Compare commits

..

1 Commits

Author SHA1 Message Date
08426731f6 Install theme in push scripts 2025-07-15 10:43:29 -07:00
1871 changed files with 82926 additions and 77393 deletions

View File

@ -2,7 +2,7 @@ build --cxxopt=--std=c++17
build --copt=-I.
# Bazel does not support including its cc_library targets as system
# headers. We work around this for generated code
# (e.g. torch/headeronly/macros/cmake_macros.h) by making the generated directory a
# (e.g. c10/macros/cmake_macros.h) by making the generated directory a
# system include path.
build --copt=-isystem --copt bazel-out/k8-fastbuild/bin
build --copt=-isystem --copt bazel-out/darwin-fastbuild/bin

View File

@ -438,7 +438,9 @@ def build_torchvision(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -493,7 +495,9 @@ def build_torchdata(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -549,7 +553,9 @@ def build_torchtext(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
@ -607,7 +613,9 @@ def build_torchaudio(
)
build_vars += f"BUILD_VERSION={version}.dev{build_date}"
elif build_version is not None:
build_vars += f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-', maxsplit=1)[0]}"
build_vars += (
f"BUILD_VERSION={build_version} PYTORCH_VERSION={branch[1:].split('-')[0]}"
)
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"

View File

@ -36,104 +36,3 @@ See `build.sh` for valid build environments (it's the giant switch).
# Set flags (see build.sh) and build image
sudo bash -c 'TRITON=1 ./build.sh pytorch-linux-bionic-py3.8-gcc9 -t myimage:latest
```
## [Guidance] Adding a New Base Docker Image
### Background
The base Docker images in directory `.ci/docker/` are built by the `docker-builds.yml` workflow. Those images are used throughout the PyTorch CI/CD pipeline. You should only create or modify a base Docker image if you need specific environment changes or dependencies before building PyTorch on CI.
1. **Automatic Rebuilding**:
- The Docker image building process is triggered automatically when changes are made to files in the `.ci/docker/*` directory
- This ensures all images stay up-to-date with the latest dependencies and configurations
2. **Image Reuse in PyTorch Build Workflows** (example: linux-build):
- The images generated by `docker-builds.yml` are reused in `_linux-build.yml` through the `calculate-docker-image` step
- The `_linux-build.yml` workflow:
- Pulls the Docker image determined by the `calculate-docker-image` step
- Runs a Docker container with that image
- Executes `.ci/pytorch/build.sh` inside the container to build PyTorch
3. **Usage in Test Workflows** (example: linux-test):
- The same Docker images are also used in `_linux-test.yml` for running tests
- The `_linux-test.yml` workflow follows a similar pattern:
- It uses the `calculate-docker-image` step to determine which Docker image to use
- It pulls the Docker image and runs a container with that image
- It installs the wheels from the artifacts generated by PyTorch build jobs
- It executes test scripts (like `.ci/pytorch/test.sh` or `.ci/pytorch/multigpu-test.sh`) inside the container
### Understanding File Purposes
#### `.ci/docker/build.sh` vs `.ci/pytorch/build.sh`
- **`.ci/docker/build.sh`**:
- Used for building base Docker images
- Executed by the `docker-builds.yml` workflow to pre-build Docker images for CI
- Contains configurations for different Docker build environments
- **`.ci/pytorch/build.sh`**:
- Used for building PyTorch inside a Docker container
- Called by workflows like `_linux-build.yml` after the Docker container is started
- Builds PyTorch wheels and other artifacts
#### `.ci/docker/ci_commit_pins/` vs `.github/ci_commit_pins`
- **`.ci/docker/ci_commit_pins/`**:
- Used for pinning dependency versions during base Docker image building
- Ensures consistent environments for building PyTorch
- Changes here trigger base Docker image rebuilds
- **`.github/ci_commit_pins`**:
- Used for pinning dependency versions during PyTorch building and tests
- Ensures consistent dependencies for PyTorch across different builds
- Used by build scripts running inside Docker containers
### Step-by-Step Guide for Adding a New Base Docker Image
#### 1. Add Pinned Commits (If Applicable)
We use pinned commits for build stability. The `nightly.yml` workflow checks and updates pinned commits for certain repository dependencies daily.
If your new Docker image needs a library installed from a specific pinned commit or built from source:
1. Add the repository you want to track in `nightly.yml` and `merge-rules.yml`
2. Add the initial pinned commit in `.ci/docker/ci_commit_pins/`. The text filename should match the one defined in step 1
#### 2. Configure the Base Docker Image
1. **Add new Base Docker image configuration** (if applicable):
Add the configuration in `.ci/docker/build.sh`. For example:
```bash
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-new1)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
NEW_ARG_1=yes
;;
```
2. **Add build arguments to Docker build command**:
If you're introducing a new argument to the Docker build, make sure to add it in the Docker build step in `.ci/docker/build.sh`:
```bash
docker build \
....
--build-arg "NEW_ARG_1=${NEW_ARG_1}"
```
3. **Update Dockerfile logic**:
Update the Dockerfile to use the new argument. For example, in `ubuntu/Dockerfile`:
```dockerfile
ARG NEW_ARG_1
# Set up environment for NEW_ARG_1
RUN if [ -n "${NEW_ARG_1}" ]; then bash ./do_something.sh; fi
```
4. **Add the Docker configuration** in `.github/workflows/docker-builds.yml`:
The `docker-builds.yml` workflow pre-builds the Docker images whenever changes occur in the `.ci/docker/` directory. This includes the
pinned commit updates.

View File

@ -93,6 +93,7 @@ tag=$(echo $image | awk -F':' '{print $2}')
case "$tag" in
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11)
CUDA_VERSION=12.4
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
@ -103,6 +104,7 @@ case "$tag" in
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
@ -113,6 +115,7 @@ case "$tag" in
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -124,6 +127,7 @@ case "$tag" in
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
@ -135,6 +139,7 @@ case "$tag" in
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
@ -144,18 +149,56 @@ case "$tag" in
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9)
CUDA_VERSION=12.6.3
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.6
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9)
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=9
VISION=yes
@ -176,7 +219,31 @@ case "$tag" in
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-jammy-rocm-n-py3-benchmarks | pytorch-linux-noble-rocm-n-py3)
pytorch-linux-jammy-py3.11-clang12)
ANACONDA_PYTHON_VERSION=3.11
CLANG_VERSION=12
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc9)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=9
VISION=yes
TRITON=yes
;;
pytorch-linux-jammy-rocm-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.3
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-rocm-n-py3 | pytorch-linux-noble-rocm-n-py3)
if [[ $tag =~ "jammy" ]]; then
ANACONDA_PYTHON_VERSION=3.10
else
@ -190,21 +257,7 @@ case "$tag" in
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
@ -222,7 +275,7 @@ case "$tag" in
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
@ -234,6 +287,7 @@ case "$tag" in
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CUDNN_VERSION=9
CLANG_VERSION=12
VISION=yes
TRITON=yes
@ -312,6 +366,7 @@ case "$tag" in
fi
if [[ "$image" == *cuda* ]]; then
extract_version_from_image_name cuda CUDA_VERSION
extract_version_from_image_name cudnn CUDNN_VERSION
fi
if [[ "$image" == *rocm* ]]; then
extract_version_from_image_name rocm ROCM_VERSION
@ -363,6 +418,9 @@ docker build \
--build-arg "PYTHON_VERSION=${PYTHON_VERSION}" \
--build-arg "GCC_VERSION=${GCC_VERSION}" \
--build-arg "CUDA_VERSION=${CUDA_VERSION}" \
--build-arg "CUDNN_VERSION=${CUDNN_VERSION}" \
--build-arg "TENSORRT_VERSION=${TENSORRT_VERSION}" \
--build-arg "GRADLE_VERSION=${GRADLE_VERSION}" \
--build-arg "NINJA_VERSION=${NINJA_VERSION:-}" \
--build-arg "KATEX=${KATEX:-}" \
--build-arg "ROCM_VERSION=${ROCM_VERSION:-}" \

View File

@ -1 +1 @@
f7888497a1eb9e98d4c07537f0d0bcfe180d1363
ae848267bebc65c6181e8cc5e64a6357d2679260

View File

@ -4,8 +4,12 @@ set -ex
# Optionally install conda
if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
BASE_URL="https://repo.anaconda.com/miniconda"
CONDA_FILE="Miniconda3-latest-Linux-x86_64.sh"
if [[ $(uname -m) == "aarch64" ]] || [[ "$BUILD_ENVIRONMENT" == *xpu* ]] || [[ "$BUILD_ENVIRONMENT" == *rocm* ]]; then
BASE_URL="https://github.com/conda-forge/miniforge/releases/latest/download" # @lint-ignore
CONDA_FILE="Miniforge3-Linux-$(uname -m).sh"
fi
MAJOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 1)
MINOR_PYTHON_VERSION=$(echo "$ANACONDA_PYTHON_VERSION" | cut -d . -f 2)
@ -17,6 +21,7 @@ if [ -n "$ANACONDA_PYTHON_VERSION" ]; then
exit 1
;;
esac
mkdir -p /opt/conda
chown jenkins:jenkins /opt/conda

View File

@ -66,9 +66,8 @@ function do_cpython_build {
ln -s pip3 ${prefix}/bin/pip
fi
# install setuptools since python 3.12 is required to use distutils
# packaging is needed to create symlink since wheel no longer provides needed information
${prefix}/bin/pip install packaging==25.0 wheel==0.45.1 setuptools==80.9.0
local abi_tag=$(${prefix}/bin/python -c "from packaging.tags import interpreter_name, interpreter_version; import sysconfig ; from sysconfig import get_config_var; print('{0}{1}-{0}{1}{2}'.format(interpreter_name(), interpreter_version(), 't' if sysconfig.get_config_var('Py_GIL_DISABLED') else ''))")
${prefix}/bin/pip install wheel==0.45.1 setuptools==80.9.0
local abi_tag=$(${prefix}/bin/python -c "from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag; print('{0}{1}-{2}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag()))")
ln -sf ${prefix} /opt/python/${abi_tag}
}

View File

@ -68,8 +68,8 @@ function install_nvshmem {
# download, unpack, install
wget -q "${url}"
tar xf "${filename}.tar.gz"
cp -a "libnvshmem/include/"* /usr/local/cuda/include/
cp -a "libnvshmem/lib/"* /usr/local/cuda/lib64/
cp -a "libnvshmem/include/"* /usr/local/include/
cp -a "libnvshmem/lib/"* /usr/local/lib/
# cleanup
cd ..

View File

@ -0,0 +1,26 @@
#!/bin/bash
if [[ -n "${CUDNN_VERSION}" ]]; then
# cuDNN license: https://developer.nvidia.com/cudnn/license_agreement
mkdir tmp_cudnn
pushd tmp_cudnn
if [[ ${CUDA_VERSION:0:4} == "12.9" || ${CUDA_VERSION:0:4} == "12.8" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.6" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:4} == "12.4" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.10.2.21_cuda12-archive"
elif [[ ${CUDA_VERSION:0:2} == "11" ]]; then
CUDNN_NAME="cudnn-linux-x86_64-9.1.0.70_cuda11-archive"
else
print "Unsupported CUDA version ${CUDA_VERSION}"
exit 1
fi
curl --retry 3 -OLs https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/${CUDNN_NAME}.tar.xz
tar xf ${CUDNN_NAME}.tar.xz
cp -a ${CUDNN_NAME}/include/* /usr/local/cuda/include/
cp -a ${CUDNN_NAME}/lib/* /usr/local/cuda/lib64/
popd
rm -rf tmp_cudnn
ldconfig
fi

View File

@ -15,37 +15,11 @@ function install_timm() {
commit=$(get_pinned_commit timm)
pip_install "git+https://github.com/huggingface/pytorch-image-models@${commit}"
}
function install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
python install.py --continue_on_fail
# TODO (huydhn): transformers-4.44.2 added by https://github.com/pytorch/benchmark/pull/2488
# is regressing speedup metric. This needs to be investigated further
pip install transformers==4.38.1
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
chown -R jenkins torchbench
# Clean up
conda_run pip uninstall -y torch torchvision triton
}
# Pango is needed for weasyprint which is needed for doctr
conda_install pango
# Stable packages are ok here, just to satisfy TorchBench check
pip_install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
install_torchbench
install_huggingface
install_timm
# Clean up
conda_run pip uninstall -y torch torchvision torchaudio triton torchao

View File

@ -30,25 +30,16 @@ EOF
# we want the patch version of 6.4 instead
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
ROCM_VERSION="${ROCM_VERSION}.2"
fi
# Default url values
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
ROCM_VERSION="${ROCM_VERSION}.1"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
echo "deb [arch=amd64] https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
# Add rocm repository
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add -
local rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
echo "deb [arch=amd64] ${rocm_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/rocm.list
apt-get update --allow-insecure-repositories
@ -82,33 +73,30 @@ EOF
done
# ROCm 6.3 had a regression where initializing static code objects had significant overhead
# CI no longer builds for ROCm 6.3, but
# ROCm 6.4 did not yet fix the regression, also HIP branch names are different
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.4) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.2) ]]; then
HIP_TAG=rocm-6.4.2
CLR_HASH=74d78ba3ac4bac235d02bcb48511c30b5cfdd457 # branch release/rocm-rel-6.4.2-statco-hotfix
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.1) ]]; then
HIP_TAG=rocm-6.4.1
CLR_HASH=efe6c35790b9206923bfeed1209902feff37f386 # branch release/rocm-rel-6.4.1-statco-hotfix
if [[ $(ver $ROCM_VERSION) -ge $(ver 6.3) ]] && [[ $(ver $ROCM_VERSION) -lt $(ver 7.0) ]]; then
if [[ $(ver $ROCM_VERSION) -eq $(ver 6.4.1) ]]; then
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
VER_PATCH=.1
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.4) ]]; then
HIP_TAG=rocm-6.4.0
CLR_HASH=600f5b0d2baed94d5121e2174a9de0851b040b0c # branch release/rocm-rel-6.4-statco-hotfix
HIP_BRANCH=release/rocm-rel-6.4
VER_STR=6.4
elif [[ $(ver $ROCM_VERSION) -eq $(ver 6.3) ]]; then
HIP_BRANCH=rocm-6.3.x
VER_STR=6.3
fi
# clr build needs CppHeaderParser but can only find it using conda's python
python -m pip install CppHeaderParser
git clone https://github.com/ROCm/HIP -b $HIP_TAG
git clone https://github.com/ROCm/HIP -b $HIP_BRANCH
HIP_COMMON_DIR=$(readlink -f HIP)
git clone https://github.com/jeffdaily/clr
pushd clr
git checkout $CLR_HASH
popd
git clone https://github.com/jeffdaily/clr -b release/rocm-rel-${VER_STR}${VER_PATCH}-statco-hotfix
mkdir -p clr/build
pushd clr/build
# Need to point CMake to the correct python installation to find CppHeaderParser
cmake .. -DPython3_EXECUTABLE=/opt/conda/envs/py_${ANACONDA_PYTHON_VERSION}/bin/python3 -DCLR_BUILD_HIP=ON -DHIP_COMMON_DIR=$HIP_COMMON_DIR
make -j
cp hipamd/lib/libamdhip64.so.6.4.* /opt/rocm/lib/libamdhip64.so.6.4.*
cp hipamd/lib/libamdhip64.so.${VER_STR}.* /opt/rocm/lib/libamdhip64.so.${VER_STR}.*
popd
rm -rf HIP clr
fi

View File

@ -34,27 +34,18 @@ function install_ubuntu() {
# The xpu-smi packages
apt-get install -y flex bison xpu-smi
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
else # rolling driver
apt-get install -y \
intel-opencl-icd libze-intel-gpu1 libze1 \
intel-media-va-driver-non-free libmfx-gen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo intel-ocloc
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev libze-dev
# Compute and Media Runtimes
apt-get install -y \
intel-opencl-icd intel-level-zero-gpu level-zero \
intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \
libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \
libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \
mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
apt-get install -y intel-ocloc
fi
# Development Packages
apt-get install -y libigc-dev intel-igc-cm libigdfcl-dev libigfxcmrt-dev level-zero-dev
# Install Intel Support Packages
apt-get install -y ${XPU_PACKAGES}
@ -139,11 +130,11 @@ function install_sles() {
}
# Default use GPU driver rolling releases
XPU_DRIVER_VERSION=""
if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
# Use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
# Default use GPU driver LTS releases
XPU_DRIVER_VERSION="/lts/2350"
if [[ "${XPU_DRIVER_TYPE,,}" == "rolling" ]]; then
# Use GPU driver rolling releases
XPU_DRIVER_VERSION=""
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.0

View File

@ -41,7 +41,7 @@ case ${DOCKER_TAG_PREFIX} in
rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.1"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete

View File

@ -77,7 +77,7 @@ case ${image} in
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.1"
fi
TARGET=rocm_final
MANY_LINUX_VERSION="2_28"

View File

@ -50,7 +50,7 @@ flatbuffers==24.12.23
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 5.35.1
#Pinned versions: 3.44.6, 4.53.2
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
@ -63,12 +63,11 @@ lark==0.12.0
#Pinned versions: 0.12.0
#test that import:
librosa>=0.6.2 ; python_version < "3.11" and platform_machine != "s390x"
librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
librosa>=0.6.2 ; python_version < "3.11"
librosa==0.10.2 ; python_version == "3.12"
#Description: A python package for music and audio analysis
#Pinned versions: >=0.6.2
#test that import: test_spectral_ops.py
#librosa depends on numba; disable it for s390x while numba is disabled too
#mkl #this breaks linux-bionic-rocm4.5-py3.7
#Description: Intel oneAPI Math Kernel Library
@ -111,15 +110,14 @@ ninja==1.11.1.3
#Pinned versions: 1.11.1.3
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
numba==0.49.0 ; python_version < "3.9"
numba==0.55.2 ; python_version == "3.9"
numba==0.55.2 ; python_version == "3.10"
numba==0.60.0 ; python_version == "3.12"
#Description: Just-In-Time Compiler for Numerical Functions
#Pinned versions: 0.54.1, 0.49.0, <=0.49.1
#test that import: test_numba_integration.py
#For numba issue see https://github.com/pytorch/pytorch/issues/51511
#Need release > 0.61.2 for s390x due to https://github.com/numba/numba/pull/10073
#numpy
#Description: Provides N-dimensional arrays and linear algebra
@ -223,9 +221,9 @@ pygments==2.15.0
#Pinned versions: 2.12.0
#test that import: the doctests
#pyyaml
#PyYAML
#Description: data serialization format
#Pinned versions: 6.0.2
#Pinned versions:
#test that import:
#requests
@ -235,7 +233,7 @@ pygments==2.15.0
#rich
#Description: rich text and beautiful formatting in the terminal
#Pinned versions: 14.1.0
#Pinned versions: 10.9.0
#test that import:
scikit-image==0.19.3 ; python_version < "3.10"
@ -309,7 +307,7 @@ pytest-cpp==2.3.0
#Pinned versions: 2.3.0
#test that import:
z3-solver==4.15.1.0 ; platform_machine != "s390x"
z3-solver==4.12.6.0
#Description: The Z3 Theorem Prover Project
#Pinned versions:
#test that import:
@ -363,6 +361,7 @@ pwlf==2.2.1
#Pinned versions: 2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
pyyaml
pyzstd
@ -390,9 +389,3 @@ tlparse==0.3.30
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
#test that import: test_cuda.py
setuptools-git-versioning==2.1.0
scikit-build==0.18.1
pyre-extensions==0.0.32
tabulate==0.9.0
#Description: These package are needed to build FBGEMM and torchrec on PyTorch CI

View File

@ -1,10 +1,10 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@722b7e6f9ca512fcc526ad07d62b3d28c50bb6cd#egg=pytorch_sphinx_theme2
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# but it doesn't seem to work and hangs around idly. The initial thought is probably
# something related to Docker setup. We can investigate this later.
sphinxcontrib.katex==0.8.6
@ -50,8 +50,8 @@ IPython==8.12.0
#Pinned versions: 8.12.0
myst-nb==0.17.2
#Description: This is used to generate PyTorch functorch and torch.compile docs.
#Pinned versions: 0.17.2
#Description: This is used to generate PyTorch functorch docs
#Pinned versions: 0.13.2
# The following are required to build torch.distributed.elastic.rendezvous.etcd* docs
python-etcd==0.4.5

View File

@ -98,9 +98,8 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
# (optional) Install non-default Ninja version
ARG NINJA_VERSION

View File

@ -98,9 +98,8 @@ COPY ./common/install_inductor_benchmark_deps.sh install_inductor_benchmark_deps
COPY ./common/common_utils.sh common_utils.sh
COPY ci_commit_pins/huggingface.txt huggingface.txt
COPY ci_commit_pins/timm.txt timm.txt
COPY ci_commit_pins/torchbench.txt torchbench.txt
RUN if [ -n "${INDUCTOR_BENCHMARKS}" ]; then bash ./install_inductor_benchmark_deps.sh; fi
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt torchbench.txt
RUN rm install_inductor_benchmark_deps.sh common_utils.sh timm.txt huggingface.txt
ARG TRITON
ARG TRITON_CPU

View File

@ -97,7 +97,8 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
retry pip install -q "setuptools>=70.1.0" packaging
retry pip install -qU cmake ninja
python setup.py clean
retry pip install -qr requirements.txt
case ${DESIRED_PYTHON} in
@ -138,11 +139,28 @@ fi
echo "Calling setup.py bdist at $(date)"
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "Calling setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
echo "Calling setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
CMAKE_FRESH=1 python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
fi
echo "Finished setup.py bdist at $(date)"
# Build libtorch packages
@ -255,6 +273,10 @@ ls /tmp/$WHEELHOUSE_DIR
mkdir -p "/$WHEELHOUSE_DIR"
mv /tmp/$WHEELHOUSE_DIR/torch*linux*.whl /$WHEELHOUSE_DIR/
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
mv /tmp/$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/ || true
fi
if [[ -n "$BUILD_PYTHONLESS" ]]; then
mkdir -p /$LIBTORCH_HOUSE_DIR
mv /tmp/$LIBTORCH_HOUSE_DIR/*.zip /$LIBTORCH_HOUSE_DIR
@ -431,8 +453,16 @@ if [[ -z "$BUILD_PYTHONLESS" ]]; then
pushd $PYTORCH_ROOT/test
# Install the wheel for this Python version
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip uninstall -y "$TORCH_NO_PYTHON_PACKAGE_NAME" || true
fi
pip uninstall -y "$TORCH_PACKAGE_NAME"
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip install "$TORCH_NO_PYTHON_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
fi
pip install "$TORCH_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
# Print info on the libraries installed in this wheel

View File

@ -92,7 +92,8 @@ if [[ -z "$PYTORCH_ROOT" ]]; then
exit 1
fi
pushd "$PYTORCH_ROOT"
retry pip install -qUr requirements-build.txt
retry pip install -q "setuptools>=70.1.0" packaging
retry pip install -qU cmake ninja
python setup.py clean
retry pip install -qr requirements.txt
retry pip install -q numpy==2.0.1

View File

@ -194,7 +194,7 @@ ROCBLAS_LIB_SRC=$ROCM_HOME/lib/rocblas/library
ROCBLAS_LIB_DST=lib/rocblas/library
ROCBLAS_ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
ROCBLAS_OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ROCBLAS_ARCH_SPECIFIC_FILES $ROCBLAS_OTHER_FILES)
ROCBLAS_LIB_FILES=($ROCBLAS_ARCH_SPECIFIC_FILES $OTHER_FILES)
# hipblaslt library files
HIPBLASLT_LIB_SRC=$ROCM_HOME/lib/hipblaslt/library

34
.ci/pytorch/build-mobile.sh Executable file
View File

@ -0,0 +1,34 @@
#!/usr/bin/env bash
# DO NOT ADD 'set -x' not to reveal CircleCI secret context environment variables
set -eu -o pipefail
# This script uses linux host toolchain + mobile build options in order to
# build & test mobile libtorch without having to setup Android/iOS
# toolchain/simulator.
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
# Install torch & torchvision - used to download & trace test model.
# Ideally we should use the libtorch built on the PR so that backward
# incompatible changes won't break this script - but it will significantly slow
# down mobile CI jobs.
# Here we install nightly instead of stable so that we have an option to
# temporarily skip mobile CI jobs on BC-breaking PRs until they are in nightly.
retry pip install --pre torch torchvision \
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html \
--progress-bar off
# Run end-to-end process of building mobile library, linking into the predictor
# binary, and running forward pass with a real model.
if [[ "$BUILD_ENVIRONMENT" == *-mobile-custom-build-static* ]]; then
TEST_CUSTOM_BUILD_STATIC=1 test/mobile/custom_build/build.sh
elif [[ "$BUILD_ENVIRONMENT" == *-mobile-lightweight-dispatch* ]]; then
test/mobile/lightweight_dispatch/build.sh
else
TEST_DEFAULT_BUILD=1 test/mobile/custom_build/build.sh
fi
print_sccache_stats

View File

@ -11,6 +11,10 @@ source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
if [[ "$BUILD_ENVIRONMENT" == *-mobile-*build* ]]; then
exec "$(dirname "${BASH_SOURCE[0]}")/build-mobile.sh" "$@"
fi
echo "Python version:"
python --version
@ -50,6 +54,9 @@ if [[ ${BUILD_ENVIRONMENT} == *"parallelnative"* ]]; then
export ATEN_THREADING=NATIVE
fi
# Enable LLVM dependency for TensorExpr testing
export USE_LLVM=/opt/llvm
export LLVM_DIR=/opt/llvm/lib/cmake/llvm
if ! which conda; then
# In ROCm CIs, we are doing cross compilation on build machines with
@ -117,8 +124,26 @@ if [[ "$BUILD_ENVIRONMENT" == *libtorch* ]]; then
fi
# Use special scripts for Android builds
if [[ "${BUILD_ENVIRONMENT}" == *-android* ]]; then
export ANDROID_NDK=/opt/ndk
build_args=()
if [[ "${BUILD_ENVIRONMENT}" == *-arm-v7a* ]]; then
build_args+=("-DANDROID_ABI=armeabi-v7a")
elif [[ "${BUILD_ENVIRONMENT}" == *-arm-v8a* ]]; then
build_args+=("-DANDROID_ABI=arm64-v8a")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_32* ]]; then
build_args+=("-DANDROID_ABI=x86")
elif [[ "${BUILD_ENVIRONMENT}" == *-x86_64* ]]; then
build_args+=("-DANDROID_ABI=x86_64")
fi
if [[ "${BUILD_ENVIRONMENT}" == *vulkan* ]]; then
build_args+=("-DUSE_VULKAN=ON")
fi
build_args+=("-DUSE_LITE_INTERPRETER_PROFILER=OFF")
exec ./scripts/build_android.sh "${build_args[@]}" "$@"
fi
if [[ "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *android* && "$BUILD_ENVIRONMENT" == *vulkan* ]]; then
export USE_VULKAN=1
# shellcheck disable=SC1091
source /var/lib/jenkins/vulkansdk/setup-env.sh
@ -173,7 +198,7 @@ fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && echo "${TORCH_CUDA_ARCH_LIST}" | tr ' ' '\n' | sed 's/$/>= 8.0/' | bc | grep -q 1; then
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && [[ 1 -eq $(echo "${TORCH_CUDA_ARCH_LIST} >= 8.0" | bc) ]]; then
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
fi
@ -189,6 +214,7 @@ if [[ "$BUILD_ENVIRONMENT" == *-clang*-asan* ]]; then
export USE_ASAN=1
export REL_WITH_DEB_INFO=1
export UBSAN_FLAGS="-fno-sanitize-recover=all"
unset USE_LLVM
fi
if [[ "${BUILD_ENVIRONMENT}" == *no-ops* ]]; then
@ -199,7 +225,7 @@ if [[ "${BUILD_ENVIRONMENT}" == *-pch* ]]; then
export USE_PRECOMPILED_HEADERS=1
fi
if [[ "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
if [[ "${BUILD_ENVIRONMENT}" != *android* && "${BUILD_ENVIRONMENT}" != *cuda* ]]; then
export BUILD_STATIC_RUNTIME_BENCHMARK=ON
fi
@ -261,32 +287,25 @@ else
WERROR=1 python setup.py clean
WERROR=1 python setup.py bdist_wheel
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
python3 tools/packaging/split_wheel.py bdist_wheel
else
WERROR=1 python setup.py bdist_wheel
fi
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
python setup.py bdist_wheel
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "USE_SPLIT_BUILD cannot be used with xla or rocm"
exit 1
else
python setup.py bdist_wheel
fi
fi
pip_install_whl "$(echo dist/*.whl)"
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *vision* ]]; then
install_torchvision
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *audio* ]]; then
install_torchaudio
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchrec* || "${BUILD_ADDITIONAL_PACKAGES:-}" == *fbgemm* ]]; then
install_torchrec_and_fbgemm
fi
if [[ "${BUILD_ADDITIONAL_PACKAGES:-}" == *torchao* ]]; then
install_torchao
fi
if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
echo "Checking that xpu is compiled"
pushd dist/

View File

@ -78,34 +78,6 @@ function pip_install_whl() {
fi
}
function pip_build_and_install() {
local build_target=$1
local wheel_dir=$2
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
python3 -m pip wheel \
--no-build-isolation \
--no-deps \
--no-use-pep517 \
-w "${wheel_dir}" \
"${build_target}"
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
}
function pip_install() {
# retry 3 times
@ -152,7 +124,14 @@ function get_pinned_commit() {
function install_torchaudio() {
local commit
commit=$(get_pinned_commit audio)
pip_build_and_install "git+https://github.com/pytorch/audio.git@${commit}" dist/audio
if [[ "$1" == "cuda" ]]; then
# TODO: This is better to be passed as a parameter from _linux-test workflow
# so that it can be consistent with what is set in build
TORCH_CUDA_ARCH_LIST="8.0;8.6" pip_install --no-use-pep517 "git+https://github.com/pytorch/audio.git@${commit}"
else
pip_install --no-use-pep517 "git+https://github.com/pytorch/audio.git@${commit}"
fi
}
function install_torchtext() {
@ -160,8 +139,8 @@ function install_torchtext() {
local text_commit
data_commit=$(get_pinned_commit data)
text_commit=$(get_pinned_commit text)
pip_build_and_install "git+https://github.com/pytorch/data.git@${data_commit}" dist/data
pip_build_and_install "git+https://github.com/pytorch/text.git@${text_commit}" dist/text
pip_install --no-use-pep517 "git+https://github.com/pytorch/data.git@${data_commit}"
pip_install --no-use-pep517 "git+https://github.com/pytorch/text.git@${text_commit}"
}
function install_torchvision() {
@ -174,14 +153,7 @@ function install_torchvision() {
echo 'char* dlerror(void) { return "";}'|gcc -fpic -shared -o "${HOME}/dlerror.so" -x c -
LD_PRELOAD=${orig_preload}:${HOME}/dlerror.so
fi
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
# Not sure if both are needed, but why not
export FORCE_CUDA=1
export WITH_CUDA=1
fi
pip_build_and_install "git+https://github.com/pytorch/vision.git@${commit}" dist/vision
pip_install --no-use-pep517 "git+https://github.com/pytorch/vision.git@${commit}"
if [ -n "${LD_PRELOAD}" ]; then
LD_PRELOAD=${orig_preload}
fi
@ -201,71 +173,25 @@ function install_torchrec_and_fbgemm() {
if [[ "$BUILD_ENVIRONMENT" == *rocm* ]] ; then
# install torchrec first because it installs fbgemm nightly on top of rocm fbgemm
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_install --no-use-pep517 "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
pip_uninstall fbgemm-gpu-nightly
# Set ROCM_HOME isn't available, use ROCM_PATH if set or /opt/rocm
ROCM_HOME="${ROCM_HOME:-${ROCM_PATH:-/opt/rocm}}"
# Find rocm_version.h header file for ROCm version extract
rocm_version_h="${ROCM_HOME}/include/rocm-core/rocm_version.h"
if [ ! -f "$rocm_version_h" ]; then
rocm_version_h="${ROCM_HOME}/include/rocm_version.h"
fi
# Error out if rocm_version.h not found
if [ ! -f "$rocm_version_h" ]; then
echo "Error: rocm_version.h not found in expected locations." >&2
exit 1
fi
# Extract major, minor and patch ROCm version numbers
MAJOR_VERSION=$(grep 'ROCM_VERSION_MAJOR' "$rocm_version_h" | awk '{print $3}')
MINOR_VERSION=$(grep 'ROCM_VERSION_MINOR' "$rocm_version_h" | awk '{print $3}')
PATCH_VERSION=$(grep 'ROCM_VERSION_PATCH' "$rocm_version_h" | awk '{print $3}')
ROCM_INT=$((MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_VERSION))
echo "ROCm version: $ROCM_INT"
export BUILD_ROCM_VERSION="$MAJOR_VERSION.$MINOR_VERSION"
pip_install tabulate # needed for newer fbgemm
pip_install patchelf # needed for rocm fbgemm
local wheel_dir=dist/fbgemm_gpu
local found_whl=0
for file in "${wheel_dir}"/*.whl
do
if [[ -f "${file}" ]]; then
found_whl=1
break
fi
done
# Build the wheel if it doesn't exist
if [ "${found_whl}" == "0" ]; then
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}" --recurse-submodules
python setup.py bdist_wheel \
--build-variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
# Save the wheel before cleaning up
mkdir -p dist/fbgemm_gpu
cp fbgemm/fbgemm_gpu/dist/*.whl dist/fbgemm_gpu
fi
for file in "${wheel_dir}"/*.whl
do
pip_install_whl "${file}"
done
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}"
python setup.py install \
--package_variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
rm -rf fbgemm
else
pip_build_and_install "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}" dist/torchrec
pip_build_and_install "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#subdirectory=fbgemm_gpu" dist/fbgemm_gpu
# See https://github.com/pytorch/pytorch/issues/106971
CUDA_PATH=/usr/local/cuda-12.1 pip_install --no-use-pep517 "git+https://github.com/pytorch/FBGEMM.git@${fbgemm_commit}#egg=fbgemm-gpu&subdirectory=fbgemm_gpu"
pip_install --no-use-pep517 "git+https://github.com/pytorch/torchrec.git@${torchrec_commit}"
fi
}
@ -281,10 +207,34 @@ function clone_pytorch_xla() {
fi
}
function checkout_install_torchbench() {
local commit
commit=$(get_pinned_commit torchbench)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
# TODO (huydhn): transformers-4.44.2 added by https://github.com/pytorch/benchmark/pull/2488
# is regressing speedup metric. This needs to be investigated further
pip install transformers==4.38.1
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
function install_torchao() {
local commit
commit=$(get_pinned_commit torchao)
pip_build_and_install "git+https://github.com/pytorch/ao.git@${commit}" dist/ao
pip_install --no-use-pep517 "git+https://github.com/pytorch/ao.git@${commit}"
}
function print_sccache_stats() {

View File

@ -58,6 +58,7 @@ time python tools/setup_helpers/generate_code.py \
# Build the docs
pushd docs/cpp
pip install -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
time make VERBOSE=1 html -j
popd

View File

@ -0,0 +1,123 @@
from datetime import datetime, timedelta, timezone
from tempfile import mkdtemp
from cryptography import x509
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.x509.oid import NameOID
temp_dir = mkdtemp()
print(temp_dir)
def genrsa(path):
key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
)
with open(path, "wb") as f:
f.write(
key.private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption(),
)
)
return key
def create_cert(path, C, ST, L, O, key):
subject = issuer = x509.Name(
[
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
cert = (
x509.CertificateBuilder()
.subject_name(subject)
.issuer_name(issuer)
.public_key(key.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
)
.add_extension(
x509.BasicConstraints(ca=True, path_length=None),
critical=True,
)
.sign(key, hashes.SHA256())
)
# Write our certificate out to disk.
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
def create_req(path, C, ST, L, O, key):
csr = (
x509.CertificateSigningRequestBuilder()
.subject_name(
x509.Name(
[
# Provide various details about who we are.
x509.NameAttribute(NameOID.COUNTRY_NAME, C),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, ST),
x509.NameAttribute(NameOID.LOCALITY_NAME, L),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, O),
]
)
)
.sign(key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(csr.public_bytes(serialization.Encoding.PEM))
return csr
def sign_certificate_request(path, csr_cert, ca_cert, private_ca_key):
cert = (
x509.CertificateBuilder()
.subject_name(csr_cert.subject)
.issuer_name(ca_cert.subject)
.public_key(csr_cert.public_key())
.serial_number(x509.random_serial_number())
.not_valid_before(datetime.now(timezone.utc))
.not_valid_after(
# Our certificate will be valid for 10 days
datetime.now(timezone.utc) + timedelta(days=10)
# Sign our certificate with our private key
)
.sign(private_ca_key, hashes.SHA256())
)
with open(path, "wb") as f:
f.write(cert.public_bytes(serialization.Encoding.PEM))
return cert
ca_key = genrsa(temp_dir + "/ca.key")
ca_cert = create_cert(
temp_dir + "/ca.pem",
"US",
"New York",
"New York",
"Gloo Certificate Authority",
ca_key,
)
pkey = genrsa(temp_dir + "/pkey.key")
csr = create_req(
temp_dir + "/csr.csr",
"US",
"California",
"San Francisco",
"Gloo Testing Company",
pkey,
)
cert = sign_certificate_request(temp_dir + "/cert.pem", csr, ca_cert, ca_key)

View File

@ -12,6 +12,7 @@ echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip install -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
make html
popd

View File

@ -157,29 +157,6 @@ test_jit_hooks() {
assert_git_not_dirty
}
# Shellcheck doesn't like it when you pass no arguments to a function
# that can take args. See https://www.shellcheck.net/wiki/SC2120
# shellcheck disable=SC2120
checkout_install_torchbench() {
local commit
commit=$(cat .ci/docker/ci_commit_pins/torchbench.txt)
git clone https://github.com/pytorch/benchmark torchbench
pushd torchbench
git checkout "$commit"
if [ "$1" ]; then
python install.py --continue_on_fail models "$@"
else
# Occasionally the installation may fail on one model but it is ok to continue
# to install and test other models
python install.py --continue_on_fail
fi
echo "Print all dependencies after TorchBench is installed"
python -mpip freeze
popd
}
torchbench_setup_macos() {
git clone --recursive https://github.com/pytorch/vision torchvision
git clone --recursive https://github.com/pytorch/audio torchaudio
@ -202,6 +179,8 @@ torchbench_setup_macos() {
USE_OPENMP=0 python setup.py develop
popd
# Shellcheck doesn't like it when you pass no arguments to a function that can take args. See https://www.shellcheck.net/wiki/SC2120
# shellcheck disable=SC2119,SC2120
checkout_install_torchbench
}

View File

@ -46,7 +46,7 @@ echo "error: python_doc_push_script.sh: branch (arg3) not specified"
fi
echo "install_path: $install_path version: $version"
pip install -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@pytorch_sphinx_theme2#egg=pytorch_sphinx_theme2
build_docs () {
set +e

18
.ci/pytorch/run_glootls_test.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
CREATE_TEST_CERT="$(dirname "${BASH_SOURCE[0]}")/create_test_cert.py"
TMP_CERT_DIR=$(python "$CREATE_TEST_CERT")
openssl verify -CAfile "${TMP_CERT_DIR}/ca.pem" "${TMP_CERT_DIR}/cert.pem"
export GLOO_DEVICE_TRANSPORT=TCP_TLS
export GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY=${TMP_CERT_DIR}/pkey.key
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT=${TMP_CERT_DIR}/cert.pem
export GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE=${TMP_CERT_DIR}/ca.pem
time python test/run_test.py --include distributed/test_c10d_gloo --verbose -- ProcessGroupGlooTest
unset GLOO_DEVICE_TRANSPORT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_PKEY
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CERT
unset GLOO_DEVICE_TRANSPORT_TCP_TLS_CA_FILE

View File

@ -74,13 +74,12 @@ else
fi
# Environment initialization
retry pip install -qUr requirements-build.txt
if [[ "$(uname)" == Darwin ]]; then
# Install the testing dependencies
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest
retry pip install -q future hypothesis ${NUMPY_PACKAGE} ${PROTOBUF_PACKAGE} pytest setuptools six typing_extensions pyyaml
else
retry pip install -qr requirements.txt || true
retry pip install -q hypothesis protobuf pytest || true
retry pip install -q hypothesis protobuf pytest setuptools || true
numpy_ver=1.15
case "$(python --version 2>&1)" in
*2* | *3.5* | *3.6*)

View File

@ -385,29 +385,6 @@ def smoke_test_compile(device: str = "cpu") -> None:
x_pt2 = torch.compile(model, mode="max-autotune")(x)
def smoke_test_nvshmem() -> None:
if not torch.cuda.is_available():
print("CUDA is not available, skipping NVSHMEM test")
return
# Check if NVSHMEM is compiled in current build
try:
from torch._C._distributed_c10d import _is_nvshmem_available
except ImportError:
# Not built with NVSHMEM support.
# torch is not compiled with NVSHMEM prior to 2.9
if torch.__version__ < "2.9":
return
else:
# After 2.9: NVSHMEM is expected to be compiled in current build
raise RuntimeError("torch not compiled with NVSHMEM") from None
print("torch compiled with NVSHMEM")
# Check if NVSHMEM is available on current system.
print(f"NVSHMEM available at run time: {_is_nvshmem_available()}")
def smoke_test_modules():
cwd = os.getcwd()
for module in MODULES:
@ -502,8 +479,6 @@ def main() -> None:
options.pypi_pkg_check,
)
smoke_test_nvshmem()
if __name__ == "__main__":
main()

View File

@ -289,12 +289,6 @@ elif [[ $TEST_CONFIG == 'nogpu_AVX512' ]]; then
export ATEN_CPU_CAPABILITY=avx2
fi
if [[ "${TEST_CONFIG}" == "legacy_nvidia_driver" ]]; then
# Make sure that CUDA can be initialized
(cd test && python -c "import torch; torch.rand(2, 2, device='cuda')")
export USE_LEGACY_DRIVER=1
fi
test_python_legacy_jit() {
time python test/run_test.py --include test_jit_legacy test_jit_fuser_legacy --verbose
assert_git_not_dirty
@ -345,12 +339,6 @@ test_h100_symm_mem() {
assert_git_not_dirty
}
test_h100_cutlass_backend() {
# cutlass backend tests for H100
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_backend -k "not addmm" $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
TORCHINDUCTOR_CUTLASS_DIR=$(realpath "./third_party/cutlass") python test/run_test.py --include inductor/test_cutlass_evt $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
}
test_lazy_tensor_meta_reference_disabled() {
export TORCH_DISABLE_FUNCTIONALIZATION_META_REFERENCE=1
echo "Testing lazy tensor operations without meta reference"
@ -365,6 +353,7 @@ test_dynamo_wrapped_shard() {
exit 1
fi
python tools/dynamo/verify_dynamo.py
python tools/dynamo/gb_id_mapping.py verify
# PLEASE DO NOT ADD ADDITIONAL EXCLUDES HERE.
# Instead, use @skipIfTorchDynamo on your tests.
time python test/run_test.py --dynamo \
@ -462,7 +451,7 @@ test_inductor_aoti() {
# rebuild with the build cache with `BUILD_AOT_INDUCTOR_TEST` enabled
/usr/bin/env CMAKE_FRESH=1 BUILD_AOT_INDUCTOR_TEST=1 "${BUILD_COMMAND[@]}"
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference cpp/test_vec_half_AVX2 -dist=loadfile
/usr/bin/env "${TEST_ENVS[@]}" python test/run_test.py --cpp --verbose -i cpp/test_aoti_abi_check cpp/test_aoti_inference -dist=loadfile
}
test_inductor_cpp_wrapper_shard() {
@ -627,8 +616,6 @@ test_perf_for_dashboard() {
device=cuda_a10g
elif [[ "${TEST_CONFIG}" == *h100* ]]; then
device=cuda_h100
elif [[ "${TEST_CONFIG}" == *b200* ]]; then
device=cuda_b200
elif [[ "${TEST_CONFIG}" == *rocm* ]]; then
device=rocm
fi
@ -803,16 +790,6 @@ test_dynamo_benchmark() {
if [[ "${TEST_CONFIG}" == *perf_compare* ]]; then
test_single_dynamo_benchmark "training" "$suite" "$shard_id" --training --amp "$@"
elif [[ "${TEST_CONFIG}" == *perf* ]]; then
# TODO (huydhn): Just smoke test some sample models
if [[ "${TEST_CONFIG}" == *b200* ]]; then
if [[ "${suite}" == "huggingface" ]]; then
export TORCHBENCH_ONLY_MODELS="DistillGPT2"
elif [[ "${suite}" == "timm_models" ]]; then
export TORCHBENCH_ONLY_MODELS="inception_v3"
elif [[ "${suite}" == "torchbench" ]]; then
export TORCHBENCH_ONLY_MODELS="hf_Bert"
fi
fi
test_single_dynamo_benchmark "dashboard" "$suite" "$shard_id" "$@"
else
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
@ -940,6 +917,12 @@ test_torchbench_gcp_smoketest(){
popd
}
test_python_gloo_with_tls() {
source "$(dirname "${BASH_SOURCE[0]}")/run_glootls_test.sh"
assert_git_not_dirty
}
test_aten() {
# Test ATen
# The following test(s) of ATen have already been skipped by caffe2 in rocm environment:
@ -986,8 +969,6 @@ test_without_numpy() {
if [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch;torch.compile(lambda x:print(x))('Hello World')"
fi
# Regression test for https://github.com/pytorch/pytorch/pull/157734 (torch.onnx should be importable without numpy)
python -c "import sys;sys.path.insert(0, 'fake_numpy');import torch; import torch.onnx"
popd
}
@ -1051,10 +1032,20 @@ test_libtorch_api() {
mkdir -p $TEST_REPORTS_DIR
OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="${MNIST_DIR}" "$TORCH_BIN_DIR"/test_api --gtest_filter='-IMethodTest.*' --gtest_output=xml:$TEST_REPORTS_DIR/test_api.xml
"$TORCH_BIN_DIR"/test_tensorexpr --gtest_output=xml:$TEST_REPORTS_DIR/test_tensorexpr.xml
else
# Exclude IMethodTest that relies on torch::deploy, which will instead be ran in test_deploy
OMP_NUM_THREADS=2 TORCH_CPP_TEST_MNIST_PATH="${MNIST_DIR}" python test/run_test.py --cpp --verbose -i cpp/test_api -k "not IMethodTest"
# On s390x, pytorch is built without llvm.
# Even if it would be built with llvm, llvm currently doesn't support used features on s390x and
# test fails with errors like:
# JIT session error: Unsupported target machine architecture in ELF object pytorch-jitted-objectbuffer
# unknown file: Failure
# C++ exception with description "valOrErr INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/torch/csrc/jit/tensorexpr/llvm_jit.h":34, please report a bug to PyTorch. Unexpected failure in LLVM JIT: Failed to materialize symbols: { (main, { func }) }
if [[ "${BUILD_ENVIRONMENT}" != *s390x* ]]; then
python test/run_test.py --cpp --verbose -i cpp/test_tensorexpr
fi
fi
# quantization is not fully supported on s390x yet
@ -1322,13 +1313,10 @@ EOF
# Step 2. Make sure that the public API test "test_correct_module_names" fails when an existing
# file is modified to introduce an invalid public API function.
# The filepath here must not have __all__ defined in it, otherwise the test will pass.
# If your PR introduces __all__ to torch/cuda/streams.py please point this to another file
# that does not have __all__ defined.
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/cuda/streams.py"
EXISTING_FILEPATH="${TORCH_INSTALL_DIR}/nn/parameter.py"
cp -v "${EXISTING_FILEPATH}" "${EXISTING_FILEPATH}.orig"
echo "${BAD_PUBLIC_FUNC}" >> "${EXISTING_FILEPATH}"
invalid_api="torch.cuda.streams.new_public_func"
invalid_api="torch.nn.parameter.new_public_func"
echo "Appended an invalid public API function to existing file ${EXISTING_FILEPATH}..."
check_public_api_test_fails \
@ -1562,7 +1550,7 @@ test_executorch() {
test_linux_aarch64() {
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops test_cpp_extensions_open_device_registration \
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
# Dynamo tests
@ -1612,13 +1600,7 @@ if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-baze
fi
if [[ "${TEST_CONFIG}" == *numpy_2* ]]; then
# Install numpy-2.0.2 and compatible scipy & numba versions
# Force re-install of pandas to avoid error where pandas checks numpy version from initial install and fails upon import
TMP_PANDAS_VERSION=$(python -c "import pandas; print(pandas.__version__)" 2>/dev/null)
if [ -n "$TMP_PANDAS_VERSION" ]; then
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0 pandas=="$TMP_PANDAS_VERSION" --force-reinstall
else
python -m pip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
fi
python -mpip install --pre numpy==2.0.2 scipy==1.13.1 numba==0.60.0
python test/run_test.py --include dynamo/test_functions.py dynamo/test_unspec.py test_binary_ufuncs.py test_fake_tensor.py test_linalg.py test_numpy_interop.py test_tensor_creation_ops.py test_torch.py torch_np/test_basic.py
elif [[ "${BUILD_ENVIRONMENT}" == *aarch64* && "${TEST_CONFIG}" != *perf_cpu_aarch64* ]]; then
test_linux_aarch64
@ -1672,37 +1654,49 @@ elif [[ "${TEST_CONFIG}" == *timm* ]]; then
id=$((SHARD_NUMBER-1))
test_dynamo_benchmark timm_models "$id"
elif [[ "${TEST_CONFIG}" == cachebench ]]; then
install_torchaudio
install_torchaudio cuda
install_torchvision
PYTHONPATH=/torchbench test_cachebench
checkout_install_torchbench nanogpt BERT_pytorch resnet50 hf_T5 llama moco
PYTHONPATH=$(pwd)/torchbench test_cachebench
elif [[ "${TEST_CONFIG}" == verify_cachebench ]]; then
install_torchaudio
install_torchaudio cpu
install_torchvision
PYTHONPATH=/torchbench test_verify_cachebench
checkout_install_torchbench nanogpt
PYTHONPATH=$(pwd)/torchbench test_verify_cachebench
elif [[ "${TEST_CONFIG}" == *torchbench* ]]; then
install_torchaudio
if [[ "${TEST_CONFIG}" == *cpu* ]]; then
install_torchaudio cpu
else
install_torchaudio cuda
fi
install_torchvision
install_torchao
TORCH_CUDA_ARCH_LIST="8.0;8.6" install_torchao
id=$((SHARD_NUMBER-1))
# https://github.com/opencv/opencv-python/issues/885
pip_install opencv-python==4.8.0.74
if [[ "${TEST_CONFIG}" == *inductor_torchbench_smoketest_perf* ]]; then
PYTHONPATH=/torchbench test_inductor_torchbench_smoketest_perf
checkout_install_torchbench hf_Bert hf_Albert timm_vision_transformer
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_smoketest_perf
elif [[ "${TEST_CONFIG}" == *inductor_torchbench_cpu_smoketest_perf* ]]; then
PYTHONPATH=/torchbench test_inductor_torchbench_cpu_smoketest_perf
checkout_install_torchbench timm_vision_transformer phlippe_densenet basic_gnn_edgecnn \
llama_v2_7b_16h resnet50 timm_efficientnet mobilenet_v3_large timm_resnest \
functorch_maml_omniglot yolov3 mobilenet_v2 resnext50_32x4d densenet121 mnasnet1_0
PYTHONPATH=$(pwd)/torchbench test_inductor_torchbench_cpu_smoketest_perf
elif [[ "${TEST_CONFIG}" == *torchbench_gcp_smoketest* ]]; then
TORCHBENCHPATH=/torchbench test_torchbench_gcp_smoketest
checkout_install_torchbench
TORCHBENCHPATH=$(pwd)/torchbench test_torchbench_gcp_smoketest
else
checkout_install_torchbench
# Do this after checkout_install_torchbench to ensure we clobber any
# nightlies that torchbench may pull in
if [[ "${TEST_CONFIG}" != *cpu* ]]; then
install_torchrec_and_fbgemm
fi
PYTHONPATH=/torchbench test_dynamo_benchmark torchbench "$id"
PYTHONPATH=$(pwd)/torchbench test_dynamo_benchmark torchbench "$id"
fi
elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
install_torchvision
PYTHONPATH=/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
PYTHONPATH=$(pwd)/torchbench test_inductor_cpp_wrapper_shard "$SHARD_NUMBER"
if [[ "$SHARD_NUMBER" -eq "1" ]]; then
test_inductor_aoti
fi
@ -1767,8 +1761,6 @@ elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else
install_torchvision
install_monkeytype

View File

@ -1,34 +0,0 @@
# If you want to rebuild, run this with $env:REBUILD=1
# If you want to build with CUDA, run this with $env:USE_CUDA=1
# If you want to build without CUDA, run this with $env:USE_CUDA=0
# Check for setup.py in the current directory
if (-not (Test-Path "setup.py")) {
Write-Host "ERROR: Please run this build script from PyTorch root directory."
exit 1
}
# Get the script's parent directory
$ScriptParentDir = Split-Path -Parent $MyInvocation.MyCommand.Definition
# Set TMP_DIR and convert to Windows path
$env:TMP_DIR = Join-Path (Get-Location) "build\win_tmp"
$env:TMP_DIR_WIN = $env:TMP_DIR # Already in Windows format, no cygpath needed
# Set final package directory with default fallback
if (-not $env:PYTORCH_FINAL_PACKAGE_DIR) {
$env:PYTORCH_FINAL_PACKAGE_DIR = "C:\w\build-results"
}
# Create the final package directory if it doesn't exist
if (-not (Test-Path $env:PYTORCH_FINAL_PACKAGE_DIR)) {
New-Item -Path $env:PYTORCH_FINAL_PACKAGE_DIR -ItemType Directory -Force | Out-Null
}
# Set script helpers directory
$env:SCRIPT_HELPERS_DIR = Join-Path $ScriptParentDir "win-test-helpers\arm64"
# Run the main build script
& "$env:SCRIPT_HELPERS_DIR\build_pytorch.ps1"
Write-Host "BUILD PASSED"

View File

@ -1,24 +0,0 @@
#!/bin/bash
set -ex -o pipefail
SCRIPT_PARENT_DIR=$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
# shellcheck source=./common.sh
source "$SCRIPT_PARENT_DIR/common.sh"
run_tests() {
echo Running smoke_test.py...
python ./.ci/pytorch/smoke_test/smoke_test.py --package torchonly
echo Running test_autograd.oy, test_nn.py, test_torch.py...
cd test
CORE_TEST_LIST=("test_autograd.py" "test_nn.py" "test_modules.py")
for t in "${CORE_TEST_LIST[@]}"; do
echo "Running test: $t"
python "$t" --verbose --save-xml --use-pytest -vvvv -rfEsxXP -p no:xdist
done
}
run_tests
echo "TEST PASSED"

View File

@ -1,98 +0,0 @@
# TODO: we may can use existing build_pytorch.bat for arm64
if ($env:DEBUG -eq "1") {
$env:BUILD_TYPE = "debug"
} else {
$env:BUILD_TYPE = "release"
}
# This inflates our log size slightly, but it is REALLY useful to be
# able to see what our cl.exe commands are. (since you can actually
# just copy-paste them into a local Windows setup to just rebuild a
# single file.)
# log sizes are too long, but leaving this here in case someone wants to use it locally
# $env:CMAKE_VERBOSE_MAKEFILE = "1"
$env:INSTALLER_DIR = Join-Path $env:SCRIPT_HELPERS_DIR "installation-helpers"
cd ..
# Environment variables
$env:SCCACHE_IDLE_TIMEOUT = "0"
$env:SCCACHE_IGNORE_SERVER_IO_ERROR = "1"
$env:CMAKE_BUILD_TYPE = $env:BUILD_TYPE
$env:CMAKE_C_COMPILER_LAUNCHER = "sccache"
$env:CMAKE_CXX_COMPILER_LAUNCHER = "sccache"
$env:libuv_ROOT = Join-Path $env:DEPENDENCIES_DIR "libuv\install"
$env:MSSdk = "1"
if ($env:PYTORCH_BUILD_VERSION) {
$env:PYTORCH_BUILD_VERSION = $env:PYTORCH_BUILD_VERSION
$env:PYTORCH_BUILD_NUMBER = "1"
}
$env:CMAKE_POLICY_VERSION_MINIMUM = "3.5"
# Set BLAS type
if ($env:ENABLE_APL -eq "1") {
$env:BLAS = "APL"
$env:USE_LAPACK = "1"
} elseif ($env:ENABLE_OPENBLAS -eq "1") {
$env:BLAS = "OpenBLAS"
$env:OpenBLAS_HOME = Join-Path $env:DEPENDENCIES_DIR "OpenBLAS\install"
}
# Change to source directory
Set-Location $env:PYTORCH_ROOT
# Copy libuv.dll
Copy-Item -Path (Join-Path $env:libuv_ROOT "lib\Release\uv.dll") -Destination "torch\lib\uv.dll" -Force
# Create virtual environment
python -m venv .venv
.\.venv\Scripts\Activate.ps1
where.exe python
# Python install dependencies
python -m pip install --upgrade pip
pip install setuptools pyyaml
pip install -r requirements.txt
# Set after installing psutil
$env:DISTUTILS_USE_SDK = "1"
# Print all environment variables
Get-ChildItem Env:
# Start and inspect sccache
sccache --start-server
sccache --zero-stats
sccache --show-stats
# Build the wheel
python setup.py bdist_wheel
if ($LASTEXITCODE -ne 0) { exit 1 }
# Install the wheel locally
$whl = Get-ChildItem -Path "dist\*.whl" | Select-Object -First 1
if ($whl) {
python -mpip install --no-index --no-deps $whl.FullName
}
# Copy final wheel
robocopy "dist" "$env:PYTORCH_FINAL_PACKAGE_DIR" *.whl
# Export test times
python tools/stats/export_test_times.py
# Copy additional CI files
robocopy ".additional_ci_files" "$env:PYTORCH_FINAL_PACKAGE_DIR\.additional_ci_files" /E
# Save ninja log
Copy-Item -Path "build\.ninja_log" -Destination $env:PYTORCH_FINAL_PACKAGE_DIR -Force
# Final sccache stats and stop
sccache --show-stats
sccache --stop-server
exit 0

View File

@ -41,7 +41,7 @@ fi
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.15.1.0
python -m pip install z3-solver==4.12.2.0
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
python -m pip install tlparse==0.3.30

View File

@ -148,7 +148,14 @@ if "%NVIDIA_GPU_EXISTS%" == "0" (
goto end
)
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
set BUILD_SPLIT_CUDA=
if exist "%install_root%\lib\torch_cuda_cu.lib" if exist "%install_root%\lib\torch_cuda_cpp.lib" set BUILD_SPLIT_CUDA=ON
if "%BUILD_SPLIT_CUDA%" == "ON" (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda_cu.lib torch_cuda_cpp.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ /INCLUDE:?_torch_cuda_cu_linker_symbol_op_cuda@native@at@@YA?AVTensor@2@AEBV32@@Z
) else (
cl %PYTORCH_ROOT%\.ci\pytorch\test_example_code\check-torch-cuda.cpp torch_cpu.lib c10.lib torch_cuda.lib /EHsc /std:c++17 /link /INCLUDE:?warp_size@cuda@at@@YAHXZ
)
.\check-torch-cuda.exe
if ERRORLEVEL 1 exit /b 1

View File

@ -184,14 +184,16 @@ tmp_env_name="wheel_py$python_nodot"
conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_python" ${CONDA_ENV_CREATE_FLAGS}
source activate "$tmp_env_name"
retry pip install -r "${pytorch_rootdir}/requirements-build.txt"
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing-extensions
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing_extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
export USE_DISTRIBUTED=1
if [[ -n "$CROSS_COMPILE_ARM64" ]]; then
export CMAKE_OSX_ARCHITECTURES=arm64
fi
export USE_MKLDNN=OFF
export USE_QNNPACK=OFF
export BUILD_TEST=OFF
@ -199,7 +201,16 @@ export BUILD_TEST=OFF
pushd "$pytorch_rootdir"
echo "Calling setup.py bdist_wheel at $(date)"
python setup.py bdist_wheel -d "$whl_tmp_dir"
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "Calling setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 python setup.py bdist_wheel -d "$whl_tmp_dir"
echo "Finished setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
echo "Calling setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 CMAKE_FRESH=1 python setup.py bdist_wheel -d "$whl_tmp_dir"
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
python setup.py bdist_wheel -d "$whl_tmp_dir"
fi
echo "Finished setup.py bdist_wheel at $(date)"

View File

@ -65,8 +65,16 @@ fi
if [[ "$PACKAGE_TYPE" != libtorch ]]; then
if [[ "\$BUILD_ENVIRONMENT" != *s390x* ]]; then
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pkg_no_python="$(ls -1 /final_pkgs/torch_no_python* | sort |tail -1)"
pkg_torch="$(ls -1 /final_pkgs/torch-* | sort |tail -1)"
# todo: after folder is populated use the pypi_pkg channel instead
pip install "\$pkg_no_python" "\$pkg_torch" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}_pypi_pkg"
retry pip install -q numpy protobuf typing-extensions
else
pip install "\$pkg" --index-url "https://download.pytorch.org/whl/\${CHANNEL}/${DESIRED_CUDA}"
retry pip install -q numpy protobuf typing-extensions
fi
else
pip install "\$pkg"
retry pip install -q numpy protobuf typing-extensions

View File

@ -134,6 +134,7 @@ export DESIRED_PYTHON="${DESIRED_PYTHON:-}"
export DESIRED_CUDA="$DESIRED_CUDA"
export LIBTORCH_VARIANT="${LIBTORCH_VARIANT:-}"
export BUILD_PYTHONLESS="${BUILD_PYTHONLESS:-}"
export USE_SPLIT_BUILD="${USE_SPLIT_BUILD:-}"
if [[ "${OSTYPE}" == "msys" ]]; then
export LIBTORCH_CONFIG="${LIBTORCH_CONFIG:-}"
if [[ "${LIBTORCH_CONFIG:-}" == 'debug' ]]; then

View File

@ -23,6 +23,10 @@ if [[ "${DRY_RUN}" = "disabled" ]]; then
AWS_S3_CP="aws s3 cp"
fi
if [[ "${USE_SPLIT_BUILD:-false}" == "true" ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_pypi_pkg"
fi
# this is special build with all dependencies packaged
if [[ ${BUILD_NAME} == *-full* ]]; then
UPLOAD_SUBFOLDER="${UPLOAD_SUBFOLDER}_full"

View File

@ -7,12 +7,12 @@ max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,F824,
E203,E305,E402,E501,E704,E721,E741,F405,F841,F999,W503,W504,C408,E302,W291,E303,
# shebang has extra meaning in fbcode lints, so I think it's not worth trying
# to line this up with executable bit
EXE001,
# these ignores are from flake8-bugbear; please fix!
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907,B908,B910
B007,B008,B017,B019,B023,B028,B903,B904,B905,B906,B907
# these ignores are from flake8-comprehensions; please fix!
C407,
# these ignores are from flake8-logging-format; please fix!

View File

@ -53,12 +53,16 @@ self-hosted-runner:
- linux.rocm.gpu.mi250
- linux.rocm.gpu.2
- linux.rocm.gpu.4
# gfx942 runners
- linux.rocm.gpu.gfx942.2
- linux.rocm.gpu.gfx942.4
# MI300 runners
- linux.rocm.gpu.mi300.2
- linux.rocm.gpu.mi300.4
- rocm-docker
# Repo-specific Apple hosted runners
- macos-m1-ultra
- macos-m2-14
# Org wise AWS `mac2.metal` runners (2020 Mac mini hardware powered by Apple silicon M1 processors)
- macos-m1-stable
- macos-m1-13
- macos-m1-14
# GitHub-hosted MacOS runners
- macos-latest-xlarge

View File

@ -0,0 +1,78 @@
name: build android
description: build android for a specific arch
inputs:
arch:
description: arch to build
required: true
arch-for-build-env:
description: |
arch to pass to build environment.
This is currently different than the arch name we use elsewhere, which
should be fixed.
required: true
github-secret:
description: github token
required: true
build-environment:
required: true
description: Top-level label for what's being built/tested.
docker-image:
required: true
description: Name of the base docker image to build with.
branch:
required: true
description: What branch we are building on.
outputs:
container_id:
description: Docker container identifier used to build the artifacts
value: ${{ steps.build.outputs.container_id }}
runs:
using: composite
steps:
- name: Build-${{ inputs.arch }}
id: build
shell: bash
env:
BRANCH: ${{ inputs.branch }}
BUILD_ENVIRONMENT: pytorch-linux-xenial-py3-clang5-android-ndk-r19c-${{ inputs.arch-for-build-env }}-build"
AWS_DEFAULT_REGION: us-east-1
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
SCCACHE_REGION: us-east-1
DOCKER_IMAGE: ${{ inputs.docker-image }}
MATRIX_ARCH: ${{ inputs.arch }}
run: |
# detached container should get cleaned up by teardown_ec2_linux
set -exo pipefail
export container_name
container_name=$(docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e AWS_DEFAULT_REGION \
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
-e SCCACHE_BUCKET \
-e SCCACHE_REGION \
-e SKIP_SCCACHE_INITIALIZATION=1 \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
--security-opt seccomp=unconfined \
--cap-add=SYS_PTRACE \
--tty \
--detach \
--user jenkins \
-w /var/lib/jenkins/workspace \
"${DOCKER_IMAGE}"
)
git submodule sync && git submodule update -q --init --recursive --depth 1
docker cp "${GITHUB_WORKSPACE}/." "${container_name}:/var/lib/jenkins/workspace"
(echo "sudo chown -R jenkins . && .ci/pytorch/build.sh && find ${BUILD_ROOT} -type f -name "*.a" -or -name "*.o" -delete" | docker exec -u jenkins -i "${container_name}" bash) 2>&1
# Copy install binaries back
mkdir -p "${GITHUB_WORKSPACE}/build_android_install_${MATRIX_ARCH}"
docker cp "${container_name}:/var/lib/jenkins/workspace/build_android/install" "${GITHUB_WORKSPACE}/build_android_install_${MATRIX_ARCH}"
echo "container_id=${container_name}" >> "${GITHUB_OUTPUT}"

View File

@ -70,7 +70,7 @@ runs:
set -eux
# PyYAML 6.0 doesn't work with MacOS x86 anymore
# This must run on Python-3.7 (AmazonLinux2) so can't use request=3.32.2
python3 -m pip install requests==2.27.1 pyyaml==6.0.2
python3 -m pip install requests==2.27.1 pyyaml==6.0.1
- name: Parse ref
id: parse-ref

View File

@ -126,7 +126,7 @@ runs:
shell: bash
continue-on-error: true
run: |
python3 -m pip install psutil==5.9.8 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -24,6 +24,7 @@ runs:
-e PYTORCH_FINAL_PACKAGE_DIR \
-e PYTORCH_ROOT \
-e SKIP_ALL_TESTS \
-e USE_SPLIT_BUILD \
--tty \
--detach \
-v "${GITHUB_WORKSPACE}/pytorch:/pytorch" \

View File

@ -1 +1 @@
e500f0cf88bc57ffd8b0029033da305eef24ae25
6c57850358f34c47802db216b0746e4e9d08a95a

View File

@ -1 +1 @@
7f1de94a4c2d14f59ad4ca84538c36084ea6b2c8
5fb5024118e9bb9decf96c2b0b1a8f0010bf56be

View File

@ -1 +0,0 @@
35afe1b30b154114dc2ee8329e12f8cf3fe9f576

View File

@ -1 +1 @@
095faec1e7b6cc47220181e74ae9cde2605f9b00
1c00dea2c9adb2137903c86b4191e8c247f8fda9

View File

@ -76,7 +76,6 @@
- .github/ci_commit_pins/audio.txt
- .github/ci_commit_pins/vision.txt
- .github/ci_commit_pins/torchdynamo.txt
- .github/ci_commit_pins/vllm.txt
- .ci/docker/ci_commit_pins/triton.txt
approved_by:
- pytorchbot
@ -131,6 +130,21 @@
- Lint
- pull
- name: Mobile
patterns:
- ios/**
- android/**
- test/mobile/**
approved_by:
- linbinyu
- IvanKobzarev
- dreiss
- raziel
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: PrimTorch
patterns:
- torch/_meta_registrations.py
@ -477,23 +491,6 @@
- srossross
- chillee
- zou3519
- guilhermeleobas
mandatory_checks_name:
- EasyCLA
- Lint
- pull
- name: Dynamo
patterns:
- torch/_dynamo/**
- torch/csrc/dynamo/**
- test/dynamo/**
- test/dynamo_expected_failures/**
- test/dynamo_skips/**
- test/inductor_expected_failures/**
- test/inductor_skips/**
approved_by:
- guilhermeleobas
mandatory_checks_name:
- EasyCLA
- Lint

View File

@ -31,9 +31,7 @@ ciflow_push_tags:
- ciflow/pull
- ciflow/h100
- ciflow/h100-distributed
- ciflow/win-arm64
- ciflow/h100-symm-mem
- ciflow/h100-cutlass-backend
retryable_workflows:
- pull
- trunk

View File

@ -1,15 +1,14 @@
# This file is to cache other dependencies not specified elsewhere in:
# requirements.txt
# requirements-build.txt
# requirement.txt
# docs/requirements.txt
# docs/cpp/requirements.txt
# functorch/docs/requirements.txt
# .ci/docker/requirements-ci.txt
boto3==1.35.42
jinja2==3.1.6
lintrunner==0.12.7
lintrunner==0.10.7
ninja==1.10.0.post1
nvidia-ml-py==11.525.84
pyyaml==6.0.2
pyyaml==6.0
requests==2.32.4
rich==14.1.0
rich==10.9.0

View File

@ -2,7 +2,7 @@ boto3==1.35.42
cmake==3.27.*
expecttest==0.3.0
fbscribelogger==0.1.7
filelock==3.18.0
filelock==3.6.0
hypothesis==6.56.4
librosa>=0.6.2
mpmath==1.3.0
@ -16,7 +16,7 @@ packaging==23.1
parameterized==0.8.1
pillow==10.3.0
protobuf==5.29.4
psutil==5.9.8
psutil==5.9.1
pygments==2.15.0
pytest-cpp==2.3.0
pytest-flakefinder==1.1.0
@ -33,4 +33,4 @@ tensorboard==2.13.0
typing-extensions==4.12.2
unittest-xml-reporting<=3.2.0,>=2.0.0
xdoctest==1.1.0
z3-solver==4.15.1.0
z3-solver==4.12.2.0

View File

@ -193,7 +193,7 @@ LIBTORCH_CONTAINER_IMAGES: dict[str, str] = {
"cpu": "libtorch-cxx11-builder:cpu",
}
FULL_PYTHON_VERSIONS = ["3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t"]
FULL_PYTHON_VERSIONS = ["3.9", "3.10", "3.11", "3.12", "3.13", "3.13t"]
def translate_desired_cuda(gpu_arch_type: str, gpu_arch_version: str) -> str:
@ -273,6 +273,7 @@ def generate_wheels_matrix(
os: str,
arches: Optional[list[str]] = None,
python_versions: Optional[list[str]] = None,
use_split_build: bool = False,
) -> list[dict[str, str]]:
package_type = "wheel"
if os == "linux" or os == "linux-aarch64" or os == "linux-s390x":
@ -314,11 +315,15 @@ def generate_wheels_matrix(
# TODO: Enable python 3.13t on cpu-s390x
if gpu_arch_type == "cpu-s390x" and python_version == "3.13t":
continue
# TODO: Enable python 3.14 on non linux OSes
if os != "linux" and (
python_version == "3.14" or python_version == "3.14t"
if use_split_build and (
arch_version not in ["12.6", "12.8", "12.9", "cpu"] or os != "linux"
):
continue
raise RuntimeError(
"Split build is only supported on linux with cuda 12* and cpu.\n"
f"Currently attempting to build on arch version {arch_version} and os {os}.\n"
"Please modify the matrix generation to exclude this combination."
)
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
@ -334,6 +339,7 @@ def generate_wheels_matrix(
"gpu_arch_type": gpu_arch_type,
"gpu_arch_version": gpu_arch_version,
"desired_cuda": desired_cuda,
"use_split_build": "True" if use_split_build else "False",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version].split(
":"
)[0],
@ -366,6 +372,7 @@ def generate_wheels_matrix(
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "True" if use_split_build else "False",
"container_image": WHEEL_CONTAINER_IMAGES[
arch_version
].split(":")[0],
@ -388,6 +395,7 @@ def generate_wheels_matrix(
"desired_cuda": translate_desired_cuda(
gpu_arch_type, gpu_arch_version
),
"use_split_build": "True" if use_split_build else "False",
"container_image": WHEEL_CONTAINER_IMAGES[arch_version].split(
":"
)[0],

View File

@ -59,7 +59,9 @@ class BinaryBuildWorkflow:
is_scheduled: str = ""
branches: str = "nightly"
# Mainly for macos
cross_compile_arm64: bool = False
macos_runner: str = "macos-14-xlarge"
use_split_build: bool = False
# Mainly used for libtorch builds
build_variant: str = ""
@ -70,6 +72,9 @@ class BinaryBuildWorkflow:
for item in [self.os, "binary", self.package_type, self.build_variant]
if item != ""
)
if self.use_split_build:
# added to distinguish concurrency groups
self.build_environment += "-split"
def generate_workflow_file(self, workflow_template: jinja2.Template) -> None:
output_file_path = (
@ -112,6 +117,21 @@ LINUX_BINARY_BUILD_WORFKLOWS = [
isolated_workflow=True,
),
),
# See https://github.com/pytorch/pytorch/issues/138750
# BinaryBuildWorkflow(
# os=OperatingSystem.LINUX,
# package_type="manywheel",
# build_configs=generate_binary_build_matrix.generate_wheels_matrix(
# OperatingSystem.LINUX,
# use_split_build=True,
# arches=["11.8", "12.1", "12.4", "cpu"],
# ),
# ciflow_config=CIFlowConfig(
# labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL},
# isolated_workflow=True,
# ),
# use_split_build=True,
# ),
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="libtorch",
@ -155,11 +175,27 @@ LINUX_BINARY_SMOKE_WORKFLOWS = [
package_type="manywheel",
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.LINUX,
arches=["12.8"],
python_versions=["3.12"],
arches=["12.6", "12.8", "12.9"],
python_versions=["3.9"],
),
branches="main",
),
# See https://github.com/pytorch/pytorch/issues/138750
# BinaryBuildWorkflow(
# os=OperatingSystem.LINUX,
# package_type="manywheel",
# build_configs=generate_binary_build_matrix.generate_wheels_matrix(
# OperatingSystem.LINUX,
# arches=["11.8", "12.1", "12.4"],
# python_versions=["3.9"],
# use_split_build=True,
# ),
# ciflow_config=CIFlowConfig(
# labels={LABEL_CIFLOW_PERIODIC},
# ),
# branches="main",
# use_split_build=True,
# ),
BinaryBuildWorkflow(
os=OperatingSystem.LINUX,
package_type="libtorch",
@ -302,6 +338,7 @@ MACOS_BINARY_BUILD_WORKFLOWS = [
generate_binary_build_matrix.RELEASE,
libtorch_variants=["shared-with-deps"],
),
cross_compile_arm64=False,
macos_runner="macos-14-xlarge",
ciflow_config=CIFlowConfig(
labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH},
@ -314,6 +351,7 @@ MACOS_BINARY_BUILD_WORKFLOWS = [
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
OperatingSystem.MACOS_ARM64
),
cross_compile_arm64=False,
macos_runner="macos-14-xlarge",
ciflow_config=CIFlowConfig(
labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL},

View File

@ -2,7 +2,7 @@
set -ex
# Use uv to speed up lintrunner init
python3 -m pip install -U uv==0.8.* setuptools
python3 -m pip install uv==0.1.45 setuptools
CACHE_DIRECTORY="/tmp/.lintbin"
# Try to recover the cached binaries

View File

@ -262,12 +262,7 @@ def is_exception_branch(branch: str) -> bool:
"""
Branches that get opted out of experiments by default, until they're explicitly enabled.
"""
return branch.split("/", maxsplit=1)[0] in {
"main",
"nightly",
"release",
"landchecks",
}
return branch.split("/")[0] in {"main", "nightly", "release", "landchecks"}
def load_yaml(yaml_text: str) -> Any:

View File

@ -1891,9 +1891,7 @@ def validate_revert(
else pr.get_comment_by_id(comment_id)
)
if comment.editor_login is not None:
raise PostCommentError(
"Halting the revert as the revert comment has been edited."
)
raise PostCommentError("Don't want to revert based on edited command")
author_association = comment.author_association
author_login = comment.author_login
allowed_reverters = ["COLLABORATOR", "MEMBER", "OWNER"]

View File

@ -47,6 +47,9 @@ env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
PR_NUMBER: ${{ github.event.pull_request.number }}
SKIP_ALL_TESTS: 0
{%- if cross_compile_arm64 %}
CROSS_COMPILE_ARM64: 1
{% endif %}
!{{ common.concurrency(build_environment) }}
jobs:

View File

@ -25,6 +25,11 @@
DOCKER_IMAGE: !{{ config["container_image"] }}
DOCKER_IMAGE_TAG_PREFIX: !{{ config["container_image_tag_prefix"] }}
{%- endif %}
{%- if config["package_type"] == "manywheel" %}
{%- if config.use_split_build is defined %}
use_split_build: !{{ config["use_split_build"] }}
{%- endif %}
{%- endif %}
{%- if config["package_type"] == "libtorch" %}
{%- if config["libtorch_config"] %}
LIBTORCH_CONFIG: !{{ config["libtorch_config"] }}

View File

@ -26,6 +26,13 @@ on:
default: 240
type: number
description: timeout for the job
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
ALPINE_IMAGE:
required: false
type: string
@ -110,6 +117,7 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Make the env permanent during this workflow (but not the secrets)
shell: bash
@ -134,6 +142,7 @@ jobs:
echo "PR_NUMBER=${{ env.PR_NUMBER }}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
echo "SHA1=${{ env.SHA1 }}"
echo "USE_SPLIT_BUILD=${{ env.use_split_build }}"
} >> "${GITHUB_ENV} }}"
- name: List the env
@ -252,6 +261,7 @@ jobs:
-e PYTORCH_ROOT \
-e SKIP_ALL_TESTS \
-e PYTORCH_EXTRA_INSTALL_REQUIREMENTS \
-e USE_SPLIT_BUILD \
--tty \
--detach \
-v "${GITHUB_WORKSPACE}/pytorch:/pytorch" \

View File

@ -64,6 +64,13 @@ on:
required: true
type: string
description: Hardware to run this job on. Valid values are linux.4xlarge, linux.4xlarge.nvidia.gpu, linux.arm64.2xlarge, and linux.rocm.gpu
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
secrets:
github-token:
required: true
@ -97,6 +104,7 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Make the env permanent during this workflow (but not the secrets)
shell: bash
@ -121,6 +129,7 @@ jobs:
echo "PR_NUMBER=${{ env.PR_NUMBER }}"
echo "PYTORCH_FINAL_PACKAGE_DIR=${{ env.PYTORCH_FINAL_PACKAGE_DIR }}"
echo "SHA1=${{ env.SHA1 }}"
echo "USE_SPLIT_BUILD=${{ env.USE_SPLIT_BUILD }}"
} >> "${GITHUB_ENV} }}"
- name: "[FB EMPLOYEES] Enable SSH (Click me for login details)"

View File

@ -51,6 +51,13 @@ on:
required: false
type: string
description: Desired python version
use_split_build:
description: |
[Experimental] Build a libtorch only wheel and build pytorch such that
are built from the libtorch wheel.
required: false
type: boolean
default: false
secrets:
github-token:
required: true
@ -79,6 +86,7 @@ jobs:
PR_NUMBER: ${{ github.event.pull_request.number }}
PYTORCH_FINAL_PACKAGE_DIR: /artifacts
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
USE_SPLIT_BUILD: ${{ inputs.use_split_build }}
steps:
- name: Checkout PyTorch
uses: pytorch/pytorch/.github/actions/checkout-pytorch@main

View File

@ -1,43 +0,0 @@
name: Get Changed Files
on:
workflow_call:
outputs:
changed-files:
description: "List of changed files (space-separated) or '*' if not in a PR"
value: ${{ jobs.get-changed-files.outputs.changed-files }}
jobs:
get-changed-files:
runs-on: ubuntu-latest
outputs:
changed-files: ${{ steps.get-files.outputs.changed-files }}
steps:
- name: Get changed files
id: get-files
env:
GH_TOKEN: ${{ github.token }}
run: |
# Check if we're in a pull request context
if [ "${{ github.event_name }}" = "pull_request" ] || [ "${{ github.event_name }}" = "pull_request_target" ]; then
echo "Running in PR context"
# Get the PR number from the github context
PR_NUMBER="${{ github.event.number }}"
# Use gh CLI to get changed files in the PR with explicit repo
CHANGED_FILES=$(gh api repos/${{ github.repository }}/pulls/$PR_NUMBER/files --paginate --jq '.[] | select(.status != "removed") | .filename' | tr '\n' ' ' | sed 's/ $//')
if [ -z "$CHANGED_FILES" ]; then
echo "No changed files found, setting to '*'"
CHANGED_FILES="*"
fi
echo "Changed files: $CHANGED_FILES"
echo "changed-files=$CHANGED_FILES" >> "$GITHUB_OUTPUT"
else
echo "Not in PR context, setting changed files to '*'"
echo "changed-files=*" >> "$GITHUB_OUTPUT"
fi

View File

@ -16,6 +16,11 @@ on:
type: boolean
default: true
description: If set, upload generated build artifacts.
build-with-debug:
required: false
type: boolean
default: false
description: If set, build in debug mode.
sync-tag:
required: false
type: string
@ -82,6 +87,7 @@ on:
required: false
type: number
default: 1
allow-reuse-old-whl:
description: |
If set, the build try to pull an old wheel from s3 that was built on a
@ -89,13 +95,6 @@ on:
required: false
type: boolean
default: true
build-additional-packages:
description: |
If set, the build job will also builds these packages and saves their
wheels as artifacts
required: false
type: string
default: ""
secrets:
HUGGING_FACE_HUB_TOKEN:
@ -107,6 +106,7 @@ on:
description: |
FB app token to write to scribe endpoint
outputs:
docker-image:
value: ${{ jobs.build.outputs.docker-image }}
@ -225,7 +225,7 @@ jobs:
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
mkdir -p ../../usage_logs
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7
python3 -m tools.stats.monitor \
--log-interval "$MONITOR_LOG_INTERVAL" \
--data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" \
@ -247,6 +247,8 @@ jobs:
env:
BUILD_ENVIRONMENT: ${{ inputs.build-environment }}
BRANCH: ${{ steps.parse-ref.outputs.branch }}
# TODO duplicated
AWS_DEFAULT_REGION: us-east-1
PR_NUMBER: ${{ github.event.pull_request.number }}
SHA1: ${{ github.event.pull_request.head.sha || github.sha }}
# Do not set SCCACHE_S3_KEY_PREFIX to share the cache between all build jobs
@ -258,10 +260,10 @@ jobs:
DOCKER_IMAGE: ${{ steps.calculate-docker-image.outputs.docker-image }}
DOCKER_IMAGE_S390X: ${{ inputs.docker-image-name }}
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
DEBUG: ${{ inputs.build-with-debug && '1' || '0' }}
OUR_GITHUB_JOB_ID: ${{ steps.get-job-id.outputs.job-id }}
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.SCRIBE_GRAPHQL_ACCESS_TOKEN }}
BUILD_ADDITIONAL_PACKAGES: ${{ inputs.build-additional-packages }}
run: |
START_TIME=$(date +%s)
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then
@ -293,6 +295,7 @@ jobs:
container_name=$(docker run \
-e BUILD_ENVIRONMENT \
-e MAX_JOBS="$(nproc --ignore=2)" \
-e AWS_DEFAULT_REGION \
-e PR_NUMBER \
-e SHA1 \
-e BRANCH \
@ -306,7 +309,7 @@ jobs:
-e OUR_GITHUB_JOB_ID \
-e HUGGING_FACE_HUB_TOKEN \
-e SCRIBE_GRAPHQL_ACCESS_TOKEN \
-e BUILD_ADDITIONAL_PACKAGES \
-e USE_SPLIT_BUILD \
--memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \
--memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \
--env-file="/tmp/github_env_${GITHUB_RUN_ID}" \
@ -320,11 +323,6 @@ jobs:
"${USED_IMAGE}" \
${DOCKER_SHELL_CMD}
)
if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then
docker exec -t "${container_name}" sh -c "python3 -m pip install -r requirements.txt"
fi
docker exec -t "${container_name}" sh -c '.ci/pytorch/build.sh'
END_TIME=$(date +%s)

View File

@ -96,7 +96,7 @@ jobs:
steps:
- name: Setup SSH (Click me for login details)
uses: pytorch/test-infra/.github/actions/setup-ssh@main
if: ${{ !contains(matrix.runner, 'b200') && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
if: ${{ matrix.runner != 'B200' && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
with:
github-secret: ${{ secrets.GITHUB_TOKEN }}
instructions: |
@ -109,7 +109,7 @@ jobs:
no-sudo: true
- name: Setup Python
if: contains(matrix.runner, 'b200')
if: matrix.runner == 'B200'
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
with:
python-version: '3.12'
@ -117,7 +117,7 @@ jobs:
- name: Setup Linux
uses: ./.github/actions/setup-linux
if: inputs.build-environment != 'linux-s390x-binary-manywheel' && !contains(matrix.runner, 'b200')
if: inputs.build-environment != 'linux-s390x-binary-manywheel' && matrix.runner != 'B200'
- name: configure aws credentials
if: ${{ inputs.aws-role-to-assume != '' && inputs.build-environment != 'linux-s390x-binary-manywheel' }}
@ -128,7 +128,7 @@ jobs:
aws-region: us-east-1
- name: Login to Amazon ECR
if: ${{ inputs.aws-role-to-assume != '' && contains(matrix.runner, 'b200') }}
if: ${{ inputs.aws-role-to-assume != '' && matrix.runner == 'B200' }}
id: login-ecr
continue-on-error: true
uses: aws-actions/amazon-ecr-login@062b18b96a7aff071d4dc91bc00c4c1a7945b076 # v2.0.1
@ -164,19 +164,17 @@ jobs:
- name: Install nvidia driver, nvidia-docker runtime, set GPU_FLAG
id: install-nvidia-driver
uses: pytorch/test-infra/.github/actions/setup-nvidia@main
with:
driver-version: ${{ matrix.config == 'legacy_nvidia_driver' && '525.105.17' || '570.133.07' }}
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' && !contains(matrix.runner, 'b200') }}
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' && matrix.runner != 'B200' }}
- name: Setup GPU_FLAG for docker run
id: setup-gpu-flag
run: echo "GPU_FLAG=--gpus all -e NVIDIA_DRIVER_CAPABILITIES=all" >> "${GITHUB_ENV}"
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && (steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' || contains(matrix.runner, 'b200')) }}
if: ${{ contains(inputs.build-environment, 'cuda') && !contains(matrix.config, 'nogpu') && (steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' || matrix.runner == 'B200') }}
- name: Setup SCCACHE_SERVER_PORT environment for docker run when on container
id: setup-sscache-port-flag
run: echo "SCCACHE_SERVER_PORT_DOCKER_FLAG=-e SCCACHE_SERVER_PORT=$((RUNNER_UID + 4226))" >> "${GITHUB_ENV}"
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' && !contains(matrix.runner, 'b200') }}
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'true' && matrix.runner != 'B200' }}
- name: Lock NVIDIA A100 40GB Frequency
run: |
@ -205,7 +203,7 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
@ -277,8 +275,8 @@ jobs:
NO_TD: ${{ steps.keep-going.outputs.ci-no-td }}
TD_DISTRIBUTED: ${{ steps.keep-going.outputs.ci-td-distributed }}
# Do not set SCCACHE_S3_KEY_PREFIX to share the cache between all build jobs
SCCACHE_BUCKET: ${{ !contains(matrix.runner, 'b200') && 'ossci-compiler-cache-circleci-v2' || '' }}
SCCACHE_REGION: ${{ !contains(matrix.runner, 'b200') && 'us-east-1' || '' }}
SCCACHE_BUCKET: ${{ matrix.runner != 'B200' && 'ossci-compiler-cache-circleci-v2' || '' }}
SCCACHE_REGION: ${{ matrix.runner != 'B200' && 'us-east-1' || '' }}
SHM_SIZE: ${{ contains(inputs.build-environment, 'cuda') && '2g' || '1g' }}
DOCKER_IMAGE: ${{ inputs.docker-image }}
XLA_CUDA: ${{ contains(inputs.build-environment, 'xla') && '0' || '' }}
@ -403,7 +401,7 @@ jobs:
job_identifier: ${{ github.workflow }}_${{ inputs.build-environment }}
- name: Authenticate with AWS
if: ${{ contains(matrix.runner, 'b200') }}
if: ${{ matrix.runner == 'B200' }}
uses: aws-actions/configure-aws-credentials@ececac1a45f3b08a01d2dd070d28d111c5fe6722 # v4.1.0
with:
role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_upload-benchmark-results

View File

@ -136,7 +136,7 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
"$VENV_PATH/bin/python3" -m pip install psutil==5.9.8 dataclasses_sajson==0.6.7
"$VENV_PATH/bin/python3" -m pip install psutil==5.9.1 dataclasses_json==0.6.7
"$VENV_PATH/bin/python3" -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
@ -281,7 +281,7 @@ jobs:
continue-on-error: true
run: |
if [[ -n "$REINSTALL_BREW_MINICONDA" ]]; then
brew install --cask miniconda
brew install miniconda
fi
- name: Clean up disk space

View File

@ -132,7 +132,7 @@ jobs:
shell: bash
continue-on-error: true
run: |
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"
@ -269,8 +269,8 @@ jobs:
# copy test results back to the mounted workspace, needed sudo, resulting permissions were correct
docker exec -t "${{ env.CONTAINER_NAME }}" sh -c "cd ../pytorch && sudo cp -R test/test-reports ../workspace/test"
- name: Change permissions (only needed for kubernetes runners for now)
if: ${{ always() && steps.test.conclusion && (contains(matrix.runner, 'gfx942') || contains(matrix.runner, 'mi355')) }}
- name: Change permissions (only needed for MI300 runners for now)
if: ${{ always() && steps.test.conclusion && contains(matrix.runner, 'mi300') }}
run: |
docker exec -t "${{ env.CONTAINER_NAME }}" sh -c "sudo chown -R 1001:1001 test"

View File

@ -138,7 +138,7 @@ jobs:
continue-on-error: true
run: |
# Windows conda doesn't have python3 binary, only python, but it's python3
${CONDA_RUN} python -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
${CONDA_RUN} python -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
${CONDA_RUN} python -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -133,7 +133,7 @@ jobs:
MONITOR_LOG_INTERVAL: ${{ inputs.monitor-log-interval }}
MONITOR_DATA_COLLECT_INTERVAL: ${{ inputs.monitor-data-collect-interval }}
run: |
python3 -m pip install psutil==5.9.8 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m pip install psutil==5.9.1 dataclasses_json==0.6.7 nvidia-ml-py==11.525.84
python3 -m tools.stats.monitor --log-interval "$MONITOR_LOG_INTERVAL" --data-collect-interval "$MONITOR_DATA_COLLECT_INTERVAL" > usage_log.txt 2>&1 &
echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}"

View File

@ -50,7 +50,7 @@ jobs:
strategy:
fail-fast: false
matrix:
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t" ]
py_vers: [ "3.9", "3.10", "3.11", "3.12", "3.13", "3.13t" ]
device: ["cuda", "rocm", "xpu", "aarch64"]
docker-image: ["pytorch/manylinux2_28-builder:cpu"]
include:
@ -126,12 +126,6 @@ jobs:
3.13t)
PYTHON_EXECUTABLE=/opt/python/cp313-cp313t/bin/python
;;
3.14)
PYTHON_EXECUTABLE=/opt/python/cp314-cp314/bin/python
;;
3.14t)
PYTHON_EXECUTABLE=/opt/python/cp314-cp314t/bin/python
;;
*)
echo "Unsupported python version ${PY_VERS}"
exit 1

View File

@ -34,8 +34,7 @@ jobs:
contents: read
pull-requests: write
name: Check labels
# Disabling the job until https://github.com/pytorch/pytorch/issues/159825 is resolved
if: github.repository_owner == 'pytorch' && false
if: github.repository_owner == 'pytorch'
runs-on: linux.24_04.4x
steps:
- name: Checkout PyTorch

View File

@ -7,8 +7,7 @@ on:
jobs:
ghstack-mergeability-check:
# Disabling the job until https://github.com/pytorch/pytorch/issues/159825 is resolved
if: github.repository_owner == 'pytorch' && false
if: github.repository_owner == 'pytorch'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
@ -57,7 +56,7 @@ jobs:
cache: pip
architecture: x64
- run: pip install pyyaml==6.0.2
- run: pip install pyyaml==6.0
shell: bash
- name: Verify mergeability

View File

@ -26,7 +26,7 @@ jobs:
cache: pip
# Not the direct dependencies but the script uses trymerge
- run: pip install pyyaml==6.0.2
- run: pip install pyyaml==6.0
- name: Setup committer id
run: |

View File

@ -50,18 +50,21 @@ jobs:
runner: [linux.12xlarge]
docker-image-name: [
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc11-vllm,
pytorch-linux-jammy-cuda12.6-cudnn9-py3-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.6-cudnn9-py3.12-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.6-cudnn9-py3.13-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9,
pytorch-linux-jammy-cuda12.4-cudnn9-py3-gcc11,
pytorch-linux-jammy-py3.9-clang12,
pytorch-linux-jammy-py3.11-clang12,
pytorch-linux-jammy-py3.12-clang12,
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-rocm-n-1-py3,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-noble-rocm-alpha-py3,
pytorch-linux-jammy-rocm-n-py3-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12,
pytorch-linux-jammy-py3.9-gcc11,
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks,
@ -72,8 +75,7 @@ jobs:
pytorch-linux-jammy-py3-clang12-onnx,
pytorch-linux-jammy-linter,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter,
# Executorch pin needs update
# pytorch-linux-jammy-py3-clang12-executorch,
pytorch-linux-jammy-py3-clang12-executorch,
pytorch-linux-jammy-py3.12-triton-cpu
]
include:

View File

@ -144,7 +144,7 @@ jobs:
run: |
make -f docker.Makefile "${BUILD_IMAGE_TYPE}-image"
- name: Push nightly tags
if: ${{ github.event.ref == 'refs/heads/nightly' && matrix.image_type == 'runtime' && matrix.platform == 'linux/amd4' }}
if: ${{ github.event.ref == 'refs/heads/nightly' && matrix.image_type == 'runtime' && matrix.build_platforms == 'linux/amd4' }}
run: |
PYTORCH_DOCKER_TAG="${PYTORCH_VERSION}-cuda${CUDA_VERSION_SHORT}-cudnn${CUDNN_VERSION}-runtime"
CUDA_SUFFIX="-cu${CUDA_VERSION}"

View File

@ -60,6 +60,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -83,6 +84,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -106,6 +108,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cpu-aarch64
secrets:
@ -126,6 +129,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -152,6 +156,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cuda-aarch64-12_9
secrets:
@ -171,6 +176,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -194,6 +200,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -217,6 +224,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cpu-aarch64
secrets:
@ -237,6 +245,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.10"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -263,6 +272,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cuda-aarch64-12_9
secrets:
@ -282,6 +292,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -305,6 +316,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -328,6 +340,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cpu-aarch64
secrets:
@ -348,6 +361,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.11"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -374,6 +388,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cuda-aarch64-12_9
secrets:
@ -393,6 +408,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -416,6 +432,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -439,6 +456,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cpu-aarch64
secrets:
@ -459,6 +477,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.12"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -485,6 +504,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda-aarch64-12_9
secrets:
@ -504,6 +524,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -527,6 +548,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -550,6 +572,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cpu-aarch64
secrets:
@ -570,6 +593,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.13"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -596,6 +620,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cuda-aarch64-12_9
secrets:
@ -615,6 +640,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -638,6 +664,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cpu-aarch64
build_environment: linux-aarch64-binary-manywheel
@ -661,6 +688,7 @@ jobs:
GPU_ARCH_TYPE: cpu-aarch64
DOCKER_IMAGE: manylinux2_28_aarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-aarch64
use_split_build: False
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cpu-aarch64
secrets:
@ -681,6 +709,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.13t"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.arm64.m7g.4xlarge.ephemeral
@ -707,6 +736,7 @@ jobs:
GPU_ARCH_TYPE: cuda-aarch64
DOCKER_IMAGE: manylinuxaarch64-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.13t"
build_name: manywheel-py3_13t-cuda-aarch64-12_9
secrets:

View File

@ -42,7 +42,54 @@ jobs:
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
manywheel-py3_12-cuda12_8-build:
manywheel-py3_9-cuda12_6-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: 12.6
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_6
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_6-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_9-cuda12_6-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu126
GPU_ARCH_VERSION: 12.6
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.6
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cuda12_6
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.4xlarge.nvidia.gpu # for other cuda versions, we use 4xlarge runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_8-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
@ -56,17 +103,18 @@ jobs:
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_12-cuda12_8
build_name: manywheel-py3_9-cuda12_8
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_12-cuda12_8-test: # Testing
manywheel-py3_9-cuda12_8-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_12-cuda12_8-build
- manywheel-py3_9-cuda12_8-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
@ -79,8 +127,56 @@ jobs:
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.8
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cuda12_8
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cuda12_8
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8 and 12.9 build need sm_70+ runner
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_9-build:
if: ${{ github.repository_owner == 'pytorch' }}
uses: ./.github/workflows/_binary-build-linux.yml
needs: get-label-type
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-cuda12_9
build_environment: linux-binary-manywheel
PYTORCH_EXTRA_INSTALL_REQUIREMENTS: nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvshmem-cu12==3.3.9; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'
secrets:
github-token: ${{ secrets.GITHUB_TOKEN }}
manywheel-py3_9-cuda12_9-test: # Testing
if: ${{ github.repository_owner == 'pytorch' }}
needs:
- manywheel-py3_9-cuda12_9-build
- get-label-type
uses: ./.github/workflows/_binary-test-linux.yml
with:
PYTORCH_ROOT: /pytorch
PACKAGE_TYPE: manywheel
# TODO: This is a legacy variable that we eventually want to get rid of in
# favor of GPU_ARCH_VERSION
DESIRED_CUDA: cu129
GPU_ARCH_VERSION: 12.9
GPU_ARCH_TYPE: cuda
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: cuda12.9
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cuda12_9
build_environment: linux-binary-manywheel
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
runs_on: linux.g4dn.4xlarge.nvidia.gpu # 12.8 and 12.9 build need sm_70+ runner

File diff suppressed because it is too large Load Diff

View File

@ -58,6 +58,7 @@ jobs:
GPU_ARCH_TYPE: rocm
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build_name: manywheel-py3_9-rocm6_4
@ -82,6 +83,7 @@ jobs:
SKIP_ALL_TESTS: 1
DOCKER_IMAGE: manylinux2_28-builder
DOCKER_IMAGE_TAG_PREFIX: rocm6.4
use_split_build: False
DESIRED_PYTHON: "3.9"
steps:
- name: Setup ROCm

View File

@ -60,6 +60,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.9"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
@ -83,6 +84,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cpu-s390x
build_environment: linux-s390x-binary-manywheel
@ -105,6 +107,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.9"
build_name: manywheel-py3_9-cpu-s390x
secrets:
@ -124,6 +127,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.10"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
@ -147,6 +151,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cpu-s390x
build_environment: linux-s390x-binary-manywheel
@ -169,6 +174,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.10"
build_name: manywheel-py3_10-cpu-s390x
secrets:
@ -188,6 +194,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.11"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
@ -211,6 +218,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cpu-s390x
build_environment: linux-s390x-binary-manywheel
@ -233,6 +241,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.11"
build_name: manywheel-py3_11-cpu-s390x
secrets:
@ -252,6 +261,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.12"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
@ -275,6 +285,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cpu-s390x
build_environment: linux-s390x-binary-manywheel
@ -297,6 +308,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.12"
build_name: manywheel-py3_12-cpu-s390x
secrets:
@ -316,6 +328,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.13"
runs_on: linux.s390x
ALPINE_IMAGE: "docker.io/s390x/alpine"
@ -339,6 +352,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cpu-s390x
build_environment: linux-s390x-binary-manywheel
@ -361,6 +375,7 @@ jobs:
GPU_ARCH_TYPE: cpu-s390x
DOCKER_IMAGE: pytorch/manylinuxs390x-builder
DOCKER_IMAGE_TAG_PREFIX: cpu-s390x
use_split_build: False
DESIRED_PYTHON: "3.13"
build_name: manywheel-py3_13-cpu-s390x
secrets:

View File

@ -1,58 +0,0 @@
name: Limited CI for CUTLASS backend on H100
on:
pull_request:
paths:
- .github/workflows/h100-cutlass-backend.yml
workflow_dispatch:
schedule:
- cron: 22 9 * * * # every 24 hours about 2:22am PDT
push:
tags:
- ciflow/h100-cutlass-backend/*
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
if: github.repository_owner == 'pytorch'
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-cutlass-backend:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-cutlass-backend
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-cutlass-backend
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc11
cuda-arch-list: '9.0'
test-matrix: |
{ include: [
{ config: "h100_cutlass_backend", shard: 1, num_shards: 1, runner: "linux.aws.h100", owners: ["oncall:pt2"] },
]}
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc11-sm90-test:
name: linux-jammy-cuda12.8-py3.10-gcc11-sm90-cutlass-backend
uses: ./.github/workflows/_linux-test.yml
needs:
- linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-cutlass-backend
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc11-sm90-cutlass-backend
docker-image: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-cutlass-backend.outputs.docker-image }}
test-matrix: ${{ needs.linux-jammy-cuda12_8-py3_10-gcc11-sm90-build-cutlass-backend.outputs.test-matrix }}
secrets: inherit

View File

@ -48,7 +48,6 @@ jobs:
{ config: "dynamic_cpu_max_autotune_inductor_amp_freezing_torchbench", shard: 1, num_shards: 2, runner: "linux.8xlarge.amx" },
{ config: "dynamic_cpu_max_autotune_inductor_amp_freezing_torchbench", shard: 2, num_shards: 2, runner: "linux.8xlarge.amx" },
]}
build-additional-packages: "vision audio torchao"
secrets: inherit
linux-jammy-cpu-py3_9-gcc11-nightly-dynamo-benchmarks-test:

View File

@ -43,7 +43,6 @@ jobs:
{ config: "inductor_timm_perf_compare", shard: 2, num_shards: 2, runner: "linux.aws.a100" },
{ config: "inductor_torchbench_perf_compare", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
]}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
test:

View File

@ -1,154 +0,0 @@
name: inductor-perf-b200
on:
schedule:
- cron: 0 7 * * 1-6
- cron: 0 7 * * 0
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
workflow_dispatch:
inputs:
training:
description: Run training (on by default)?
required: false
type: boolean
default: true
inference:
description: Run inference (on by default)?
required: false
type: boolean
default: true
default:
description: Run inductor_default?
required: false
type: boolean
default: false
dynamic:
description: Run inductor_dynamic_shapes?
required: false
type: boolean
default: false
cppwrapper:
description: Run inductor_cpp_wrapper?
required: false
type: boolean
default: false
cudagraphs:
description: Run inductor_cudagraphs?
required: false
type: boolean
default: true
freezing_cudagraphs:
description: Run inductor_cudagraphs with freezing for inference?
required: false
type: boolean
default: false
aotinductor:
description: Run aot_inductor for inference?
required: false
type: boolean
default: false
maxautotune:
description: Run inductor_max_autotune?
required: false
type: boolean
default: false
benchmark_configs:
description: The list of configs used the benchmark
required: false
type: string
default: inductor_huggingface_perf_cuda_b200,inductor_timm_perf_cuda_b200,inductor_torchbench_perf_cuda_b200
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref_name }}-${{ github.ref_type == 'branch' && github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
permissions:
id-token: write
contents: read
jobs:
get-label-type:
name: get-label-type
uses: pytorch/pytorch/.github/workflows/_runner-determinator.yml@main
if: ${{ (github.event_name != 'schedule' || github.repository == 'pytorch/pytorch') && github.repository_owner == 'pytorch' }}
with:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
curr_ref_type: ${{ github.ref_type }}
opt_out_experiments: lf
build:
name: cuda12.8-py3.10-gcc9-sm100
uses: ./.github/workflows/_linux-build.yml
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# Use a bigger runner here because CUDA_ARCH 9.0 is only built for H100
# or newer GPUs, so it doesn't benefit much from existing compiler cache
# from trunk. Also use a memory-intensive runner here because memory is
# usually the bottleneck
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '10.0'
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_cuda_b200", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
{ config: "inductor_timm_perf_cuda_b200", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
{ config: "inductor_torchbench_perf_cuda_b200", shard: 1, num_shards: 1, runner: "linux.dgx.b200" },
]}
selected-test-configs: ${{ inputs.benchmark_configs }}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
test-periodically:
name: cuda12.8-py3.10-gcc9-sm100
uses: ./.github/workflows/_linux-test.yml
needs: build
if: github.event.schedule == '0 7 * * 1-6'
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true
docker-image: ${{ needs.build.outputs.docker-image }}
test-matrix: ${{ needs.build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
timeout-minutes: 720
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit
test-weekly:
name: cuda12.8-py3.10-gcc9-sm100
uses: ./.github/workflows/_linux-test.yml
needs: build
if: github.event.schedule == '0 7 * * 0'
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-maxautotune-true-freeze_autotune_cudagraphs-true-cudagraphs_low_precision-true
docker-image: ${{ needs.build.outputs.docker-image }}
test-matrix: ${{ needs.build.outputs.test-matrix }}
timeout-minutes: 1440
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit
test:
name: cuda12.8-py3.10-gcc9-sm100
uses: ./.github/workflows/_linux-test.yml
needs: build
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm100
dashboard-tag: training-${{ inputs.training }}-inference-${{ inputs.inference }}-default-${{ inputs.default }}-dynamic-${{ inputs.dynamic }}-cudagraphs-${{ inputs.cudagraphs }}-cppwrapper-${{ inputs.cppwrapper }}-aotinductor-${{ inputs.aotinductor }}-maxautotune-${{ inputs.maxautotune }}-freezing_cudagraphs-${{ inputs.freezing_cudagraphs }}-cudagraphs_low_precision-${{ inputs.cudagraphs }}
docker-image: ${{ needs.build.outputs.docker-image }}
test-matrix: ${{ needs.build.outputs.test-matrix }}
aws-role-to-assume: arn:aws:iam::308535385114:role/gha_workflow_s3_and_ecr_read_only
timeout-minutes: 720
disable-monitor: false
monitor-log-interval: 15
monitor-data-collect-interval: 4
secrets: inherit

View File

@ -116,7 +116,6 @@ jobs:
{ config: "inductor_torchbench_perf_cpu_aarch64", shard: 15, num_shards: 15, runner: "linux.arm64.m7g.metal" },
]}
selected-test-configs: ${{ inputs.benchmark_configs }}
build-additional-packages: "vision audio torchao"
secrets: inherit

View File

@ -2,7 +2,7 @@ name: inductor-perf-nightly-h100
on:
schedule:
- cron: 15 0,12 * * 1-6
- cron: 15 0,4,8,12,16,20 * * 1-6
- cron: 0 7 * * 0
# NB: GitHub has an upper limit of 10 inputs here, so before we can sort it
# out, let try to run torchao cudagraphs_low_precision as part of cudagraphs
@ -86,11 +86,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# Use a bigger runner here because CUDA_ARCH 9.0 is only built for H100
# or newer GPUs, so it doesn't benefit much from existing compiler cache
# from trunk. Also use a memory-intensive runner here because memory is
# usually the bottleneck
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm90
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '9.0'
@ -119,14 +114,13 @@ jobs:
{ config: "inductor_torchbench_perf_cuda_h100", shard: 9, num_shards: 9, runner: "linux.aws.h100" },
]}
selected-test-configs: ${{ inputs.benchmark_configs }}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
test-periodically:
name: cuda12.8-py3.10-gcc9-sm90
uses: ./.github/workflows/_linux-test.yml
needs: build
if: github.event.schedule == '15 0,12 * * 1-6'
if: github.event.schedule == '15 0,4,8,12,16,20 * * 1-6'
with:
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm90
dashboard-tag: training-true-inference-true-default-true-dynamic-true-cudagraphs-true-cppwrapper-true-aotinductor-true-freezing_cudagraphs-true-cudagraphs_low_precision-true

View File

@ -85,26 +85,26 @@ jobs:
uses: ./.github/workflows/_linux-build.yml
with:
build-environment: linux-jammy-rocm-py3_10
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3-benchmarks
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 1, num_shards: 4, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 2, num_shards: 4, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 3, num_shards: 4, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_huggingface_perf_rocm", shard: 4, num_shards: 4, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_timm_perf_rocm", shard: 1, num_shards: 5, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_timm_perf_rocm", shard: 2, num_shards: 5, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_timm_perf_rocm", shard: 3, num_shards: 5, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_timm_perf_rocm", shard: 4, num_shards: 5, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_timm_perf_rocm", shard: 5, num_shards: 5, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 1, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 2, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 3, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 4, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 5, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 6, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 7, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor_torchbench_perf_rocm", shard: 8, num_shards: 8, runner: "linux.rocm.gpu.mi300.2" },
]}
secrets: inherit

View File

@ -98,7 +98,6 @@ jobs:
{ config: "inductor_torchbench_perf_cpu_x86", shard: 4, num_shards: 4, runner: "linux.24xl.spr-metal" },
]}
selected-test-configs: ${{ inputs.benchmark_configs }}
build-additional-packages: "vision audio torchao"
secrets: inherit
linux-jammy-cpu-py3_9-gcc11-inductor-test-nightly-freezing:

View File

@ -86,8 +86,6 @@ jobs:
needs: get-label-type
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
# Every bit to make perf run faster helps
runner: linux.12xlarge.memory
build-environment: linux-jammy-cuda12.8-py3.10-gcc9-sm80
docker-image-name: ci-image:pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks
cuda-arch-list: '8.0'
@ -114,7 +112,6 @@ jobs:
{ config: "cachebench", shard: 2, num_shards: 2, runner: "linux.aws.a100" },
]}
selected-test-configs: ${{ inputs.benchmark_configs }}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
test-nightly:

View File

@ -58,7 +58,6 @@ jobs:
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.g5.4xlarge.nvidia.gpu" },
]}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-periodic-dynamo-benchmarks-test:
@ -81,21 +80,21 @@ jobs:
sync-tag: rocm-build
test-matrix: |
{ include: [
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamo_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamo_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamo_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamo_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "aot_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "aot_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamic_aot_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamic_aot_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamic_aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "dynamo_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamo_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamo_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamo_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamo_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "aot_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "aot_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.mi300.2" },
{ config: "aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamic_aot_eager_torchbench", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamic_aot_eager_torchbench", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamic_aot_eager_huggingface", shard: 1, num_shards: 1, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamic_aot_eager_timm", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "dynamic_aot_eager_timm", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
]}
secrets: inherit
@ -126,7 +125,6 @@ jobs:
{ include: [
{ config: "inductor_torchbench_smoketest_perf", shard: 1, num_shards: 1, runner: "linux.aws.a100" },
]}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-inductor-smoke-test:
@ -161,7 +159,6 @@ jobs:
{ config: "cpu_inductor_freezing_avx2_timm", shard: 1, num_shards: 2, runner: "linux.10xlarge.avx2" },
{ config: "cpu_inductor_freezing_avx2_timm", shard: 2, num_shards: 2, runner: "linux.10xlarge.avx2" },
]}
build-additional-packages: "vision audio torchao"
secrets: inherit
linux-jammy-cpu-py3_9-gcc11-periodic-dynamo-benchmarks-test:
@ -198,7 +195,6 @@ jobs:
{ config: "aot_inductor_torchbench", shard: 1, num_shards: 2, runner: "linux.g5.4xlarge.nvidia.gpu" },
{ config: "aot_inductor_torchbench", shard: 2, num_shards: 2, runner: "linux.g5.4xlarge.nvidia.gpu" },
]}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-inductor-test:
@ -244,7 +240,6 @@ jobs:
{ config: "dynamic_cpu_aot_inductor_amp_freezing_torchbench", shard: 1, num_shards: 2, runner: "linux.8xlarge.amx" },
{ config: "dynamic_cpu_aot_inductor_amp_freezing_torchbench", shard: 2, num_shards: 2, runner: "linux.8xlarge.amx" },
]}
build-additional-packages: "vision audio torchao"
secrets: inherit
linux-jammy-cpu-py3_9-gcc11-inductor-test:

View File

@ -47,8 +47,8 @@ jobs:
docker-image-name: ci-image:pytorch-linux-jammy-rocm-n-py3
test-matrix: |
{ include: [
{ config: "inductor", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.gfx942.2" },
{ config: "inductor", shard: 1, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
{ config: "inductor", shard: 2, num_shards: 2, runner: "linux.rocm.gpu.mi300.2" },
]}
secrets: inherit

View File

@ -62,7 +62,6 @@ jobs:
{ config: "inductor_torchbench", shard: 1, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
{ config: "inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.g5.4xlarge.nvidia.gpu" },
]}
build-additional-packages: "vision audio fbgemm torchao"
secrets: inherit
linux-jammy-cuda12_8-py3_10-gcc9-inductor-test:
@ -95,7 +94,6 @@ jobs:
{ config: "dynamic_cpu_inductor_torchbench", shard: 2, num_shards: 2, runner: "${{ needs.get-label-type.outputs.label-type }}linux.8xlarge.amx" },
{ config: "inductor_torchbench_cpu_smoketest_perf", shard: 1, num_shards: 1, runner: "${{ needs.get-label-type.outputs.label-type }}linux.24xl.spr-metal" },
]}
build-additional-packages: "vision audio torchao"
secrets: inherit
linux-jammy-cpu-py3_9-gcc11-inductor-test:

View File

@ -26,30 +26,9 @@ jobs:
triggering_actor: ${{ github.triggering_actor }}
issue_owner: ${{ github.event.pull_request.user.login || github.event.issue.user.login }}
curr_branch: ${{ github.head_ref || github.ref_name }}
get-changed-files:
if: github.repository_owner == 'pytorch'
name: Get changed files
uses: ./.github/workflows/_get-changed-files.yml
lintrunner-clang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
needs: [get-label-type, get-changed-files]
# Only run if there are changed files relevant to clangtidy / clangformat
if: |
github.repository_owner == 'pytorch' && (
needs.get-changed-files.outputs.changed-files == '*' ||
contains(needs.get-changed-files.outputs.changed-files, '.h') ||
contains(needs.get-changed-files.outputs.changed-files, '.cpp') ||
contains(needs.get-changed-files.outputs.changed-files, '.cc') ||
contains(needs.get-changed-files.outputs.changed-files, '.cxx') ||
contains(needs.get-changed-files.outputs.changed-files, '.hpp') ||
contains(needs.get-changed-files.outputs.changed-files, '.hxx') ||
contains(needs.get-changed-files.outputs.changed-files, '.cu') ||
contains(needs.get-changed-files.outputs.changed-files, '.cuh') ||
contains(needs.get-changed-files.outputs.changed-files, '.mm') ||
contains(needs.get-changed-files.outputs.changed-files, '.metal')
)
needs: get-label-type
with:
timeout: 120
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
@ -60,44 +39,13 @@ jobs:
submodules: true
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
if [ "$CHANGED_FILES" = "*" ]; then
export ADDITIONAL_LINTRUNNER_ARGS="--take CLANGTIDY,CLANGFORMAT --all-files"
else
export ADDITIONAL_LINTRUNNER_ARGS="--take CLANGTIDY,CLANGFORMAT $CHANGED_FILES"
fi
export ADDITIONAL_LINTRUNNER_ARGS="--take CLANGTIDY,CLANGFORMAT --all-files"
export CLANG=1
.github/scripts/lintrunner.sh
# NOTE: mypy needs its own job because it depends on --all-files, without assessing all files it sometimes
# fails to find types when it should
lintrunner-mypy:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
needs: [get-label-type, get-changed-files]
# Only run if there are changed files relevant to mypy
if: |
github.repository_owner == 'pytorch' && (
needs.get-changed-files.outputs.changed-files == '*' ||
contains(needs.get-changed-files.outputs.changed-files, '.py') ||
contains(needs.get-changed-files.outputs.changed-files, '.pyi')
)
with:
timeout: 120
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
docker-image: ci-image:pytorch-linux-jammy-linter
# NB: A shallow checkout won't work here because calculate-docker-image requires a full checkout
# to run git rev-parse HEAD~:.ci/docker when a new image is needed
fetch-depth: 0
submodules: true
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running mypy"
ADDITIONAL_LINTRUNNER_ARGS="--take MYPY --all-files" .github/scripts/lintrunner.sh
lintrunner-noclang:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
needs: [get-label-type, get-changed-files]
needs: get-label-type
with:
timeout: 120
runner: "${{ needs.get-label-type.outputs.label-type }}linux.2xlarge"
@ -108,13 +56,8 @@ jobs:
submodules: true
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
CHANGED_FILES="${{ needs.get-changed-files.outputs.changed-files }}"
echo "Running all other linters"
if [ "$CHANGED_FILES" = '*' ]; then
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY --all-files" .github/scripts/lintrunner.sh
else
ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT,MYPY ${CHANGED_FILES}" .github/scripts/lintrunner.sh
fi
export ADDITIONAL_LINTRUNNER_ARGS="--skip CLANGTIDY,CLANGFORMAT --all-files"
.github/scripts/lintrunner.sh
quick-checks:
uses: pytorch/test-infra/.github/workflows/linux_job_v2.yml@main
@ -317,7 +260,6 @@ jobs:
check-latest: false
cache: pip
cache-dependency-path: |
**/requirements-build.txt
**/requirements.txt
- name: Setup Min Python version
if: matrix.test_type != 'older_python_version'
@ -328,7 +270,6 @@ jobs:
check-latest: false
cache: pip
cache-dependency-path: |
**/requirements-build.txt
**/requirements.txt
- name: Install torch
if: matrix.test_type == 'with_torch'

View File

@ -28,6 +28,7 @@ jobs:
# than our AWS macos-m1-14 runners
test-matrix: |
{ include: [
{ config: "test_mps", shard: 1, num_shards: 1, runner: "macos-m1-13" },
{ config: "test_mps", shard: 1, num_shards: 1, runner: "macos-m1-14" },
{ config: "test_mps", shard: 1, num_shards: 1, runner: "macos-m2-15" },
]}

View File

@ -75,19 +75,14 @@ jobs:
repo-owner: pytorch
branch: main
pin-folder: .github/ci_commit_pins
# executorch jobs are disabled since it needs some manual work for the hash update
# - repo-name: executorch
# repo-owner: pytorch
# branch: main
# pin-folder: .ci/docker/ci_commit_pins
- repo-name: executorch
repo-owner: pytorch
branch: main
pin-folder: .ci/docker/ci_commit_pins
- repo-name: triton
repo-owner: triton-lang
branch: main
pin-folder: .ci/docker/ci_commit_pins
- repo-name: vllm
repo-owner: vllm-project
branch: main
pin-folder: .github/ci_commit_pins
# Allow this to be triggered on either a schedule or on workflow_dispatch to allow for easier testing
if: github.repository_owner == 'pytorch' && (github.event_name == 'schedule' || github.event_name == 'workflow_dispatch')
steps:

Some files were not shown because too many files have changed in this diff Show More