `ViewMeta` instance state. Methods that take in/return such
// a type are used for supporting pickle serialization.
struct ViewMeta {
ViewMeta(
std::function<Tensor(const Tensor&, int64_t)> forward,
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
bool has_symbolic_inputs,
bool is_multi_output = false,
bool is_as_strided = false,
int64_t out_idx = 0)
: out_index(out_idx),
: forward_fn(std::move(forward)),
reverse_fn(std::move(reverse)),
out_index(out_idx),
is_multi_output(is_multi_output),
is_as_strided(is_as_strided),
has_symbolic_inputs(has_symbolic_inputs) {}
virtual ~ViewMeta() = default;
virtual Tensor forward(const Tensor& base) = 0;
virtual Tensor reverse(const Tensor& base, const Tensor& mutated_view) = 0;
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
// See Note [out_idx in ViewMeta]
int64_t out_index;
@ -102,17 +57,10 @@ struct ViewMeta {
// Tells us if this view operation has any symbolic inputs
bool has_symbolic_inputs;
// Returns a new ViewMeta with the same forward/reverse
// Returns a copy of the current ViewMeta, if out_idx matches the current
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
// functions, but a new out index.
//
// This method should be implemented by those `ViewMeta` that have more than
// one output.
virtual std::shared_ptr<ViewMeta> to_out_index(int64_t out_index) {
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"ViewMeta::to_out_index not implemented. ",
"Likely because there's only one output.");
}
ViewMeta to_out_idx(int64_t out_idx);
};
// FunctionalStorageImpl is a subclass of StorageImpl used by the
@ -145,14 +93,14 @@ struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const at::Tensor new_val;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const std::vector<std::shared_ptr<ViewMeta>> view_metas;
const std::vector<ViewMeta> view_metas;
};
explicit FunctionalStorageImpl(const Tensor& value);
void add_update(
const Tensor& updated_val,
const std::vector<std::shared_ptr<ViewMeta>>& view_metas);
const std::vector<ViewMeta>& view_metas);
bool apply_updates();
const Tensor& base() {
return base_;

View File

@ -129,19 +129,17 @@ void FunctionalTensorWrapper::freeze_storage() const {
// - view_value: The output tensor that we need to wrap.
// - base: The "base" of the view that `view_value` was generated from.
// See Note [Functionalization: Alias Removal Part 2] for more details on the mutation replay logic.
FunctionalTensorWrapper::FunctionalTensorWrapper(
const Tensor& view_value,
const FunctionalTensorWrapper* base,
const std::shared_ptr<functionalization::ViewMeta>& meta)
: c10::TensorImpl(
c10::DispatchKeySet(DispatchKey::Functionalize),
view_value.dtype(),
base->storage().data_ptr().device()),
value_(view_value),
is_multi_output_view_(
base->is_multi_output_view_ || meta->is_multi_output),
was_storage_changed_(base->was_storage_changed_),
is_symbolic_(base->is_symbolic_) {
FunctionalTensorWrapper::FunctionalTensorWrapper(const Tensor& view_value, const FunctionalTensorWrapper* base, const functionalization::ViewMeta& meta)
: c10::TensorImpl(
c10::DispatchKeySet(DispatchKey::Functionalize),
view_value.dtype(),
base->storage().data_ptr().device()
),
value_(view_value),
is_multi_output_view_(base->is_multi_output_view_ || meta.is_multi_output),
was_storage_changed_(base->was_storage_changed_),
is_symbolic_(base->is_symbolic_)
{
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(value_));
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
set_constructor_metadata();
@ -150,10 +148,11 @@ FunctionalTensorWrapper::FunctionalTensorWrapper(
view_metas_ = base->view_metas_; // copy
}
view_metas_.push_back(meta);
maybe_mark_symbolic(meta.get());
maybe_mark_symbolic(meta);
storage_ = base->storage_; // alias this tensor's storage with the base tensor's
}
functionalization::FunctionalStorageImpl* FunctionalTensorWrapper::functional_storage_impl() const {
return static_cast<functionalization::FunctionalStorageImpl*>(storage_.unsafeGetStorageImpl());
}
@ -177,18 +176,18 @@ bool FunctionalTensorWrapper::is_up_to_date() const {
}
// See Note [Functionalization Pass - Inplace View Ops]
void FunctionalTensorWrapper::mutate_view_meta(const std::shared_ptr<at::functionalization::ViewMeta>& meta) {
void FunctionalTensorWrapper::mutate_view_meta(const at::functionalization::ViewMeta& meta) {
view_metas_.push_back(meta);
// Manually track the fact that this tensor received a metadata mutation!
has_metadata_mutation_ = true;
// Mark this tensor as being symbolic if there are any symbolic inputs used by the view operation.
maybe_mark_symbolic(meta.get());
maybe_mark_symbolic(meta);
// Note [Functionalization Pass - Inplace View Ops]
// So, these ops are special - they're mutation AND view ops. They get special codegen.
// An example is transpose_, e.g. `a.transpose_()`
// Calling transpose_() should ensure that a gets an alias, and append the new ViewMeta to a's current list of ViewMetas.
at::AutoDispatchSkipFunctionalize guard;
value_ = meta->forward(value_);
value_ = meta.forward_fn(value_, meta.out_index);
TORCH_INTERNAL_ASSERT(!value_.key_set().has(c10::DispatchKey::Functionalize));
}
@ -369,8 +368,15 @@ void FunctionalTensorWrapper::sync_() {
regenerate_from_base();
}
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& FunctionalTensorWrapper::view_metas() const {
return view_metas_;
Tensor FunctionalTensorWrapper::apply_view_metas(const Tensor& base) {
auto t = base;
// Reapply views to get the viewed tensor from the base in alias_
for (auto& view_meta: view_metas_) {
t = view_meta.forward_fn(t, view_meta.out_index);
}
return t;
}
void FunctionalTensorWrapper::regenerate_from_base() {
@ -379,7 +385,7 @@ void FunctionalTensorWrapper::regenerate_from_base() {
auto t = storage_impl->base();
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
t = at::functionalization::impl::apply_view_meta_sequence(t, view_metas_);
t = apply_view_metas(t);
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(t));
replace_(t, /*from_lazy_regenerate=*/true);
@ -721,11 +727,11 @@ bool isFunctionalTensor(const std::optional<Tensor>& t) {
}
bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
if (t_list.empty()) { return false; }
if (t_list.empty()) return false;
auto functional_count = 0;
for (const auto i : c10::irange(t_list.size())) {
auto const & e= t_list[i];
if (!e.has_value() || !e->defined()) { continue; }
if (!e.has_value() || !e->defined()) continue;
if (isFunctionalTensor(e)) {
++functional_count;
}
@ -735,10 +741,10 @@ bool isFunctionalTensor(const c10::List<::std::optional<Tensor>>& t_list) {
template <typename T>
static bool isFunctionalTensorIListRef(c10::IListRef<T> list) {
if (list.size() == 0) { return false; }
if (list.size() == 0) return false;
auto functional_count = 0;
for (const auto& tensor : list) {
if (!tensor.defined()) { continue; }
if (!tensor.defined()) continue;
if (isFunctionalTensor(tensor)) {
++functional_count;
}
@ -756,28 +762,20 @@ void freeze_functional_tensor(const Tensor& tensor) {
functional_base_impl->freeze_storage();
}
Tensor create_functional_tensor_with_view_meta(
const at::Tensor& view_to_wrap,
const at::Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta,
int64_t out_idx) {
Tensor create_functional_tensor_with_view_meta(const at::Tensor& view_to_wrap, const at::Tensor& base, functionalization::ViewMeta meta, int64_t out_idx) {
TORCH_INTERNAL_ASSERT(!at::functionalization::impl::isFunctionalTensor(view_to_wrap));
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(base));
auto functional_base_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(base);
auto meta_ = meta;
if (out_idx != 0) {
// Note [out_idx in ViewMeta]
// When a view op outputs multiple tensors, each output needs its own separate ViewMeta.
// Each ViewMeta also tracks the index of the particular output tensor, which is needed in the reverse function.
meta_ = meta->to_out_index(out_idx);
meta = meta.to_out_idx(out_idx);
}
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta_);
return at::detail::make_tensor<FunctionalTensorWrapper>(view_to_wrap, functional_base_impl, meta);
}
std::vector<Tensor> create_functional_tensor_with_view_meta(
ITensorListRef view_to_wrap,
const at::Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta) {
std::vector<Tensor> create_functional_tensor_with_view_meta(ITensorListRef view_to_wrap, const at::Tensor& base, const functionalization::ViewMeta& meta) {
std::vector<Tensor> outputs(view_to_wrap.size());
int64_t i = 0;
for (const auto& tensor : view_to_wrap) {
@ -787,22 +785,12 @@ std::vector<Tensor> create_functional_tensor_with_view_meta(
return outputs;
}
void mutate_view_meta(const at::Tensor& self, const std::shared_ptr<functionalization::ViewMeta>& meta) {
void mutate_view_meta(const at::Tensor& self, const functionalization::ViewMeta& meta) {
TORCH_INTERNAL_ASSERT(at::functionalization::impl::isFunctionalTensor(self));
auto self_impl = at::functionalization::impl::unsafeGetFunctionalWrapper(self);
self_impl->mutate_view_meta(meta);
}
Tensor apply_view_meta_sequence(
const Tensor& base,
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence) {
Tensor r = base;
for (auto& vm : sequence) {
r = vm->forward(r);
}
return r;
}
// Note [Propagating strides in the functionalization pass]
// In order to properly compute stride information, the functionalization pass
// calls each {view} reference implementations with meta tensors.
@ -896,7 +884,7 @@ void functionalize_op_helper(const c10::OperatorHandle& op, torch::jit::Stack* s
const auto& ivalue = returns[idx];
if (ivalue.isTensor()) {
const auto& t = ivalue.toTensor();
if (!t.defined()) { continue; }
if (!t.defined()) continue;
at::functionalization::impl::sync(t);
auto t_new = c10::IValue(at::functionalization::impl::from_functional_tensor(t));
(*stack)[returns_begin + idx] = t_new;

View File

@ -56,7 +56,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
explicit FunctionalTensorWrapper(
const Tensor& view_value,
const FunctionalTensorWrapper* base,
const std::shared_ptr<functionalization::ViewMeta>& meta);
const functionalization::ViewMeta& meta);
// Get the underlying, actual tensor, that doesn't know anything about
// functionalization.
@ -99,17 +99,17 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
->are_all_mutations_under_no_grad_or_inference_mode();
}
void maybe_mark_symbolic(functionalization::ViewMeta* meta) {
is_symbolic_ = is_symbolic_ | meta->has_symbolic_inputs;
void maybe_mark_symbolic(const functionalization::ViewMeta& meta) {
is_symbolic_ = is_symbolic_ | meta.has_symbolic_inputs;
}
bool is_symbolic() const {
return is_symbolic_;
}
// Retrieves the ViewMeta sequence of this tensor.
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& view_metas()
const;
// Runs the forward_fn of every ViewMeta collected in the current instance
// to some other base.
Tensor apply_view_metas(const Tensor& base);
// Sync's the underlying tensor with its alias, if it's out of date. This
// involves two steps: 1) Apply any pending updates/mutations to the alias 2)
@ -146,8 +146,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
// from the base tensor. This method is used by inplace-view ops like
// transpose_. It appends a ViewMeta to the existing stack, and refreshes the
// tensor by replaying the views off of the alias.
void mutate_view_meta(
const std::shared_ptr<at::functionalization::ViewMeta>& meta);
void mutate_view_meta(const at::functionalization::ViewMeta& meta);
// Custom implementation of self.set_(src)
void set__impl(const FunctionalTensorWrapper* other);
@ -286,7 +285,7 @@ struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
bool is_symbolic_ = false;
size_t generation_ = 0;
std::vector<std::shared_ptr<at::functionalization::ViewMeta>> view_metas_;
std::vector<at::functionalization::ViewMeta> view_metas_;
protected:
static void copy_tensor_metadata(
@ -378,20 +377,16 @@ TORCH_API void propagate_xla_data_direct(
Tensor create_functional_tensor_with_view_meta(
const Tensor& view_to_wrap,
const Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta,
functionalization::ViewMeta meta,
int64_t out_idx = 0);
std::vector<Tensor> create_functional_tensor_with_view_meta(
ITensorListRef view_to_wrap,
const Tensor& base,
const std::shared_ptr<functionalization::ViewMeta>& meta);
const functionalization::ViewMeta& meta);
void mutate_view_meta(
const Tensor& self,
const std::shared_ptr<functionalization::ViewMeta>& meta);
TORCH_API Tensor apply_view_meta_sequence(
const Tensor& base,
const std::vector<std::shared_ptr<functionalization::ViewMeta>>& sequence);
const functionalization::ViewMeta& meta);
void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
void set_sizes_strides_offset(

View File

@ -1,5 +1,3 @@
#include <ATen/FunctionalizeFallbackKernel.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/EmptyTensor.h>
@ -9,6 +7,7 @@
#include <torch/library.h>
#include <c10/util/irange.h>
#include <c10/util/strides.h>
#include <ATen/EmptyTensor.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/ATen.h>
@ -29,31 +28,6 @@
#include <utility>
#endif
namespace at::functionalization {
Tensor resize__ViewMeta::forward(const Tensor& base) {
if (reapply_views) {
return base.as_strided(size, c10::contiguous_strides(size));
} else {
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
}
}
Tensor resize__ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
return base.as_strided_scatter(
mutated_view, size, c10::contiguous_strides(size));
}
Tensor _unsafe_view_ViewMeta::forward(const Tensor& base) {
return at::_unsafe_view_symint(base, size);
}
Tensor _unsafe_view_ViewMeta::reverse(const Tensor& base, const Tensor& mutated_view) {
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
}
} // namespace at::functionalization
namespace {
void functionalizeFallback(const c10::OperatorHandle& op, c10::DispatchKeySet dispatchKeySet [[maybe_unused]], torch::jit::Stack* stack) {
const auto& schema = op.schema();
@ -132,9 +106,7 @@ namespace {
const auto& ivalue = returns[idx];
if (ivalue.isTensor() && should_wrap_outputs) {
const auto& t = ivalue.toTensor();
if (!t.defined()) {
continue;
}
if (!t.defined()) continue;
auto t_new = c10::IValue(at::functionalization::impl::to_functional_tensor(t));
(*stack)[returns_begin + idx] = t_new;
} else if (ivalue.isTensorList() && should_wrap_outputs) {
@ -197,8 +169,19 @@ static const at::Tensor & resize__functionalization(c10::DispatchKeySet dispatch
// The output of resizing is equivalent to taking a slice of a larger tensor.
// We have to emulate this "slicing" with an as_strided call.
auto reapply_views = at::functionalization::impl::getFunctionalizationReapplyViewsTLS();
auto view_meta = std::make_shared<at::functionalization::resize__ViewMeta>(
reapply_views, size.vec());
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
[reapply_views = reapply_views, size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
if (reapply_views) {
return base.as_strided(size, c10::contiguous_strides(size));
} else {
return at::as_strided_copy(base, size, c10::contiguous_strides(size));
}
},
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return base.as_strided_scatter(mutated_view, size, c10::contiguous_strides(size));
},
/*has_symbolic_inputs=*/false
);
at::functionalization::impl::mutate_view_meta(self, view_meta);
return self;
}
@ -317,11 +300,17 @@ static at::Tensor _unsafe_view_functionalize(const at::Tensor & self, at::SymInt
tmp_output = at::_unsafe_view_symint(self_, size);
}
bool has_symbolic_inputs = std::any_of(
size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
auto view_meta =
std::make_shared<at::functionalization::_unsafe_view_ViewMeta>(
has_symbolic_inputs, size.vec());
bool has_symbolic_inputs = std::any_of(size.begin(), size.end(), [=](auto& s) { return s.is_symbolic(); });
at::functionalization::ViewMeta view_meta = at::functionalization::ViewMeta(
[size = size.vec()](const at::Tensor & base, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return at::_unsafe_view_symint(base, size);
},
[size = size.vec()](const at::Tensor & base, const at::Tensor & mutated_view, int64_t mutated_view_idx [[maybe_unused]]) -> at::Tensor {
return at::_unsafe_view_symint(mutated_view, base.sym_sizes());
},
/*has_symbolic_inputs=*/has_symbolic_inputs
);
auto out = at::functionalization::impl::create_functional_tensor_with_view_meta(tmp_output, self, std::move(view_meta));
// See Note [Propagating strides in the functionalization pass]

View File

@ -1,58 +0,0 @@
#pragma once
#include <ATen/FunctionalStorageImpl.h>
namespace at::functionalization {
// `ViewMeta` implementation for `resize_` operation.
struct TORCH_API resize__ViewMeta : public ViewMeta {
FUNCTIONALIZATION_VIEWMETA_NAME(resize__ViewMeta)
FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
bool /* reapply_views */,
const std::vector<int64_t>&);
resize__ViewMeta(const SerializableTuple& tpl)
: resize__ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
resize__ViewMeta(bool reapply_views, const std::vector<int64_t>& size)
: ViewMeta(/*has_symbolic_inputs=*/false),
reapply_views(reapply_views),
size(size) {}
Tensor forward(const Tensor& base) override;
Tensor reverse(const Tensor& base, const Tensor& mutated_view) override;
SerializableTuple to_serializable_tuple() {
return std::make_tuple(reapply_views, size);
}
bool reapply_views;
std::vector<int64_t> size;
};
// `ViewMeta` implementation for `_unsafe_view` operation.
struct TORCH_API _unsafe_view_ViewMeta : public ViewMeta {
FUNCTIONALIZATION_VIEWMETA_NAME(_unsafe_view_ViewMeta)
FUNCTIONALIZATION_VIEWMETA_SERIALIZABLE_TUPLE(
bool /* has_symbolic_inputs */,
const std::vector<c10::SymInt>&);
_unsafe_view_ViewMeta(const SerializableTuple& tpl)
: _unsafe_view_ViewMeta(std::get<0>(tpl), std::get<1>(tpl)) {}
_unsafe_view_ViewMeta(
bool has_symbolic_inputs,
const std::vector<c10::SymInt>& size)
: ViewMeta(has_symbolic_inputs), size(size) {}
Tensor forward(const Tensor& base) override;
Tensor reverse(const Tensor& base, const Tensor& mutated_view) override;
SerializableTuple to_serializable_tuple() {
return std::make_tuple(has_symbolic_inputs, size);
}
std::vector<c10::SymInt> size;
};
} // namespace at::functionalization

View File

@ -45,39 +45,7 @@ inline void infer_size_impl(
}
}
if (infer_dim) {
// numel is the product of known sizes, it has to be divisible by newsize.
// and newsize should be positive unless newsize == numel (we throw
// different) error message in that case.
if constexpr (std::is_same_v<NumelType, c10::SymInt>) {
auto v = newsize.maybe_as_int();
if (v and *v == 0) {
// Avoid div by 0 when sym_eq(numel % newsize, 0) is constructed!
// which may happen when newsize is not a symbol! if its a symbol
// division won't happen anyway during compile.
TORCH_MAYBE_SYM_CHECK(
numel == newsize,
"shape '",
shape,
"' is invalid for input of size ",
numel);
} else {
auto cond = sym_gt(newsize, 0)
.sym_and(sym_eq(numel % newsize, 0))
.sym_or(sym_eq(numel, newsize));
TORCH_MAYBE_SYM_CHECK(
cond, "shape '", shape, "' is invalid for input of size ", numel);
}
} else {
TORCH_CHECK(
(newsize > 0 && (numel % newsize == 0)) || numel == newsize,
"shape '",
shape,
"' is invalid for input of size ",
numel);
}
auto set_infer_dim = [&]() {
// We have a degree of freedom here to select the dimension size; follow
// NumPy semantics and just bail. However, a nice error message is needed
// because users often use `view` as a way to flatten & unflatten
@ -86,15 +54,19 @@ inline void infer_size_impl(
// works yet
// empty_tensor.view(-1, 0)
// doesn't.
TORCH_MAYBE_SYM_CHECK(
TORCH_CHECK(
newsize != 0,
"cannot reshape tensor of 0 elements into shape ",
shape,
" because the unspecified dimension size -1 can be any "
"value and is ambiguous");
res[*infer_dim] = numel / newsize;
return;
};
if (infer_dim && newsize > 0 && numel % newsize == 0) {
set_infer_dim();
return;
}
TORCH_MAYBE_SYM_CHECK(
@ -103,6 +75,9 @@ inline void infer_size_impl(
shape,
"' is invalid for input of size ",
numel);
if (infer_dim) {
set_infer_dim();
}
}
inline std::vector<int64_t> infer_size(IntArrayRef shape, int64_t numel) {

View File

@ -1,22 +1,32 @@
#include <ATen/core/PythonOpRegistrationTrampoline.h>
#include <c10/core/impl/PyInterpreterHooks.h>
// TODO: delete this
namespace at::impl {
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::interpreter_ = nullptr;
// The strategy is that all python interpreters attempt to register themselves
// as the main interpreter, but only one wins. Only that interpreter is
// allowed to interact with the C++ dispatcher. Furthermore, when we execute
// logic on that interpreter, we do so hermetically, never setting pyobj field
// on Tensor.
std::atomic<c10::impl::PyInterpreter*>
PythonOpRegistrationTrampoline::interpreter_{nullptr};
c10::impl::PyInterpreter* PythonOpRegistrationTrampoline::getInterpreter() {
return c10::impl::getGlobalPyInterpreter();
return PythonOpRegistrationTrampoline::interpreter_.load();
}
bool PythonOpRegistrationTrampoline::registerInterpreter(
c10::impl::PyInterpreter* interp) {
if (interpreter_ != nullptr) {
c10::impl::PyInterpreter* expected = nullptr;
interpreter_.compare_exchange_strong(expected, interp);
if (expected != nullptr) {
// This is the second (or later) Python interpreter, which means we need
// non-trivial hermetic PyObject TLS
c10::impl::HermeticPyObjectTLS::init_state();
return false;
} else {
return true;
}
interpreter_ = interp;
return true;
}
} // namespace at::impl

View File

@ -2,21 +2,19 @@
#include <ATen/core/dispatch/Dispatcher.h>
// TODO: We can get rid of this
// TODO: this can probably live in c10
namespace at::impl {
// Manages the single Python interpreter instance for PyTorch.
class TORCH_API PythonOpRegistrationTrampoline final {
static c10::impl::PyInterpreter* interpreter_;
static std::atomic<c10::impl::PyInterpreter*> interpreter_;
public:
// Register the Python interpreter. Returns true on first registration,
// false if an interpreter was already registered.
// Returns true if you successfully registered yourself (that means
// you are in the hot seat for doing the operator registrations!)
static bool registerInterpreter(c10::impl::PyInterpreter*);
// Returns the registered interpreter via the global PyInterpreter hooks.
// Returns nullptr if no interpreter has been registered yet.
static c10::impl::PyInterpreter* getInterpreter();
};

View File

@ -1234,7 +1234,7 @@ struct TORCH_API TupleType : public NamedType {
std::shared_ptr<FunctionSchema> schema_;
};
// the common supertype of all Enums, only used in operator registration.
// the common supertype of all Enums, only used in operator registraion.
// EnumType <: AnyEnumType for all Enums
struct AnyEnumType;
using AnyEnumTypePtr = SingletonTypePtr<AnyEnumType>;

View File

@ -149,105 +149,5 @@ static inline void pack_vnni4(
#endif
}
// This is a helper function for transpose_pack_vnni4
// Transform a [4, 16] block (with incontiguous output)
// Src:
// a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
// b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
// c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
// d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16
// Dst:
// a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4
// a5 a6 a7 a8 b5 b6 b7 b8 c5 c6 c7 c8 d5 d6 d7 d8
// a9 a10 a11 a12 b9 b10 b11 b12 c9 c10 c11 c12 d9 d10 d11 d12
// a13 a14 a15 a16 b13 b14 b15 b16 c13 c14 c15 c16 d13 d14 d15 d16
template <typename scalar_t, typename = std::enable_if_t<sizeof(scalar_t) == 1>>
static inline void transpose_vnni4_pad_4x16_block(
const scalar_t* src,
scalar_t* dst,
int64_t ld_src,
int64_t ld_dst,
int krem = 4) {
#if defined(CPU_CAPABILITY_AVX512)
__m128i r[4];
for (int i = 0; i < krem; ++i) {
r[i] = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i * ld_src));
}
for (int i = krem; i < 4; ++i) {
r[i] = _mm_setzero_si128();
}
// Transpose 4x16 bytes using unpack and shuffle
__m128i t0 = _mm_unpacklo_epi32(r[0], r[1]);
__m128i t1 = _mm_unpackhi_epi32(r[0], r[1]);
__m128i t2 = _mm_unpacklo_epi32(r[2], r[3]);
__m128i t3 = _mm_unpackhi_epi32(r[2], r[3]);
__m128i r0 = _mm_unpacklo_epi64(t0, t2);
__m128i r1 = _mm_unpackhi_epi64(t0, t2);
__m128i r2 = _mm_unpacklo_epi64(t1, t3);
__m128i r3 = _mm_unpackhi_epi64(t1, t3);
// Store output
if (krem == 4) {
// normal case
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), r0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst), r1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst * 2), r2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst + ld_dst * 3), r3);
} else {
// masked case
__mmask16 mask = (1ULL << (krem * 4)) - 1;
_mm_mask_storeu_epi8(dst, mask, r0);
_mm_mask_storeu_epi8(reinterpret_cast<__m128i*>(dst + ld_dst), mask, r1);
_mm_mask_storeu_epi8(
reinterpret_cast<__m128i*>(dst + ld_dst * 2), mask, r2);
_mm_mask_storeu_epi8(
reinterpret_cast<__m128i*>(dst + ld_dst * 3), mask, r3);
}
#else
TORCH_CHECK(
false,
"transpose_vnni4_pad_4x16_block is only supported when AVX-512 is supported")
#endif
}
// Do the transpose packing fusion with VNNI4
// Reorder [K, N] → [N/4, K, 4] (VNNI4-style layout for bit8)
template <typename scalar_t, typename = std::enable_if_t<sizeof(scalar_t) == 1>>
static inline void transpose_pack_vnni4(
const scalar_t* src,
scalar_t* dst,
int64_t ld_src,
int64_t K,
int64_t N) {
#if defined(CPU_CAPABILITY_AVX512)
TORCH_CHECK(
N % 16 == 0, "N needs to be multiple of 16 for transpose_pack_vnni4");
int64_t bk = 0;
int64_t _K = K / 4 * 4;
for (; bk < _K; bk += 4) {
int64_t bn = 0;
for (; bn < N; bn += 16) {
transpose_vnni4_pad_4x16_block(
src + bk * ld_src + bn, dst + bn * K + bk * 4, ld_src, K * 4);
}
}
// Handle leftover K rows (< 4)
if (K % 4 != 0) {
int krem = K - bk;
int64_t bn = 0;
for (; bn < N; bn += 16) {
transpose_vnni4_pad_4x16_block(
src + bk * ld_src + bn, dst + bn * K + bk * 4, ld_src, K * 4, krem);
}
}
#else
TORCH_CHECK(
false, "transpose_pack_vnni4 is only supported when AVX-512 is supported")
#endif
}
} // namespace CPU_CAPABILITY
} // namespace at::vec

View File

@ -281,9 +281,6 @@ bool CUDAHooks::compiledWithMIOpen() const {
bool CUDAHooks::supportsDilatedConvolutionWithCuDNN() const {
#if AT_CUDNN_ENABLED()
if (!hasCUDA()) {
return false;
}
// NOTE: extra parenthesis around numbers disable clang warnings about
// dead code
return true;
@ -294,9 +291,6 @@ bool CUDAHooks::supportsDilatedConvolutionWithCuDNN() const {
bool CUDAHooks::supportsDepthwiseConvolutionWithCuDNN() const {
#if AT_CUDNN_ENABLED()
if (!hasCUDA()) {
return false;
}
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
// Check for Volta cores
if (prop->major >= 7) {
@ -311,9 +305,6 @@ bool CUDAHooks::supportsDepthwiseConvolutionWithCuDNN() const {
bool CUDAHooks::supportsBFloat16ConvolutionWithCuDNNv8() const {
#if AT_CUDNN_ENABLED()
if (!hasCUDA()) {
return false;
}
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
// Check for Volta cores
if (prop->major >= 8) {

View File

@ -465,11 +465,8 @@ inline bool mps_conv_use_channels_last(const at::Tensor& input, const at::Tensor
return false;
}
auto is_channel_last = [](const at::Tensor& t) {
auto fmt = t.suggest_memory_format();
return fmt == at::MemoryFormat::ChannelsLast || fmt == at::MemoryFormat::ChannelsLast3d;
};
return is_channel_last(input) || is_channel_last(weight);
auto fmt = input.suggest_memory_format();
return fmt == at::MemoryFormat::ChannelsLast || fmt == at::MemoryFormat::ChannelsLast3d;
}
} // namespace at::native

View File

@ -32,6 +32,10 @@
#include <ATen/native/mkldnn/Utils.h>
#endif
#ifdef USE_MPS
#include <ATen/mps/MPSDevice.h>
#endif
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
@ -406,23 +410,11 @@ struct ConvParams {
// cudnn and miopen are guaranteed not to be on mobile, and T102591915 / T110194934 suggest
// that maybe the compiledWithCuDNN() check sometimes segfaults (though I can't imagine how)
#if !defined(C10_MOBILE)
if (!detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda() || !cudnn_enabled) {
if (!detail::getCUDAHooks().compiledWithCuDNN()) {
return false;
}
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
// broken on cuDNN 9.8
if (cudnn_version >= 90800) {
if (cudnn_conv_suggest_memory_format(input, weight) == at::MemoryFormat::Contiguous &&
(input.scalar_type() == at::kBFloat16 || input.scalar_type() == at::kHalf) &&
weight.dim() == 5) {
for (int i = 2; i < weight.dim(); i++) {
if (weight.size(i) != 1) {
return false;
}
}
}
}
if (needs_64bit_indexing_no_split(input, weight)) {
static long cudnn_version = detail::getCUDAHooks().versionCuDNN();
if (!(cudnn_version >= 90300 && at::native::cudnnv8_enabled_check_debug())) {
TORCH_WARN_ONCE("cuDNN cannot be used for large non-batch-splittable convolutions"
" if the V8 API is not enabled or before cuDNN version 9.3+."
@ -430,6 +422,9 @@ struct ConvParams {
return false;
}
}
if (!input.is_cuda() || !cudnn_enabled) {
return false;
}
if (input.scalar_type() == at::kBFloat16 || weight.scalar_type() == at::kBFloat16) {
if (!(detail::getCUDAHooks().supportsBFloat16ConvolutionWithCuDNNv8() && at::native::cudnnv8_enabled_check_debug())) {
return false;
@ -448,19 +443,16 @@ struct ConvParams {
// Use cudnn for FP16 depthwise convolutions
bool use_cudnn_depthwise(const at::Tensor& input, const at::Tensor& weight) const {
if (!cudnn_enabled || !detail::getCUDAHooks().compiledWithCuDNN() || !input.is_cuda()) {
if (!detail::getCUDAHooks().compiledWithCuDNN()) {
return false;
}
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous && use_cudnn(input, weight)) {
// always use cudnn_depthwise for channels_last format
return true;
}
// native kernel doesn't support 64-bit non-splittable case
if (!(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
if (cudnn_enabled && !(canUse32BitIndexMath(input) && canUse32BitIndexMath(weight))) {
static long cudnn_version = detail::getCUDAHooks().compiledWithCuDNN() ? detail::getCUDAHooks().versionCuDNN() : -1;
// TODO(eqy): remove this once cuDNN fixes 64-bit depthwise support, first broken in 9.11x
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
if (cudnn_version < 0 || cudnn_version > 91000) {
return false;
}
}
if (!(cudnn_version >= 90300 && at::native::cudnnv8_enabled_check_debug())) {
TORCH_WARN_ONCE("cuDNN cannot be used for large non-batch-splittable convolutions"
" if the V8 API is not enabled or before cuDNN version 9.3+."
@ -470,10 +462,6 @@ struct ConvParams {
return true;
}
}
if (cudnn_conv_suggest_memory_format(input, weight) != at::MemoryFormat::Contiguous) {
// always use cudnn_depthwise for channels_last format
return true;
}
if (detail::getCUDAHooks().supportsDepthwiseConvolutionWithCuDNN()) {
bool kernel_cond = (use_cudnn(input, weight) &&
input.scalar_type() == kHalf && // only for FP16
@ -1441,8 +1429,12 @@ static inline at::MemoryFormat determine_backend_memory_format(
}
break;
case ConvBackend::Mps:
case ConvBackend::MpsTranspose:
if (mps_conv_use_channels_last(input, weight)) {
#ifdef USE_MPS
if (!mps::is_macos_13_or_newer(mps::MacOSVersion::MACOS_VER_15_0_PLUS)) {
break;
}
#endif
backend_memory_format = (k == 5) ? MemoryFormat::ChannelsLast3d : MemoryFormat::ChannelsLast;
}
break;

View File

@ -9,7 +9,6 @@
#include <ATen/native/TransposeType.h>
#include <ATen/native/Unfold3d.h>
#include <c10/util/irange.h>
#include <c10/util/safe_numerics.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
@ -175,23 +174,6 @@ static inline void slow_conv3d_shape_check(
const int64_t input_height = input.size(dim_height);
const int64_t input_width = input.size(dim_width);
constexpr int64_t MAX_SAFE_PAD = (1LL << 61);
TORCH_CHECK_VALUE(
pad_height <= MAX_SAFE_PAD,
"Padding height too large: pad_height=",
pad_height);
TORCH_CHECK_VALUE(
pad_width <= MAX_SAFE_PAD,
"Padding width too large: pad_width=",
pad_width);
TORCH_CHECK_VALUE(
pad_depth <= MAX_SAFE_PAD,
"Padding depth too large: pad_depth=",
pad_depth);
const int64_t exact_input_depth = input_depth + 2 * pad_depth;
const int64_t exact_input_height = input_height + 2 * pad_height;
const int64_t exact_input_width = input_width + 2 * pad_width;
@ -239,14 +221,6 @@ static inline void slow_conv3d_shape_check(
output_width,
"). Output size is too small");
uint64_t kernel_product;
TORCH_CHECK(
!c10::mul_overflows(kernel_height, kernel_width, &kernel_product),
"Kernel height x width product is too large: kernel_height=",
kernel_height,
", kernel_width=",
kernel_width);
if (weight.defined()) {
int64_t n_input_plane = weight.size(1);
if (weight.dim() == 2) {

View File

@ -97,38 +97,43 @@ Tensor& fill_diagonal_(Tensor& self, const Scalar& fill_value, bool wrap) {
int64_t nDims = self.dim();
TORCH_CHECK(nDims >= 2, "dimensions must larger than 1");
auto height = self.sym_size(0);
auto width = self.sym_size(1);
int64_t height = self.size(0);
int64_t width = self.size(1);
if (nDims > 2) {
int64_t dim1 = height;
for (const auto i : c10::irange(1, nDims)) {
if (self.sym_size(i) != height) {
if (self.size(i) != dim1) {
TORCH_CHECK(false, "all dimensions of input must be of equal length");
}
}
}
auto storage_offset = self.sym_storage_offset();
auto size = std::min(height, width);
int64_t storage_offset = self.storage_offset();
std::vector<int64_t> sizes;
std::vector<int64_t> strides;
int64_t size = std::min(height, width);
int64_t stride = 0;
for (const auto i : c10::irange(nDims)) {
stride += self.stride(i);
}
std::vector<SymInt> strides{stride};
std::vector<SymInt> sizes{size};
strides.push_back(stride);
sizes.push_back(size);
auto main_diag = self.as_strided_symint(sizes, strides, storage_offset);
auto main_diag = self.as_strided(sizes, strides, storage_offset);
main_diag.fill_(fill_value);
if (wrap && nDims == 2 && height > width + 1) {
auto step = width + 1;
auto wrap_size = ((self.numel() + step - 1) / step) - size;
std::vector<SymInt> wrap_sizes{wrap_size};
std::vector<int64_t> wrap_sizes;
auto offset = self.stride(0) * (width + 1);
int64_t step = width + 1;
int64_t wrap_size = ((self.numel() + step - 1) / step) - size;
wrap_sizes.push_back(wrap_size);
auto wrap_diag = self.as_strided_symint(wrap_sizes, strides, storage_offset + offset);
int64_t offset = self.stride(0) * (width + 1);
auto wrap_diag = self.as_strided(wrap_sizes, strides, storage_offset + offset);
wrap_diag.fill_(fill_value);
}

View File

@ -23,7 +23,6 @@
#include <ATen/ops/linspace.h>
#endif
#include <cmath>
#include <numeric>
#include <tuple>
#include <vector>
@ -203,46 +202,6 @@ select_outer_bin_edges(const Tensor& input, std::optional<c10::ArrayRef<double>>
return std::make_pair(leftmost_edges, rightmost_edges);
}
/* Bin edges correction based on the precision representation.
* To maintain the backward compatibility we take max(std::nextafter<>, +1)
* and min(std::nextafter<>, -1) for scalar types. For other types +/- 1 as usual.
*/
void bins_edges_correction(const ScalarType& t, double &leftmost_edge, double &rightmost_edge)
{
#define UPDATE_WITH_LIMIT(real_type, scalartype) \
case ScalarType::scalartype: \
leftmost_edge = std::min( \
static_cast<double>( \
std::nexttoward( \
static_cast<real_type>(leftmost_edge), \
std::numeric_limits<real_type>::lowest() \
) \
), \
leftmost_edge - 1. \
); \
rightmost_edge = std::max( \
static_cast<double>( \
std::nexttoward( \
static_cast<real_type>(rightmost_edge), \
std::numeric_limits<real_type>::max() \
) \
), \
rightmost_edge + 1. \
); \
break;
switch (t) {
UPDATE_WITH_LIMIT(double, Double)
UPDATE_WITH_LIMIT(float, Float)
default:
// Fallback to the default behavior for other types
leftmost_edge -= 1;
rightmost_edge += 1;
}
#undef UPDATE_WITH_LIMIT
}
/* histc's version of the logic for outermost bin edges.
*/
std::pair<double, double> histc_select_outer_bin_edges(const Tensor& input,
@ -257,7 +216,8 @@ std::pair<double, double> histc_select_outer_bin_edges(const Tensor& input,
}
if (leftmost_edge == rightmost_edge) {
bins_edges_correction(input.dtype().toScalarType(), leftmost_edge, rightmost_edge);
leftmost_edge -= 1;
rightmost_edge += 1;
}
TORCH_CHECK(!(std::isinf(leftmost_edge) || std::isinf(rightmost_edge) ||

View File

@ -1,5 +1,3 @@
#include <ATen/core/ATen_fwd.h>
#include <c10/core/ScalarType.h>
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
@ -1880,18 +1878,19 @@ Tensor repeat(const Tensor& self, IntArrayRef repeats) {
Tensor xtensor = self.expand(padded_size);
Tensor urtensor;
Tensor result;
if (self.is_quantized()) {
urtensor = at::empty_quantized(target_size, self);
result = at::empty_quantized(target_size, self);
} else {
urtensor = at::empty(target_size, self.options());
result = at::empty(target_size, self.options());
}
// return an empty tensor if one of the repeat dimensions is zero
if (zero_tensor) {
return urtensor;
return result;
}
Tensor urtensor = at::alias(result);
for (const auto i : c10::irange(xtensor.dim())) {
// can't unfold with step 0, so make sure step is at least 1
// (it doesn't matter what it is in that case, because the size is 0).
@ -1901,22 +1900,7 @@ Tensor repeat(const Tensor& self, IntArrayRef repeats) {
urtensor.copy_(xtensor.expand_as(urtensor));
// Combine the dimensions to produce the target_size.
// xtensor dims: [a0, ..., ad-1]
// urtensor dims: [a0, ..., ad-1, b0, ..., bd-1]
// b dims are produced by unfold.
// Transform urtensor to [a0 * b0, ..., ad-1 * bd-1]
const int64_t n_dims = xtensor.dim();
auto range_a = at::arange(xtensor.dim(), at::TensorOptions(at::kLong));
auto range_b = range_a + n_dims;
auto stacked = stack({std::move(range_a), std::move(range_b)}, 1).flatten();
auto permutation = IntArrayRef(stacked.data_ptr<int64_t>(), n_dims * 2);
// Permute from [a0, ..., ad-1, b0, ..., bd-1] to [a0, b0, ..., ad-1, bd-1]
urtensor = urtensor.permute(permutation);
// Reshape from [a0, b0, ..., ad-1, bd-1] to [a0 * b0, ..., ad-1 * bd-1]
urtensor = urtensor.reshape(target_size);
return urtensor;
return result;
}
Tensor tile_symint(const Tensor& self, SymIntArrayRef reps) {

View File

@ -42,19 +42,6 @@ void bfloat16_copy_kernel_cuda(TensorIteratorBase &iter) {
});
}
#ifdef USE_ROCM
void bfloat16tofloat32_copy_kernel_cuda(TensorIteratorBase &iter) {
gpu_kernel_nocast(iter, [] GPU_LAMBDA(at::BFloat16 value) {
return static_cast<float>(value);
});
}
void float16tofloat32_copy_kernel_cuda(TensorIteratorBase &iter) {
gpu_kernel_nocast(iter, [] GPU_LAMBDA(at::Half value) {
return static_cast<float>(value);
});
}
#endif
void float8_copy_kernel_cuda(TensorIteratorBase &iter) {
ScalarType dtype = iter.dtype(0);
ScalarType other_dtype = iter.dtype(1);
@ -200,17 +187,7 @@ void direct_copy_kernel_cuda(TensorIteratorBase &iter) {
} else {
float16_copy_kernel_cuda(iter);
}
}
#ifdef USE_ROCM
else if ((iter.dtype(1) == kBFloat16 || iter.dtype(1) == kHalf) && dtype == kFloat) {
if (iter.dtype(1) == kBFloat16) {
bfloat16tofloat32_copy_kernel_cuda(iter);
} else {
float16tofloat32_copy_kernel_cuda(iter);
}
}
#endif
else if (isBitsType(dtype)) {
} else if (isBitsType(dtype)) {
TORCH_CHECK(dtype == iter.dtype(1), "copy_() does not support casting "
"bits types to different bits types. Source dtype is ", iter.dtype(1), "target dtype is ", dtype);
AT_DISPATCH_BIT_TYPES(dtype, "copy_", [&] {

View File

@ -1238,7 +1238,7 @@ Tensor _cholesky_solve_helper_cuda_magma(const Tensor& self, const Tensor& A, bo
// Todo: cusolverDn<T>potrsBatched only supports nrhs == 1 and does not have good performance.
// Batched cholesky_solve is dispatched to magma.
Tensor _cholesky_solve_helper_cuda(const Tensor& self, const Tensor& A, bool upper) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Cusolver:
@ -1352,7 +1352,7 @@ void cholesky_helper_magma(const Tensor& input, bool upper, const Tensor& info)
}
static void cholesky_kernel(const Tensor& input, const Tensor& info, bool upper) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Cusolver:
@ -2709,7 +2709,7 @@ void linalg_lstsq_gels(const Tensor& A, const Tensor& B, const Tensor& /*infos*/
}
void gels_looped(const Tensor& a, Tensor& b, Tensor& infos) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
auto preferred_backend = at::globalContext().linalgPreferredBackend();
switch (preferred_backend) {
case at::LinalgBackend::Magma:
@ -2733,7 +2733,7 @@ void lstsq_kernel(const Tensor& a, Tensor& b, Tensor& /*rank*/, Tensor& /*singul
// first handle the underdetermined case (m < n)
// this case is not supported by MAGMA or cuBLAS
if (m < n) {
#if defined(USE_LINALG_SOLVER)
#if defined(USE_LINALG_SOLVER) && !defined(USE_ROCM)
linalg_lstsq_gels(a, b, infos);
#else
TORCH_CHECK(

View File

@ -14,7 +14,7 @@ struct EmbeddingBagParams {
::c10::metal::array<idx_type_t, 2> output_strides;
::c10::metal::array<idx_type_t, 2> max_indices_strides;
idx_type_t per_sample_weights_stride;
idx_type_t per_sample_weights_strides;
idx_type_t num_indices;
idx_type_t num_bags;

View File

@ -23,72 +23,54 @@ struct ReductionOpInit<EmbeddingBagMode::MAX, T> {
template <EmbeddingBagMode M, typename T>
struct ReductionOp {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
T weight_val,
opmath_t<T> out_val,
bool is_first) {
return weight_val + out_val;
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_strides);
};
template <typename T>
struct ReductionOp<EmbeddingBagMode::SUM, T> {
inline opmath_t<T> operator()(
T weight_val,
opmath_t<T> out_val,
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_strides) {
if (per_sample_weights_strides) {
T per_sample_weight = per_sample_weights
[per_sample_weights_strides * per_sample_weights_index];
return static_cast<opmath_t<T>>(per_sample_weight) *
static_cast<opmath_t<T>>(weight_val) +
out_val;
} else {
return static_cast<opmath_t<T>>(weight_val) + out_val;
}
}
};
template <typename T>
struct ReductionOp<EmbeddingBagMode::MEAN, T> {
inline opmath_t<T> operator()(
T weight_val,
opmath_t<T> out_val,
uint32_t,
constant T*,
uint32_t) {
return static_cast<opmath_t<T>>(weight_val) + out_val;
}
};
template <typename T>
struct ReductionOp<EmbeddingBagMode::MAX, T> {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
T weight_val,
opmath_t<T> out_val,
bool is_first) {
return (is_first || weight_val > out_val) ? weight_val : out_val;
}
};
template <EmbeddingBagMode M, typename T>
struct MaybeApplyPerSampleWeight {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_stride) {
return weight_val;
}
};
template <typename T>
struct MaybeApplyPerSampleWeight<EmbeddingBagMode::SUM, T> {
inline opmath_t<T> operator()(
opmath_t<T> weight_val,
uint32_t per_sample_weights_index,
constant T* per_sample_weights,
uint32_t per_sample_weights_stride) {
if (per_sample_weights_stride) {
T per_sample_weight = per_sample_weights
[per_sample_weights_stride * per_sample_weights_index];
return static_cast<opmath_t<T>>(per_sample_weight) * weight_val;
} else {
return weight_val;
}
}
};
template <EmbeddingBagMode M, typename T, typename I>
struct MaybeCalcMaxIndex {
inline void operator()(
opmath_t<T> weight_val,
opmath_t<T> out_val,
bool is_first,
thread I& max_idx,
I weight_idx,
bool pad) {}
};
template <typename T, typename I>
struct MaybeCalcMaxIndex<EmbeddingBagMode::MAX, T, I> {
inline void operator()(
opmath_t<T> weight_val,
opmath_t<T> out_val,
bool is_first,
thread I& max_idx,
I weight_idx,
bool pad) {
max_idx = !pad && (is_first || weight_val > out_val) ? weight_idx : max_idx;
uint32_t,
constant T*,
uint32_t) {
return max(static_cast<opmath_t<T>>(weight_val), out_val);
}
};
@ -114,30 +96,6 @@ struct ReductionOpFinal<EmbeddingBagMode::MAX, T> {
}
};
template <EmbeddingBagMode M, typename I>
struct MaybeWriteMaxIndex {
inline void operator()(
device I*,
const constant ::c10::metal::array<uint32_t, 2>&,
uint32_t,
uint32_t,
I) {}
};
template <typename I>
struct MaybeWriteMaxIndex<EmbeddingBagMode::MAX, I> {
inline void operator()(
device I* max_indices,
const constant ::c10::metal::array<uint32_t, 2>& max_indices_strides,
uint32_t bag_idx,
uint32_t feature_idx,
I max_idx) {
max_indices
[bag_idx * max_indices_strides[0] +
feature_idx * max_indices_strides[1]] = max_idx;
}
};
template <EmbeddingBagMode M, typename T, typename I>
void embedding_bag_impl(
constant T* weight,
@ -154,7 +112,7 @@ void embedding_bag_impl(
auto num_bags = params.num_bags;
auto feature_size = params.feature_size;
auto padding_idx = params.padding_idx;
auto per_sample_weights_stride = params.per_sample_weights_stride;
auto per_sample_weights_strides = params.per_sample_weights_strides;
constant auto& output_strides = params.output_strides;
constant auto& weight_strides = params.weight_strides;
constant auto& max_indices_strides = params.max_indices_strides;
@ -162,6 +120,8 @@ void embedding_bag_impl(
auto bag_idx = tid / feature_size;
auto feature_idx = tid % feature_size;
output += bag_idx * output_strides[0] + feature_idx * output_strides[1];
uint32_t offsets_end = min(bag_idx + 1, num_bags - 1);
bool is_last_bag = bag_idx + 1 == num_bags;
uint32_t indices_start = static_cast<uint32_t>(offsets[bag_idx]);
@ -171,37 +131,28 @@ void embedding_bag_impl(
auto out_val = ReductionOpInit<M, T>()();
uint32_t bag_size_ = 0;
I max_idx = 0;
for (uint32_t indices_idx = indices_start; indices_idx < indices_end;
indices_idx++) {
I weight_idx = indices[indices_idx];
bool pad = (weight_idx == padding_idx);
auto weight_val = static_cast<opmath_t<T>>(
weight
[static_cast<uint32_t>(weight_idx) * weight_strides[0] +
feature_idx * weight_strides[1]]);
T weight_val = weight
[static_cast<uint32_t>(weight_idx) * weight_strides[0] +
feature_idx * weight_strides[1]];
weight_val = MaybeApplyPerSampleWeight<M, T>()(
weight_val, indices_idx, per_sample_weights, per_sample_weights_stride);
auto new_out_val = ReductionOp<M, T>()(weight_val, out_val, bag_size_ == 0);
MaybeCalcMaxIndex<M, T, I>()(
weight_val, out_val, bag_size_ == 0, max_idx, weight_idx, pad);
out_val = pad ? out_val : new_out_val;
offset2bag[indices_idx] = bag_idx;
bag_size_ += static_cast<uint32_t>(!pad);
auto tmp_val = ReductionOp<M, T>()(
weight_val,
out_val,
indices_idx,
per_sample_weights,
per_sample_weights_strides);
out_val = pad ? out_val : tmp_val;
}
output[bag_idx * output_strides[0] + feature_idx * output_strides[1]] =
ReductionOpFinal<M, T>()(out_val, bag_size_);
bag_size[bag_idx] = bag_size_;
MaybeWriteMaxIndex<M, I>()(
max_indices, max_indices_strides, bag_idx, feature_idx, max_idx);
*output = ReductionOpFinal<M, T>()(out_val, bag_size_);
}
#define DISPATCH_IMPL(MODE) \

View File

@ -223,6 +223,9 @@ void grid_sampler_single_element(
auto input_size = input_sizes[input_dim];
auto coord = static_cast<opmath_t<T>>(coords[coord_dim]);
// Interpret nan as -1
coord = isnan(coord) ? -1 : coord;
if (!align_corners) {
// Map unaligned grid space to aligned grid space
auto corner_alignment_factor = static_cast<opmath_t<T>>(input_size) /

View File

@ -52,7 +52,9 @@ static void fill_depthwise_conv_desc(MPSGraphDepthwiseConvolution3DOpDescriptor*
NSUInteger dilationRateInX,
NSUInteger dilationRateInY,
NSUInteger paddingHorizontal,
NSUInteger paddingVertical) {
NSUInteger paddingVertical,
c10::MemoryFormat memory_format,
NSUInteger groups) {
descriptor_.strides =
@[ @1, [[NSNumber alloc] initWithInteger:strideInY], [[NSNumber alloc] initWithInteger:strideInX] ];
descriptor_.dilationRates =
@ -101,7 +103,7 @@ static void fill_conv_desc(MPSGraphConvolution2DOpDescriptor* descriptor_,
descriptor_.groups = groups;
}
static Tensor _mps_convolution_impl(const Tensor& input_t,
static Tensor _mps_convolution_impl(const Tensor& input_t_,
const Tensor& weight_t,
const std::optional<Tensor>& bias_opt,
IntArrayRef padding,
@ -109,15 +111,12 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
IntArrayRef dilation,
int64_t groups,
std::optional<IntArrayRef> input_shape) {
constexpr auto kChannelsLast = MemoryFormat::ChannelsLast;
constexpr auto kContiguous = MemoryFormat::Contiguous;
const bool is_macos_15_plus = is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS);
const bool is3DConv = input_t.dim() == 5;
const auto memory_format = input_t.suggest_memory_format();
const auto input_suggested_layout = memory_format == kChannelsLast && is_macos_15_plus ? kChannelsLast : kContiguous;
const bool is_channels_last = mps_conv_use_channels_last(input_t, weight_t) && !is3DConv;
const bool bias_defined = bias_opt ? bias_opt->defined() : false;
const bool is_macOS_15_0_or_newer = is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS);
Tensor input_t = input_t_;
bool is3DConv = input_t.dim() == 5;
if (!is_macOS_15_0_or_newer || is3DConv) {
input_t = input_t.contiguous();
}
TORCH_CHECK(isFloatingType(input_t.scalar_type()), "Convolution is supported only for Floating types");
@ -127,6 +126,15 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
checkAllSameType(c, {input, weight});
checkAllSameGPU(c, {input, weight});
bool bias_defined;
if (bias_opt == std::nullopt)
bias_defined = false;
else
bias_defined = bias_opt->defined();
auto memory_format = input_t.suggest_memory_format();
bool is_channels_last = (memory_format == at::MemoryFormat::ChannelsLast) && !is3DConv;
auto output_t =
at::empty(input_shape.has_value() ? input_shape.value()
: conv_output_size(input->sizes(), weight->sizes(), padding, stride, dilation),
@ -134,18 +142,12 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
std::nullopt,
kMPS,
std::nullopt,
is_channels_last ? kChannelsLast : kContiguous);
is_macOS_15_0_or_newer ? memory_format : MemoryFormat::Contiguous);
if (output_t.numel() == 0) {
return output_t;
}
TensorArg output{output_t, "result", 0};
// TODO: Remove me when MacOS-14 is no longer supported
std::optional<Tensor> output_c;
if (!is_macos_15_plus && is_channels_last) {
output_c = at::empty_like(output_t, output_t.options().memory_format(kContiguous));
}
if (!is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_1_PLUS)) {
// On macOS < 15.1, MPS convolution kernel does not support output channels > 2^16
for (auto elem : output_t.sizes()) {
@ -184,22 +186,32 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
getArrayRefString(dilation),
getArrayRefString(padding),
groups,
input_suggested_layout == kChannelsLast,
is_channels_last,
mps::getTensorsStringKey({input_t, weight_t}),
bias_defined,
bias_shape_key);
auto inputShape = mps::getMPSShape(input_t, input_suggested_layout);
auto outputShape = mps::getMPSShape(output_t, input_suggested_layout);
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
bool isDepthwiseConv =
(groups > 1 && weight_t.size(1) == 1) && input_t.dim() >= 4 && weight_t.dim() >= 4 && !is_channels_last;
MPSShape* inputShape = mps::getMPSShape(input_t, memory_format);
MPSShape* outputShape = mps::getMPSShape(output_t, memory_format);
MPSNDArray* inputNDArray = nil;
MPSNDArray* outputNDArray = nil;
auto inputTensor = mpsGraphRankedPlaceHolder(mpsGraph, getMPSScalarType(input_t), inputShape);
auto weightTensor = mpsGraphRankedPlaceHolder(mpsGraph, weight_t);
MPSGraphTensor* outputTensor = nil;
if (input_t.is_contiguous(memory_format) && output_t.is_contiguous(memory_format) && is_macOS_15_0_or_newer) {
inputNDArray = getMPSNDArray(input_t, inputShape);
outputNDArray = getMPSNDArray(output_t, outputShape);
}
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
MPSShape* weightShape = mps::getMPSShape(weight_t);
bool isDepthwiseConv = ((groups > 1 && (weightShape[1].intValue == 1)) && inputShape.count >= 4 &&
weightShape.count >= 4 && !is_channels_last);
MPSGraphTensor* inputTensor =
mpsGraphRankedPlaceHolder(mpsGraph, getMPSScalarType(input_t.scalar_type()), inputShape);
MPSGraphTensor* weightTensor = mpsGraphRankedPlaceHolder(mpsGraph, weight_t);
MPSGraphTensor* outputTensor;
if (is3DConv) {
auto conv3dDescriptor_ = [[MPSGraphConvolution3DOpDescriptor new] autorelease];
MPSGraphConvolution3DOpDescriptor* conv3dDescriptor_ = [[MPSGraphConvolution3DOpDescriptor new] autorelease];
fill_conv3d_desc(conv3dDescriptor_,
stride[2],
stride[1],
@ -217,9 +229,17 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
descriptor:conv3dDescriptor_
name:nil];
} else if (isDepthwiseConv) {
auto depthWiseConv3dDescriptor_ = [[MPSGraphDepthwiseConvolution3DOpDescriptor new] autorelease];
fill_depthwise_conv_desc(
depthWiseConv3dDescriptor_, stride[1], stride[0], dilation[1], dilation[0], padding[1], padding[0]);
MPSGraphDepthwiseConvolution3DOpDescriptor* depthWiseConv3dDescriptor_ =
[[MPSGraphDepthwiseConvolution3DOpDescriptor new] autorelease];
fill_depthwise_conv_desc(depthWiseConv3dDescriptor_,
stride[1],
stride[0],
dilation[1],
dilation[0],
padding[1],
padding[0],
memory_format,
groups);
MPSGraphTensor* weightTransposeTensor = [mpsGraph transposeTensor:weightTensor
dimension:-3
@ -238,7 +258,7 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
dilation[0],
padding[1],
padding[0],
input_suggested_layout,
memory_format,
groups);
outputTensor = [mpsGraph convolution2DWithSourceTensor:inputTensor
@ -250,6 +270,13 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
MPSGraphTensor* biasTensor = nil;
if (bias_defined) {
biasTensor = mpsGraphUnrankedPlaceHolder(mpsGraph, getMPSDataType(bias_opt.value()));
}
if (is_channels_last && !is_macOS_15_0_or_newer) {
outputTensor = mps::convertNHWCtoNCHW(mpsGraph, outputTensor);
}
if (bias_defined) {
outputTensor = [mpsGraph additionWithPrimaryTensor:outputTensor secondaryTensor:biasTensor name:nil];
}
newCachedGraph->inputTensor_ = inputTensor;
@ -258,26 +285,27 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
newCachedGraph->outputTensor_ = outputTensor;
});
auto inputPlaceholder = input_suggested_layout == kContiguous
? Placeholder(cachedGraph->inputTensor_, output_c || is3DConv ? input_t.contiguous() : input_t)
: Placeholder(cachedGraph->inputTensor_, getMPSNDArray(input_t, inputShape));
auto outputPlaceholder = input_suggested_layout == kContiguous
? Placeholder(cachedGraph->outputTensor_, output_c ? *output_c : output_t)
: Placeholder(cachedGraph->outputTensor_, getMPSNDArray(output_t, outputShape));
auto weightsPlaceholder = Placeholder(cachedGraph->weightTensor_, output_c ? weight_t.contiguous() : weight_t);
auto inputPlaceholder = inputNDArray ? Placeholder(cachedGraph->inputTensor_, inputNDArray)
: Placeholder(cachedGraph->inputTensor_, input_t, inputShape);
auto weightsPlaceholder = Placeholder(cachedGraph->weightTensor_, weight_t);
auto biasPlaceholder = Placeholder();
// Reshape the bias to be broadcastable with output of conv2d or conv3d
if (bias_defined) {
if (is3DConv) {
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, bias_opt->view({1, bias_shape[0], 1, 1, 1}));
} else if (input_suggested_layout == kChannelsLast) {
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, bias_opt->view({1, 1, 1, bias_shape[0]}));
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, (bias_opt.value()).view({1, bias_shape[0], 1, 1, 1}));
} else {
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, bias_opt->view({1, bias_shape[0], 1, 1}));
if (is_channels_last && is_macOS_15_0_or_newer) {
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, (bias_opt.value()).view({1, 1, 1, bias_shape[0]}));
} else {
biasPlaceholder = Placeholder(cachedGraph->biasTensor_, (bias_opt.value()).view({1, bias_shape[0], 1, 1}));
}
}
}
auto outputPlaceholder = outputNDArray ? Placeholder(cachedGraph->outputTensor_, outputNDArray)
: Placeholder(cachedGraph->outputTensor_, output_t);
auto feeds = [[[NSMutableDictionary alloc] initWithCapacity:3] autorelease];
NSMutableDictionary<MPSGraphTensor*, MPSGraphTensorData*>* feeds =
[[[NSMutableDictionary alloc] initWithCapacity:3] autorelease];
feeds[inputPlaceholder.getMPSGraphTensor()] = inputPlaceholder.getMPSGraphTensorData();
feeds[weightsPlaceholder.getMPSGraphTensor()] = weightsPlaceholder.getMPSGraphTensorData();
if (bias_defined) {
@ -287,10 +315,6 @@ static Tensor _mps_convolution_impl(const Tensor& input_t,
runMPSGraph(stream, cachedGraph->graph(), feeds, outputPlaceholder);
}
if (output_c) {
output_t.copy_(*output_c);
}
return output_t;
}
@ -327,21 +351,14 @@ static Tensor mps_convolution_backward_input(IntArrayRef input_size,
TensorArg grad_output{grad_output_t, "grad_output", 1}, weight{weight_t, "weight", 2};
checkAllSameType(c, {grad_output, weight});
checkAllSameGPU(c, {grad_output, weight});
constexpr auto kChannelsLast = at::MemoryFormat::ChannelsLast;
bool is_channels_last = mps_conv_use_channels_last(grad_output_t, weight_t) && !is3DConv;
auto grad_input_t =
at::empty(input_size, grad_output_t.options(), is_channels_last ? std::optional(kChannelsLast) : std::nullopt);
auto memory_format = grad_output_t.suggest_memory_format();
bool is_channels_last = (memory_format == at::MemoryFormat::ChannelsLast) && !is3DConv;
auto grad_input_t = at::empty(input_size, grad_output_t.options(), std::nullopt);
// Avoid "grad_input" when this is being used as transposed convolution
TensorArg grad_input{grad_input_t, "result", 0};
convolution_shape_check(c, grad_input, weight, grad_output, padding, stride, dilation, groups);
// TODO: Remove me when MacOS-14 is no longer supported
std::optional<Tensor> grad_input_c;
if (!is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS) && is_channels_last) {
grad_input_c = at::empty_like(grad_input_t, grad_input_t.options().memory_format(MemoryFormat::Contiguous));
}
// Derive from MPSCachedGraph
struct CachedGraph : public MPSCachedGraph {
CachedGraph(MPSGraph* graph) : MPSCachedGraph(graph) {}
@ -353,6 +370,7 @@ static Tensor mps_convolution_backward_input(IntArrayRef input_size,
// Add backward with input
@autoreleasepool {
MPSStream* stream = getCurrentMPSStream();
MPSShape* mps_input_shape = getMPSShape(input_size);
std::string key = fmt::format("mps_{}_convolution_backward_input:{}:{}:{}:{}:{}:{}",
is3DConv ? "3d_" : "",
@ -393,8 +411,15 @@ static Tensor mps_convolution_backward_input(IntArrayRef input_size,
} else if (isDepthwiseConv) {
MPSGraphDepthwiseConvolution3DOpDescriptor* depthWiseConv3dDescriptor_ =
[[MPSGraphDepthwiseConvolution3DOpDescriptor new] autorelease];
fill_depthwise_conv_desc(
depthWiseConv3dDescriptor_, stride[1], stride[0], dilation[1], dilation[0], padding[1], padding[0]);
fill_depthwise_conv_desc(depthWiseConv3dDescriptor_,
stride[1],
stride[0],
dilation[1],
dilation[0],
padding[1],
padding[0],
at::MemoryFormat::Contiguous,
groups);
MPSGraphTensor* weightTransposeTensor = [mpsGraph transposeTensor:weightTensor
dimension:-3
withDimension:-4
@ -429,18 +454,14 @@ static Tensor mps_convolution_backward_input(IntArrayRef input_size,
newCachedGraph->gradInputTensor_ = gradInputTensor;
});
auto gradOutputPlaceholder =
Placeholder(cachedGraph->gradOutputTensor_, grad_input_c ? grad_output_t.contiguous() : grad_output_t);
auto weightsPlaceholder = Placeholder(cachedGraph->weightTensor_, grad_input_c ? weight_t.contiguous() : weight_t);
auto outputPlaceholder = Placeholder(cachedGraph->gradInputTensor_, grad_input_c ? *grad_input_c : grad_input_t);
auto gradOutputPlaceholder = Placeholder(cachedGraph->gradOutputTensor_, grad_output_t);
auto weightsPlaceholder = Placeholder(cachedGraph->weightTensor_, weight_t);
auto outputPlaceholder = Placeholder(cachedGraph->gradInputTensor_, *grad_input);
auto feeds = dictionaryFromPlaceholders(gradOutputPlaceholder, weightsPlaceholder);
runMPSGraph(stream, cachedGraph->graph(), feeds, outputPlaceholder);
}
if (grad_input_c) {
grad_input_t.copy_(*grad_input_c);
}
return grad_input_t;
return *grad_input;
}
static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
@ -453,11 +474,9 @@ static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
bool bias_defined) {
using namespace at::native::mps;
using namespace mps;
const bool is3DConv = input_t.dim() == 5;
bool is3DConv = input_t.dim() == 5;
TORCH_CHECK(isFloatingType(grad_output_t.scalar_type()), "Convolution is supported only for Floating types");
CheckedFrom c = "mps_convolution_backward_weights";
constexpr auto kChannelsLast = at::MemoryFormat::ChannelsLast;
bool is_channels_last = mps_conv_use_channels_last(input_t, grad_output_t) && !is3DConv;
// For uniformity with everything else, although it seems grad_weight
// would be unambiguous too.
@ -468,8 +487,7 @@ static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
checkAllSameGPU(c, {grad_output, input});
auto grad_weight_t =
at::empty(weight_size, grad_output_t.options(), is_channels_last ? std::optional(kChannelsLast) : std::nullopt);
at::empty(weight_size, grad_output_t.scalar_type(), std::nullopt, kMPS, std::nullopt, std::nullopt);
TensorArg grad_weight{grad_weight_t, "result", 0};
convolution_shape_check(c, input, grad_weight, grad_output, padding, stride, dilation, groups);
@ -482,23 +500,16 @@ static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
MPSGraphTensor* gradWeightTensor_ = nil;
};
// TODO: Remove me when MacOS-14 is no longer supported
std::optional<Tensor> grad_weight_c;
if (!is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS) && is_channels_last) {
grad_weight_c = at::empty_like(grad_weight_t, grad_weight_t.options().memory_format(MemoryFormat::Contiguous));
}
@autoreleasepool {
MPSStream* stream = getCurrentMPSStream();
MPSShape* mps_weight_shape = getMPSShape(weight_size);
std::string key = fmt::format("mps_{}convolution_backward_weights:{}:{}:{}:{}:{}:{}",
std::string key = fmt::format("mps_{}convolution_backward_weights:{}:{}:{}:{}:{}",
is3DConv ? "3d_" : "",
getArrayRefString(stride),
getArrayRefString(dilation),
getArrayRefString(padding),
groups,
is_channels_last,
getTensorsStringKey({grad_output_t, input_t, grad_weight_t}));
auto cachedGraph = LookUpOrCreateCachedGraph<CachedGraph>(key, [&](auto mpsGraph, auto newCachedGraph) {
MPSShape* inputShape = getMPSShape(input_t);
@ -530,8 +541,15 @@ static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
} else if (isDepthwiseConv) {
MPSGraphDepthwiseConvolution3DOpDescriptor* depthWiseConv3dDescriptor_ =
[[MPSGraphDepthwiseConvolution3DOpDescriptor new] autorelease];
fill_depthwise_conv_desc(
depthWiseConv3dDescriptor_, stride[1], stride[0], dilation[1], dilation[0], padding[1], padding[0]);
fill_depthwise_conv_desc(depthWiseConv3dDescriptor_,
stride[1],
stride[0],
dilation[1],
dilation[0],
padding[1],
padding[0],
at::MemoryFormat::Contiguous,
groups);
NSNumber* outputFeatChannelDim = mps_weight_shape[0];
MPSShape* weightShapeTranspose = @[ @1, outputFeatChannelDim, mps_weight_shape[2], mps_weight_shape[3] ];
MPSGraphTensor* gradWeightTensorTranspose =
@ -565,19 +583,14 @@ static Tensor mps_convolution_backward_weights(IntArrayRef weight_size,
newCachedGraph->gradWeightTensor_ = gradWeightTensor;
});
auto gradOutputPlaceholder =
Placeholder(cachedGraph->gradOutputTensor_, grad_weight_c ? grad_output_t.contiguous() : grad_output_t);
auto inputPlaceholder = Placeholder(cachedGraph->inputTensor_, grad_weight_c ? input_t.contiguous() : input_t);
auto outputPlaceholder =
Placeholder(cachedGraph->gradWeightTensor_, grad_weight_c ? *grad_weight_c : grad_weight_t);
auto gradOutputPlaceholder = Placeholder(cachedGraph->gradOutputTensor_, grad_output_t);
auto inputPlaceholder = Placeholder(cachedGraph->inputTensor_, input_t);
auto outputPlaceholder = Placeholder(cachedGraph->gradWeightTensor_, grad_weight_t);
auto feeds = dictionaryFromPlaceholders(gradOutputPlaceholder, inputPlaceholder);
runMPSGraph(stream, cachedGraph->graph(), feeds, outputPlaceholder);
}
if (grad_weight_c) {
grad_weight_t.copy_(*grad_weight_c);
}
return grad_weight_t;
}

View File

@ -66,12 +66,11 @@ static std::tuple<Tensor, Tensor, Tensor, Tensor> _embedding_bag_mps_impl(
int64_t num_indices = indices.size(0);
int64_t num_bags = offsets.size(0);
if (include_last_offset) {
TORCH_CHECK(num_bags >= 1, "include_last_offset: number of offsets should be at least 1");
num_bags -= 1;
}
int64_t feature_size = weight.size(1);
auto bag_size = at::empty({num_bags}, indices.options());
auto bag_size = at::empty(offsets.sizes(), indices.options());
auto offset2bag = at::empty({indices.size(0)}, indices.options());
auto output = at::empty({num_bags, feature_size}, weight.options());
@ -95,7 +94,7 @@ static std::tuple<Tensor, Tensor, Tensor, Tensor> _embedding_bag_mps_impl(
}
bool use_per_sample_weights = per_sample_weights_opt.has_value() && per_sample_weights_opt->defined();
params.per_sample_weights_stride = use_per_sample_weights ? per_sample_weights_opt->stride(0) : 0;
params.per_sample_weights_strides = use_per_sample_weights ? per_sample_weights_opt->stride(0) : 0;
params.num_indices = num_indices;
params.num_bags = num_bags;

View File

@ -9,22 +9,11 @@
#else
#include <ATen/ops/_unique2.h>
#include <ATen/ops/_unique2_native.h>
#include <ATen/ops/arange.h>
#include <ATen/ops/argsort.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/cumsum.h>
#include <ATen/ops/full.h>
#include <ATen/ops/masked_select.h>
#include <ATen/ops/nonzero.h>
#include <ATen/ops/ones.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/slice.h>
#include <ATen/ops/unique_consecutive.h>
#include <ATen/ops/unique_consecutive_native.h>
#include <ATen/ops/unique_dim_consecutive.h>
#include <ATen/ops/unique_dim_consecutive_native.h>
#include <ATen/ops/unique_dim_native.h>
#include <ATen/ops/zeros.h>
#endif
namespace at::native {
@ -316,85 +305,4 @@ std::tuple<Tensor, Tensor, Tensor> _unique2_mps(const Tensor& self,
return _unique_impl_mps(self, return_inverse, return_counts, false, std::nullopt);
}
static Tensor lexsort_rows_perm_mps(const Tensor& mat_2d) {
const auto rows = mat_2d.size(0), cols = mat_2d.size(1);
if (rows <= 1 || cols == 0) {
return arange(rows, mat_2d.options().dtype(kLong));
}
auto perm = arange(rows, mat_2d.options().dtype(kLong));
for (auto c = cols - 1; c >= 0; --c) {
auto keys = mat_2d.select(1, c).index_select(0, perm);
const auto idx = argsort(keys, /*dim=*/0, /*descending=*/false);
perm = perm.index_select(0, idx);
}
return perm;
}
static std::tuple<Tensor, Tensor, Tensor> unique_dim_sorted_mps_impl(const Tensor& self,
int64_t dim,
bool return_inverse,
bool return_counts) {
dim = maybe_wrap_dim(dim, self.dim());
auto sizes = self.sizes().vec();
auto num_zero_dims = std::count(sizes.begin(), sizes.end(), (int64_t)0);
if (self.size(dim) == 0) {
auto output = at::empty(sizes, self.options());
auto inverse_indices = at::empty({0}, self.options().dtype(kLong));
auto counts = at::empty({0}, self.options().dtype(kLong));
return {output, inverse_indices, counts};
}
auto transposed = self.moveaxis(dim, 0);
auto orig_sizes = transposed.sizes().vec();
auto rows = transposed.size(0);
auto input_flat = transposed.contiguous().view({rows, -1});
auto perm = lexsort_rows_perm_mps(input_flat);
auto input_sorted = input_flat.index_select(0, perm);
Tensor is_unique = at::zeros({rows}, self.options().dtype(kBool));
if (rows > 0) {
is_unique.narrow(0, 0, 1).fill_(true);
}
if (rows > 1) {
auto a = input_sorted.narrow(0, 1, rows - 1);
auto b = input_sorted.narrow(0, 0, rows - 1);
auto row_changed = a.ne(b).any(1);
is_unique.narrow(0, 1, rows - 1).copy_(row_changed);
}
auto unique_pos = nonzero(is_unique).squeeze(1);
auto group_id = cumsum(is_unique.to(kLong), 0).sub(1);
auto unique_rows_2d = input_sorted.index_select(0, unique_pos);
Tensor inverse_indices = empty({0}, self.options().dtype(kLong));
if (return_inverse) {
inverse_indices = empty({rows}, self.options().dtype(kLong));
inverse_indices.index_copy_(0, perm, group_id);
}
Tensor counts = empty({0}, self.options().dtype(kLong));
if (return_counts) {
const auto num_unique = unique_pos.size(0);
counts = zeros({num_unique}, self.options().dtype(kLong));
counts.scatter_add_(0, group_id, ones_like(group_id, group_id.options().dtype(kLong)));
}
orig_sizes[0] = unique_rows_2d.size(0);
auto output = unique_rows_2d.view(orig_sizes).moveaxis(0, dim);
return std::make_tuple(std::move(output), std::move(inverse_indices), std::move(counts));
}
std::tuple<Tensor, Tensor, Tensor> unique_dim_mps(const Tensor& self,
int64_t dim,
const bool /*sorted*/,
const bool return_inverse,
const bool return_counts) {
return unique_dim_sorted_mps_impl(self, dim, return_inverse, return_counts);
}
} // namespace at::native

View File

@ -1409,7 +1409,7 @@
- func: _sparse_broadcast_to(Tensor(a) self, int[] size) -> Tensor(a)
variants: function
dispatch:
SparseCPU, SparseCUDA, SparseMPS: sparse_broadcast_to
SparseCPU, SparseCUDA: sparse_broadcast_to
- func: cat(Tensor[] tensors, int dim=0) -> Tensor
structured_delegate: cat.out
@ -3858,7 +3858,7 @@
device_check: NoCheck # TensorIterator
structured: True
dispatch:
CPU, CUDA, MTIA: aminmax_out
CPU, CUDA: aminmax_out
MPS: aminmax_out_mps
- func: _compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor
@ -3909,7 +3909,7 @@
- func: amax.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA, MTIA: amax_out
CPU, CUDA: amax_out
MPS: amax_out_mps
# Return: (Tensor output, Tensor indices)
@ -4090,7 +4090,7 @@
- func: amin.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
structured: True
dispatch:
CPU, CUDA, MTIA: amin_out
CPU, CUDA: amin_out
MPS: amin_out_mps
# TODO: Add this function to MPS dispatch key so that we avoid declaring it in
@ -6450,7 +6450,6 @@
dispatch:
CPU: unique_dim_cpu
CUDA: unique_dim_cuda
MPS: unique_dim_mps
tags: dynamic_output_shape
autogen: unique_dim.out

View File

@ -158,46 +158,12 @@ c10::intrusive_ptr<EmbeddingPackedParamsBase> PackedEmbeddingBagWeight::prepack(
return packed_ptr;
}
#ifdef USE_FBGEMM
namespace {
/// Number of columns in the rowwise min/max buffer passed to the quantization function(s)
constexpr int kRowwiseMinMaxNumCols = 2;
bool _validate_rowwise_min_max(
const at::Tensor& weight,
const std::optional<at::Tensor>& rowwise_min_max_opt) {
const auto is_valid_rowwise_min_max = rowwise_min_max_opt.has_value();
if (is_valid_rowwise_min_max) {
TORCH_CHECK(
(rowwise_min_max_opt->dim() == 2 &&
rowwise_min_max_opt->size(0) == weight.size(0) &&
rowwise_min_max_opt->size(1) == kRowwiseMinMaxNumCols),
"'rowwise_min_max' must be a 2D tensor with shape [num_rows(weight), 2].");
}
return is_valid_rowwise_min_max;
}
auto _get_rowwise_min_max_contig(
const std::optional<at::Tensor>& rowwise_min_max_opt) {
return rowwise_min_max_opt.has_value()
? rowwise_min_max_opt->expect_contiguous(rowwise_min_max_opt->suggest_memory_format())
: at::borrow_from_optional_tensor(rowwise_min_max_opt);
}
}
#endif // USE_FBGEMM
namespace at::native {
// Note - This is a temporary pack function for embedding bag which quantizes
// and packs the float weight tensor. In the next step it will be replaced by a
// quantize and pack function once we support FP scale and FP zero_point
//
// The optional rowwise_min_max argument is to support callers to pass in the min/max
// values of the weight tensor. If the rowwise_min_max is not provided, the min/max
// values will be computed from the weight tensor.
//
// Python example examining a packed 8bit zero_point and scale:
//
// >> x = torch.from_numpy(np.array([[[10, 20], [30, 40]],[[50, 60], [70, 80]]],
@ -255,10 +221,7 @@ namespace at::native {
//
// [[50. , 60.00000035],
// [70. , 80.00000035]]])
Tensor& qembeddingbag_byte_prepack_out(
Tensor& output,
const Tensor& weight,
const std::optional<Tensor>& rowwise_min_max_opt) {
Tensor& qembeddingbag_byte_prepack_out(Tensor& output, const Tensor& weight) {
// The "last" dimension of an N-Dimensioned batch of embedding bags is
// quantization channel. E.g. for a 2D embedding bag, this has
// [ row, col ] dimensions, for batched of embedding bags, dimensions might be
@ -293,16 +256,9 @@ Tensor& qembeddingbag_byte_prepack_out(
auto* output_data = output.data_ptr<uint8_t>();
#ifdef USE_FBGEMM
// Move these outside of the ifdef when we support non-FBGEMM flow.
const auto is_valid_rowwise_min_max = _validate_rowwise_min_max(weight, rowwise_min_max_opt);
const auto rowwise_min_max_contig = _get_rowwise_min_max_contig(rowwise_min_max_opt);
if (weight_contig->scalar_type() == at::ScalarType::Half) {
const auto weight_data =
static_cast<fbgemm::float16*>(weight_contig->data_ptr());
const auto rowwise_min_max_data = is_valid_rowwise_min_max
? static_cast<fbgemm::float16*>(rowwise_min_max_contig->data_ptr())
: nullptr;
at::parallel_for(
0, embedding_rows, 1, [&](int64_t start_idx, int64_t end_idx) {
fbgemm::FloatOrHalfToFused8BitRowwiseQuantizedSBFloat<
@ -310,21 +266,17 @@ Tensor& qembeddingbag_byte_prepack_out(
weight_data + start_idx * embedding_cols,
end_idx - start_idx,
embedding_cols,
output_data + start_idx * output_columns,
(is_valid_rowwise_min_max ? (rowwise_min_max_data + start_idx * kRowwiseMinMaxNumCols) : nullptr));
output_data + start_idx * output_columns);
});
} else {
const auto weight_data = weight_contig->data_ptr<float>();
const auto rowwise_min_max_data =
is_valid_rowwise_min_max ? rowwise_min_max_contig->data_ptr<float>() : nullptr;
at::parallel_for(
0, embedding_rows, 1, [&](int64_t start_idx, int64_t end_idx) {
fbgemm::FloatOrHalfToFused8BitRowwiseQuantizedSBFloat<float>(
weight_data + start_idx * embedding_cols,
end_idx - start_idx,
embedding_cols,
output_data + start_idx * output_columns,
(is_valid_rowwise_min_max ? (rowwise_min_max_data + start_idx * kRowwiseMinMaxNumCols) : nullptr));
output_data + start_idx * output_columns);
});
}
@ -374,22 +326,6 @@ Tensor qembeddingbag_byte_prepack(const Tensor& weight) {
return output;
}
static Tensor qembeddingbag_byte_prepack_with_rowwise_min_max(
const Tensor& weight,
const Tensor& rowwise_min_max) {
const auto weight_contig =
weight.expect_contiguous(weight.suggest_memory_format());
Tensor output = at::detail::empty_cpu(
{0},
at::kByte,
weight_contig->layout(),
weight_contig->device(),
std::nullopt,
std::nullopt);
qembeddingbag_byte_prepack_out(output, weight, rowwise_min_max);
return output;
}
Tensor qembeddingbag_byte_prepack_meta(const Tensor& weight) {
const auto weight_contig =
weight.expect_contiguous(weight.suggest_memory_format());
@ -399,7 +335,7 @@ Tensor qembeddingbag_byte_prepack_meta(const Tensor& weight) {
"'embedding_bag_byte_prepack' only support float32 or float16.");
const auto weight_sizes = weight.sym_sizes();
const auto cols_dim = weight.ndimension() - 1;
const auto& embedding_cols = weight_sizes[cols_dim];
const auto embedding_cols = weight_sizes[cols_dim];
// Add 8 bytes per column to store FP32 scale and zero_point per row.
const auto output_columns = embedding_cols + 2 * sizeof(float);
@ -423,8 +359,7 @@ Tensor _qembeddingbag_nbit_prepack_helper(
int bit_width,
const bool optimized_qparams,
const int64_t nbins,
const double ratio,
const std::optional<Tensor>& rowwise_min_max_opt = std::nullopt) {
const double ratio) {
TORCH_CHECK(
weight.scalar_type() == at::ScalarType::Float ||
weight.scalar_type() == at::ScalarType::Half,
@ -466,17 +401,10 @@ Tensor _qembeddingbag_nbit_prepack_helper(
auto* output_data = output.data_ptr<uint8_t>();
#ifdef USE_FBGEMM
// Move these outside of the ifdef when we support non-FBGEMM flow.
const auto is_valid_rowwise_min_max = _validate_rowwise_min_max(weight, rowwise_min_max_opt);
const auto rowwise_min_max_contig = _get_rowwise_min_max_contig(rowwise_min_max_opt);
if (!optimized_qparams) {
if (weight_contig.scalar_type() == at::ScalarType::Half) {
const auto weight_data =
static_cast<fbgemm::float16*>(weight_contig.data_ptr());
const auto rowwise_min_max_data = is_valid_rowwise_min_max
? static_cast<fbgemm::float16*>(rowwise_min_max_contig->data_ptr())
: nullptr;
at::parallel_for(
0, embedding_rows, 1, [&](int64_t start_idx, int64_t end_idx) {
fbgemm::FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf<
@ -485,13 +413,10 @@ Tensor _qembeddingbag_nbit_prepack_helper(
weight_data + start_idx * embedding_cols,
end_idx - start_idx,
static_cast<int>(embedding_cols),
output_data + start_idx * output_shape[1],
(is_valid_rowwise_min_max ? (rowwise_min_max_data + start_idx * kRowwiseMinMaxNumCols) : nullptr));
output_data + start_idx * output_shape[1]);
});
} else {
const auto weight_data = weight_contig.data_ptr<float>();
const auto rowwise_min_max_data =
is_valid_rowwise_min_max ? rowwise_min_max_contig->data_ptr<float>() : nullptr;
at::parallel_for(
0, embedding_rows, 1, [&](int64_t start_idx, int64_t end_idx) {
fbgemm::FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf<float>(
@ -499,8 +424,7 @@ Tensor _qembeddingbag_nbit_prepack_helper(
weight_data + start_idx * embedding_cols,
end_idx - start_idx,
static_cast<int>(embedding_cols),
output_data + start_idx * output_shape[1],
(is_valid_rowwise_min_max ? (rowwise_min_max_data + start_idx * kRowwiseMinMaxNumCols) : nullptr));
output_data + start_idx * output_shape[1]);
});
}
} else {
@ -590,16 +514,6 @@ Tensor qembeddingbag_4bit_prepack(
weight, 4 /*bit_width*/, optimized_qparams, nbins, ratio);
}
Tensor qembeddingbag_4bit_prepack_with_rowwise_min_max(
const Tensor& weight,
const Tensor& rowwise_min_max,
const bool optimized_qparams,
const int64_t nbins,
const double ratio) {
return _qembeddingbag_nbit_prepack_helper(
weight, 4 /*bit_width*/, optimized_qparams, nbins, ratio, rowwise_min_max);
}
// Applies 2-bit row-wise quantization by determining the range
// (maximum - minimum) and bias (minimum value) of each row in the input
// matrix, and then scaling each element to an 2-bit number between 0 and
@ -617,16 +531,6 @@ Tensor qembeddingbag_2bit_prepack(
weight, 2 /*bit_width*/, optimized_qparams, nbins, ratio);
}
Tensor qembeddingbag_2bit_prepack_with_rowwise_min_max(
const Tensor& weight,
const Tensor& rowwise_min_max,
const bool optimized_qparams,
const int64_t nbins,
const double ratio) {
return _qembeddingbag_nbit_prepack_helper(
weight, 2 /*bit_width*/, optimized_qparams, nbins, ratio, rowwise_min_max);
}
class QEmbeddingPackWeights final {
public:
static c10::intrusive_ptr<EmbeddingPackedParamsBase> run(const at::Tensor& weight) {
@ -638,21 +542,12 @@ TORCH_LIBRARY_IMPL(quantized, CPU, m) {
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_byte_prepack"),
TORCH_FN(qembeddingbag_byte_prepack));
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_byte_prepack_with_rowwise_min_max"),
TORCH_FN(qembeddingbag_byte_prepack_with_rowwise_min_max));
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_4bit_prepack"),
TORCH_FN(qembeddingbag_4bit_prepack));
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_4bit_prepack_with_rowwise_min_max"),
TORCH_FN(qembeddingbag_4bit_prepack_with_rowwise_min_max));
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_2bit_prepack"),
TORCH_FN(qembeddingbag_2bit_prepack));
m.impl(
TORCH_SELECTIVE_NAME("quantized::embedding_bag_2bit_prepack_with_rowwise_min_max"),
TORCH_FN(qembeddingbag_2bit_prepack_with_rowwise_min_max));
}
TORCH_LIBRARY_IMPL(quantized, QuantizedCPU, m) {

View File

@ -3,10 +3,7 @@
namespace at::native {
Tensor& qembeddingbag_byte_prepack_out(
Tensor& output,
const Tensor& weight,
const std::optional<Tensor>& rowwise_min_max_opt = std::nullopt);
Tensor& qembeddingbag_byte_prepack_out(Tensor& output, const Tensor& weight);
Tensor qembeddingbag_byte_prepack(const Tensor& weight);

View File

@ -121,12 +121,9 @@ TORCH_LIBRARY(quantized, m) {
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_unpack(__torch__.torch.classes.quantized.EmbeddingPackedParamsBase W_prepack) -> Tensor W_origin"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_byte_prepack(Tensor weight) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_byte_unpack(Tensor weight) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_byte_prepack_with_rowwise_min_max(Tensor weight, Tensor rowwise_min_max) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_4bit_prepack(Tensor weight, bool optimized_qparams=False, int nbins=200, float ratio=0.16) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_4bit_prepack_with_rowwise_min_max(Tensor weight, Tensor rowwise_min_max, bool optimized_qparams=False, int nbins=200, float ratio=0.16) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_4bit_unpack(Tensor weight) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_2bit_prepack(Tensor weight, bool optimized_qparams=False, int nbins=200, float ratio=0.16) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_2bit_prepack_with_rowwise_min_max(Tensor weight, Tensor rowwise_min_max, bool optimized_qparams=False, int nbins=200, float ratio=0.16) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_2bit_unpack(Tensor weight) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_byte_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"), {at::Tag::pt2_compliant_tag});
m.def(TORCH_SELECTIVE_SCHEMA("quantized::embedding_bag_4bit_rowwise_offsets(Tensor weight, Tensor indices, Tensor? offsets=None, bool scale_grad_by_freq=False, int mode=0, bool pruned_weights=False, Tensor? per_sample_weights=None, Tensor? compressed_indices_mapping=None, bool include_last_offset=False) -> Tensor"), {at::Tag::pt2_compliant_tag});

View File

@ -120,7 +120,7 @@ at::Tensor _cslt_compress(const Tensor& sparse_input) {
// buffer (in bytes)
size_t orig_m = sparse_input.size(0);
size_t div = orig_m * sparse_input.itemsize();
size_t new_n = (compressed_size + div - 1) / div; // ceil(s,d) = (s+d-1)/d
size_t new_n = (compressed_size + div - 1) / div; // floor
auto compressed_tensor = sparse_input.new_empty({(int64_t)orig_m, (int64_t)new_n});
auto& allocator = *::c10::cuda::CUDACachingAllocator::get();
@ -155,7 +155,7 @@ std::tuple<at::Tensor, int64_t, int64_t, int64_t, int64_t> _cslt_sparse_mm_impl(
TORCH_CUDASPARSE_CHECK(cusparseLtInit(&handle));
handle_initialized = true;
}
// cuSPARSELt constructs
// cupsarselt constructs
cusparseLtMatmulDescriptor_t matmul;
cusparseLtMatmulPlan_t plan;
cusparseLtMatmulAlgSelection_t alg_sel;

View File

@ -176,28 +176,6 @@ bool check_head_dim_size_flash(sdp_params const& params, bool debug) {
}
return false;
}
if constexpr(caller_is_meff) {
bool is_half = (params.query.dtype() == at::kHalf) ||
(params.query.dtype() == at::kBFloat16);
const int64_t alignment = is_half ? 8 : 4;
if (!(query_size_last % alignment == 0 && query_size_last > 0 &&
value_size_last % alignment == 0 && value_size_last > 0)) {
if (debug) {
TORCH_WARN(
"Mem efficient attention requires last dimension of inputs to be divisible by ",
alignment,
". ",
"Got Query.size(-1): ",
query_size_last,
", Key.size(-1): ",
params.key.sym_size(-1),
", Value.size(-1): ",
params.value.sym_size(-1),
" instead.");
}
return false;
}
}
return true;
}
@ -688,15 +666,6 @@ bool can_use_cudnn_attention(const sdp_params& params, bool debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version too old to use cuDNN Attention (< v9.0.0)");
}
return false;
#endif
#if defined(CUDNN_VERSION)
static auto cudnn_version = cudnnGetVersion();
if (params.dropout > 0.0 && cudnn_version > 91100 && cudnn_version < 91400) {
if (debug) {
TORCH_WARN(CUDNN_VERSION, " cuDNN version does not support droppout in SDPA (9.11 - 9.13).");
}
return false;
}
#endif
// Define gate functions that determine if a flash kernel can be ran
// Replace with std::to_array when we migrate to c++20

View File

@ -462,11 +462,10 @@ mha_varlen_fwd_aot(const at::Tensor &q, // total_q x num_heads x head_size, tot
using sdp::aotriton_adapter::mk_aotensor;
using sdp::aotriton_adapter::mk_aoscalartensor;
using sdp::aotriton_adapter::mk_philoxtensor;
using sdp::aotriton_adapter::mk_atomictensor;
using sdp::aotriton_adapter::cast_dtype;
at::Tensor atomic_counter;
if (is_causal) {
atomic_counter = at::zeros({1}, q.options().dtype(at::kInt));
atomic_counter = at::zeros({1}, q.options());
}
aotriton::TensorView<4> empty_bias(0, {0,0,0,0}, {0,0,0,0}, cast_dtype(q.dtype()));
auto seed = use_philox_state ? mk_philoxtensor(philox_state.seed_.ptr) : mk_aoscalartensor(seed_t);
@ -475,7 +474,7 @@ mha_varlen_fwd_aot(const at::Tensor &q, // total_q x num_heads x head_size, tot
auto nullscalar = mk_philoxtensor(nullptr);
auto seed_output = use_philox_state ? mk_philoxtensor(seed_t.data_ptr<int64_t>()) : nullscalar;
auto offset_output = use_philox_state ? mk_philoxtensor(offset_t.data_ptr<int64_t>()) : nullscalar;
auto persistent_counter = mk_atomictensor(is_causal ? atomic_counter.data_ptr<int32_t>() : nullptr);
auto persistent_counter = is_causal ? mk_philoxtensor(atomic_counter.data_ptr<int64_t>()) : nullscalar;
if (uses_swa || AOTRITON_ALWAYS_V3_API) {
#if AOTRITON_V3_API
using aotriton::v3::flash::CausalType;

View File

@ -2,12 +2,22 @@
// ${generated_comment}
#include <ATen/FunctionalStorageImpl.h>
#include <ATen/Tensor.h>
namespace at {
namespace functionalization {
enum class InverseReturnMode {
/// Specifies that functional inverses should always return a view.
AlwaysView,
/// Specifies that functional inverses should always return a non-view / copy.
NeverView,
/// Specifies that functional inverses should return a view unless a (copying) scatter
/// inverse exists, in which case that will be used instead.
/// This avoids as_strided() calls that can be difficult for subclasses to handle.
ViewOrScatterInverse,
};
struct FunctionalInverses {
${view_inverse_declarations}

View File

@ -4,7 +4,7 @@
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/EmptyTensor.h>
#include <ATen/FunctionalTensorWrapper.h>
#include <ATen/ViewMetaClasses.h>
#include <ATen/FunctionalInverses.h>
#include <ATen/MemoryOverlap.h>
#include <torch/library.h>

View File

@ -1,19 +0,0 @@
// ${generated_comment}
#include <ATen/FunctionalInverses.h>
#include <ATen/ViewMetaClasses.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Operators.h>
#include <ATen/NativeFunctions.h>
#else
${op_headers}
#endif
namespace at {
namespace functionalization {
${view_meta_implementations}
} // namespace functionalization
} // namespace at

View File

@ -1,12 +0,0 @@
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
// ${generated_comment}
#include <ATen/FunctionalStorageImpl.h>
namespace at {
namespace functionalization {
${view_meta_declarations}
} // namespace functionalization
} // namespace at

View File

@ -1,11 +0,0 @@
#include <ATen/ViewMetaClasses.h>
#include <torch/csrc/functionalization/Module.h>
namespace torch::functionalization {
void initGenerated(PyObject* module) {
auto functionalization = py::handle(module).cast<py::module>();
$view_meta_bindings
}
} // namespace torch::functionalization

View File

@ -1561,38 +1561,6 @@ namespace {
<< "Failure Details:\nTest Seed to reproduce: " << seed;
}
}
#endif
#if defined(CPU_CAPABILITY_AVX512)
TYPED_TEST(Quantization8BitTests, TransposePackVNNI4) {
using VT = ValueType<TypeParam>;
constexpr auto K = 197;
constexpr auto N = 64;
constexpr auto L = K * N;
constexpr auto ld_src = N;
constexpr auto ld_dst = K * 4;
CACHE_ALIGN VT x[L];
CACHE_ALIGN VT y[L];
CACHE_ALIGN VT ref[L];
auto seed = TestSeed();
ValueGen<VT> generator(VT(-100), VT(100), seed);
for (const auto i : c10::irange(L)) {
x[i] = generator.get();
}
at::vec::transpose_pack_vnni4(x, y, ld_src, K, N);
int64_t _N = N / 4;
for (int64_t k = 0; k < K; k++) {
for(int64_t n = 0; n < _N; n++) {
for(int64_t l = 0; l < 4; l++) {
ref[n * ld_dst + k * 4 + l] =
c10::load(&(x[k * ld_src + n * 4 + l]));
}
}
}
for (const auto i : c10::irange(L)) {
ASSERT_EQ(y[i], ref[i])
<< "Failure Details:\nTest Seed to reproduce: " << seed;
}
}
#endif
TYPED_TEST(FunctionalTests, Map) {
using vec = TypeParam;

View File

@ -78,8 +78,6 @@ def check_accuracy(actual_csv, expected_csv, expected_filename):
"google/gemma-3-4b-it",
"openai/whisper-tiny",
"Qwen/Qwen3-0.6B",
"mistralai/Mistral-7B-Instruct-v0.3",
"openai/gpt-oss-20b",
}
)

View File

@ -61,8 +61,6 @@ def check_graph_breaks(actual_csv, expected_csv, expected_filename):
"google/gemma-3-4b-it",
"openai/whisper-tiny",
"Qwen/Qwen3-0.6B",
"mistralai/Mistral-7B-Instruct-v0.3",
"openai/gpt-oss-20b",
}
)

View File

@ -191,11 +191,3 @@ openai/whisper-tiny,pass,0
Qwen/Qwen3-0.6B,pass,0
mistralai/Mistral-7B-Instruct-v0.3,pass,0
openai/gpt-oss-20b,pass,0

1 name accuracy graph_breaks
191
192
193

View File

@ -218,7 +218,7 @@ maml_omniglot,pass,0
microbench_unbacked_tolist_sum,pass,2
microbench_unbacked_tolist_sum,pass,1

1 name accuracy graph_breaks
218
219
220
221
222
223
224

View File

@ -146,7 +146,7 @@ maml_omniglot,pass,7
microbench_unbacked_tolist_sum,pass,9
microbench_unbacked_tolist_sum,pass,8

1 name accuracy graph_breaks
146
147
148
149
150
151
152

View File

@ -187,11 +187,3 @@ openai/whisper-tiny,fail_to_run,0
Qwen/Qwen3-0.6B,fail_to_run,0
mistralai/Mistral-7B-Instruct-v0.3,fail_to_run,0
openai/gpt-oss-20b,fail_to_run,0

1 name accuracy graph_breaks
187
188
189

Some files were not shown because too many files have changed in this diff Show More