Compare commits

..

4 Commits

Author SHA1 Message Date
40c83dfe91 cherry pick PR 160967 Fix bucketing introducing cycles 2025-08-19 13:45:59 -07:00
359ade0e92 [NOT_FOR_LAND] Ruisis real benchmark estimations
ghstack-source-id: 10255cfb7ac1159d7d1294154a3570cb4ac22b4c
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160991
2025-08-19 13:45:59 -07:00
83505666a4 [inductor] Unsafe reordering collectives; Limit by runtime estimations
and configurated num of gemms.

ghstack-source-id: 3d6059df090f33061f6b69a4a168dffd4c9846e1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160527
2025-08-19 13:45:59 -07:00
324ba7e254 [inductor] Estimate peak memory allocfree and applying to reordering
collectives

ghstack-source-id: d0eefb95966bb2eb2188b2c6e48dbcb8acea3247
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160113
2025-08-19 13:45:59 -07:00
2468 changed files with 64801 additions and 132396 deletions

View File

@ -1,15 +0,0 @@
version: 1
paths:
include:
- "**/*.py"
exclude:
- ".*"
- ".*/**"
- "**/.*/**"
- "**/.*"
- "**/_*/**"
- "**/_*.py"
- "**/test/**"
- "**/benchmarks/**"
- "**/test_*.py"
- "**/*_test.py"

View File

@ -3,20 +3,8 @@ set -eux -o pipefail
GPU_ARCH_VERSION=${GPU_ARCH_VERSION:-}
# Set CUDA architecture lists to match x86 build_cuda.sh
if [[ "$GPU_ARCH_VERSION" == *"12.6"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0"
elif [[ "$GPU_ARCH_VERSION" == *"12.8"* ]]; then
if [[ "$GPU_ARCH_VERSION" == *"12.9"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;12.0"
elif [[ "$GPU_ARCH_VERSION" == *"13.0"* ]]; then
export TORCH_CUDA_ARCH_LIST="8.0;9.0;10.0;11.0;12.0+PTX"
fi
# Compress the fatbin with -compress-mode=size for CUDA 13
if [[ "$DESIRED_CUDA" == *"13"* ]]; then
export TORCH_NVCC_FLAGS="-compress-mode=size"
# Bundle ptxas into the cu13 wheel, see https://github.com/pytorch/pytorch/issues/163801
export BUILD_BUNDLE_PTXAS=1
fi
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
@ -30,22 +18,14 @@ cd /
# on the mounted pytorch repo
git config --global --add safe.directory /pytorch
pip install -r /pytorch/requirements.txt
pip install auditwheel==6.2.0 wheel
pip install auditwheel==6.2.0
if [ "$DESIRED_CUDA" = "cpu" ]; then
echo "BASE_CUDA_VERSION is not set. Building cpu wheel."
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn
else
echo "BASE_CUDA_VERSION is set to: $DESIRED_CUDA"
export USE_SYSTEM_NCCL=1
# Check if we should use NVIDIA libs from PyPI (similar to x86 build_cuda.sh logic)
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling CUDA libraries with wheel for aarch64."
else
echo "Using nvidia libs from pypi for aarch64."
echo "Updated PYTORCH_EXTRA_INSTALL_REQUIREMENTS for aarch64: $PYTORCH_EXTRA_INSTALL_REQUIREMENTS"
export USE_NVIDIA_PYPI_LIBS=1
fi
python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
#USE_PRIORITIZED_TEXT_FOR_LD for enable linker script optimization https://github.com/pytorch/pytorch/pull/121975/files
USE_PRIORITIZED_TEXT_FOR_LD=1 python /pytorch/.ci/aarch64_linux/aarch64_wheel_ci_build.py --enable-mkldnn --enable-cuda
fi

View File

@ -13,6 +13,49 @@ def list_dir(path: str) -> list[str]:
return check_output(["ls", "-1", path]).decode().split("\n")
def build_ArmComputeLibrary() -> None:
"""
Using ArmComputeLibrary for aarch64 PyTorch
"""
print("Building Arm Compute Library")
acl_build_flags = [
"debug=0",
"neon=1",
"opencl=0",
"os=linux",
"openmp=1",
"cppthreads=0",
"arch=armv8a",
"multi_isa=1",
"fixed_format_kernels=1",
"build=native",
]
acl_install_dir = "/acl"
acl_checkout_dir = os.getenv("ACL_SOURCE_DIR", "ComputeLibrary")
if os.path.isdir(acl_install_dir):
shutil.rmtree(acl_install_dir)
if not os.path.isdir(acl_checkout_dir) or not len(os.listdir(acl_checkout_dir)):
check_call(
[
"git",
"clone",
"https://github.com/ARM-software/ComputeLibrary.git",
"-b",
"v25.02",
"--depth",
"1",
"--shallow-submodules",
]
)
check_call(
["scons", "Werror=1", f"-j{os.cpu_count()}"] + acl_build_flags,
cwd=acl_checkout_dir,
)
for d in ["arm_compute", "include", "utils", "support", "src", "build"]:
shutil.copytree(f"{acl_checkout_dir}/{d}", f"{acl_install_dir}/{d}")
def replace_tag(filename) -> None:
with open(filename) as f:
lines = f.readlines()
@ -26,136 +69,29 @@ def replace_tag(filename) -> None:
f.writelines(lines)
def patch_library_rpath(
folder: str,
lib_name: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Apply patchelf to set RPATH for a library in torch/lib"""
lib_path = f"{folder}/tmp/torch/lib/{lib_name}"
if use_nvidia_pypi_libs:
# For PyPI NVIDIA libraries, construct CUDA RPATH
cuda_rpaths = [
"$ORIGIN/../../nvidia/cudnn/lib",
"$ORIGIN/../../nvidia/nvshmem/lib",
"$ORIGIN/../../nvidia/nccl/lib",
"$ORIGIN/../../nvidia/cusparselt/lib",
]
if "130" in desired_cuda:
cuda_rpaths.append("$ORIGIN/../../nvidia/cu13/lib")
else:
cuda_rpaths.extend(
[
"$ORIGIN/../../nvidia/cublas/lib",
"$ORIGIN/../../nvidia/cuda_cupti/lib",
"$ORIGIN/../../nvidia/cuda_nvrtc/lib",
"$ORIGIN/../../nvidia/cuda_runtime/lib",
"$ORIGIN/../../nvidia/cufft/lib",
"$ORIGIN/../../nvidia/curand/lib",
"$ORIGIN/../../nvidia/cusolver/lib",
"$ORIGIN/../../nvidia/cusparse/lib",
"$ORIGIN/../../nvidia/nvtx/lib",
"$ORIGIN/../../nvidia/cufile/lib",
]
)
# Add $ORIGIN for local torch libs
rpath = ":".join(cuda_rpaths) + ":$ORIGIN"
else:
# For bundled libraries, just use $ORIGIN
rpath = "$ORIGIN"
if os.path.exists(lib_path):
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '{rpath}' --force-rpath {lib_name}"
)
def copy_and_patch_library(
src_path: str,
folder: str,
use_nvidia_pypi_libs: bool = False,
desired_cuda: str = "",
) -> None:
"""Copy a library to torch/lib and patch its RPATH"""
if os.path.exists(src_path):
lib_name = os.path.basename(src_path)
shutil.copy2(src_path, f"{folder}/tmp/torch/lib/{lib_name}")
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"""
Package the cuda wheel libraries
"""
folder = os.path.dirname(wheel_path)
wheelname = os.path.basename(wheel_path)
os.mkdir(f"{folder}/tmp")
os.system(f"unzip {wheel_path} -d {folder}/tmp")
# Delete original wheel since it will be repackaged
os.system(f"rm {wheel_path}")
# Check if we should use PyPI NVIDIA libraries or bundle system libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Using nvidia libs from pypi - skipping CUDA library bundling")
# For PyPI approach, we don't bundle CUDA libraries - they come from PyPI packages
# We only need to bundle non-NVIDIA libraries
minimal_libs_to_copy = [
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
# Copy minimal libraries to unzipped_folder/torch/lib
for lib_path in minimal_libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
# Patch torch libraries used for searching libraries
torch_libs_to_patch = [
"libtorch.so",
"libtorch_cpu.so",
"libtorch_cuda.so",
"libtorch_cuda_linalg.so",
"libtorch_global_deps.so",
"libtorch_python.so",
"libtorch_nvshmem.so",
"libc10.so",
"libc10_cuda.so",
"libcaffe2_nvrtc.so",
"libshm.so",
]
for lib_name in torch_libs_to_patch:
patch_library_rpath(folder, lib_name, use_nvidia_pypi_libs, desired_cuda)
else:
print("Bundling CUDA libraries with wheel")
# Original logic for bundling system CUDA libraries
# Common libraries for all CUDA versions
common_libs = [
# Non-NVIDIA system libraries
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
# Common CUDA libraries (same for all versions)
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
libs_to_copy = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so",
"/usr/local/cuda/lib64/libcudnn.so.9",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusparse.so.12",
"/usr/local/cuda/lib64/libcusparseLt.so.0",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libcurand.so.10",
"/usr/local/cuda/lib64/libnccl.so.2",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
"/usr/local/cuda/lib64/libnvshmem_host.so.3",
"/usr/local/cuda/lib64/libcudnn_adv.so.9",
"/usr/local/cuda/lib64/libcudnn_cnn.so.9",
@ -164,48 +100,31 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9",
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9",
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9",
"/lib64/libgomp.so.1",
"/usr/lib64/libgfortran.so.5",
"/acl/build/libarm_compute.so",
"/acl/build/libarm_compute_graph.so",
"/usr/local/lib/libnvpl_lapack_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_blas_lp64_gomp.so.0",
"/usr/local/lib/libnvpl_lapack_core.so.0",
"/usr/local/lib/libnvpl_blas_core.so.0",
]
if "129" in desired_cuda:
libs_to_copy += [
"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.9",
"/usr/local/cuda/lib64/libcufile.so.0",
"/usr/local/cuda/lib64/libcufile_rdma.so.1",
"/usr/local/cuda/lib64/libcusparse.so.12",
]
# CUDA version-specific libraries
if "13" in desired_cuda:
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13",
"/usr/local/cuda/lib64/libcublas.so.13",
"/usr/local/cuda/lib64/libcublasLt.so.13",
"/usr/local/cuda/lib64/libcudart.so.13",
"/usr/local/cuda/lib64/libcufft.so.12",
"/usr/local/cuda/lib64/libcusolver.so.12",
"/usr/local/cuda/lib64/libnvJitLink.so.13",
"/usr/local/cuda/lib64/libnvrtc.so.13",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.13.{minor_version}",
]
elif "12" in desired_cuda:
# Get the last character for libnvrtc-builtins version (e.g., "129" -> "9")
minor_version = desired_cuda[-1]
version_specific_libs = [
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12",
"/usr/local/cuda/lib64/libcublas.so.12",
"/usr/local/cuda/lib64/libcublasLt.so.12",
"/usr/local/cuda/lib64/libcudart.so.12",
"/usr/local/cuda/lib64/libcufft.so.11",
"/usr/local/cuda/lib64/libcusolver.so.11",
"/usr/local/cuda/lib64/libnvJitLink.so.12",
"/usr/local/cuda/lib64/libnvrtc.so.12",
f"/usr/local/cuda/lib64/libnvrtc-builtins.so.12.{minor_version}",
]
else:
raise ValueError(f"Unsupported CUDA version: {desired_cuda}.")
# Combine all libraries
libs_to_copy = common_libs + version_specific_libs
# Copy libraries to unzipped_folder/torch/lib
# Copy libraries to unzipped_folder/a/lib
for lib_path in libs_to_copy:
copy_and_patch_library(lib_path, folder, use_nvidia_pypi_libs, desired_cuda)
lib_name = os.path.basename(lib_path)
shutil.copy2(lib_path, f"{folder}/tmp/torch/lib/{lib_name}")
os.system(
f"cd {folder}/tmp/torch/lib/; "
f"patchelf --set-rpath '$ORIGIN' --force-rpath {folder}/tmp/torch/lib/{lib_name}"
)
# Make sure the wheel is tagged with manylinux_2_28
for f in os.scandir(f"{folder}/tmp/"):
@ -213,8 +132,14 @@ def package_cuda_wheel(wheel_path, desired_cuda) -> None:
replace_tag(f"{f.path}/WHEEL")
break
os.system(f"wheel pack {folder}/tmp/ -d {folder}")
os.system(f"rm -rf {folder}/tmp/")
os.mkdir(f"{folder}/cuda_wheel")
os.system(f"cd {folder}/tmp/; zip -r {folder}/cuda_wheel/{wheelname} *")
shutil.move(
f"{folder}/cuda_wheel/{wheelname}",
f"{folder}/{wheelname}",
copy_function=shutil.copy2,
)
os.system(f"rm -rf {folder}/tmp/ {folder}/cuda_wheel/")
def complete_wheel(folder: str) -> str:
@ -237,7 +162,14 @@ def complete_wheel(folder: str) -> str:
f"/{folder}/dist/{repaired_wheel_name}",
)
else:
repaired_wheel_name = list_dir(f"/{folder}/dist")[0]
repaired_wheel_name = wheel_name.replace(
"linux_aarch64", "manylinux_2_28_aarch64"
)
print(f"Renaming {wheel_name} wheel to {repaired_wheel_name}")
os.rename(
f"/{folder}/dist/{wheel_name}",
f"/{folder}/dist/{repaired_wheel_name}",
)
print(f"Copying {repaired_wheel_name} to artifacts")
shutil.copy2(
@ -274,21 +206,11 @@ if __name__ == "__main__":
).decode()
print("Building PyTorch wheel")
build_vars = ""
build_vars = "CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000 "
# MAX_JOB=5 is not required for CPU backend (see commit 465d98b)
if enable_cuda:
build_vars += "MAX_JOBS=5 "
# Handle PyPI NVIDIA libraries vs bundled libraries
use_nvidia_pypi_libs = os.getenv("USE_NVIDIA_PYPI_LIBS", "0") == "1"
if use_nvidia_pypi_libs:
print("Configuring build for PyPI NVIDIA libraries")
# Configure for dynamic linking (matching x86 logic)
build_vars += "ATEN_STATIC_CUDA=0 USE_CUDA_STATIC_LINK=0 USE_CUPTI_SO=1 "
else:
print("Configuring build for bundled NVIDIA libraries")
# Keep existing static linking approach - already configured above
override_package_version = os.getenv("OVERRIDE_PACKAGE_VERSION")
desired_cuda = os.getenv("DESIRED_CUDA")
if override_package_version is not None:
@ -313,17 +235,23 @@ if __name__ == "__main__":
build_vars += f"BUILD_TEST=0 PYTORCH_BUILD_VERSION={branch[1 : branch.find('-')]} PYTORCH_BUILD_NUMBER=1 "
if enable_mkldnn:
build_ArmComputeLibrary()
print("build pytorch with mkldnn+acl backend")
build_vars += "USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
build_vars += "ACL_ROOT_DIR=/acl "
build_vars += (
"USE_MKLDNN=ON USE_MKLDNN_ACL=ON "
"ACL_ROOT_DIR=/acl "
"LD_LIBRARY_PATH=/pytorch/build/lib:/acl/build:$LD_LIBRARY_PATH "
"ACL_INCLUDE_DIR=/acl/build "
"ACL_LIBRARY=/acl/build "
)
if enable_cuda:
build_vars += "BLAS=NVPL "
else:
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/opt/OpenBLAS "
build_vars += "BLAS=OpenBLAS OpenBLAS_HOME=/OpenBLAS "
else:
print("build pytorch without mkldnn backend")
os.system(f"cd /pytorch; {build_vars} python3 -m build --wheel --no-isolation")
os.system(f"cd /pytorch; {build_vars} python3 setup.py bdist_wheel")
if enable_cuda:
print("Updating Cuda Dependency")
filename = os.listdir("/pytorch/dist/")

View File

@ -241,7 +241,7 @@ def wait_for_connection(addr, port, timeout=15, attempt_cnt=5):
try:
with socket.create_connection((addr, port), timeout=timeout):
return
except (ConnectionRefusedError, TimeoutError): # noqa: PERF203
except (ConnectionRefusedError, socket.timeout): # noqa: PERF203
if i == attempt_cnt - 1:
raise
time.sleep(timeout)
@ -299,6 +299,40 @@ def install_condaforge_python(host: RemoteHost, python_version="3.8") -> None:
)
def build_OpenBLAS(host: RemoteHost, git_clone_flags: str = "") -> None:
print("Building OpenBLAS")
host.run_cmd(
f"git clone https://github.com/xianyi/OpenBLAS -b v0.3.28 {git_clone_flags}"
)
make_flags = "NUM_THREADS=64 USE_OPENMP=1 NO_SHARED=1 DYNAMIC_ARCH=1 TARGET=ARMV8"
host.run_cmd(
f"pushd OpenBLAS && make {make_flags} -j8 && sudo make {make_flags} install && popd && rm -rf OpenBLAS"
)
def build_ArmComputeLibrary(host: RemoteHost, git_clone_flags: str = "") -> None:
print("Building Arm Compute Library")
acl_build_flags = " ".join(
[
"debug=0",
"neon=1",
"opencl=0",
"os=linux",
"openmp=1",
"cppthreads=0",
"arch=armv8a",
"multi_isa=1",
"fixed_format_kernels=1",
"build=native",
]
)
host.run_cmd(
f"git clone https://github.com/ARM-software/ComputeLibrary.git -b v25.02 {git_clone_flags}"
)
host.run_cmd(f"cd ComputeLibrary && scons Werror=1 -j8 {acl_build_flags}")
def embed_libgomp(host: RemoteHost, use_conda, wheel_name) -> None:
host.run_cmd("pip3 install auditwheel")
host.run_cmd(
@ -408,7 +442,7 @@ def build_torchvision(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd vision && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd vision && {build_vars} python3 setup.py bdist_wheel")
vision_wheel_name = host.list_dir("vision/dist")[0]
embed_libgomp(host, use_conda, os.path.join("vision", "dist", vision_wheel_name))
@ -463,7 +497,7 @@ def build_torchdata(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd data && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd data && {build_vars} python3 setup.py bdist_wheel")
wheel_name = host.list_dir("data/dist")[0]
embed_libgomp(host, use_conda, os.path.join("data", "dist", wheel_name))
@ -519,7 +553,7 @@ def build_torchtext(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
host.run_cmd(f"cd text && {build_vars} python3 -m build --wheel --no-isolation")
host.run_cmd(f"cd text && {build_vars} python3 setup.py bdist_wheel")
wheel_name = host.list_dir("text/dist")[0]
embed_libgomp(host, use_conda, os.path.join("text", "dist", wheel_name))
@ -580,7 +614,7 @@ def build_torchaudio(
host.run_cmd(
f"cd audio && export FFMPEG_ROOT=$(pwd)/third_party/ffmpeg && export USE_FFMPEG=1 \
&& ./packaging/ffmpeg/build.sh \
&& {build_vars} python3 -m build --wheel --no-isolation"
&& {build_vars} python3 setup.py bdist_wheel"
)
wheel_name = host.list_dir("audio/dist")[0]
@ -666,6 +700,7 @@ def start_build(
configure_system(
host, compiler=compiler, use_conda=use_conda, python_version=python_version
)
build_OpenBLAS(host, git_clone_flags)
if host.using_docker():
print("Move libgfortant.a into a standard location")
@ -688,12 +723,10 @@ def start_build(
f"git clone --recurse-submodules -b {branch} https://github.com/pytorch/pytorch {git_clone_flags}"
)
host.run_cmd("pytorch/.ci/docker/common/install_openblas.sh")
print("Building PyTorch wheel")
build_opts = ""
if pytorch_build_number is not None:
build_opts += f" -C--build-option=--build-number={pytorch_build_number}"
build_opts += f" --build-number {pytorch_build_number}"
# Breakpad build fails on aarch64
build_vars = "USE_BREAKPAD=0 "
if branch == "nightly":
@ -710,18 +743,15 @@ def start_build(
if host.using_docker():
build_vars += " CMAKE_SHARED_LINKER_FLAGS=-Wl,-z,max-page-size=0x10000"
if enable_mkldnn:
host.run_cmd("pytorch/.ci/docker/common/install_acl.sh")
build_ArmComputeLibrary(host, git_clone_flags)
print("build pytorch with mkldnn+acl backend")
build_vars += " USE_MKLDNN=ON USE_MKLDNN_ACL=ON"
build_vars += " BLAS=OpenBLAS"
build_vars += " OpenBLAS_HOME=/opt/OpenBLAS"
build_vars += " ACL_ROOT_DIR=/acl"
host.run_cmd(
f"cd $HOME/pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
f"cd $HOME/pytorch && export ACL_ROOT_DIR=$HOME/ComputeLibrary && {build_vars} python3 setup.py bdist_wheel{build_opts}"
)
print("Repair the wheel")
pytorch_wheel_name = host.list_dir("pytorch/dist")[0]
ld_library_path = "/acl/build:$HOME/pytorch/build/lib"
ld_library_path = "$HOME/acl/build:$HOME/pytorch/build/lib"
host.run_cmd(
f"export LD_LIBRARY_PATH={ld_library_path} && auditwheel repair $HOME/pytorch/dist/{pytorch_wheel_name}"
)
@ -733,7 +763,7 @@ def start_build(
else:
print("build pytorch without mkldnn backend")
host.run_cmd(
f"cd pytorch && {build_vars} python3 -m build --wheel --no-isolation{build_opts}"
f"cd pytorch && {build_vars} python3 setup.py bdist_wheel{build_opts}"
)
print("Deleting build folder")
@ -877,7 +907,7 @@ def terminate_instances(instance_type: str) -> None:
def parse_arguments():
from argparse import ArgumentParser
parser = ArgumentParser("Build and test AARCH64 wheels using EC2")
parser = ArgumentParser("Builid and test AARCH64 wheels using EC2")
parser.add_argument("--key-name", type=str)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--build-only", action="store_true")
@ -974,7 +1004,7 @@ if __name__ == "__main__":
install_condaforge_python(host, args.python_version)
sys.exit(0)
python_version = args.python_version if args.python_version is not None else "3.10"
python_version = args.python_version if args.python_version is not None else "3.9"
if args.use_torch_from_pypi:
configure_system(host, compiler=args.compiler, python_version=python_version)

View File

@ -69,8 +69,7 @@ RUN bash ./install_cuda.sh 13.0
ENV DESIRED_CUDA=13.0
FROM ${ROCM_IMAGE} as rocm
ARG PYTORCH_ROCM_ARCH
ENV PYTORCH_ROCM_ARCH ${PYTORCH_ROCM_ARCH}
ENV PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
ENV MKLROOT /opt/intel

View File

@ -36,12 +36,6 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
BASE_TARGET=rocm
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$ROCM_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
EXTRA_BUILD_ARGS="${EXTRA_BUILD_ARGS} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}"
;;
*)
echo "ERROR: Unknown docker tag ${DOCKER_TAG_PREFIX}"

View File

@ -81,11 +81,11 @@ elif [[ "$image" == *riscv* ]]; then
DOCKERFILE="ubuntu-cross-riscv/Dockerfile"
fi
_UCX_COMMIT=7836b165abdbe468a2f607e7254011c07d788152
_UCC_COMMIT=430e241bf5d38cbc73fc7a6b89155397232e3f96
_UCX_COMMIT=7bb2722ff2187a0cad557ae4a6afa090569f83fb
_UCC_COMMIT=20eae37090a4ce1b32bcce6144ccad0b49943e0b
if [[ "$image" == *rocm* ]]; then
_UCX_COMMIT=29831d319e6be55cb8c768ca61de335c934ca39e
_UCC_COMMIT=9f4b242cbbd8b1462cbc732eb29316cdfa124b77
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
fi
tag=$(echo $image | awk -F':' '{print $2}')
@ -114,19 +114,31 @@ case "$tag" in
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
;;
pytorch-linux-jammy-cuda13.0-cudnn9-py3-gcc11)
CUDA_VERSION=13.0.0
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3-gcc9-inductor-benchmarks)
pytorch-linux-jammy-cuda12.8-cudnn9-py3.12-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.10
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=9
VISION=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
TRITON=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.13-gcc9-inductor-benchmarks)
CUDA_VERSION=12.8.1
ANACONDA_PYTHON_VERSION=3.13
GCC_VERSION=9
VISION=yes
KATEX=yes
@ -161,8 +173,8 @@ case "$tag" in
VISION=yes
ONNX=yes
;;
pytorch-linux-jammy-py3.10-clang12)
ANACONDA_PYTHON_VERSION=3.10
pytorch-linux-jammy-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CLANG_VERSION=12
VISION=yes
TRITON=yes
@ -175,6 +187,20 @@ case "$tag" in
fi
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
@ -182,28 +208,25 @@ case "$tag" in
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-jammy-xpu-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10
pytorch-linux-jammy-xpu-2025.0-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.0
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-2025.1-py3)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.1
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-xpu-n-py3)
ANACONDA_PYTHON_VERSION=3.10
GCC_VERSION=11
VISION=yes
XPU_VERSION=2025.2
NINJA_VERSION=1.9.0
TRITON=yes
;;
pytorch-linux-jammy-py3-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.10
pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
KATEX=yes
@ -211,8 +234,8 @@ case "$tag" in
DOCS=yes
INDUCTOR_BENCHMARKS=yes
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12)
ANACONDA_PYTHON_VERSION=3.10
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-clang12)
ANACONDA_PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
CLANG_VERSION=12
VISION=yes
@ -223,8 +246,8 @@ case "$tag" in
CLANG_VERSION=18
VISION=yes
;;
pytorch-linux-jammy-py3.10-gcc11)
ANACONDA_PYTHON_VERSION=3.10
pytorch-linux-jammy-py3.9-gcc11)
ANACONDA_PYTHON_VERSION=3.9
GCC_VERSION=11
VISION=yes
KATEX=yes
@ -251,10 +274,13 @@ case "$tag" in
TRITON_CPU=yes
;;
pytorch-linux-jammy-linter)
PYTHON_VERSION=3.10
# TODO: Use 3.9 here because of this issue https://github.com/python/mypy/issues/13627.
# We will need to update mypy version eventually, but that's for another day. The task
# would be to upgrade mypy to 1.0.0 with Python 3.11
PYTHON_VERSION=3.9
;;
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-linter)
PYTHON_VERSION=3.10
pytorch-linux-jammy-cuda12.8-cudnn9-py3.9-linter)
PYTHON_VERSION=3.9
CUDA_VERSION=12.8.1
;;
pytorch-linux-jammy-aarch64-py3.10-gcc11)
@ -441,3 +467,12 @@ elif [ "$HAS_TRITON" = "yes" ]; then
echo "expecting triton to not be installed, but it is"
exit 1
fi
# Sanity check cmake version. Executorch reinstalls cmake and I'm not sure if
# they support 4.0.0 yet, so exclude them from this check.
CMAKE_VERSION=$(drun cmake --version)
if [[ "$EXECUTORCH" != *yes* && "$CMAKE_VERSION" != *4.* ]]; then
echo "CMake version is not 4.0.0:"
drun cmake --version
exit 1
fi

View File

@ -56,13 +56,9 @@ ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
RUN mkdir ci_commit_pins
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh common_utils.sh
RUN rm -r ci_commit_pins
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
RUN rm install_rocm_magma.sh

View File

@ -1 +1 @@
e0dda9059d082537cee36be6c5e4fe3b18c880c0
56392aa978594cc155fa8af48cd949f5b5f1823a

View File

@ -1,2 +1,2 @@
transformers==4.56.0
transformers==4.54.0
soxr==0.5.0

View File

@ -1 +1 @@
v2.28.3-1
v2.27.5-1

View File

@ -1 +1 @@
v2.28.3-1
v2.27.7-1

View File

@ -1 +0,0 @@
7fe50dc3da2069d6645d9deb8c017a876472a977

View File

@ -1 +1 @@
74a23feff57432129df84d8099e622773cf77925
e03a63be43e33596f7f0a43b0f530353785e4a59

View File

@ -1 +1 @@
1b0418a9a454b2b93ab8d71f40e59d2297157fae
0958dc9b2bb815e428f721f9da599dab0dc1c5d7

View File

@ -1 +1 @@
27664085f804afc83df26f740bb46c365854f2c4
f7888497a1eb9e98d4c07537f0d0bcfe180d1363

27
.ci/docker/common/install_acl.sh Executable file → Normal file
View File

@ -1,27 +1,16 @@
#!/bin/bash
# Script used only in CD pipeline
set -euo pipefail
set -eux
ACL_VERSION=${ACL_VERSION:-"v25.02"}
ACL_INSTALL_DIR="/acl"
readonly version=v25.02
readonly src_host=https://github.com/ARM-software
readonly src_repo=ComputeLibrary
# Clone ACL
git clone https://github.com/ARM-software/ComputeLibrary.git -b "${ACL_VERSION}" --depth 1 --shallow-submodules
[[ ! -d ${src_repo} ]] && git clone ${src_host}/${src_repo}.git
cd ${src_repo}
git checkout $version
ACL_CHECKOUT_DIR="ComputeLibrary"
# Build with scons
pushd $ACL_CHECKOUT_DIR
scons -j8 Werror=0 debug=0 neon=1 opencl=0 embed_kernels=0 \
os=linux arch=armv8a build=native multi_isa=1 \
fixed_format_kernels=1 openmp=1 cppthreads=0
popd
# Install ACL
sudo mkdir -p ${ACL_INSTALL_DIR}
for d in arm_compute include utils support src build
do
sudo cp -r ${ACL_CHECKOUT_DIR}/${d} ${ACL_INSTALL_DIR}/${d}
done
rm -rf $ACL_CHECKOUT_DIR

View File

@ -83,9 +83,9 @@ function build_cpython {
py_suffix=${py_ver::-1}
py_folder=$py_suffix
fi
# Update to rc2 due to https://github.com/python/cpython/commit/c72699086fe4
# Only b3 is available now
if [ "$py_suffix" == "3.14.0" ]; then
py_suffix="3.14.0rc2"
py_suffix="3.14.0b3"
fi
wget -q $PYTHON_DOWNLOAD_URL/$py_folder/Python-$py_suffix.tgz -O Python-$py_ver.tgz
do_cpython_build $py_ver Python-$py_suffix

View File

@ -10,7 +10,7 @@ else
arch_path='sbsa'
fi
NVSHMEM_VERSION=3.3.24
NVSHMEM_VERSION=3.3.20
function install_cuda {
version=$1
@ -65,7 +65,7 @@ function install_nvshmem {
# This pattern is a lie as it is not consistent across versions, for 3.3.9 it was cuda_ver-arch-nvshhem-ver
filename="libnvshmem-linux-${arch_path}-${nvshmem_version}_cuda${cuda_major_version}-archive"
suffix=".tar.xz"
url="https://developer.download.nvidia.com/compute/nvshmem/redist/libnvshmem/linux-${arch_path}/${filename}${suffix}"
url="https://developer.download.nvidia.com/compute/redist/nvshmem/${nvshmem_version}/builds/cuda${cuda_major_version}/txz/agnostic/${dl_arch}/${filename}${suffix}"
# download, unpack, install
wget -q "${url}"
@ -147,7 +147,8 @@ function install_128 {
}
function install_130 {
CUDNN_VERSION=9.13.0.50
CUDNN_VERSION=9.12.0.46
NVSHMEM_VERSION=3.3.20
echo "Installing CUDA 13.0 and cuDNN ${CUDNN_VERSION} and NVSHMEM and NCCL and cuSparseLt-0.7.1"
# install CUDA 13.0 in the same container
install_cuda 13.0.0 cuda_13.0.0_580.65.06_linux

View File

@ -42,27 +42,22 @@ install_pip_dependencies() {
# A workaround, ExecuTorch has moved to numpy 2.0 which is not compatible with the current
# numba and scipy version used in PyTorch CI
conda_run pip uninstall -y numba scipy
# Yaspin is needed for running CI test (get_benchmark_analysis_data.py)
pip_install yaspin==3.1.0
popd
}
setup_executorch() {
pushd executorch
export PYTHON_EXECUTABLE=python
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON -DEXECUTORCH_BUILD_TESTS=ON"
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
as_jenkins .ci/scripts/setup-linux.sh --build-tool cmake || true
popd
}
if [ $# -eq 0 ]; then
clone_executorch
install_buck2
install_conda_dependencies
install_pip_dependencies
pushd executorch
setup_executorch
popd
else
"$@"
fi

View File

@ -20,7 +20,7 @@ pip_install \
pip_install coloredlogs packaging
pip_install onnxruntime==1.22.1
pip_install onnxscript==0.4.0
pip_install onnxscript==0.3.1
# Cache the transformers model to be used later by ONNX tests. We need to run the transformers
# package to download the model. By default, the model is cached at ~/.cache/huggingface/hub/

12
.ci/docker/common/install_openblas.sh Executable file → Normal file
View File

@ -3,10 +3,8 @@
set -ex
OPENBLAS_VERSION=${OPENBLAS_VERSION:-"v0.3.30"}
# Clone OpenBLAS
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION}" --depth 1 --shallow-submodules
cd /
git clone https://github.com/OpenMathLib/OpenBLAS.git -b "${OPENBLAS_VERSION:-v0.3.30}" --depth 1 --shallow-submodules
OPENBLAS_CHECKOUT_DIR="OpenBLAS"
OPENBLAS_BUILD_FLAGS="
@ -19,7 +17,5 @@ CFLAGS=-O3
BUILD_BFLOAT16=1
"
make -j8 ${OPENBLAS_BUILD_FLAGS} -C $OPENBLAS_CHECKOUT_DIR
sudo make install -C $OPENBLAS_CHECKOUT_DIR
rm -rf $OPENBLAS_CHECKOUT_DIR
make -j8 ${OPENBLAS_BUILD_FLAGS} -C ${OPENBLAS_CHECKOUT_DIR}
make -j8 ${OPENBLAS_BUILD_FLAGS} install -C ${OPENBLAS_CHECKOUT_DIR}

View File

@ -2,11 +2,6 @@
set -ex
# for pip_install function
source "$(dirname "${BASH_SOURCE[0]}")/common_utils.sh"
ROCM_COMPOSABLE_KERNEL_VERSION="$(cat $(dirname $0)/../ci_commit_pins/rocm-composable-kernel.txt)"
ver() {
printf "%3d%03d%03d%03d" $(echo "$1" | tr '.' ' ');
}
@ -42,6 +37,12 @@ EOF
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list
@ -112,8 +113,6 @@ EOF
rm -rf HIP clr
fi
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
# Cleanup
apt-get autoclean && apt-get clean
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*
@ -177,8 +176,6 @@ install_centos() {
sqlite3 $kdb "PRAGMA journal_mode=off; PRAGMA VACUUM;"
done
pip_install "git+https://github.com/rocm/composable_kernel@$ROCM_COMPOSABLE_KERNEL_VERSION"
# Cleanup
yum clean all
rm -rf /var/cache/yum

View File

@ -12,8 +12,8 @@ function do_install() {
rocm_version_nodot=${rocm_version//./}
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
magma_archive="magma-rocm${rocm_version_nodot}-${MAGMA_VERSION}-1.tar.bz2"
rocm_dir="/opt/rocm"

View File

@ -57,7 +57,7 @@ if [ ! -f setup.py ]; then
cd python
fi
pip_install pybind11==3.0.1
pip_install pybind11==2.13.6
# TODO: remove patch setup.py once we have a proper fix for https://github.com/triton-lang/triton/issues/4527
as_jenkins sed -i -e 's/https:\/\/tritonlang.blob.core.windows.net\/llvm-builds/https:\/\/oaitriton.blob.core.windows.net\/public\/llvm-builds/g' setup.py
@ -66,15 +66,15 @@ if [ -n "${UBUNTU_VERSION}" ] && [ -n "${GCC_VERSION}" ] && [[ "${GCC_VERSION}"
# Triton needs at least gcc-9 to build
apt-get install -y g++-9
CXX=g++-9 conda_run python -m build --wheel --no-isolation
CXX=g++-9 conda_run python setup.py bdist_wheel
elif [ -n "${UBUNTU_VERSION}" ] && [ -n "${CLANG_VERSION}" ]; then
# Triton needs <filesystem> which surprisingly is not available with clang-9 toolchain
add-apt-repository -y ppa:ubuntu-toolchain-r/test
apt-get install -y g++-9
CXX=g++-9 conda_run python -m build --wheel --no-isolation
CXX=g++-9 conda_run python setup.py bdist_wheel
else
conda_run python -m build --wheel --no-isolation
conda_run python setup.py bdist_wheel
fi
# Copy the wheel to /opt for multi stage docker builds

View File

@ -44,12 +44,8 @@ function install_ucc() {
./autogen.sh
if [[ -n "$CUDA_VERSION" && $CUDA_VERSION == 13* ]]; then
NVCC_GENCODE="-gencode=arch=compute_86,code=compute_86"
else
# We only run distributed tests on Tesla M60 and A10G
NVCC_GENCODE="-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_86,code=compute_86"
fi
if [[ -n "$ROCM_VERSION" ]]; then
if [[ -n "$PYTORCH_ROCM_ARCH" ]]; then

View File

@ -65,15 +65,11 @@ function install_ubuntu() {
function install_rhel() {
. /etc/os-release
if [[ "${ID}" == "rhel" ]]; then
if [[ ! " 8.8 8.9 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
if [[ ! " 8.8 8.10 9.0 9.2 9.3 " =~ " ${VERSION_ID} " ]]; then
echo "RHEL version ${VERSION_ID} not supported"
exit
fi
elif [[ "${ID}" == "almalinux" ]]; then
# Workaround for almalinux8 which used by quay.io/pypa/manylinux_2_28_x86_64
VERSION_ID="8.8"
fi
dnf install -y 'dnf-command(config-manager)'
# To add the online network package repository for the GPU Driver
@ -150,11 +146,11 @@ if [[ "${XPU_DRIVER_TYPE,,}" == "lts" ]]; then
XPU_DRIVER_VERSION="/lts/2350"
fi
# Default use Intel® oneAPI Deep Learning Essentials 2025.1
if [[ "$XPU_VERSION" == "2025.2" ]]; then
XPU_PACKAGES="intel-deep-learning-essentials-2025.2"
else
# Default use Intel® oneAPI Deep Learning Essentials 2025.0
if [[ "$XPU_VERSION" == "2025.1" ]]; then
XPU_PACKAGES="intel-deep-learning-essentials-2025.1"
else
XPU_PACKAGES="intel-deep-learning-essentials-2025.0"
fi
# The installation depends on the base OS

View File

@ -69,19 +69,6 @@ RUN bash ./install_cuda.sh 12.9
RUN bash ./install_magma.sh 12.9
RUN ln -sf /usr/local/cuda-12.9 /usr/local/cuda
FROM cuda as cuda13.0
RUN bash ./install_cuda.sh 13.0
RUN bash ./install_magma.sh 13.0
RUN ln -sf /usr/local/cuda-13.0 /usr/local/cuda
# Install libibverbs for libtorch and copy to CUDA directory
RUN apt-get update -y && \
apt-get install -y libibverbs-dev librdmacm-dev && \
cp /usr/lib/x86_64-linux-gnu/libmlx5.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/librdmacm.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/libibverbs.so* /usr/local/cuda/lib64/ && \
cp /usr/lib/x86_64-linux-gnu/libnl* /usr/local/cuda/lib64/
FROM cpu as rocm
ARG ROCM_VERSION
ARG PYTORCH_ROCM_ARCH

View File

@ -40,16 +40,12 @@ case ${DOCKER_TAG_PREFIX} in
;;
rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
BASE_TARGET=rocm
GPU_IMAGE=rocm/dev-ubuntu-22.04:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg ROCM_VERSION=${GPU_ARCH_VERSION}"
;;
*)

View File

@ -175,6 +175,6 @@ ENV XPU_DRIVER_TYPE ROLLING
RUN python3 -m pip install --upgrade pip && \
python3 -mpip install cmake==3.28.4
ADD ./common/install_xpu.sh install_xpu.sh
ENV XPU_VERSION 2025.2
ENV XPU_VERSION 2025.1
RUN bash ./install_xpu.sh && rm install_xpu.sh
RUN pushd /opt/_internal && tar -xJf static-libs-for-embedding-only.tar.xz && popd

View File

@ -62,13 +62,6 @@ ARG OPENBLAS_VERSION
ADD ./common/install_openblas.sh install_openblas.sh
RUN bash ./install_openblas.sh && rm install_openblas.sh
# Install Arm Compute Library
FROM base as arm_compute
# use python3.9 to install scons
RUN python3.9 -m pip install scons==4.7.0
RUN ln -sf /opt/python/cp39-cp39/bin/scons /usr/local/bin
COPY ./common/install_acl.sh install_acl.sh
RUN bash ./install_acl.sh && rm install_acl.sh
FROM base as final
# remove unnecessary python versions
@ -77,5 +70,4 @@ RUN rm -rf /opt/python/cp26-cp26mu /opt/_internal/cpython-2.6.9-ucs4
RUN rm -rf /opt/python/cp33-cp33m /opt/_internal/cpython-3.3.6
RUN rm -rf /opt/python/cp34-cp34m /opt/_internal/cpython-3.4.6
COPY --from=openblas /opt/OpenBLAS/ /opt/OpenBLAS/
COPY --from=arm_compute /acl /acl
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:/acl/build/:$LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=/opt/OpenBLAS/lib:$LD_LIBRARY_PATH

View File

@ -86,15 +86,6 @@ FROM base as nvpl
ADD ./common/install_nvpl.sh install_nvpl.sh
RUN bash ./install_nvpl.sh && rm install_nvpl.sh
# Install Arm Compute Library
FROM base as arm_compute
# use python3.9 to install scons
RUN python3.9 -m pip install scons==4.7.0
RUN ln -sf /opt/python/cp39-cp39/bin/scons /usr/local/bin
COPY ./common/install_acl.sh install_acl.sh
RUN bash ./install_acl.sh && rm install_acl.sh
FROM base as final
FROM final as cuda_final
ARG BASE_CUDA_VERSION
RUN rm -rf /usr/local/cuda-${BASE_CUDA_VERSION}
@ -102,7 +93,5 @@ COPY --from=cuda /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BAS
COPY --from=magma /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda-${BASE_CUDA_VERSION}
COPY --from=nvpl /opt/nvpl/lib/ /usr/local/lib/
COPY --from=nvpl /opt/nvpl/include/ /usr/local/include/
COPY --from=arm_compute /acl /acl
RUN ln -sf /usr/local/cuda-${BASE_CUDA_VERSION} /usr/local/cuda
ENV PATH=/usr/local/cuda/bin:$PATH
ENV LD_LIBRARY_PATH=/acl/build/:$LD_LIBRARY_PATH

View File

@ -0,0 +1,71 @@
FROM centos:8 as base
ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV LANGUAGE en_US.UTF-8
ENV PATH /opt/rh/gcc-toolset-11/root/bin/:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
# change to a valid repo
RUN sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-Linux-*.repo
# enable to install ninja-build
RUN sed -i 's|enabled=0|enabled=1|g' /etc/yum.repos.d/CentOS-Linux-PowerTools.repo
RUN yum -y update
RUN yum install -y wget curl perl util-linux xz bzip2 git patch which zlib-devel sudo
RUN yum install -y autoconf automake make cmake gdb gcc-toolset-11-gcc-c++
FROM base as openssl
ADD ./common/install_openssl.sh install_openssl.sh
RUN bash ./install_openssl.sh && rm install_openssl.sh
# Install python
FROM base as python
RUN yum install -y openssl-devel zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel libpcap-devel xz-devel libffi-devel
ADD common/install_cpython.sh install_cpython.sh
RUN bash ./install_cpython.sh && rm install_cpython.sh
FROM base as conda
ADD ./common/install_conda_docker.sh install_conda.sh
RUN bash ./install_conda.sh && rm install_conda.sh
RUN /opt/conda/bin/conda install -y cmake
FROM base as intel
# Install MKL
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=conda /opt/conda /opt/conda
ENV PATH=/opt/conda/bin:$PATH
ADD ./common/install_mkl.sh install_mkl.sh
RUN bash ./install_mkl.sh && rm install_mkl.sh
FROM base as patchelf
ADD ./common/install_patchelf.sh install_patchelf.sh
RUN bash ./install_patchelf.sh && rm install_patchelf.sh
RUN cp $(which patchelf) /patchelf
FROM base as jni
ADD ./common/install_jni.sh install_jni.sh
ADD ./java/jni.h jni.h
RUN bash ./install_jni.sh && rm install_jni.sh
FROM base as libpng
ADD ./common/install_libpng.sh install_libpng.sh
RUN bash ./install_libpng.sh && rm install_libpng.sh
FROM base as final
COPY --from=openssl /opt/openssl /opt/openssl
COPY --from=python /opt/python /opt/python
COPY --from=python /opt/_internal /opt/_internal
COPY --from=intel /opt/intel /opt/intel
COPY --from=conda /opt/conda /opt/conda
COPY --from=patchelf /usr/local/bin/patchelf /usr/local/bin/patchelf
COPY --from=jni /usr/local/include/jni.h /usr/local/include/jni.h
COPY --from=libpng /usr/local/bin/png* /usr/local/bin/
COPY --from=libpng /usr/local/bin/libpng* /usr/local/bin/
COPY --from=libpng /usr/local/include/png* /usr/local/include/
COPY --from=libpng /usr/local/include/libpng* /usr/local/include/
COPY --from=libpng /usr/local/lib/libpng* /usr/local/lib/
COPY --from=libpng /usr/local/lib/pkgconfig /usr/local/lib/pkgconfig
RUN yum install -y ninja-build

View File

@ -28,7 +28,6 @@ fi
MANY_LINUX_VERSION=${MANY_LINUX_VERSION:-}
DOCKERFILE_SUFFIX=${DOCKERFILE_SUFFIX:-}
OPENBLAS_VERSION=${OPENBLAS_VERSION:-}
ACL_VERSION=${ACL_VERSION:-}
case ${image} in
manylinux2_28-builder:cpu)
@ -42,6 +41,13 @@ case ${image} in
GPU_IMAGE=arm64v8/almalinux:8
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=13 --build-arg NINJA_VERSION=1.12.1"
MANY_LINUX_VERSION="2_28_aarch64"
OPENBLAS_VERSION="v0.3.30"
;;
manylinuxcxx11-abi-builder:cpu-cxx11-abi)
TARGET=final
GPU_IMAGE=""
DOCKER_GPU_BUILD_ARG=" --build-arg DEVTOOLSET_VERSION=9"
MANY_LINUX_VERSION="cxx11-abi"
;;
manylinuxs390x-builder:cpu-s390x)
TARGET=final
@ -61,12 +67,6 @@ case ${image} in
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=13"
MANY_LINUX_VERSION="2_28"
;;
manylinux2_28-builder:cuda13*)
TARGET=cuda_final
GPU_IMAGE=amd64/almalinux:8
DOCKER_GPU_BUILD_ARG="--build-arg BASE_CUDA_VERSION=${GPU_ARCH_VERSION} --build-arg DEVTOOLSET_VERSION=13"
MANY_LINUX_VERSION="2_28"
;;
manylinuxaarch64-builder:cuda*)
TARGET=cuda_final
GPU_IMAGE=amd64/almalinux:8
@ -76,7 +76,7 @@ case ${image} in
;;
manylinux2_28-builder:rocm*)
# we want the patch version of 6.4 instead
if [[ "$GPU_ARCH_VERSION" == *"6.4"* ]]; then
if [[ $(ver $GPU_ARCH_VERSION) -eq $(ver 6.4) ]]; then
GPU_ARCH_VERSION="${GPU_ARCH_VERSION}.2"
fi
TARGET=rocm_final
@ -84,10 +84,6 @@ case ${image} in
DEVTOOLSET_VERSION="11"
GPU_IMAGE=rocm/dev-almalinux-8:${GPU_ARCH_VERSION}-complete
PYTORCH_ROCM_ARCH="gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201"
# add gfx950 conditionally starting in ROCm 7.0
if [[ "$GPU_ARCH_VERSION" == *"7.0"* ]]; then
PYTORCH_ROCM_ARCH="${PYTORCH_ROCM_ARCH};gfx950"
fi
DOCKER_GPU_BUILD_ARG="--build-arg ROCM_VERSION=${GPU_ARCH_VERSION} --build-arg PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH} --build-arg DEVTOOLSET_VERSION=${DEVTOOLSET_VERSION}"
;;
manylinux2_28-builder:xpu)
@ -119,8 +115,7 @@ tmp_tag=$(basename "$(mktemp -u)" | tr '[:upper:]' '[:lower:]')
DOCKER_BUILDKIT=1 docker build \
${DOCKER_GPU_BUILD_ARG} \
--build-arg "GPU_IMAGE=${GPU_IMAGE}" \
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION:-}" \
--build-arg "ACL_VERSION=${ACL_VERSION:-}" \
--build-arg "OPENBLAS_VERSION=${OPENBLAS_VERSION}" \
--target "${TARGET}" \
-t "${tmp_tag}" \
$@ \

View File

@ -10,11 +10,6 @@ boto3==1.35.42
#Pinned versions: 1.19.12, 1.16.34
#test that import:
build==1.3.0
#Description: A simple, correct Python build frontend.
#Pinned versions: 1.3.0
#test that import:
click
#Description: Command Line Interface Creation Kit
#Pinned versions:
@ -52,10 +47,10 @@ flatbuffers==24.12.23
#Pinned versions: 24.12.23
#test that import:
hypothesis==6.56.4
hypothesis==5.35.1
# Pin hypothesis to avoid flakiness: https://github.com/pytorch/pytorch/issues/31136
#Description: advanced library for generating parametrized tests
#Pinned versions: 6.56.4
#Pinned versions: 5.35.1
#test that import: test_xnnpack_integration.py, test_pruning_op.py, test_nn.py
junitparser==2.1.1
@ -98,9 +93,8 @@ librosa==0.10.2 ; python_version == "3.12" and platform_machine != "s390x"
#Pinned versions:
#test that import:
mypy==1.16.0 ; platform_system == "Linux"
mypy==1.16.0
# Pin MyPy version because new errors are likely to appear with each release
# Skip on Windows as lots of type annotations are POSIX specific
#Description: linter
#Pinned versions: 1.16.0
#test that import: test_typing.py, test_type_hints.py
@ -111,12 +105,14 @@ networkx==2.8.8
#Pinned versions: 2.8.8
#test that import: functorch
ninja==1.11.1.4
ninja==1.11.1.3
#Description: build system. Used in some tests. Used in build to generate build
#time tracing information
#Pinned versions: 1.11.1.4
#Pinned versions: 1.11.1.3
#test that import: run_test.py, test_cpp_extensions_aot.py,test_determination.py
numba==0.49.0 ; python_version < "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.9" and platform_machine != "s390x"
numba==0.55.2 ; python_version == "3.10" and platform_machine != "s390x"
numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#Description: Just-In-Time Compiler for Numerical Functions
@ -137,7 +133,7 @@ numba==0.60.0 ; python_version == "3.12" and platform_machine != "s390x"
#test_nn.py, test_namedtensor.py, test_linalg.py, test_jit_cuda_fuser.py,
#test_jit.py, test_indexing.py, test_datapipe.py, test_dataloader.py,
#test_binary_ufuncs.py
numpy==1.22.4; python_version == "3.10"
numpy==1.22.4; python_version == "3.9" or python_version == "3.10"
numpy==1.26.2; python_version == "3.11" or python_version == "3.12"
numpy==2.1.2; python_version >= "3.13"
@ -169,12 +165,12 @@ optree==0.13.0
pillow==11.0.0
#Description: Python Imaging Library fork
#Pinned versions: 11.0.0
#Pinned versions: 10.3.0
#test that import:
protobuf==5.29.5
protobuf==5.29.4
#Description: Google's data interchange format
#Pinned versions: 5.29.5
#Pinned versions: 5.29.4
#test that import: test_tensorboard.py, test/onnx/*
psutil
@ -217,7 +213,7 @@ pytest-subtests==0.13.1
#Pinned versions:
#test that import:
xdoctest==1.3.0
xdoctest==1.1.0
#Description: runs doctests in pytest
#Pinned versions: 1.1.0
#test that import:
@ -267,8 +263,13 @@ scipy==1.14.1 ; python_version >= "3.12"
#Pinned versions:
#test that import:
tb-nightly==2.13.0a20230426
#Description: TensorBoard
#Pinned versions:
#test that import:
# needed by torchgen utils
typing-extensions==4.12.2
typing-extensions>=4.10.0
#Description: type hints for python
#Pinned versions:
#test that import:
@ -329,6 +330,8 @@ pywavelets==1.7.0 ; python_version >= "3.12"
lxml==5.3.0
#Description: This is a requirement of unittest-xml-reporting
# Python-3.9 binaries
PyGithub==2.3.0
sympy==1.13.3
@ -341,7 +344,7 @@ onnx==1.18.0
#Pinned versions:
#test that import:
onnxscript==0.4.0
onnxscript==0.3.1
#Description: Required by mypy and test_public_bindings.py when checking torch.onnx._internal
#Pinned versions:
#test that import:
@ -361,10 +364,9 @@ pwlf==2.2.1
#test that import: test_sac_estimator.py
# To build PyTorch itself
pyyaml==6.0.2
pyyaml
pyzstd
setuptools==78.1.1
packaging==23.1
setuptools>=70.1.0
six
scons==4.5.2 ; platform_machine == "aarch64"
@ -379,16 +381,13 @@ dataclasses_json==0.6.7
#Pinned versions: 0.6.7
#test that import:
cmake==3.31.6
cmake==4.0.0
#Description: required for building
tlparse==0.4.0
tlparse==0.3.30
#Description: required for log parsing
filelock==3.18.0
#Description: required for inductor testing
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x" and platform_system != "Darwin"
cuda-bindings>=12.0,<13.0 ; platform_machine != "s390x"
#Description: required for testing CUDAGraph::raw_cuda_graph(). See https://nvidia.github.io/cuda-python/cuda-bindings/latest/support.html for how this version was chosen. Note "Any fix in the latest bindings would be backported to the prior major version" means that only the newest version of cuda-bindings will get fixes. Depending on the latest version of 12.x is okay because all 12.y versions will be supported via "CUDA minor version compatibility". Pytorch builds against 13.z versions of cuda toolkit work with 12.x versions of cuda-bindings as well because newer drivers work with old toolkits.
#test that import: test_cuda.py

View File

@ -1,15 +1,8 @@
sphinx==5.3.0
#Description: This is used to generate PyTorch docs
#Pinned versions: 5.3.0
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@722b7e6f9ca512fcc526ad07d62b3d28c50bb6cd#egg=pytorch_sphinx_theme2
standard-imghdr==3.13.0; python_version >= "3.13"
#Description: This is needed by Sphinx, so it needs to be added here.
# The reasons are as follows:
# 1) This module has been removed from the Python standard library since Python 3.13(https://peps.python.org/pep-0594/#imghdr);
# 2) The current version of Sphinx (5.3.0) is not compatible with Python 3.13.
# Once Sphinx is upgraded to a version compatible with Python 3.13 or later, we can remove this dependency.
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git@71e55749be14ceb56e7f8211a9fb649866b87ad4#egg=pytorch_sphinx_theme2
# TODO: sphinxcontrib.katex 0.9.0 adds a local KaTeX server to speed up pre-rendering
# but it doesn't seem to work and hangs around idly. The initial thought that it is probably
# something related to Docker setup. We can investigate this later.

View File

@ -1 +1 @@
3.5.0
3.4.0

View File

@ -1 +1 @@
3.5.0
3.4.0

View File

@ -52,13 +52,9 @@ ENV INSTALLED_VISION ${VISION}
# Install rocm
ARG ROCM_VERSION
RUN mkdir ci_commit_pins
COPY ./common/common_utils.sh common_utils.sh
COPY ./ci_commit_pins/rocm-composable-kernel.txt ci_commit_pins/rocm-composable-kernel.txt
COPY ./common/install_rocm.sh install_rocm.sh
RUN bash ./install_rocm.sh
RUN rm install_rocm.sh common_utils.sh
RUN rm -r ci_commit_pins
RUN rm install_rocm.sh
COPY ./common/install_rocm_magma.sh install_rocm_magma.sh
RUN bash ./install_rocm_magma.sh ${ROCM_VERSION}
RUN rm install_rocm_magma.sh

View File

@ -66,7 +66,6 @@ ENV NCCL_LIB_DIR="/usr/local/cuda/lib64/"
# (optional) Install UCC
ARG UCX_COMMIT
ARG UCC_COMMIT
ARG CUDA_VERSION
ENV UCX_COMMIT $UCX_COMMIT
ENV UCC_COMMIT $UCC_COMMIT
ENV UCX_HOME /usr
@ -182,6 +181,7 @@ COPY --from=pytorch/llvm:9.0.1 /opt/llvm /opt/llvm
RUN if [ -n "${SKIP_LLVM_SRC_BUILD_INSTALL}" ]; then set -eu; rm -rf /opt/llvm; fi
# AWS specific CUDA build guidance
ENV TORCH_CUDA_ARCH_LIST Maxwell
ENV TORCH_NVCC_FLAGS "-Xfatbin -compress-all"
ENV CUDA_PATH /usr/local/cuda

View File

@ -7,4 +7,4 @@ set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
USE_NVSHMEM=0 USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.10" ${SCRIPTPATH}/../manywheel/build.sh
USE_NVSHMEM=0 USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.9" ${SCRIPTPATH}/../manywheel/build.sh

View File

@ -2,7 +2,7 @@ import argparse
import logging
from cli.lib.common.cli_helper import register_targets, RichHelp, TargetSpec
from cli.lib.core.vllm.vllm_build import VllmBuildRunner
from cli.lib.core.vllm import VllmBuildRunner
logger = logging.getLogger(__name__)

View File

@ -1,143 +0,0 @@
from __future__ import annotations
import logging
import os
import textwrap
from pathlib import Path
from typing import TYPE_CHECKING
from cli.lib.common.utils import get_wheels
from jinja2 import Template
if TYPE_CHECKING:
from collections.abc import Iterable, Mapping
logger = logging.getLogger(__name__)
_TPL_CONTENT = Template(
textwrap.dedent("""\
## {{ title }}
```{{ lang }}
{{ content }}
```
""")
)
_TPL_LIST_ITEMS = Template(
textwrap.dedent("""\
## {{ title }}
{% for it in items %}
- {{ it.pkg }}: {{ it.relpath }}
{% else %}
_(no item found)_
{% endfor %}
""")
)
_TPL_TABLE = Template(
textwrap.dedent("""\
{%- if rows %}
| {{ cols | join(' | ') }} |
|{%- for _ in cols %} --- |{%- endfor %}
{%- for r in rows %}
| {%- for c in cols %} {{ r.get(c, "") }} |{%- endfor %}
{%- endfor %}
{%- else %}
_(no data)_
{%- endif %}
""")
)
def gh_summary_path() -> Path | None:
"""Return the Path to the GitHub step summary file, or None if not set."""
p = os.environ.get("GITHUB_STEP_SUMMARY")
return Path(p) if p else None
def write_gh_step_summary(md: str, *, append_content: bool = True) -> bool:
"""
Write Markdown content to the GitHub Step Summary file if GITHUB_STEP_SUMMARY is set.
append_content: default true, if True, append to the end of the file, else overwrite the whole file
Returns:
True if written successfully (in GitHub Actions environment),
False if skipped (e.g., running locally where the variable is not set).
"""
sp = gh_summary_path()
if not sp:
logger.info("[gh-summary] GITHUB_STEP_SUMMARY not set, skipping write.")
return False
md_clean = textwrap.dedent(md).strip() + "\n"
mode = "a" if append_content else "w"
with sp.open(mode, encoding="utf-8") as f:
f.write(md_clean)
return True
def md_heading(text: str, level: int = 2) -> str:
"""Generate a Markdown heading string with the given level (1-6)."""
return f"{'#' * max(1, min(level, 6))} {text}\n"
def md_details(summary: str, content: str) -> str:
"""Generate a collapsible <details> block with a summary and inner content."""
return f"<details>\n<summary>{summary}</summary>\n\n{content}\n\n</details>\n"
def summarize_content_from_file(
output_dir: Path,
freeze_file: str,
title: str = "Content from file",
code_lang: str = "", # e.g. "text" or "ini"
) -> bool:
f = Path(output_dir) / freeze_file
if not f.exists():
return False
content = f.read_text(encoding="utf-8").strip()
md = render_content(content, title=title, lang=code_lang)
return write_gh_step_summary(md)
def summarize_wheels(path: Path, title: str = "Wheels", max_depth: int = 3):
items = get_wheels(path, max_depth=max_depth)
if not items:
return False
md = render_list(items, title=title)
return write_gh_step_summary(md)
def md_kv_table(rows: Iterable[Mapping[str, str | int | float]]) -> str:
"""
Render a list of dicts as a Markdown table using Jinja template.
"""
rows = list(rows)
cols = list({k for r in rows for k in r.keys()})
md = _TPL_TABLE.render(cols=cols, rows=rows).strip() + "\n"
return md
def render_list(
items: Iterable[str],
*,
title: str = "List",
) -> str:
tpl = _TPL_LIST_ITEMS
md = tpl.render(title=title, items=items)
return md
def render_content(
content: str,
*,
title: str = "Content",
lang: str = "text",
) -> str:
tpl = _TPL_CONTENT
md = tpl.render(title=title, content=content, lang=lang)
return md

View File

@ -45,7 +45,7 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
# Checkout pinned commit
commit = get_post_build_pinned_commit(target)
logger.info("Checking out pinned %s commit %s", target, commit)
logger.info("Checking out pinned commit %s", commit)
r.git.checkout(commit)
# Update submodules if requested
@ -55,7 +55,7 @@ def clone_external_repo(target: str, repo: str, dst: str = "", update_submodules
sm.update(init=True, recursive=True, progress=PrintProgress())
logger.info("Successfully cloned %s", target)
return r, commit
return r
except GitCommandError as e:
logger.error("Git operation failed: %s", e)

View File

@ -1,71 +0,0 @@
import glob
import logging
import shlex
import shutil
import sys
from collections.abc import Iterable
from importlib.metadata import PackageNotFoundError, version # noqa: UP035
from typing import Optional, Union
from cli.lib.common.utils import run_command
logger = logging.getLogger(__name__)
def pip_install_packages(
packages: Iterable[str] = (),
env=None,
*,
requirements: Optional[str] = None,
constraints: Optional[str] = None,
prefer_uv: bool = False,
) -> None:
use_uv = prefer_uv and shutil.which("uv") is not None
base = (
[sys.executable, "-m", "uv", "pip", "install"]
if use_uv
else [sys.executable, "-m", "pip", "install"]
)
cmd = base[:]
if requirements:
cmd += ["-r", requirements]
if constraints:
cmd += ["-c", constraints]
cmd += list(packages)
logger.info("pip installing packages: %s", " ".join(map(shlex.quote, cmd)))
run_command(" ".join(map(shlex.quote, cmd)), env=env)
def pip_install_first_match(pattern: str, extras: Optional[str] = None, pref_uv=False):
wheel = first_matching_pkg(pattern)
target = f"{wheel}[{extras}]" if extras else wheel
logger.info("Installing %s...", target)
pip_install_packages([target], prefer_uv=pref_uv)
def run_python(args: Union[str, list[str]], env=None):
"""
Run the python in the current environment.
"""
if isinstance(args, str):
args = shlex.split(args)
cmd = [sys.executable] + args
run_command(" ".join(map(shlex.quote, cmd)), env=env)
def pkg_exists(name: str) -> bool:
try:
pkg_version = version(name)
logger.info("%s already exist with version: %s", name, pkg_version)
return True
except PackageNotFoundError:
logger.info("%s is not installed", name)
return False
def first_matching_pkg(pattern: str) -> str:
matches = sorted(glob.glob(pattern))
if not matches:
raise FileNotFoundError(f"No wheel matching: {pattern}")
return matches[0]

View File

@ -7,8 +7,6 @@ import os
import shlex
import subprocess
import sys
from contextlib import contextmanager
from pathlib import Path
from typing import Optional
@ -79,61 +77,3 @@ def str2bool(value: Optional[str]) -> bool:
if value in false_value_set:
return False
raise ValueError(f"Invalid string value for boolean conversion: {value}")
@contextmanager
def temp_environ(updates: dict[str, str]):
"""
Temporarily set environment variables and restore them after the block.
Args:
updates: Dict of environment variables to set.
"""
missing = object()
old: dict[str, str | object] = {k: os.environ.get(k, missing) for k in updates}
try:
os.environ.update(updates)
yield
finally:
for k, v in old.items():
if v is missing:
os.environ.pop(k, None)
else:
os.environ[k] = v # type: ignore[arg-type]
@contextmanager
def working_directory(path: str):
"""
Temporarily change the working directory inside a context.
"""
if not path:
# No-op context
yield
return
prev_cwd = os.getcwd()
try:
os.chdir(path)
yield
finally:
os.chdir(prev_cwd)
def get_wheels(
output_dir: Path,
max_depth: Optional[int] = None,
) -> list[str]:
"""Return a list of wheels found in the given output directory."""
root = Path(output_dir)
if not root.exists():
return []
items = []
for dirpath, _, filenames in os.walk(root):
depth = Path(dirpath).relative_to(root).parts
if max_depth is not None and len(depth) > max_depth:
continue
for fname in sorted(filenames):
if fname.endswith(".whl"):
pkg = fname.split("-")[0]
relpath = str((Path(dirpath) / fname).relative_to(root))
items.append({"pkg": pkg, "relpath": relpath})
return items

View File

@ -13,11 +13,7 @@ from cli.lib.common.envs_helper import (
env_str_field,
with_params_help,
)
from cli.lib.common.gh_summary import (
gh_summary_path,
summarize_content_from_file,
summarize_wheels,
)
from cli.lib.common.git_helper import clone_external_repo
from cli.lib.common.path_helper import (
copy,
ensure_dir_exists,
@ -26,7 +22,6 @@ from cli.lib.common.path_helper import (
is_path_exist,
)
from cli.lib.common.utils import run_command
from cli.lib.core.vllm.lib import clone_vllm, summarize_build_info
logger = logging.getLogger(__name__)
@ -66,11 +61,6 @@ class VllmBuildParameters:
"DOCKERFILE_PATH", ".github/ci_configs/vllm/Dockerfile.tmp_vllm"
)
# the cleaning script to remove torch dependencies from pip
cleaning_script: Path = env_path_field(
"cleaning_script", ".github/ci_configs/vllm/use_existing_torch.py"
)
# OUTPUT_DIR: where docker buildx (local exporter) will write artifacts
output_dir: Path = env_path_field("OUTPUT_DIR", "external/vllm")
@ -162,45 +152,18 @@ class VllmBuildRunner(BaseRunner):
3. run docker build
"""
inputs = VllmBuildParameters()
logger.info("Running vllm build with inputs: %s", inputs)
vllm_commit = clone_vllm()
clone_vllm()
self.cp_torch_cleaning_script(inputs)
self.cp_dockerfile_if_exist(inputs)
# cp torch wheels from root direct to vllm workspace if exist
self.cp_torch_whls_if_exist(inputs)
# make sure the output dir to store the build artifacts exist
ensure_dir_exists(Path(inputs.output_dir))
ensure_dir_exists(inputs.output_dir)
cmd = self._generate_docker_build_cmd(inputs)
logger.info("Running docker build: \n %s", cmd)
try:
run_command(cmd, cwd="vllm", env=os.environ.copy())
finally:
self.genearte_vllm_build_summary(vllm_commit, inputs)
def genearte_vllm_build_summary(
self, vllm_commit: str, inputs: VllmBuildParameters
):
if not gh_summary_path():
return logger.info("Skipping, not detect GH Summary env var....")
logger.info("Generate GH Summary ...")
# summarize vllm build info
summarize_build_info(vllm_commit)
# summarize vllm build artifacts
vllm_artifact_dir = inputs.output_dir / "wheels"
summarize_content_from_file(
vllm_artifact_dir,
"build_summary.txt",
title="Vllm build env pip package summary",
)
summarize_wheels(
inputs.torch_whls_path, max_depth=3, title="Torch Wheels Artifacts"
)
summarize_wheels(vllm_artifact_dir, max_depth=3, title="Vllm Wheels Artifacts")
def cp_torch_whls_if_exist(self, inputs: VllmBuildParameters) -> str:
if not inputs.use_torch_whl:
@ -211,11 +174,6 @@ class VllmBuildRunner(BaseRunner):
copy(inputs.torch_whls_path, tmp_dir)
return tmp_dir
def cp_torch_cleaning_script(self, inputs: VllmBuildParameters):
script = get_path(inputs.cleaning_script, resolve=True)
vllm_script = Path(f"./{self.work_directory}/use_existing_torch.py")
copy(script, vllm_script)
def cp_dockerfile_if_exist(self, inputs: VllmBuildParameters):
if not inputs.use_local_dockerfile:
logger.info("using vllm default dockerfile.torch_nightly for build")
@ -294,3 +252,12 @@ class VllmBuildRunner(BaseRunner):
--progress=plain .
"""
).strip()
def clone_vllm():
clone_external_repo(
target="vllm",
repo="https://github.com/vllm-project/vllm.git",
dst="vllm",
update_submodules=True,
)

View File

@ -1,292 +0,0 @@
import logging
import os
import textwrap
from typing import Any
from cli.lib.common.gh_summary import write_gh_step_summary
from cli.lib.common.git_helper import clone_external_repo
from cli.lib.common.pip_helper import pip_install_packages
from cli.lib.common.utils import run_command, temp_environ, working_directory
from jinja2 import Template
logger = logging.getLogger(__name__)
_TPL_VLLM_INFO = Template(
textwrap.dedent("""\
## Vllm against Pytorch CI Test Summary
**Vllm Commit**: [{{ vllm_commit }}](https://github.com/vllm-project/vllm/commit/{{ vllm_commit }})
{%- if torch_sha %}
**Pytorch Commit**: [{{ torch_sha }}](https://github.com/pytorch/pytorch/commit/{{ torch_sha }})
{%- endif %}
""")
)
def sample_vllm_test_library():
"""
Simple sample to unblock the vllm ci development, which is mimic to
https://github.com/vllm-project/vllm/blob/main/.buildkite/test-pipeline.yaml
see run_test_plan for more details
"""
# TODO(elainewy): Read from yaml file to handle the env and tests for vllm
return {
"vllm_basic_correctness_test": {
"title": "Basic Correctness Test",
"id": "vllm_basic_correctness_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"steps": [
"pytest -v -s basic_correctness/test_cumem.py",
"pytest -v -s basic_correctness/test_basic_correctness.py",
"pytest -v -s basic_correctness/test_cpu_offload.py",
],
},
"vllm_basic_models_test": {
"title": "Basic models test",
"id": "vllm_basic_models_test",
"steps": [
"pytest -v -s models/test_transformers.py",
"pytest -v -s models/test_registry.py",
"pytest -v -s models/test_utils.py",
"pytest -v -s models/test_vision.py",
"pytest -v -s models/test_initialization.py",
],
},
"vllm_entrypoints_test": {
"title": "Entrypoints Test ",
"id": "vllm_entrypoints_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"steps": [
" ".join(
[
"pytest",
"-v",
"-s",
"entrypoints/llm",
"--ignore=entrypoints/llm/test_generate.py",
"--ignore=entrypoints/llm/test_collective_rpc.py",
]
),
"pytest -v -s entrypoints/llm/test_generate.py",
"pytest -v -s entrypoints/offline_mode",
],
},
"vllm_regression_test": {
"title": "Regression Test",
"id": "vllm_regression_test",
"package_install": ["modelscope"],
"steps": [
"pytest -v -s test_regression.py",
],
},
"vllm_lora_tp_test_distributed": {
"title": "LoRA TP Test (Distributed)",
"id": "vllm_lora_tp_test_distributed",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"num_gpus": 4,
"steps": [
"pytest -v -s -x lora/test_chatglm3_tp.py",
"pytest -v -s -x lora/test_llama_tp.py",
"pytest -v -s -x lora/test_llm_with_multi_loras.py",
],
},
"vllm_distributed_test_28_failure_test": {
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
"id": "vllm_distributed_test_28_failure_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"num_gpus": 4,
"steps": [
"pytest -v -s distributed/test_sequence_parallel.py",
],
},
"vllm_lora_28_failure_test": {
"title": "LoRA pytorch 2.8 failure test",
"id": "vllm_lora_28_failure_test",
"steps": ["pytest -v lora/test_quant_model.py"],
},
"vllm_multi_model_processor_test": {
"title": "Multi-Modal Processor Test",
"id": "vllm_multi_model_processor_test",
"package_install": ["git+https://github.com/TIGER-AI-Lab/Mantis.git"],
"steps": [
"pytest -v -s models/multimodal/processing --ignore models/multimodal/processing/test_tensor_schema.py",
],
},
"vllm_multi_model_test_28_failure_test": {
"title": "Multi-Model Test (Failed 2.8 release)",
"id": "vllm_multi_model_test_28_failure_test",
"package_install": ["git+https://github.com/TIGER-AI-Lab/Mantis.git"],
"steps": [
"pytest -v -s models/multimodal/generation/test_voxtral.py",
"pytest -v -s models/multimodal/pooling",
],
},
"vllm_pytorch_compilation_unit_tests": {
"title": "PyTorch Compilation Unit Tests",
"id": "vllm_pytorch_compilation_unit_tests",
"steps": [
"pytest -v -s compile/test_pass_manager.py",
"pytest -v -s compile/test_fusion.py",
"pytest -v -s compile/test_fusion_attn.py",
"pytest -v -s compile/test_silu_mul_quant_fusion.py",
"pytest -v -s compile/test_sequence_parallelism.py",
"pytest -v -s compile/test_async_tp.py",
"pytest -v -s compile/test_fusion_all_reduce.py",
"pytest -v -s compile/test_decorator.py",
],
},
"vllm_languagde_model_test_extended_generation_28_failure_test": {
"title": "Language Models Test (Extended Generation) 2.8 release failure",
"id": "vllm_languagde_model_test_extended_generation_28_failure_test",
"package_install": [
"--no-build-isolation",
"git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8",
],
"steps": [
"pytest -v -s models/language/generation/test_mistral.py",
],
},
"vllm_distributed_test_2_gpu_28_failure_test": {
"title": "Distributed Tests (2 GPUs) pytorch 2.8 release failure",
"id": "vllm_distributed_test_2_gpu_28_failure_test",
"env_vars": {
"VLLM_WORKER_MULTIPROC_METHOD": "spawn",
},
"num_gpus": 4,
"steps": [
"pytest -v -s distributed/test_sequence_parallel.py",
],
},
# TODO(elainewy):need to add g6 with 4 gpus to run this test
"vllm_lora_test": {
"title": "LoRA Test %N",
"id": "lora_test",
"parallelism": 4,
"steps": [
"echo '[checking] list sharded lora tests:'",
" ".join(
[
"pytest -q --collect-only lora",
"--shard-id=$$BUILDKITE_PARALLEL_JOB",
"--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT",
"--ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py",
]
),
"echo '[checking] Done. list lora tests'",
" ".join(
[
"pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB",
"--num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT",
"--ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py",
]
),
],
},
}
def check_parallelism(tests: Any, title: str, shard_id: int = 0, num_shards: int = 0):
"""
a method to check if the test plan is parallelism or not.
"""
parallelism = int(tests.get("parallelism", "0"))
is_parallel = parallelism and parallelism > 1
if not is_parallel:
return False
if shard_id > num_shards:
raise RuntimeError(
f"Test {title} expects {num_shards} shards, but invalid {shard_id} is provided"
)
if num_shards != parallelism:
raise RuntimeError(
f"Test {title} expects {parallelism} shards, but invalid {num_shards} is provided"
)
return True
def run_test_plan(
test_plan: str,
test_target: str,
tests_map: dict[str, Any],
shard_id: int = 0,
num_shards: int = 0,
):
"""
a method to run list of tests based on the test plan.
"""
logger.info("run %s tests.....", test_target)
if test_plan not in tests_map:
raise RuntimeError(
f"test {test_plan} not found, please add it to test plan pool"
)
tests = tests_map[test_plan]
pkgs = tests.get("package_install", [])
title = tests.get("title", "unknown test")
is_parallel = check_parallelism(tests, title, shard_id, num_shards)
if is_parallel:
title = title.replace("%N", f"{shard_id}/{num_shards}")
logger.info("Running tests: %s", title)
if pkgs:
logger.info("Installing packages: %s", pkgs)
pip_install_packages(packages=pkgs, prefer_uv=True)
with (
working_directory(tests.get("working_directory", "tests")),
temp_environ(tests.get("env_vars", {})),
):
failures = []
for step in tests["steps"]:
logger.info("Running step: %s", step)
if is_parallel:
step = replace_buildkite_placeholders(step, shard_id, num_shards)
logger.info("Running parallel step: %s", step)
code = run_command(cmd=step, check=False, use_shell=True)
if code != 0:
failures.append(step)
logger.info("Finish running step: %s", step)
if failures:
logger.error("Failed tests: %s", failures)
raise RuntimeError(f"{len(failures)} pytest runs failed: {failures}")
logger.info("Done. All tests passed")
def clone_vllm(dst: str = "vllm"):
_, commit = clone_external_repo(
target="vllm",
repo="https://github.com/vllm-project/vllm.git",
dst=dst,
update_submodules=True,
)
return commit
def replace_buildkite_placeholders(step: str, shard_id: int, num_shards: int) -> str:
mapping = {
"$$BUILDKITE_PARALLEL_JOB_COUNT": str(num_shards),
"$$BUILDKITE_PARALLEL_JOB": str(shard_id),
}
for k in sorted(mapping, key=len, reverse=True):
step = step.replace(k, mapping[k])
return step
def summarize_build_info(vllm_commit: str) -> bool:
torch_sha = os.getenv("GITHUB_SHA")
md = (
_TPL_VLLM_INFO.render(vllm_commit=vllm_commit, torch_sha=torch_sha).strip()
+ "\n"
)
return write_gh_step_summary(md)

View File

@ -1,280 +0,0 @@
import logging
import os
import re
import subprocess
import sys
from collections.abc import Iterable
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
from typing import Any
from cli.lib.common.cli_helper import BaseRunner
from cli.lib.common.envs_helper import env_path_field, env_str_field, get_env
from cli.lib.common.path_helper import copy, get_path, remove_dir
from cli.lib.common.pip_helper import (
pip_install_first_match,
pip_install_packages,
pkg_exists,
run_python,
)
from cli.lib.common.utils import run_command, working_directory
from cli.lib.core.vllm.lib import clone_vllm, run_test_plan, sample_vllm_test_library
logger = logging.getLogger(__name__)
@dataclass
class VllmTestParameters:
"""
Parameters defining the vllm external test input
!!!DO NOT ADD SECRETS IN THIS CLASS!!!
you can put environment variable name in VllmTestParameters if it's not the same as the secret one
fetch secrests directly from env variables during runtime
"""
torch_whls_path: Path = env_path_field("WHEELS_PATH", "./dist")
vllm_whls_path: Path = env_path_field(
"VLLM_WHEELS_PATH", "./dist/external/vllm/wheels"
)
torch_cuda_arch_list: str = env_str_field("TORCH_CUDA_ARCH_LIST", "8.9")
cleaning_script: Path = env_path_field(
"cleaning_script", ".github/ci_configs/vllm/use_existing_torch.py"
)
def __post_init__(self):
if not self.torch_whls_path.exists():
raise ValueError("missing torch_whls_path")
if not self.vllm_whls_path.exists():
raise ValueError("missing vllm_whls_path")
class TestInpuType(Enum):
TEST_PLAN = "test_plan"
UNKNOWN = "unknown"
class VllmTestRunner(BaseRunner):
def __init__(self, args: Any):
self.work_directory = "vllm"
self.test_plan = ""
self.test_type = TestInpuType.UNKNOWN
self.shard_id = args.shard_id
self.num_shards = args.num_shards
if args.test_plan:
self.test_plan = args.test_plan
self.test_type = TestInpuType.TEST_PLAN
# Matches the structeur in the artifacts.zip from torcb build
self.TORCH_WHL_PATH_REGEX = "torch*.whl"
self.TORCH_WHL_EXTRA = "opt-einsum"
self.TORCH_ADDITIONAL_WHLS_REGEX = [
"vision/torchvision*.whl",
"audio/torchaudio*.whl",
]
# Match the structure of the artifacts.zip from vllm external build
self.VLLM_TEST_WHLS_REGEX = [
"xformers/*.whl",
"vllm/vllm*.whl",
"flashinfer-python/flashinfer*.whl",
]
def prepare(self):
"""
prepare test environment for vllm. This includes clone vllm repo, install all wheels, test dependencies and set env
"""
params = VllmTestParameters()
logger.info("Display VllmTestParameters %s", params)
self._set_envs(params)
clone_vllm(dst=self.work_directory)
self.cp_torch_cleaning_script(params)
with working_directory(self.work_directory):
remove_dir(Path("vllm"))
self._install_wheels(params)
self._install_dependencies()
# verify the torches are not overridden by test dependencies
check_versions()
def run(self):
"""
main function to run vllm test
"""
self.prepare()
try:
with working_directory(self.work_directory):
if self.test_type == TestInpuType.TEST_PLAN:
if self.num_shards > 1:
run_test_plan(
self.test_plan,
"vllm",
sample_vllm_test_library(),
self.shard_id,
self.num_shards,
)
else:
run_test_plan(
self.test_plan, "vllm", sample_vllm_test_library()
)
else:
raise ValueError(f"Unknown test type {self.test_type}")
finally:
# double check the torches are not overridden by other packages
check_versions()
def cp_torch_cleaning_script(self, params: VllmTestParameters):
script = get_path(params.cleaning_script, resolve=True)
vllm_script = Path(f"./{self.work_directory}/use_existing_torch.py")
copy(script, vllm_script)
def _install_wheels(self, params: VllmTestParameters):
logger.info("Running vllm test with inputs: %s", params)
if not pkg_exists("torch"):
# install torch from local whls if it's not installed yet.
torch_p = f"{str(params.torch_whls_path)}/{self.TORCH_WHL_PATH_REGEX}"
pip_install_first_match(torch_p, self.TORCH_WHL_EXTRA)
torch_whls_path = [
f"{str(params.torch_whls_path)}/{whl_path}"
for whl_path in self.TORCH_ADDITIONAL_WHLS_REGEX
]
for torch_whl in torch_whls_path:
pip_install_first_match(torch_whl)
logger.info("Done. Installed torch and other torch-related wheels ")
logger.info("Installing vllm wheels")
vllm_whls_path = [
f"{str(params.vllm_whls_path)}/{whl_path}"
for whl_path in self.VLLM_TEST_WHLS_REGEX
]
for vllm_whl in vllm_whls_path:
pip_install_first_match(vllm_whl)
logger.info("Done. Installed vllm wheels")
def _install_test_dependencies(self):
"""
This method replaces torch dependencies with local torch wheel info in
requirements/test.in file from vllm repo. then generates the test.txt
in runtime
"""
logger.info("generate test.txt from requirements/test.in with local torch whls")
preprocess_test_in()
copy("requirements/test.txt", "snapshot_constraint.txt")
run_command(
f"{sys.executable} -m uv pip compile requirements/test.in "
"-o test.txt "
"--index-strategy unsafe-best-match "
"--constraint snapshot_constraint.txt "
"--torch-backend cu128"
)
pip_install_packages(requirements="test.txt", prefer_uv=True)
logger.info("Done. installed requirements for test dependencies")
def _install_dependencies(self):
pip_install_packages(packages=["-e", "tests/vllm_test_utils"], prefer_uv=True)
pip_install_packages(packages=["hf_transfer"], prefer_uv=True)
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# using script from vllm repo to remove all torch packages from requirements txt
run_python("use_existing_torch.py")
# install common packages
for requirements in ["requirements/common.txt", "requirements/build.txt"]:
pip_install_packages(
requirements=requirements,
prefer_uv=True,
)
# install test packages
self._install_test_dependencies()
def _set_envs(self, inputs: VllmTestParameters):
os.environ["TORCH_CUDA_ARCH_LIST"] = inputs.torch_cuda_arch_list
if not validate_cuda(get_env("TORCH_CUDA_ARCH_LIST")):
logger.warning(
"Missing supported TORCH_CUDA_ARCH_LIST. "
"Currently support TORCH_CUDA_ARCH_LIST env var "
"with supported arch [8.0, 8.9, 9.0]"
)
os.environ["HF_TOKEN"] = os.getenv("VLLM_TEST_HUGGING_FACE_TOKEN", "")
if not get_env("HF_TOKEN"):
raise ValueError(
"missing required HF_TOKEN, please set VLLM_TEST_HUGGING_FACE_TOKEN env var"
)
if not get_env("TORCH_CUDA_ARCH_LIST"):
raise ValueError(
"missing required TORCH_CUDA_ARCH_LIST, please set TORCH_CUDA_ARCH_LIST env var"
)
def preprocess_test_in(
target_file: str = "requirements/test.in", additional_packages: Iterable[str] = ()
):
"""
This modifies the target_file file in place in vllm work directory.
It removes torch and unwanted packages in target_file and replace with local torch whls
package with format "$WHEEL_PACKAGE_NAME @ file://<LOCAL_PATH>"
"""
additional_package_to_move = list(additional_packages or ())
pkgs_to_remove = [
"torch",
"torchvision",
"torchaudio",
"xformers",
"mamba_ssm",
] + additional_package_to_move
# Read current requirements
target_path = Path(target_file)
lines = target_path.read_text().splitlines()
pkgs_to_add = []
# Remove lines starting with the package names (==, @, >=) — case-insensitive
pattern = re.compile(rf"^({'|'.join(pkgs_to_remove)})\s*(==|@|>=)", re.IGNORECASE)
kept_lines = [line for line in lines if not pattern.match(line)]
# Get local installed torch/vision/audio from pip freeze
# This is hacky, but it works
pip_freeze = subprocess.check_output(["pip", "freeze"], text=True)
header_lines = [
line
for line in pip_freeze.splitlines()
if re.match(
r"^(torch|torchvision|torchaudio)\s*@\s*file://", line, re.IGNORECASE
)
]
# Write back: header_lines + blank + kept_lines
out_lines = header_lines + [""] + kept_lines
if pkgs_to_add:
out_lines += [""] + pkgs_to_add
out = "\n".join(out_lines) + "\n"
target_path.write_text(out)
logger.info("[INFO] Updated %s", target_file)
def validate_cuda(value: str) -> bool:
VALID_VALUES = {"8.0", "8.9", "9.0"}
return all(v in VALID_VALUES for v in value.split())
def check_versions():
"""
check installed packages version
"""
logger.info("Double check installed packages")
patterns = ["torch", "xformers", "torchvision", "torchaudio", "vllm"]
for pkg in patterns:
pkg_exists(pkg)
logger.info("Done. checked installed packages")

View File

@ -5,7 +5,6 @@ import logging
from cli.build_cli.register_build import register_build_commands
from cli.lib.common.logger import setup_logging
from cli.test_cli.register_test import register_test_commands
logger = logging.getLogger(__name__)
@ -21,7 +20,6 @@ def main():
# registers second-level subcommands
register_build_commands(subparsers)
register_test_commands(subparsers)
# parse args after all options are registered
args = parser.parse_args()

View File

@ -1,62 +0,0 @@
import argparse
import logging
from cli.lib.common.cli_helper import register_targets, RichHelp, TargetSpec
from cli.lib.core.vllm.vllm_test import VllmTestRunner
logger = logging.getLogger(__name__)
# Maps targets to their argparse configuration and runner
# it adds new target to path python -m cli.run build external {target} with buildrunner
_TARGETS: dict[str, TargetSpec] = {
"vllm": {
"runner": VllmTestRunner,
"help": "test vLLM with pytorch main",
}
# add yours ...
}
def common_args(parser: argparse.ArgumentParser) -> None:
"""
Add common CLI arguments to the given parser.
"""
parser.add_argument(
"--shard-id",
type=int,
default=1,
help="a shard id to run, e.g. '0,1,2,3'",
)
parser.add_argument(
"--num-shards",
type=int,
default=1,
help="a number of shards to run, e.g. '4'",
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"-tp",
"--test-plan",
type=str,
help="a pre-defined test plan to run, e.g. 'basic_correctness_test'",
)
def register_test_commands(subparsers: argparse._SubParsersAction) -> None:
build_parser = subparsers.add_parser(
"test",
help="test related commands",
formatter_class=RichHelp,
)
build_subparsers = build_parser.add_subparsers(dest="test_command", required=True)
overview = "\n".join(
f" {name:12} {spec.get('help', '')}" for name, spec in _TARGETS.items()
)
external_parser = build_subparsers.add_parser(
"external",
help="Test external targets",
description="Test third-party targets.\n\nAvailable targets:\n" + overview,
formatter_class=RichHelp,
)
register_targets(external_parser, _TARGETS, common_args=common_args)

View File

@ -6,7 +6,6 @@ dependencies = [
"GitPython==3.1.45",
"docker==7.1.0",
"pytest==7.3.2",
"uv==0.8.6"
]
[tool.setuptools]

View File

@ -1,185 +0,0 @@
# tests/test_run_test_plan.py
import importlib
from contextlib import nullcontext
from types import SimpleNamespace
from unittest.mock import MagicMock
import pytest
MOD = "cli.lib.core.vllm.lib"
# We import inside tests so the MOD override above applies everywhere
run_test_plan_import_path = f"{MOD}.run_test_plan"
def _get_cmd(c):
# Support both kwargs and positional args
return c.kwargs.get("cmd", c.args[0] if c.args else None)
def _get_check(c):
if "check" in c.kwargs:
return c.kwargs["check"]
# If positional, assume second arg is 'check' when present; default False
return c.args[1] if len(c.args) > 1 else False
@pytest.fixture
def patch_module(monkeypatch):
"""
Patch helpers ('pip_install_packages', 'temp_environ', 'working_directory',
'run_command', 'logger') inside the target module and expose them.
"""
module = importlib.import_module(MOD)
# Create fakes/mocks
pip_install_packages = MagicMock(name="pip_install_packages")
run_command = MagicMock(name="run_command", return_value=0)
# temp_environ / working_directory: record calls but act as context managers
temp_calls: list[dict] = []
workdir_calls: list[str] = []
def fake_working_directory(path: str):
workdir_calls.append(path)
return nullcontext()
def fake_temp_env(map: dict[str, str]):
temp_calls.append(map)
return nullcontext()
logger = SimpleNamespace(
info=MagicMock(name="logger.info"),
error=MagicMock(name="logger.error"),
)
# Apply patches (raise if attribute doesn't exist)
monkeypatch.setattr(
module, "pip_install_packages", pip_install_packages, raising=True
)
monkeypatch.setattr(module, "run_command", run_command, raising=True)
monkeypatch.setattr(
module, "working_directory", fake_working_directory, raising=True
)
monkeypatch.setattr(module, "temp_environ", fake_temp_env, raising=True)
monkeypatch.setattr(module, "logger", logger, raising=True)
return SimpleNamespace(
module=module,
run_test_plan=module.run_test_plan, # expose to avoid getattr("constant") (Ruff B009)
pip_install_packages=pip_install_packages,
run_command=run_command,
temp_calls=temp_calls,
workdir_calls=workdir_calls,
logger=logger,
)
def test_success_runs_all_steps_and_uses_env_and_workdir(monkeypatch, patch_module):
run_test_plan = patch_module.run_test_plan
tests_map = {
"basic": {
"title": "Basic suite",
"package_install": [],
"working_directory": "tests",
"env_vars": {"GLOBAL_FLAG": "1"},
"steps": [
"export A=x && pytest -q",
"export B=y && pytest -q tests/unit",
],
}
}
# One exit code per step (export + two pytest)
patch_module.run_command.side_effect = [0, 0, 0]
run_test_plan("basic", "cpu", tests_map)
calls = patch_module.run_command.call_args_list
cmds = [_get_cmd(c) for c in calls]
checks = [_get_check(c) for c in calls]
assert cmds == [
"export A=x && pytest -q",
"export B=y && pytest -q tests/unit",
]
assert all(chk is False for chk in checks)
assert patch_module.workdir_calls == ["tests"]
assert patch_module.temp_calls == [{"GLOBAL_FLAG": "1"}]
def test_installs_packages_when_present(monkeypatch, patch_module):
run_test_plan = patch_module.module.run_test_plan
tests_map = {
"with_pkgs": {
"title": "Needs deps",
"package_install": ["timm==1.0.0", "flash-attn"],
"steps": ["pytest -q"],
}
}
patch_module.run_command.return_value = 0
run_test_plan("with_pkgs", "gpu", tests_map)
patch_module.pip_install_packages.assert_called_once_with(
packages=["timm==1.0.0", "flash-attn"],
prefer_uv=True,
)
def test_raises_on_missing_plan(patch_module):
run_test_plan = patch_module.module.run_test_plan
with pytest.raises(RuntimeError) as ei:
run_test_plan("nope", "cpu", tests_map={})
assert "test nope not found" in str(ei.value)
def test_aggregates_failures_and_raises(monkeypatch, patch_module):
run_test_plan = patch_module.module.run_test_plan
tests_map = {
"mix": {
"title": "Some pass some fail",
"steps": [
"pytest test_a.py", # 0 → pass
"pytest test_b.py", # 1 → fail
"pytest test_c.py", # 2 → fail
],
}
}
# Simulate pass, fail, fail
patch_module.run_command.side_effect = [0, 1, 2]
with pytest.raises(RuntimeError) as ei:
run_test_plan("mix", "cpu", tests_map)
msg = str(ei.value)
assert "2 pytest runs failed" in msg
# Ensure logger captured failed tests list
patch_module.logger.error.assert_called_once()
# And we attempted all three commands
assert patch_module.run_command.call_count == 3
def test_custom_working_directory_used(patch_module):
run_test_plan = patch_module.module.run_test_plan
tests_map = {
"customwd": {
"title": "Custom wd",
"working_directory": "examples/ci",
"steps": ["pytest -q"],
}
}
patch_module.run_command.return_value = 0
run_test_plan("customwd", "cpu", tests_map)
assert patch_module.workdir_calls == ["examples/ci"]

View File

@ -1,143 +0,0 @@
import os
import tempfile
import unittest
from pathlib import Path
from cli.lib.common.utils import temp_environ, working_directory # <-- replace import
class EnvIsolatedTestCase(unittest.TestCase):
"""Base class that snapshots os.environ and CWD for isolation."""
def setUp(self):
import os
import tempfile
self._env_backup = dict(os.environ)
# Snapshot/repair CWD if it's gone
try:
self._cwd_backup = os.getcwd()
except FileNotFoundError:
# If CWD no longer exists, switch to a safe place and record that
self._cwd_backup = tempfile.gettempdir()
os.chdir(self._cwd_backup)
# Create a temporary directory for the test to run in
self._temp_dir = tempfile.mkdtemp()
os.chdir(self._temp_dir)
def tearDown(self):
import os
import shutil
import tempfile
# Restore cwd first (before cleaning up temp dir)
try:
os.chdir(self._cwd_backup)
except OSError:
os.chdir(tempfile.gettempdir())
# Clean up temporary directory
try:
shutil.rmtree(self._temp_dir, ignore_errors=True)
except Exception:
pass # Ignore cleanup errors
# Restore env
to_del = set(os.environ.keys()) - set(self._env_backup.keys())
for k in to_del:
os.environ.pop(k, None)
for k, v in self._env_backup.items():
os.environ[k] = v
class TestTempEnviron(EnvIsolatedTestCase):
def test_sets_and_restores_new_var(self):
var = "TEST_TMP_ENV_NEW"
self.assertNotIn(var, os.environ)
with temp_environ({var: "123"}):
self.assertEqual(os.environ[var], "123")
self.assertNotIn(var, os.environ) # removed after exit
def test_overwrites_and_restores_existing_var(self):
var = "TEST_TMP_ENV_OVERWRITE"
os.environ[var] = "orig"
with temp_environ({var: "override"}):
self.assertEqual(os.environ[var], "override")
self.assertEqual(os.environ[var], "orig") # restored
def test_multiple_vars_and_missing_cleanup(self):
v1, v2 = "TEST_ENV_V1", "TEST_ENV_V2"
os.environ.pop(v1, None)
os.environ[v2] = "keep"
with temp_environ({v1: "a", v2: "b"}):
self.assertEqual(os.environ[v1], "a")
self.assertEqual(os.environ[v2], "b")
self.assertNotIn(v1, os.environ) # newly-added -> removed
self.assertEqual(os.environ[v2], "keep") # pre-existing -> restored
def test_restores_even_on_exception(self):
var = "TEST_TMP_ENV_EXCEPTION"
self.assertNotIn(var, os.environ)
with self.assertRaises(RuntimeError):
with temp_environ({var: "x"}):
self.assertEqual(os.environ[var], "x")
raise RuntimeError("boom")
self.assertNotIn(var, os.environ) # removed after exception
class TestWorkingDirectory(EnvIsolatedTestCase):
def test_changes_and_restores(self):
start = Path.cwd()
with tempfile.TemporaryDirectory() as td:
target = Path(td) / "wd"
target.mkdir()
with working_directory(str(target)):
self.assertEqual(Path.cwd().resolve(), target.resolve())
self.assertEqual(Path.cwd(), start)
def test_noop_when_empty_path(self):
start = Path.cwd()
with working_directory(""):
self.assertEqual(Path.cwd(), start)
self.assertEqual(Path.cwd(), start)
def test_restores_on_exception(self):
start = Path.cwd()
with tempfile.TemporaryDirectory() as td:
target = Path(td) / "wd_exc"
target.mkdir()
with self.assertRaises(ValueError):
with working_directory(str(target)):
# Normalize both sides to handle /var -> /private/var
self.assertEqual(Path.cwd().resolve(), target.resolve())
raise ValueError("boom")
self.assertEqual(Path.cwd().resolve(), start.resolve())
def test_raises_for_missing_dir(self):
start = Path.cwd()
with tempfile.TemporaryDirectory() as td:
missing = Path(td) / "does_not_exist"
with self.assertRaises(FileNotFoundError):
# os.chdir should raise before yielding
with working_directory(str(missing)):
pass
self.assertEqual(Path.cwd(), start)
if __name__ == "__main__":
unittest.main(verbosity=2)

View File

@ -4,15 +4,12 @@ import unittest
from pathlib import Path
from unittest.mock import MagicMock, patch
import cli.lib.core.vllm.vllm_build as vllm_build
_VLLM_BUILD_MODULE = "cli.lib.core.vllm.vllm_build"
import cli.lib.core.vllm as vllm
class TestVllmBuildParameters(unittest.TestCase):
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=True)
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=True)
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
@patch("cli.lib.core.vllm.is_path_exist", return_value=True)
@patch(
"cli.lib.common.envs_helper.env_path_optional",
side_effect=lambda name, default=None, resolve=True: {
@ -37,13 +34,13 @@ class TestVllmBuildParameters(unittest.TestCase):
def test_params_success_normalizes_and_validates(
self, mock_env_path, mock_is_path, mock_local_img
):
params = vllm_build.VllmBuildParameters()
params = vllm.VllmBuildParameters()
self.assertEqual(params.torch_whls_path, Path("/abs/dist"))
self.assertEqual(params.dockerfile_path, Path("/abs/vllm/Dockerfile"))
self.assertEqual(params.output_dir, Path("/abs/shared"))
self.assertEqual(params.base_image, "my/image:tag")
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ, {"USE_TORCH_WHEEL": "1", "TORCH_WHEELS_PATH": "dist"}, clear=True
)
@ -51,14 +48,14 @@ class TestVllmBuildParameters(unittest.TestCase):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm_build.VllmBuildParameters(
vllm.VllmBuildParameters(
use_local_base_image=False,
use_local_dockerfile=False,
)
err = cm.exception
self.assertIn("TORCH_WHEELS_PATH", str(err))
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=False)
@patch("cli.lib.core.vllm.local_image_exists", return_value=False)
@patch.dict(
os.environ, {"USE_LOCAL_BASE_IMAGE": "1", "BASE_IMAGE": "img:tag"}, clear=True
)
@ -66,14 +63,14 @@ class TestVllmBuildParameters(unittest.TestCase):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm_build.VllmBuildParameters(
vllm.VllmBuildParameters(
use_torch_whl=False,
use_local_dockerfile=False,
)
err = cm.exception
self.assertIn("BASE_IMAGE", str(err))
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ,
{"USE_LOCAL_DOCKERFILE": "1", "DOCKERFILE_PATH": "Dockerfile"},
@ -83,14 +80,14 @@ class TestVllmBuildParameters(unittest.TestCase):
with tempfile.TemporaryDirectory() as td:
os.chdir(td)
with self.assertRaises(ValueError) as cm:
vllm_build.VllmBuildParameters(
vllm.VllmBuildParameters(
use_torch_whl=False,
use_local_base_image=False,
)
err = cm.exception
self.assertIn("DOCKERFILE_PATH", str(err))
@patch(f"{_VLLM_BUILD_MODULE}.is_path_exist", return_value=False)
@patch("cli.lib.core.vllm.is_path_exist", return_value=False)
@patch.dict(
os.environ,
{"OUTPUT_DIR": ""},
@ -98,13 +95,14 @@ class TestVllmBuildParameters(unittest.TestCase):
)
def test_params_missing_output_dir(self, _is_path):
with self.assertRaises(FileNotFoundError):
vllm_build.VllmBuildParameters()
vllm.VllmBuildParameters()
class TestBuildCmdAndRun(unittest.TestCase):
@patch(f"{_VLLM_BUILD_MODULE}.local_image_exists", return_value=True)
@patch("cli.lib.core.vllm.local_image_exists", return_value=True)
def test_generate_docker_build_cmd_includes_bits(self, _exists):
runner = vllm_build.VllmBuildRunner()
runner = vllm.VllmBuildRunner()
# Craft inputs that simulate a prepared build
inputs = MagicMock()
inputs.output_dir = Path("/abs/out")
inputs.use_local_base_image = True
@ -120,7 +118,7 @@ class TestBuildCmdAndRun(unittest.TestCase):
inputs.tag_name = "vllm-wheels"
cmd = runner._generate_docker_build_cmd(inputs)
squashed = " ".join(cmd.split())
squashed = " ".join(cmd.split()) # normalize whitespace for matching
self.assertIn("--output type=local,dest=/abs/out", squashed)
self.assertIn("-f docker/Dockerfile.nightly_torch", squashed)
@ -138,17 +136,18 @@ class TestBuildCmdAndRun(unittest.TestCase):
self.assertIn("--target export-wheels", squashed)
self.assertIn("-t vllm-wheels", squashed)
@patch(f"{_VLLM_BUILD_MODULE}.run_command")
@patch(f"{_VLLM_BUILD_MODULE}.ensure_dir_exists")
@patch(f"{_VLLM_BUILD_MODULE}.clone_vllm")
@patch("cli.lib.core.vllm.run_command")
@patch("cli.lib.core.vllm.ensure_dir_exists")
@patch("cli.lib.core.vllm.clone_vllm")
@patch.object(
vllm_build.VllmBuildRunner,
vllm.VllmBuildRunner,
"_generate_docker_build_cmd",
return_value="docker buildx ...",
)
@patch.dict(
os.environ,
{
# Make __post_init__ validations pass cheaply
"USE_TORCH_WHEEL": "0",
"USE_LOCAL_BASE_IMAGE": "0",
"USE_LOCAL_DOCKERFILE": "0",
@ -159,18 +158,24 @@ class TestBuildCmdAndRun(unittest.TestCase):
def test_run_calls_clone_prepare_and_build(
self, mock_gen, mock_clone, mock_ensure, mock_run
):
# Stub parameters instance so we avoid FS/Docker accesses in run()
params = MagicMock()
params.output_dir = Path("shared")
params.use_local_dockerfile = False
params.use_torch_whl = False
with patch(f"{_VLLM_BUILD_MODULE}.VllmBuildParameters", return_value=params):
runner = vllm_build.VllmBuildRunner()
with patch("cli.lib.core.vllm.VllmBuildParameters", return_value=params):
runner = vllm.VllmBuildRunner()
runner.run()
mock_clone.assert_called_once()
mock_ensure.assert_called_once_with(Path("shared"))
mock_gen.assert_called_once_with(params)
mock_run.assert_called_once()
# ensure we run in vllm workdir
_, kwargs = mock_run.call_args
assert kwargs.get("cwd") == "vllm"
if __name__ == "__main__":
unittest.main()

View File

@ -1,11 +1,11 @@
SHELL=/usr/bin/env bash
DOCKER_CMD ?= docker
DESIRED_ROCM ?= 7.0
DESIRED_ROCM ?= 6.4
DESIRED_ROCM_SHORT = $(subst .,,$(DESIRED_ROCM))
PACKAGE_NAME = magma-rocm
# inherit this from underlying docker image, do not pass this env var to docker
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
#PYTORCH_ROCM_ARCH ?= gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1030;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201
DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
-v $(shell git rev-parse --show-toplevel)/.ci:/builder \
@ -16,7 +16,6 @@ DOCKER_RUN = set -eou pipefail; ${DOCKER_CMD} run --rm -i \
magma-rocm/build_magma.sh
.PHONY: all
all: magma-rocm70
all: magma-rocm64
all: magma-rocm63
@ -25,11 +24,6 @@ clean:
$(RM) -r magma-*
$(RM) -r output
.PHONY: magma-rocm70
magma-rocm70: DESIRED_ROCM := 7.0
magma-rocm70:
$(DOCKER_RUN)
.PHONY: magma-rocm64
magma-rocm64: DESIRED_ROCM := 6.4
magma-rocm64:

View File

@ -6,8 +6,8 @@ set -eou pipefail
# The script expects DESIRED_CUDA and PACKAGE_NAME to be set
ROOT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)"
# https://github.com/icl-utk-edu/magma/pull/65
MAGMA_VERSION=d6e4117bc88e73f06d26c6c2e14f064e8fc3d1ec
# Version 2.7.2 + ROCm related updates
MAGMA_VERSION=a1625ff4d9bc362906bd01f805dbbe12612953f6
# Folders for the build
PACKAGE_FILES=${ROOT_DIR}/magma-rocm/package_files # metadata
@ -20,7 +20,7 @@ mkdir -p ${PACKAGE_DIR} ${PACKAGE_OUTPUT}/linux-64 ${PACKAGE_BUILD} ${PACKAGE_RE
# Fetch magma sources and verify checksum
pushd ${PACKAGE_DIR}
git clone https://github.com/jeffdaily/magma
git clone https://bitbucket.org/icl/magma.git
pushd magma
git checkout ${MAGMA_VERSION}
popd

View File

@ -142,7 +142,7 @@ time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python -m build --wheel --no-isolation --outdir /tmp/$WHEELHOUSE_DIR
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist at $(date)"
# Build libtorch packages

View File

@ -66,9 +66,6 @@ case ${CUDA_VERSION} in
TORCH_CUDA_ARCH_LIST="7.5;8.0;9.0;10.0;12.0+PTX"
fi
;;
13.0)
TORCH_CUDA_ARCH_LIST="7.5;8.0;8.6;9.0;10.0;12.0+PTX"
;;
12.6)
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6;9.0"
;;
@ -113,18 +110,13 @@ DEPS_SONAME=(
)
# CUDA_VERSION 12.*, 13.*
if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
# CUDA_VERSION 12.6, 12.8, 12.9
if [[ $CUDA_VERSION == 12* ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
# Compress the fatbin with -compress-mode=size for CUDA 13
if [[ $CUDA_VERSION == 13* ]]; then
export TORCH_NVCC_FLAGS="$TORCH_NVCC_FLAGS -compress-mode=size"
fi
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
@ -134,11 +126,16 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcusparseLt.so.0"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
"/usr/local/cuda/lib64/libcufile.so.0"
"/usr/local/cuda/lib64/libcufile_rdma.so.1"
"/usr/local/cuda/lib64/libnvshmem_host.so.3"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libnvperf_host.so"
)
DEPS_SONAME+=(
@ -150,83 +147,42 @@ if [[ $CUDA_VERSION == 12* || $CUDA_VERSION == 13* ]]; then
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.12"
"libcublasLt.so.12"
"libcusparseLt.so.0"
"libcudart.so.12"
"libnvrtc.so.12"
"libnvrtc-builtins.so"
"libnvshmem_host.so.3"
"libcufile.so.0"
"libcufile_rdma.so.1"
"libcupti.so.12"
"libnvperf_host.so"
)
# Add libnvToolsExt only if CUDA version is not 12.9
if [[ $CUDA_VERSION == 13* ]]; then
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcublas.so.13"
"/usr/local/cuda/lib64/libcublasLt.so.13"
"/usr/local/cuda/lib64/libcudart.so.13"
"/usr/local/cuda/lib64/libnvrtc.so.13"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.13"
"/usr/local/cuda/lib64/libibverbs.so.1"
"/usr/local/cuda/lib64/librdmacm.so.1"
"/usr/local/cuda/lib64/libmlx5.so.1"
"/usr/local/cuda/lib64/libnl-3.so.200"
"/usr/local/cuda/lib64/libnl-route-3.so.200")
DEPS_SONAME+=(
"libcublas.so.13"
"libcublasLt.so.13"
"libcudart.so.13"
"libnvrtc.so.13"
"libcupti.so.13"
"libibverbs.so.1"
"librdmacm.so.1"
"libmlx5.so.1"
"libnl-3.so.200"
"libnl-route-3.so.200")
export USE_CUPTI_SO=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUFILE=0
else
DEPS_LIST+=(
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/extras/CUPTI/lib64/libcupti.so.12")
DEPS_SONAME+=(
"libnvToolsExt.so.1"
"libcublas.so.12"
"libcublasLt.so.12"
"libcudart.so.12"
"libnvrtc.so.12"
"libcupti.so.12")
if [[ $CUDA_VERSION != 12.9* ]]; then
DEPS_LIST+=("/usr/local/cuda/lib64/libnvToolsExt.so.1")
DEPS_SONAME+=("libnvToolsExt.so.1")
fi
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/nvshmem/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/cusparselt/lib'
)
if [[ $CUDA_VERSION == 13* ]]; then
CUDA_RPATHS+=('$ORIGIN/../../nvidia/cu13/lib')
else
CUDA_RPATHS+=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/cusparselt/lib'
'$ORIGIN/../../cusparselt/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvshmem/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
'$ORIGIN/../../nvidia/cufile/lib'
)
fi
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'

View File

@ -104,7 +104,7 @@ if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling -m pip install . -v --no-build-isolation at $(date)"
echo "Calling 'python -m pip install .' at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"

View File

@ -107,10 +107,6 @@ if [[ $ROCM_INT -ge 60200 ]]; then
ROCM_SO_FILES+=("librocm-core.so")
fi
if [[ $ROCM_INT -ge 70000 ]]; then
ROCM_SO_FILES+=("librocroller.so")
fi
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"CentOS Linux"* || "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"

View File

@ -89,7 +89,7 @@ fi
if [[ "$BUILD_ENVIRONMENT" == *aarch64* ]]; then
export USE_MKLDNN=1
export USE_MKLDNN_ACL=1
export ACL_ROOT_DIR=/acl
export ACL_ROOT_DIR=/ComputeLibrary
fi
if [[ "$BUILD_ENVIRONMENT" == *riscv64* ]]; then
@ -195,16 +195,8 @@ fi
# We only build FlashAttention files for CUDA 8.0+, and they require large amounts of
# memory to build and will OOM
if [[ "$BUILD_ENVIRONMENT" == *cuda* ]] && echo "${TORCH_CUDA_ARCH_LIST}" | tr ' ' '\n' | sed 's/$/>= 8.0/' | bc | grep -q 1; then
J=2 # default to 2 jobs
case "$RUNNER" in
linux.12xlarge.memory|linux.24xlarge.memory)
J=24
;;
esac
echo "Building FlashAttention with job limit $J"
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j ${J}"
export BUILD_CUSTOM_STEP="ninja -C build flash_attention -j 2"
fi
if [[ "${BUILD_ENVIRONMENT}" == *clang* ]]; then
@ -290,13 +282,13 @@ else
WERROR=1 python setup.py clean
WERROR=1 python -m build --wheel --no-isolation
WERROR=1 python setup.py bdist_wheel
else
python setup.py clean
if [[ "$BUILD_ENVIRONMENT" == *xla* ]]; then
source .ci/pytorch/install_cache_xla.sh
fi
python -m build --wheel --no-isolation
python setup.py bdist_wheel
fi
pip_install_whl "$(echo dist/*.whl)"

View File

@ -300,3 +300,24 @@ except RuntimeError as e:
exit 1
fi
fi
###############################################################################
# Check for C++ ABI compatibility to GCC-11 - GCC 13
###############################################################################
if [[ "$(uname)" == 'Linux' && "$PACKAGE_TYPE" == 'manywheel' ]]; then
pushd /tmp
# Per https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
# gcc-11 is ABI16, gcc-13 is ABI18, gcc-14 is ABI19
# gcc 11 - CUDA 11.8, xpu, rocm
# gcc 13 - CUDA 12.6, 12.8 and cpu
# Please see issue for reference: https://github.com/pytorch/pytorch/issues/152426
if [[ "$(uname -m)" == "s390x" ]]; then
cxx_abi="19"
elif [[ "$DESIRED_CUDA" != 'xpu' && "$DESIRED_CUDA" != 'rocm'* ]]; then
cxx_abi="18"
else
cxx_abi="16"
fi
python -c "import torch; exit(0 if torch._C._PYBIND11_BUILD_ABI == '_cxxabi10${cxx_abi}' else 1)"
popd
fi

View File

@ -149,19 +149,6 @@ function get_pinned_commit() {
cat .github/ci_commit_pins/"${1}".txt
}
function detect_cuda_arch() {
if [[ "${BUILD_ENVIRONMENT}" == *cuda* ]]; then
if command -v nvidia-smi; then
TORCH_CUDA_ARCH_LIST=$(nvidia-smi --query-gpu=compute_cap --format=csv | tail -n 1)
elif [[ "${TEST_CONFIG}" == *nogpu* ]]; then
# There won't be nvidia-smi in nogpu tests, so just set TORCH_CUDA_ARCH_LIST to the default
# minimum supported value here
TORCH_CUDA_ARCH_LIST=8.0
fi
export TORCH_CUDA_ARCH_LIST
fi
}
function install_torchaudio() {
local commit
commit=$(get_pinned_commit audio)
@ -258,19 +245,11 @@ function install_torchrec_and_fbgemm() {
git clone --recursive https://github.com/pytorch/fbgemm
pushd fbgemm/fbgemm_gpu
git checkout "${fbgemm_commit}" --recurse-submodules
# until the fbgemm_commit includes the tbb patch
patch <<'EOF'
--- a/FbgemmGpu.cmake
+++ b/FbgemmGpu.cmake
@@ -184,5 +184,6 @@ gpu_cpp_library(
fbgemm_gpu_tbe_cache
fbgemm_gpu_tbe_optimizers
fbgemm_gpu_tbe_utils
+ tbb
DESTINATION
fbgemm_gpu)
EOF
python setup.py bdist_wheel --build-variant=rocm
python setup.py bdist_wheel \
--build-variant=rocm \
-DHIP_ROOT_DIR="${ROCM_PATH}" \
-DCMAKE_C_FLAGS="-DTORCH_USE_HIP_DSA" \
-DCMAKE_CXX_FLAGS="-DTORCH_USE_HIP_DSA"
popd
# Save the wheel before cleaning up

View File

@ -58,7 +58,7 @@ time python tools/setup_helpers/generate_code.py \
# Build the docs
pushd docs/cpp
time make VERBOSE=1 html
time make VERBOSE=1 html -j
popd
popd

View File

@ -0,0 +1,40 @@
#!/bin/bash
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.ci/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex -o pipefail
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ "$version" == "main" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd

View File

@ -36,11 +36,11 @@ fi
print_cmake_info
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python -m build --wheel --no-isolation
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python -m build --wheel --no-isolation -C--build-option=--plat-name=macosx_11_0_arm64
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
fi
if which sccache > /dev/null; then
print_sccache_stats

View File

@ -55,7 +55,7 @@ test_python_shard() {
setup_test_python
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "$1" "$NUM_TEST_SHARDS"
time python test/run_test.py --verbose --exclude-jit-executor --exclude-distributed-tests --shard "$1" "$NUM_TEST_SHARDS"
assert_git_not_dirty
}
@ -195,7 +195,7 @@ torchbench_setup_macos() {
git checkout "$(cat ../.github/ci_commit_pins/vision.txt)"
git submodule update --init --recursive
python setup.py clean
python -m pip install -e . -v --no-build-isolation
python setup.py develop
popd
pushd torchaudio
@ -204,7 +204,7 @@ torchbench_setup_macos() {
git submodule update --init --recursive
python setup.py clean
#TODO: Remove me, when figure out how to make TorchAudio find brew installed openmp
USE_OPENMP=0 python -m pip install -e . -v --no-build-isolation
USE_OPENMP=0 python setup.py develop
popd
checkout_install_torchbench
@ -302,47 +302,6 @@ test_torchbench_smoketest() {
fi
done
echo "Pytorch benchmark on mps device completed"
}
test_aoti_torchbench_smoketest() {
print_cmake_info
echo "Launching AOTInductor torchbench setup"
pip_benchmark_deps
# shellcheck disable=SC2119,SC2120
torchbench_setup_macos
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
local device=mps
local dtypes=(undefined float16 bfloat16 notset)
local dtype=${dtypes[$1]}
local models=(hf_T5 llama BERT_pytorch dcgan hf_GPT2 yolov3 resnet152 sam sam_fast pytorch_unet stable_diffusion_text_encoder speech_transformer Super_SloMo doctr_det_predictor doctr_reco_predictor timm_resnet timm_vovnet vgg16)
echo "Launching torchbench inference performance run for AOT Inductor and dtype ${dtype}"
local dtype_arg="--${dtype}"
if [ "$dtype" == notset ]; then
dtype_arg="--float32"
fi
touch "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_performance.csv"
for model in "${models[@]}"; do
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--performance --only "$model" --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/torchbench.py \
--accuracy --only "$model" --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/aot_inductor_torchbench_${dtype}_inference_${device}_accuracy.csv" || true
done
echo "Launching HuggingFace inference performance run for AOT Inductor and dtype ${dtype}"
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--performance --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/aot_inductor_huggingface_${dtype}_inference_${device}_performance.csv" || true
PYTHONPATH="$(pwd)"/torchbench python benchmarks/dynamo/huggingface.py \
--accuracy --export-aot-inductor --inference --devices "$device" "$dtype_arg" \
--output "$TEST_REPORTS_DIR/aot_inductor_huggingface_${dtype}_inference_${device}_accuracy.csv" || true
echo "Pytorch benchmark on mps device completed"
}
@ -391,8 +350,6 @@ elif [[ $TEST_CONFIG == *"perf_timm"* ]]; then
test_timm_perf
elif [[ $TEST_CONFIG == *"perf_smoketest"* ]]; then
test_torchbench_smoketest "${SHARD_NUMBER}"
elif [[ $TEST_CONFIG == *"aot_inductor_perf_smoketest"* ]]; then
test_aoti_torchbench_smoketest "${SHARD_NUMBER}"
elif [[ $TEST_CONFIG == *"mps"* ]]; then
test_python_mps
elif [[ $NUM_TEST_SHARDS -gt 1 ]]; then

View File

@ -26,7 +26,6 @@ if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
time python test/run_test.py --verbose -i distributed/test_aten_comm_compute_reordering
time python test/run_test.py --verbose -i distributed/test_store
time python test/run_test.py --verbose -i distributed/test_symmetric_memory
time python test/run_test.py --verbose -i distributed/test_pg_wrapper
@ -46,7 +45,6 @@ if [[ "${SHARD_NUMBER:-2}" == "2" ]]; then
# DTensor tests
time python test/run_test.py --verbose -i distributed/tensor/test_random_ops
time python test/run_test.py --verbose -i distributed/tensor/test_dtensor_compile
time python test/run_test.py --verbose -i distributed/tensor/test_utils.py
# DeviceMesh test
time python test/run_test.py --verbose -i distributed/test_device_mesh

View File

@ -1,25 +0,0 @@
From 6e08c9d08e9de59c7af28b720289debbbd384764 Mon Sep 17 00:00:00 2001
From: Michael Wang <13521008+isVoid@users.noreply.github.com>
Date: Tue, 1 Apr 2025 17:28:05 -0700
Subject: [PATCH] Avoid bumping certain driver API to avoid future breakage
(#185)
Co-authored-by: isVoid <isVoid@users.noreply.github.com>
---
numba_cuda/numba/cuda/cudadrv/driver.py | 3 +++
1 file changed, 3 insertions(+)
diff --git a/numba_cuda/numba/cuda/cudadrv/driver.py b/numba_cuda/numba/cuda/cudadrv/driver.py
index 1641bf77..233e9ed7 100644
--- a/numba_cuda/numba/cuda/cudadrv/driver.py
+++ b/numba_cuda/numba/cuda/cudadrv/driver.py
@@ -365,6 +365,9 @@ def _find_api(self, fname):
else:
variants = ('_v2', '')
+ if fname in ("cuCtxGetDevice", "cuCtxSynchronize"):
+ return getattr(self.lib, fname)
+
for variant in variants:
try:
return getattr(self.lib, f'{fname}{variant}')

View File

@ -386,8 +386,8 @@ def smoke_test_compile(device: str = "cpu") -> None:
def smoke_test_nvshmem() -> None:
if not torch.cuda.is_available() or target_os == "windows":
print("Windows platform or CUDA is not available, skipping NVSHMEM test")
if not torch.cuda.is_available():
print("CUDA is not available, skipping NVSHMEM test")
return
# Check if NVSHMEM is compiled in current build
@ -396,9 +396,7 @@ def smoke_test_nvshmem() -> None:
except ImportError:
# Not built with NVSHMEM support.
# torch is not compiled with NVSHMEM prior to 2.9
from torch.torch_version import TorchVersion
if TorchVersion(torch.__version__) < (2, 9):
if torch.__version__ < "2.9":
return
else:
# After 2.9: NVSHMEM is expected to be compiled in current build

View File

@ -32,16 +32,6 @@ if [[ "$BUILD_ENVIRONMENT" != *rocm* && "$BUILD_ENVIRONMENT" != *s390x* && -d /v
git config --global --add safe.directory /var/lib/jenkins/workspace
fi
# Patch numba to avoid CUDA-13 crash, see https://github.com/pytorch/pytorch/issues/162878
NUMBA_CUDA_DIR=$(python -c "import os;import numba.cuda; print(os.path.dirname(numba.cuda.__file__))" 2>/dev/null || true)
if [ -n "$NUMBA_CUDA_DIR" ]; then
NUMBA_PATCH="$(dirname "$(realpath "${BASH_SOURCE[0]}")")/numba-cuda-13.patch"
pushd "$NUMBA_CUDA_DIR"
patch -p4 <"$NUMBA_PATCH"
popd
fi
echo "Environment variables:"
env
@ -101,7 +91,6 @@ if [[ "$BUILD_ENVIRONMENT" == *clang9* || "$BUILD_ENVIRONMENT" == *xpu* ]]; then
export VALGRIND=OFF
fi
detect_cuda_arch
if [[ "$BUILD_ENVIRONMENT" == *s390x* ]]; then
# There are additional warnings on s390x, maybe due to newer gcc.
@ -322,29 +311,23 @@ test_python_shard() {
# modify LD_LIBRARY_PATH to ensure it has the conda env.
# This set of tests has been shown to be buggy without it for the split-build
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --shard "$1" "$NUM_TEST_SHARDS" --verbose $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python() {
# shellcheck disable=SC2086
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
time python test/run_test.py --exclude-jit-executor --exclude-distributed-tests $INCLUDE_CLAUSE --verbose $PYTHON_TEST_EXTRA_OPTION
assert_git_not_dirty
}
test_python_smoke() {
# Smoke tests for H100/B200
# Smoke tests for H100
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 inductor/test_max_autotune $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_python_smoke_b200() {
# Targeted smoke tests for B200 - staged approach to avoid too many failures
time python test/run_test.py --include test_matmul_cuda inductor/test_fp8 $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
assert_git_not_dirty
}
test_h100_distributed() {
# Distributed tests at H100
time python test/run_test.py --include distributed/_composable/test_composability/test_pp_composability.py $PYTHON_TEST_EXTRA_OPTION --upload-artifacts-while-running
@ -390,7 +373,6 @@ test_dynamo_wrapped_shard() {
--exclude-distributed-tests \
--exclude-torch-export-tests \
--exclude-aot-dispatch-tests \
--exclude-quantization-tests \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose \
--upload-artifacts-while-running
@ -435,7 +417,7 @@ test_inductor_distributed() {
# this runs on both single-gpu and multi-gpu instance. It should be smart about skipping tests that aren't supported
# with if required # gpus aren't available
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_aten_comm_compute_reordering distributed/test_compute_comm_reordering --verbose
python test/run_test.py --include distributed/test_dynamo_distributed distributed/test_inductor_collectives distributed/test_compute_comm_reordering --verbose
assert_git_not_dirty
}
@ -513,14 +495,6 @@ test_inductor_cpp_wrapper_shard() {
-k 'take' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
if [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
python test/run_test.py \
--include inductor/test_mkldnn_pattern_matcher \
-k 'xpu' \
--shard "$1" "$NUM_TEST_SHARDS" \
--verbose
fi
}
# "Global" flags for inductor benchmarking controlled by TEST_CONFIG
@ -1163,12 +1137,6 @@ test_distributed() {
fi
}
test_quantization() {
echo "Testing quantization"
python test/test_quantization.py
}
test_rpc() {
echo "Testing RPC C++ tests"
# NB: the ending test_rpc must match the current function name for the current
@ -1415,7 +1383,7 @@ EOF
pip3 install -r requirements.txt
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
python -m build --wheel --no-isolation -C--build-option=--bdist-dir="base_bdist_tmp" --outdir "base_dist"
python setup.py bdist_wheel --bdist-dir="base_bdist_tmp" --dist-dir="base_dist"
python -mpip install base_dist/*.whl
echo "::endgroup::"
@ -1563,10 +1531,14 @@ test_executorch() {
install_torchvision
install_torchaudio
INSTALL_SCRIPT="$(pwd)/.ci/docker/common/install_executorch.sh"
pushd /executorch
"${INSTALL_SCRIPT}" setup_executorch
export PYTHON_EXECUTABLE=python
export CMAKE_ARGS="-DEXECUTORCH_BUILD_PYBIND=ON -DEXECUTORCH_BUILD_XNNPACK=ON -DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON"
# NB: We need to rebuild ExecuTorch runner here because it depends on PyTorch
# from the PR
bash .ci/scripts/setup-linux.sh --build-tool cmake
echo "Run ExecuTorch unit tests"
pytest -v -n auto
@ -1580,14 +1552,17 @@ test_executorch() {
popd
# Test torchgen generated code for Executorch.
echo "Testing ExecuTorch op registration"
"$BUILD_BIN_DIR"/test_edge_op_registration
assert_git_not_dirty
}
test_linux_aarch64() {
python test/run_test.py --include test_modules test_mkldnn test_mkldnn_fusion test_openmp test_torch test_dynamic_shapes \
test_transformers test_multiprocessing test_numpy_interop test_autograd test_binary_ufuncs test_complex test_spectral_ops \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops profiler/test_memory_profiler \
distributed/elastic/timer/api_test distributed/elastic/timer/local_timer_example distributed/elastic/timer/local_timer_test \
test_foreach test_reductions test_unary_ufuncs test_tensor_creation_ops test_ops \
--shard "$SHARD_NUMBER" "$NUM_TEST_SHARDS" --verbose
# Dynamo tests
@ -1617,7 +1592,7 @@ test_operator_benchmark() {
test_inductor_set_cpu_affinity
cd benchmarks/operator_benchmark/pt_extension
python -m pip install . -v --no-build-isolation
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
$TASKSET python -m benchmark_all_test --device "$1" --tag-filter "$2" \
@ -1630,25 +1605,6 @@ test_operator_benchmark() {
--expected "expected_ci_operator_benchmark_eager_float32_cpu.csv"
}
test_operator_microbenchmark() {
TEST_REPORTS_DIR=$(pwd)/test/test-reports
mkdir -p "$TEST_REPORTS_DIR"
TEST_DIR=$(pwd)
cd benchmarks/operator_benchmark/pt_extension
python -m pip install .
cd "${TEST_DIR}"/benchmarks/operator_benchmark
for OP_BENCHMARK_TESTS in matmul mm addmm bmm; do
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}_compile.json" \
--benchmark-name "PyTorch operator microbenchmark" --use-compile
$TASKSET python -m pt.${OP_BENCHMARK_TESTS}_test --tag-filter long \
--output-json-for-dashboard "${TEST_REPORTS_DIR}/operator_microbenchmark_${OP_BENCHMARK_TESTS}.json" \
--benchmark-name "PyTorch operator microbenchmark"
done
}
if ! [[ "${BUILD_ENVIRONMENT}" == *libtorch* || "${BUILD_ENVIRONMENT}" == *-bazel-* ]]; then
(cd test && python -c "import torch; print(torch.__config__.show())")
@ -1673,16 +1629,10 @@ elif [[ "${TEST_CONFIG}" == *xla* ]]; then
install_torchvision
build_xla
test_xla
elif [[ "$TEST_CONFIG" == *vllm* ]]; then
echo "vLLM CI uses TORCH_CUDA_ARCH_LIST: $TORCH_CUDA_ARCH_LIST"
(cd .ci/lumen_cli && python -m pip install -e .)
python -m cli.run test external vllm --test-plan "$TEST_CONFIG" --shard-id "$SHARD_NUMBER" --num-shards "$NUM_TEST_SHARDS"
elif [[ "${TEST_CONFIG}" == *executorch* ]]; then
test_executorch
elif [[ "$TEST_CONFIG" == 'jit_legacy' ]]; then
test_python_legacy_jit
elif [[ "$TEST_CONFIG" == 'quantization' ]]; then
test_quantization
elif [[ "${BUILD_ENVIRONMENT}" == *libtorch* ]]; then
# TODO: run some C++ tests
echo "no-op at the moment"
@ -1705,8 +1655,6 @@ elif [[ "${TEST_CONFIG}" == *operator_benchmark* ]]; then
test_operator_benchmark cpu ${TEST_MODE}
fi
elif [[ "${TEST_CONFIG}" == *operator_microbenchmark* ]]; then
test_operator_microbenchmark
elif [[ "${TEST_CONFIG}" == *inductor_distributed* ]]; then
test_inductor_distributed
elif [[ "${TEST_CONFIG}" == *inductor-halide* ]]; then
@ -1760,6 +1708,11 @@ elif [[ "${TEST_CONFIG}" == *inductor_cpp_wrapper* ]]; then
elif [[ "${TEST_CONFIG}" == *inductor* ]]; then
install_torchvision
test_inductor_shard "${SHARD_NUMBER}"
if [[ "${SHARD_NUMBER}" == 1 ]]; then
if [[ "${BUILD_ENVIRONMENT}" != linux-jammy-py3.9-gcc11-build ]]; then
test_inductor_distributed
fi
fi
elif [[ "${TEST_CONFIG}" == *einops* ]]; then
test_einops
elif [[ "${TEST_CONFIG}" == *dynamo_wrapped* ]]; then
@ -1809,14 +1762,10 @@ elif [[ "${BUILD_ENVIRONMENT}" == *xpu* ]]; then
test_xpu_bin
elif [[ "${TEST_CONFIG}" == smoke ]]; then
test_python_smoke
elif [[ "${TEST_CONFIG}" == smoke_b200 ]]; then
test_python_smoke_b200
elif [[ "${TEST_CONFIG}" == h100_distributed ]]; then
test_h100_distributed
elif [[ "${TEST_CONFIG}" == "h100-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == "b200-symm-mem" ]]; then
test_h100_symm_mem
elif [[ "${TEST_CONFIG}" == h100_cutlass_backend ]]; then
test_h100_cutlass_backend
else

View File

@ -1,32 +0,0 @@
#!/bin/bash
set -ex -o pipefail
# Suppress ANSI color escape sequences
export TERM=vt100
# shellcheck source=./common.sh
source "$(dirname "${BASH_SOURCE[0]}")/common.sh"
# shellcheck source=./common-build.sh
source "$(dirname "${BASH_SOURCE[0]}")/common-build.sh"
echo "Environment variables"
env
echo "Testing FA3 stable wheel still works with currently built torch"
echo "Installing ABI Stable FA3 wheel"
# The wheel was built on https://github.com/Dao-AILab/flash-attention/commit/b3846b059bf6b143d1cd56879933be30a9f78c81
# on torch nightly torch==2.9.0.dev20250830+cu129
$MAYBE_SUDO pip -q install https://s3.amazonaws.com/ossci-linux/wheels/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl
pushd flash-attention/hopper
export PYTHONPATH=$PWD
pytest -v -s \
"test_flash_attn.py::test_flash_attn_output[1-1-192-False-False-False-0.0-False-False-mha-dtype0]" \
"test_flash_attn.py::test_flash_attn_varlen_output[511-1-64-True-False-False-0.0-False-False-gqa-dtype2]" \
"test_flash_attn.py::test_flash_attn_kvcache[1-128-128-False-False-True-None-0.0-False-False-True-False-True-False-gqa-dtype0]" \
"test_flash_attn.py::test_flash_attn_race_condition[97-97-192-True-dtype0]" \
"test_flash_attn.py::test_flash_attn_combine[2-3-64-dtype1]" \
"test_flash_attn.py::test_flash3_bw_compatibility"
popd

View File

@ -70,7 +70,7 @@ sccache --zero-stats
sccache --show-stats
# Build the wheel
python -m build --wheel --no-build-isolation
python setup.py bdist_wheel
if ($LASTEXITCODE -ne 0) { exit 1 }
# Install the wheel locally

View File

@ -38,12 +38,10 @@ if errorlevel 1 goto fail
if not errorlevel 0 goto fail
:: Update CMake
:: TODO: Investigate why this helps MKL detection, even when CMake from choco is not used
call choco upgrade -y cmake --no-progress --installargs 'ADD_CMAKE_TO_PATH=System' --apply-install-arguments-to-dependencies --version=3.27.9
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
:: TODO: Move to .ci/docker/requirements-ci.txt
call pip install mkl==2024.2.0 mkl-static==2024.2.0 mkl-include==2024.2.0
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
@ -132,14 +130,14 @@ if "%USE_CUDA%"=="1" (
:: Print all existing environment variable for debugging
set
python -m build --wheel --no-isolation
python setup.py bdist_wheel
if errorlevel 1 goto fail
if not errorlevel 0 goto fail
sccache --show-stats
python -c "import os, glob; os.system('python -mpip install --no-index --no-deps ' + glob.glob('dist/*.whl')[0])"
(
if "%BUILD_ENVIRONMENT%"=="" (
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%\envs\py_tmp` in Command Prompt before running Git Bash.
echo NOTE: To run `import torch`, please make sure to activate the conda environment by running `call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3` in Command Prompt before running Git Bash.
) else (
copy /Y "dist\*.whl" "%PYTORCH_FINAL_PACKAGE_DIR%"

View File

@ -3,12 +3,12 @@ if "%BUILD_ENVIRONMENT%"=="" (
) else (
set CONDA_PARENT_DIR=C:\Jenkins
)
set CONDA_ROOT_DIR=%CONDA_PARENT_DIR%\Miniconda3
:: Be conservative here when rolling out the new AMI with conda. This will try
:: to install conda as before if it couldn't find the conda installation. This
:: can be removed eventually after we gain enough confidence in the AMI
if not exist %CONDA_ROOT_DIR% (
if not exist %CONDA_PARENT_DIR%\Miniconda3 (
set INSTALL_FRESH_CONDA=1
)
@ -17,14 +17,10 @@ if "%INSTALL_FRESH_CONDA%"=="1" (
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_ROOT_DIR%
%TMP_DIR_WIN%\Miniconda3-latest-Windows-x86_64.exe /InstallationType=JustMe /RegisterPython=0 /S /AddToPath=0 /D=%CONDA_PARENT_DIR%\Miniconda3
if errorlevel 1 exit /b
if not errorlevel 0 exit /b
)
:: Activate conda so that we can use its commands, i.e. conda, python, pip
call %CONDA_ROOT_DIR%\Scripts\activate.bat %CONDA_ROOT_DIR%
:: Activate conda so that we can use its commands, i.e. conda, python, pip
call conda activate py_tmp
call pip install -r .ci/docker/requirements-ci.txt
call %CONDA_PARENT_DIR%\Miniconda3\Scripts\activate.bat %CONDA_PARENT_DIR%\Miniconda3

View File

@ -14,7 +14,7 @@ if not errorlevel 0 exit /b
:: build\torch. Rather than changing all these references, making a copy of torch folder
:: from conda to the current workspace is easier. The workspace will be cleaned up after
:: the job anyway
xcopy /s %CONDA_ROOT_DIR%\envs\py_tmp\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
xcopy /s %CONDA_PARENT_DIR%\Miniconda3\Lib\site-packages\torch %TMP_DIR_WIN%\build\torch\
pushd .
if "%VC_VERSION%" == "" (

View File

@ -25,7 +25,7 @@ echo Copying over test times file
robocopy /E "%PYTORCH_FINAL_PACKAGE_DIR_WIN%\.additional_ci_files" "%PROJECT_DIR_WIN%\.additional_ci_files"
echo Run nn tests
python run_test.py --exclude-jit-executor --exclude-distributed-tests --exclude-quantization-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
python run_test.py --exclude-jit-executor --exclude-distributed-tests --shard "%SHARD_NUMBER%" "%NUM_TEST_SHARDS%" --verbose
if ERRORLEVEL 1 goto fail
popd

View File

@ -37,8 +37,23 @@ if [[ "$BUILD_ENVIRONMENT" == *cuda* ]]; then
export PYTORCH_TESTING_DEVICE_ONLY_FOR="cuda"
fi
# TODO: Move this to .ci/docker/requirements-ci.txt
python -m pip install "psutil==5.9.1" "pynvml==11.4.1" "pytest-shard==0.1.2"
# TODO: Move both of them to Windows AMI
python -m pip install pytest-rerunfailures==10.3 pytest-cpp==2.3.0 tensorboard==2.13.0 protobuf==5.29.4 pytest-subtests==0.13.1
# Install Z3 optional dependency for Windows builds.
python -m pip install z3-solver==4.15.1.0
# Install tlparse for test\dynamo\test_structured_trace.py UTs.
python -m pip install tlparse==0.3.30
# Install parameterized
python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
# Install expecttest to merge https://github.com/pytorch/pytorch/pull/155308
python -m pip install expecttest==0.3.0
run_tests() {
# Run nvidia-smi if available

View File

@ -48,7 +48,7 @@ sccache --zero-stats
sccache --show-stats
:: Call PyTorch build script
python -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
python setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
:: show sccache stats
sccache --show-stats

View File

@ -1,59 +0,0 @@
@echo off
set MODULE_NAME=pytorch
IF NOT EXIST "setup.py" IF NOT EXIST "%MODULE_NAME%" (
call internal\clone.bat
cd %~dp0
) ELSE (
call internal\clean.bat
)
IF ERRORLEVEL 1 goto :eof
call internal\check_deps.bat
IF ERRORLEVEL 1 goto :eof
REM Check for optional components
set USE_CUDA=
set CMAKE_GENERATOR=Visual Studio 15 2017 Win64
IF "%NVTOOLSEXT_PATH%"=="" (
IF EXIST "C:\Program Files\NVIDIA Corporation\NvToolsExt\lib\x64\nvToolsExt64_1.lib" (
set NVTOOLSEXT_PATH=C:\Program Files\NVIDIA Corporation\NvToolsExt
) ELSE (
echo NVTX ^(Visual Studio Extension ^for CUDA^) ^not installed, failing
exit /b 1
)
)
IF "%CUDA_PATH_V130%"=="" (
IF EXIST "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0\bin\nvcc.exe" (
set "CUDA_PATH_V130=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.0"
) ELSE (
echo CUDA 13.0 not found, failing
exit /b 1
)
)
IF "%BUILD_VISION%" == "" (
set TORCH_CUDA_ARCH_LIST=7.5;8.0;8.6;9.0;10.0;12.0
set TORCH_NVCC_FLAGS=-Xfatbin -compress-all
) ELSE (
set NVCC_FLAGS=-D__CUDA_NO_HALF_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_90,code=compute_90 -gencode=arch=compute_100,code=compute_100 -gencode=arch=compute_120,code=compute_120
)
set "CUDA_PATH=%CUDA_PATH_V130%"
set "PATH=%CUDA_PATH_V130%\bin;%PATH%"
:optcheck
call internal\check_opts.bat
IF ERRORLEVEL 1 goto :eof
if exist "%NIGHTLIES_PYTORCH_ROOT%" cd %NIGHTLIES_PYTORCH_ROOT%\..
call %~dp0\internal\copy.bat
IF ERRORLEVEL 1 goto :eof
call %~dp0\internal\setup.bat
IF ERRORLEVEL 1 goto :eof

View File

@ -1,20 +1,12 @@
if %CUDA_VERSION% geq 130 (
set "dll_path=bin\x64"
) else (
set "dll_path=bin"
)
copy "%CUDA_PATH%\%dll_path%\cusparse*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cublas*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cudart*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\curand*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cufft*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\cusolver*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\%dll_path%\nvJitLink_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cusparse*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cublas*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudart*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\curand*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cufft*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cusolver*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\cudnn*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\bin\nvrtc*64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\cupti64_*.dll*" pytorch\torch\lib
copy "%CUDA_PATH%\extras\CUPTI\lib64\nvperf_host*.dll*" pytorch\torch\lib
@ -28,3 +20,8 @@ copy "%libuv_ROOT%\bin\uv.dll" pytorch\torch\lib
if exist "C:\Windows\System32\zlibwapi.dll" (
copy "C:\Windows\System32\zlibwapi.dll" pytorch\torch\lib
)
::copy nvJitLink dll is requires for cuda 12+
if exist "%CUDA_PATH%\bin\nvJitLink_*.dll*" (
copy "%CUDA_PATH%\bin\nvJitLink_*.dll*" pytorch\torch\lib
)

View File

@ -26,7 +26,6 @@ if exist "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v%CUDA_VERSION_STR%
if %CUDA_VER% EQU 126 goto cuda126
if %CUDA_VER% EQU 128 goto cuda128
if %CUDA_VER% EQU 129 goto cuda129
if %CUDA_VER% EQU 130 goto cuda130
echo CUDA %CUDA_VERSION_STR% is not supported
exit /b 1
@ -114,33 +113,6 @@ xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda130
set CUDA_INSTALL_EXE=cuda_13.0.0_windows.exe
if not exist "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" (
curl -k -L "https://ossci-windows.s3.amazonaws.com/%CUDA_INSTALL_EXE%" --output "%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDA_SETUP_FILE=%SRC_DIR%\temp_build\%CUDA_INSTALL_EXE%"
set "ARGS="
)
set CUDNN_FOLDER=cudnn-windows-x86_64-9.12.0.46_cuda13-archive
set CUDNN_LIB_FOLDER="lib"
set "CUDNN_INSTALL_ZIP=%CUDNN_FOLDER%.zip"
if not exist "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" (
curl -k -L "http://s3.amazonaws.com/ossci-windows/%CUDNN_INSTALL_ZIP%" --output "%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%" & REM @lint-ignore
if errorlevel 1 exit /b 1
set "CUDNN_SETUP_FILE=%SRC_DIR%\temp_build\%CUDNN_INSTALL_ZIP%"
)
@REM cuDNN 8.3+ required zlib to be installed on the path
echo Installing ZLIB dlls
curl -k -L "http://s3.amazonaws.com/ossci-windows/zlib123dllx64.zip" --output "%SRC_DIR%\temp_build\zlib123dllx64.zip"
7z x "%SRC_DIR%\temp_build\zlib123dllx64.zip" -o"%SRC_DIR%\temp_build\zlib"
xcopy /Y "%SRC_DIR%\temp_build\zlib\dll_x64\*.dll" "C:\Windows\System32"
goto cuda_common
:cuda_common
:: NOTE: We only install CUDA if we don't have it installed already.
:: With GHA runners these should be pre-installed as part of our AMI process

View File

@ -1,9 +1,9 @@
set WIN_DRIVER_VN=580.88
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe" & REM @lint-ignore
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe
set WIN_DRIVER_VN=528.89
set "DRIVER_DOWNLOAD_LINK=https://ossci-windows.s3.amazonaws.com/%WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe" & REM @lint-ignore
curl --retry 3 -kL %DRIVER_DOWNLOAD_LINK% --output %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe
if errorlevel 1 exit /b 1
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe -s -noreboot
start /wait %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe -s -noreboot
if errorlevel 1 exit /b 1
del %WIN_DRIVER_VN%-data-center-tesla-desktop-win10-win11-64bit-dch-international.exe || ver > NUL
del %WIN_DRIVER_VN%-data-center-tesla-desktop-winserver-2016-2019-2022-dch-international.exe || ver > NUL

View File

@ -28,5 +28,5 @@ start /wait "" python-amd64.exe /quiet InstallAllUsers=1 PrependPath=0 Include_t
if errorlevel 1 exit /b 1
set "PATH=%CD%\Python\Scripts;%CD%\Python;%PATH%"
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel build
%PYTHON_EXEC% -m pip install --upgrade pip setuptools packaging wheel
if errorlevel 1 exit /b 1

View File

@ -86,7 +86,7 @@ copy /Y "%LIBTORCH_PREFIX%-%PYTORCH_BUILD_VERSION%.zip" "%PYTORCH_FINAL_PACKAGE_
goto build_end
:pytorch
%PYTHON_EXEC% -m build --wheel --no-isolation --outdir "%PYTORCH_FINAL_PACKAGE_DIR%"
%PYTHON_EXEC% setup.py bdist_wheel -d "%PYTORCH_FINAL_PACKAGE_DIR%"
:build_end
IF ERRORLEVEL 1 exit /b 1

View File

@ -63,7 +63,7 @@ if errorlevel 1 exit /b 1
call %CONDA_HOME%\condabin\activate.bat testenv
if errorlevel 1 exit /b 1
call conda install -y -q -c conda-forge libuv=1.51
call conda install -y -q -c conda-forge libuv=1.39
call conda install -y -q intel-openmp
echo "install and test libtorch"

View File

@ -13,9 +13,9 @@ if not exist "%SRC_DIR%\temp_build" mkdir "%SRC_DIR%\temp_build"
:xpu_bundle_install_start
set XPU_BUNDLE_PARENT_DIR=C:\Program Files (x86)\Intel\oneAPI
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/75d4eb97-914a-4a95-852c-7b9733d80f74/intel-deep-learning-essentials-2025.1.3.8_offline.exe
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/9d6d6c17-ca2d-4735-9331-99447e4a1280/intel-deep-learning-essentials-2025.0.1.28_offline.exe
set XPU_BUNDLE_PRODUCT_NAME=intel.oneapi.win.deep-learning-essentials.product
set XPU_BUNDLE_VERSION=2025.1.3+5
set XPU_BUNDLE_VERSION=2025.0.1+20
set XPU_BUNDLE_INSTALLED=0
set XPU_BUNDLE_UNINSTALL=0
set XPU_EXTRA_URL=NULL
@ -24,9 +24,9 @@ set XPU_EXTRA_VERSION=2025.0.1+1226
set XPU_EXTRA_INSTALLED=0
set XPU_EXTRA_UNINSTALL=0
if not [%XPU_VERSION%]==[] if [%XPU_VERSION%]==[2025.2] (
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
set XPU_BUNDLE_VERSION=2025.2.1+20
if not [%XPU_VERSION%]==[] if [%XPU_VERSION%]==[2025.1] (
set XPU_BUNDLE_URL=https://registrationcenter-download.intel.com/akdlm/IRC_NAS/75d4eb97-914a-4a95-852c-7b9733d80f74/intel-deep-learning-essentials-2025.1.3.8_offline.exe
set XPU_BUNDLE_VERSION=2025.1.3+5
)
:: Check if XPU bundle is target version or already installed
@ -90,3 +90,14 @@ if errorlevel 1 exit /b 1
del xpu_extra.exe
:xpu_install_end
if not "%XPU_ENABLE_KINETO%"=="1" goto install_end
:: Install Level Zero SDK
set XPU_EXTRA_LZ_URL=https://github.com/oneapi-src/level-zero/releases/download/v1.14.0/level-zero-sdk_1.14.0.zip
curl -k -L %XPU_EXTRA_LZ_URL% --output "%SRC_DIR%\temp_build\level_zero_sdk.zip"
echo "Installing level zero SDK..."
7z x "%SRC_DIR%\temp_build\level_zero_sdk.zip" -o"%SRC_DIR%\temp_build\level_zero"
set "INCLUDE=%SRC_DIR%\temp_build\level_zero\include;%INCLUDE%"
del "%SRC_DIR%\temp_build\level_zero_sdk.zip"
:install_end

View File

@ -18,7 +18,7 @@ if "%DESIRED_PYTHON%" == "3.9" %PYTHON_EXEC% -m pip install numpy==2.0.2 cmake
%PYTHON_EXEC% -m pip install pyyaml
%PYTHON_EXEC% -m pip install mkl-include mkl-static
%PYTHON_EXEC% -m pip install boto3 requests ninja typing_extensions setuptools==72.1.0
%PYTHON_EXEC% -m pip install boto3 ninja typing_extensions setuptools==72.1.0
where cmake.exe

View File

@ -85,7 +85,7 @@ mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
# Create an isolated directory to store this builds pytorch checkout and conda
# installation
if [[ -z "$MAC_PACKAGE_WORK_DIR" ]]; then
MAC_PACKAGE_WORK_DIR="$(pwd)/tmp_wheel_${DESIRED_PYTHON}_$(date +%H%M%S)"
MAC_PACKAGE_WORK_DIR="$(pwd)/tmp_wheel_conda_${DESIRED_PYTHON}_$(date +%H%M%S)"
fi
mkdir -p "$MAC_PACKAGE_WORK_DIR" || true
if [[ -n ${GITHUB_ACTIONS} ]]; then
@ -96,11 +96,11 @@ fi
whl_tmp_dir="${MAC_PACKAGE_WORK_DIR}/dist"
mkdir -p "$whl_tmp_dir"
mac_version='macosx-11_0-arm64'
mac_version='macosx_11_0_arm64'
libtorch_arch='arm64'
# Create a consistent wheel package name to rename the wheel to
wheel_filename_new="${TORCH_PACKAGE_NAME}-${build_version}${build_number_prefix}-cp${python_nodot}-none-${mac_version//[-,]/_}.whl"
wheel_filename_new="${TORCH_PACKAGE_NAME}-${build_version}${build_number_prefix}-cp${python_nodot}-none-${mac_version}.whl"
###########################################################
@ -124,58 +124,88 @@ popd
export TH_BINARY_BUILD=1
export INSTALL_TEST=0 # dont install test binaries into site-packages
export MACOSX_DEPLOYMENT_TARGET=11.0
export MACOSX_DEPLOYMENT_TARGET=10.15
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
SETUPTOOLS_PINNED_VERSION="==70.1.0"
PYYAML_PINNED_VERSION="=5.3"
EXTRA_CONDA_INSTALL_FLAGS=""
CONDA_ENV_CREATE_FLAGS=""
RENAME_WHEEL=true
case $desired_python in
3.14t)
echo "Using 3.14 deps"
mac_version='macosx-11.0-arm64'
NUMPY_PINNED_VERSION="==2.1.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
desired_python="3.14.0rc1"
RENAME_WHEEL=false
;;
3.14)
echo "Using 3.14t deps"
mac_version='macosx-11.0-arm64'
NUMPY_PINNED_VERSION="==2.1.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge/label/python_rc -c conda-forge"
desired_python="3.14.0rc1"
RENAME_WHEEL=false
;;
3.13t)
echo "Using 3.13t deps"
mac_version='macosx-11.0-arm64'
NUMPY_PINNED_VERSION="==2.1.0"
echo "Using 3.13 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
CONDA_ENV_CREATE_FLAGS="python-freethreading"
EXTRA_CONDA_INSTALL_FLAGS="-c conda-forge"
desired_python="3.13"
RENAME_WHEEL=false
;;
3.13)
echo "Using 3.13 deps"
NUMPY_PINNED_VERSION="==2.1.0"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.1.0"
;;
3.12)
echo "Using 3.12 deps"
NUMPY_PINNED_VERSION="==2.0.2"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=6.0.1"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.11)
echo "Using 3.11 deps"
NUMPY_PINNED_VERSION="==2.0.2"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.10)
echo "Using 3.10 deps"
NUMPY_PINNED_VERSION="==2.0.2"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
3.9)
echo "Using 3.9 deps"
SETUPTOOLS_PINNED_VERSION=">=70.1.0"
PYYAML_PINNED_VERSION=">=5.3"
NUMPY_PINNED_VERSION="=2.0.2"
;;
*)
echo "Unsupported version $desired_python"
exit 1
echo "Using default deps"
NUMPY_PINNED_VERSION="=1.11.3"
;;
esac
PINNED_PACKAGES=(
"numpy${NUMPY_PINNED_VERSION}"
)
python -mvenv ~/${desired_python}-build
source ~/${desired_python}-build/bin/activate
retry pip install "${PINNED_PACKAGES[@]}" -r "${pytorch_rootdir}/requirements.txt"
# Install into a fresh env
tmp_env_name="wheel_py$python_nodot"
conda create ${EXTRA_CONDA_INSTALL_FLAGS} -yn "$tmp_env_name" python="$desired_python" ${CONDA_ENV_CREATE_FLAGS}
source activate "$tmp_env_name"
retry pip install -r "${pytorch_rootdir}/requirements-build.txt"
pip install "numpy=${NUMPY_PINNED_VERSION}" "pyyaml${PYYAML_PINNED_VERSION}" requests ninja "setuptools${SETUPTOOLS_PINNED_VERSION}" typing-extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
@ -186,11 +216,11 @@ export USE_QNNPACK=OFF
export BUILD_TEST=OFF
pushd "$pytorch_rootdir"
echo "Calling -m build --wheel --no-isolation at $(date)"
echo "Calling setup.py bdist_wheel at $(date)"
_PYTHON_HOST_PLATFORM=${mac_version} ARCHFLAGS="-arch arm64" python -m build --wheel --no-isolation --outdir "$whl_tmp_dir" -C--plat-name="${mac_version//[-.]/_}"
python setup.py bdist_wheel -d "$whl_tmp_dir"
echo "Finished -m build --wheel --no-isolation at $(date)"
echo "Finished setup.py bdist_wheel at $(date)"
if [[ $package_type != 'libtorch' ]]; then
echo "delocating wheel dependencies"

View File

@ -75,8 +75,8 @@ TRITON_VERSION=$(cat $PYTORCH_ROOT/.ci/docker/triton_version.txt)
# Here PYTORCH_EXTRA_INSTALL_REQUIREMENTS is already set for the all the wheel builds hence append TRITON_CONSTRAINT
TRITON_CONSTRAINT="platform_system == 'Linux' and platform_machine == 'x86_64'"
# CUDA 12.9/13.0 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]] || [[ "$DESIRED_CUDA" == "cu130" ]]; then
# CUDA 12.9 builds have triton for Linux and Linux aarch64 binaries.
if [[ "$DESIRED_CUDA" == "cu129" ]]; then
TRITON_CONSTRAINT="platform_system == 'Linux'"
fi

View File

@ -51,12 +51,16 @@ s3_upload() {
s3_upload_dir="${s3_root_dir}/${UPLOAD_SUBFOLDER}/"
fi
(
cache_control_flag=""
if [[ "${UPLOAD_CHANNEL}" = "test" ]]; then
cache_control_flag="--cache-control='no-cache,no-store,must-revalidate'"
fi
for pkg in ${PKG_DIR}/*.${extension}; do
(
set -x
shm_id=$(sha256sum "${pkg}" | awk '{print $1}')
${AWS_S3_CP} --no-progress --acl public-read "${pkg}" "${s3_upload_dir}" \
--metadata "checksum-sha256=${shm_id}"
--metadata "checksum-sha256=${shm_id}" ${cache_control_flag}
)
done
)

View File

@ -15,7 +15,8 @@ fi
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
export VC_YEAR=2022
export USE_SCCACHE=0
export XPU_VERSION=2025.2
export XPU_VERSION=2025.1
export XPU_ENABLE_KINETO=1
fi
echo "Free space on filesystem before build:"

View File

@ -8,7 +8,7 @@ export VC_YEAR=2022
if [[ "$DESIRED_CUDA" == 'xpu' ]]; then
export VC_YEAR=2022
export XPU_VERSION=2025.2
export XPU_VERSION=2025.1
fi
pushd "$PYTORCH_ROOT/.ci/pytorch/"

View File

@ -0,0 +1,47 @@
#!/bin/bash
# =================== The following code **should** be executed inside Docker container ===================
# Install dependencies
sudo apt-get -y update
sudo apt-get -y install expect-dev
# This is where the local pytorch install in the docker image is located
pt_checkout="/var/lib/jenkins/workspace"
source "$pt_checkout/.ci/pytorch/common_utils.sh"
echo "functorch_doc_push_script.sh: Invoked with $*"
set -ex
version=${DOCS_VERSION:-nightly}
echo "version: $version"
# Build functorch docs
pushd $pt_checkout/functorch/docs
pip -q install -r requirements.txt
make html
popd
git clone https://github.com/pytorch/functorch -b gh-pages --depth 1 functorch_ghpages
pushd functorch_ghpages
if [ $version == "main" ]; then
version=nightly
fi
git rm -rf "$version" || true
mv "$pt_checkout/functorch/docs/build/html" "$version"
git add "$version" || true
git status
git config user.email "soumith+bot@pytorch.org"
git config user.name "pytorchbot"
# If there aren't changes, don't make a commit; push is no-op
git commit -m "Generate Python docs from pytorch/pytorch@${GITHUB_SHA}" || true
git status
if [[ "${WITH_PUSH:-}" == true ]]; then
git push -u origin gh-pages
fi
popd
# =================== The above code **should** be executed inside Docker container ===================

View File

@ -69,8 +69,6 @@ readability-string-compare,
'
HeaderFilterRegex: '^(aten/|c10/|torch/).*$'
WarningsAsErrors: '*'
LineFilter:
- name: '/usr/include/.*'
CheckOptions:
cppcoreguidelines-special-member-functions.AllowSoleDefaultDtor: true
cppcoreguidelines-special-member-functions.AllowImplicitlyDeletedCopyOrMove: true

View File

@ -48,7 +48,6 @@ per-file-ignores =
torch/__init__.py: F401,TOR901
torch/_custom_op/impl.py: TOR901
torch/_export/serde/upgrade.py: TOR901
torch/_functorch/predispatch.py: TOR901
torch/_functorch/vmap.py: TOR901
torch/_inductor/test_operators.py: TOR901
torch/_library/abstract_impl.py: TOR901
@ -73,7 +72,7 @@ exclude =
./docs/src,
./functorch/docs,
./functorch/examples,
./functorch/docs/source/tutorials,
./functorch/notebooks,
./scripts,
./test/generated_type_hints_smoketest.py,
./third_party,

View File

@ -1,10 +1,6 @@
---
name: "⚠️ CI SEV"
about: Tracking incidents for PyTorch's CI infra.
title: ''
labels: ''
assignees: ''
---
> NOTE: Remember to label this issue with "`ci: sev`"

View File

@ -1,18 +0,0 @@
---
name: DISABLE AUTOREVERT
about: Disables autorevert when open
title: "❌​\U0001F519 [DISABLE AUTOREVERT]"
labels: 'ci: disable-autorevert'
assignees: ''
---
This issue, while open, disables the autorevert functionality.
More details can be found [here](https://github.com/pytorch/test-infra/blob/main/aws/lambda/pytorch-auto-revert/README.md)
## Why are you disabling autorevert?
## Links to any issues/commits/errors that shows the source of problem

View File

@ -1,10 +1,8 @@
---
name: Disable CI jobs (PyTorch Dev Infra only)
about: Use this template to disable CI jobs
title: DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]
labels: 'module: ci'
assignees: ''
title: "DISABLED [WORKFLOW_NAME] / [PLATFORM_NAME] / [JOB_NAME]"
labels: "module: ci"
---
> For example, DISABLED pull / win-vs2022-cpu-py3 / test (default). Once

Some files were not shown because too many files have changed in this diff Show More