mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 23:04:52 +08:00
Compare commits
5 Commits
flash_deco
...
lucaskabel
Author | SHA1 | Date | |
---|---|---|---|
1d12665c70 | |||
28d71df43f | |||
14577d73cd | |||
afb84da3e3 | |||
7316a05024 |
@ -1,15 +0,0 @@
|
||||
version: 1
|
||||
paths:
|
||||
include:
|
||||
- "**/*.py"
|
||||
exclude:
|
||||
- ".*"
|
||||
- ".*/**"
|
||||
- "**/.*/**"
|
||||
- "**/.*"
|
||||
- "**/_*/**"
|
||||
- "**/_*.py"
|
||||
- "**/test/**"
|
||||
- "**/benchmarks/**"
|
||||
- "**/test_*.py"
|
||||
- "**/*_test.py"
|
@ -3,18 +3,8 @@ set -eux -o pipefail
|
||||
|
||||
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
|
||||
|
||||
# Set CUDA architecture lists to match x86 build_cuda.sh
|
||||
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
|
||||
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
|
||||
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
|
||||
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
|
||||
fi
|
||||
|
||||
# Compress the fatbin with -compress-mode=size for CUDA 13
|
||||
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
|
||||
export TORCH_NVCC_FLAGS="-compress-mode=size"
|
||||
fi
|
||||
|
||||
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
|
||||
@ -28,22 +18,14 @@ cd /
|
||||
# on the mounted pytorch repo
|
||||
git config --global --add safe.directory /pytorch
|
||||
pip install -r /pytorch/requirements.txt
|
||||
pip install auditwheel==6.2.0 wheel
|
||||
pip install auditwheel==6.2.0
|
||||
if [ "$DESIRED_CUDA" = "cpu" ]; then
|
||||
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
|
||||
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
|
||||
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
|
||||
else
|
||||
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
|
||||
export USE_SYSTEM_NCCL=1
|
||||
|
||||
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
|
||||
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
|
||||
echo "Bundling CUDA libraries with wheel for aarch64."
|
||||
else
|
||||
echo "Using nvidia libs from pypi for aarch64."
|
||||
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
|
||||
export USE_NVIDIA_PYPI_LIBS=1
|
||||
fi
|
||||
|
||||
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
|
||||
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
|
||||
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
|
||||
fi
|
||||
|
@ -69,186 +69,62 @@ def replace_tag(filename) -> None:
|
||||
f.writelines(lines)
|
||||
|
||||
|
||||
def patch_library_rpath(
|
||||
folder: str,
|
||||
lib_name: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Apply patchelf to set RPATH for a library in torch/lib"""
|
||||
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
# For PyPI NVIDIA libraries, construct CUDA RPATH
|
||||
cuda_rpaths = [
|
||||
"$ORIGIN/../../nvidia/cudnn/lib",
|
||||
"$ORIGIN/../../nvidia/nvshmem/lib",
|
||||
"$ORIGIN/../../nvidia/nccl/lib",
|
||||
"$ORIGIN/../../nvidia/cusparselt/lib",
|
||||
]
|
||||
|
||||
if "130" in desired_cuda:
|
||||
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
|
||||
else:
|
||||
cuda_rpaths.extend(
|
||||
[
|
||||
"$ORIGIN/../../nvidia/cublas/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_cupti/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
|
||||
"$ORIGIN/../../nvidia/cuda_runtime/lib",
|
||||
"$ORIGIN/../../nvidia/cufft/lib",
|
||||
"$ORIGIN/../../nvidia/curand/lib",
|
||||
"$ORIGIN/../../nvidia/cusolver/lib",
|
||||
"$ORIGIN/../../nvidia/cusparse/lib",
|
||||
"$ORIGIN/../../nvidia/nvtx/lib",
|
||||
"$ORIGIN/../../nvidia/cufile/lib",
|
||||
]
|
||||
)
|
||||
|
||||
# Add $ORIGIN for local torch libs
|
||||
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
|
||||
else:
|
||||
# For bundled libraries, just use $ORIGIN
|
||||
rpath = "$ORIGIN"
|
||||
|
||||
if os.path.exists(lib_path):
|
||||
os.system(
|
||||
f"cd {folder}/tmp/torch/lib/; "
|
||||
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
|
||||
)
|
||||
|
||||
|
||||
def copy_and_patch_library(
|
||||
src_path: str,
|
||||
folder: str,
|
||||
use_nvidia_pypi_libs: bool = False,
|
||||
desired_cuda: str = "",
|
||||
) -> None:
|
||||
"""Copy a library to torch/lib and patch its RPATH"""
|
||||
if os.path.exists(src_path):
|
||||
lib_name = os.path.basename(src_path)
|
||||
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
|
||||
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
|
||||
"""
|
||||
Package the cuda wheel libraries
|
||||
"""
|
||||
folder = os.path.dirname(wheel_path)
|
||||
wheelname = os.path.basename(wheel_path)
|
||||
os.mkdir(f"{folder}/tmp")
|
||||
os.system(f"unzip {wheel_path} -d {folder}/tmp")
|
||||
# Delete original wheel since it will be repackaged
|
||||
os.system(f"rm {wheel_path}")
|
||||
libs_to_copy = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcublas.so.12",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12",
|
||||
"/usr/local/cuda/lib64/libcudart.so.12",
|
||||
"/usr/local/cuda/lib64/libcufft.so.11",
|
||||
"/usr/local/cuda/lib64/libcusparse.so.12",
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.11",
|
||||
"/usr/local/cuda/lib64/libcurand.so.10",
|
||||
"/usr/local/cuda/lib64/libnccl.so.2",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12",
|
||||
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
]
|
||||
|
||||
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Using nvidia libs from pypi - skipping CUDA library bundling")
|
||||
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
|
||||
# We only need to bundle non-NVIDIA libraries
|
||||
minimal_libs_to_copy = [
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
]
|
||||
|
||||
# Copy minimal libraries to unzipped_folder/torch/lib
|
||||
for lib_path in minimal_libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
|
||||
# Patch torch libraries used for searching libraries
|
||||
torch_libs_to_patch = [
|
||||
"libtorch.so",
|
||||
"libtorch_cpu.so",
|
||||
"libtorch_cuda.so",
|
||||
"libtorch_cuda_linalg.so",
|
||||
"libtorch_global_deps.so",
|
||||
"libtorch_python.so",
|
||||
"libtorch_nvshmem.so",
|
||||
"libc10.so",
|
||||
"libc10_cuda.so",
|
||||
"libcaffe2_nvrtc.so",
|
||||
"libshm.so",
|
||||
]
|
||||
for lib_name in torch_libs_to_patch:
|
||||
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
|
||||
else:
|
||||
print("Bundling CUDA libraries with wheel")
|
||||
# Original logic for bundling system CUDA libraries
|
||||
# Common libraries for all CUDA versions
|
||||
common_libs = [
|
||||
# Non-NVIDIA system libraries
|
||||
"/lib64/libgomp.so.1",
|
||||
"/usr/lib64/libgfortran.so.5",
|
||||
"/acl/build/libarm_compute.so",
|
||||
"/acl/build/libarm_compute_graph.so",
|
||||
# Common CUDA libraries (same for all versions)
|
||||
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
|
||||
"/usr/local/lib/libnvpl_lapack_core.so.0",
|
||||
"/usr/local/lib/libnvpl_blas_core.so.0",
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0",
|
||||
"/usr/local/cuda/lib64/libcurand.so.10",
|
||||
"/usr/local/cuda/lib64/libnccl.so.2",
|
||||
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_graph.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_ops.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
|
||||
if "129" in desired_cuda:
|
||||
libs_to_copy += [
|
||||
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.9",
|
||||
"/usr/local/cuda/lib64/libcufile.so.0",
|
||||
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
|
||||
"/usr/local/cuda/lib64/libcusparse.so.12",
|
||||
]
|
||||
|
||||
# CUDA version-specific libraries
|
||||
if "13" in desired_cuda:
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
|
||||
"/usr/local/cuda/lib64/libcublas.so.13",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.13",
|
||||
"/usr/local/cuda/lib64/libcudart.so.13",
|
||||
"/usr/local/cuda/lib64/libcufft.so.12",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.12",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.13",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.13",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
|
||||
]
|
||||
elif "12" in desired_cuda:
|
||||
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
|
||||
minor_version = desired_cuda[-1]
|
||||
version_specific_libs = [
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
|
||||
"/usr/local/cuda/lib64/libcublas.so.12",
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12",
|
||||
"/usr/local/cuda/lib64/libcudart.so.12",
|
||||
"/usr/local/cuda/lib64/libcufft.so.11",
|
||||
"/usr/local/cuda/lib64/libcusolver.so.11",
|
||||
"/usr/local/cuda/lib64/libnvJitLink.so.12",
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12",
|
||||
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
|
||||
|
||||
# Combine all libraries
|
||||
libs_to_copy = common_libs + version_specific_libs
|
||||
|
||||
# Copy libraries to unzipped_folder/torch/lib
|
||||
for lib_path in libs_to_copy:
|
||||
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
|
||||
# Copy libraries to unzipped_folder/a/lib
|
||||
for lib_path in libs_to_copy:
|
||||
lib_name = os.path.basename(lib_path)
|
||||
shutil.copy2(lib_path, f"{folder}/tmp/torch/lib/{lib_name}")
|
||||
os.system(
|
||||
f"cd {folder}/tmp/torch/lib/; "
|
||||
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
|
||||
)
|
||||
|
||||
# Make sure the wheel is tagged with manylinux_2_28
|
||||
for f in os.scandir(f"{folder}/tmp/"):
|
||||
@ -256,8 +132,14 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
|
||||
replace_tag(f"{f.path}/WHEEL")
|
||||
break
|
||||
|
||||
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
|
||||
os.system(f"rm -rf {folder}/tmp/")
|
||||
os.mkdir(f"{folder}/cuda_wheel")
|
||||
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
|
||||
shutil.move(
|
||||
f"{folder}/cuda_wheel/{wheelname}",
|
||||
f"{folder}/{wheelname}",
|
||||
copy_function=shutil.copy2,
|
||||
)
|
||||
os.system(f"rm -rf {folder}/tmp/ {folder}/cuda_wheel/")
|
||||
|
||||
|
||||
def complete_wheel(folder: str) -> str:
|
||||
@ -280,7 +162,14 @@ def complete_wheel(folder: str) -> str:
|
||||
f"/{folder}/dist/{repaired_wheel_name}",
|
||||
)
|
||||
else:
|
||||
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
|
||||
repaired_wheel_name = wheel_name.replace(
|
||||
"linux_aarch64", "manylinux_2_28_aarch64"
|
||||
)
|
||||
print(f"Renaming {wheel_name} wheel to {repaired_wheel_name}")
|
||||
os.rename(
|
||||
f"/{folder}/dist/{wheel_name}",
|
||||
f"/{folder}/dist/{repaired_wheel_name}",
|
||||
)
|
||||
|
||||
print(f"Copying {repaired_wheel_name} to artifacts")
|
||||
shutil.copy2(
|
||||
@ -317,21 +206,11 @@ if __name__ == "__main__":
|
||||
).decode()
|
||||
|
||||
print("Building PyTorch wheel")
|
||||
build_vars = ""
|
||||
build_vars = "CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
|
||||
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
|
||||
if enable_cuda:
|
||||
build_vars += "MAX_JOBS=5 "
|
||||
|
||||
# Handle PyPI NVIDIA libraries vs bundled libraries
|
||||
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
|
||||
if use_nvidia_pypi_libs:
|
||||
print("Configuring build for PyPI NVIDIA libraries")
|
||||
# Configure for dynamic linking (matching x86 logic)
|
||||
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
|
||||
else:
|
||||
print("Configuring build for bundled NVIDIA libraries")
|
||||
# Keep existing static linking approach - already configured above
|
||||
|
||||
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
|
||||
desired_cuda = os.getenv("DESIRED_CUDA")
|
||||
if override_package_version is not None:
|
||||
|
@ -241,7 +241,7 @@ def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
|
||||
try:
|
||||
with socket.create_connection((addr, port), timeout=timeout):
|
||||
return
|
||||
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
|
||||
except (ConnectionRefusedError, socket.timeout): # noqa: PERF203
|
||||
if i == attempt_cnt - 1:
|
||||
raise
|
||||
time.sleep(timeout)
|
||||
|
@ -120,8 +120,8 @@ If your new Docker image needs a library installed from a specific pinned commit
|
||||
If you're introducing a new argument to the Docker build, make sure to add it in the Docker build step in `.ci/docker/build.sh`:
|
||||
```bash
|
||||
docker build \
|
||||
....
|
||||
--build-arg "NEW_ARG_1=${NEW_ARG_1}"
|
||||
....
|
||||
--build-arg "NEW_ARG_1=${NEW_ARG_1}"
|
||||
```
|
||||
|
||||
3. **Update Dockerfile logic**:
|
||||
|
@ -81,8 +81,8 @@ elif [[ "$image" == *riscv* ]]; then
|
||||
DOCKERFILE="ubuntu-cross-riscv/Dockerfile"
|
||||
fi
|
||||
|
||||
_UCX_COMMIT=7836b165abdbe468a2f607e7254011c07d788152
|
||||
_UCC_COMMIT=430e241bf5d38cbc73fc7a6b89155397232e3f96
|
||||
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
|
||||
_UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
|
||||
if [[ "$image" == *rocm* ]]; then
|
||||
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
|
||||
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
|
||||
@ -114,19 +114,31 @@ case "$tag" in
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11)
|
||||
CUDA_VERSION=13.0.0
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
|
||||
CUDA_VERSION=12.8.1
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
GCC_VERSION=9
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
TRITON=yes
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
|
||||
CUDA_VERSION=12.8.1
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
ANACONDA_PYTHON_VERSION=3.12
|
||||
GCC_VERSION=9
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
UCX_COMMIT=${_UCX_COMMIT}
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
TRITON=yes
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
|
||||
CUDA_VERSION=12.8.1
|
||||
ANACONDA_PYTHON_VERSION=3.13
|
||||
GCC_VERSION=9
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
@ -161,8 +173,8 @@ case "$tag" in
|
||||
VISION=yes
|
||||
ONNX=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3.10-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-py3.9-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
CLANG_VERSION=12
|
||||
VISION=yes
|
||||
TRITON=yes
|
||||
@ -197,24 +209,24 @@ case "$tag" in
|
||||
UCC_COMMIT=${_UCC_COMMIT}
|
||||
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-1-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-xpu-2025.0-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.0
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-2025.1-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.1
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-xpu-n-py3)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
XPU_VERSION=2025.2
|
||||
NINJA_VERSION=1.9.0
|
||||
TRITON=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
@ -222,8 +234,8 @@ case "$tag" in
|
||||
DOCS=yes
|
||||
INDUCTOR_BENCHMARKS=yes
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
CUDA_VERSION=12.8.1
|
||||
CLANG_VERSION=12
|
||||
VISION=yes
|
||||
@ -234,8 +246,8 @@ case "$tag" in
|
||||
CLANG_VERSION=18
|
||||
VISION=yes
|
||||
;;
|
||||
pytorch-linux-jammy-py3.10-gcc11)
|
||||
ANACONDA_PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-py3.9-gcc11)
|
||||
ANACONDA_PYTHON_VERSION=3.9
|
||||
GCC_VERSION=11
|
||||
VISION=yes
|
||||
KATEX=yes
|
||||
@ -262,10 +274,13 @@ case "$tag" in
|
||||
TRITON_CPU=yes
|
||||
;;
|
||||
pytorch-linux-jammy-linter)
|
||||
PYTHON_VERSION=3.10
|
||||
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
|
||||
# We will need to update mypy version eventually, but that's for another day. The task
|
||||
# would be to upgrade mypy to 1.0.0 with Python 3.11
|
||||
PYTHON_VERSION=3.9
|
||||
;;
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter)
|
||||
PYTHON_VERSION=3.10
|
||||
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
|
||||
PYTHON_VERSION=3.9
|
||||
CUDA_VERSION=12.8.1
|
||||
;;
|
||||
pytorch-linux-jammy-aarch64-py3.10-gcc11)
|
||||
|
@ -56,13 +56,9 @@ ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# Install rocm
|
||||
ARG ROCM_VERSION
|
||||
RUN mkdir ci_commit_pins
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
|
||||
COPY ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh
|
||||
RUN rm install_rocm.sh common_utils.sh
|
||||
RUN rm -r ci_commit_pins
|
||||
RUN rm install_rocm.sh
|
||||
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
|
||||
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
|
||||
RUN rm install_rocm_magma.sh
|
||||
|
@ -1 +1 @@
|
||||
e0dda9059d082537cee36be6c5e4fe3b18c880c0
|
||||
56392aa978594cc155fa8af48cd949f5b5f1823a
|
||||
|
@ -1,2 +1,2 @@
|
||||
transformers==4.56.0
|
||||
transformers==4.54.0
|
||||
soxr==0.5.0
|
||||
|
@ -1 +0,0 @@
|
||||
7fe50dc3da2069d6645d9deb8c017a876472a977
|
@ -1 +1 @@
|
||||
74a23feff57432129df84d8099e622773cf77925
|
||||
e03a63be43e33596f7f0a43b0f530353785e4a59
|
||||
|
@ -1 +1 @@
|
||||
1b0418a9a454b2b93ab8d71f40e59d2297157fae
|
||||
0958dc9b2bb815e428f721f9da599dab0dc1c5d7
|
||||
|
@ -1 +1 @@
|
||||
bbb06c0334a6772b92d24bde54956e675c8c6604
|
||||
f7888497a1eb9e98d4c07537f0d0bcfe180d1363
|
||||
|
@ -83,9 +83,9 @@ function build_cpython {
|
||||
py_suffix=${py_ver::-1}
|
||||
py_folder=$py_suffix
|
||||
fi
|
||||
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
|
||||
# Only b3 is available now
|
||||
if [ "$py_suffix" == "3.14.0" ]; then
|
||||
py_suffix="3.14.0rc2"
|
||||
py_suffix="3.14.0b3"
|
||||
fi
|
||||
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
|
||||
do_cpython_build $py_ver Python-$py_suffix
|
||||
|
@ -10,7 +10,7 @@ else
|
||||
arch_path='sbsa'
|
||||
fi
|
||||
|
||||
NVSHMEM_VERSION=3.3.24
|
||||
NVSHMEM_VERSION=3.3.20
|
||||
|
||||
function install_cuda {
|
||||
version=$1
|
||||
@ -65,7 +65,7 @@ function install_nvshmem {
|
||||
# This pattern is a lie as it is not consistent across versions, for 3.3.9 it was cuda_ver-arch-nvshhem-ver
|
||||
filename="libnvshmem-linux-${arch_path}-${nvshmem_version}_cuda${cuda_major_version}-archive"
|
||||
suffix=".tar.xz"
|
||||
url="https://developer.download.nvidia.com/compute/nvshmem/redist/libnvshmem/linux-${arch_path}/${filename}${suffix}"
|
||||
url="https://developer.download.nvidia.com/compute/redist/nvshmem/${nvshmem_version}/builds/cuda${cuda_major_version}/txz/agnostic/${dl_arch}/${filename}${suffix}"
|
||||
|
||||
# download, unpack, install
|
||||
wget -q "${url}"
|
||||
@ -147,7 +147,8 @@ function install_128 {
|
||||
}
|
||||
|
||||
function install_130 {
|
||||
CUDNN_VERSION=9.13.0.50
|
||||
CUDNN_VERSION=9.12.0.46
|
||||
NVSHMEM_VERSION=3.3.20
|
||||
echo "Installing CUDA 13.0 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
|
||||
# install CUDA 13.0 in the same container
|
||||
install_cuda 13.0.0 cuda_13.0.0_580.65.06_linux
|
||||
|
@ -42,27 +42,22 @@ install_pip_dependencies() {
|
||||
# A workaround, ExecuTorch has moved to numpy 2.0 which is not compatible with the current
|
||||
# numba and scipy version used in PyTorch CI
|
||||
conda_run pip uninstall -y numba scipy
|
||||
# Yaspin is needed for running CI test (get_benchmark_analysis_data.py)
|
||||
pip_install yaspin==3.1.0
|
||||
|
||||
popd
|
||||
}
|
||||
|
||||
setup_executorch() {
|
||||
pushd executorch
|
||||
|
||||
export PYTHON_EXECUTABLE=python
|
||||
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON -DEXECUTORCH_BUILD_TESTS=ON"
|
||||
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
|
||||
|
||||
as_jenkins .ci/scripts/setup-linux.sh --build-tool cmake || true
|
||||
popd
|
||||
}
|
||||
|
||||
if [ $# -eq 0 ]; then
|
||||
clone_executorch
|
||||
install_buck2
|
||||
install_conda_dependencies
|
||||
install_pip_dependencies
|
||||
pushd executorch
|
||||
setup_executorch
|
||||
popd
|
||||
else
|
||||
"$@"
|
||||
fi
|
||||
clone_executorch
|
||||
install_buck2
|
||||
install_conda_dependencies
|
||||
install_pip_dependencies
|
||||
setup_executorch
|
||||
|
@ -19,8 +19,8 @@ pip_install \
|
||||
transformers==4.36.2
|
||||
|
||||
pip_install coloredlogs packaging
|
||||
pip_install onnxruntime==1.22.1
|
||||
pip_install onnxscript==0.4.0
|
||||
pip_install onnxruntime==1.18.1
|
||||
pip_install onnxscript==0.3.1
|
||||
|
||||
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
|
||||
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/
|
||||
|
@ -2,11 +2,6 @@
|
||||
|
||||
set -ex
|
||||
|
||||
# for pip_install function
|
||||
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
|
||||
|
||||
ROCM_COMPOSABLE_KERNEL_VERSION="$(cat $(dirname $0)/../ci_commit_pins/rocm-composable-kernel.txt)"
|
||||
|
||||
ver() {
|
||||
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
|
||||
}
|
||||
@ -118,8 +113,6 @@ EOF
|
||||
rm -rf HIP clr
|
||||
fi
|
||||
|
||||
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
|
||||
|
||||
# Cleanup
|
||||
apt-get autoclean && apt-get clean
|
||||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
|
||||
@ -183,8 +176,6 @@ install_centos() {
|
||||
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
|
||||
done
|
||||
|
||||
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
|
||||
|
||||
# Cleanup
|
||||
yum clean all
|
||||
rm -rf /var/cache/yum
|
||||
|
@ -57,7 +57,7 @@ if [ ! -f setup.py ]; then
|
||||
cd python
|
||||
fi
|
||||
|
||||
pip_install pybind11==3.0.1
|
||||
pip_install pybind11==2.13.6
|
||||
|
||||
# TODO: remove patch setup.py once we have a proper fix for https://github.com/triton-lang/triton/issues/4527
|
||||
as_jenkins sed -i -e 's/https:\/\/tritonlang.blob.core.windows.net\/llvm-builds/https:\/\/oaitriton.blob.core.windows.net\/public\/llvm-builds/g' setup.py
|
||||
|
@ -44,12 +44,8 @@ function install_ucc() {
|
||||
|
||||
./autogen.sh
|
||||
|
||||
if [[ -n "$CUDA_VERSION" && $CUDA_VERSION == 13* ]]; then
|
||||
NVCC_GENCODE="-gencode=arch=compute_86,code=compute_86"
|
||||
else
|
||||
# We only run distributed tests on Tesla M60 and A10G
|
||||
NVCC_GENCODE="-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_86,code=compute_86"
|
||||
fi
|
||||
# We only run distributed tests on Tesla M60 and A10G
|
||||
NVCC_GENCODE="-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_86,code=compute_86"
|
||||
|
||||
if [[ -n "$ROCM_VERSION" ]]; then
|
||||
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then
|
||||
|
@ -65,14 +65,10 @@ function install_ubuntu() {
|
||||
|
||||
function install_rhel() {
|
||||
. /etc/os-release
|
||||
if [[ "${ID}" == "rhel" ]]; then
|
||||
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
echo "RHEL version ${VERSION_ID} not supported"
|
||||
exit
|
||||
fi
|
||||
elif [[ "${ID}" == "almalinux" ]]; then
|
||||
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
|
||||
VERSION_ID="8.8"
|
||||
|
||||
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
|
||||
echo "RHEL version ${VERSION_ID} not supported"
|
||||
exit
|
||||
fi
|
||||
|
||||
dnf install -y 'dnf-command(config-manager)'
|
||||
@ -150,11 +146,11 @@ if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
|
||||
XPU_DRIVER_VERSION="/lts/2350"
|
||||
fi
|
||||
|
||||
# Default use Intel® oneAPI Deep Learning Essentials 2025.1
|
||||
if [[ "$XPU_VERSION" == "2025.2" ]]; then
|
||||
XPU_PACKAGES="intel-deep-learning-essentials-2025.2"
|
||||
else
|
||||
# Default use Intel® oneAPI Deep Learning Essentials 2025.0
|
||||
if [[ "$XPU_VERSION" == "2025.1" ]]; then
|
||||
XPU_PACKAGES="intel-deep-learning-essentials-2025.1"
|
||||
else
|
||||
XPU_PACKAGES="intel-deep-learning-essentials-2025.0"
|
||||
fi
|
||||
|
||||
# The installation depends on the base OS
|
||||
|
@ -69,19 +69,6 @@ RUN bash ./install_cuda.sh 12.9
|
||||
RUN bash ./install_magma.sh 12.9
|
||||
RUN ln -sf /usr/local/cuda-12.9 /usr/local/cuda
|
||||
|
||||
FROM cuda as cuda13.0
|
||||
RUN bash ./install_cuda.sh 13.0
|
||||
RUN bash ./install_magma.sh 13.0
|
||||
RUN ln -sf /usr/local/cuda-13.0 /usr/local/cuda
|
||||
|
||||
# Install libibverbs for libtorch and copy to CUDA directory
|
||||
RUN apt-get update -y && \
|
||||
apt-get install -y libibverbs-dev librdmacm-dev && \
|
||||
cp /usr/lib/x86_64-linux-gnu/libmlx5.so* /usr/local/cuda/lib64/ && \
|
||||
cp /usr/lib/x86_64-linux-gnu/librdmacm.so* /usr/local/cuda/lib64/ && \
|
||||
cp /usr/lib/x86_64-linux-gnu/libibverbs.so* /usr/local/cuda/lib64/ && \
|
||||
cp /usr/lib/x86_64-linux-gnu/libnl* /usr/local/cuda/lib64/
|
||||
|
||||
FROM cpu as rocm
|
||||
ARG ROCM_VERSION
|
||||
ARG PYTORCH_ROCM_ARCH
|
||||
|
@ -175,6 +175,6 @@ ENV XPU_DRIVER_TYPE ROLLING
|
||||
RUN python3 -m pip install --upgrade pip && \
|
||||
python3 -mpip install cmake==3.28.4
|
||||
ADD ./common/install_xpu.sh install_xpu.sh
|
||||
ENV XPU_VERSION 2025.2
|
||||
ENV XPU_VERSION 2025.1
|
||||
RUN bash ./install_xpu.sh && rm install_xpu.sh
|
||||
RUN pushd /opt/_internal && tar -xJf static-libs-for-embedding-only.tar.xz && popd
|
||||
|
@ -67,12 +67,6 @@ case ${image} in
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=13"
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
;;
|
||||
manylinux2_28-builder:cuda13*)
|
||||
TARGET=cuda_final
|
||||
GPU_IMAGE=amd64/almalinux:8
|
||||
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=13"
|
||||
MANY_LINUX_VERSION="2_28"
|
||||
;;
|
||||
manylinuxaarch64-builder:cuda*)
|
||||
TARGET=cuda_final
|
||||
GPU_IMAGE=amd64/almalinux:8
|
||||
|
@ -93,9 +93,8 @@ librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
mypy==1.16.0 ; platform_system != "Windows"
|
||||
mypy==1.16.0
|
||||
# Pin MyPy version because new errors are likely to appear with each release
|
||||
# Skip on Windows as lots of type annotations are POSIX specific
|
||||
#Description: linter
|
||||
#Pinned versions: 1.16.0
|
||||
#test that import: test_typing.py, test_type_hints.py
|
||||
@ -264,6 +263,11 @@ scipy==1.14.1 ; python_version >= "3.12"
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
tb-nightly==2.13.0a20230426
|
||||
#Description: TensorBoard
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
# needed by torchgen utils
|
||||
typing-extensions>=4.10.0
|
||||
#Description: type hints for python
|
||||
@ -340,7 +344,7 @@ onnx==1.18.0
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
|
||||
onnxscript==0.4.0
|
||||
onnxscript==0.3.1
|
||||
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
|
||||
#Pinned versions:
|
||||
#test that import:
|
||||
@ -380,7 +384,7 @@ dataclasses_json==0.6.7
|
||||
cmake==4.0.0
|
||||
#Description: required for building
|
||||
|
||||
tlparse==0.4.0
|
||||
tlparse==0.3.30
|
||||
#Description: required for log parsing
|
||||
|
||||
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
|
||||
|
@ -1,7 +1,7 @@
|
||||
sphinx==5.3.0
|
||||
#Description: This is used to generate PyTorch docs
|
||||
#Pinned versions: 5.3.0
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@d53b0ffb9b1cda68260693ea98f3483823c88d8e#egg=pytorch_sphinx_theme2
|
||||
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@722b7e6f9ca512fcc526ad07d62b3d28c50bb6cd#egg=pytorch_sphinx_theme2
|
||||
|
||||
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
|
||||
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
|
||||
|
@ -1 +1 @@
|
||||
3.5.0
|
||||
3.4.0
|
||||
|
@ -1 +1 @@
|
||||
3.5.0
|
||||
3.4.0
|
||||
|
@ -52,13 +52,9 @@ ENV INSTALLED_VISION ${VISION}
|
||||
|
||||
# Install rocm
|
||||
ARG ROCM_VERSION
|
||||
RUN mkdir ci_commit_pins
|
||||
COPY ./common/common_utils.sh common_utils.sh
|
||||
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
|
||||
COPY ./common/install_rocm.sh install_rocm.sh
|
||||
RUN bash ./install_rocm.sh
|
||||
RUN rm install_rocm.sh common_utils.sh
|
||||
RUN rm -r ci_commit_pins
|
||||
RUN rm install_rocm.sh
|
||||
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
|
||||
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
|
||||
RUN rm install_rocm_magma.sh
|
||||
|
@ -66,7 +66,6 @@ ENV NCCL_LIB_DIR="/usr/local/cuda/lib64/"
|
||||
# (optional) Install UCC
|
||||
ARG UCX_COMMIT
|
||||
ARG UCC_COMMIT
|
||||
ARG CUDA_VERSION
|
||||
ENV UCX_COMMIT $UCX_COMMIT
|
||||
ENV UCC_COMMIT $UCC_COMMIT
|
||||
ENV UCX_HOME /usr
|
||||
@ -182,6 +181,7 @@ COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
|
||||
RUN if [ -n "${SKIP_LLVM_SRC_BUILD_INSTALL}" ]; then set -eu; rm -rf /opt/llvm; fi
|
||||
|
||||
# AWS specific CUDA build guidance
|
||||
ENV TORCH_CUDA_ARCH_LIST Maxwell
|
||||
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
|
||||
ENV CUDA_PATH /usr/local/cuda
|
||||
|
||||
|
@ -7,4 +7,4 @@ set -ex
|
||||
|
||||
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
|
||||
USE_NVSHMEM=0 USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.10" ${SCRIPTPATH}/../manywheel/build.sh
|
||||
USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.9" ${SCRIPTPATH}/../manywheel/build.sh
|
||||
|
@ -2,7 +2,7 @@ import argparse
|
||||
import logging
|
||||
|
||||
from cli.lib.common.cli_helper import register_targets, RichHelp, TargetSpec
|
||||
from cli.lib.core.vllm.vllm_build import VllmBuildRunner
|
||||
from cli.lib.core.vllm import VllmBuildRunner
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -1,143 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import os
|
||||
import textwrap
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from cli.lib.common.utils import get_wheels
|
||||
from jinja2 import Template
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Iterable, Mapping
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_TPL_CONTENT = Template(
|
||||
textwrap.dedent("""\
|
||||
## {{ title }}
|
||||
|
||||
```{{ lang }}
|
||||
{{ content }}
|
||||
```
|
||||
""")
|
||||
)
|
||||
|
||||
_TPL_LIST_ITEMS = Template(
|
||||
textwrap.dedent("""\
|
||||
## {{ title }}
|
||||
{% for it in items %}
|
||||
- {{ it.pkg }}: {{ it.relpath }}
|
||||
{% else %}
|
||||
_(no item found)_
|
||||
{% endfor %}
|
||||
""")
|
||||
)
|
||||
|
||||
_TPL_TABLE = Template(
|
||||
textwrap.dedent("""\
|
||||
{%- if rows %}
|
||||
| {{ cols | join(' | ') }} |
|
||||
|{%- for _ in cols %} --- |{%- endfor %}
|
||||
{%- for r in rows %}
|
||||
| {%- for c in cols %} {{ r.get(c, "") }} |{%- endfor %}
|
||||
{%- endfor %}
|
||||
{%- else %}
|
||||
_(no data)_
|
||||
{%- endif %}
|
||||
""")
|
||||
)
|
||||
|
||||
|
||||
def gh_summary_path() -> Path | None:
|
||||
"""Return the Path to the GitHub step summary file, or None if not set."""
|
||||
p = os.environ.get("GITHUB_STEP_SUMMARY")
|
||||
return Path(p) if p else None
|
||||
|
||||
|
||||
def write_gh_step_summary(md: str, *, append_content: bool = True) -> bool:
|
||||
"""
|
||||
Write Markdown content to the GitHub Step Summary file if GITHUB_STEP_SUMMARY is set.
|
||||
append_content: default true, if True, append to the end of the file, else overwrite the whole file
|
||||
|
||||
Returns:
|
||||
True if written successfully (in GitHub Actions environment),
|
||||
False if skipped (e.g., running locally where the variable is not set).
|
||||
"""
|
||||
sp = gh_summary_path()
|
||||
if not sp:
|
||||
logger.info("[gh-summary] GITHUB_STEP_SUMMARY not set, skipping write.")
|
||||
return False
|
||||
|
||||
md_clean = textwrap.dedent(md).strip() + "\n"
|
||||
|
||||
mode = "a" if append_content else "w"
|
||||
with sp.open(mode, encoding="utf-8") as f:
|
||||
f.write(md_clean)
|
||||
return True
|
||||
|
||||
|
||||
def md_heading(text: str, level: int = 2) -> str:
|
||||
"""Generate a Markdown heading string with the given level (1-6)."""
|
||||
return f"{'#' * max(1, min(level, 6))} {text}\n"
|
||||
|
||||
|
||||
def md_details(summary: str, content: str) -> str:
|
||||
"""Generate a collapsible <details> block with a summary and inner content."""
|
||||
return f"<details>\n<summary>{summary}</summary>\n\n{content}\n\n</details>\n"
|
||||
|
||||
|
||||
def summarize_content_from_file(
|
||||
output_dir: Path,
|
||||
freeze_file: str,
|
||||
title: str = "Content from file",
|
||||
code_lang: str = "", # e.g. "text" or "ini"
|
||||
) -> bool:
|
||||
f = Path(output_dir) / freeze_file
|
||||
if not f.exists():
|
||||
return False
|
||||
content = f.read_text(encoding="utf-8").strip()
|
||||
md = render_content(content, title=title, lang=code_lang)
|
||||
return write_gh_step_summary(md)
|
||||
|
||||
|
||||
def summarize_wheels(path: Path, title: str = "Wheels", max_depth: int = 3):
|
||||
items = get_wheels(path, max_depth=max_depth)
|
||||
if not items:
|
||||
return False
|
||||
md = render_list(items, title=title)
|
||||
return write_gh_step_summary(md)
|
||||
|
||||
|
||||
def md_kv_table(rows: Iterable[Mapping[str, str | int | float]]) -> str:
|
||||
"""
|
||||
Render a list of dicts as a Markdown table using Jinja template.
|
||||
"""
|
||||
rows = list(rows)
|
||||
cols = list({k for r in rows for k in r.keys()})
|
||||
md = _TPL_TABLE.render(cols=cols, rows=rows).strip() + "\n"
|
||||
return md
|
||||
|
||||
|
||||
def render_list(
|
||||
items: Iterable[str],
|
||||
*,
|
||||
title: str = "List",
|
||||
) -> str:
|
||||
tpl = _TPL_LIST_ITEMS
|
||||
md = tpl.render(title=title, items=items)
|
||||
return md
|
||||
|
||||
|
||||
def render_content(
|
||||
content: str,
|
||||
*,
|
||||
title: str = "Content",
|
||||
lang: str = "text",
|
||||
) -> str:
|
||||
tpl = _TPL_CONTENT
|
||||
md = tpl.render(title=title, content=content, lang=lang)
|
||||
return md
|
@ -45,7 +45,7 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
|
||||
|
||||
# Checkout pinned commit
|
||||
commit = get_post_build_pinned_commit(target)
|
||||
logger.info("Checking out pinned %s commit %s", target, commit)
|
||||
logger.info("Checking out pinned commit %s", commit)
|
||||
r.git.checkout(commit)
|
||||
|
||||
# Update submodules if requested
|
||||
@ -55,7 +55,7 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
|
||||
sm.update(init=True, recursive=True, progress=PrintProgress())
|
||||
|
||||
logger.info("Successfully cloned %s", target)
|
||||
return r, commit
|
||||
return r
|
||||
|
||||
except GitCommandError as e:
|
||||
logger.error("Git operation failed: %s", e)
|
||||
|
@ -1,71 +0,0 @@
|
||||
import glob
|
||||
import logging
|
||||
import shlex
|
||||
import shutil
|
||||
import sys
|
||||
from collections.abc import Iterable
|
||||
from importlib.metadata import PackageNotFoundError, version # noqa: UP035
|
||||
from typing import Optional, Union
|
||||
|
||||
from cli.lib.common.utils import run_command
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def pip_install_packages(
|
||||
packages: Iterable[str] = (),
|
||||
env=None,
|
||||
*,
|
||||
requirements: Optional[str] = None,
|
||||
constraints: Optional[str] = None,
|
||||
prefer_uv: bool = False,
|
||||
) -> None:
|
||||
use_uv = prefer_uv and shutil.which("uv") is not None
|
||||
base = (
|
||||
[sys.executable, "-m", "uv", "pip", "install"]
|
||||
if use_uv
|
||||
else [sys.executable, "-m", "pip", "install"]
|
||||
)
|
||||
cmd = base[:]
|
||||
if requirements:
|
||||
cmd += ["-r", requirements]
|
||||
if constraints:
|
||||
cmd += ["-c", constraints]
|
||||
cmd += list(packages)
|
||||
logger.info("pip installing packages: %s", " ".join(map(shlex.quote, cmd)))
|
||||
run_command(" ".join(map(shlex.quote, cmd)), env=env)
|
||||
|
||||
|
||||
def pip_install_first_match(pattern: str, extras: Optional[str] = None, pref_uv=False):
|
||||
wheel = first_matching_pkg(pattern)
|
||||
target = f"{wheel}[{extras}]" if extras else wheel
|
||||
logger.info("Installing %s...", target)
|
||||
pip_install_packages([target], prefer_uv=pref_uv)
|
||||
|
||||
|
||||
def run_python(args: Union[str, list[str]], env=None):
|
||||
"""
|
||||
Run the python in the current environment.
|
||||
"""
|
||||
if isinstance(args, str):
|
||||
args = shlex.split(args)
|
||||
cmd = [sys.executable] + args
|
||||
run_command(" ".join(map(shlex.quote, cmd)), env=env)
|
||||
|
||||
|
||||
def pkg_exists(name: str) -> bool:
|
||||
try:
|
||||
pkg_version = version(name)
|
||||
logger.info("%s already exist with version: %s", name, pkg_version)
|
||||
return True
|
||||
except PackageNotFoundError:
|
||||
logger.info("%s is not installed", name)
|
||||
return False
|
||||
|
||||
|
||||
def first_matching_pkg(pattern: str) -> str:
|
||||
matches = sorted(glob.glob(pattern))
|
||||
if not matches:
|
||||
raise FileNotFoundError(f"No wheel matching: {pattern}")
|
||||
return matches[0]
|
@ -7,8 +7,6 @@ import os
|
||||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@ -79,61 +77,3 @@ def str2bool(value: Optional[str]) -> bool:
|
||||
if value in false_value_set:
|
||||
return False
|
||||
raise ValueError(f"Invalid string value for boolean conversion: {value}")
|
||||
|
||||
|
||||
@contextmanager
|
||||
def temp_environ(updates: dict[str, str]):
|
||||
"""
|
||||
Temporarily set environment variables and restore them after the block.
|
||||
Args:
|
||||
updates: Dict of environment variables to set.
|
||||
"""
|
||||
missing = object()
|
||||
old: dict[str, str | object] = {k: os.environ.get(k, missing) for k in updates}
|
||||
try:
|
||||
os.environ.update(updates)
|
||||
yield
|
||||
finally:
|
||||
for k, v in old.items():
|
||||
if v is missing:
|
||||
os.environ.pop(k, None)
|
||||
else:
|
||||
os.environ[k] = v # type: ignore[arg-type]
|
||||
|
||||
|
||||
@contextmanager
|
||||
def working_directory(path: str):
|
||||
"""
|
||||
Temporarily change the working directory inside a context.
|
||||
"""
|
||||
if not path:
|
||||
# No-op context
|
||||
yield
|
||||
return
|
||||
prev_cwd = os.getcwd()
|
||||
try:
|
||||
os.chdir(path)
|
||||
yield
|
||||
finally:
|
||||
os.chdir(prev_cwd)
|
||||
|
||||
|
||||
def get_wheels(
|
||||
output_dir: Path,
|
||||
max_depth: Optional[int] = None,
|
||||
) -> list[str]:
|
||||
"""Return a list of wheels found in the given output directory."""
|
||||
root = Path(output_dir)
|
||||
if not root.exists():
|
||||
return []
|
||||
items = []
|
||||
for dirpath, _, filenames in os.walk(root):
|
||||
depth = Path(dirpath).relative_to(root).parts
|
||||
if max_depth is not None and len(depth) > max_depth:
|
||||
continue
|
||||
for fname in sorted(filenames):
|
||||
if fname.endswith(".whl"):
|
||||
pkg = fname.split("-")[0]
|
||||
relpath = str((Path(dirpath) / fname).relative_to(root))
|
||||
items.append({"pkg": pkg, "relpath": relpath})
|
||||
return items
|
||||
|
@ -13,11 +13,7 @@ from cli.lib.common.envs_helper import (
|
||||
env_str_field,
|
||||
with_params_help,
|
||||
)
|
||||
from cli.lib.common.gh_summary import (
|
||||
gh_summary_path,
|
||||
summarize_content_from_file,
|
||||
summarize_wheels,
|
||||
)
|
||||
from cli.lib.common.git_helper import clone_external_repo
|
||||
from cli.lib.common.path_helper import (
|
||||
copy,
|
||||
ensure_dir_exists,
|
||||
@ -26,7 +22,6 @@ from cli.lib.common.path_helper import (
|
||||
is_path_exist,
|
||||
)
|
||||
from cli.lib.common.utils import run_command
|
||||
from cli.lib.core.vllm.lib import clone_vllm, summarize_build_info
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -47,7 +42,7 @@ class VllmBuildParameters:
|
||||
"""
|
||||
|
||||
# USE_TORCH_WHEEL: when true, use local Torch wheels; requires TORCH_WHEELS_PATH.
|
||||
# Otherwise docker build pull torch nightly during build
|
||||
# Otherwise docker build pull torch nightly during build
|
||||
# TORCH_WHEELS_PATH: directory containing local torch wheels when use_torch_whl is True
|
||||
use_torch_whl: bool = env_bool_field("USE_TORCH_WHEEL", True)
|
||||
torch_whls_path: Path = env_path_field("TORCH_WHEELS_PATH", "./dist")
|
||||
@ -66,11 +61,6 @@ class VllmBuildParameters:
|
||||
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
|
||||
)
|
||||
|
||||
# the cleaning script to remove torch dependencies from pip
|
||||
cleaning_script: Path = env_path_field(
|
||||
"cleaning_script", ".github/ci_configs/vllm/use_existing_torch.py"
|
||||
)
|
||||
|
||||
# OUTPUT_DIR: where docker buildx (local exporter) will write artifacts
|
||||
output_dir: Path = env_path_field("OUTPUT_DIR", "external/vllm")
|
||||
|
||||
@ -162,45 +152,18 @@ class VllmBuildRunner(BaseRunner):
|
||||
3. run docker build
|
||||
"""
|
||||
inputs = VllmBuildParameters()
|
||||
logger.info("Running vllm build with inputs: %s", inputs)
|
||||
vllm_commit = clone_vllm()
|
||||
clone_vllm()
|
||||
|
||||
self.cp_torch_cleaning_script(inputs)
|
||||
self.cp_dockerfile_if_exist(inputs)
|
||||
|
||||
# cp torch wheels from root direct to vllm workspace if exist
|
||||
self.cp_torch_whls_if_exist(inputs)
|
||||
|
||||
# make sure the output dir to store the build artifacts exist
|
||||
ensure_dir_exists(Path(inputs.output_dir))
|
||||
ensure_dir_exists(inputs.output_dir)
|
||||
|
||||
cmd = self._generate_docker_build_cmd(inputs)
|
||||
logger.info("Running docker build: \n %s", cmd)
|
||||
|
||||
try:
|
||||
run_command(cmd, cwd="vllm", env=os.environ.copy())
|
||||
finally:
|
||||
self.genearte_vllm_build_summary(vllm_commit, inputs)
|
||||
|
||||
def genearte_vllm_build_summary(
|
||||
self, vllm_commit: str, inputs: VllmBuildParameters
|
||||
):
|
||||
if not gh_summary_path():
|
||||
return logger.info("Skipping, not detect GH Summary env var....")
|
||||
logger.info("Generate GH Summary ...")
|
||||
# summarize vllm build info
|
||||
summarize_build_info(vllm_commit)
|
||||
|
||||
# summarize vllm build artifacts
|
||||
vllm_artifact_dir = inputs.output_dir / "wheels"
|
||||
summarize_content_from_file(
|
||||
vllm_artifact_dir,
|
||||
"build_summary.txt",
|
||||
title="Vllm build env pip package summary",
|
||||
)
|
||||
summarize_wheels(
|
||||
inputs.torch_whls_path, max_depth=3, title="Torch Wheels Artifacts"
|
||||
)
|
||||
summarize_wheels(vllm_artifact_dir, max_depth=3, title="Vllm Wheels Artifacts")
|
||||
run_command(cmd, cwd="vllm", env=os.environ.copy())
|
||||
|
||||
def cp_torch_whls_if_exist(self, inputs: VllmBuildParameters) -> str:
|
||||
if not inputs.use_torch_whl:
|
||||
@ -211,11 +174,6 @@ class VllmBuildRunner(BaseRunner):
|
||||
copy(inputs.torch_whls_path, tmp_dir)
|
||||
return tmp_dir
|
||||
|
||||
def cp_torch_cleaning_script(self, inputs: VllmBuildParameters):
|
||||
script = get_path(inputs.cleaning_script, resolve=True)
|
||||
vllm_script = Path(f"./{self.work_directory}/use_existing_torch.py")
|
||||
copy(script, vllm_script)
|
||||
|
||||
def cp_dockerfile_if_exist(self, inputs: VllmBuildParameters):
|
||||
if not inputs.use_local_dockerfile:
|
||||
logger.info("using vllm default dockerfile.torch_nightly for build")
|
||||
@ -294,3 +252,12 @@ class VllmBuildRunner(BaseRunner):
|
||||
--progress=plain .
|
||||
"""
|
||||
).strip()
|
||||
|
||||
|
||||
def clone_vllm():
|
||||
clone_external_repo(
|
||||
target="vllm",
|
||||
repo="https://github.com/vllm-project/vllm.git",
|
||||
dst="vllm",
|
||||
update_submodules=True,
|
||||
)
|
@ -1,292 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
import textwrap
|
||||
from typing import Any
|
||||
|
||||
from cli.lib.common.gh_summary import write_gh_step_summary
|
||||
from cli.lib.common.git_helper import clone_external_repo
|
||||
from cli.lib.common.pip_helper import pip_install_packages
|
||||
from cli.lib.common.utils import run_command, temp_environ, working_directory
|
||||
from jinja2 import Template
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_TPL_VLLM_INFO = Template(
|
||||
textwrap.dedent("""\
|
||||
## Vllm against Pytorch CI Test Summary
|
||||
**Vllm Commit**: [{{ vllm_commit }}](https://github.com/vllm-project/vllm/commit/{{ vllm_commit }})
|
||||
{%- if torch_sha %}
|
||||
**Pytorch Commit**: [{{ torch_sha }}](https://github.com/pytorch/pytorch/commit/{{ torch_sha }})
|
||||
{%- endif %}
|
||||
""")
|
||||
)
|
||||
|
||||
|
||||
def sample_vllm_test_library():
|
||||
"""
|
||||
Simple sample to unblock the vllm ci development, which is mimic to
|
||||
https://github.com/vllm-project/vllm/blob/main/.buildkite/test-pipeline.yaml
|
||||
see run_test_plan for more details
|
||||
"""
|
||||
# TODO(elainewy): Read from yaml file to handle the env and tests for vllm
|
||||
return {
|
||||
"vllm_basic_correctness_test": {
|
||||
"title": "Basic Correctness Test",
|
||||
"id": "vllm_basic_correctness_test",
|
||||
"env_vars": {
|
||||
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
|
||||
},
|
||||
"steps": [
|
||||
"pytest -v -s basic_correctness/test_cumem.py",
|
||||
"pytest -v -s basic_correctness/test_basic_correctness.py",
|
||||
"pytest -v -s basic_correctness/test_cpu_offload.py",
|
||||
],
|
||||
},
|
||||
"vllm_basic_models_test": {
|
||||
"title": "Basic models test",
|
||||
"id": "vllm_basic_models_test",
|
||||
"steps": [
|
||||
"pytest -v -s models/test_transformers.py",
|
||||
"pytest -v -s models/test_registry.py",
|
||||
"pytest -v -s models/test_utils.py",
|
||||
"pytest -v -s models/test_vision.py",
|
||||
"pytest -v -s models/test_initialization.py",
|
||||
],
|
||||
},
|
||||
"vllm_entrypoints_test": {
|
||||
"title": "Entrypoints Test ",
|
||||
"id": "vllm_entrypoints_test",
|
||||
"env_vars": {
|
||||
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
|
||||
},
|
||||
"steps": [
|
||||
" ".join(
|
||||
[
|
||||
"pytest",
|
||||
"-v",
|
||||
"-s",
|
||||
"entrypoints/llm",
|
||||
"--ignore=entrypoints/llm/test_generate.py",
|
||||
"--ignore=entrypoints/llm/test_collective_rpc.py",
|
||||
]
|
||||
),
|
||||
"pytest -v -s entrypoints/llm/test_generate.py",
|
||||
"pytest -v -s entrypoints/offline_mode",
|
||||
],
|
||||
},
|
||||
"vllm_regression_test": {
|
||||
"title": "Regression Test",
|
||||
"id": "vllm_regression_test",
|
||||
"package_install": ["modelscope"],
|
||||
"steps": [
|
||||
"pytest -v -s test_regression.py",
|
||||
],
|
||||
},
|
||||
"vllm_lora_tp_test_distributed": {
|
||||
"title": "LoRA TP Test (Distributed)",
|
||||
"id": "vllm_lora_tp_test_distributed",
|
||||
"env_vars": {
|
||||
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
|
||||
},
|
||||
"num_gpus": 4,
|
||||
"steps": [
|
||||
"pytest -v -s -x lora/test_chatglm3_tp.py",
|
||||
"pytest -v -s -x lora/test_llama_tp.py",
|
||||
"pytest -v -s -x lora/test_llm_with_multi_loras.py",
|
||||
],
|
||||
},
|
||||
"vllm_distributed_test_28_failure_test": {
|
||||
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
|
||||
"id": "vllm_distributed_test_28_failure_test",
|
||||
"env_vars": {
|
||||
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
|
||||
},
|
||||
"num_gpus": 4,
|
||||
"steps": [
|
||||
"pytest -v -s distributed/test_sequence_parallel.py",
|
||||
],
|
||||
},
|
||||
"vllm_lora_28_failure_test": {
|
||||
"title": "LoRA pytorch 2.8 failure test",
|
||||
"id": "vllm_lora_28_failure_test",
|
||||
"steps": ["pytest -v lora/test_quant_model.py"],
|
||||
},
|
||||
"vllm_multi_model_processor_test": {
|
||||
"title": "Multi-Modal Processor Test",
|
||||
"id": "vllm_multi_model_processor_test",
|
||||
"package_install": ["git+https://github.com/TIGER-AI-Lab/Mantis.git"],
|
||||
"steps": [
|
||||
"pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py",
|
||||
],
|
||||
},
|
||||
"vllm_multi_model_test_28_failure_test": {
|
||||
"title": "Multi-Model Test (Failed 2.8 release)",
|
||||
"id": "vllm_multi_model_test_28_failure_test",
|
||||
"package_install": ["git+https://github.com/TIGER-AI-Lab/Mantis.git"],
|
||||
"steps": [
|
||||
"pytest -v -s models/multimodal/generation/test_voxtral.py",
|
||||
"pytest -v -s models/multimodal/pooling",
|
||||
],
|
||||
},
|
||||
"vllm_pytorch_compilation_unit_tests": {
|
||||
"title": "PyTorch Compilation Unit Tests",
|
||||
"id": "vllm_pytorch_compilation_unit_tests",
|
||||
"steps": [
|
||||
"pytest -v -s compile/test_pass_manager.py",
|
||||
"pytest -v -s compile/test_fusion.py",
|
||||
"pytest -v -s compile/test_fusion_attn.py",
|
||||
"pytest -v -s compile/test_silu_mul_quant_fusion.py",
|
||||
"pytest -v -s compile/test_sequence_parallelism.py",
|
||||
"pytest -v -s compile/test_async_tp.py",
|
||||
"pytest -v -s compile/test_fusion_all_reduce.py",
|
||||
"pytest -v -s compile/test_decorator.py",
|
||||
],
|
||||
},
|
||||
"vllm_languagde_model_test_extended_generation_28_failure_test": {
|
||||
"title": "Language Models Test (Extended Generation) 2.8 release failure",
|
||||
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
|
||||
"package_install": [
|
||||
"--no-build-isolation",
|
||||
"git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8",
|
||||
],
|
||||
"steps": [
|
||||
"pytest -v -s models/language/generation/test_mistral.py",
|
||||
],
|
||||
},
|
||||
"vllm_distributed_test_2_gpu_28_failure_test": {
|
||||
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
|
||||
"id": "vllm_distributed_test_2_gpu_28_failure_test",
|
||||
"env_vars": {
|
||||
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
|
||||
},
|
||||
"num_gpus": 4,
|
||||
"steps": [
|
||||
"pytest -v -s distributed/test_sequence_parallel.py",
|
||||
],
|
||||
},
|
||||
# TODO(elainewy):need to add g6 with 4 gpus to run this test
|
||||
"vllm_lora_test": {
|
||||
"title": "LoRA Test %N",
|
||||
"id": "lora_test",
|
||||
"parallelism": 4,
|
||||
"steps": [
|
||||
"echo '[checking] list sharded lora tests:'",
|
||||
" ".join(
|
||||
[
|
||||
"pytest -q --collect-only lora",
|
||||
"--shard-id=$$BUILDKITE_PARALLEL_JOB",
|
||||
"--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT",
|
||||
"--ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py",
|
||||
]
|
||||
),
|
||||
"echo '[checking] Done. list lora tests'",
|
||||
" ".join(
|
||||
[
|
||||
"pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB",
|
||||
"--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT",
|
||||
"--ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py",
|
||||
]
|
||||
),
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def check_parallelism(tests: Any, title: str, shard_id: int = 0, num_shards: int = 0):
|
||||
"""
|
||||
a method to check if the test plan is parallelism or not.
|
||||
"""
|
||||
parallelism = int(tests.get("parallelism", "0"))
|
||||
is_parallel = parallelism and parallelism > 1
|
||||
|
||||
if not is_parallel:
|
||||
return False
|
||||
|
||||
if shard_id > num_shards:
|
||||
raise RuntimeError(
|
||||
f"Test {title} expects {num_shards} shards, but invalid {shard_id} is provided"
|
||||
)
|
||||
|
||||
if num_shards != parallelism:
|
||||
raise RuntimeError(
|
||||
f"Test {title} expects {parallelism} shards, but invalid {num_shards} is provided"
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def run_test_plan(
|
||||
test_plan: str,
|
||||
test_target: str,
|
||||
tests_map: dict[str, Any],
|
||||
shard_id: int = 0,
|
||||
num_shards: int = 0,
|
||||
):
|
||||
"""
|
||||
a method to run list of tests based on the test plan.
|
||||
"""
|
||||
logger.info("run %s tests.....", test_target)
|
||||
if test_plan not in tests_map:
|
||||
raise RuntimeError(
|
||||
f"test {test_plan} not found, please add it to test plan pool"
|
||||
)
|
||||
tests = tests_map[test_plan]
|
||||
pkgs = tests.get("package_install", [])
|
||||
title = tests.get("title", "unknown test")
|
||||
|
||||
is_parallel = check_parallelism(tests, title, shard_id, num_shards)
|
||||
if is_parallel:
|
||||
title = title.replace("%N", f"{shard_id}/{num_shards}")
|
||||
|
||||
logger.info("Running tests: %s", title)
|
||||
if pkgs:
|
||||
logger.info("Installing packages: %s", pkgs)
|
||||
pip_install_packages(packages=pkgs, prefer_uv=True)
|
||||
with (
|
||||
working_directory(tests.get("working_directory", "tests")),
|
||||
temp_environ(tests.get("env_vars", {})),
|
||||
):
|
||||
failures = []
|
||||
for step in tests["steps"]:
|
||||
logger.info("Running step: %s", step)
|
||||
if is_parallel:
|
||||
step = replace_buildkite_placeholders(step, shard_id, num_shards)
|
||||
logger.info("Running parallel step: %s", step)
|
||||
code = run_command(cmd=step, check=False, use_shell=True)
|
||||
if code != 0:
|
||||
failures.append(step)
|
||||
logger.info("Finish running step: %s", step)
|
||||
if failures:
|
||||
logger.error("Failed tests: %s", failures)
|
||||
raise RuntimeError(f"{len(failures)} pytest runs failed: {failures}")
|
||||
logger.info("Done. All tests passed")
|
||||
|
||||
|
||||
def clone_vllm(dst: str = "vllm"):
|
||||
_, commit = clone_external_repo(
|
||||
target="vllm",
|
||||
repo="https://github.com/vllm-project/vllm.git",
|
||||
dst=dst,
|
||||
update_submodules=True,
|
||||
)
|
||||
return commit
|
||||
|
||||
|
||||
def replace_buildkite_placeholders(step: str, shard_id: int, num_shards: int) -> str:
|
||||
mapping = {
|
||||
"$$BUILDKITE_PARALLEL_JOB_COUNT": str(num_shards),
|
||||
"$$BUILDKITE_PARALLEL_JOB": str(shard_id),
|
||||
}
|
||||
for k in sorted(mapping, key=len, reverse=True):
|
||||
step = step.replace(k, mapping[k])
|
||||
return step
|
||||
|
||||
|
||||
def summarize_build_info(vllm_commit: str) -> bool:
|
||||
torch_sha = os.getenv("GITHUB_SHA")
|
||||
md = (
|
||||
_TPL_VLLM_INFO.render(vllm_commit=vllm_commit, torch_sha=torch_sha).strip()
|
||||
+ "\n"
|
||||
)
|
||||
return write_gh_step_summary(md)
|
@ -1,280 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from cli.lib.common.cli_helper import BaseRunner
|
||||
from cli.lib.common.envs_helper import env_path_field, env_str_field, get_env
|
||||
from cli.lib.common.path_helper import copy, get_path, remove_dir
|
||||
from cli.lib.common.pip_helper import (
|
||||
pip_install_first_match,
|
||||
pip_install_packages,
|
||||
pkg_exists,
|
||||
run_python,
|
||||
)
|
||||
from cli.lib.common.utils import run_command, working_directory
|
||||
from cli.lib.core.vllm.lib import clone_vllm, run_test_plan, sample_vllm_test_library
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class VllmTestParameters:
|
||||
"""
|
||||
Parameters defining the vllm external test input
|
||||
|
||||
!!!DO NOT ADD SECRETS IN THIS CLASS!!!
|
||||
you can put environment variable name in VllmTestParameters if it's not the same as the secret one
|
||||
fetch secrests directly from env variables during runtime
|
||||
"""
|
||||
|
||||
torch_whls_path: Path = env_path_field("WHEELS_PATH", "./dist")
|
||||
|
||||
vllm_whls_path: Path = env_path_field(
|
||||
"VLLM_WHEELS_PATH", "./dist/external/vllm/wheels"
|
||||
)
|
||||
|
||||
torch_cuda_arch_list: str = env_str_field("TORCH_CUDA_ARCH_LIST", "8.9")
|
||||
|
||||
cleaning_script: Path = env_path_field(
|
||||
"cleaning_script", ".github/ci_configs/vllm/use_existing_torch.py"
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if not self.torch_whls_path.exists():
|
||||
raise ValueError("missing torch_whls_path")
|
||||
if not self.vllm_whls_path.exists():
|
||||
raise ValueError("missing vllm_whls_path")
|
||||
|
||||
|
||||
class TestInpuType(Enum):
|
||||
TEST_PLAN = "test_plan"
|
||||
UNKNOWN = "unknown"
|
||||
|
||||
|
||||
class VllmTestRunner(BaseRunner):
|
||||
def __init__(self, args: Any):
|
||||
self.work_directory = "vllm"
|
||||
self.test_plan = ""
|
||||
self.test_type = TestInpuType.UNKNOWN
|
||||
|
||||
self.shard_id = args.shard_id
|
||||
self.num_shards = args.num_shards
|
||||
|
||||
if args.test_plan:
|
||||
self.test_plan = args.test_plan
|
||||
self.test_type = TestInpuType.TEST_PLAN
|
||||
|
||||
# Matches the structeur in the artifacts.zip from torcb build
|
||||
self.TORCH_WHL_PATH_REGEX = "torch*.whl"
|
||||
self.TORCH_WHL_EXTRA = "opt-einsum"
|
||||
self.TORCH_ADDITIONAL_WHLS_REGEX = [
|
||||
"vision/torchvision*.whl",
|
||||
"audio/torchaudio*.whl",
|
||||
]
|
||||
|
||||
# Match the structure of the artifacts.zip from vllm external build
|
||||
self.VLLM_TEST_WHLS_REGEX = [
|
||||
"xformers/*.whl",
|
||||
"vllm/vllm*.whl",
|
||||
"flashinfer-python/flashinfer*.whl",
|
||||
]
|
||||
|
||||
def prepare(self):
|
||||
"""
|
||||
prepare test environment for vllm. This includes clone vllm repo, install all wheels, test dependencies and set env
|
||||
"""
|
||||
params = VllmTestParameters()
|
||||
logger.info("Display VllmTestParameters %s", params)
|
||||
self._set_envs(params)
|
||||
|
||||
clone_vllm(dst=self.work_directory)
|
||||
self.cp_torch_cleaning_script(params)
|
||||
with working_directory(self.work_directory):
|
||||
remove_dir(Path("vllm"))
|
||||
self._install_wheels(params)
|
||||
self._install_dependencies()
|
||||
# verify the torches are not overridden by test dependencies
|
||||
|
||||
check_versions()
|
||||
|
||||
def run(self):
|
||||
"""
|
||||
main function to run vllm test
|
||||
"""
|
||||
self.prepare()
|
||||
try:
|
||||
with working_directory(self.work_directory):
|
||||
if self.test_type == TestInpuType.TEST_PLAN:
|
||||
if self.num_shards > 1:
|
||||
run_test_plan(
|
||||
self.test_plan,
|
||||
"vllm",
|
||||
sample_vllm_test_library(),
|
||||
self.shard_id,
|
||||
self.num_shards,
|
||||
)
|
||||
else:
|
||||
run_test_plan(
|
||||
self.test_plan, "vllm", sample_vllm_test_library()
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown test type {self.test_type}")
|
||||
finally:
|
||||
# double check the torches are not overridden by other packages
|
||||
check_versions()
|
||||
|
||||
def cp_torch_cleaning_script(self, params: VllmTestParameters):
|
||||
script = get_path(params.cleaning_script, resolve=True)
|
||||
vllm_script = Path(f"./{self.work_directory}/use_existing_torch.py")
|
||||
copy(script, vllm_script)
|
||||
|
||||
def _install_wheels(self, params: VllmTestParameters):
|
||||
logger.info("Running vllm test with inputs: %s", params)
|
||||
if not pkg_exists("torch"):
|
||||
# install torch from local whls if it's not installed yet.
|
||||
torch_p = f"{str(params.torch_whls_path)}/{self.TORCH_WHL_PATH_REGEX}"
|
||||
pip_install_first_match(torch_p, self.TORCH_WHL_EXTRA)
|
||||
|
||||
torch_whls_path = [
|
||||
f"{str(params.torch_whls_path)}/{whl_path}"
|
||||
for whl_path in self.TORCH_ADDITIONAL_WHLS_REGEX
|
||||
]
|
||||
for torch_whl in torch_whls_path:
|
||||
pip_install_first_match(torch_whl)
|
||||
logger.info("Done. Installed torch and other torch-related wheels ")
|
||||
|
||||
logger.info("Installing vllm wheels")
|
||||
vllm_whls_path = [
|
||||
f"{str(params.vllm_whls_path)}/{whl_path}"
|
||||
for whl_path in self.VLLM_TEST_WHLS_REGEX
|
||||
]
|
||||
for vllm_whl in vllm_whls_path:
|
||||
pip_install_first_match(vllm_whl)
|
||||
logger.info("Done. Installed vllm wheels")
|
||||
|
||||
def _install_test_dependencies(self):
|
||||
"""
|
||||
This method replaces torch dependencies with local torch wheel info in
|
||||
requirements/test.in file from vllm repo. then generates the test.txt
|
||||
in runtime
|
||||
"""
|
||||
logger.info("generate test.txt from requirements/test.in with local torch whls")
|
||||
preprocess_test_in()
|
||||
copy("requirements/test.txt", "snapshot_constraint.txt")
|
||||
|
||||
run_command(
|
||||
f"{sys.executable} -m uv pip compile requirements/test.in "
|
||||
"-o test.txt "
|
||||
"--index-strategy unsafe-best-match "
|
||||
"--constraint snapshot_constraint.txt "
|
||||
"--torch-backend cu128"
|
||||
)
|
||||
pip_install_packages(requirements="test.txt", prefer_uv=True)
|
||||
logger.info("Done. installed requirements for test dependencies")
|
||||
|
||||
def _install_dependencies(self):
|
||||
pip_install_packages(packages=["-e", "tests/vllm_test_utils"], prefer_uv=True)
|
||||
pip_install_packages(packages=["hf_transfer"], prefer_uv=True)
|
||||
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||
|
||||
# using script from vllm repo to remove all torch packages from requirements txt
|
||||
run_python("use_existing_torch.py")
|
||||
|
||||
# install common packages
|
||||
for requirements in ["requirements/common.txt", "requirements/build.txt"]:
|
||||
pip_install_packages(
|
||||
requirements=requirements,
|
||||
prefer_uv=True,
|
||||
)
|
||||
# install test packages
|
||||
self._install_test_dependencies()
|
||||
|
||||
def _set_envs(self, inputs: VllmTestParameters):
|
||||
os.environ["TORCH_CUDA_ARCH_LIST"] = inputs.torch_cuda_arch_list
|
||||
if not validate_cuda(get_env("TORCH_CUDA_ARCH_LIST")):
|
||||
logger.warning(
|
||||
"Missing supported TORCH_CUDA_ARCH_LIST. "
|
||||
"Currently support TORCH_CUDA_ARCH_LIST env var "
|
||||
"with supported arch [8.0, 8.9, 9.0]"
|
||||
)
|
||||
|
||||
os.environ["HF_TOKEN"] = os.getenv("VLLM_TEST_HUGGING_FACE_TOKEN", "")
|
||||
if not get_env("HF_TOKEN"):
|
||||
raise ValueError(
|
||||
"missing required HF_TOKEN, please set VLLM_TEST_HUGGING_FACE_TOKEN env var"
|
||||
)
|
||||
if not get_env("TORCH_CUDA_ARCH_LIST"):
|
||||
raise ValueError(
|
||||
"missing required TORCH_CUDA_ARCH_LIST, please set TORCH_CUDA_ARCH_LIST env var"
|
||||
)
|
||||
|
||||
|
||||
def preprocess_test_in(
|
||||
target_file: str = "requirements/test.in", additional_packages: Iterable[str] = ()
|
||||
):
|
||||
"""
|
||||
This modifies the target_file file in place in vllm work directory.
|
||||
It removes torch and unwanted packages in target_file and replace with local torch whls
|
||||
package with format "$WHEEL_PACKAGE_NAME @ file://<LOCAL_PATH>"
|
||||
"""
|
||||
additional_package_to_move = list(additional_packages or ())
|
||||
pkgs_to_remove = [
|
||||
"torch",
|
||||
"torchvision",
|
||||
"torchaudio",
|
||||
"xformers",
|
||||
"mamba_ssm",
|
||||
] + additional_package_to_move
|
||||
# Read current requirements
|
||||
target_path = Path(target_file)
|
||||
lines = target_path.read_text().splitlines()
|
||||
|
||||
pkgs_to_add = []
|
||||
|
||||
# Remove lines starting with the package names (==, @, >=) — case-insensitive
|
||||
pattern = re.compile(rf"^({'|'.join(pkgs_to_remove)})\s*(==|@|>=)", re.IGNORECASE)
|
||||
kept_lines = [line for line in lines if not pattern.match(line)]
|
||||
|
||||
# Get local installed torch/vision/audio from pip freeze
|
||||
# This is hacky, but it works
|
||||
pip_freeze = subprocess.check_output(["pip", "freeze"], text=True)
|
||||
header_lines = [
|
||||
line
|
||||
for line in pip_freeze.splitlines()
|
||||
if re.match(
|
||||
r"^(torch|torchvision|torchaudio)\s*@\s*file://", line, re.IGNORECASE
|
||||
)
|
||||
]
|
||||
|
||||
# Write back: header_lines + blank + kept_lines
|
||||
out_lines = header_lines + [""] + kept_lines
|
||||
if pkgs_to_add:
|
||||
out_lines += [""] + pkgs_to_add
|
||||
|
||||
out = "\n".join(out_lines) + "\n"
|
||||
target_path.write_text(out)
|
||||
logger.info("[INFO] Updated %s", target_file)
|
||||
|
||||
|
||||
def validate_cuda(value: str) -> bool:
|
||||
VALID_VALUES = {"8.0", "8.9", "9.0"}
|
||||
return all(v in VALID_VALUES for v in value.split())
|
||||
|
||||
|
||||
def check_versions():
|
||||
"""
|
||||
check installed packages version
|
||||
"""
|
||||
logger.info("Double check installed packages")
|
||||
patterns = ["torch", "xformers", "torchvision", "torchaudio", "vllm"]
|
||||
for pkg in patterns:
|
||||
pkg_exists(pkg)
|
||||
logger.info("Done. checked installed packages")
|
@ -5,7 +5,6 @@ import logging
|
||||
|
||||
from cli.build_cli.register_build import register_build_commands
|
||||
from cli.lib.common.logger import setup_logging
|
||||
from cli.test_cli.register_test import register_test_commands
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -21,7 +20,6 @@ def main():
|
||||
|
||||
# registers second-level subcommands
|
||||
register_build_commands(subparsers)
|
||||
register_test_commands(subparsers)
|
||||
|
||||
# parse args after all options are registered
|
||||
args = parser.parse_args()
|
||||
|
@ -1,62 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
from cli.lib.common.cli_helper import register_targets, RichHelp, TargetSpec
|
||||
from cli.lib.core.vllm.vllm_test import VllmTestRunner
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maps targets to their argparse configuration and runner
|
||||
# it adds new target to path python -m cli.run build external {target} with buildrunner
|
||||
_TARGETS: dict[str, TargetSpec] = {
|
||||
"vllm": {
|
||||
"runner": VllmTestRunner,
|
||||
"help": "test vLLM with pytorch main",
|
||||
}
|
||||
# add yours ...
|
||||
}
|
||||
|
||||
|
||||
def common_args(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Add common CLI arguments to the given parser.
|
||||
"""
|
||||
parser.add_argument(
|
||||
"--shard-id",
|
||||
type=int,
|
||||
default=1,
|
||||
help="a shard id to run, e.g. '0,1,2,3'",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-shards",
|
||||
type=int,
|
||||
default=1,
|
||||
help="a number of shards to run, e.g. '4'",
|
||||
)
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument(
|
||||
"-tp",
|
||||
"--test-plan",
|
||||
type=str,
|
||||
help="a pre-defined test plan to run, e.g. 'basic_correctness_test'",
|
||||
)
|
||||
|
||||
|
||||
def register_test_commands(subparsers: argparse._SubParsersAction) -> None:
|
||||
build_parser = subparsers.add_parser(
|
||||
"test",
|
||||
help="test related commands",
|
||||
formatter_class=RichHelp,
|
||||
)
|
||||
build_subparsers = build_parser.add_subparsers(dest="test_command", required=True)
|
||||
overview = "\n".join(
|
||||
f" {name:12} {spec.get('help', '')}" for name, spec in _TARGETS.items()
|
||||
)
|
||||
external_parser = build_subparsers.add_parser(
|
||||
"external",
|
||||
help="Test external targets",
|
||||
description="Test third-party targets.\n\nAvailable targets:\n" + overview,
|
||||
formatter_class=RichHelp,
|
||||
)
|
||||
register_targets(external_parser, _TARGETS, common_args=common_args)
|
@ -6,7 +6,6 @@ dependencies = [
|
||||
"GitPython==3.1.45",
|
||||
"docker==7.1.0",
|
||||
"pytest==7.3.2",
|
||||
"uv==0.8.6"
|
||||
]
|
||||
|
||||
[tool.setuptools]
|
||||
|
@ -1,185 +0,0 @@
|
||||
# tests/test_run_test_plan.py
|
||||
import importlib
|
||||
from contextlib import nullcontext
|
||||
from types import SimpleNamespace
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
MOD = "cli.lib.core.vllm.lib"
|
||||
|
||||
# We import inside tests so the MOD override above applies everywhere
|
||||
run_test_plan_import_path = f"{MOD}.run_test_plan"
|
||||
|
||||
|
||||
def _get_cmd(c):
|
||||
# Support both kwargs and positional args
|
||||
return c.kwargs.get("cmd", c.args[0] if c.args else None)
|
||||
|
||||
|
||||
def _get_check(c):
|
||||
if "check" in c.kwargs:
|
||||
return c.kwargs["check"]
|
||||
# If positional, assume second arg is 'check' when present; default False
|
||||
return c.args[1] if len(c.args) > 1 else False
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def patch_module(monkeypatch):
|
||||
"""
|
||||
Patch helpers ('pip_install_packages', 'temp_environ', 'working_directory',
|
||||
'run_command', 'logger') inside the target module and expose them.
|
||||
"""
|
||||
module = importlib.import_module(MOD)
|
||||
|
||||
# Create fakes/mocks
|
||||
pip_install_packages = MagicMock(name="pip_install_packages")
|
||||
run_command = MagicMock(name="run_command", return_value=0)
|
||||
|
||||
# temp_environ / working_directory: record calls but act as context managers
|
||||
temp_calls: list[dict] = []
|
||||
workdir_calls: list[str] = []
|
||||
|
||||
def fake_working_directory(path: str):
|
||||
workdir_calls.append(path)
|
||||
return nullcontext()
|
||||
|
||||
def fake_temp_env(map: dict[str, str]):
|
||||
temp_calls.append(map)
|
||||
return nullcontext()
|
||||
|
||||
logger = SimpleNamespace(
|
||||
info=MagicMock(name="logger.info"),
|
||||
error=MagicMock(name="logger.error"),
|
||||
)
|
||||
|
||||
# Apply patches (raise if attribute doesn't exist)
|
||||
monkeypatch.setattr(
|
||||
module, "pip_install_packages", pip_install_packages, raising=True
|
||||
)
|
||||
monkeypatch.setattr(module, "run_command", run_command, raising=True)
|
||||
monkeypatch.setattr(
|
||||
module, "working_directory", fake_working_directory, raising=True
|
||||
)
|
||||
monkeypatch.setattr(module, "temp_environ", fake_temp_env, raising=True)
|
||||
monkeypatch.setattr(module, "logger", logger, raising=True)
|
||||
|
||||
return SimpleNamespace(
|
||||
module=module,
|
||||
run_test_plan=module.run_test_plan, # expose to avoid getattr("constant") (Ruff B009)
|
||||
pip_install_packages=pip_install_packages,
|
||||
run_command=run_command,
|
||||
temp_calls=temp_calls,
|
||||
workdir_calls=workdir_calls,
|
||||
logger=logger,
|
||||
)
|
||||
|
||||
|
||||
def test_success_runs_all_steps_and_uses_env_and_workdir(monkeypatch, patch_module):
|
||||
run_test_plan = patch_module.run_test_plan
|
||||
|
||||
tests_map = {
|
||||
"basic": {
|
||||
"title": "Basic suite",
|
||||
"package_install": [],
|
||||
"working_directory": "tests",
|
||||
"env_vars": {"GLOBAL_FLAG": "1"},
|
||||
"steps": [
|
||||
"export A=x && pytest -q",
|
||||
"export B=y && pytest -q tests/unit",
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
# One exit code per step (export + two pytest)
|
||||
patch_module.run_command.side_effect = [0, 0, 0]
|
||||
|
||||
run_test_plan("basic", "cpu", tests_map)
|
||||
|
||||
calls = patch_module.run_command.call_args_list
|
||||
cmds = [_get_cmd(c) for c in calls]
|
||||
checks = [_get_check(c) for c in calls]
|
||||
|
||||
assert cmds == [
|
||||
"export A=x && pytest -q",
|
||||
"export B=y && pytest -q tests/unit",
|
||||
]
|
||||
assert all(chk is False for chk in checks)
|
||||
|
||||
assert patch_module.workdir_calls == ["tests"]
|
||||
assert patch_module.temp_calls == [{"GLOBAL_FLAG": "1"}]
|
||||
|
||||
|
||||
def test_installs_packages_when_present(monkeypatch, patch_module):
|
||||
run_test_plan = patch_module.module.run_test_plan
|
||||
|
||||
tests_map = {
|
||||
"with_pkgs": {
|
||||
"title": "Needs deps",
|
||||
"package_install": ["timm==1.0.0", "flash-attn"],
|
||||
"steps": ["pytest -q"],
|
||||
}
|
||||
}
|
||||
|
||||
patch_module.run_command.return_value = 0
|
||||
|
||||
run_test_plan("with_pkgs", "gpu", tests_map)
|
||||
|
||||
patch_module.pip_install_packages.assert_called_once_with(
|
||||
packages=["timm==1.0.0", "flash-attn"],
|
||||
prefer_uv=True,
|
||||
)
|
||||
|
||||
|
||||
def test_raises_on_missing_plan(patch_module):
|
||||
run_test_plan = patch_module.module.run_test_plan
|
||||
with pytest.raises(RuntimeError) as ei:
|
||||
run_test_plan("nope", "cpu", tests_map={})
|
||||
|
||||
assert "test nope not found" in str(ei.value)
|
||||
|
||||
|
||||
def test_aggregates_failures_and_raises(monkeypatch, patch_module):
|
||||
run_test_plan = patch_module.module.run_test_plan
|
||||
|
||||
tests_map = {
|
||||
"mix": {
|
||||
"title": "Some pass some fail",
|
||||
"steps": [
|
||||
"pytest test_a.py", # 0 → pass
|
||||
"pytest test_b.py", # 1 → fail
|
||||
"pytest test_c.py", # 2 → fail
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
# Simulate pass, fail, fail
|
||||
patch_module.run_command.side_effect = [0, 1, 2]
|
||||
|
||||
with pytest.raises(RuntimeError) as ei:
|
||||
run_test_plan("mix", "cpu", tests_map)
|
||||
|
||||
msg = str(ei.value)
|
||||
assert "2 pytest runs failed" in msg
|
||||
# Ensure logger captured failed tests list
|
||||
patch_module.logger.error.assert_called_once()
|
||||
# And we attempted all three commands
|
||||
assert patch_module.run_command.call_count == 3
|
||||
|
||||
|
||||
def test_custom_working_directory_used(patch_module):
|
||||
run_test_plan = patch_module.module.run_test_plan
|
||||
|
||||
tests_map = {
|
||||
"customwd": {
|
||||
"title": "Custom wd",
|
||||
"working_directory": "examples/ci",
|
||||
"steps": ["pytest -q"],
|
||||
}
|
||||
}
|
||||
|
||||
patch_module.run_command.return_value = 0
|
||||
run_test_plan("customwd", "cpu", tests_map)
|
||||
|
||||
assert patch_module.workdir_calls == ["examples/ci"]
|
@ -1,143 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
from cli.lib.common.utils import temp_environ, working_directory # <-- replace import
|
||||
|
||||
|
||||
class EnvIsolatedTestCase(unittest.TestCase):
|
||||
"""Base class that snapshots os.environ and CWD for isolation."""
|
||||
|
||||
def setUp(self):
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
self._env_backup = dict(os.environ)
|
||||
|
||||
# Snapshot/repair CWD if it's gone
|
||||
try:
|
||||
self._cwd_backup = os.getcwd()
|
||||
except FileNotFoundError:
|
||||
# If CWD no longer exists, switch to a safe place and record that
|
||||
self._cwd_backup = tempfile.gettempdir()
|
||||
os.chdir(self._cwd_backup)
|
||||
|
||||
# Create a temporary directory for the test to run in
|
||||
self._temp_dir = tempfile.mkdtemp()
|
||||
os.chdir(self._temp_dir)
|
||||
|
||||
def tearDown(self):
|
||||
import os
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
# Restore cwd first (before cleaning up temp dir)
|
||||
try:
|
||||
os.chdir(self._cwd_backup)
|
||||
except OSError:
|
||||
os.chdir(tempfile.gettempdir())
|
||||
|
||||
# Clean up temporary directory
|
||||
try:
|
||||
shutil.rmtree(self._temp_dir, ignore_errors=True)
|
||||
except Exception:
|
||||
pass # Ignore cleanup errors
|
||||
|
||||
# Restore env
|
||||
to_del = set(os.environ.keys()) - set(self._env_backup.keys())
|
||||
for k in to_del:
|
||||
os.environ.pop(k, None)
|
||||
for k, v in self._env_backup.items():
|
||||
os.environ[k] = v
|
||||
|
||||
|
||||
class TestTempEnviron(EnvIsolatedTestCase):
|
||||
def test_sets_and_restores_new_var(self):
|
||||
var = "TEST_TMP_ENV_NEW"
|
||||
self.assertNotIn(var, os.environ)
|
||||
|
||||
with temp_environ({var: "123"}):
|
||||
self.assertEqual(os.environ[var], "123")
|
||||
|
||||
self.assertNotIn(var, os.environ) # removed after exit
|
||||
|
||||
def test_overwrites_and_restores_existing_var(self):
|
||||
var = "TEST_TMP_ENV_OVERWRITE"
|
||||
os.environ[var] = "orig"
|
||||
|
||||
with temp_environ({var: "override"}):
|
||||
self.assertEqual(os.environ[var], "override")
|
||||
|
||||
self.assertEqual(os.environ[var], "orig") # restored
|
||||
|
||||
def test_multiple_vars_and_missing_cleanup(self):
|
||||
v1, v2 = "TEST_ENV_V1", "TEST_ENV_V2"
|
||||
os.environ.pop(v1, None)
|
||||
os.environ[v2] = "keep"
|
||||
|
||||
with temp_environ({v1: "a", v2: "b"}):
|
||||
self.assertEqual(os.environ[v1], "a")
|
||||
self.assertEqual(os.environ[v2], "b")
|
||||
|
||||
self.assertNotIn(v1, os.environ) # newly-added -> removed
|
||||
self.assertEqual(os.environ[v2], "keep") # pre-existing -> restored
|
||||
|
||||
def test_restores_even_on_exception(self):
|
||||
var = "TEST_TMP_ENV_EXCEPTION"
|
||||
self.assertNotIn(var, os.environ)
|
||||
|
||||
with self.assertRaises(RuntimeError):
|
||||
with temp_environ({var: "x"}):
|
||||
self.assertEqual(os.environ[var], "x")
|
||||
raise RuntimeError("boom")
|
||||
|
||||
self.assertNotIn(var, os.environ) # removed after exception
|
||||
|
||||
|
||||
class TestWorkingDirectory(EnvIsolatedTestCase):
|
||||
def test_changes_and_restores(self):
|
||||
start = Path.cwd()
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
target = Path(td) / "wd"
|
||||
target.mkdir()
|
||||
|
||||
with working_directory(str(target)):
|
||||
self.assertEqual(Path.cwd().resolve(), target.resolve())
|
||||
|
||||
self.assertEqual(Path.cwd(), start)
|
||||
|
||||
def test_noop_when_empty_path(self):
|
||||
start = Path.cwd()
|
||||
with working_directory(""):
|
||||
self.assertEqual(Path.cwd(), start)
|
||||
self.assertEqual(Path.cwd(), start)
|
||||
|
||||
def test_restores_on_exception(self):
|
||||
start = Path.cwd()
|
||||
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
target = Path(td) / "wd_exc"
|
||||
target.mkdir()
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
with working_directory(str(target)):
|
||||
# Normalize both sides to handle /var -> /private/var
|
||||
self.assertEqual(Path.cwd().resolve(), target.resolve())
|
||||
raise ValueError("boom")
|
||||
|
||||
self.assertEqual(Path.cwd().resolve(), start.resolve())
|
||||
|
||||
def test_raises_for_missing_dir(self):
|
||||
start = Path.cwd()
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
missing = Path(td) / "does_not_exist"
|
||||
with self.assertRaises(FileNotFoundError):
|
||||
# os.chdir should raise before yielding
|
||||
with working_directory(str(missing)):
|
||||
pass
|
||||
self.assertEqual(Path.cwd(), start)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main(verbosity=2)
|
@ -4,15 +4,12 @@ import unittest
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import cli.lib.core.vllm.vllm_build as vllm_build
|
||||
|
||||
|
||||
_VLLM_BUILD_MODULE = "cli.lib.core.vllm.vllm_build"
|
||||
import cli.lib.core.vllm as vllm
|
||||
|
||||
|
||||
class TestVllmBuildParameters(unittest.TestCase):
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=True)
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=True)
|
||||
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
|
||||
@patch("cli.lib.core.vllm.is_path_exist", return_value=True)
|
||||
@patch(
|
||||
"cli.lib.common.envs_helper.env_path_optional",
|
||||
side_effect=lambda name, default=None, resolve=True: {
|
||||
@ -37,13 +34,13 @@ class TestVllmBuildParameters(unittest.TestCase):
|
||||
def test_params_success_normalizes_and_validates(
|
||||
self, mock_env_path, mock_is_path, mock_local_img
|
||||
):
|
||||
params = vllm_build.VllmBuildParameters()
|
||||
params = vllm.VllmBuildParameters()
|
||||
self.assertEqual(params.torch_whls_path, Path("/abs/dist"))
|
||||
self.assertEqual(params.dockerfile_path, Path("/abs/vllm/Dockerfile"))
|
||||
self.assertEqual(params.output_dir, Path("/abs/shared"))
|
||||
self.assertEqual(params.base_image, "my/image:tag")
|
||||
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
|
||||
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
|
||||
@patch.dict(
|
||||
os.environ, {"USE_TORCH_WHEEL": "1", "TORCH_WHEELS_PATH": "dist"}, clear=True
|
||||
)
|
||||
@ -51,14 +48,14 @@ class TestVllmBuildParameters(unittest.TestCase):
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
os.chdir(td)
|
||||
with self.assertRaises(ValueError) as cm:
|
||||
vllm_build.VllmBuildParameters(
|
||||
vllm.VllmBuildParameters(
|
||||
use_local_base_image=False,
|
||||
use_local_dockerfile=False,
|
||||
)
|
||||
err = cm.exception
|
||||
self.assertIn("TORCH_WHEELS_PATH", str(err))
|
||||
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=False)
|
||||
@patch("cli.lib.core.vllm.local_image_exists", return_value=False)
|
||||
@patch.dict(
|
||||
os.environ, {"USE_LOCAL_BASE_IMAGE": "1", "BASE_IMAGE": "img:tag"}, clear=True
|
||||
)
|
||||
@ -66,14 +63,14 @@ class TestVllmBuildParameters(unittest.TestCase):
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
os.chdir(td)
|
||||
with self.assertRaises(ValueError) as cm:
|
||||
vllm_build.VllmBuildParameters(
|
||||
vllm.VllmBuildParameters(
|
||||
use_torch_whl=False,
|
||||
use_local_dockerfile=False,
|
||||
)
|
||||
err = cm.exception
|
||||
self.assertIn("BASE_IMAGE", str(err))
|
||||
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
|
||||
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
|
||||
@patch.dict(
|
||||
os.environ,
|
||||
{"USE_LOCAL_DOCKERFILE": "1", "DOCKERFILE_PATH": "Dockerfile"},
|
||||
@ -83,14 +80,14 @@ class TestVllmBuildParameters(unittest.TestCase):
|
||||
with tempfile.TemporaryDirectory() as td:
|
||||
os.chdir(td)
|
||||
with self.assertRaises(ValueError) as cm:
|
||||
vllm_build.VllmBuildParameters(
|
||||
vllm.VllmBuildParameters(
|
||||
use_torch_whl=False,
|
||||
use_local_base_image=False,
|
||||
)
|
||||
err = cm.exception
|
||||
self.assertIn("DOCKERFILE_PATH", str(err))
|
||||
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
|
||||
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
|
||||
@patch.dict(
|
||||
os.environ,
|
||||
{"OUTPUT_DIR": ""},
|
||||
@ -98,13 +95,14 @@ class TestVllmBuildParameters(unittest.TestCase):
|
||||
)
|
||||
def test_params_missing_output_dir(self, _is_path):
|
||||
with self.assertRaises(FileNotFoundError):
|
||||
vllm_build.VllmBuildParameters()
|
||||
vllm.VllmBuildParameters()
|
||||
|
||||
|
||||
class TestBuildCmdAndRun(unittest.TestCase):
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=True)
|
||||
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
|
||||
def test_generate_docker_build_cmd_includes_bits(self, _exists):
|
||||
runner = vllm_build.VllmBuildRunner()
|
||||
runner = vllm.VllmBuildRunner()
|
||||
# Craft inputs that simulate a prepared build
|
||||
inputs = MagicMock()
|
||||
inputs.output_dir = Path("/abs/out")
|
||||
inputs.use_local_base_image = True
|
||||
@ -120,7 +118,7 @@ class TestBuildCmdAndRun(unittest.TestCase):
|
||||
inputs.tag_name = "vllm-wheels"
|
||||
|
||||
cmd = runner._generate_docker_build_cmd(inputs)
|
||||
squashed = " ".join(cmd.split())
|
||||
squashed = " ".join(cmd.split()) # normalize whitespace for matching
|
||||
|
||||
self.assertIn("--output type=local,dest=/abs/out", squashed)
|
||||
self.assertIn("-f docker/Dockerfile.nightly_torch", squashed)
|
||||
@ -138,17 +136,18 @@ class TestBuildCmdAndRun(unittest.TestCase):
|
||||
self.assertIn("--target export-wheels", squashed)
|
||||
self.assertIn("-t vllm-wheels", squashed)
|
||||
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.run_command")
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.ensure_dir_exists")
|
||||
@patch(f"{_VLLM_BUILD_MODULE}.clone_vllm")
|
||||
@patch("cli.lib.core.vllm.run_command")
|
||||
@patch("cli.lib.core.vllm.ensure_dir_exists")
|
||||
@patch("cli.lib.core.vllm.clone_vllm")
|
||||
@patch.object(
|
||||
vllm_build.VllmBuildRunner,
|
||||
vllm.VllmBuildRunner,
|
||||
"_generate_docker_build_cmd",
|
||||
return_value="docker buildx ...",
|
||||
)
|
||||
@patch.dict(
|
||||
os.environ,
|
||||
{
|
||||
# Make __post_init__ validations pass cheaply
|
||||
"USE_TORCH_WHEEL": "0",
|
||||
"USE_LOCAL_BASE_IMAGE": "0",
|
||||
"USE_LOCAL_DOCKERFILE": "0",
|
||||
@ -159,18 +158,24 @@ class TestBuildCmdAndRun(unittest.TestCase):
|
||||
def test_run_calls_clone_prepare_and_build(
|
||||
self, mock_gen, mock_clone, mock_ensure, mock_run
|
||||
):
|
||||
# Stub parameters instance so we avoid FS/Docker accesses in run()
|
||||
params = MagicMock()
|
||||
params.output_dir = Path("shared")
|
||||
params.use_local_dockerfile = False
|
||||
params.use_torch_whl = False
|
||||
|
||||
with patch(f"{_VLLM_BUILD_MODULE}.VllmBuildParameters", return_value=params):
|
||||
runner = vllm_build.VllmBuildRunner()
|
||||
with patch("cli.lib.core.vllm.VllmBuildParameters", return_value=params):
|
||||
runner = vllm.VllmBuildRunner()
|
||||
runner.run()
|
||||
|
||||
mock_clone.assert_called_once()
|
||||
mock_ensure.assert_called_once_with(Path("shared"))
|
||||
mock_gen.assert_called_once_with(params)
|
||||
mock_run.assert_called_once()
|
||||
# ensure we run in vllm workdir
|
||||
_, kwargs = mock_run.call_args
|
||||
assert kwargs.get("cwd") == "vllm"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
|
||||
magma/build_magma.sh
|
||||
|
||||
.PHONY: all
|
||||
all: magma-cuda130
|
||||
all: magma-cuda129
|
||||
all: magma-cuda128
|
||||
all: magma-cuda126
|
||||
@ -26,12 +25,6 @@ clean:
|
||||
$(RM) -r magma-*
|
||||
$(RM) -r output
|
||||
|
||||
.PHONY: magma-cuda130
|
||||
magma-cuda130: DESIRED_CUDA := 13.0
|
||||
magma-cuda130: CUDA_ARCH_LIST := -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
|
||||
magma-cuda130:
|
||||
$(DOCKER_RUN)
|
||||
|
||||
.PHONY: magma-cuda129
|
||||
magma-cuda129: DESIRED_CUDA := 12.9
|
||||
magma-cuda129: CUDA_ARCH_LIST += -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
|
||||
|
@ -28,7 +28,6 @@ pushd ${PACKAGE_DIR}/magma-${MAGMA_VERSION}
|
||||
patch < ${PACKAGE_FILES}/CMake.patch
|
||||
patch < ${PACKAGE_FILES}/cmakelists.patch
|
||||
patch -p0 < ${PACKAGE_FILES}/thread_queue.patch
|
||||
patch -p1 < ${PACKAGE_FILES}/cuda13.patch
|
||||
patch -p1 < ${PACKAGE_FILES}/getrf_shfl.patch
|
||||
patch -p1 < ${PACKAGE_FILES}/getrf_nbparam.patch
|
||||
# The build.sh script expects to be executed from the sources root folder
|
||||
@ -38,7 +37,6 @@ popd
|
||||
# Package recipe, license and tarball
|
||||
# Folder and package name are backward compatible for the build workflow
|
||||
cp ${PACKAGE_FILES}/build.sh ${PACKAGE_RECIPE}/build.sh
|
||||
cp ${PACKAGE_FILES}/cuda13.patch ${PACKAGE_RECIPE}/cuda13.patch
|
||||
cp ${PACKAGE_FILES}/thread_queue.patch ${PACKAGE_RECIPE}/thread_queue.patch
|
||||
cp ${PACKAGE_FILES}/cmakelists.patch ${PACKAGE_RECIPE}/cmakelists.patch
|
||||
cp ${PACKAGE_FILES}/getrf_shfl.patch ${PACKAGE_RECIPE}/getrf_shfl.patch
|
||||
|
@ -1,26 +0,0 @@
|
||||
diff --git a/interface_cuda/interface.cpp b/interface_cuda/interface.cpp
|
||||
index 73fed1b20..e77519bfe 100644
|
||||
--- a/interface_cuda/interface.cpp
|
||||
+++ b/interface_cuda/interface.cpp
|
||||
@@ -438,14 +438,20 @@ magma_print_environment()
|
||||
cudaDeviceProp prop;
|
||||
err = cudaGetDeviceProperties( &prop, dev );
|
||||
check_error( err );
|
||||
+ #ifdef MAGMA_HAVE_CUDA
|
||||
+#if CUDA_VERSION < 13000
|
||||
printf( "%% device %d: %s, %.1f MHz clock, %.1f MiB memory, capability %d.%d\n",
|
||||
dev,
|
||||
prop.name,
|
||||
prop.clockRate / 1000.,
|
||||
+#else
|
||||
+ printf( "%% device %d: %s, ??? MHz clock, %.1f MiB memory, capability %d.%d\n",
|
||||
+ dev,
|
||||
+ prop.name,
|
||||
+#endif
|
||||
prop.totalGlobalMem / (1024.*1024.),
|
||||
prop.major,
|
||||
prop.minor );
|
||||
- #ifdef MAGMA_HAVE_CUDA
|
||||
int arch = prop.major*100 + prop.minor*10;
|
||||
if ( arch < MAGMA_CUDA_ARCH_MIN ) {
|
||||
printf("\n"
|
@ -66,9 +66,6 @@ case ${CUDA_VERSION} in
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
|
||||
fi
|
||||
;;
|
||||
13.0)
|
||||
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX"
|
||||
;;
|
||||
12.6)
|
||||
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
|
||||
;;
|
||||
@ -113,18 +110,13 @@ DEPS_SONAME=(
|
||||
)
|
||||
|
||||
|
||||
# CUDA_VERSION 12.*, 13.*
|
||||
if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
|
||||
# CUDA_VERSION 12.6, 12.8, 12.9
|
||||
if [[ $CUDA_VERSION == 12* ]]; then
|
||||
export USE_STATIC_CUDNN=0
|
||||
# Try parallelizing nvcc as well
|
||||
TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
|
||||
# Compress the fatbin with -compress-mode=size for CUDA 13
|
||||
if [[ $CUDA_VERSION == 13* ]]; then
|
||||
export TORCH_NVCC_FLAGS="$TORCH_NVCC_FLAGS -compress-mode=size"
|
||||
fi
|
||||
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
|
||||
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
|
||||
echo "Bundling with cudnn and cublas."
|
||||
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
|
||||
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
|
||||
@ -134,11 +126,16 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
|
||||
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
|
||||
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
|
||||
"/usr/local/cuda/lib64/libcudnn.so.9"
|
||||
"/usr/local/cuda/lib64/libcublas.so.12"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12"
|
||||
"/usr/local/cuda/lib64/libcusparseLt.so.0"
|
||||
"/usr/local/cuda/lib64/libcudart.so.12"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12"
|
||||
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
|
||||
"/usr/local/cuda/lib64/libcufile.so.0"
|
||||
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
|
||||
"/usr/local/cuda/lib64/libnvshmem_host.so.3"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
|
||||
)
|
||||
DEPS_SONAME+=(
|
||||
@ -150,83 +147,42 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
|
||||
"libcudnn_engines_precompiled.so.9"
|
||||
"libcudnn_heuristic.so.9"
|
||||
"libcudnn.so.9"
|
||||
"libcublas.so.12"
|
||||
"libcublasLt.so.12"
|
||||
"libcusparseLt.so.0"
|
||||
"libcudart.so.12"
|
||||
"libnvrtc.so.12"
|
||||
"libnvrtc-builtins.so"
|
||||
"libnvshmem_host.so.3"
|
||||
"libcufile.so.0"
|
||||
"libcufile_rdma.so.1"
|
||||
"libcupti.so.12"
|
||||
"libnvperf_host.so"
|
||||
)
|
||||
# Add libnvToolsExt only if CUDA version is not 12.9
|
||||
if [[ $CUDA_VERSION == 13* ]]; then
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/cuda/lib64/libcublas.so.13"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.13"
|
||||
"/usr/local/cuda/lib64/libcudart.so.13"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.13"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13"
|
||||
"/usr/local/cuda/lib64/libibverbs.so.1"
|
||||
"/usr/local/cuda/lib64/librdmacm.so.1"
|
||||
"/usr/local/cuda/lib64/libmlx5.so.1"
|
||||
"/usr/local/cuda/lib64/libnl-3.so.200"
|
||||
"/usr/local/cuda/lib64/libnl-route-3.so.200")
|
||||
DEPS_SONAME+=(
|
||||
"libcublas.so.13"
|
||||
"libcublasLt.so.13"
|
||||
"libcudart.so.13"
|
||||
"libnvrtc.so.13"
|
||||
"libcupti.so.13"
|
||||
"libibverbs.so.1"
|
||||
"librdmacm.so.1"
|
||||
"libmlx5.so.1"
|
||||
"libnl-3.so.200"
|
||||
"libnl-route-3.so.200")
|
||||
export USE_CUPTI_SO=1
|
||||
export ATEN_STATIC_CUDA=0
|
||||
export USE_CUDA_STATIC_LINK=0
|
||||
export USE_CUFILE=0
|
||||
else
|
||||
DEPS_LIST+=(
|
||||
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
|
||||
"/usr/local/cuda/lib64/libcublas.so.12"
|
||||
"/usr/local/cuda/lib64/libcublasLt.so.12"
|
||||
"/usr/local/cuda/lib64/libcudart.so.12"
|
||||
"/usr/local/cuda/lib64/libnvrtc.so.12"
|
||||
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
|
||||
DEPS_SONAME+=(
|
||||
"libnvToolsExt.so.1"
|
||||
"libcublas.so.12"
|
||||
"libcublasLt.so.12"
|
||||
"libcudart.so.12"
|
||||
"libnvrtc.so.12"
|
||||
"libcupti.so.12")
|
||||
if [[ $CUDA_VERSION != 12.9* ]]; then
|
||||
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
|
||||
DEPS_SONAME+=("libnvToolsExt.so.1")
|
||||
fi
|
||||
else
|
||||
echo "Using nvidia libs from pypi."
|
||||
CUDA_RPATHS=(
|
||||
'$ORIGIN/../../nvidia/cublas/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_cupti/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_runtime/lib'
|
||||
'$ORIGIN/../../nvidia/cudnn/lib'
|
||||
'$ORIGIN/../../nvidia/nvshmem/lib'
|
||||
'$ORIGIN/../../nvidia/nccl/lib'
|
||||
'$ORIGIN/../../nvidia/cufft/lib'
|
||||
'$ORIGIN/../../nvidia/curand/lib'
|
||||
'$ORIGIN/../../nvidia/cusolver/lib'
|
||||
'$ORIGIN/../../nvidia/cusparse/lib'
|
||||
'$ORIGIN/../../nvidia/cusparselt/lib'
|
||||
'$ORIGIN/../../cusparselt/lib'
|
||||
'$ORIGIN/../../nvidia/nccl/lib'
|
||||
'$ORIGIN/../../nvidia/nvshmem/lib'
|
||||
'$ORIGIN/../../nvidia/nvtx/lib'
|
||||
'$ORIGIN/../../nvidia/cufile/lib'
|
||||
)
|
||||
if [[ $CUDA_VERSION == 13* ]]; then
|
||||
CUDA_RPATHS+=('$ORIGIN/../../nvidia/cu13/lib')
|
||||
else
|
||||
CUDA_RPATHS+=(
|
||||
'$ORIGIN/../../nvidia/cublas/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_cupti/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
|
||||
'$ORIGIN/../../nvidia/cuda_runtime/lib'
|
||||
'$ORIGIN/../../nvidia/cufft/lib'
|
||||
'$ORIGIN/../../nvidia/curand/lib'
|
||||
'$ORIGIN/../../nvidia/cusolver/lib'
|
||||
'$ORIGIN/../../nvidia/cusparse/lib'
|
||||
'$ORIGIN/../../cusparselt/lib'
|
||||
'$ORIGIN/../../nvidia/nvtx/lib'
|
||||
'$ORIGIN/../../nvidia/cufile/lib'
|
||||
)
|
||||
fi
|
||||
|
||||
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
|
||||
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
|
||||
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
|
||||
|
@ -25,7 +25,6 @@ source /opt/intel/oneapi/mpi/latest/env/vars.sh
|
||||
export USE_STATIC_MKL=1
|
||||
export USE_ONEMKL=1
|
||||
export USE_XCCL=1
|
||||
export USE_MPI=0
|
||||
|
||||
WHEELHOUSE_DIR="wheelhousexpu"
|
||||
LIBTORCH_HOUSE_DIR="libtorch_housexpu"
|
||||
|
@ -173,7 +173,6 @@ if [[ "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
source /opt/intel/oneapi/mpi/latest/env/vars.sh
|
||||
# Enable XCCL build
|
||||
export USE_XCCL=1
|
||||
export USE_MPI=0
|
||||
# XPU kineto feature dependencies are not fully ready, disable kineto build as temp WA
|
||||
export USE_KINETO=0
|
||||
export TORCH_XPU_ARCH_LIST=pvc
|
||||
@ -195,16 +194,8 @@ fi
|
||||
|
||||
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
|
||||
# memory to build and will OOM
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && echo "${TORCH_CUDA_ARCH_LIST}" | tr ' ' '\n' | sed 's/$/>= 8.0/' | bc | grep -q 1; then
|
||||
J=2 # default to 2 jobs
|
||||
case "$RUNNER" in
|
||||
linux.12xlarge.memory|linux.24xlarge.memory)
|
||||
J=24
|
||||
;;
|
||||
esac
|
||||
echo "Building FlashAttention with job limit $J"
|
||||
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j ${J}"
|
||||
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
|
||||
fi
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
|
||||
|
@ -300,3 +300,24 @@ except RuntimeError as e:
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
###############################################################################
|
||||
# Check for C++ ABI compatibility to GCC-11 - GCC 13
|
||||
###############################################################################
|
||||
if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" == 'manywheel' ]]; then
|
||||
pushd /tmp
|
||||
# Per https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
|
||||
# gcc-11 is ABI16, gcc-13 is ABI18, gcc-14 is ABI19
|
||||
# gcc 11 - CUDA 11.8, xpu, rocm
|
||||
# gcc 13 - CUDA 12.6, 12.8 and cpu
|
||||
# Please see issue for reference: https://github.com/pytorch/pytorch/issues/152426
|
||||
if [[ "$(uname -m)" == "s390x" ]]; then
|
||||
cxx_abi="19"
|
||||
elif [[ "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
|
||||
cxx_abi="18"
|
||||
else
|
||||
cxx_abi="16"
|
||||
fi
|
||||
python -c "import torch; exit(0 if torch._C._PYBIND11_BUILD_ABI == '_cxxabi10${cxx_abi}' else 1)"
|
||||
popd
|
||||
fi
|
||||
|
@ -149,19 +149,6 @@ function get_pinned_commit() {
|
||||
cat .github/ci_commit_pins/"${1}".txt
|
||||
}
|
||||
|
||||
function detect_cuda_arch() {
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
|
||||
if command -v nvidia-smi; then
|
||||
TORCH_CUDA_ARCH_LIST=$(nvidia-smi --query-gpu=compute_cap --format=csv | tail -n 1)
|
||||
elif [[ "${TEST_CONFIG}" == *nogpu* ]]; then
|
||||
# There won't be nvidia-smi in nogpu tests, so just set TORCH_CUDA_ARCH_LIST to the default
|
||||
# minimum supported value here
|
||||
TORCH_CUDA_ARCH_LIST=8.0
|
||||
fi
|
||||
export TORCH_CUDA_ARCH_LIST
|
||||
fi
|
||||
}
|
||||
|
||||
function install_torchaudio() {
|
||||
local commit
|
||||
commit=$(get_pinned_commit audio)
|
||||
@ -258,19 +245,11 @@ function install_torchrec_and_fbgemm() {
|
||||
git clone --recursive https://github.com/pytorch/fbgemm
|
||||
pushd fbgemm/fbgemm_gpu
|
||||
git checkout "${fbgemm_commit}" --recurse-submodules
|
||||
# until the fbgemm_commit includes the tbb patch
|
||||
patch <<'EOF'
|
||||
--- a/FbgemmGpu.cmake
|
||||
+++ b/FbgemmGpu.cmake
|
||||
@@ -184,5 +184,6 @@ gpu_cpp_library(
|
||||
fbgemm_gpu_tbe_cache
|
||||
fbgemm_gpu_tbe_optimizers
|
||||
fbgemm_gpu_tbe_utils
|
||||
+ tbb
|
||||
DESTINATION
|
||||
fbgemm_gpu)
|
||||
EOF
|
||||
python setup.py bdist_wheel --build-variant=rocm
|
||||
python setup.py bdist_wheel \
|
||||
--build-variant=rocm \
|
||||
-DHIP_ROOT_DIR="${ROCM_PATH}" \
|
||||
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
|
||||
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
|
||||
popd
|
||||
|
||||
# Save the wheel before cleaning up
|
||||
|
40
.ci/pytorch/functorch_doc_push_script.sh
Executable file
40
.ci/pytorch/functorch_doc_push_script.sh
Executable file
@ -0,0 +1,40 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This is where the local pytorch install in the docker image is located
|
||||
pt_checkout="/var/lib/jenkins/workspace"
|
||||
source "$pt_checkout/.ci/pytorch/common_utils.sh"
|
||||
echo "functorch_doc_push_script.sh: Invoked with $*"
|
||||
|
||||
set -ex -o pipefail
|
||||
|
||||
version=${DOCS_VERSION:-nightly}
|
||||
echo "version: $version"
|
||||
|
||||
# Build functorch docs
|
||||
pushd $pt_checkout/functorch/docs
|
||||
make html
|
||||
popd
|
||||
|
||||
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
|
||||
pushd functorch_ghpages
|
||||
|
||||
if [ "$version" == "main" ]; then
|
||||
version=nightly
|
||||
fi
|
||||
|
||||
git rm -rf "$version" || true
|
||||
mv "$pt_checkout/functorch/docs/build/html" "$version"
|
||||
|
||||
git add "$version" || true
|
||||
git status
|
||||
git config user.email "soumith+bot@pytorch.org"
|
||||
git config user.name "pytorchbot"
|
||||
# If there aren't changes, don't make a commit; push is no-op
|
||||
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
|
||||
git status
|
||||
|
||||
if [[ "${WITH_PUSH:-}" == true ]]; then
|
||||
git push -u origin gh-pages
|
||||
fi
|
||||
|
||||
popd
|
@ -35,10 +35,11 @@ fi
|
||||
|
||||
print_cmake_info
|
||||
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
|
||||
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
|
||||
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
|
||||
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
|
||||
else
|
||||
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
|
||||
# backends (specifically the gloo backend), so test that this case works too
|
||||
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
|
||||
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
|
||||
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
|
||||
fi
|
||||
if which sccache > /dev/null; then
|
||||
|
@ -13,13 +13,9 @@ if [[ ! $(python -c "import torch; print(int(torch.backends.openmp.is_available(
|
||||
fi
|
||||
popd
|
||||
|
||||
python -mpip install -r requirements.txt
|
||||
|
||||
# enable debug asserts in serialization
|
||||
export TORCH_SERIALIZATION_DEBUG=1
|
||||
|
||||
python -mpip install --no-input -r requirements.txt
|
||||
|
||||
setup_test_python() {
|
||||
# The CircleCI worker hostname doesn't resolve to an address.
|
||||
# This environment variable makes ProcessGroupGloo default to
|
||||
@ -199,7 +195,7 @@ torchbench_setup_macos() {
|
||||
git checkout "$(cat ../.github/ci_commit_pins/vision.txt)"
|
||||
git submodule update --init --recursive
|
||||
python setup.py clean
|
||||
python -m pip install -e . -v --no-build-isolation
|
||||
python setup.py develop
|
||||
popd
|
||||
|
||||
pushd torchaudio
|
||||
@ -208,7 +204,7 @@ torchbench_setup_macos() {
|
||||
git submodule update --init --recursive
|
||||
python setup.py clean
|
||||
#TODO: Remove me, when figure out how to make TorchAudio find brew installed openmp
|
||||
USE_OPENMP=0 python -m pip install -e . -v --no-build-isolation
|
||||
USE_OPENMP=0 python setup.py develop
|
||||
popd
|
||||
|
||||
checkout_install_torchbench
|
||||
@ -306,47 +302,6 @@ test_torchbench_smoketest() {
|
||||
fi
|
||||
|
||||
done
|
||||
echo "Pytorch benchmark on mps device completed"
|
||||
}
|
||||
|
||||
test_aoti_torchbench_smoketest() {
|
||||
print_cmake_info
|
||||
|
||||
echo "Launching AOTInductor torchbench setup"
|
||||
pip_benchmark_deps
|
||||
# shellcheck disable=SC2119,SC2120
|
||||
torchbench_setup_macos
|
||||
|
||||
TEST_REPORTS_DIR=$(pwd)/test/test-reports
|
||||
mkdir -p "$TEST_REPORTS_DIR"
|
||||
|
||||
local device=mps
|
||||
local dtypes=(undefined float16 bfloat16 notset)
|
||||
local dtype=${dtypes[$1]}
|
||||
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
|
||||
|
||||
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
|
||||
local dtype_arg="--${dtype}"
|
||||
if [ "$dtype" == notset ]; then
|
||||
dtype_arg="--float32"
|
||||
fi
|
||||
touch "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_performance.csv"
|
||||
for model in "${models[@]}"; do
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--performance --only "$model" --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
|
||||
--output "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_performance.csv" || true
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
|
||||
--accuracy --only "$model" --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
|
||||
--output "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
|
||||
done
|
||||
|
||||
echo "Launching HuggingFace inference performance run for AOT Inductor and dtype ${dtype}"
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
|
||||
--performance --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
|
||||
--output "$TEST_REPORTS_DIR/aot_inductor_huggingface_${dtype}_inference_${device}_performance.csv" || true
|
||||
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
|
||||
--accuracy --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
|
||||
--output "$TEST_REPORTS_DIR/aot_inductor_huggingface_${dtype}_inference_${device}_accuracy.csv" || true
|
||||
|
||||
echo "Pytorch benchmark on mps device completed"
|
||||
}
|
||||
@ -395,8 +350,6 @@ elif [[ $TEST_CONFIG == *"perf_timm"* ]]; then
|
||||
test_timm_perf
|
||||
elif [[ $TEST_CONFIG == *"perf_smoketest"* ]]; then
|
||||
test_torchbench_smoketest "${SHARD_NUMBER}"
|
||||
elif [[ $TEST_CONFIG == *"aot_inductor_perf_smoketest"* ]]; then
|
||||
test_aoti_torchbench_smoketest "${SHARD_NUMBER}"
|
||||
elif [[ $TEST_CONFIG == *"mps"* ]]; then
|
||||
test_python_mps
|
||||
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then
|
||||
|
@ -45,7 +45,6 @@ if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
|
||||
# DTensor tests
|
||||
time python test/run_test.py --verbose -i distributed/tensor/test_random_ops
|
||||
time python test/run_test.py --verbose -i distributed/tensor/test_dtensor_compile
|
||||
time python test/run_test.py --verbose -i distributed/tensor/test_utils.py
|
||||
|
||||
# DeviceMesh test
|
||||
time python test/run_test.py --verbose -i distributed/test_device_mesh
|
||||
|
@ -1,25 +0,0 @@
|
||||
From 6e08c9d08e9de59c7af28b720289debbbd384764 Mon Sep 17 00:00:00 2001
|
||||
From: Michael Wang <13521008+isVoid@users.noreply.github.com>
|
||||
Date: Tue, 1 Apr 2025 17:28:05 -0700
|
||||
Subject: [PATCH] Avoid bumping certain driver API to avoid future breakage
|
||||
(#185)
|
||||
|
||||
Co-authored-by: isVoid <isVoid@users.noreply.github.com>
|
||||
---
|
||||
numba_cuda/numba/cuda/cudadrv/driver.py | 3 +++
|
||||
1 file changed, 3 insertions(+)
|
||||
|
||||
diff --git a/numba_cuda/numba/cuda/cudadrv/driver.py b/numba_cuda/numba/cuda/cudadrv/driver.py
|
||||
index 1641bf77..233e9ed7 100644
|
||||
--- a/numba_cuda/numba/cuda/cudadrv/driver.py
|
||||
+++ b/numba_cuda/numba/cuda/cudadrv/driver.py
|
||||
@@ -365,6 +365,9 @@ def _find_api(self, fname):
|
||||
else:
|
||||
variants = ('_v2', '')
|
||||
|
||||
+ if fname in ("cuCtxGetDevice", "cuCtxSynchronize"):
|
||||
+ return getattr(self.lib, fname)
|
||||
+
|
||||
for variant in variants:
|
||||
try:
|
||||
return getattr(self.lib, f'{fname}{variant}')
|
@ -386,8 +386,8 @@ def smoke_test_compile(device: str = "cpu") -> None:
|
||||
|
||||
|
||||
def smoke_test_nvshmem() -> None:
|
||||
if not torch.cuda.is_available() or target_os == "windows":
|
||||
print("Windows platform or CUDA is not available, skipping NVSHMEM test")
|
||||
if not torch.cuda.is_available():
|
||||
print("CUDA is not available, skipping NVSHMEM test")
|
||||
return
|
||||
|
||||
# Check if NVSHMEM is compiled in current build
|
||||
@ -396,9 +396,7 @@ def smoke_test_nvshmem() -> None:
|
||||
except ImportError:
|
||||
# Not built with NVSHMEM support.
|
||||
# torch is not compiled with NVSHMEM prior to 2.9
|
||||
from torch.torch_version import TorchVersion
|
||||
|
||||
if TorchVersion(torch.__version__) < (2, 9):
|
||||
if torch.__version__ < "2.9":
|
||||
return
|
||||
else:
|
||||
# After 2.9: NVSHMEM is expected to be compiled in current build
|
||||
|
@ -32,16 +32,6 @@ if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /v
|
||||
git config --global --add safe.directory /var/lib/jenkins/workspace
|
||||
fi
|
||||
|
||||
|
||||
# Patch numba to avoid CUDA-13 crash, see https://github.com/pytorch/pytorch/issues/162878
|
||||
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
|
||||
if [ -n "$NUMBA_CUDA_DIR" ]; then
|
||||
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
|
||||
pushd "$NUMBA_CUDA_DIR"
|
||||
patch -p4 <"$NUMBA_PATCH"
|
||||
popd
|
||||
fi
|
||||
|
||||
echo "Environment variables:"
|
||||
env
|
||||
|
||||
@ -101,7 +91,6 @@ if [[ "$BUILD_ENVIRONMENT" == *clang9* || "$BUILD_ENVIRONMENT" == *xpu* ]]; then
|
||||
export VALGRIND=OFF
|
||||
fi
|
||||
|
||||
detect_cuda_arch
|
||||
|
||||
if [[ "$BUILD_ENVIRONMENT" == *s390x* ]]; then
|
||||
# There are additional warnings on s390x, maybe due to newer gcc.
|
||||
@ -334,17 +323,11 @@ test_python() {
|
||||
}
|
||||
|
||||
test_python_smoke() {
|
||||
# Smoke tests for H100/B200
|
||||
# Smoke tests for H100
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_python_smoke_b200() {
|
||||
# Targeted smoke tests for B200 - staged approach to avoid too many failures
|
||||
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
test_h100_distributed() {
|
||||
# Distributed tests at H100
|
||||
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
|
||||
@ -512,14 +495,6 @@ test_inductor_cpp_wrapper_shard() {
|
||||
-k 'take' \
|
||||
--shard "$1" "$NUM_TEST_SHARDS" \
|
||||
--verbose
|
||||
|
||||
if [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
|
||||
python test/run_test.py \
|
||||
--include inductor/test_mkldnn_pattern_matcher \
|
||||
-k 'xpu' \
|
||||
--shard "$1" "$NUM_TEST_SHARDS" \
|
||||
--verbose
|
||||
fi
|
||||
}
|
||||
|
||||
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
|
||||
@ -1556,10 +1531,14 @@ test_executorch() {
|
||||
install_torchvision
|
||||
install_torchaudio
|
||||
|
||||
INSTALL_SCRIPT="$(pwd)/.ci/docker/common/install_executorch.sh"
|
||||
|
||||
pushd /executorch
|
||||
"${INSTALL_SCRIPT}" setup_executorch
|
||||
|
||||
export PYTHON_EXECUTABLE=python
|
||||
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
|
||||
|
||||
# NB: We need to rebuild ExecuTorch runner here because it depends on PyTorch
|
||||
# from the PR
|
||||
bash .ci/scripts/setup-linux.sh --build-tool cmake
|
||||
|
||||
echo "Run ExecuTorch unit tests"
|
||||
pytest -v -n auto
|
||||
@ -1573,6 +1552,10 @@ test_executorch() {
|
||||
|
||||
popd
|
||||
|
||||
# Test torchgen generated code for Executorch.
|
||||
echo "Testing ExecuTorch op registration"
|
||||
"$BUILD_BIN_DIR"/test_edge_op_registration
|
||||
|
||||
assert_git_not_dirty
|
||||
}
|
||||
|
||||
@ -1580,7 +1563,6 @@ test_linux_aarch64() {
|
||||
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
|
||||
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
|
||||
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
|
||||
distributed/elastic/timer/api_test distributed/elastic/timer/local_timer_example distributed/elastic/timer/local_timer_test \
|
||||
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
|
||||
|
||||
# Dynamo tests
|
||||
@ -1647,10 +1629,6 @@ elif [[ "${TEST_CONFIG}" == *xla* ]]; then
|
||||
install_torchvision
|
||||
build_xla
|
||||
test_xla
|
||||
elif [[ "$TEST_CONFIG" == *vllm* ]]; then
|
||||
echo "vLLM CI uses TORCH_CUDA_ARCH_LIST: $TORCH_CUDA_ARCH_LIST"
|
||||
(cd .ci/lumen_cli && python -m pip install -e .)
|
||||
python -m cli.run test external vllm --test-plan "$TEST_CONFIG" --shard-id "$SHARD_NUMBER" --num-shards "$NUM_TEST_SHARDS"
|
||||
elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
|
||||
test_executorch
|
||||
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
|
||||
@ -1730,6 +1708,11 @@ elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
|
||||
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
|
||||
install_torchvision
|
||||
test_inductor_shard "${SHARD_NUMBER}"
|
||||
if [[ "${SHARD_NUMBER}" == 1 ]]; then
|
||||
if [[ "${BUILD_ENVIRONMENT}" != linux-jammy-py3.9-gcc11-build ]]; then
|
||||
test_inductor_distributed
|
||||
fi
|
||||
fi
|
||||
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
|
||||
test_einops
|
||||
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
|
||||
@ -1779,8 +1762,6 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
|
||||
test_xpu_bin
|
||||
elif [[ "${TEST_CONFIG}" == smoke ]]; then
|
||||
test_python_smoke
|
||||
elif [[ "${TEST_CONFIG}" == smoke_b200 ]]; then
|
||||
test_python_smoke_b200
|
||||
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
|
||||
test_h100_distributed
|
||||
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
|
||||
|
@ -137,7 +137,7 @@ sccache --show-stats
|
||||
python -c "import os, glob; os.system('python -mpip install --no-index --no-deps ' + glob.glob('dist/*.whl')[0])"
|
||||
(
|
||||
if "%BUILD_ENVIRONMENT%"=="" (
|
||||
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%\envs\py_tmp` in Command Prompt before running Git Bash.
|
||||
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3` in Command Prompt before running Git Bash.
|
||||
) else (
|
||||
copy /Y "dist\*.whl" "%PYTORCH_FINAL_PACKAGE_DIR%"
|
||||
|
||||
|
@ -3,12 +3,12 @@ if "%BUILD_ENVIRONMENT%"=="" (
|
||||
) else (
|
||||
set CONDA_PARENT_DIR=C:\Jenkins
|
||||
)
|
||||
set CONDA_ROOT_DIR=%CONDA_PARENT_DIR%\Miniconda3
|
||||
|
||||
|
||||
:: Be conservative here when rolling out the new AMI with conda. This will try
|
||||
:: to install conda as before if it couldn't find the conda installation. This
|
||||
:: can be removed eventually after we gain enough confidence in the AMI
|
||||
if not exist %CONDA_ROOT_DIR% (
|
||||
if not exist %CONDA_PARENT_DIR%\Miniconda3 (
|
||||
set INSTALL_FRESH_CONDA=1
|
||||
)
|
||||
|
||||
@ -17,14 +17,10 @@ if "%INSTALL_FRESH_CONDA%"=="1" (
|
||||
if errorlevel 1 exit /b
|
||||
if not errorlevel 0 exit /b
|
||||
|
||||
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_ROOT_DIR%
|
||||
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
|
||||
if errorlevel 1 exit /b
|
||||
if not errorlevel 0 exit /b
|
||||
)
|
||||
|
||||
:: Activate conda so that we can use its commands, i.e. conda, python, pip
|
||||
call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%
|
||||
:: Activate conda so that we can use its commands, i.e. conda, python, pip
|
||||
call conda activate py_tmp
|
||||
|
||||
call pip install -r .ci/docker/requirements-ci.txt
|
||||
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3
|
||||
|
@ -14,7 +14,7 @@ if not errorlevel 0 exit /b
|
||||
:: build\torch. Rather than changing all these references, making a copy of torch folder
|
||||
:: from conda to the current workspace is easier. The workspace will be cleaned up after
|
||||
:: the job anyway
|
||||
xcopy /s %CONDA_ROOT_DIR%\envs\py_tmp\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
|
||||
xcopy /s %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
|
||||
|
||||
pushd .
|
||||
if "%VC_VERSION%" == "" (
|
||||
|
@ -38,20 +38,13 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
|
||||
fi
|
||||
|
||||
# TODO: Move both of them to Windows AMI
|
||||
python -m pip install tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
|
||||
|
||||
# Copied from https://github.com/pytorch/test-infra/blob/be01a40157c36cd5a48391fdf44a7bc3ebd4c7e3/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1#L16 with some adjustments
|
||||
# pytest-rerunfailures==10.3 as 10.2 fails with INTERNALERROR> pluggy._manager.PluginValidationError: unknown hook 'pytest_configure_node'
|
||||
# scipy from 1.6.3 to 1.10
|
||||
# expecttest from 0.1.3 to 0.3.0
|
||||
# xdoctest from 1.0.2 to 1.3.0
|
||||
python -m pip install "future==0.18.2" "hypothesis==5.35.1" "expecttest==0.3.0" "librosa>=0.6.2" "scipy==1.10.1" "psutil==5.9.1" "pynvml==11.4.1" "pillow==9.2.0" "unittest-xml-reporting<=3.2.0,>=2.0.0" "pytest==7.1.3" "pytest-xdist==2.5.0" "pytest-flakefinder==1.1.0" "pytest-rerunfailures==10.3" "pytest-shard==0.1.2" "sympy==1.11.1" "xdoctest==1.3.0" "pygments==2.12.0" "opt-einsum>=3.3" "networkx==2.8.8" "mpmath==1.2.1" "pytest-cpp==2.3.0" "boto3==1.35.42"
|
||||
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
|
||||
|
||||
# Install Z3 optional dependency for Windows builds.
|
||||
python -m pip install z3-solver==4.15.1.0
|
||||
|
||||
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
|
||||
python -m pip install tlparse==0.4.0
|
||||
python -m pip install tlparse==0.3.30
|
||||
|
||||
# Install parameterized
|
||||
python -m pip install parameterized==0.8.1
|
||||
@ -59,6 +52,9 @@ python -m pip install parameterized==0.8.1
|
||||
# Install pulp for testing ilps under torch\distributed\_tools
|
||||
python -m pip install pulp==2.9.0
|
||||
|
||||
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
|
||||
python -m pip install expecttest==0.3.0
|
||||
|
||||
run_tests() {
|
||||
# Run nvidia-smi if available
|
||||
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do
|
||||
|
@ -1,59 +0,0 @@
|
||||
@echo off
|
||||
|
||||
set MODULE_NAME=pytorch
|
||||
|
||||
IF NOT EXIST "setup.py" IF NOT EXIST "%MODULE_NAME%" (
|
||||
call internal\clone.bat
|
||||
cd %~dp0
|
||||
) ELSE (
|
||||
call internal\clean.bat
|
||||
)
|
||||
IF ERRORLEVEL 1 goto :eof
|
||||
|
||||
call internal\check_deps.bat
|
||||
IF ERRORLEVEL 1 goto :eof
|
||||
|
||||
REM Check for optional components
|
||||
|
||||
set USE_CUDA=
|
||||
set CMAKE_GENERATOR=Visual Studio 15 2017 Win64
|
||||
|
||||
IF "%NVTOOLSEXT_PATH%"=="" (
|
||||
IF EXIST "C:\Program Files\NVIDIA Corporation\NvToolsExt\lib\x64\nvToolsExt64_1.lib" (
|
||||
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
|
||||
) ELSE (
|
||||
echo NVTX ^(Visual Studio Extension ^for CUDA^) ^not installed, failing
|
||||
exit /b 1
|
||||
)
|
||||
)
|
||||
|
||||
IF "%CUDA_PATH_V130%"=="" (
|
||||
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin\nvcc.exe" (
|
||||
set "CUDA_PATH_V130=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0"
|
||||
) ELSE (
|
||||
echo CUDA 13.0 not found, failing
|
||||
exit /b 1
|
||||
)
|
||||
)
|
||||
|
||||
IF "%BUILD_VISION%" == "" (
|
||||
set TORCH_CUDA_ARCH_LIST=7.5;8.0;8.6;9.0;10.0;12.0
|
||||
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
|
||||
) ELSE (
|
||||
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
|
||||
)
|
||||
|
||||
set "CUDA_PATH=%CUDA_PATH_V130%"
|
||||
set "PATH=%CUDA_PATH_V130%\bin;%PATH%"
|
||||
|
||||
:optcheck
|
||||
|
||||
call internal\check_opts.bat
|
||||
IF ERRORLEVEL 1 goto :eof
|
||||
|
||||
if exist "%NIGHTLIES_PYTORCH_ROOT%" cd %NIGHTLIES_PYTORCH_ROOT%\..
|
||||
call %~dp0\internal\copy.bat
|
||||
IF ERRORLEVEL 1 goto :eof
|
||||
|
||||
call %~dp0\internal\setup.bat
|
||||
IF ERRORLEVEL 1 goto :eof
|
@ -1,20 +1,12 @@
|
||||
|
||||
if %CUDA_VERSION% geq 130 (
|
||||
set "dll_path=bin\x64"
|
||||
) else (
|
||||
set "dll_path=bin"
|
||||
)
|
||||
|
||||
copy "%CUDA_PATH%\%dll_path%\cusparse*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\cublas*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\cudart*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\curand*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\cufft*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\cusolver*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\nvrtc*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\%dll_path%\nvJitLink_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\cusparse*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\cublas*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\cudart*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\curand*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\cufft*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\cusolver*64_*.dll*" pytorch\torch\lib
|
||||
|
||||
copy "%CUDA_PATH%\bin\cudnn*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\bin\nvrtc*64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\extras\CUPTI\lib64\cupti64_*.dll*" pytorch\torch\lib
|
||||
copy "%CUDA_PATH%\extras\CUPTI\lib64\nvperf_host*.dll*" pytorch\torch\lib
|
||||
|
||||
@ -28,3 +20,8 @@ copy "%libuv_ROOT%\bin\uv.dll" pytorch\torch\lib
|
||||
if exist "C:\Windows\System32\zlibwapi.dll" (
|
||||
copy "C:\Windows\System32\zlibwapi.dll" pytorch\torch\lib
|
||||
)
|
||||
|
||||
::copy nvJitLink dll is requires for cuda 12+
|
||||
if exist "%CUDA_PATH%\bin\nvJitLink_*.dll*" (
|
||||
copy "%CUDA_PATH%\bin\nvJitLink_*.dll*" pytorch\torch\lib
|
||||
)
|
||||
|
@ -26,7 +26,6 @@ if exist "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION_STR%
|
||||
if %CUDA_VER% EQU 126 goto cuda126
|
||||
if %CUDA_VER% EQU 128 goto cuda128
|
||||
if %CUDA_VER% EQU 129 goto cuda129
|
||||
if %CUDA_VER% EQU 130 goto cuda130
|
||||
|
||||
echo CUDA %CUDA_VERSION_STR% is not supported
|
||||
exit /b 1
|
||||
@ -114,33 +113,6 @@ xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
|
||||
|
||||
goto cuda_common
|
||||
|
||||
:cuda130
|
||||
|
||||
set CUDA_INSTALL_EXE=cuda_13.0.0_windows.exe
|
||||
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
|
||||
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
|
||||
if errorlevel 1 exit /b 1
|
||||
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
|
||||
set "ARGS="
|
||||
)
|
||||
|
||||
set CUDNN_FOLDER=cudnn-windows-x86_64-9.12.0.46_cuda13-archive
|
||||
set CUDNN_LIB_FOLDER="lib"
|
||||
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
|
||||
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
|
||||
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
|
||||
if errorlevel 1 exit /b 1
|
||||
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
|
||||
)
|
||||
|
||||
@REM cuDNN 8.3+ required zlib to be installed on the path
|
||||
echo Installing ZLIB dlls
|
||||
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
|
||||
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
|
||||
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
|
||||
|
||||
goto cuda_common
|
||||
|
||||
:cuda_common
|
||||
:: NOTE: We only install CUDA if we don't have it installed already.
|
||||
:: With GHA runners these should be pre-installed as part of our AMI process
|
||||
|
@ -1,9 +1,9 @@
|
||||
set WIN_DRIVER_VN=580.88
|
||||
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe" & REM @lint-ignore
|
||||
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe
|
||||
set WIN_DRIVER_VN=528.89
|
||||
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe" & REM @lint-ignore
|
||||
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe -s -noreboot
|
||||
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe -s -noreboot
|
||||
if errorlevel 1 exit /b 1
|
||||
|
||||
del %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe || ver > NUL
|
||||
del %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe || ver > NUL
|
||||
|
@ -1,22 +1,12 @@
|
||||
set ADDITIONAL_OPTIONS=""
|
||||
set PYTHON_EXEC="python"
|
||||
|
||||
|
||||
if "%DESIRED_PYTHON%" == "3.13t" (
|
||||
echo Python version is set to 3.13t
|
||||
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.13.0/python-3.13.0-amd64.exe"
|
||||
set ADDITIONAL_OPTIONS="Include_freethreaded=1"
|
||||
set PYTHON_EXEC="python3.13t"
|
||||
) else if "%DESIRED_PYTHON%"=="3.14" (
|
||||
echo Python version is set to 3.14 or 3.14t
|
||||
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.14.0/python-3.14.0rc1-amd64.exe"
|
||||
) else if "%DESIRED_PYTHON%"=="3.14t" (
|
||||
echo Python version is set to 3.14 or 3.14t
|
||||
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/3.14.0/python-3.14.0rc1-amd64.exe"
|
||||
set ADDITIONAL_OPTIONS="Include_freethreaded=1"
|
||||
set PYTHON_EXEC="python3.14t"
|
||||
) else (
|
||||
echo Python version is set to %DESIRED_PYTHON%
|
||||
echo DESIRED_PYTHON not defined, Python version is set to %DESIRED_PYTHON%
|
||||
set "PYTHON_INSTALLER_URL=https://www.python.org/ftp/python/%DESIRED_PYTHON%.0/python-%DESIRED_PYTHON%.0-amd64.exe" %= @lint-ignore =%
|
||||
)
|
||||
|
||||
|
@ -13,9 +13,9 @@ if not exist "%SRC_DIR%\temp_build" mkdir "%SRC_DIR%\temp_build"
|
||||
:xpu_bundle_install_start
|
||||
|
||||
set XPU_BUNDLE_PARENT_DIR=C:\Program Files (x86)\Intel\oneAPI
|
||||
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/75d4eb97-914a-4a95-852c-7b9733d80f74/intel-deep-learning-essentials-2025.1.3.8_offline.exe
|
||||
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/9d6d6c17-ca2d-4735-9331-99447e4a1280/intel-deep-learning-essentials-2025.0.1.28_offline.exe
|
||||
set XPU_BUNDLE_PRODUCT_NAME=intel.oneapi.win.deep-learning-essentials.product
|
||||
set XPU_BUNDLE_VERSION=2025.1.3+5
|
||||
set XPU_BUNDLE_VERSION=2025.0.1+20
|
||||
set XPU_BUNDLE_INSTALLED=0
|
||||
set XPU_BUNDLE_UNINSTALL=0
|
||||
set XPU_EXTRA_URL=NULL
|
||||
@ -24,9 +24,9 @@ set XPU_EXTRA_VERSION=2025.0.1+1226
|
||||
set XPU_EXTRA_INSTALLED=0
|
||||
set XPU_EXTRA_UNINSTALL=0
|
||||
|
||||
if not [%XPU_VERSION%]==[] if [%XPU_VERSION%]==[2025.2] (
|
||||
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
|
||||
set XPU_BUNDLE_VERSION=2025.2.1+20
|
||||
if not [%XPU_VERSION%]==[] if [%XPU_VERSION%]==[2025.1] (
|
||||
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/75d4eb97-914a-4a95-852c-7b9733d80f74/intel-deep-learning-essentials-2025.1.3.8_offline.exe
|
||||
set XPU_BUNDLE_VERSION=2025.1.3+5
|
||||
)
|
||||
|
||||
:: Check if XPU bundle is target version or already installed
|
||||
@ -90,3 +90,14 @@ if errorlevel 1 exit /b 1
|
||||
del xpu_extra.exe
|
||||
|
||||
:xpu_install_end
|
||||
|
||||
if not "%XPU_ENABLE_KINETO%"=="1" goto install_end
|
||||
:: Install Level Zero SDK
|
||||
set XPU_EXTRA_LZ_URL=https://github.com/oneapi-src/level-zero/releases/download/v1.14.0/level-zero-sdk_1.14.0.zip
|
||||
curl -k -L %XPU_EXTRA_LZ_URL% --output "%SRC_DIR%\temp_build\level_zero_sdk.zip"
|
||||
echo "Installing level zero SDK..."
|
||||
7z x "%SRC_DIR%\temp_build\level_zero_sdk.zip" -o"%SRC_DIR%\temp_build\level_zero"
|
||||
set "INCLUDE=%SRC_DIR%\temp_build\level_zero\include;%INCLUDE%"
|
||||
del "%SRC_DIR%\temp_build\level_zero_sdk.zip"
|
||||
|
||||
:install_end
|
||||
|
@ -7,8 +7,6 @@ call "internal\install_python.bat"
|
||||
|
||||
%PYTHON_EXEC% --version
|
||||
set "PATH=%CD%\Python\Lib\site-packages\cmake\data\bin;%CD%\Python\Scripts;%CD%\Python;%PATH%"
|
||||
if "%DESIRED_PYTHON%" == "3.14t" %PYTHON_EXEC% -m pip install numpy==2.3.2 cmake
|
||||
if "%DESIRED_PYTHON%" == "3.14" %PYTHON_EXEC% -m pip install numpy==2.3.2 cmake
|
||||
if "%DESIRED_PYTHON%" == "3.13t" %PYTHON_EXEC% -m pip install numpy==2.2.1 cmake
|
||||
if "%DESIRED_PYTHON%" == "3.13" %PYTHON_EXEC% -m pip install numpy==2.1.2 cmake
|
||||
if "%DESIRED_PYTHON%" == "3.12" %PYTHON_EXEC% -m pip install numpy==2.0.2 cmake
|
||||
|
@ -85,7 +85,7 @@ mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
|
||||
# Create an isolated directory to store this builds pytorch checkout and conda
|
||||
# installation
|
||||
if [[ -z "$MAC_PACKAGE_WORK_DIR" ]]; then
|
||||
MAC_PACKAGE_WORK_DIR="$(pwd)/tmp_wheel_${DESIRED_PYTHON}_$(date +%H%M%S)"
|
||||
MAC_PACKAGE_WORK_DIR="$(pwd)/tmp_wheel_conda_${DESIRED_PYTHON}_$(date +%H%M%S)"
|
||||
fi
|
||||
mkdir -p "$MAC_PACKAGE_WORK_DIR" || true
|
||||
if [[ -n ${GITHUB_ACTIONS} ]]; then
|
||||
@ -96,11 +96,11 @@ fi
|
||||
whl_tmp_dir="${MAC_PACKAGE_WORK_DIR}/dist"
|
||||
mkdir -p "$whl_tmp_dir"
|
||||
|
||||
mac_version='macosx-11_0-arm64'
|
||||
mac_version='macosx_11_0_arm64'
|
||||
libtorch_arch='arm64'
|
||||
|
||||
# Create a consistent wheel package name to rename the wheel to
|
||||
wheel_filename_new="${TORCH_PACKAGE_NAME}-${build_version}${build_number_prefix}-cp${python_nodot}-none-${mac_version//[-,]/_}.whl"
|
||||
wheel_filename_new="${TORCH_PACKAGE_NAME}-${build_version}${build_number_prefix}-cp${python_nodot}-none-${mac_version}.whl"
|
||||
|
||||
###########################################################
|
||||
|
||||
@ -124,61 +124,91 @@ popd
|
||||
|
||||
export TH_BINARY_BUILD=1
|
||||
export INSTALL_TEST=0 # dont install test binaries into site-packages
|
||||
export MACOSX_DEPLOYMENT_TARGET=11.0
|
||||
export MACOSX_DEPLOYMENT_TARGET=10.15
|
||||
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
|
||||
|
||||
SETUPTOOLS_PINNED_VERSION="==70.1.0"
|
||||
PYYAML_PINNED_VERSION="=5.3"
|
||||
EXTRA_CONDA_INSTALL_FLAGS=""
|
||||
CONDA_ENV_CREATE_FLAGS=""
|
||||
RENAME_WHEEL=true
|
||||
case $desired_python in
|
||||
3.14t)
|
||||
echo "Using 3.14 deps"
|
||||
mac_version='macosx-11.0-arm64'
|
||||
NUMPY_PINNED_VERSION="==2.1.0"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=6.0.1"
|
||||
NUMPY_PINNED_VERSION="=2.1.0"
|
||||
CONDA_ENV_CREATE_FLAGS="python-freethreading"
|
||||
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
|
||||
desired_python="3.14.0rc1"
|
||||
RENAME_WHEEL=false
|
||||
;;
|
||||
3.14)
|
||||
echo "Using 3.14t deps"
|
||||
mac_version='macosx-11.0-arm64'
|
||||
NUMPY_PINNED_VERSION="==2.1.0"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=6.0.1"
|
||||
NUMPY_PINNED_VERSION="=2.1.0"
|
||||
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
|
||||
desired_python="3.14.0rc1"
|
||||
RENAME_WHEEL=false
|
||||
;;
|
||||
3.13t)
|
||||
echo "Using 3.13 deps"
|
||||
NUMPY_PINNED_VERSION="==2.1.0"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=6.0.1"
|
||||
NUMPY_PINNED_VERSION="=2.1.0"
|
||||
CONDA_ENV_CREATE_FLAGS="python-freethreading"
|
||||
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge"
|
||||
desired_python="3.13"
|
||||
RENAME_WHEEL=false
|
||||
;;
|
||||
3.13)
|
||||
echo "Using 3.13 deps"
|
||||
NUMPY_PINNED_VERSION="==2.1.0"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=6.0.1"
|
||||
NUMPY_PINNED_VERSION="=2.1.0"
|
||||
;;
|
||||
3.12)
|
||||
echo "Using 3.12 deps"
|
||||
NUMPY_PINNED_VERSION="==2.0.2"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=6.0.1"
|
||||
NUMPY_PINNED_VERSION="=2.0.2"
|
||||
;;
|
||||
3.11)
|
||||
echo "Using 3.11 deps"
|
||||
NUMPY_PINNED_VERSION="==2.0.2"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=5.3"
|
||||
NUMPY_PINNED_VERSION="=2.0.2"
|
||||
;;
|
||||
3.10)
|
||||
echo "Using 3.10 deps"
|
||||
NUMPY_PINNED_VERSION="==2.0.2"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=5.3"
|
||||
NUMPY_PINNED_VERSION="=2.0.2"
|
||||
;;
|
||||
3.9)
|
||||
echo "Using 3.9 deps"
|
||||
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
|
||||
PYYAML_PINNED_VERSION=">=5.3"
|
||||
NUMPY_PINNED_VERSION="=2.0.2"
|
||||
;;
|
||||
*)
|
||||
echo "Unsupported version $desired_python"
|
||||
exit 1
|
||||
echo "Using default deps"
|
||||
NUMPY_PINNED_VERSION="=1.11.3"
|
||||
;;
|
||||
esac
|
||||
|
||||
PINNED_PACKAGES=(
|
||||
"numpy${NUMPY_PINNED_VERSION}"
|
||||
)
|
||||
python -mvenv ~/${desired_python}-build
|
||||
source ~/${desired_python}-build/bin/activate
|
||||
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
|
||||
# Install into a fresh env
|
||||
tmp_env_name="wheel_py$python_nodot"
|
||||
conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_python" ${CONDA_ENV_CREATE_FLAGS}
|
||||
source activate "$tmp_env_name"
|
||||
|
||||
retry pip install -r "${pytorch_rootdir}/requirements-build.txt"
|
||||
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing-extensions
|
||||
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
|
||||
retry brew install libomp
|
||||
|
||||
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
|
||||
# is build as part of tensorpipe submodule
|
||||
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
|
||||
export USE_DISTRIBUTED=1
|
||||
|
||||
export USE_MKLDNN=OFF
|
||||
@ -188,7 +218,7 @@ export BUILD_TEST=OFF
|
||||
pushd "$pytorch_rootdir"
|
||||
echo "Calling setup.py bdist_wheel at $(date)"
|
||||
|
||||
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python setup.py bdist_wheel -d "$whl_tmp_dir" --plat-name "${mac_version//[-.]/_}"
|
||||
python setup.py bdist_wheel -d "$whl_tmp_dir"
|
||||
|
||||
echo "Finished setup.py bdist_wheel at $(date)"
|
||||
|
||||
|
@ -75,8 +75,8 @@ TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
|
||||
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
|
||||
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
|
||||
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
|
||||
# CUDA 12.9 builds have triton for Linux and Linux aarch64 binaries.
|
||||
if [[ "$DESIRED_CUDA" == "cu129" ]]; then
|
||||
TRITON_CONSTRAINT="platform_system == 'Linux'"
|
||||
fi
|
||||
|
||||
|
@ -51,12 +51,16 @@ s3_upload() {
|
||||
s3_upload_dir="${s3_root_dir}/${UPLOAD_SUBFOLDER}/"
|
||||
fi
|
||||
(
|
||||
cache_control_flag=""
|
||||
if [[ "${UPLOAD_CHANNEL}" = "test" ]]; then
|
||||
cache_control_flag="--cache-control='no-cache,no-store,must-revalidate'"
|
||||
fi
|
||||
for pkg in ${PKG_DIR}/*.${extension}; do
|
||||
(
|
||||
set -x
|
||||
shm_id=$(sha256sum "${pkg}" | awk '{print $1}')
|
||||
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_upload_dir}" \
|
||||
--metadata "checksum-sha256=${shm_id}"
|
||||
--metadata "checksum-sha256=${shm_id}" ${cache_control_flag}
|
||||
)
|
||||
done
|
||||
)
|
||||
|
@ -15,7 +15,8 @@ fi
|
||||
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
|
||||
export VC_YEAR=2022
|
||||
export USE_SCCACHE=0
|
||||
export XPU_VERSION=2025.2
|
||||
export XPU_VERSION=2025.1
|
||||
export XPU_ENABLE_KINETO=1
|
||||
fi
|
||||
|
||||
echo "Free space on filesystem before build:"
|
||||
|
@ -8,7 +8,7 @@ export VC_YEAR=2022
|
||||
|
||||
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
|
||||
export VC_YEAR=2022
|
||||
export XPU_VERSION=2025.2
|
||||
export XPU_VERSION=2025.1
|
||||
fi
|
||||
|
||||
pushd "$PYTORCH_ROOT/.ci/pytorch/"
|
||||
|
3
.flake8
3
.flake8
@ -48,7 +48,6 @@ per-file-ignores =
|
||||
torch/__init__.py: F401,TOR901
|
||||
torch/_custom_op/impl.py: TOR901
|
||||
torch/_export/serde/upgrade.py: TOR901
|
||||
torch/_functorch/predispatch.py: TOR901
|
||||
torch/_functorch/vmap.py: TOR901
|
||||
torch/_inductor/test_operators.py: TOR901
|
||||
torch/_library/abstract_impl.py: TOR901
|
||||
@ -73,7 +72,7 @@ exclude =
|
||||
./docs/src,
|
||||
./functorch/docs,
|
||||
./functorch/examples,
|
||||
./functorch/docs/source/tutorials,
|
||||
./functorch/notebooks,
|
||||
./scripts,
|
||||
./test/generated_type_hints_smoketest.py,
|
||||
./third_party,
|
||||
|
3
.github/actionlint.yaml
vendored
3
.github/actionlint.yaml
vendored
@ -12,16 +12,13 @@ self-hosted-runner:
|
||||
- linux.9xlarge.ephemeral
|
||||
- am2.linux.9xlarge.ephemeral
|
||||
- linux.12xlarge
|
||||
- linux.12xlarge.memory
|
||||
- linux.24xlarge
|
||||
- linux.24xlarge.memory
|
||||
- linux.24xlarge.ephemeral
|
||||
- linux.24xlarge.amd
|
||||
- linux.arm64.2xlarge
|
||||
- linux.arm64.2xlarge.ephemeral
|
||||
- linux.arm64.m7g.4xlarge
|
||||
- linux.arm64.m7g.4xlarge.ephemeral
|
||||
- linux.arm64.r7g.12xlarge.memory
|
||||
- linux.4xlarge.nvidia.gpu
|
||||
- linux.8xlarge.nvidia.gpu
|
||||
- linux.16xlarge.nvidia.gpu
|
||||
|
@ -4,11 +4,6 @@ name: Build External packages
|
||||
description: build external packages for PyTorch
|
||||
|
||||
inputs:
|
||||
cuda-version:
|
||||
description: CUDA version to use
|
||||
type: string
|
||||
required: true
|
||||
default: '12.8.1'
|
||||
cuda-arch-list:
|
||||
description: TORCH_CUDA_ARCH_LIST (e.g., "8.0;8.9;9.0")
|
||||
type: string
|
||||
@ -49,12 +44,10 @@ runs:
|
||||
env:
|
||||
SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2
|
||||
SCCACHE_REGION: us-east-1
|
||||
CUDA_VERSION: ${{ inputs.cuda-version }}
|
||||
TORCH_CUDA_ARCH_LIST: ${{ inputs.cuda-arch-list }}
|
||||
BASE_IMAGE: ${{ inputs.docker-image }}
|
||||
BUILD_TARGETS: ${{ inputs.build-targets }}
|
||||
PARENT_OUTPUT_DIR: ${{ inputs.output-dir }}
|
||||
TORCH_WHEELS_PATH: ${{ inputs.torch-wheel-dir }}
|
||||
PARENT_OUTPUT_DIR: ${{ inputs.output-dir}}
|
||||
shell: bash
|
||||
run: |
|
||||
set -euo pipefail
|
||||
@ -75,6 +68,7 @@ runs:
|
||||
export OUTPUT_DIR
|
||||
echo "Building external package: $target in directory $OUTPUT_DIR"
|
||||
python3 -m cli.run build external "$target"
|
||||
|
||||
done
|
||||
|
||||
END_TIME=$(date +%s)
|
||||
|
15
.github/actions/checkout-pytorch/action.yml
vendored
15
.github/actions/checkout-pytorch/action.yml
vendored
@ -57,21 +57,6 @@ runs:
|
||||
submodules: ${{ inputs.submodules }}
|
||||
show-progress: false
|
||||
|
||||
- name: Clean submodules post checkout
|
||||
id: clean-submodules
|
||||
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' }}
|
||||
shell: bash
|
||||
env:
|
||||
NO_SUDO: ${{ inputs.no-sudo }}
|
||||
run: |
|
||||
cd "${GITHUB_WORKSPACE}"
|
||||
# Clean stale submodule dirs
|
||||
if [ -z "${NO_SUDO}" ]; then
|
||||
sudo git submodule foreach --recursive git clean -ffdx
|
||||
else
|
||||
git submodule foreach --recursive git clean -ffdx
|
||||
fi
|
||||
|
||||
- name: Clean workspace (try again)
|
||||
if: ${{ steps.check_container_runner.outputs.IN_CONTAINER_RUNNER == 'false' &&
|
||||
(steps.first-clean.outcome != 'success' || steps.first-checkout-attempt.outcome != 'success') }}
|
||||
|
@ -264,7 +264,7 @@ def unzip_artifact_and_replace_files() -> None:
|
||||
change_content_to_new_version(f"artifacts/dist/{old_stem}/torch/version.py")
|
||||
|
||||
for file in Path(f"artifacts/dist/{old_stem}").glob(
|
||||
"*.dist-info/*",
|
||||
"*.dist-info/**",
|
||||
):
|
||||
change_content_to_new_version(file)
|
||||
|
||||
|
16
.github/actions/setup-win/action.yml
vendored
16
.github/actions/setup-win/action.yml
vendored
@ -6,12 +6,6 @@ inputs:
|
||||
cuda-version:
|
||||
description: which cuda version to install, 'cpu' for none
|
||||
required: true
|
||||
python-version:
|
||||
required: false
|
||||
type: string
|
||||
default: "3.10"
|
||||
description: |
|
||||
The python version to be used. Will be 3.10 by default
|
||||
|
||||
runs:
|
||||
using: composite
|
||||
@ -44,24 +38,18 @@ runs:
|
||||
CONDA="C:\Jenkins\Miniconda3\condabin\conda.bat"
|
||||
|
||||
{
|
||||
echo "CONDA=${CONDA}";
|
||||
echo "CONDA_RUN=${CONDA} run --no-capture-output";
|
||||
echo "CONDA_BUILD=${CONDA} run conda-build";
|
||||
echo "CONDA_INSTALL=${CONDA} install";
|
||||
} >> "${GITHUB_ENV}"
|
||||
|
||||
- name: Setup Python3
|
||||
env:
|
||||
PYTHON_VERSION: ${{ inputs.python-version }}
|
||||
shell: bash
|
||||
run: |
|
||||
set +e
|
||||
set -x
|
||||
|
||||
# Create new py_tmp env with python-version
|
||||
${CONDA} create -y -n py_tmp python=${PYTHON_VERSION} intel-openmp
|
||||
|
||||
PYTHON3=$(${CONDA_RUN} -n py_tmp which python3)
|
||||
PYTHON3=$(${CONDA_RUN} which python3)
|
||||
EXIT_CODE=$?
|
||||
|
||||
if [[ "${EXIT_CODE}" == "0" ]]; then
|
||||
@ -74,7 +62,7 @@ runs:
|
||||
# installation, which is Python 3 based. Its Python is default to Python 3. Further, there
|
||||
# is also the Miniconda installation that is Python 2 based, and both can be installed if
|
||||
# needed. In both cases, Python binary is just called python
|
||||
PYTHON=$(${CONDA_RUN} -n py_tmp which python)
|
||||
PYTHON=$(${CONDA_RUN} which python)
|
||||
EXIT_CODE=$?
|
||||
|
||||
if [[ "${EXIT_CODE}" == "0" ]]; then
|
||||
|
2
.github/ci_commit_pins/audio.txt
vendored
2
.github/ci_commit_pins/audio.txt
vendored
@ -1 +1 @@
|
||||
87ff22e49ed0e92576c4935ccb8c143daac4a3cd
|
||||
02351a683668dd65bc82343e55245e308eb97b4e
|
||||
|
2
.github/ci_commit_pins/fbgemm_rocm.txt
vendored
2
.github/ci_commit_pins/fbgemm_rocm.txt
vendored
@ -1 +1 @@
|
||||
08ae0af1395c8d8471f4025deb6af9aef90b342f
|
||||
7f1de94a4c2d14f59ad4ca84538c36084ea6b2c8
|
||||
|
2
.github/ci_commit_pins/vllm.txt
vendored
2
.github/ci_commit_pins/vllm.txt
vendored
@ -1 +1 @@
|
||||
090197034faf3b193c4467cedeb9281e3078892d
|
||||
0fc8fa751a4321d6531467537ff77cf3c1c70260
|
||||
|
2
.github/ci_commit_pins/xla.txt
vendored
2
.github/ci_commit_pins/xla.txt
vendored
@ -1 +1 @@
|
||||
c77852e117bdf056c8e9a087e51d6f65cf6ba53d
|
||||
a1c6ee92c85e8b0955c20892ed68f032a6015c09
|
||||
|
242
.github/ci_configs/vllm/Dockerfile.tmp_vllm
vendored
242
.github/ci_configs/vllm/Dockerfile.tmp_vllm
vendored
@ -12,46 +12,54 @@ ARG BUILD_BASE_IMAGE=torch-nightly-base
|
||||
# by default, it uses devel-ubuntu22.04 official image.
|
||||
ARG FINAL_BASE_IMAGE=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04
|
||||
|
||||
# The logic is copied from https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile
|
||||
ARG GET_PIP_URL="https://bootstrap.pypa.io/get-pip.py"
|
||||
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
# A base image for building vLLM with devel ubuntu 22.04, this is mainly used to build vllm in vllm builtkite ci
|
||||
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
|
||||
From nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 as torch-nightly-base
|
||||
ARG CUDA_VERSION=12.8.1
|
||||
ARG PYTHON_VERSION=3.12
|
||||
ARG TARGETPLATFORM
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION} \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Install Python and other dependencies if it does not existed
|
||||
RUN if ! command -v python3 >/dev/null || ! python3 --version | grep -q "${PYTHON_VERSION}"; then \
|
||||
echo "Installing Python ${PYTHON_VERSION}..." && \
|
||||
echo 'tzdata tzdata/Areas select America' | debconf-set-selections && \
|
||||
echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y ccache software-properties-common git curl sudo && \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv && \
|
||||
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 && \
|
||||
update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} && \
|
||||
ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config && \
|
||||
curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}; \
|
||||
else \
|
||||
echo "Python ${PYTHON_VERSION} already present, skipping setup."; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
|
||||
# as it was causing spam when compiling the CUTLASS kernels
|
||||
# Ensure gcc >= 10 to avoid CUTLASS issues (bug 92519)
|
||||
RUN current_gcc_version=$(gcc -dumpversion | cut -f1 -d.) && \
|
||||
if command -v apt-get >/dev/null; then \
|
||||
if [ "$current_gcc_version" -lt 10 ]; then \
|
||||
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
|
||||
apt-get update \
|
||||
&& apt-get install -y gcc-10 g++-10 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 \
|
||||
&& update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
|
||||
else \
|
||||
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
|
||||
fi \
|
||||
fi \
|
||||
&& gcc --version && g++ --version
|
||||
if [ "$current_gcc_version" -lt 10 ]; then \
|
||||
echo "GCC version is $current_gcc_version, installing gcc-10..."; \
|
||||
apt-get update && \
|
||||
apt-get install -y gcc-10 g++-10 && \
|
||||
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 && \
|
||||
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 100; \
|
||||
else \
|
||||
echo "GCC version is $current_gcc_version, no need to install gcc-10."; \
|
||||
fi && \
|
||||
gcc --version && g++ --version
|
||||
|
||||
# install uv for faster pip installs
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -59,8 +67,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
#################### TORCH NIGHTLY BASE IMAGE ####################
|
||||
|
||||
@ -71,20 +77,11 @@ ENV UV_LINK_MODE=copy
|
||||
FROM ${BUILD_BASE_IMAGE} AS base
|
||||
USER root
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# Install some system dependencies and double check python version
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim; \
|
||||
else \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
# this won't be needed for future versions of this docker image
|
||||
# or future versions of triton.
|
||||
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
@ -93,8 +90,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
fi
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
@ -117,17 +112,18 @@ ARG PINNED_TORCH_VERSION
|
||||
RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
|
||||
echo "[INFO] Installing torch wheels to build vllm"; \
|
||||
torch_whl=$(find /dist -maxdepth 1 -name 'torch-*.whl' -print -quit); \
|
||||
vision_whl=$(find /dist -name 'torchvision*.whl' | head -n1 | xargs); \
|
||||
audio_whl=$(find /dist -name 'torchaudio*.whl' | head -n1 | xargs); \
|
||||
uv pip install --system "${torch_whl}[opt-einsum]" "${vision_whl}" "${audio_whl}" /dist/*.whl; \
|
||||
vision_whl=$(find /dist/vision -name 'torchvision*.whl' | head -n1 | xargs); \
|
||||
audio_whl=$(find /dist/audio -name 'torchaudio*.whl' | head -n1 | xargs); \
|
||||
uv pip install --system "${torch_whl}[opt-einsum]"; \
|
||||
uv pip install --system "${vision_whl}"; \
|
||||
uv pip install --system "${audio_whl}"; \
|
||||
elif [ -n "$PINNED_TORCH_VERSION" ]; then \
|
||||
echo "[INFO] Installing pinned torch nightly version to build vllm: $PINNED_TORCH_VERSION"; \
|
||||
uv pip install --system "$PINNED_TORCH_VERSION" --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
echo "[INFO] Installing pinned torch nightly version: $PINNED_TORCH_VERSION"; \
|
||||
uv pip install --system "$PINNED_TORCH_VERSION" --index-url https://download.pytorch.org/whl/nightly/cu128; \
|
||||
else \
|
||||
echo "[INFO] Installing torch nightly with latest one to build vllm"; \
|
||||
uv pip install --system torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
echo "[INFO] Installing torch nightly with latest one"; \
|
||||
uv pip install --system torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128; \
|
||||
fi
|
||||
|
||||
# Install numba 0.61.2 for cuda environment
|
||||
@ -136,25 +132,19 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
|
||||
# Install common dependencies from vllm common.txt
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/common.txt
|
||||
uv pip install --system -r requirements/common.txt
|
||||
|
||||
|
||||
# Must put before installing xformers, so it can install the correct version of xfomrers.
|
||||
ARG xformers_cuda_arch_list='7.5;8.0+PTX;9.0a'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${xformers_cuda_arch_list}
|
||||
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
|
||||
RUN echo ${TORCH_CUDA_ARCH_LIST}
|
||||
RUN echo ${MAX_JOBS}
|
||||
RUN pip freeze | grep -E 'ninja'
|
||||
|
||||
# Build xformers with cuda and torch nightly/wheel
|
||||
# following official xformers guidance: https://github.com/facebookresearch/xformers#build
|
||||
# sha for https://github.com/facebookresearch/xformers/tree/v0.0.32.post2
|
||||
ARG XFORMERS_COMMIT=5d4b92a5e5a9c6c6d4878283f47d82e17995b468
|
||||
ARG XFORMERS_COMMIT=f2de641ef670510cadab099ce6954031f52f191c
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
echo 'git clone xformers...' \
|
||||
@ -167,15 +157,14 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=../xformers-dist --verbose \
|
||||
&& cd .. \
|
||||
&& rm -rf xformers
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system xformers-dist/*.whl --verbose
|
||||
|
||||
# Build can take a long time, and the torch nightly version fetched from url can be different in next docker stage.
|
||||
# track the nightly torch version used in the build, when we set up runtime environment we can make sure the version is the same
|
||||
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio' > torch_build_versions.txt
|
||||
RUN cat torch_build_versions.txt
|
||||
|
||||
RUN cat torch_build_versions.txt
|
||||
RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
@ -186,6 +175,9 @@ RUN pip freeze | grep -E 'torch|xformers|torchvision|torchaudio'
|
||||
FROM base AS build
|
||||
ARG TARGETPLATFORM
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN python3 use_existing_torch.py
|
||||
@ -200,7 +192,7 @@ RUN --mount=type=bind,source=.git,target=.git \
|
||||
# Max jobs used by Ninja to build extensions
|
||||
ARG max_jobs=16
|
||||
ENV MAX_JOBS=${max_jobs}
|
||||
ARG nvcc_threads=4
|
||||
ARG nvcc_threads=2
|
||||
ENV NVCC_THREADS=$nvcc_threads
|
||||
ARG torch_cuda_arch_list='8.0;8.6;8.9;9.0'
|
||||
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
@ -214,29 +206,21 @@ ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
if [ "$USE_SCCACHE" = "1" ]; then \
|
||||
echo "Installing sccache..."; \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
SCCACHE_ARCHIVE="sccache-v0.8.1-aarch64-unknown-linux-musl"; \
|
||||
else \
|
||||
SCCACHE_ARCHIVE="sccache-v0.8.1-x86_64-unknown-linux-musl"; \
|
||||
fi; \
|
||||
curl -L -o sccache.tar.gz "https://github.com/mozilla/sccache/releases/download/v0.8.1/${SCCACHE_ARCHIVE}.tar.gz" \
|
||||
echo "Installing sccache..." \
|
||||
&& curl -L -o sccache.tar.gz https://github.com/mozilla/sccache/releases/download/v0.8.1/sccache-v0.8.1-x86_64-unknown-linux-musl.tar.gz \
|
||||
&& tar -xzf sccache.tar.gz \
|
||||
&& sudo mv "${SCCACHE_ARCHIVE}"/sccache /usr/bin/sccache \
|
||||
&& rm -rf sccache.tar.gz "${SCCACHE_ARCHIVE}" \
|
||||
&& sudo mv sccache-v0.8.1-x86_64-unknown-linux-musl/sccache /usr/bin/sccache \
|
||||
&& rm -rf sccache.tar.gz sccache-v0.8.1-x86_64-unknown-linux-musl \
|
||||
&& export SCCACHE_BUCKET=${SCCACHE_BUCKET_NAME} \
|
||||
&& export SCCACHE_REGION=${SCCACHE_REGION_NAME} \
|
||||
&& export SCCACHE_S3_NO_CREDENTIALS=${SCCACHE_S3_NO_CREDENTIALS} \
|
||||
&& export SCCACHE_IDLE_TIMEOUT=0 \
|
||||
&& export CMAKE_BUILD_TYPE=Release \
|
||||
&& export VLLM_DOCKER_BUILD_CONTEXT=1 \
|
||||
&& sccache --show-stats \
|
||||
&& python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38 \
|
||||
&& sccache --show-stats; \
|
||||
fi
|
||||
|
||||
ARG vllm_target_device="cuda"
|
||||
ENV VLLM_TARGET_DEVICE=${vllm_target_device}
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
@ -245,13 +229,12 @@ RUN --mount=type=cache,target=/root/.cache/ccache \
|
||||
# Clean any existing CMake artifacts
|
||||
rm -rf .deps && \
|
||||
mkdir -p .deps && \
|
||||
export VLLM_DOCKER_BUILD_CONTEXT=1 && \
|
||||
python3 setup.py bdist_wheel --dist-dir=vllm-dist --py-limited-api=cp38; \
|
||||
fi
|
||||
|
||||
RUN echo "[INFO] Listing current directory:" && \
|
||||
RUN echo "[DEBUG] Listing current directory:" && \
|
||||
ls -al && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
echo "[DEBUG] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
#################### WHEEL BUILD IMAGE ####################
|
||||
@ -261,42 +244,51 @@ RUN echo "[INFO] Listing current directory:" && \
|
||||
# Setup clean environment for vLLM for test and api server using ubuntu22.04 with AOT flashinfer
|
||||
FROM ${FINAL_BASE_IMAGE} AS vllm-base
|
||||
USER root
|
||||
|
||||
ARG CUDA_VERSION
|
||||
ARG PYTHON_VERSION
|
||||
ARG GET_PIP_URL
|
||||
|
||||
# TODO (huydhn): Only work with PyTorch manylinux builder
|
||||
ENV PATH="/opt/python/cp312-cp312/bin:${PATH}"
|
||||
|
||||
# prepare for environment starts
|
||||
WORKDIR /workspace
|
||||
|
||||
# Install Python and other dependencies
|
||||
RUN if command -v apt-get >/dev/null; then \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y ccache software-properties-common git curl wget sudo vim \
|
||||
&& add-apt-repository -y ppa:deadsnakes/ppa \
|
||||
&& apt-get update -y \
|
||||
&& apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 \
|
||||
&& update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} \
|
||||
&& ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config \
|
||||
&& curl -sS ${GET_PIP_URL} | python${PYTHON_VERSION}; \
|
||||
else \
|
||||
dnf install -y git curl wget sudo; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
RUN PYTHON_VERSION_STR=$(echo ${PYTHON_VERSION} | sed 's/\.//g') && \
|
||||
echo "export PYTHON_VERSION_STR=${PYTHON_VERSION_STR}" >> /etc/environment
|
||||
|
||||
# Install Python and other dependencies if it does not existed
|
||||
RUN if ! command -v python3 >/dev/null || ! python3 --version | grep -q "${PYTHON_VERSION}"; then \
|
||||
echo "Installing Python ${PYTHON_VERSION}..." && \
|
||||
echo 'tzdata tzdata/Areas select America' | debconf-set-selections && \
|
||||
echo 'tzdata tzdata/Zones/America select Los_Angeles' | debconf-set-selections && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y ccache software-properties-common git curl sudo && \
|
||||
for i in 1 2 3; do \
|
||||
add-apt-repository -y ppa:deadsnakes/ppa && break || \
|
||||
{ echo "Attempt $i failed, retrying in 5s..."; sleep 5; }; \
|
||||
done && \
|
||||
apt-get update -y && \
|
||||
apt-get install -y python${PYTHON_VERSION} python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv && \
|
||||
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python${PYTHON_VERSION} 1 && \
|
||||
update-alternatives --set python3 /usr/bin/python${PYTHON_VERSION} && \
|
||||
ln -sf /usr/bin/python${PYTHON_VERSION}-config /usr/bin/python3-config && \
|
||||
curl -sS https://bootstrap.pypa.io/get-pip.py | python${PYTHON_VERSION}; \
|
||||
else \
|
||||
echo "Python ${PYTHON_VERSION} already present, skipping setup."; \
|
||||
fi \
|
||||
&& python3 --version && python3 -m pip --version
|
||||
|
||||
|
||||
# Get the torch versions, and whls used in previous stagtes for consistency
|
||||
COPY --from=base /workspace/torch_build_versions.txt ./torch_build_versions.txt
|
||||
COPY --from=base /workspace/xformers-dist /wheels/xformers
|
||||
COPY --from=build /workspace/vllm-dist /wheels/vllm
|
||||
RUN echo "[INFO] Listing current directory before torch install step:" && \
|
||||
RUN echo "[DEBUG] Listing current directory before torch install step:" && \
|
||||
ls -al && \
|
||||
echo "[INFO] Showing torch_build_versions.txt content:" && \
|
||||
echo "[DEBUG] Showing torch_build_versions.txt content:" && \
|
||||
cat torch_build_versions.txt
|
||||
|
||||
# Workaround for https://github.com/openai/triton/issues/2507 and
|
||||
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
|
||||
# this won't be needed for future versions of this docker image
|
||||
# or future versions of triton.
|
||||
RUN ldconfig /usr/local/cuda-$(echo $CUDA_VERSION | cut -d. -f1,2)/compat/
|
||||
|
||||
|
||||
# Install uv for faster pip installs if not existed
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
if ! python3 -m uv --version > /dev/null 2>&1; then \
|
||||
@ -304,8 +296,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
fi
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
# Default mount file as placeholder, this just avoid the mount error
|
||||
ARG TORCH_WHEELS_PATH="./requirements"
|
||||
@ -316,13 +306,15 @@ RUN --mount=type=bind,source=${TORCH_WHEELS_PATH},target=/dist \
|
||||
--mount=type=cache,target=/root/.cache/uv \
|
||||
if [ -n "$TORCH_WHEELS_PATH" ] && [ "$TORCH_WHEELS_PATH" != "./requirements" ] && [ -d "/dist" ] && ls /dist/torch*.whl >/dev/null 2>&1; then \
|
||||
torch_whl=$(find /dist -maxdepth 1 -name 'torch-*.whl' -print -quit); \
|
||||
vision_whl=$(find /dist -name 'torchvision*.whl' | head -n1 | xargs); \
|
||||
audio_whl=$(find /dist -name 'torchaudio*.whl' | head -n1 | xargs); \
|
||||
echo "[INFO] Use wheels to build : '${torch_whl}' '${audio_whl}' '${vision_whl}'"; \
|
||||
uv pip install --system "${torch_whl}[opt-einsum]" "${vision_whl}" "${audio_whl}" /dist/*.whl; \
|
||||
vision_whl=$(find /dist/vision -name 'torchvision*.whl' | head -n1 | xargs); \
|
||||
audio_whl=$(find /dist/audio -name 'torchaudio*.whl' | head -n1 | xargs); \
|
||||
echo "Found: '${torch_whl}' '${audio_whl}' '${vision_whl}'"; \
|
||||
uv pip install --system "${torch_whl}[opt-einsum]"; \
|
||||
uv pip install --system "${vision_whl}"; \
|
||||
uv pip install --system "${audio_whl}"; \
|
||||
else \
|
||||
echo "[INFO] Installing torch versions from torch_build_versions.txt"; \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.'); \
|
||||
uv pip install --system $(cat torch_build_versions.txt | xargs) --index-url https://download.pytorch.org/whl/nightly/cu128; \
|
||||
fi
|
||||
|
||||
# Install the vllm wheel from previous stage
|
||||
@ -333,8 +325,9 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system /wheels/xformers/*.whl --verbose
|
||||
|
||||
|
||||
# Build flashinfer from source.
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a;10.0a;12.0'
|
||||
ARG torch_cuda_arch_list='8.0;8.9;9.0a'
|
||||
# install package for build flashinfer
|
||||
# see issue: https://github.com/flashinfer-ai/flashinfer/issues/738
|
||||
|
||||
@ -345,7 +338,7 @@ ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
|
||||
# Build flashinfer for torch nightly from source around 10 mins
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
# Keep this in sync with https://github.com/vllm-project/vllm/blob/main/requirements/cuda.txt
|
||||
ARG FLASHINFER_GIT_REF="v0.2.14.post1"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.9rc2"
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
@ -363,7 +356,6 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
|
||||
# Logging to confirm the torch versions
|
||||
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
|
||||
RUN uv pip freeze | grep -i '^torch\|^torchvision\|^torchaudio\|^xformers\|^vllm\|^flashinfer' > build_summary.txt
|
||||
################### VLLM INSTALLED IMAGE ####################
|
||||
|
||||
|
||||
@ -372,8 +364,6 @@ FROM vllm-base as test
|
||||
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
# Use copy mode to avoid hardlink failures with Docker cache mounts
|
||||
ENV UV_LINK_MODE=copy
|
||||
|
||||
COPY tests/ tests/
|
||||
COPY examples examples
|
||||
@ -402,6 +392,11 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/nightly_torch_test.txt
|
||||
|
||||
# Workaround for #17068
|
||||
# pinned commit for v2.2.4
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@95d8aba8a8c75aedcaa6143713b11e745e7cd0d9#egg=mamba-ssm"
|
||||
|
||||
# Logging to confirm the torch versions
|
||||
RUN pip freeze | grep -E 'torch|xformers|vllm|flashinfer'
|
||||
|
||||
@ -416,5 +411,4 @@ FROM scratch as export-wheels
|
||||
# Just copy the wheels we prepared in previous stages
|
||||
COPY --from=base /workspace/xformers-dist /wheels/xformers
|
||||
COPY --from=build /workspace/vllm-dist /wheels/vllm
|
||||
COPY --from=vllm-base /workspace/build_summary.txt /wheels/build_summary.txt
|
||||
COPY --from=vllm-base /workspace/wheels/flashinfer /wheels/flashinfer-python
|
||||
|
17
.github/ci_configs/vllm/use_existing_torch.py
vendored
17
.github/ci_configs/vllm/use_existing_torch.py
vendored
@ -1,17 +0,0 @@
|
||||
import glob
|
||||
|
||||
|
||||
requires_files = glob.glob("requirements/*.txt")
|
||||
requires_files += ["pyproject.toml"]
|
||||
for file in requires_files:
|
||||
print(f">>> cleaning {file}")
|
||||
with open(file) as f:
|
||||
lines = f.readlines()
|
||||
if "torch" in "".join(lines).lower():
|
||||
print("removed:")
|
||||
with open(file, "w") as f:
|
||||
for line in lines:
|
||||
if "torch" not in line.lower():
|
||||
f.write(line)
|
||||
print(f"<<< done cleaning {file}")
|
||||
print()
|
4
.github/dependabot.yml
vendored
4
.github/dependabot.yml
vendored
@ -8,9 +8,6 @@ updates:
|
||||
target-branch: "main"
|
||||
allow:
|
||||
- dependency-name: "transformers"
|
||||
ignore:
|
||||
- dependency-name: "*"
|
||||
update-types: ["version-update:semver-patch"]
|
||||
commit-message:
|
||||
prefix: "[Dependabot] Update"
|
||||
include: "scope"
|
||||
@ -21,4 +18,3 @@ updates:
|
||||
- "topic: not user facing"
|
||||
- "module: ci"
|
||||
- "module: inductor"
|
||||
- "ciflow/inductor"
|
||||
|
3
.github/labeler.yml
vendored
3
.github/labeler.yml
vendored
@ -130,6 +130,3 @@
|
||||
- torch/csrc/inductor/aoti_include/**
|
||||
- torchgen/aoti/**
|
||||
- torchgen/gen_aoti_c_shim.py
|
||||
|
||||
"ciflow/vllm":
|
||||
- .github/ci_commit_pins/vllm.txt
|
||||
|
1
.github/pytorch-probot.yml
vendored
1
.github/pytorch-probot.yml
vendored
@ -36,7 +36,6 @@ ciflow_push_tags:
|
||||
- ciflow/win-arm64
|
||||
- ciflow/h100-symm-mem
|
||||
- ciflow/h100-cutlass-backend
|
||||
- ciflow/b200
|
||||
retryable_workflows:
|
||||
- pull
|
||||
- trunk
|
||||
|
@ -15,7 +15,7 @@ optree==0.13.0
|
||||
packaging==23.1
|
||||
parameterized==0.8.1
|
||||
pillow==10.3.0
|
||||
protobuf==5.29.5
|
||||
protobuf==5.29.4
|
||||
psutil==5.9.8
|
||||
pygments==2.15.0
|
||||
pytest-cpp==2.3.0
|
||||
@ -26,9 +26,9 @@ pytest-xdist==3.3.1
|
||||
pytest==7.3.2
|
||||
pyyaml==6.0.2
|
||||
scipy==1.12.0
|
||||
setuptools==78.1.1
|
||||
setuptools==72.1.0
|
||||
sympy==1.13.3
|
||||
tlparse==0.4.0
|
||||
tlparse==0.3.30
|
||||
tensorboard==2.13.0
|
||||
typing-extensions==4.12.2
|
||||
unittest-xml-reporting<=3.2.0,>=2.0.0
|
||||
|
1
.github/scripts/build_triton_wheel.py
vendored
1
.github/scripts/build_triton_wheel.py
vendored
@ -84,7 +84,6 @@ def build_triton(
|
||||
["git", "checkout", f"release/{ver}.{rev}.x"], cwd=triton_basedir
|
||||
)
|
||||
else:
|
||||
check_call(["git", "fetch", "origin", commit_hash], cwd=triton_basedir)
|
||||
check_call(["git", "checkout", commit_hash], cwd=triton_basedir)
|
||||
|
||||
# change built wheel name and version
|
||||
|
4
.github/scripts/docathon-label-sync.py
vendored
4
.github/scripts/docathon-label-sync.py
vendored
@ -39,9 +39,7 @@ def main() -> None:
|
||||
pull_request_label_names = [label.name for label in pull_request_labels]
|
||||
issue_label_names = [label.name for label in issue_labels]
|
||||
labels_to_add = [
|
||||
label
|
||||
for label in issue_label_names
|
||||
if label not in pull_request_label_names and label != "actionable"
|
||||
label for label in issue_label_names if label not in pull_request_label_names
|
||||
]
|
||||
if not labels_to_add:
|
||||
print("The pull request already has the same labels.")
|
||||
|
188
.github/scripts/generate_binary_build_matrix.py
vendored
188
.github/scripts/generate_binary_build_matrix.py
vendored
@ -16,17 +16,17 @@ from typing import Optional
|
||||
|
||||
|
||||
# NOTE: Please also update the CUDA sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
CUDA_ARCHES = ["12.6", "12.8", "13.0"]
|
||||
CUDA_ARCHES = ["12.6", "12.8", "12.9"]
|
||||
CUDA_STABLE = "12.8"
|
||||
CUDA_ARCHES_FULL_VERSION = {
|
||||
"12.6": "12.6.3",
|
||||
"12.8": "12.8.1",
|
||||
"13.0": "13.0.0",
|
||||
"12.9": "12.9.1",
|
||||
}
|
||||
CUDA_ARCHES_CUDNN_VERSION = {
|
||||
"12.6": "9",
|
||||
"12.8": "9",
|
||||
"13.0": "9",
|
||||
"12.9": "9",
|
||||
}
|
||||
|
||||
# NOTE: Please also update the ROCm sources in `PIP_SOURCES` in tools/nightly.py when changing this
|
||||
@ -38,82 +38,82 @@ CPU_AARCH64_ARCH = ["cpu-aarch64"]
|
||||
|
||||
CPU_S390X_ARCH = ["cpu-s390x"]
|
||||
|
||||
CUDA_AARCH64_ARCHES = ["12.6-aarch64", "12.8-aarch64", "13.0-aarch64"]
|
||||
CUDA_AARCH64_ARCHES = ["12.9-aarch64"]
|
||||
|
||||
|
||||
PYTORCH_EXTRA_INSTALL_REQUIREMENTS = {
|
||||
"12.6": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
|
||||
"nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' | "
|
||||
"nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' | "
|
||||
"nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux'"
|
||||
"nvidia-cuda-nvrtc-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.6.80; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.6.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.3.0.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.7.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.1.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.4.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.6.77; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.6.85; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.11.1.6; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"12.8": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' | "
|
||||
"nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' | "
|
||||
"nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' | "
|
||||
"nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu12==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' | "
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux'"
|
||||
"nvidia-cuda-nvrtc-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.8.4.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.3.3.83; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.9.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.3.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.8.90; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.8.93; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.13.1.3; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"13.0": (
|
||||
"nvidia-cuda-nvrtc==13.0.48; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-runtime==13.0.48; platform_system == 'Linux' | "
|
||||
"nvidia-cuda-cupti==13.0.48; platform_system == 'Linux' | "
|
||||
"nvidia-cudnn-cu13==9.13.0.50; platform_system == 'Linux' | "
|
||||
"nvidia-cublas==13.0.0.19; platform_system == 'Linux' | "
|
||||
"nvidia-cufft==12.0.0.15; platform_system == 'Linux' | "
|
||||
"nvidia-curand==10.4.0.35; platform_system == 'Linux' | "
|
||||
"nvidia-cusolver==12.0.3.29; platform_system == 'Linux' | "
|
||||
"nvidia-cusparse==12.6.2.49; platform_system == 'Linux' | "
|
||||
"nvidia-cusparselt-cu13==0.8.0; platform_system == 'Linux' | "
|
||||
"nvidia-nccl-cu13==2.27.7; platform_system == 'Linux' | "
|
||||
"nvidia-nvshmem-cu13==3.3.24; platform_system == 'Linux' | "
|
||||
"nvidia-nvtx==13.0.39; platform_system == 'Linux' | "
|
||||
"nvidia-nvjitlink==13.0.39; platform_system == 'Linux' | "
|
||||
"nvidia-cufile==1.15.0.42; platform_system == 'Linux'"
|
||||
"12.9": (
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-runtime-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cuda-cupti-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cudnn-cu12==9.10.2.21; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cublas-cu12==12.9.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufft-cu12==11.4.1.4; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-curand-cu12==10.3.10.19; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusolver-cu12==11.7.5.82; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparse-cu12==12.5.10.65; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cusparselt-cu12==0.7.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nccl-cu12==2.27.5; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvshmem-cu12==3.3.20; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvtx-cu12==12.9.79; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-nvjitlink-cu12==12.9.86; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"nvidia-cufile-cu12==1.14.1.1; platform_system == 'Linux' and platform_machine == 'x86_64'"
|
||||
),
|
||||
"xpu": (
|
||||
"intel-cmplr-lib-rt==2025.2.1 | "
|
||||
"intel-cmplr-lib-ur==2025.2.1 | "
|
||||
"intel-cmplr-lic-rt==2025.2.1 | "
|
||||
"intel-sycl-rt==2025.2.1 | "
|
||||
"oneccl-devel==2021.16.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"oneccl==2021.16.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"impi-rt==2021.16.1; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"onemkl-sycl-blas==2025.2.0 | "
|
||||
"onemkl-sycl-dft==2025.2.0 | "
|
||||
"onemkl-sycl-lapack==2025.2.0 | "
|
||||
"onemkl-sycl-rng==2025.2.0 | "
|
||||
"onemkl-sycl-sparse==2025.2.0 | "
|
||||
"dpcpp-cpp-rt==2025.2.1 | "
|
||||
"intel-opencl-rt==2025.2.1 | "
|
||||
"mkl==2025.2.0 | "
|
||||
"intel-openmp==2025.2.1 | "
|
||||
"tbb==2022.2.0 | "
|
||||
"tcmlib==1.4.0 | "
|
||||
"umf==0.11.0 | "
|
||||
"intel-pti==0.13.1"
|
||||
"intel-cmplr-lib-rt==2025.1.1 | "
|
||||
"intel-cmplr-lib-ur==2025.1.1 | "
|
||||
"intel-cmplr-lic-rt==2025.1.1 | "
|
||||
"intel-sycl-rt==2025.1.1 | "
|
||||
"oneccl-devel==2021.15.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"oneccl==2021.15.2; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"impi-rt==2021.15.0; platform_system == 'Linux' and platform_machine == 'x86_64' | "
|
||||
"onemkl-sycl-blas==2025.1.0 | "
|
||||
"onemkl-sycl-dft==2025.1.0 | "
|
||||
"onemkl-sycl-lapack==2025.1.0 | "
|
||||
"onemkl-sycl-rng==2025.1.0 | "
|
||||
"onemkl-sycl-sparse==2025.1.0 | "
|
||||
"dpcpp-cpp-rt==2025.1.1 | "
|
||||
"intel-opencl-rt==2025.1.1 | "
|
||||
"mkl==2025.1.0 | "
|
||||
"intel-openmp==2025.1.1 | "
|
||||
"tbb==2022.1.0 | "
|
||||
"tcmlib==1.3.0 | "
|
||||
"umf==0.10.0 | "
|
||||
"intel-pti==0.12.3"
|
||||
),
|
||||
}
|
||||
|
||||
@ -124,7 +124,9 @@ def get_nccl_wheel_version(arch_version: str) -> str:
|
||||
requirements = map(
|
||||
str.strip, re.split("[;|]", PYTORCH_EXTRA_INSTALL_REQUIREMENTS[arch_version])
|
||||
)
|
||||
return next(x for x in requirements if x.startswith("nvidia-nccl")).split("==")[1]
|
||||
return next(x for x in requirements if x.startswith("nvidia-nccl-cu")).split("==")[
|
||||
1
|
||||
]
|
||||
|
||||
|
||||
def read_nccl_pin(arch_version: str) -> str:
|
||||
@ -191,7 +193,7 @@ LIBTORCH_CONTAINER_IMAGES: dict[str, str] = {
|
||||
"cpu": "libtorch-cxx11-builder:cpu",
|
||||
}
|
||||
|
||||
FULL_PYTHON_VERSIONS = ["3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t"]
|
||||
FULL_PYTHON_VERSIONS = ["3.9", "3.10", "3.11", "3.12", "3.13", "3.13t", "3.14", "3.14t"]
|
||||
|
||||
|
||||
def translate_desired_cuda(gpu_arch_type: str, gpu_arch_version: str) -> str:
|
||||
@ -309,20 +311,19 @@ def generate_wheels_matrix(
|
||||
else arch_version
|
||||
)
|
||||
|
||||
# TODO: Enable python 3.14 for rest
|
||||
if os not in [
|
||||
"linux",
|
||||
"linux-aarch64",
|
||||
"linux-s390x",
|
||||
"macos-arm64",
|
||||
"windows",
|
||||
] and (python_version == "3.14" or python_version == "3.14t"):
|
||||
# TODO: Enable python 3.13t on cpu-s390x
|
||||
if gpu_arch_type == "cpu-s390x" and python_version == "3.13t":
|
||||
continue
|
||||
# TODO: Enable python 3.14 on non linux OSes
|
||||
if os not in ["linux", "linux-aarch64", "macos-arm64"] and (
|
||||
python_version == "3.14" or python_version == "3.14t"
|
||||
):
|
||||
continue
|
||||
|
||||
# cuda linux wheels require PYTORCH_EXTRA_INSTALL_REQUIREMENTS to install
|
||||
|
||||
if (
|
||||
arch_version in ["13.0", "12.8", "12.6"]
|
||||
arch_version in ["12.9", "12.8", "12.6"]
|
||||
and os == "linux"
|
||||
or arch_version in CUDA_AARCH64_ARCHES
|
||||
):
|
||||
@ -355,6 +356,29 @@ def generate_wheels_matrix(
|
||||
), # include special case for aarch64 build, remove the -aarch64 postfix
|
||||
}
|
||||
)
|
||||
# Special build building to use on Colab. Python 3.11 for 12.6 CUDA
|
||||
if python_version == "3.11" and arch_version == CUDA_STABLE:
|
||||
ret.append(
|
||||
{
|
||||
"python_version": python_version,
|
||||
"gpu_arch_type": gpu_arch_type,
|
||||
"gpu_arch_version": gpu_arch_version,
|
||||
"desired_cuda": translate_desired_cuda(
|
||||
gpu_arch_type, gpu_arch_version
|
||||
),
|
||||
"container_image": WHEEL_CONTAINER_IMAGES[
|
||||
arch_version
|
||||
].split(":")[0],
|
||||
"container_image_tag_prefix": WHEEL_CONTAINER_IMAGES[
|
||||
arch_version
|
||||
].split(":")[1],
|
||||
"package_type": package_type,
|
||||
"pytorch_extra_install_requirements": "",
|
||||
"build_name": f"{package_type}-py{python_version}-{gpu_arch_type}{gpu_arch_version}-full".replace( # noqa: B950
|
||||
".", "_"
|
||||
),
|
||||
}
|
||||
)
|
||||
else:
|
||||
ret.append(
|
||||
{
|
||||
@ -385,6 +409,6 @@ def generate_wheels_matrix(
|
||||
return ret
|
||||
|
||||
|
||||
validate_nccl_dep_consistency("13.0")
|
||||
validate_nccl_dep_consistency("12.9")
|
||||
validate_nccl_dep_consistency("12.8")
|
||||
validate_nccl_dep_consistency("12.6")
|
||||
|
2
.github/scripts/generate_ci_workflows.py
vendored
2
.github/scripts/generate_ci_workflows.py
vendored
@ -135,7 +135,7 @@ ROCM_SMOKE_WORKFLOWS = [
|
||||
build_configs=generate_binary_build_matrix.generate_wheels_matrix(
|
||||
OperatingSystem.LINUX,
|
||||
arches=["6.4"],
|
||||
python_versions=["3.10"],
|
||||
python_versions=["3.9"],
|
||||
),
|
||||
ciflow_config=CIFlowConfig(
|
||||
labels={
|
||||
|
94
.github/scripts/prepare_vllm_wheels.sh
vendored
94
.github/scripts/prepare_vllm_wheels.sh
vendored
@ -1,94 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eux
|
||||
|
||||
torch_version=$(unzip -p torch-* '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
|
||||
nightly=$(echo ${torch_version} | cut -d'.' -f4)
|
||||
|
||||
# Copied from .ci/manywheel/build_common.sh
|
||||
make_wheel_record() {
|
||||
fpath=$1
|
||||
if echo $fpath | grep RECORD >/dev/null 2>&1; then
|
||||
echo "$fpath,,"
|
||||
else
|
||||
fhash=$(openssl dgst -sha256 -binary $fpath | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
|
||||
fsize=$(ls -nl $fpath | awk '{print $5}')
|
||||
echo "$fpath,sha256=$fhash,$fsize"
|
||||
fi
|
||||
}
|
||||
|
||||
change_wheel_version() {
|
||||
local package=$1
|
||||
local wheel=$2
|
||||
local f_version=$3
|
||||
local t_version=$4
|
||||
|
||||
# Extract the wheel
|
||||
${PYTHON_EXECUTABLE} -mwheel unpack $wheel
|
||||
|
||||
mv "${package}-${f_version}" "${package}-${t_version}"
|
||||
# Change the version from f_version to t_version in the dist-info dir
|
||||
pushd "${package}-${t_version}"
|
||||
mv "${package}-${f_version}.dist-info" "${package}-${t_version}.dist-info"
|
||||
|
||||
pushd "${package}-${t_version}.dist-info"
|
||||
sed -i "s/${package}-${f_version}.dist-info/${package}-${t_version}.dist-info/g" RECORD
|
||||
|
||||
# Update the version in METADATA and its SHA256 hash
|
||||
sed -i "s/Version: ${f_version}/Version: ${t_version}/g" METADATA
|
||||
# then add PyTorch nightly dependency of vLLM
|
||||
if [[ "${package}" == vllm ]] || [[ "${package}" == xformers ]]; then
|
||||
sed -i "/License-File/a\Requires-Dist: torch==${torch_version}" METADATA
|
||||
fi
|
||||
sed -i '/METADATA,sha256/d' RECORD
|
||||
popd
|
||||
|
||||
make_wheel_record "${package}-${t_version}.dist-info/METADATA" >> "${package}-${t_version}.dist-info/RECORD"
|
||||
popd
|
||||
|
||||
# Repack the wheel
|
||||
${PYTHON_EXECUTABLE} -mwheel pack "${package}-${t_version}"
|
||||
|
||||
# Clean up
|
||||
rm -rf "${package}-${t_version}"
|
||||
}
|
||||
|
||||
repackage_wheel() {
|
||||
local package=$1
|
||||
pushd $package
|
||||
|
||||
local orig_wheel=$(find . -name *${package//-/_}*)
|
||||
local orig_version=$(unzip -p $orig_wheel '**/METADATA' | grep '^Version: ' | cut -d' ' -f2)
|
||||
|
||||
local version=""
|
||||
if [[ "${package}" == vllm ]]; then
|
||||
# Copied from vllm/.buildkite/scripts/upload-wheels.sh
|
||||
version=1.0.0
|
||||
else
|
||||
version=$(echo $orig_version | tr '.+' '.' | cut -d'.' -f1-3)
|
||||
fi
|
||||
local nightly_version=$version.$nightly
|
||||
|
||||
# Use nightly version
|
||||
change_wheel_version ${package//-/_} $orig_wheel $orig_version $nightly_version
|
||||
# Clean up
|
||||
rm "${orig_wheel}"
|
||||
|
||||
auditwheel repair --plat $PLATFORM *.whl \
|
||||
--exclude libc10* --exclude libtorch* --exclude libcu* --exclude libnv*
|
||||
local repair_wheel=$(find wheelhouse -name *${PLATFORM}*)
|
||||
local repair_wheel=$(basename ${repair_wheel})
|
||||
popd
|
||||
|
||||
cp ${package}/wheelhouse/${repair_wheel} .
|
||||
rm -rf $package
|
||||
}
|
||||
|
||||
# Require to re-package the wheel
|
||||
${PYTHON_EXECUTABLE} -mpip install wheel==0.45.1
|
||||
|
||||
pushd externals/vllm/wheels
|
||||
for package in xformers flashinfer-python vllm; do
|
||||
repackage_wheel $package
|
||||
done
|
||||
popd
|
182
.github/scripts/test_trymerge.py
vendored
182
.github/scripts/test_trymerge.py
vendored
@ -27,7 +27,6 @@ from trymerge import (
|
||||
get_drci_classifications,
|
||||
gh_get_team_members,
|
||||
GitHubPR,
|
||||
iter_issue_timeline_until_comment,
|
||||
JobCheckState,
|
||||
main as trymerge_main,
|
||||
MandatoryChecksMissingError,
|
||||
@ -35,8 +34,6 @@ from trymerge import (
|
||||
RE_GHSTACK_DESC,
|
||||
read_merge_rules,
|
||||
remove_job_name_suffix,
|
||||
sha_from_committed_event,
|
||||
sha_from_force_push_after,
|
||||
validate_revert,
|
||||
)
|
||||
|
||||
@ -127,7 +124,7 @@ def mock_parse_args(revert: bool = False, force: bool = False) -> Any:
|
||||
self.force = force
|
||||
self.pr_num = 76123
|
||||
self.dry_run = True
|
||||
self.comment_id = 12345 # Set to non-zero value
|
||||
self.comment_id = 0
|
||||
self.reason = "this is for testing"
|
||||
self.ignore_current = False
|
||||
self.check_mergeability = False
|
||||
@ -155,9 +152,9 @@ def mock_revert(
|
||||
def mock_merge(
|
||||
pr: GitHubPR,
|
||||
repo: GitRepo,
|
||||
comment_id: int,
|
||||
dry_run: bool = False,
|
||||
skip_mandatory_checks: bool = False,
|
||||
comment_id: Optional[int] = None,
|
||||
timeout_minutes: int = 400,
|
||||
stale_pr_days: int = 3,
|
||||
ignore_current: bool = False,
|
||||
@ -473,9 +470,9 @@ class TestTryMerge(TestCase):
|
||||
mock_merge.assert_called_once_with(
|
||||
mock.ANY,
|
||||
mock.ANY,
|
||||
comment_id=mock.ANY,
|
||||
dry_run=mock.ANY,
|
||||
skip_mandatory_checks=True,
|
||||
comment_id=mock.ANY,
|
||||
ignore_current=False,
|
||||
)
|
||||
|
||||
@ -488,9 +485,9 @@ class TestTryMerge(TestCase):
|
||||
mock_merge.assert_called_once_with(
|
||||
mock.ANY,
|
||||
mock.ANY,
|
||||
comment_id=mock.ANY,
|
||||
dry_run=mock.ANY,
|
||||
skip_mandatory_checks=False,
|
||||
comment_id=mock.ANY,
|
||||
ignore_current=False,
|
||||
)
|
||||
|
||||
@ -1141,176 +1138,5 @@ Pull Request resolved: https://github.com/pytorch/pytorch/pull/154394"""
|
||||
)
|
||||
|
||||
|
||||
@mock.patch("trymerge.gh_graphql", side_effect=mocked_gh_graphql)
|
||||
@mock.patch("trymerge.gh_fetch_merge_base", return_value="")
|
||||
@mock.patch(
|
||||
"trymerge.get_drci_classifications", side_effect=mocked_drci_classifications
|
||||
)
|
||||
class TestTimelineFunctions(TestCase):
|
||||
"""Tests for the new timeline-related functions"""
|
||||
|
||||
def test_sha_from_committed_event(self, *args: Any) -> None:
|
||||
"""Test extracting SHA from committed event"""
|
||||
# Based on actual GitHub API format - committed events have "sha" at top level
|
||||
event = {
|
||||
"event": "committed",
|
||||
"sha": "fb21ce932ded6670c918804a0d9151b773770a7c",
|
||||
}
|
||||
self.assertEqual(
|
||||
sha_from_committed_event(event), "fb21ce932ded6670c918804a0d9151b773770a7c"
|
||||
)
|
||||
|
||||
# Test with missing SHA
|
||||
event_no_sha = {"event": "committed"}
|
||||
self.assertIsNone(sha_from_committed_event(event_no_sha))
|
||||
|
||||
def test_sha_from_force_push_after(self, *args: Any) -> None:
|
||||
"""Test extracting SHA from force push event"""
|
||||
# NOTE: The current function doesn't handle the actual GitHub API format
|
||||
# Real force push events have "commit_id" at top level, but this function
|
||||
# looks for "after", "after_commit", "after_sha", or "head_sha" fields
|
||||
|
||||
# Test with the legacy format the current function handles
|
||||
event_legacy = {
|
||||
"event": "head_ref_force_pushed",
|
||||
"after": {"sha": "ef22bcbc54bb0f787e1e4ffd3d83df18fc407f5e"},
|
||||
}
|
||||
self.assertEqual(
|
||||
sha_from_force_push_after(event_legacy),
|
||||
"ef22bcbc54bb0f787e1e4ffd3d83df18fc407f5e",
|
||||
)
|
||||
|
||||
# Test with current GitHub API format (should return None with current implementation)
|
||||
event_real_api = {
|
||||
"event": "head_ref_force_pushed",
|
||||
"commit_id": "ef22bcbc54bb0f787e1e4ffd3d83df18fc407f5e",
|
||||
}
|
||||
self.assertEqual(
|
||||
sha_from_force_push_after(event_real_api),
|
||||
"ef22bcbc54bb0f787e1e4ffd3d83df18fc407f5e",
|
||||
) # Current function doesn't handle commit_id
|
||||
|
||||
# Test with missing SHA
|
||||
event_no_sha = {"event": "head_ref_force_pushed"}
|
||||
self.assertIsNone(sha_from_force_push_after(event_no_sha))
|
||||
|
||||
@mock.patch("trymerge.gh_fetch_json_list")
|
||||
def test_iter_issue_timeline_until_comment(
|
||||
self, mock_gh_fetch_json_list: Any, *args: Any
|
||||
) -> None:
|
||||
"""Test timeline iteration until target comment"""
|
||||
# Mock timeline data based on actual GitHub API format
|
||||
timeline_data = [
|
||||
{"event": "commented", "id": 100, "body": "first comment"},
|
||||
{"event": "committed", "sha": "fb21ce932ded6670c918804a0d9151b773770a7c"},
|
||||
{"event": "commented", "id": 200, "body": "target comment"},
|
||||
{"event": "commented", "id": 300, "body": "after target"},
|
||||
]
|
||||
mock_gh_fetch_json_list.return_value = timeline_data
|
||||
|
||||
# Test iteration stops at target comment
|
||||
events = list(iter_issue_timeline_until_comment("pytorch", "pytorch", 123, 200))
|
||||
self.assertEqual(len(events), 3) # Should stop at target comment
|
||||
self.assertEqual(events[0]["event"], "commented")
|
||||
self.assertEqual(events[0]["id"], 100)
|
||||
self.assertEqual(events[1]["event"], "committed")
|
||||
self.assertEqual(events[1]["sha"], "fb21ce932ded6670c918804a0d9151b773770a7c")
|
||||
self.assertEqual(events[2]["event"], "commented")
|
||||
self.assertEqual(events[2]["id"], 200)
|
||||
|
||||
@mock.patch("trymerge.gh_fetch_json_list")
|
||||
def test_iter_issue_timeline_until_comment_not_found(
|
||||
self, mock_gh_fetch_json_list: Any, *args: Any
|
||||
) -> None:
|
||||
"""Test timeline iteration when target comment is not found"""
|
||||
# Mock empty timeline
|
||||
mock_gh_fetch_json_list.return_value = []
|
||||
|
||||
events = list(iter_issue_timeline_until_comment("pytorch", "pytorch", 123, 999))
|
||||
self.assertEqual(len(events), 0)
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_commit_after_comment(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
"""Test get_commit_sha_at_comment returns correct SHA after comment"""
|
||||
mock_iter_timeline.return_value = [
|
||||
{"event": "committed", "sha": "commit1"},
|
||||
{"event": "committed", "sha": "commit2"},
|
||||
{"event": "commented", "id": 100},
|
||||
{"event": "head_ref_force_pushed", "after": {"sha": "commit3"}},
|
||||
]
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(100)
|
||||
self.assertEqual(sha, "commit2")
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_force_push_before_comment(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
mock_iter_timeline.return_value = [
|
||||
{"event": "committed", "sha": "commit1"},
|
||||
{"event": "committed", "sha": "commit2"},
|
||||
{"event": "head_ref_force_pushed", "commit_id": "commit3"},
|
||||
{"event": "commented", "id": 100},
|
||||
]
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(100)
|
||||
self.assertEqual(sha, "commit3")
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_force_push_before_comment_legacy_mode(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
mock_iter_timeline.return_value = [
|
||||
{"event": "committed", "sha": "commit1"},
|
||||
{"event": "committed", "sha": "commit2"},
|
||||
{"event": "head_ref_force_pushed", "after": {"sha": "commit3"}},
|
||||
{"event": "commented", "id": 100},
|
||||
]
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(100)
|
||||
self.assertEqual(sha, "commit3")
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_multiple_comments(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
mock_iter_timeline.return_value = [
|
||||
{"event": "committed", "sha": "commit1"},
|
||||
{"event": "commented", "id": 100},
|
||||
{"event": "committed", "sha": "commit2"},
|
||||
{"event": "commented", "id": 200},
|
||||
{"event": "head_ref_force_pushed", "after": {"sha": "commit3"}},
|
||||
{"event": "commented", "id": 300},
|
||||
]
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(200)
|
||||
self.assertEqual(sha, "commit2")
|
||||
sha = pr.get_commit_sha_at_comment(300)
|
||||
self.assertEqual(sha, "commit3")
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_no_events(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
mock_iter_timeline.return_value = [
|
||||
{"event": "commented", "id": 100},
|
||||
{"event": "labeled", "label": {"name": "test"}},
|
||||
]
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(100)
|
||||
self.assertIsNone(sha)
|
||||
|
||||
@mock.patch("trymerge.iter_issue_timeline_until_comment")
|
||||
def test_get_commit_sha_at_comment_exception(
|
||||
self, mock_iter_timeline: Any, *args: Any
|
||||
) -> None:
|
||||
mock_iter_timeline.side_effect = Exception("API error")
|
||||
pr = GitHubPR("pytorch", "pytorch", 77700)
|
||||
sha = pr.get_commit_sha_at_comment(100)
|
||||
self.assertIsNone(sha)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
197
.github/scripts/trymerge.py
vendored
197
.github/scripts/trymerge.py
vendored
@ -450,63 +450,6 @@ HAS_NO_CONNECTED_DIFF_TITLE = (
|
||||
IGNORABLE_FAILED_CHECKS_THESHOLD = 10
|
||||
|
||||
|
||||
def iter_issue_timeline_until_comment(
|
||||
org: str, repo: str, issue_number: int, target_comment_id: int, max_pages: int = 200
|
||||
) -> Any:
|
||||
"""
|
||||
Yield timeline entries in order until (and including) the entry whose id == target_comment_id
|
||||
for a 'commented' event. Stops once the target comment is encountered.
|
||||
"""
|
||||
page = 1
|
||||
|
||||
while page <= max_pages:
|
||||
url = (
|
||||
f"https://api.github.com/repos/{org}/{repo}/issues/{issue_number}/timeline"
|
||||
)
|
||||
params = {"per_page": 100, "page": page}
|
||||
|
||||
batch = gh_fetch_json_list(url, params)
|
||||
|
||||
if not batch:
|
||||
return
|
||||
for ev in batch:
|
||||
# The target is the issue comment row with event == "commented" and id == issue_comment_id
|
||||
if ev.get("event") == "commented" and ev.get("id") == target_comment_id:
|
||||
yield ev # nothing in the timeline after this matters, so stop early
|
||||
return
|
||||
yield ev
|
||||
if len(batch) < 100:
|
||||
return
|
||||
page += 1
|
||||
|
||||
# If we got here without finding the comment, then we either hit a bug or some github PR
|
||||
# has a _really_ long timeline.
|
||||
# The max # of pages found on any pytorch/pytorch PR at the time of this change was 41
|
||||
raise RuntimeError(
|
||||
f"Could not find a merge commit in the first {max_pages} pages of the timeline at url {url}."
|
||||
f"This is most likely a bug, please report it to the @pytorch/pytorch-dev-infra team."
|
||||
)
|
||||
|
||||
|
||||
def sha_from_committed_event(ev: dict[str, Any]) -> Optional[str]:
|
||||
"""Extract SHA from committed event in timeline"""
|
||||
return ev.get("sha")
|
||||
|
||||
|
||||
def sha_from_force_push_after(ev: dict[str, Any]) -> Optional[str]:
|
||||
"""Extract SHA from force push event in timeline"""
|
||||
# The current GitHub API format
|
||||
commit_id = ev.get("commit_id")
|
||||
if commit_id:
|
||||
return str(commit_id)
|
||||
|
||||
# Legacy format
|
||||
after = ev.get("after") or ev.get("after_commit") or {}
|
||||
if isinstance(after, dict):
|
||||
return after.get("sha") or after.get("oid")
|
||||
return ev.get("after_sha") or ev.get("head_sha")
|
||||
|
||||
|
||||
def gh_get_pr_info(org: str, proj: str, pr_no: int) -> Any:
|
||||
rc = gh_graphql(GH_GET_PR_INFO_QUERY, name=proj, owner=org, number=pr_no)
|
||||
return rc["data"]["repository"]["pullRequest"]
|
||||
@ -794,24 +737,16 @@ class GitHubPR:
|
||||
def last_commit(self) -> Any:
|
||||
return self.info["commits"]["nodes"][-1]["commit"]
|
||||
|
||||
def last_commit_sha(self, default: Optional[str] = None) -> str:
|
||||
# for commits, the oid is the sha
|
||||
|
||||
if default is None:
|
||||
return str(self.last_commit()["oid"])
|
||||
|
||||
return str(self.last_commit().get("oid", default))
|
||||
|
||||
def get_merge_base(self) -> str:
|
||||
if self.merge_base:
|
||||
return self.merge_base
|
||||
|
||||
last_commit_sha = self.last_commit_sha()
|
||||
last_commit_oid = self.last_commit()["oid"]
|
||||
# NB: We could use self.base_ref() here for regular PR, however, that doesn't
|
||||
# work for ghstack where the base is the custom branch, i.e. gh/USER/ID/base,
|
||||
# so let's just use main instead
|
||||
self.merge_base = gh_fetch_merge_base(
|
||||
self.org, self.project, last_commit_sha, self.default_branch()
|
||||
self.org, self.project, last_commit_oid, self.default_branch()
|
||||
)
|
||||
|
||||
# Fallback to baseRefOid if the API call fails, i.e. rate limit. Note that baseRefOid
|
||||
@ -900,44 +835,6 @@ class GitHubPR:
|
||||
def get_commit_count(self) -> int:
|
||||
return int(self.info["commits_with_authors"]["totalCount"])
|
||||
|
||||
def get_commit_sha_at_comment(self, comment_id: int) -> Optional[str]:
|
||||
"""
|
||||
Get the PR head commit SHA that was present when a specific comment was posted.
|
||||
This ensures we only merge the state of the PR at the time the merge command was issued,
|
||||
not any subsequent commits that may have been pushed after.
|
||||
|
||||
Returns None if no head-changing events found before the comment or if the comment was not found.
|
||||
"""
|
||||
head = None
|
||||
|
||||
try:
|
||||
for event in iter_issue_timeline_until_comment(
|
||||
self.org, self.project, self.pr_num, comment_id
|
||||
):
|
||||
etype = event.get("event")
|
||||
if etype == "committed":
|
||||
sha = sha_from_committed_event(event)
|
||||
if sha:
|
||||
head = sha
|
||||
print(f"Timeline: Found commit event for SHA {sha}")
|
||||
elif etype == "head_ref_force_pushed":
|
||||
sha = sha_from_force_push_after(event)
|
||||
if sha:
|
||||
head = sha
|
||||
print(f"Timeline: Found force push event for SHA {sha}")
|
||||
elif etype == "commented":
|
||||
if event.get("id") == comment_id:
|
||||
print(f"Timeline: Found final comment with sha {sha}")
|
||||
return head
|
||||
except Exception as e:
|
||||
print(
|
||||
f"Warning: Failed to reconstruct timeline for comment {comment_id}: {e}"
|
||||
)
|
||||
return None
|
||||
|
||||
print(f"Did not find comment with id {comment_id} in the PR timeline")
|
||||
return None
|
||||
|
||||
def get_pr_creator_login(self) -> str:
|
||||
return cast(str, self.info["author"]["login"])
|
||||
|
||||
@ -1254,7 +1151,7 @@ class GitHubPR:
|
||||
*,
|
||||
skip_mandatory_checks: bool = False,
|
||||
dry_run: bool = False,
|
||||
comment_id: int,
|
||||
comment_id: Optional[int] = None,
|
||||
ignore_current_checks: Optional[list[str]] = None,
|
||||
) -> None:
|
||||
# Raises exception if matching rule is not found
|
||||
@ -1270,7 +1167,7 @@ class GitHubPR:
|
||||
skip_internal_checks=can_skip_internal_checks(self, comment_id),
|
||||
ignore_current_checks=ignore_current_checks,
|
||||
)
|
||||
additional_merged_prs = self.merge_changes_locally(
|
||||
additional_merged_prs = self.merge_changes(
|
||||
repo, skip_mandatory_checks, comment_id
|
||||
)
|
||||
|
||||
@ -1299,7 +1196,7 @@ class GitHubPR:
|
||||
broken_trunk_checks=ignorable_checks.get("BROKEN_TRUNK", []),
|
||||
flaky_checks=ignorable_checks.get("FLAKY", []),
|
||||
unstable_checks=ignorable_checks.get("UNSTABLE", []),
|
||||
last_commit_sha=self.last_commit_sha(default=""),
|
||||
last_commit_sha=self.last_commit().get("oid", ""),
|
||||
merge_base_sha=self.get_merge_base(),
|
||||
merge_commit_sha=merge_commit_sha,
|
||||
is_failed=False,
|
||||
@ -1320,7 +1217,7 @@ class GitHubPR:
|
||||
dry_run=dry_run,
|
||||
)
|
||||
|
||||
def merge_changes_locally(
|
||||
def merge_changes(
|
||||
self,
|
||||
repo: GitRepo,
|
||||
skip_mandatory_checks: bool = False,
|
||||
@ -1329,15 +1226,27 @@ class GitHubPR:
|
||||
skip_all_rule_checks: bool = False,
|
||||
) -> list["GitHubPR"]:
|
||||
"""
|
||||
:param skip_all_rule_checks: If true, skips all rule checks on ghstack PRs, useful for dry-running merge locally
|
||||
:param skip_all_rule_checks: If true, skips all rule checks, useful for dry-running merge locally
|
||||
"""
|
||||
branch_to_merge_into = self.default_branch() if branch is None else branch
|
||||
if repo.current_branch() != branch_to_merge_into:
|
||||
repo.checkout(branch_to_merge_into)
|
||||
if not self.is_ghstack_pr():
|
||||
msg = self.gen_commit_message()
|
||||
pr_branch_name = f"__pull-request-{self.pr_num}__init__"
|
||||
repo.fetch(self.last_commit()["oid"], pr_branch_name)
|
||||
repo._run_git("merge", "--squash", pr_branch_name)
|
||||
repo._run_git("commit", f'--author="{self.get_author()}"', "-m", msg)
|
||||
|
||||
# It's okay to skip the commit SHA check for ghstack PRs since
|
||||
# authoring requires write access to the repo.
|
||||
if self.is_ghstack_pr():
|
||||
# Did the PR change since we started the merge?
|
||||
pulled_sha = repo.show_ref(pr_branch_name)
|
||||
latest_pr_status = GitHubPR(self.org, self.project, self.pr_num)
|
||||
if pulled_sha != latest_pr_status.last_commit()["oid"]:
|
||||
raise RuntimeError(
|
||||
"PR has been updated since CI checks last passed. Please rerun the merge command."
|
||||
)
|
||||
return []
|
||||
else:
|
||||
return self.merge_ghstack_into(
|
||||
repo,
|
||||
skip_mandatory_checks,
|
||||
@ -1345,48 +1254,6 @@ class GitHubPR:
|
||||
skip_all_rule_checks=skip_all_rule_checks,
|
||||
)
|
||||
|
||||
msg = self.gen_commit_message()
|
||||
pr_branch_name = f"__pull-request-{self.pr_num}__init__"
|
||||
|
||||
# Determine which commit SHA to merge
|
||||
commit_to_merge = None
|
||||
if not comment_id:
|
||||
raise ValueError("Must provide --comment-id when merging regular PRs")
|
||||
|
||||
# Get the commit SHA that was present when the comment was made
|
||||
commit_to_merge = self.get_commit_sha_at_comment(comment_id)
|
||||
if not commit_to_merge:
|
||||
raise RuntimeError(
|
||||
f"Could not find commit that was pushed before comment {comment_id}"
|
||||
)
|
||||
|
||||
# Validate that this commit is the latest commit on the PR
|
||||
latest_commit = self.last_commit_sha()
|
||||
if commit_to_merge != latest_commit:
|
||||
raise RuntimeError(
|
||||
f"Commit {commit_to_merge} was HEAD when comment {comment_id} was posted "
|
||||
f"but now the latest commit on the PR is {latest_commit}. "
|
||||
f"Please re-issue the merge command to merge the latest commit."
|
||||
)
|
||||
|
||||
print(f"Merging commit {commit_to_merge} locally")
|
||||
|
||||
repo.fetch(commit_to_merge, pr_branch_name)
|
||||
repo._run_git("merge", "--squash", pr_branch_name)
|
||||
repo._run_git("commit", f'--author="{self.get_author()}"', "-m", msg)
|
||||
|
||||
# Did the PR change since we started the merge?
|
||||
pulled_sha = repo.show_ref(pr_branch_name)
|
||||
latest_pr_status = GitHubPR(self.org, self.project, self.pr_num)
|
||||
if (
|
||||
pulled_sha != latest_pr_status.last_commit_sha()
|
||||
or pulled_sha != commit_to_merge
|
||||
):
|
||||
raise RuntimeError(
|
||||
"PR has been updated since CI checks last passed. Please rerun the merge command."
|
||||
)
|
||||
return []
|
||||
|
||||
|
||||
class MergeRuleFailedError(RuntimeError):
|
||||
def __init__(self, message: str, rule: Optional["MergeRule"] = None) -> None:
|
||||
@ -1591,7 +1458,7 @@ def find_matching_merge_rule(
|
||||
pending_checks = []
|
||||
failed_checks = []
|
||||
|
||||
hud_link = f"https://hud.pytorch.org/{pr.org}/{pr.project}/commit/{pr.last_commit_sha()}"
|
||||
hud_link = f"https://hud.pytorch.org/{pr.org}/{pr.project}/commit/{pr.last_commit()['oid']}"
|
||||
if len(failed_checks) > 0:
|
||||
if reject_reason_score < 30000:
|
||||
reject_reason_score = 30000
|
||||
@ -2289,14 +2156,14 @@ def categorize_checks(
|
||||
def merge(
|
||||
pr: GitHubPR,
|
||||
repo: GitRepo,
|
||||
comment_id: int,
|
||||
dry_run: bool = False,
|
||||
skip_mandatory_checks: bool = False,
|
||||
comment_id: Optional[int] = None,
|
||||
timeout_minutes: int = 400,
|
||||
stale_pr_days: int = 3,
|
||||
ignore_current: bool = False,
|
||||
) -> None:
|
||||
initial_commit_sha = pr.last_commit_sha()
|
||||
initial_commit_sha = pr.last_commit()["oid"]
|
||||
pr_link = f"https://github.com/{pr.org}/{pr.project}/pull/{pr.pr_num}"
|
||||
print(f"Attempting merge of {initial_commit_sha} ({pr_link})")
|
||||
|
||||
@ -2367,7 +2234,7 @@ def merge(
|
||||
f"Attempting merge of https://github.com/{pr.org}/{pr.project}/pull/{pr.pr_num} ({elapsed_time / 60} minutes elapsed)"
|
||||
)
|
||||
pr = GitHubPR(pr.org, pr.project, pr.pr_num)
|
||||
if initial_commit_sha != pr.last_commit_sha():
|
||||
if initial_commit_sha != pr.last_commit()["oid"]:
|
||||
raise RuntimeError(
|
||||
"New commits were pushed while merging. Please rerun the merge command."
|
||||
)
|
||||
@ -2534,7 +2401,7 @@ def main() -> None:
|
||||
if args.check_mergeability:
|
||||
if pr.is_ghstack_pr():
|
||||
get_ghstack_prs(repo, pr) # raises error if out of sync
|
||||
pr.merge_changes_locally(
|
||||
pr.merge_changes(
|
||||
repo,
|
||||
skip_mandatory_checks=True,
|
||||
skip_all_rule_checks=True,
|
||||
@ -2549,18 +2416,12 @@ def main() -> None:
|
||||
gh_post_pr_comment(org, project, args.pr_num, message, dry_run=args.dry_run)
|
||||
return
|
||||
try:
|
||||
# Ensure comment id is set, else fail
|
||||
if not args.comment_id:
|
||||
raise ValueError(
|
||||
"Comment ID is required for merging PRs, please provide it using --comment-id"
|
||||
)
|
||||
|
||||
merge(
|
||||
pr,
|
||||
repo,
|
||||
comment_id=args.comment_id,
|
||||
dry_run=args.dry_run,
|
||||
skip_mandatory_checks=args.force,
|
||||
comment_id=args.comment_id,
|
||||
ignore_current=args.ignore_current,
|
||||
)
|
||||
except Exception as e:
|
||||
@ -2582,7 +2443,7 @@ def main() -> None:
|
||||
broken_trunk_checks=[],
|
||||
flaky_checks=[],
|
||||
unstable_checks=[],
|
||||
last_commit_sha=pr.last_commit_sha(default=""),
|
||||
last_commit_sha=pr.last_commit().get("oid", ""),
|
||||
merge_base_sha=pr.get_merge_base(),
|
||||
is_failed=True,
|
||||
skip_mandatory_checks=args.force,
|
||||
|
3
.github/scripts/windows/build_magma.bat
vendored
3
.github/scripts/windows/build_magma.bat
vendored
@ -35,9 +35,6 @@ cd magma
|
||||
mkdir build && cd build
|
||||
|
||||
set GPU_TARGET=All
|
||||
if "%CUVER_NODOT%" == "130" (
|
||||
set CUDA_ARCH_LIST=-gencode=arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
|
||||
)
|
||||
if "%CUVER_NODOT%" == "129" (
|
||||
set CUDA_ARCH_LIST=-gencode=arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90 -gencode arch=compute_100,code=sm_100 -gencode arch=compute_120,code=sm_120
|
||||
)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user